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THE USE OF STRIP THEORY IN THE DYNAMICS OF DEFORMABLE AIRCRAFT
by
D. L. Woodcock

X

\

\ SUMMARY

A detailed formulation of the equations of motion of a deformable aircraft
is given. The development is from Lagrange's equations for an inertial frame,
and is made in terms of the position, orientation, force and inertia properties
of narrow strips of the aircraft which lie fore and aft in the unperturbed state.
The latter is one of constant linear velocity and zero angular velocity.

Particular account is taken of the deformation and loading in the unperturbed

state.
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1 INTRODUCTION

There are two ways of trying to understand a complicated problem. One is,
as it were, to stand back and see the thing as a whole without being confused by
all the detail - to look at the wood and not the trees. The other is to pick
on a basic unit - the tree ot c‘he phrase - and look at that first. In each case
one has ultimately of course to bring in the details - to look closer at the wood
or to build up the wood from the trees. In Ref | the first approach was adopted;
but a recent note by Baldock5 showed that there are some, and they belong to the
category of those who do it rather than those who show you how to do it, who want
to use the other route. The consequence in this paper, which is a considerable
generalisation of what Baldock did, written in a notation which harmonises with
that of Ref 1 (and indeed of Refs 3 and 4).

2 THE DATUM MOTION

We wish to consider perturbations from a datum motion. What then should be

the unperturbed state? How general a motion should it be? What restrictions

should be placed upon it? One view would be to select it to suit flight conditions
encountered in practice; but alternatively one could choose it to ensure the
minimum of complication in the analysis, and then, if necessary, generalise when
required. We have taken the latter approach and in particular have said that the
datum motion shall be such that the shape of the aircraft remains constant
throughout. In particular, this ensures considerable simplification of the aero-
dynamics and kinematics of the system. To ensure, in general, that there is no

change of shape during the datum motion we therefore specify that:
(i) the aircraft's mass and mass distribution are constant,
(ii) the atmosphere and the earth's gravitational field are uniform, and

(iii) the motion is one of constant linear velocity and zero angular

velocity relative to earth fixed axes.

We also assume that the aircraft is symmetric in the unperturbed state. |

Consequently, we take a set of constant-velocity axes chcyczc which has

zero angular velocity and constant linear velocity Vf in a direction in the

plane chcz , and is such that it is fixed in the aircraft, chc being fore

c
and aft, throughout the datum motion. Thus the datum motion is defined by:




ug| = Ve |cos ((-3f - Yf) (2-1)
Ve 0
e sin (@ - v¢)
@% = 0 (2-2)
O &
e 0

where 9% is the angle of inclination, Ye is the angle of climb, the angle of
bank is zero; and, with no loss of generality for our purpose, we have taken the
nose-azimuth angle and the angle of track both also to be zero*. Thus the
constant-velocity axes coincide, during the datum motion, with the body-fixed
axes used to define the attitude of the aircraft. One could choose the latter
axes to be the principal axes of inertia of the aircraft and consequently obtain
some simplification in the expressions for the reversed effective and generalised
gravitational forces at the expense of having to find out where the principal
axes of inertia are (c¢f Appendix B). Another choice, which may appeal to some,
would be to take body~fixed axes which, for the particular datum motion being
considered, coincided with the body-path axes having the same origin. In this

case one would have the angles of climb and inclination equal (Yf = Gf).

3 THE SEMI-RIGID MODEL

We assume the aircraft consists of a number of strips each of which is
based on a mean line which, in the datum motion, is normal to Ocyc , passes
through the strip centre of gravity, and is more or less fore and aft. Each
strip is made up of two rigid portions** joined by a hinge at a point on the mean
line. The plane separating a strip from an adjacent strip is not necessarily
normal to Ocyc , but instead is chosen to be roughly normal to the external

surface of the aircraft at their line of intersection. We also arrange that the

* The three attitude angles (angle of bank, angle of inclination, nose-azimuth
angle) define the attitude of the aircraft, ie of some axes fixed in the
aircraft, relative to normal earth-fixed axes. The two flight-path angles
(angle of climb, angle of track) define the direction of flight relative to
the same axes (c¢f Ref 3, sections 5 and 6).

** This image includes the case of a single rigid portion as the case where one of
the two portions is of zero length.
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mean line of a strip does not extrude from the strip through either of its
separating planes. Such a strip models a wing (or tailplane or fin) chordwise
strip with a control surface; or, with rather more engineer's licence, even an

engine pod or a store or a fuselage.

In Ref 1 an intermediate frame of reference, defined by the no-deformation-
body-fixed axes 0 xyz ,was used in the specification of the perturbed
position and shape of the aircraft. In the present context it is convenient also

to use sets of strip-fixed axes, one set being associated with each strip. Let

the strip-fixed axes for a typical strip be osixsiysizsi

, Le at, say,

where O .x . 1is the |
8i“si |

,.._

F mean line mentioned above, the hinge is on osixsi

ORI S SO G-

and the axes are fixed in one of the rigid portions of the strip such that the

3 : - c . - e e
hinge axis of rotation is parallel to the direction 031ys1 » and Os1x81 si 18

a mean plane between the planes dividing the strip from the adjacent strips.

Thus for a wing section with a trailing edge control one would take Osi to be

some reference point such as the quarter chord point, Osixsi to be forward
along the chord line, and Xei O be the (negative) value of x.; at the
control surface hinge*. We will call the portion of a strip, in which the strip-
fixed axes are fixed, the main part; and the other portion, when it exists, the
; flap (cf Appendix B).

As in Ref 1 we represent the perturbation of the aircraft, from the

unperturbed position and shape it would have had at the same instant duri-g the
datum motion, as being made up of rigid body translations and rotations which

i move a set of body-fixed axes from coincidence with the constant-velocity axes to
coincidence with the no-deformation-body-fixed axes, followed by some further
perturbations which we call deformations. The first part of these perturbations
is therefore (c¢f Ref 1) made up of the two successive steps:

fc) (c) _(c)

s ¥y e 2 in the directions

,‘_,.._.VAW,A.......,‘._

(i) translations, as a rigid body, x

of the respective constant-velocity axes;

(ii) successive rotations ¢, 6, ¢ about the carried axes 0z, Oy, Oz

where Oxyz are the above-mentioned body-fixed axes.

model do not necessarily

* The control surface hinge and the b
the strip is fore and

coincide. If the control surface k
aft they will not.

