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INTRODUCTION

The writer attended a one—week , 19—24 July 1964 , seminar at the
Pennsylvania State University. The seminar , “Vibrations and Vibration
L~.mping,” was conducted by the Pennsylvania State University OrdnanceResearch Laboratory.

“This memorandum covers the material that was presented by several
lecturers~ yho are members of the Ordnange~Research Laboratory, Pennsylvania
SMte Uni~ersity. I H

Speakers at the seminar included: ~ ‘7~ 
1), 

~, / an frY7 f
Fr >~ Mr. G. P. Haddle, Research Associate in Engineering Research~0— Mr. It. H. Xoebke, Research Assistant in Engineering Research;

Dr. J. M. Lawther, Associate Professor of Engineering Research;
Dr. V. H. Neubert, &ssociate Professor of Engineering Mechanics;
Dr. Maurice Sevik, Assistant Professor of Aeronautical Engineering ;
Dr. E. J. Skudrzyk, Professor of Physics; and
Dr. J. C. Sncwdon , Assistant Professor of Entineçrj.ng Research.
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POINT MASS-SPRING VIBRATOR

A review was ..~ade of important principles in the theory of vibra-
tions, Fourier Analysis, the theory of functions of a complex variable
and rotating vectors.
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The similarity of the differential equations of a tuned electric al
circuit , of the fundamental electrical vibrator and the point mass spring
system , and of the fundamental mechanical vibrator were discussed.

For the electrical oscillat or , the differe stla l equation is:

-~~~

where : L = inductance (henrys) - . .

I = current ( ampere s) Cl

R = Resistance ( ohms)

C = capacitance ( farads)
IPIISITIN/AUILMIUTY cooa

u = periodic voltage ( volts)

q = charge (coulomba) ,
~7 / 

~~~~~~~~t = time (seconds) _________________

For the mechanical vibrator, the differential equation is:
.
~~
. t~V 

~~
where: N = mass (lb . sec2/inch)

V = velocity (inches/second)

R = damping constant (lb. —sec/inch)

IC = stiffness or spring constant (lbs/inch)

= displacement (inches)

f = periodic force (lba)

It was shown that these two equations are of the same form, and that
mathematically there is no need to distinguish between the electrical and
mechanical systems. The complex solution for these ~quationa was found
for the subcrltically damped decaying vibration, for the aupercritically
damped decaying vibration, and for the forced vibrations. The real
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solution was obtained by expressing the complex solution in its polar
form and disregardinv the imaginary part of the exponential. The ad-
vantage of finding the complex impedance is that it gives the amplitude
of the velocity for a periodic force and the phase retardation of the
velocity with respect to the phase of the force. Other topics, such as
the locus of the impedance in the complex plane, bandwidth, decay factor,
and logarithmic decrement, were discussed during this lecture. Very
briefly , the locus of impedance in the complex plane, when the frequency
Is varied from zero to infinity, is defined as a line parallel to the
imaginary axis at a distance R from it that extends from minus infinit y
to plus infinity. The impedance is represented by the vector that
starts at the origin and ends at the line and at a point that is determined
by the frequency. At the resonant frequency, the imaginary part of the
Impedance i~ zero and Z = R. The imaginary part becomes minus infinity
as the frequency approaches zero and plus infinity as the frequency
becomes infinite.

The velocity is proportional to the admittance Y, which is the
reciprocal of the impedance

= h z  = ~~ 
. j~ 

= 1 ________ 
(1 cos ~ 

) e iøZ
Z R R j~ R Z

Ze Z

where R/Z Is the cos $.~ 
(angle between the impedance and the real axis.)

The angle $ varies from - 7772 to 77’/2 as the frequency varies from zero
to plus infinity. If plotted as a function of the magnitude (i/a)
cos $.~ 

describes the circumference of a circle. The end point of the
adi4ttance vector describes a similar circle, but because of the factor
e iPZ, the locus of its points is the mirror image of’ the first circle
with respect to the real axis. ~s the frequency is increased, the head
of the admittance vector moves clockwise along this circle. See the
figure below.
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The frequency curve of a complex mechanical vibrator usually exhibits
many resonance peaks. The bandwidth is based on the half energy points.
The half ener~~~ andwidth is the width of the resonance peak above a
height of 1/ ‘./

~~~ 
times that of the maximum energy height. Since-the

vibrational energy at the limits of the bandwidth of a linear system is
proportional to the square of the velocity amplitud~ the velocity
amplitude decreases to one—half of its value at the resonant frequency .
and the vibrational energy is one half of that at the resonant frequency.
The bandwidth is therefore a measure of the damping of the system.

