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Summary

A study of the use of models in image analysis is reported. Models are

structured a priori information which can be used to interpret data in a manner
consistent with real-world knowledge. Potential models are selected by prim- !
itive feature extraction. Primitive features studied in this research were all
derived from boundary curve segments, i.e. edges, of the image. Two types of
models were considered for encoding real-world structural knowledge. One model
studied was Problem Reduction Representation (PRR) or equivalently the Context
Free Grammar (CFG) which generically specifies structure. The second type of
model considered was the Gecgraphic Data Base (GDB) which iconically encodes

particular shape features to be seen in aerial imagery.

Whatever model is used, primitive features are required to align a hypoth-

etical model with raw image data. Further analysis is then made by verification
of structural hypotheses. Verification is treated here as either template match- |

ing or curve fitting under constraints.

The study attempted to draw conclusions about an entire image screening system

by studying several possible parts. Many experiments were performed and a large

amount of literature reviewed. As a result of the study, the following conclusions |

were reached.

. Useful interpretation of imagery requires that instances of sensed data be

integrated with large amounts of stored real-world knowledge. |




o

+ Representation of real-world knowledge,

particularly for use by a computer,

is a difficult task with much current research activity, Generic models
such as PRR or CFG are difficult to use in practice but particular iconic

shape models appear to have practical potential.

- Current automatic primitive feature detection techniques can support complex
analysis when features are registered to an iconic model.

i

Evaluating and combining confidence values for verifying hypotheses about

3

1

{

{

$

|

{

1 image structure is difficult in both theory and practice and requires further
i work.

. The most promising future direction for reconnaissance image

analysis appears
to be toward map-guided image analysis,

ro
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I. Introduction

Efficient automatic or semiautomatic analysis of aerfal imagery {s a
problem of great practical interest to the Air Force. The complexity of the
image interpretation tasks of target identification and target location has
thus far been too great for automatic processing. However, success has been
achieved in the recognition of simple or stercotyped objects [Ashbaugh, 1973]
and in the automatic verification of certain mapped features in imagery [Barrow
1077]). The computer can outperform a human in some detection tasks and has the

1 virtue of being indefatigueable in its efforts. 1t is natural then to attempt

a man-machine synthesis whereby image analysis would be achieved with each com-

ponent performing the tasks which it does best.

Investigation of interactive screening of reconnaissance imagery was begun by
L.N.K. CORPORATION in October of 1974 under Contract F33615-75-C=5056. Preliminary
j ] results were reported in Stockman and Kanal {1976] and recommendations for future
j | work were made. This report summarizes the results achieved during a follow-up

investigation of certain subproblems broken down in the initial study. Figure 1.
shows the possible flow of information and control in an interactive imagery
1 screening system. Stations 1 and 2 are used for imagery for which no previous

computer-gtored analysis exfsts. Primitive detectors are applied at station 1 to

detect features common to targets - straight edge activity, corners, parallel edges,

or symmetrical edge activity. If any such features are detected the imagery is
examined further at station 2 where object models are tested against the data auto-

matically. If any targets are detected the human analyst (station 4) is alerted

-y




for turther {nterpretation of the fmagery and for compilation of a symbolie
tmage for the data base to be used {n vepeat coverage at some later date,
Whenever fmagery is input to the system and symbal{c coverage exists in the
data base, an automatic process (statfon 3) attempts to match, or rvegister,

the new raw fmagery to the symbolic fmagery. Apparently, much matching can be
done automatically [Barvow, 1977:Stockman,1978] at this stage. Signiticant dis-
crepancies detected during the matching ot data to archive must be brought to

the attention of the human interpreter for further analysis.

For fmplementation of a system as described, blocks 1, 2, and 3 are problem-
atical because they involve computor decisfon-making. This report examines poss-
fble implementations tor blocks 1, 2, and 3 of the interactive screening svstem,
Section 2 of this veport deals with primitive detection; that {s, with the auto-
matic recoguition of primitive image features without benefit of context or higher
level knowledge.  Curves, straight lines, corners, and points of high curvatuve
are discussed as fmportant primitives. The primitives are usetul not only in
block 1 as evidence of cultural activity but also {n block 3 to automatically est-
ablish a corrvespondence (registration) between the image and a map {n the archive,
Section } discusses the use of grammar models tor object recognition and section 4
considers object detection ag vegistration of image cdpes to object model edpes.
The automatic recogniticn of tull objects iz vequived tor successtul implementat ion
of bleck 2 while the vepistration technique developed in section 4 is usetul tov

the registration veguived in block 3 ot Fipgure 1.

1Q




Conclusions are rendered in Section & of this report. Very briefly, {1t
can be said here that all practical image analysis problems require the input
of information from sources other than the input imagery itself. Representation
of this outside knowledge for use by an automatic process is one of the most
interesting and difficult problems under current research. Perhaps the most
promising current alternative is to use positional knowledge as encoded in present
day cartographic data bases. By using such symbolic data bases and a system such
as that in Figure 1. it should be possible to do analysis of repeat coverage much
more rapidly and accurately than original coverage. In this manner, a large initial

investment in human analysis can provide machine useable knowledge for future payoffs

in automatic analysis.

11
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2. Primitive detection

This section discusses the extraction of primitive features from grey
scale imagery. All features used here are edge dependent features in the
sense that their detection depends on detection of the boundary between two
regions of contrasting grey scale. Edge primitives or edge elements are not
single contrast points but rather a minimum collection of them defining a
connected and continuous segment of a boundary. It is a common view [Marr 1975]
that such edge elements form the basis on which higher level human recognition

processes operate.