T™M Str 933




The second part of the perturbations - the deformations - we write in a somewhat
different form from that of Ref 1.

The transformation from the no-deformation-body-fixed axes to the strip-
fixed axes for the ith strip is achieved by:

(a) Translations xin), yﬁn), zgn)

no-deformation-body-fixed axes where these translations are compounded of the

in the directions of the respective

datum state separation between the strip reference point 0si and the point O

cC?

and a deformational contribution, viz:

xi(-n)- = | %] * K qu (3-2)
(n) .

Yi Yif -
(n)

i B B |

K is a modal matrix whose elements are functions of the strip being considered,
and q, > q, are the generalised coordinates for the deformational freedoms.

For example if, for a wing, the strip reference points are at the quarter chord
point, then K describes the deformational shapes of the quarter chord line in

the various modes*,

(b) Successive rotations wi’ ei, ¢i’ about the carried axes, which are

written in a form similar to (3-2):

= [o5¢] *+ F [q . (3-3)
Oif :
wif 9

Thus F is a modal matrix. It can be thought of as a 'torsional' modal matrix
along with K as a 'flexural' modal matrix. The condition that a strip mean line
Osixsi is normal to 0.y, during the datum motion is satisfied by making

wif = 0 , and this does not impose any other restriction, as we will show
following equation (3-21). For, say, a wing whose reference axis (line of strip

reference points) is parallel to the plane O.x,y, (Ze z;¢ = constant), whose

* All the values of K can be thought of as a three-dimensional array of numbers.
It is this array which describes, in this case, the deformational shapes of the
quarter chord line.
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only flexibility is in torsion about the reference axis (Ze the matrix K 1is

zero for all wing strips), and whose strips are fore and aft (Ze osixsi parallel
to Onxnzn) during the datum motion, ¢if and wif will be zero and eif will
be the sum of the strip jig 'incidence' and the strip 'incidence' due to twist in

the datum motion¥*.

In addition to the displacements and deformations represented by these two
axes transformations we have deformation in the strip itself. The main part of
the strip, by definition, cannot be displaced relative to the strip-fixed axes,

but the flap part can. We therefore have on the flap part of the strip**

™ (s) T )

Xsi " *hsi * PGif K % (61 Gif) 0 0 i ¥sie ~ *hsi
(s)

Ysi @ 1 LR L Ysie
(s) =

_z_siJ L § ! 0 % ) Zgie

seiatente A3=4)

where Gi is the angle of flap rotation, Gif is the flap rotation in the datum

ke 2 etc are the values of X5; » etc, when there is no flap rotation,

and Pg.. is the axes transformation matrix (attitude deviation matrix) for the

motion, X

single rotation Gif about Osiysi which is given byT

PG. = [ cos Sif 0 - sin Gif . (3-5)
if
0 1 0

sin Gif 0 cos Gif

* Strictly speaking these angles should be called angles of inclination (in the
no-deformation-body-fixed axes reference frame) rather than angles of
incidence (ef Ref 3, sections 5 and 6).

** We have used the general symbol & , specified by Hopkin (Ref 3, section 8)
for a motivator rotation rather than decide the primary purpose of our flap
(say to produce a rolling, pitching or yawing moment) and take the appropriate

symbol (§, n or z).

t s - -
Thus T (Ps;e) = [0 0 Pse -

= 00 O

} 08




(For a general rotation the axes transformation matrix S is of the form

S = R¢P6Yw - ef Ref 4, Appendix A.) The above expression (3-4), assumes that

Si - Gif is small. Putting Gi = Gif , as in the datum motion, we therefore

find that*, on the flap,

[ (us)] . R g g L
T Xhsi *Psif LN T B (3-6)
(us)

sif 0 Ysie

(us)

ﬁsif_ L 0_ - “sie _

The perturbation in the flap rotation is related to the generalised deformational

coordinates by a flap modal vector f :

T
Gi - Gif = f q (3-7)
9
and so, on the flap
O o [ ConF] o | i1 1 Y &8
*si = | ¥sif B Psif 0 g L *sie ~ *hsi £ 9 - (3-8)
(s) (us) .
Ysi Ysif = TR Ysie s
(s) (us) -
%1 | [%sif - e 1

Combining the successive deformations (equations (3-2), (3-3) and (3-8)) we
find that, for a point on the flap, its position relative to the origin of the

no-deformation-body-fixed axes is given by

* The superscript (us) is here introduced to show that these are the coordinates
referred to the unperturbed (datum motion) orientation of the strip-fixed axes.

€€6 13S KWL
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F;(niw e -; ] + K
ni if
(n)

Yni Yif
(n)

Lfni_ L?1f

+ST

where S¢i

-x(ua’osT

sif

(us)

sif

+ P

o

if

(us)
_fsif_

-
0 0 ﬂ
0 0 0
=18 0R=0

X . - 3
sie xhs:L
sie

sie

it

Sheleilwien 103 =31)

(= Ry.Pg.Yy.) is the axes transformation matrix for the change in
i1 Vi

orientation from the no-deformation-body-fixed axes to the strip—fixed axes

(ef Ref 4, Appendix A)

and

Writing

= 1

i
0 cos ei sin ¢l
0 - sin ¢i cos ¢L
= [cos 0. 0 - sin 6.7
i i i
0 1 0
sin 0, 0 cos 6,
-y 1 1_
= 1 )]
g F cos ¥, siny; 0
- sin wi cos wi 0
0 0 1
o il
$. = ¢, = F
U if
9 = %i¢
Vs = ¥

0 0 j

(3-10)