The decay constan t is another measure of the energy absorption of
the system. It describes the rate of decay of the vibration amplitude
of the system after the force has been removed.

The logarithmic decrement is defined as the logarithm of the ratio
of successive maxima . A discussion of the measurements techniques in-
volving the decay constant and the logarithmic decrement is given in
reference (a).

The mechanical parallel resona& circuit was also discussed. The
only difference between a mechanical series resonant circuit and a
mechanical parallel resonant circuit ~s the manner in which it is
driven by the external force. In thc series resonant circuit, the force
drives the mass; in the anti—resonant or parallel resonant circuit, the
force drives the spring. A mathematical analysis of such a circuit was
undertaken.

A mathematical analysis was made on the energy and the dissipation
of energy by a point—mass spring vibrator.

MA.TERI AL DAMPING AND VIBRATION ISOLATION

The mechanical properties of rubber—like materials were the main
topic discussed during this lecture. A theoretical analysis was under-
taken on the frequency dependence of the elastic moduli of the material
and their associated damping factors. The materials that were discussed
are neoprene rubber, SBR rubber , filled natural rubber (50 parts by
weight of’ HAF carbon b]ack), plasticized polyvinyl butyral resin, natural
rubber, Thiokol RD, plasticized polyvinyl acetate, and filled butyl rubber
(40 parts by weight of I’~C carbon black).

The concept of a complex modulus was also discussed. It was
pointed out that the strain induced in a linear viscoelastic material
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may be expressed as a function of the applied stress experienced by the
material. However, the two fundamental types of deformation ( shear and
volume) are not related to the applied stress by a simple constant of
proportionality (the elastic modulus G or B). Rather, the relation
between stress and strain is most generally expressed by a linear partial
differential equation of arbitrary order:

(~~r’~,i~~~, c &~ (j~)r ,, ~~~~~~~~~~
~[*~+4~ (~) ..& ~~~~~~~~~~~~~~~~ .&(~~~

-
~) ...j~

where: ç7
’
= stress (lbs/square inch)

E = strain ( inches/inch)

t = time ( seconds)

a~= constant

constant

Several examples were discussed of simple systems that duplicate the
mechanical behavior of the material under strain.

A. Sorin~ of stiffness IC

T iS
a and b0 are finite; all other values of a~ and b are zero.

k is a constant with dimensions or (length)~~.
This equation follows directly from Hooke’s Law.

B. Dashpot of viscosity n0.

a0 and b1 are finite ; all other values of a and b are zero.
This equation follows directly from Newton’s Law.

C. One sorint and one dashnot

a0, b0, and b1 are finite; all other values of a and b are
zero .

5
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D. Two springs and one dashoot

i ~ ~~~ 
(
~~~) 
, = ~ tic. tç s-(1c~ ~~ç) 1~~ (~ r)J ~

a0, a1, b0, afld b1 are finite ; all other values of a and b
are zero.

E. Three Sor inis and three dasb,,ots

s(~y~. r j ~ ic~c&÷

~~~, K~(~.~-ij  t~~) .-k (’c ‘~~~
- Ka~1,) 7 fh) ~

~~ ~~ 
+Iç~ +~~

) 
~~~~
. (~

ç’
~ ~~‘y, ) J (,)÷~7.’L~~. 

(?~) J e
a0, 

~~~ 
a2, b0, b1, b2, b3 are finite; all other values of

a and b are zero.

For the above equatioi~s, K = spring constant ~lbs/in);
k = constant (length) ; 1~ = viscosity (lbrsec4/incb)
€ = strain (in/in); ~ stress ( psi)

Such systems can be used to represent the mechanical behavior of
rubberlike materials under strain.