Image points of high contrast can be automatically identified by a number
of mathematical techniques of varying complexity. A survey of edge detection is
given in [Davis 1975] and experiments are reported in [Bullock 1974] and [Rosenfeld
1971]. After reviewing the literature on edge detection and experimenting with

several techniques the author has arrived at the following conclusions.

Due to lack of contrast, edge operators cannot be expected

to extract all the edge points from any real world scene.

Due to image noise there will be automatically extracted edge

points in places where a human will not perceive them.

. The ideal edge content of any real world scene cannot generally

be extracted without considerable semantic information from sources

outside of the imagery.

13
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. If a small part of the outside semantic information used
. by a human in image interpretation were available to an

automatic process, most of the current edge detection schemes

would be entirely adequate to support complete image analysis.

———

The fourth point made asserts an optimistic view in spite of the three initial
negative remarks. It seems clear that research on primitive edge detection should

be curtailed while work on semantic interpretation and use of knowledge should be

pursued. It is assumed in this report that current simple edge detection operators
are sufficient for capturing an essential representation of a scene. An essential
representation is one that supports semantic interpretation and hypothesis formation
which can in turn be used for driving more focused edge detection operations. The
rest of this section discusses rather simple and economical methods for extracting

partial edge content from imagery to be used for higher level interpretation. The

fact that these simple operators fail in many cases does not preclude correct image

analysis since higher-level operators will come into play.

14
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2.1 Extraction of smooth edge elements

Very general boundary curve detection consists of two simple steps - -
first, high contrast(edge) points are identified in the image and secondly sets
of these points are organized into continuous curve segments. Due to noise and
low contrast it is unreasonable to expect unbroken boundary curves as a result
of such general low-level processing. Higher level processing using geometric
or topological constraints can connect curve segments into complete boundary
structures. Partial semantic interpretation of the image may be necessary in
order to reliably connect curve segments. Features of existing curve segments
such as length, curvature, degree of match to a stored prototype may be used in
the interpretation and/or connection decisions. This section addresses only very
general low-level curve segment extraction which is appropriate for arbitrary pro-
blem domains. Enhancement and interpretation of the curve segment set via specific

semantics is the topic of future work.

Curve segments representing the image data can be extracted in a 3-step pro-
cess. First of all, all image points are examined and a set of high contrast points
is extracted. A Roberts' type gradient operator is applied to each point and a
gradient magnitude and direction are extracted. L.N.K. has obtained good results
by keeping only that 52 of image points which have the highest gradient magnitude
(contrast). The second process examines a small neighborhood around each edge point

extracted in step 1 and finds the best continuing edge point in the forward and

—_
(¥, ]
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backward direction. Links are set pointing to the best continuation points
{f such points exist in the high contrast set. These links are established
independently (theoretically in parallel) for each high contrast point. The
third step extracts curve segments as chains of high contrast points mutually

linked together in step 2 of the procedure.
2.1.1 Step l: extraction of high contrast edge points

L.N.K. has developed a gradient operator based on masks which allows gradient
direction to be optionally computed at resolution of 1/8, 1/16, or 1/32 of the
circle (i.e. 45°, 22%Q°, or 115%°). Gradient magnitudes are histogrammed and a
fixed percentage of the highest contrast points are selected. Recent work has been
done with 2%, 5%, or 10%¥ of the image points. High contrast points are saved in
array storage outside of the image storage. Appendix A documents the simple edge

operator based on masks.
2.1.2 Step 2: finding continuing points by local processing

The neighborhood of each high contrast point is independently examined by a
spiraling search around the given point. (see Figure 2. ) Neighbors closest to
the point are considered first and only neighbors within a fixed radius r are
examined. Links are established to the first high contrast point with acceptable

gradient direction continuing a curve in either the forward or backward direction.

16




The amount of curvature to be tolerated in the curve is expressed as a tolerance
on the agreement of gradient directions. The forward direction of traversal of
a curve is taken to be that direction of traversal placing the darker region to
the right of the curve. This processing induces two relations on the set of high

contrast edge points E = {el.e

2.....en}. F = {(ei.ej) e, forward links to ej}
and B = {(ek.el) : e, backward links to el). Note that (ei,ej) € F does not mean
that (ej.ei) € B. This symmetry will probably exist if edge points e and ej are

indeed consecutive points on the same boundary segment. However, at locations of
curve junctions or poor contrast, the edge point relationships are expected to be

broken. Linking of points is done in image array storage.
2.1.3 Step 3: collection of continuous chains of edge points

1f (e.,e.) € F and (e ,ei) € B then ei and e, are consecutive points on a

i] J i

curve segment. All the high contrast points can now be placed into equivalence
classes (representing curve segments) as follows. Define the relationship R such

that (ei,ej) € R if and only if there is a chain of forward (backward) links

(possibly a null chain) from point e, to point e, and a chain of backward (forward)

i j

links from point e, to point e R is relexive, symmetric and transitive. Each

J -
equivalence class represents a separate curve segment. Curve segments can then be
extracted by considering each point of the high contrast set (in any order) and

tracking all related points when a beginning curve point is encountered. A begin-

ning curve point is a point e such that if (ei,ej)e B then (ej,ei),{ F. Tracking of

17
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curve segments is done in image array storage. The image is raster-scanned for
beginning points. When a beginning point is found the chain is tracked until
broken. Then the raster scan resumes at its former place. Because each curve
segment has but one beginning point there is no duplication. Chains smaller

than some fixed number of points are suppresscd thus removing many noise edges.