(3-11)

(3-12)

(3-13)

o e s L




Y N

4 10
; where Q¢if = 1 0 = sin eif (3—‘4)
?i 0 cos ¢if sin ¢if cos eif
0 - sin ¢if cos ¢if cos eif ;.
: it can be shown that* |
: (3-15)
%
o 5 P : (3-16)
i

Thus to first order, making use of the fact that, for matrices of the latter

g type,
i' A¢ X e Ax ¢ (3-17)
: z
z ) i
we have ]
B0 SO e . T
ni if ¢if sif
(n) (us) |
Yni Yif Ysif
(n) (us)
| | “ni_| | if N
1
T | o 1] |
+|K-S, A Q F+5S, P 0 0 1}|x . - 57 q
d:f x(l_ls) ¢if ¢if Gif sie  *hsi 1
sif . ‘
) Vi Ysie 4 & |
-1 0 0 Zgie q |
> o

ssveve (3=18) |

* Thus the angles aj ... are an approximation to the Euler angles which produce
the orientation transformation from the unperturbed position of the strip-fixed
axes to their perturbed position when the perturbations ¢, 6, y are zero
(ef equation (4-40)).
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This expression gives the position of a particle on the flap part of a strip
relative to the origin of the no-deformation-body-fixed axes and resolved along
th se axes. For a particle on the main part of a strip one merely takes the

modal vector f to be zero. This equation compares with expression

r;én) = x| *+r[q, (3-19)
(n)

Vq Ye :
(n)

o | %l |0

used* in Ref 1 (equation (1)). Thus for the strip model, the modal matrix R

has the form:

T Jks TR 1

R = K-8 & g F+8 P 6 o0 flR. -= JJF (3-20)
p u . oo G sie xh51
¢1f x(.s) d’1f ¢lf if
sif

(0 S0 IR ) Vs
sie

= 0 0 i,
sie

—

\
at the ith strip, and the unperturbed doordinates of a particle, relative to

and resolved along the body-fixed axes, in the datum state, are:

T (us) o
Xe| = | ¥ + S¢' X if (3-21)
if
(us)
Vg Yif Ysif
2 2, 2 (us)
£ | if] | sif |

for a particle on the ith strip. If this strip is, as required, in a plane
normal to Ocyc then, for a point on Osixsi (zZe Vaht * Bope ® ) Ve must
be constant. Consequently the 12 term of S¢if must be zero and so

(ef equations (3-10), (3-11) and (3-12))

cos eif 8in wif = 0 . (3-22)

* There is however a difference of some significance: (3-19) is a precise state-
ment of the deformation used in Ref | while (3-18), for our present model, is
only a first order approximation in the generalised coordinates q.

(ef Appendix A). 2




This is satisfied by eif = (n/2) or wif = 0 . However, any transformation

with eif = (n/2) 1is equivalent to another transformation with wif =0, and

so we will always take

fgp w5
This makes
S = R, P = cos 6, 0
T %3¢ Oi¢ i
sin ¢if sin eif cos ¢if
cos ¢if sin eif - sin ¢if

(3-23)

= 8sin eif
sin ¢if cos eif

cos ¢if cos eif

oisim aiete: KB=26)

There is one other expression for the position of a particle om a typical

(the ith) strip that we may require, and that is for its

position relative to

the origin of the constant-velocity axes and resolved along those axes. This is

easily seen to be

p— — f_T — . = -

x(c) & hx. + ST x(?s) + R |q
c if ¢if sif 1
(c) (us) .

Ve Yif Ysif :
(c) (us)

z Z. z q

s | | it | “sif | | "'n]

+ ;](Cﬂ = (Ax + Sf)
if
(c)
I
z(c)
ot

where R 1is given above (equation (3-20)).

A S [ 5]
¢
if x(gs) ¢if)
sif

enaens (3%25)

In this section, we have introduced the generalised coordinates q *q, -

To complete the set we take {x}c) yfc) zfc)
coordinates {q_ ., +..; qn+6} and subsequently we will us

capriciously.

¢ 8 ¥} as the other six generalised

e either notation
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4 THE AERODYNAMIC FORCES

4.1 The velocities

The main reason for the adoption of the strip model described in section 3
is of course to facilitate the use of strip theory aerodynamics so beloved by
many. The air forces on a strip will depend on the velocity of the air relative

to the strip. The velocity of a particle referred to the strip-fixed axes is

- e r - =
L&) o ] s, [(sF + 58Tt ) [« « [x@
mi si ¢i ¢i ¢i si i
(s) * (s) (s) ¢ (n)
Vmi Ysi J Isi Yi
(s) * (s) (s) *(n)
[ “mi_| %si_ { S e N

+ SéT rxi(n) + S r;:l(cr + S ru;
yfn) 5’1(C) Vel ¢
(n) s (e)
z. z w
e -l s ! - ..gJ

sscese (4=1)

This expression can be obtained either by taking the expression for the position
of a particle, relative to the origin of the normal earth-fixed axes and resolved
along the constant-velocity axes, differentiating, and then premultiplying the
result by S¢iS to refer the velocity to the strip-fixed axes; or by adding
together the various relative velocities making use of the facts that

(ef Ref 4, Appendix A):

: : (a) (a) (a)} :
(i) If some axes Oaxayaza have angular velocity {pb 9 Ty relative
to axes Obxbybzb and resolved along Oaxayaza , then the linear velocity of a

point relative to 0b resolved along the a-axes is

s [+ (b)] 3
(ID + A (a)) x |+ S¢ X.b (4-2)
Py ab
* (b)
ya yab
+ (b)
.?m _?ab_




TN
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where ¢ab etc are the standard Euler rotations which transform to the
a-directions from the b-directions, and x::) etc are the coordinates of 0a

relative to 0b and resolved along the b-axes.