Included In this lecture was the analysis of the vibration of a
linear one—degree—of—freedom system. An element of mass supported by a
linear rubberlike material on a foundation that vibrates sinusoidally was
discussed. The general transmissibility and phase equations were developed
for such a system. Next , the same equations were developed for dual force
excitation or for a simple system that is excited by two forces that are
out of phase. The discussion continued into the application of the general
transmissibility and phase equations and the assumptions that can be made
concerning the properties of rubberlike materials for simplification of
these equat±ons.

A detailed discussion of rubberlike—material mechanical properties of
low and high damping was presented. Summarizing, for low damping materials,
the dynamic modulus and the damping factor vary only slowly with freqttcncy ;
therefore , they may be considered to be constants through the range of
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frequencies normally of concern in vibration problems. Typically, the
damping factor has a value of about 0.1. For high damping materials, the
dynamic modulus increases very rapidly with frequency and, for some rubbers,
the transition frequencies that fall within the range of frequencies
normally of concern in vibration problems may increase at a maximum rate
that is essentially proportional to frequency. The damping factor is
large, but again varies only slowly with frequency; typically, they may
be considered to have a constant value of about 1.0. Discussion also
concerned the vibration of a linear two—degree—of—freedom system. Vibra-
tion isolation, the general transmissibility and phase equations, and solid
and viscous damping were the topics covered for the compound system.

Methods by which vibration may be isolated from stx~uctures that
possess fi~iite mechanical impedance were described. General expressions
were derived from which the performar~ce of various mounting systems maybe determined when the driving—point ~rnoedance of the non—rigid structure
that supports them is known. Mount anc~ foundation damping were shown to
be effective in suppressing the çeak values of response ratio, although
the increase in stiffness of high—damping rubber mounts 4th frequency
has the detrimental effect of incrc~asi~r4, the response ratio at high
frequencies. A mounting comprised of low and high—damping rubbers in
parallel wan demonstrated to effectively suppress the peak values of
response ratio and yet to provide significantly smaller values of response
ratio than that of the constituent high—damping rubber at other frequencies.

Two methods were discussed by which the over—all level of the response
ratio of a mounting system may be reduced. Both methods introduce a mass
that is employed either to form a compound mounting or to load the
foundation that supports the mounting system. It was shown to be desirable,
in each case, that the additional mass be as large a fraction of the mass
of the mounted item M as possible. When the foundation is mass loaded
and when both the ratio H/Mb and the loading mass are large, the response
ratio is reduced significantly and approaches the level predicted by the
transmissibility curve of the mounting system at frequencies above the
fundamental resonant frequency of the mass—loaded foundation. In these
circumstances, therefore, low—damping rubbers such as natural rubber are
the most suitable mount materials.

VIBRATIONS OF RODS AND BEA1~

In this lecture consideration was given to substituting the complex
modulus of elasticity for the real modulus of elasticity in equations

7
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describing the forced vibrations of a simple lumped—mass system and the
vibration of simple distributed systems such as a rod excited in its ]ongi—
tudinal modes or as bars excited in their transverse or bending modes.
However, it was found unnecessary to derive equations describing the
response to vibration or damped systems from first principles. It was
shown that solutions already available for describing the response to
vibration of systems with negligible dampIng could be adopted simply by
replacing the real modulus of elasticity with the complex modulus.

Even though it is possible to seek either a progressive—~.ave solutionor a standing—wave solution to the wave equations that describe the vibra-
tion of distributed systems, it was decided to place emphasis only on the
standing-wave solution. This was done because in the frequency range of
interest in vibration problems and for the dimensions and damping normally
possessed by structures of engineering interest, pure wave propagation is
not often observed. Wave equations were solved for longitudinal vibrations
of a damped rod and the transverse vibrations of damped beams.

A theoretical discussion also took place on the manner in which the
driving—point and transfer impedance of a free—free beam depend upon the
position of the driving force and upon the position along the beara.at which
the velocity is monitored. Also considered was the effect of one or more
arbitrarily situated forces upon the driving—point impedance that is
presented to a primary force at a separate location.