2.1.4 Examples of smooth curve segment extraction

Figure 3 shows a light airplane on a darker airfield. The curve ex-
traction procedure as applied to a window containing the right wing tip is illus-

trated in Figures 4 , 5, and 6. The high contrast points near the wing tip

and their gradient directions are shown in Figure 4. Figure 5 shows a plot

of all forward and backward links created by the spiraling neighborhood searches
of step 2 of the process. Notice that certain points are of degree 3 meaning that
they are at the junctions of multiple edge activity. These points must be at the
terminus of an extracted curve segment because they cannot relate symmetrically

to 3 neighbors. Large sets, or chains, of symmetrically relateq points are shown
in Figure 6. A large portion of the wing boundary is successfully extracted

along with two edges of the "USAF'" identification interior to the wing and two

edges of a dark streak on the airfield below the plane.
Figure 7 shows a photo containing curved roads in rough terrain (lower right

corner). The high contrast points from a region where two roads intersect are

shown in Figure 8. The point linking relations are shown in Figure 9 and the

18
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five curve segments extracted are shown in Figure 10, The straight curve segment
oriented toward 225° is caused by a shadow which cuts across one of the intersect-
ing roads. The other curves are from the road edges and a midstrip structure at

the intersection.

2.1.5 Discussion of smooth curve extraction

The curve extraction algorithm has been used to support a registratica pro-
cedure which matches curve segments of an image with those of a map or model. Seg-
ments with points of high curvature were selected and measured for curvature and
typed as either concave or convex. These features of the extracted curves allowed
for selective matching to curves in the map or model. Many of the wing tips, tail
tips, and nose tips of a set of airplanes were extracted and used for registration
in this manner. Some airplane parts were missed due to a fracturing of the curves.

There were similar problems with the terrain imagery due to shadows or low contrast.
{

1

Higher level problem specific knowledge must be employed to join general curve

segments to form thie boundary of recognizable objects. The interpretation of the

curves depends on the recognition of the objects and visa versa. As a simple example,

if a set of curve segments map onto parts of an airplane model under the same RS&T*
transformation, an appropriate linking of curve segments for forming the continuous
boundary is immediately suggested. L.N.K. has been successful at verifying faint

curve segments under model direction and has thus been able to get complete boundary
curves for modeled objects even when high contrast points form only a partial object

boundary. More discussion on this topic follows in Section 4.

*Rotation, Scaling and Translation

19
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INTEGER DX, DY,COMPMT
COMMON /DELTAS/DX(68) ,DY(68) ,COMPMT (68)

2

Ly

-2,-2,-1,0,1

59 45 46 47

44
33
17
16
15
29
41
66

Definition of spiral search sequence
through the neighbors of a pixel¥*.

34 35
18 19
6 7
5 %
4 3
14 13
28 27
a3 52

36
20
8
1
2
12
26
51

1,0,1

DATA DX / 1,1,0,-1,-1,0,1,
2’2»2’100"l|’2’
2n3)3'3n2’1b0’—1v'2|'3n_ v'3"2v'1’0)19
2’3'3‘21'20-3v-3'-
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60
37
21

9
10
11
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40
65

2, =1 0052
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61

'4’1‘|
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38 62

22
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39
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DATA DY /0,-1,-1,-1,0,1,1,1,
2 1,0,-1,-2,-2,-2,-1,0,1,
+ 2,1,0,-1,-2,-3,-3,-3,-
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DATA coMpMmr/5,6,7,8,1,2,3,4,15,16,17,18,19,20,9,10,11,12,13, 14,
+* 29,30,31,32,33,34,35,36,21,22,23,24,25,26,27,28,
+ 41,42,43,44,37,38,39,40,51,52,53,54,55,56,45,46,
+ 47,48,49,50,63,64,65,66,67,68,57,58,59,60,61,62/
C COMPMI' DEFINES 180 DEGREE ROTATIONS COMPMT(0) IS UNDEFINED
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Figure 3. Airplane on airfield background .
(AFBl test image)
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Figure 5. Plot of all forward and backward linking relationships
among high contrast points of Figure 4 (curve detection step 2.)
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2.2 Extraction of straight edge elements

The Hough transformation is an efficient device for detecting if a set

of high contrast points are organized along a mathematical curve [Duda 1972].

The simplest mathematical curve and the most important one for detection of man-
made structures is the straight line. Only two parameters are required for spec-
ification of a given line - - in polar form the parameters are the direction

of the normal to the line (9) and the distance from the origin to the line (r).
If the possible line directions are discretized to T values and the possible

distances from the origin are discretized to R values then Hough detection is

logically equivalent to a matching of T:R templates to the high gradient points

[Stockman 1977].

2.2.1 Enhancements to the general Hough transform

Three special enhancements were made by L.N.K. in its use of the Hough
transform. First of all, only a small percentage of the high gradient points
were passed to the Hough detector. This was achieved by histogramming the
gradient image and setting a selection threshold such that 2%, 5%, or 10% of
the image points were passed. An exception to this policy occured if the thres-
hold were lower than an estimate of the standard deviation of noise gradients in
uniform regions. In that case the threshold was set to the noise level gotten
from interactive training on uniform regions of imagery. By using only a small
percentage of the strongest edge points, only the strongest edges would be detect-
ed while weak edges or noise edges would be suppressed. This had the eftect of
making the false alarm rate for detections almost 0 while the false dismissal rate

was high.




T —
——

\ A second enhancement made by L.N.K. to the general Hough line detector

i was the provision for refining the resolution of the parameters of detected
lines. Coarse detection was made with T=32, i.e. 32 line directions were
possible in 11 1/4°increments, and R=17 since only 2 pixel wide lines within

i + 16 pixels of the center of a 60 x 60 window were considered. Each detection

made at (0,r) in the coarse resolution process was refined as follows. A new
set of T*R=7:5=35 templates were established with 2° directional resolution
and line width of 1 pixel. The parameter space tested was {0-6,0-4,0-2,0,0+2,

O0+4,8+6} x {r-2,r-1,r,r+l,r+2} where 0 and r were the parameters gotten from

coarse detection. Directional resolution finer than 2° would have required

windows larger than 60 x 60 pixels.