(ii) In the situation described in (i)

[ (a)] .
P = O ] (4-3)
b ¢ab ab
(a) 2
9, eab
(a) *
[ | [Vap)
(¢f equation (3-14)), and
2T
A S
p Yab %ab
& T
= -5 s (4-4)
¢ab ¢ab

and (iii) If {x y z} is any vector and S any axes transformation matrix then*

[§:)

(s) y(S) z(S)

Sl i } is given by equation (3-8), f being
pPut equal to zero for a particle not on the flap portion of the strip, {¢i Gi wi}
by equation (3-3), and {xgn) ygn) zgn)} by equation (3-2). Substituting these
expressions, and making use of (3-15), (3-17) and (4-5), we have

sa sT (4-5)
X

In equation (4-1) {x

* (4=5) is of course, also true with S replaced i+ sT S e

my
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[ (s)] L T B
L (e o u l+S A S Q Flq

wi bie| F]  %if Y Pyg ¥ie |

(s) G
Vi Ve I

(s)
W, w q
| ml | | £] N

T T
+1S, K-A Q F+P 0 0 x . - .| £ q
¢if x(us) ¢if 8 sie  *hsi 1

sif if
s o0 Ysie
= . Zsie 9
- (c))] p [+
+ S X + S A ¢l - (A S + 8, A ¢
LT % V¢ (x(‘.‘:) TR "if)
«(c) o "
Y, ) 6
*(c) .
z v v
¥ L4 L
ee v e (4-6)
The matrix factor sgifQ¢if » in the second term, has, consequent upon (3-14),
(3-23) and (3-24), the particularly simple form
sg G = [ oms,. o 0] . (4-7)
if Tif
0 1 0
- sin eif 0 1

It will also be noticed that the term in the f} is S¢ifR (ef equation (3-20)).

The square of the resultant speed of the strip reference point is easily seen to
be




i; 4.2 The forces on a strip

4.2.1 Their representation

Consider a vortex whose axis lies along Oy in a frame of reference Oxyz
which is moving with linear velocity {u v w}, referred to the same axes, and zero

angular velocity, through a fluid. Then the force on that vortex is

= pAu 0

n
©
o
o
-
(=4

(4-9)

r

FE i

0

AR L Ty T

S¥SISITR

referred to Oxyz , where T is the vortex strength. In applying strip theory

. we represent the strip by a set of bound vortices* whose axes are parallel to

* Plus also a semi-infinite layer of free vortices which move with the fluid and
so have no force exerted upon them.

£€6 I35 WL
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osiysi . The strengths of these vortices will be functions of the boundary
condition and so of the velocity of the strip normal to its surface. We will |

approximate to this on the main part of the strip by ":x; at points on Osixsi :

and on the flap part of the strip by the velocity normal to osiysi and to the
line (ef equations (3-6) and (3-8)) given by Vot "R ™ 0 , Ze the line

sie
;Sﬂ 2 -xhs: i (xsie 3 xhsi) ] i Gi] i :in 61’.; fT —qqu o
el 0 . 0 0 : ,
_zgz)_ _ 0_ ~: sin Gi_f_ [:os Gif_ bqnjd

ssaene L4—10)

This latter velocity is therefore the last element of PG u(s) at points on

mi
(s)

Vmi

(s)

¥mi _

(4-10), which to the desired accuracy is (ef equations (3-5) and (3-7))

r -
MO o) (s)] T T T
fo o 1] Psif wa e & =) Psif '-:‘mi £ '-ql
(s) (s)
* Voi ¢ v B Vi a
(s) (s)
1 i | .f i [mi_] %0
i ¥
~ [0 o 1] P“if ui(ST 5 {"h geos 8. ¢ (x, - xhn)}[o 1 0] pi(zaf
| v;® e
1 W ® NS
e i

T T
+ 0o o)y s, fugl £ fagf - gy =X )E g
£ ik
Ve - :
e %4 a4,

sessse (&=11)
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where {ugs) vgs) wis)} and {pgs) qis) rgs)} are given below. It will be seen

that w;;) at a point on osixsi on the main part of the strip is the same

expression with f and Gif both zero. The abbreviations used are:

C(s)] . o T . =] ., [ete] 3 rul
u. = S u + A S Q, F|q +K|q + | x + A ¢ - A ¢
i $iell E] Ve %yetie ) ! 1 ug e
Plids b 1L el (e
(s) . « (c) .
W, w q 2 ] v
—1— L—f- —tb _qu —I—J o d '—-J
eevss LH=12)
™ (s)] s | ]
P = Q Flq,| +58 ¢ - (4-13)
i b | Y tis
4" s é
(S) . .
«5 % M

The boundary condition is therefore made up of certain multiples of four basic

conditions (at the points described above):

normal velocity of air 1

”n -
= %sie
H(xhsi 3 xsie)

4 = Orpgi ~ Xgi)HOGg 0~ Xg50)

where H is the Heaviside step function.
The multiples are:

o
1

o

(s

(s) + oy )(cos Gif - 1) + q£8)xhsi(l - cos Gif)

u; sin Gif
(us) L Jlus) . E
* (“if cos 8,0 = wig  8in 8,.)(5; = §;0)
and
s

(us denotes unperturbed-strip-fixed axes).
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The strength of the vortex will therefore be a function, for a given datum
state, of these four scalars* and of its position relative to the wake and to the
points where the boundary condition is applied. Thus we can say equivalently

that the vortex strength is a function of

ul® |
1

st) - qgs) end 6. -
5 3 1 : 3

Thus, for small perturbations the strength of a vortex has the form

) I‘f.+ ru(ui(s) = ugs)) + I'w(wi(s) = wi(;)) + I‘qqi(s) + I‘6(6i - Gif)

cesees (4-14)

- (us) _ (us) :
where Ff, Pu, etc are functions** of Use Ty Woo , and 6if . The velocity

of the vortex relative to the fluid will be in the direction of the boundary
line. The enforcement of the boundary condition ensures that there is no
relative velocity'normal to this line. The force on the vortex is therefore
normal to this line. The relative velocity of the vortex, and consequently the
force on the vortex will be a function of the same four scalars as the vortex
strength (¢f equation (4-14)). Thus the local aerodynamic force at a point on

the strip will have the form

™ (8)] - e | 3 : : :
e; X;¢ szn&if + xiusméif xiws1nsif xiqsmsif xiaslnsif+-xifcosc.
£(s) 0 0 0 0 0
1
(s) 8 5 § § § §
21 CoS Ofl  [Xiu®%°if Xiw €05 %if Xiq 0% °if Xis €08 °if ~ Xjf©O% %
~(s) _  (us)) .
x lug use . (4=15) }
(s) _ _(us) ;
" Ve 1
(s)
9
F
s 1 i Gif — t

* We are taking the view that the strength at an instant is determined by the
boundary condition (and a finite number of its derivatives with respect to
time) at the same instant.