C0!.~LE~C VIBRATOftS AND SOUND A~TIVAT I0N

The first topic that was discussed in this lecture was the differential
equation for a system with continuously distributed mass and compliance.
Previous 1ecture~ demonstrated the theoretical treatment of simple systemssuch as vibrating strings or rods havIng distr ibuted mass and compliance .
In this lecture, these derivations were generalized for more complex
homogeneouo systems or three—dimensional vibratcrs. It was pointed out
that mode parameters depend on the nature of the driving force and its
point of attack, the natura3 functions of the system, and the coordinates
of the point of observation. The mode parameters are k~, q~, M*~, ~~v’and Kay. kv is the excitation constant and is equal to the ratio of the
mode amflitude at the force point to that at the point of observation.
If the force point coincides with the point of observation, k~ = ~~(F)/c~ (A) =1regardless of the complexity of the system. The mode constant qy is defined
as the average square of the velocity of the system divided by the square
of the velocity at the point of observation. If the vibrator is driven at
its center or at its free end or edge, the mode parameter is usually ~ for

B
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one—dimensional vibrations and ~ for two—dimensional vibrations . The
mode mass , ~~~~ are either one half or one quarter of the total mass of t~e
system, for one—dimensional vibrations and two—dImensions], vibrations,

-
~ respectively.

= Mv(A) /k (A) .

R* (A ) = (w~
2
/w)nM*~(A). (w frequency In rad/aec)

x*~(A) (l/w~
2)M*~(A)

H is the total mass and M~(A), R* (A ) , and K*~(A) represent the effective
mass, resistanc~ and compliance o~ the syntem for the ~

th mode of
vibration, referred to the motion of an artitrary point A and to the
to~tal driving force.

The frequency resonance curve f or the velocity amplitude of a
homogeneous system; the locus of the mechanical impedance of a system
with continuously distributed mass and compliance; the driving—point
and transfer impedance at frequencies much higher than the fundamental
resonance ; the mean square of velocity over the system and effective
impedance at high frequencies; the dissipation resistance referred to
space—average square of velocity ; and inhomogeneous vibrating systems
were discussed in some detail .

RE ACTION BE~NEEN A STRUCTiJRE AND THE FLUID ?€DIUM

The first general topic that was discussed was hydrodynamic excita—
tion due to wake instabilities. Severe oscillations of bridges, smoke
stacks, radar antenna members , missiles on launching pads, and electric
power lines were included in this topic. The nature of the flow around
a circular cylinder was discussed as the general case. The Strouhal
number, which depend s on the Reynolds number , was derived by dimensional
analysis and discussed in detail . The three—dimensional character and S

rand omness of vortex wakes were also discussed as well as the correlations
and spectral densities of lift and drag forces. Under this topic , such
items as cross—correlation function, cross—correlation coefficient,
spectral correlation , and cross—spectral density were discussed. Typical
power spectra of lift and drag forces , as well as co and quad—spectra].
densities were shown . The effects of vibration by the body shedding the
wake and the shedding frequencies of other bodies such as airfoils were
also discussed. Finally, the dynamic response of linear structures to
random excitatations. was discussed.

9 — 
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VIBRATION MEASURE1~ NTS

The three most important ways of’ carrying out vibration tests are
the shock test, the random motion test, and the frequency sweep teat.
The several types of vibration shakers were mentioned; only the
elec~-r~..dynainic shaker and the hydraulic shaker were discussed in detail.
The four vibrational quantities of displacement, velocity, acceleratioii,
and jerk were derived. Acceleration levels and velocity levels are
expressed in decibels ~Ith respect to a reference. The reference values
generally used are 10 cm/sec for velocity and lO’~ cm/sec2 for acceleration.

The various systems used to measure vibration may be entirely
mechanica. or a mixture of mechanical, electrical, and optical e3ements.
These øystems are described in reference (b). Displacement pickups,
velocity pickups, and acceleration pickups are used to measure vibrations,
The characteristics of the following sensing elements were also mentioned:
namely, strain—sensitive resistance wire, resistive potentiometer,
electromagnetic generating elements, variable inductance elements,
variable capacitance elements, and piezoe].ectric elements. The character-
istics and mounting of the three main classes of accelerometer, velocity,
and displacement pickups were included.