The third enhancement to Hough line detection was rendered by checking for
compatibility between the gradient direction at the high contrast point and the
gradient divection of the candidate template for a line. Typically a high con-
trast point was considered to belong to at most 5 of the possible T-R lines. The
actual number of possibilities was dependent on the resolution used in the gradient
extraction. Thus, the use of gradient information further increased the speed of

execution and at the same time sharpened the output of the detector.
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2.2.2 Examples of Hough detection

Once the previously described procedure was implemented and its parameters
were tuned to the imagery at hand, a great deal of testing was performed with no

further changes made to the algorithm. In several cases extracted edges were used

PRNE T Ve

/.

for registration or object detection experiments as described in Section 4 of this

report.

R

Figure 11 shows an airfield image and two subimages taken from it. Coarse

Hough detections made on the subimages are shown in the lower right. Each straight
edge element shown is at most 60V 2 pixels long since 60 x 60 pixel windows were

used to cover the images. Many good edge elements have not been detected as a

result of the 5% point selection process employed. This effect is particularly
prominent at the intersection of the three walks where widespread edge activity
causes the highest contrast point set to be scattered and incapable of causing a
strong response in any single template. In both images some edge elements over-
shoot their true length. This is because the responding templates are plotted

rather than just the points inside them. In general further clean up is needed

to delimit the true size of detected edge elements. In order to detect all nearly
straight edges of length 30 pixels or more in the presence of noise templates 2-pixels
wide were used and the detection threshold was set to 30 a priori. Since templates
contained roughly 120 pixels roughly 1/4 of its points had to respond in order for
the template to respond. Notice in the lower right of Figure 11 that high contrast

points on the short side of one building triggered two templates in two different

60 x 60 windows.
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Figure 12 shows a poor image of an airfield and the resulting coarse
Hough detections. The directional resolution of the edges is unsatisfactory.
The refinement procedure discussed in Section 2.2.1 produced the results shown
in Figure 14, Excellent alignment of many of the refined edge elements allowed
a simple procedure to combine short edge elements into long ones as shown in
Figure 15. As will be shown in Section 4, the partial straight edge detection
shown in Figures l4 and 15 is sufficient to establish registration with a map
and thus unlock model information usetul for focused reexamipation of parts of the
image. The poor quality GAFB image was deliberately chosen to illustrate this
point. Before passing on it is important to note that the light/dark relationships
along edge elements is indicated in Figures 14 and 15 while they are not evident
in Figures 11 and 12. The dark side of the edge will be at the right as the

edge is traversed in the direction of the arrow.

Figure 13 shows a large area with fine detail. Fine resolution Hough detect-
ions for this image are shown in Figure lo, Very little high level structure is
evident in Figure 16 and perhaps more extraction effort should have been invested
== for example, in using more and smaller windows. However, the edge content shown

in Figure lo proved to be sutficient to register the image of Figure 13 with a

map made trom Figure 7. (The detected edge directions trom Figure 13  were actually

reversed to get Figure 16 because Figure 13 is a negative rather than positive

as is Figure 7.)




2.3 Points of special curvature

It has been known for a long time that points of high curvature and inflect-
ion points on the boundary of an object contain most of the information used by
humans in recognizing the object. Such points also play an important role in
representation of an object in a compact form. A summary of a good deal of work

in this area can be found in [Pavlidis 1977].

Figure 17 shows a tracing of a few major features from a 1:250,000 map of
the Harrisburg, Pennsylvania region. These are features which should clearly be
evident in aerial photography and perhaps even in LANDSAT imagery. There are
several points whose uniqueness make them vital to recognition or registration of
the region. Some of these points are intersection points, for instance, the juncture
of the Pa. Turnpike and Route 15. Perhaps a dozen good points of high curvature
exist. The crooked profile of Sherman Creek provides the greatest opportunity for
recognition or registration - - 10 points of high curvature are available. The
Juniata River contains interesting bends but the Susquehanna does not. There is,
however, a sharp-<ornered island down river from Harrisburg which has prominent
features. A thin resevoir with 3 sharp corners is evident in the top right quadrant.
As will be shown in Section 4, it is not necessary that all of the features of an
image be recognized before the image itself can be recognized. 1t is also not nec-
essary that continuous curves be extracted. For instance, segments of Sherman Creek
are likely to be disconnected as the creek ducks under thick foilage. Thus, only
some distinguishing features will be available in any given image of an area, but

there should always be enough for recognition.
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Besides the shape information from the curve {n the neighborhood of a high

curvature point, there might also be qualitative information, espectially if the
imagery is multispectral. For instance, the points on the small streams are linear
water features inside a land/vegetation background. This water versus land quality
can be picked up automatically from the multispectral signal. The corners of Hill
Island would be defined by land/vegetation jutting out into open water. Boundary
points so detined by local shape and region features could easily be extracted
automatically with an acceptable degree of reliability and matched to a geographic

data base tor recognition and registration purposes.