# [, T, T

rc may contain terms involving the differential operator D = &

ql’ dt *
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where Gif (in the trig. functions) and Xif (in the perturbation part)
are put equal to zero off the flap portion, and the coefficients Xiu® Xiye xiq’
Xjs may involve the differential operator D . In addition, there will be a
leading edge 'suction' force, as will be seen if one imagines the infinitely
thin leading edge, of our aerofoil model, as the limit of a rounded edge. The
Kutta-Joukowski theorem tells us that for a two-dimensional aerofoil moving with
constant and uniform velocity the overall force on the aerofoil is normal to the
direction of motion. The leading edge 'suction' force, which has only a

component in the osixsi direction, can be written as*

10 1f0 i

g, O [ggm x@ @ xggg] wf®) - (o] (4-16)

w(s) 3 wg;)

i

qgs)

and so it can easily be shown that

(us) "

g()) = - us) (Z z X;¢ CO8 s, ) Z X;¢ sin Gif (4-17)

(us) (] " (us) ' "
i(?) wif + 8 wif + [J )
ix0 ( (“s))z Xif Xif €08 O4f (us) Xiu Xiu €08 ¢
if

- Z Xy sin 61f + 0(D) (4-18)

(“3) "
- (2) 1
o v ° sy {Z Xig * Z Xig o8 “if} {Z Z Xgy CO8 6if}

- z Xiy Sin 8,0 + 0(D) (4-19)

* The (2) superscript indicates two-dimensional values, and the circumflex supra-
script has been used to indicate the affinity of these coefficients with the
body-fixed axes coefficients of Ref 1.
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v

si

né

if

+ 0(D)

(4-20)

"
where :E: indicates a summation over the main part of the strip, and ZE:

indicates a summation over the flap part.

The overall forces on a strip are (e¢f (4-16)) written as*, referred to the

strip-fixed axes (see Fig 1)

B
1
(8
1

2(8)
1

and so we find that

7(2)
1f

Q

[ (27]
Xie

(2)
1f

[\/J

{z

L
i 1 1
2, %
+ Dn

@ 3@
iz i8
0 0
5(2) 5@
iz i6
£ cos 6. if

=(2)]
X

5(2)
T

L
1
o
1
qés)
K -4

(us)™
if

(us)
1f

\1}
cos i — Z Xj¢ sin Gif} + 0(D)

(4-21)

(4-22)

(4-23)

(4-24)

(4-25)

* The subscript

i

has been used to indicate a typical strip whereas, in Ref 1,

Xi » €.8. was the force due to unit displacement in the ith mode.
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w(us)
L N
if (us) “if
Uif
(us)
< (2) Mg sy %y )
e T TUnmen toomey iy e
Yif ( )
) wie®) (2) (2)
2(2 if ~(2 2
My T T tar i Z;g *+0(D)
if
(2) wis®) (2)
(2 if 2 (2
Xi6 - u7‘—1-s—) ZiG + O(D)
if

(4-26)

(4-27)

(4-28)

(4-29)

Some further consideration is given to this aspect in section 4.22 where a

further relationship (4-50) is obtained (see also equations (4-54) to (4-58).

Similarly the overall moments on the strip are written as, referred to the strip-

fixed axes*,

B3
i

()
i

MO

B 4

Q

&
2

0

S

0— -;:gs) - ugusf
i if
~(2)  2(2) (s) (us)
"l Sl i% vie
OJ qi(s)
| %17 Sis i

. (4-30)

There will be no contribution to these from the leading edge 'suction', and so

we find that

(2)
M

#®
1X

g infxsie 3 (Z Xif)xhsi(cos gt
e inuxsie 3 (Z xiu)xhsi(cos Sif ~ M

(4-31)

(4-32)

* In accordance with our practice the symbols for the moments should also have a

subscript s

to show that the moments are about the origin of the strip-fixed

axes but this has been omitted to avoid confusion with the subsequent use of
subscript s to denote structural.
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&fi) = - inwxsie = (Z Xiw)xhsi(cos Gif - 1) (4-33)

xhsi(cos Gif -1) (4-34)

A(Z) "
My ™ = inﬁxsie 2 (Z ’&s)xhsi(c“ b= D
2 (Z

The strip hinge moment can be obtained as a particularisation of this obtained

xié>xhsi sin Gif . (4-35)

by imagining the reference point (of the strip) to be at the hinge and perform-

ing the summations for the flap part only. Thus it is

1
Soa RS O LG T Y | Gl L
% Yol AR B B Bl Yy s
b wi® -y ue)
1 if
e
R Gu TR
n \
(2)
e e Z Xig*gie ~ *pgi)

{2

™
b
n
1
>
e
[~}
~
»
(2]
[
(]
[}
g
e
N
~/

. (4-37)

(2)
Bys

]
]
>
e
O
~
»
7]
[l
o
I
gﬁ
('8
~r
) -

4.2.2 An equivalent form

It is of interest to express the aerodynamic force on a strip in terms of

coordinates which describe the position and orientation of the strip relative to

TM Str 933

its position in the datum motion. The position of the strip reference point,




relative to its position in the datum motion, resolved along the constant-

velocity axes is (¢f section 3 and equation (3-2))