VIBRATION OF LUMPED MASS SYSTEMS

The attenuation of structural vibrations, by the addition of
masses or passive mechanical dynamic absorbers, was discussed. The one—
degree—cf—freedom system was presented fir~~ with examples given on the
response after the addition of mass or dy~~urii~ absorbers. Work dealing
with the steady response of a uniform clam~’cd- frce beam and with the
behavior under additional mass loading was u!1n~rized. Results were
shown on the attenuation of vibrations of a bar with solid internal
damping u~L~g masses or tuned dynaznin absorbers. Optimum tuning and
damping curves for the absorbers we:’e inclu.ded. The results were
presented in the form of mechanical mobIlity or impedance. Some useful
concepts related to normal mode or s~’r.e~ solutions for mechanical im-pedance were discussed.

Dynamic absorbers applied to points other than the drive point on
a bar that hae solid damping were discussed. The following is a summary
of this topic. If one absorber is to be added and the bar damping is
small, the absorber can be equally effective at points other than the
drive points if the velocity ratios are unity between the drive point

10
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and the attachment point. When internal dampIng is high, the absorber
position becomes more important. The addition of a second absorber
has an advantage if that absorber is tuned to a separate frequency.
When both absorbers are tuned to the same frequency and b oated at
points of equal velocity, the effect is about the same as increasing
the size of the single absorber.

If a tuned absorber is used, tuning will depend on the spacing of
the modes and on the average or characteristic mobility. Displacement
amplitude is tuned differently from velocity amplitude or mobility.

Finally, if the need for adding a practical absorber arises, con-
sideration should be given to adding a lumped mass connected rigidly,
since results show that in the frequency range above the absorber
frequency, the mass may be more beneficial In attenuating vibrations
than the dynamic absorber.

GEAR NOISE

The basic principles of gear mechanics were reviewed in detail.
The presentation then went into a discussion of the state of the art
of gear noise reduction. Transmitted shaft power and the rigidity of
the transmission structure were discussed as well as lubrication and
gear precision. Work that is being conducted at the Ordnance Research
Laboratory in this field was also discussed. It was pointed out that
it is too early to report on any conclusive test results on gear noise
at this tIme.

ACTIVE DA~~ERS

This presentation consisted mostly of the use of the Nichols Chart
techniques for the analysis of the variation in structural response re-
sulting from arbitrary point loading. The second part of the presenta-
tion involved the use of active feedback elements to produce damping
of multi-resonant structures. A system was examined analytically and
compared with experimental results obtained for a 48—inch long
uniform beam damped at its midpoint. The analysis method involved an
adaption of the conventional Nichols Chart technique and appeared to
be quite reliable. By using commerc1~al1y available components, a
simultaneous reduction in resonant mobi].ities of resonances below lOKc
was predicted and demonstrated. Reductions are proportional to the

11
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mobility values prior to active damping application and also to the
gain in the feedback path . The limitations on the amount of damping
possible result from stability conditions of the feedback loop, which
in turn depends primarily on the transfer function of the forcing and
pickup components of the loop. The st~oility analysis for particular
components used ~n the beam experiment was presented.

RANDOM VIBRATIONS

An intensive mathematical analysis in random vibrations was
presented. Fourier spectrum of pressure, solutions for the pulse
response of a system, ener~’ power spectrum, correlation function of
the forcing function, normalized correlation function, e~d the cross—
spectral density were derived.

SU*IARY

The material that was presented at the Vibrations and Vibration
Damping Seminar held by the Ordnance Research Laboratory at the
Pennsylvania State University is considered to be essential to an
understanding of complex vibration phenomena.

Because the sessions were conducted by highly capable authorities,
who covered the subject quite comprehensively, it is suggested that
other USL personnel who are involved in vibration problems attend the
seminar that is to be given next year. In preparation for the seminar,
one should review the subject of Advanced Engineering Mathematics,
Theory of Functions of a Complex Variable, and Theory of Vibrations.

~~~~~~~~~~~ ~)l. Y’L4~~1.HG,IARD N. PHELPS, JR.
Mechanical Engineer
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