Some experimentation was carried out in the detection of high curvature boundary
3

points. The curve extraction procedure of Section 2.1 was applied to imagery to pro-
duce segments of boundaries. The curvature of each boundary segment was computed by
a method similar to that in algerithm 7.1 of [Pavlidis 1977] and curve segments with
points of high curvature were identified. All other boundary segments were discarded
from this process. Figure 18  shows tive "corners" identified in a window of the
AFB image in Figure 11. he window contains the second atrplane trom the bottom
and the wing of the tirst airplane. All three wing tips were extracted but the nose
and one tail tip of the complete plane were missed. Some structured noise was also
extracted. 1t should be clear that this evidence, along with other evidence such as
straight edge content, is useful for recognizing objects and determining their posi-

tion and the scale of the imagery. Further treatment tollows in Section 4.

e
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2.4 Other primitive image features

The requirements on primitive features are (1) that they be simply defined

and (2) that they can be extracted automatically fromimagery with acceptable

reliability. In addition to the primitives mentioned in Sections 2.1-2.3 two

others are presented. These primitives were, in fact, already briefly mentioned.

The intersections between two line or edge features can provide very good
features for recognition. Due to the fact that edge detectors tend to be unstable
at intersections some higher level (but still automatic and bottom-up) decision-
making is required to extend detected boundary segments and force the intersection.
It is even possible to create imaginary intersections as the surveyor does; for
instance, to create the intersection of the wall of a building (extended) and a
street. Intersections can create a local topology and geometry that provides
reliable matching to a stored representation. Work has already been done in this
area by [Zahn 1974] and [Dudani 1977]. Experiments with the use of simple inter-

section features is discussed in Section 4.

Boundary segments can be useful features even though the segment is not straight
or of high curvature. The boundary may be significant due to the types of regions
which it separates. This is particularly relevant if multispectral imagery is
available to make region extraction and interpretation a lower level process. The
fact that a boundary segment separates land and water regions does not give it un-
ique properties for matching to a reference, especially if the segment shape is

bland. However, the number of possible matches in a reference data base may be small,




and global consideration of several such ambiguous features could yield a unique
match between imagery and reference. A method for integrating ambiguous local
matching evidence to form a unique global match is given in Section 4. Relaxation
labeling is another technique for arriving at a global interpretation from ambiguous

local interpretations [Zucker 1976, Tenenbaum 1976].




Figure 1l.

AFB test image and coarse Hough detections of straight edges
in selected windows. AFBl and AFB 2 (Image is about 2000 x 2000
6-bit pixels while windows are 250 x 250 and 500 x 500.)
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3. Recognition of structures via grammar models

Grammar models, originally introduced to model the structure of language,

have maintained the interest of pattern recognition researchers for over a
decade. Context free grammars in particular allow tractable hierarchical model-
ing of component structure. Initially conceived for linear strings, grammars

have been generalized to apply to 2-D as well, either by changing the grammar

model itself [Shaw 1970] or by analyzing only 1-D boundary curves in an image

[Ledley 1966].

3.1 Background and motivation of a grammatical approach

There have been many efforts in linguistic pattern recognition. The work
of Shaw [1970], Pavlidis [1977], and Fu [1974] are exemplary and contain much
discussion of the virtues of the linguistic approach. Many weaknesses of former
linguistic pattern recognition implementations stem from the fact that pattern
recognition researchers did little to tailor linguistic analysis methods to the
more demanding real data situation. First of all, most implementations commit
themselves to unique segmentations in "preprocessing'" stages which do not utilize
available structural knowledge and thus irrevocable decisions are made in locally
ambiguous contexts. Secondly, implementations have been one directional. Analysis
is either done in a bottom-up (data-directed) or top-down (model-directed) fashion
but not in both directions. Shaw's PDL analysis scheme was top-down with primitive
processing always done under model hypothesis. The approaches of Pavlidis and Fu
are characteristically bottom-up with early commitment to unique segmentations in

the absence of structural hypotheses.




It is the author's claim that bottom-up techniques which segment without

model knowledge cannot succeed in complex data environments. Take for example

the analysis of the edge structure in7?‘reoaanaia§gngg_image. Using global

parameterization the edge detector is doomed to pass either too many edges or

two few. Too many edges may fool the structural analyzer or will at least over-
work it. Too few edges may cause analysis to fail. A case is the detection of

a rectangular building. Due to sun angle possibly only 2 or 3 sides of the build-
ing will be picked up by an edge detector using sensible thresholding. Any thres-
holding that would detect the weak sides would necessarily detect an enormous number
of edges in other textuved regions of the image. What is really wanted is an anal-
ysis technique that would search for the weak sides locally under medel control.
(Griffith [1973] addresses this strategy and analyzes it as a work saving device
rather than a device necessary for accurate recognition.) On the other hand, purely
top-down analysis strategies are impractical in complex problems because too much
work must be expended in the formation of hypotheses which are consistent with the

model but in no way relate to the untested data at hand.

A possible solution is proposed below. Non-directional analysis can be achieved
by identifying reliably extracted primitive components of the model, extracting those
in preprocessing without structural constraint and then doing model-directed search
for remaining pattern structure. Thus analysis can proceed in either the bottom-up
or top-down direction. The dichotomy of terminal and nonterminal structures is retain-
ed here - - terminal structures are recognized only through primitive feature extract-
ion on real imagery while nonterminal structures are processed only in the higher
level syntactic/semantic model space. However, unlike most other approaches, recog-

nition of terminal and nonterminal structure is overlapped in time with the data
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processing and model processing providing each other with guiding feedback.

Section 3.2 outlines the theoretical development of such a non-directional analysis.
Section 3.3 describes a simple example of non-directional analysis in the detection
of rectangles in reconnaissance imagery. Primitive extraction is treated in more

detail in Section 3.4 and a final discussion of issues follows in Section 3.6.