_(cT -(c; T _(ny r -
Bl IS ) 0% Y T s
(c) (c) (n)
Yui Y Yi Yif
(c) (c) (n)
Zui LG 2i Zif
L — e - o -
. (CT o e
~ x| ~a,_ [ ¢]+K]q (4-38)
if
yfc) 6
(c)
a0 & [0 |

The axes transformation matrix, for the change in orientation going from the

unperturbed position of the strip-fixed axes to the strip-fixed axes, is

| T i T
| s = 8 S8§ oSt =8 A8
] ¢4 $; ¢ 0. : O ¢ 45¢

ul 1

(4-39)

and, so, making use of equations (3-15) and (4-5), the standard Euler rotations

which achieve this change in orientation are

~ F % -
bl 0 Bl s, 4 (4-40)
(2 § 6
ul .
‘l’ui qn [

It follows therefore from equations (4-12) and (4-13) that
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and

Now, since wif is zero,

—u‘(s) g u.(us-ﬂ
i if
(s) (us)

7

‘e

S -

[,() ()]

it if
(s) _ _(us)
Vi Vif

W) - )

i if
=

Q

+sin ¢if

Soif

96

LT

)]
g
(s)
r.
i

25
=
& r
(i) va g e
u ue ¢if ul
=),
Yui %ui }
*(c)
! zu%ﬂ Ll_vui
= = =
i(?ﬂ - A, S ug (4-41)
= ¢ui ¢if
s (c)
Yui Ve
+(c)
Zui ;?f
=
& ¢U1 (4"42)
éui
fui

is given by equation (3-24), and so

cos (eif + (af - yf)

cos ¢if sin(eif + Gf - yf)

- sin (eif + CE = Yf)

cos ¢, cos (eif + @f - Yf)

0 0

b - _ <3 MGl

cos ¢if sin (eif + C& Yf) X5
- + (dp)

cos (eif + Gk yf) Z4

. b V. 6
v fui
f < = pull
- ) -
: L « (dp)

0 0 sin (eif +0 Yf) Yai
-1 =sin (eif+®f- Yf) 0 Vf¢ui
0 0 0 i _yfw“i
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where we have written

[~ (dp)] i ™ (ed] !
s *wi | 7 Fepvg [Tui| (4-44) |
E a
(dp) (c)
Yui Yui |
z(dp) z(c) |
_ui 5 ui

The single rotation (Yf = Qf), whose effect is represented by this last equation,
has been made so that xl(l‘ilp) is the perturbation of the strip reference point in
the direction of the datum motion - the superscript (dp) can be thought of as

meaning datum path*. Now since, using (3-24)

[ (us)] S N
use = vfs“’if cos (ef Yf)
o o

"’?fm) sin (6; - vg) g

aaaT

.
= vf cos (eif + ef - Yf) -l (4_45) '
sin ¢if sin (eif + ef - Yf) ‘
L_t:os ¢if sin (eif + Gf - yf.)_ Li
we can rewrite (4-43) as
~(s) _  (us)] o 1 [[(us) _ (us) _ (us)] [+ (ap)T]
b uet v, | Vit ViE BeC ¥ wie ot
(s) _ . (us) (us) (us) (us) | | +(dp)
My = veg wie Bge CoR ¥ Wi Bt
(s)
q. 0 0 D Va0 .
3 tan ¢if —_ 0 E w(us) - (dp)-
Vf if Yui =
- _ . (us)
Ve cos ;¢ = V¢ N Vebui
L 0 0 0 ] L_Vfwui,_

seeses (4=46)
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Incidentally, the angles ¢if’ e.f + ef - Yg are ome of the pairs of angles

i
(ef Ref 3, section 6.2) which can be used to specify the incidence of the strip

in the datum motion. That is

eif + GE = ¥¢ is the 'incidence magnitude'

¢ ¢ is the 'incidence-plane angle' .

Thus (4-43) is an expression purely in terms of incidence angles, while (4-46)
is its transcription in terms of velocity components and one incidence angle.
The latter could have been written purely in terms of velocities at the expense

of the inconvenience at a Vv .

From equations (4-21) and (4-46), the overall forces on a strip can then

be written as

()] _ [(@)] . [$(2) (us) , 5(2) (us) 2 (2)_ (us) =(2) (us)
B8 " e |t Pax e Y% Vs B e T T T TR
y(s) 0 0 0
1
(s) (2) 5(2) (us) _ 5(2) (us) _5(2)_ (us) 5(2) (us)
i Sy [CAtiE T iE bix Yie MY e "0y
(). (us) , 2(2) (us) , 2(2)y  +(2)] [+@@p)/y |
“ESWee TR age vRGEY IS IS
0 0 iﬁp) v,
-5(2)_(us) _5(2) (us)  5(2) 5(2)
S CiE TCla ME TTIE T IS %ut
Lai e 61£.J
3@y _3 @), us)  2(2) (us)] [+ (dp)/y ]
PEED 0] Mz e S0y iz Vif ix Yif | [Yui /'
0 0 0 ¢ui
5(2) _5(2) (us)  5(2) (us)
e ST e TEMEf) e

essees (4=47)

(Similar expressions can be obtained for the moments and hinge moment, from

equations (4-30) and (4-36), but we will not detail them here.)