3.2 Outline of a theory for non-directional structural pattern recognition

Due to space limitations complete definitions, proofs, and discussion of con-
cepts cannot be included here. Instead, certain basic background is assumed and
only a broad treatment is given. Excellent informal treatment of problem reduction
representations (PRR), also known as AND/OR graphs, and state space representations
(SSR) can be found in the text [Nilsson 1971]. Formal treatment can be found in a
paper [VanderBrug and Minker 1975] and in a dissertation [Stockman 1977]. Also
relevant is a paper by Hall [1973] showing the equivalence of a context free grammer
(CFG) to a finite AND/OR graph, and a paper by Chang and Slagle [1971] showing that
conversion can be made from PRR to SSR so that the A* algorithm can be used to pro-
duce solutions of AND/OR graphs. The practical result of integrating this work is
as follows. Structural constraints on real-world objects can be modeled by a CFG or
its equivalent PRR. Recognition of the object then amounts to parsing data using
the PRR. Recognition results in a parse tree (CFG) or a solution tree (PRR) which
is a hierarchical breakdown of each object structure in terms of its components re-

cognized in the data.
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In order to effect an efficient non-directional analysis special embellish-
ments are appended to the usual PRR. First of all, AND successors are ordered
and are searched tor sequentially and only after all previous successors of the
set are solved. For example if problem A is solved by solving both problems B
and C, only one of the subproblems B or C will be posed at a time. There is no
sense wasting ettort to solve B if € is uunsolvable. This strategy was used in
a top-down parser by Chartres and Florentin {1968). The first AND successor of

a set of subproblems of problem P is called a primary successor of problem P,

Every OR sucessor of problem P is called a primary successor. A primary descendant

of the root problem R is either a primary successor of R or the primary successor

of some primary descendant of R. In the linguistic pattern recognition context,
primary terminals are key primitives or prominent features which can be reliably
detected without syntactic constraint. Recognition of a primary problem would
then trigger the search tor the solution to problems which have the solved problem

as primary successor. Search for this solution would typically involve a top-down

search for the solution of other non-primary successors. [f the inverse of the
primary successor relation is available in the PRR, analysis can proceed recursively
in either bottom-up or top~down direction. CFG's (hence {inite AND/OR graphs) are
easily inverted for bottom-up analysis. 1If A»*BC (problem A is solved by solving

both problems C and B) and D*EBG then goals A and D should be initiated if a solution
to structure B were at hand. Separate (parallel) model-directed searches would then

3 be done for the solution of successor C of A and the higher priority of successors E

and G of D.
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In [Stockman 1977] a conversion is made from PRR to SSR which has the
following properties.
(1) PRR has a solution graph if and only if SSR has a solution path.

(2) All solutions to PRR can be found in a top-down mode by search

of SSR with the initial state encoding the root problem of PRR.

(3) All solutions to PRR can be found in a bottom-up-top-down mode
by search of SSR with a set of initial states, each one encoding

some solved primary descendant of the root problem.

Any of the standard search algorithms of SSR [see Nilsson 1971] will do--
depth-first, breadth-first, or ordered search. 1In applications discussed below
a heuristic function evaluating the merit of partial solutions was used which
enabled A* search. Note that bottom-up initiation of search (point 3 above) re-
quires that PRR have a finite set of primary primitives, which is the case with

a CFG.

3.3 An experiment in the recognition of rectangles

In this section a simple, but non-trivial example is given of the non-direct-
ional analysis algorithm outlined in Section 3.2. Actual computer runs on real
and simulated data have been made and have demonstrated the capabilities of the
analysis paradigm. The non-directional analysis algorithm was first implemented

as the structural component of a waveform parsing system [Stockman 1977] and was

rigorously studied in the recognition and measurement of pulse waves. The identical

structural component was then applied to the recognition of rectangular objects
in images as described below. The transition from 1-D to 2-D data was enabled

by the system's treatment of locational information as attributes of structures.
y
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Problem specific procedural semantics were necessary to handle attribute manipu-
lation in each application and were coupled to the structural analysis in a uni-

form way.

3.3.1 The experimental data

Figure 19 shows the simulated experimental data. Input to the recognition
system is a set of undirected edge elements each specified by two points. The
data is rough because no complete contours exist and there are gaps and changes in
orientation along the sides. Complex corners could fool ordinary tracking algorithms.
This data, however, is probably better than can be expected from preprocessors in
many applications. Generally it should not be expected that edges sufficiently
characterizing object structure can be delivered by model-independent preprocessing.
Suppose, for instance, that edge element 9 was quite faint in the image. Globally
parameterized edge detectors would then not deliver that edge element. There is,
however, a solution to this problem in model-directed local edge detection. Suppose
that the sides DA, AB, and BC of rectangle ABCD were recognized at a certain point
in the analysis. At that point edge CD could be hypothesized and the image scanned
under lenient parameters. The data of Figure 19 should therefore be regarded as a
union of two sets of edges, those primary edge structures detected under stringent
global parameterization and those secondary edge structures detected locally under
lenient parameterization. 1In the actual computer runs edge elements #7 and #12 were
used as primary edge structures, but arbitrary choices could have been made for start-

ing the search.
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3.3.2  The rvectangle model

Figure 20 shows the PRR graph model of the vectangle domain.  STRAIT is

the node activated by primary detection ot a long strong straight edpge clement.
Recognition ot STRAIT causes recognftion of the tirsi side of a rectangle ~PRIM-,
This tirst side may also be extended in the backward or torward dirvection (BACKEX,
FORWEX) to get other starting sides to explore.  Each starting side <PRIM- vecopnisz-
ed activates the scarch for <LFRC: and <RCGRCH which are complete rectangles tormed
by respectively counter-clockwise and clockwise accumulation of the other 3 sides.
Fhe “SIDES stroucture and all fts substructures are scecondary, that is, their recog
nition depends upon detect fon of edges {n precise relation to those vecopnized pre
viously along the path.  The coupled semant ic vout fnes handle the anpular structure
and check tor approximately equal opposite sides. A context-free grammar corrvespond-

ing to the PRR of Figure SO fs given in Figure 210 1t is dmportant to emphasize

the role ol semantics in restricting the scarch tor detections and the recognitton
ot higher level structures. For (nstance, cach time the <SIDEs structure has been
recopnised but its length fs out of range that analysis path is terminated.  Simd Lat
lv it the leagth of the <SIDE- structure does not match a parallel side the analysis

path s terminated.

1.3.3 Quality ot substructures amnd mertt ol states

Fach substructure of the PRR must be assigned a quality o€l when vecopnised ]
to retlect the cont fdence (fuzsiness?) of recognition.  For primary primitive «tr
tures this quality is gotten trom the detector ftselt, but cannot depend apoy Crue A

tural context.  For sccondary primit fve recopnition, the recognition quality depends
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Figure 19. Simulated data set for rectangle recognition experiment,
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. G:<S>\/N)\/T)P>
| S = <RecT>

Vo = <RECT> , KLFRCH,<RGRCH < PRIMD ,<SIDE>,
i <ALT1>, <ALT2> ,<ALT3> , <SID1>, <SID2>

Vr = {STRAIT , BACKEX , FORWEX RGS@}

<RECTD> — <LFRCY /<R6Rc>
CLFRC > —— <PRIMD SSIDEMSSIDED <SIDES
<RGRCY> —> <PRIMD <s10EDSIDED <sIDE>
: ! CPRIBAD ~—, <ALT1>/<AL72> /(ﬂLTG’)
\ <ALT1) ——~ STrRAIT

SALTZ> —— CPRIM D> BACKEX
1 CALT3> ——= <PRIMD FORWEX |
| <SIDEYD ——= <51p71>
<sID1> —— RGSIDE /<s:oz>
LSIDZS ——x RESIPE <SiD1>

Figure 21. A Context Free Grammar (CFG) for rectangles

corresponding to PRR of Figure 20.
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upon the quality of detection and upon the degree to which the detection satisfies
the structural hypothesis. The quality of a non-primitive structure is defined

as the minimum quality of its substructures. This definition might not create the
"best" recognition procedure but it does create an admissible search for the best
interpretation. The merit of a path in model space is defined as the minimum quality
of any structure recognized along that path. The ordered search for interpretations
will thus find the highest quality one first because it always extends the highest

merit path first.

3.3.4 An example of processing

The non-directional algorithm was started on the data of Figure 19 with the
syntactic binding STRAIT = (13,22) - (8,18), that is, the primary terminal of the
grammar was identified to be the straight edge element directed from point (13,22)
to point (8,18). Significant states of the resulting state space search are describ-
ed below. Each state is a partial parse tree and has a merit computed from the rec-
ognized terminal structures in it. By state #3 the <PRIM> structure is recognized
and the grammar immediately causes three states to be generated, one each to search
for <ALT2>, <ALT3>, and <LFRC> respectively. The <ALT2> alternative attempts to ex-
tend the side backward while the <ALT3> alternative attempts a forward extension.
The <LFRC> alternative sets the goal of finding a second side at a 90° bearing from
the first. In states 4 to 10 the <LFRC> alternative is pursued but no such perpen-
dicular side exists and the search path deadens. <ALT3> does succeed in a forward
extension of <PRIM> to point (5,16). In so doing, the merit of states on this path

drops from 1.0 to 0.9. This enables <ALT2> to be pursued in states i3 and 14 which




produce no backward extension. The new <PRIM> structure recognized from point
(13,22) to (5,16) once again causes 3 alternative search goals to be set--forward,
backward, and perpendicular extension. States 19 to 48 pursue a perpendicular
extension from point (5,16) to (12,7), but point (12,7) is a dead end since no
further extension is possible. At state 53 another open path is picked up and a
perpendicular extension is driven from point (9,11) to point (17,17). Thus by
state 72 three sides of rectangle DABC are recognized. By state 97 a path is
driven perpendicular to side BC to point (10,28) thus completing the recognition
af 4 perpendicular sides. However, the path overshoots the correct beginning
point of the rectangle and becomes dead due to a semantic check on the sizes of
sides 2 and 4. An alternate open path is pursued to tinal state 106 causing
recognition of rectangle DABC. Two open paths remain by state 10b representing
paths D to (3,14) and D to (5,16) to (9,11) to (15,15) respectively but can not

develop into recognition of other rectangles.

A more detailed presentation of the search is now given. At any state of
the search there may be one or more partial matches of the model (Figure 20) with
the data (Figure 19). Each partial match is rated for its quality and this rvating
is used to determine which analysis is extended in the next search state.  The ex-

ample search was started with state #1 rated as 1.0 and encoded as tollows.
. | 13:22.9,18]

The meaning ot this encoding is that structure 5, i.e. the STRAIT structure in the
rectangle model of Figure 20, has been rvecognized spanning points (13,22) and (8,18)
ot the image, Structure 5 is substructure | of its parent structure. The dot "

to the left of the bracket "5" indicates that processing is tocused on structure 5.
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Using the model the search algorithm recognizes that structure 2 exists and

generates state #2 encoded as
2 5 85 2
# . [ 13,22,8,18[ 13,22,8,18] ]
1 1 11
and also rated at 1.0.

Recognition of structure 2 implies recognition of structure 1 at state #3 of the

analysis. Special processing indicated in the model (but not indicated in Figure 20)

causes the state encoding to be collapsed into
1 1
# . ( 13,22,8,18 ]
1 )]
The model indicates that the <PRIM » structure 1 can be part of 3 ditterent

superstructures. Thus at state #4 of the analysis there are three competing par-

allel interpretations encoded as follows.