To compare with the form taken by some other authors (eg Baldock5) it is

necessary to take the quasi-steady form ~ all the terms containing the operator |
D in the above rectangular matrices are omitted and we make use of the relation-
ships (4-27) to (4~29) - in the case where the incidence plane angle ¢if of the
strip in the datum motion is small. The force on the strip then has the magnitude

(to a first order approximation).

r :
| how s e @ Y B3 a3 . S8 Gk S [ xem
Ay us 7 (2 us i _5(2 us ~ us “ 3
o o) ) P VIR H T T i ) i ( 2 8up® +iPuy ) %45 —
if Use f
+ (dp)
Zui
ﬁ %
. - §
\ L i if —JJ

AR (a-48)

and to the same degree of accuracy, it acts in a direction normal to the direc-
5(2)

ix
coefficients, must be understood as the part of that coefficient which is

tion of motion. Note that in (4-48) , and similarly with the other

independent of D . Baldock® wrote the same forces as

2
V. o+ i(?P) x a linear function of z(qp), 8 . and @G =0 &
f ul ui ui i if

Assuming that he does not dispute the usual conclusions that, in the quasi-

steady state, in his notation

L = 0
z
(4-49)

s * 8
then his form is equivalent to (4-48) with the proviso that (quasi-steady) =
&
5(2) (us) . 5(2) (us) _ (2) W s
%ix Mt T 43 Vie Sy g SO
w




This of course what one gets from two-dimensional potential flow theory. For
example for a two-dimensional aerofoil, in an incompressible fluid, moving with
speed (V¢ + 8V) at any incidence o , the lift is proportional to

(Vf + 6V)2 sin (a - ao) where g is the no-lift incidence. Consequently, the

normal force on the aerofoil is*

Z = Zf + Zi(u - uf) + Zé(w - wf)

VA .
= C {- Vf sin a) - 2Vf sin a, (u - uf)

+ V. cos ay (w - wf)} (4-51)
where C 1is a constant, and so, since
u = - W
£ £
(4-52)
wf = 0
Zeu, + Zew, = = ZCV2 sin a
x £ z £ f 0
= ZZf - (4-53)

The relationship (4-50) did not appear from the reflections of gection 4,2.1
since there we took account only of our knowledge of the direction of the
resultant force on the aerofoil rather than its magnitude. If (4-50) is com=-

bined with equations (4-26) to (4=~29) we have the relationships

(2) wig (2) (2) (us) . 5(2) “(‘f’s) :
2 if e -115(@2) (us 5 (2 i &
e B S(us) g T SEYRL Ve A0 (us bl

if if
- (tfxs) 3 o (us) 2 1)
a(2 1 i (2 if (2
Xi).( = 7 - Fm- zi;( + u—(u—sy Zié + 0(D) (4=55)
if if

* We are taking ay = 0 for simplicity, but this involves no loss in generality.
The same relationship (4-53) is obtained for any ag .
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(us)
W. &
0 . 114 522 -iB 1 0m (4-56)
if
wSus)
ﬁig) = - —%é;; igg) +0MD) . (4=57)

Uif

A similar relationship to (4-53) holds for the pitching moment - this will
be readily appreciated if one again considers the two-dimensional incompressible

flow case*, Ze we have

N oo {M

it 3 {HBu®) “gg)"fm)} £ 0@ . (4-58)

ix if f

Finally, one would remark that one can allow, to some extent, for such things as
viscous effects, by permitting infringements of the above relationships (4-54)
to (4-58) .

4.2.3 In terms of the generalised coordinates

From equations (3=7), (4=12) and (4=13):

[ (s) _  (usT] I TR 1) P
) o - & 5 P+R8 I A =& D
i gt [] ; é] S¢if ug ¢ifQ"’if qe  Epe 9
0 0 1
(s) (us) - 2 A
w. -, -
FD 0 S, D
© ey %, b Ahe.
1 L -
T xfC)
L61 g Gif J b £ - 0 =¥ (e
Yy
©
¢
e
- ‘p—-i

"esese (4-59)

* The pitching moment, about the centre of the circle from which a profile is
generated by conformal transformation, is proportional to
(Vf + 8V) sin {2(a - al)}.
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(ef equations (3-14), (3-24) and (4-7)) and so, from (4-21), the overall forces

on a strip, referred to the strip-fixed axes, are

-~

o] ~ (] . |B® o 3]s [a o Q F+ED ID A ~A- D
3 it ix iz | "o5¢ | g ¢ s up Xjg
(s 0 e 5 =
1
(s) @ |lz@ @)
5y Pee | MNitin. 7 " 2;5
b 50 O % (2) 1]
+Jo %2 olle. m o s, o] +[xPer o of] x
i L¢if ¢if] is
] 0 0 0 0 0 ofp
5(2) 5(2) T
28 0 o i A
e - — = p— — —
X q; = (say) X].(_? + Xég) Xg) Xg:) rql -
' : 0 0 0 0 :
q
n (2) (2) (s) (s)
x(c) _zif__ fiq Zi.r Zi¢_ [9n+6
1
yfc)
| zfc)
¢
0
E |
| "
- s ececee (‘.-60)

Similarly the overall moments on the strip, about the strip reference point,

referred to the strip-fixed axes, become, from (4-30)




- F —
-
il o Falalle: o ohs AS};QFH(DIDA—AD
i $i6 | %2 Yig Yis Ue Xy¢
u(s) P LB o 4@
i if ixX z
(s)
N:
N _oJ k_o 0 OJ
— — r~ —1
+]o 0 olla, ™ o 8 D+ 0 0 0 x
¢1f ¢1f
2(2) ~(2).T
0 Mie 0 Mié Fa 0 0l
0 0 0 0 0 0
— — p— — P~ — r- e
x| q, = (say) 0 + 0 0 0 9, .
5 (2) (s) (s) (s) <
' LT Moo Mo Mo :
qn
MO gt T S AR B T
1
y©
.
[
)
w seessne (4‘6‘)

From (4-36) we see that the hinge moment B

(s)

moment Mi

i has the same form as the pitching

- all the M coefficients are merely replaced by B coefficients.

The final forms of the above expressions can of course be used even when
one is not using two-dimensional strip theory - Xgé), Zii), Mig) (with the 2
replaced by a 3), and the row vectors X£2) etc, being given appropriate three-
dimensional values.