8 1 18
¢ € . £3,22,8,18 1 }
1 1 11
4 L 1 4
# (. [ 13,22,8,18 ] )
1 1 11
3 1 1 3
# (s [ 13,22,8,18 ] )
1 1 L X

he tirst interpretation has structure 1 as the complete first side of the rectangle.

lhe second and third alternatives see structure 1 as an incomplete side that must

extended in the torward or backward direction., All three alternatives are rated

l
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the top one is taken for expansion next in the search. Using the model,the search
generates the following encodings ina top-down manner. Note the 90° direction change

as specified in the model for searching for side 2 with respect to side 1.

8 1 1 8
# 0 of 13,228,381 )
1 1 11
8 9 9 1 1 8
# € /8,18.01,02 ) [ X3,22,8.18 ] )
1 2 gt L
8 9 13 139 ] 1 8
¥ 0 C8,18,012.02 . ¢ 818,011,152 ) ) [ 13,22.8.18'] )
I 2 i L. 2 Lok
8 9 L3 10 10 13 9 1 L8
(0 8, X810, 1200 B, 18510, 12« ¢ 8, 18,110,012 ) ) ) [.13,22.8.18 ] )
1 2 )} 1 IS e S | Jost
DEAD

This line of analysis deadens because structure 10 is a primitive straight line

structure for which there is no above threshold evidence in the data. An alternate

course of analysis is thus pursued as follows.

4 1 1 4
# (. [13,22,8,18 ] ) rated 1.0
1 X 11
4 7. 7 1 1 4
# ( 13,22,8,18 ( 8,18,3,14 ) | 13,22,8,18 ] ) rated 1.0
1 2 21 H
|
4 A T 1 4
# ( 13,22,8,18 . [ 7,17,5,16 ] [ 13,22,8,18 1 ) rated 0.9
1 2 21 11
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The <PRIM > structure has been extended forward to point (5,16) but at the
expense of shooting a gap : hence the rating is reduced in proportion to the gap
size to 0.9. Structural alternative < ALT2 > is pursued temporarily because of
higher rating 1.0 but after failure the lineof analysis just above is again taken
up as the highest rated alternative. A few of the encodings along the path to a

correct recognition are as follows.

AFTER RECOGNITION OF TWO SIDES DA AND AB

8 9 91 18
§(5.16,9,01 . [ 5,06,9,11 | [ 13,22,5,16 | } raked 0.9
1 2 7 1 31

AFTER RECOGNITION OF THREE SIDES DA, AB, AND BC

8 2 g9 Gl 188
#0009 LT o 9707 RS 9 IR 8522 850 16 | )l Eaitted: 049
L 3 382 2L 1t

AFTER PROPOSING SEARCH FOR FOURTH SIDE CD.

3 9 Y9 99 9=l 18
£ ¢ 9 ERgli7 07 Ce Ol D S O S L T R [5G O T I e85 22, 5060 11 ) rated 049
1 4 4 3 3 2 Lo d Tl

AFTER RECOGNIZING ENTIRE RECTANGLE

8 9 gieYy 99 91 138
# . [ 17,18,14,22 [ 17,18,14,22 ] | 9,13,17,17 } [ 5,16,9,11 ] [ 13,22,5,16 ] ) rated 0.9
1 4 4 3 32 28 Lo

The automata that manipulates such encodings to perform the analysis is detailed

in [Stockman 1977]. The manipulation of the search areas, or intervals was done in

associated "semantic'routines. This was necessary so that the overall problem solving

mechanism would work uniformly on waveform and image data.
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3.3.5 Discussion of rectangle recognition experiments

The <RECT> goal in the rectangle PRR was not actually used as the root problem
in the experiments. <LFRC> was used instead to control only a counter clockwise
search. <RGRC> controls clockwise search and was not used to save time. It was
the intention that in future work the confidence measure would be allowed to increase,
and thus, while a path may block in one direction due to noise or distortion it may
be found in the reverse direction after enough confidence has been built to overcome

the noise.

A simple primitive detection module was programmed so that edge elements as
pictured in Figure 19 could be extracted from grey scale images. The detector
was used to verify the existence of an edge element as predicted by the grammar.
The primary edge element STRAIT had to be recognized by other means. The detector
scanned across a hypothetical edge and recorded points of maximum gradient magni-
tude. These points were then fit with a straight line to assign a contidence value
to the hypothesis. The system was then tried on two of the rectangular buildings
in the GAFB image. The searches were successful and were less bushy, i.e. more
efficient, than those on the constructed example of Figure 19. However, too much
adjustment was necessary to make the process work and little generality can be

claimed.
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3.4 More on the detection of shape features

Section 2 of this report discussed the detection of primitive features in
imagery without use of a priori model information. Straight edge elements, smooth
curve segments, and points of high curvature on them were discussed as useful feat-
ures. It was argued that many image features could be detected by cheap implementat-
ions although a fair portion of existing features might be missed. Once enough image
features are assembled hypotheses about the remaining image content can be raised and
tested by using models such as PRR. Verification of a hypothesis is much more effi-
cient than searching for a primary primitive without model guidance and thus more re-

fined shape features can be afforded.

Verification of the presence of a boundary segment of a particular shape can
be done using curve fitting, Hough detection, or searching for points of a prototype
set of points. These techniques are discussed in some detail in Section 5. An ex-
periment in the recognition of the curved tip of an airplane wing is described briefly
here. It was easy to add a parabolic curve-fitter to the existing straight line fitter
used in the rectangle experiment. As before, a specially shaped boundary curvewas hypothe-
sized in a given region of the image with a given orientation. Profiles were searched
aligned with the hypothesized coordinate system and the high gradient points were fit

with a parabolic curve. Goodness of fit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>