4,3 The overall forces and moments on the aircraft

The overall forces on a strip, referred to the constant-velocity axes,

are, using the relationshins (3-15) and (4-5) along with equation (4=60)
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- -
s‘»s¢i X;
()
1
z(8)
L ®
o T
5 s"if
J
v ()
1
(s)
1=
= of [[302F]
= S X. +
¢if if
¢ o
(2)
%is|
r
= ST G((i)- +
Sigl] 1
< 0
2@

(s "
) - A Q Flq,| +s
Fl X.(Z) ¢if Fl ¢

if
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F+KD ID A -A D
U X4¢

22 o 2V T
{;ix - S¢if[?ufs¢ifq¢if
0 0 o
53 o zf?i
[Cix iz
@) , 2 -
e ’— 0 Zlf = xie » v
_5(2) (2)
e 0 5e
@) , 5
L 0 -xlf + zie D O_J
an
[2(2) T k
+ xi6 f 0O o0 ’—ql
0 0 o0 q.rl
2@t o o [ [x r
“is i !
¢
RE
(g) (8) (8)7]
X\ x'  ohidl O Q. F 0
q o ”» XSZ)[ %if
if
0 0 0
(s) (s) (8)
z z! Zgy

l—q]- .

|

S
5

nvg)

teccne (6-62)
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Similarly the overall moments on a strip about the strip reference point¥,

referred to the constant-velocity axes, are

(
(] & T ol +fl o o ols |a sT
© it o 2(2) e i A
My e Mz 0 M2
(c)
N 0 g @ B
.
+] o o -vP]lq F o
if ¢1f
o m@p 0
16
(2)
Lr 0 0
1
+T o 6 0 rql
2T o o -
ié ¥
0 0 0 9
v
zf°)
P
- g o) +/] o 0 81 =& .00
) M(2) M(s) M(s) M(s) if L
if 1q e -
0 0 0 0
-

Q¢ F+KD ID A =-A D
if Ye Xif

w0
s
(=N
Lo}
berend
- __.n
—~

qn+6
evene (E563)

* In accordance with our practice the symbols for the moments should also have a
subscript s to show that the moments are about the origin of the strip-fixed
axes but this has been omitted to avoid confusion with the subsequent use of a
subscript s to denote structural.
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| The overall forces on the aircraft, referred to the same axes, are given simply

by summing (4-62) for all strips, viz

[ (c) el o N . Fie v g T
, x©] - Z X; (say) rxf + |5, sl qﬂ (4-64)
3 i
k Y(c) YSc) Y 1,.(e) Y(c) Y(a) .
‘ i L q 2 ¢ .
{ (c) (c) (e) (c) (e)
2% Z; | 2 I I T I LS
” ol s [0 ”
where Xf ‘ s‘if xif (4-65)
p 1§
Y, 0
(2)
s fif
cals Z T ([ *
xq : s¢i xiq Axfz)%igF (4-66)
tal ¢ | if
Y 0
i q
(e) (s)
! _zq ziq
I
E ~ (e)] r [Les)]
X, = Z S"if X (4=67)
1
Y(c) 0
X
(e) (g)
Zx 4 __zix_
[ (c]] Z T ()] _ e
X, s¢if xiﬂ Ax(z)s¢if (4=68)
(c) i if
Y, 0
(e) (s)
Z 2,
LY 4 " ‘

)
™
=)

-
o
7]
=
L2




The overall moments on the aircraft, about the origin of the constant=-

velocity axes, and referred to the same axes, are
f — Y - -
@) _ [~ (c [ ()] 3
: L. = Z L; ﬂ + Ax(c) X; (4=69)
i i i
I ) { e y() L
Ei c i i
y () y (e 2 ()
e | LT L1 ]
where xgc—ﬂ - x(C) + ST xgnﬂ
p ! 1 [} )
yi(c) ch) yi(n)
Z$C) Z(C) Zgn)
) 1 5
e o i '
[~ = ™ P~ - 3
~ dee - & ﬂ + K q: + x](CT (4=70)
if
(c)
Yif ¥ : Y
(c)
inf -'JJ _qn_ _zl 2
(ef equation (4-38)), and so
[ (3] o [ (cT] i ™ o O 1 B
A X. ~ A X. + A A $|-K|gq = I'x
xgc) i Xig i Xi(2) X e 1 1
(c) (c) . (c)
s b ﬁ 4 : 71
(c) (c) (c)
K8 wi Gy MR A e
[ ()] s " o O o 33 §
= A X, .8 K .8 A ol -K|lq | -|x .
B ) A Yir g Vi ) Ay ' !
(c) 3 : (c)
* v : A ¥
(©) ©) G
c - wn
_Zi 4 ] % z g
- - - - - - -
O
e

EEEE (10-7])
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Thus we have

: -, pe- -y - e = =
l; ] _ (e) (e) (e) =
; L, bl * iy Ly Io rq‘ (4=72)
(c) (e) (e) (e) -
Mc~ Mf Méq Méx Mé¢ 5
(c) (e) (e) - ,(c) q
N N N N N n
I AL L f.J | = » o x(t:)
1
,©
(
] z|C)
¢
2]
- w e
i r—- — r — - —‘
where Le| = Z sz r 0| +A s: x.‘? (4-73)
> if *if i |t
(2)
e 4 Mg o
. (2)
_FE. i b O_J _?if_J
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o E e - = = E
L({:ﬂ = Z Si o 9o ©l+*k si 32 o 1 @s »
7 if %if Yig | X =% %if
(e) ei2) 5(2)
Mo { Mix o 0 9 o
il R 52 o 3@
‘cx_ L L o le 1z
T
gt & . g
oie x(B) 704
if
£ Z st Po-] + A s:; —x{."')— i o (4=75)
— ¢ g e | = Pop g') Boe
1 if
(s) 0
12
(s)
Bed! | e
and
(c) Z T i
7 - S ko8 & ®*bo v el 48 -a »
= bie | x(® i Xie ¢if(uf "if)
S 1 if Y o
co ix iz
(e)
ne o o o
»
+ 0 0 -Mgz) S
17 ¢.f
~(2) 3
o M'%'p 0
19
(2)
Mi¢ 5 E
{ (25
T [([B@ 2 )
+A S $¢ o %¢|s fa & »
Xie 055 || X - °if(“f Xif

: o 3@
1X 12
.
P4 (2 g
o +1 o 2 43P o] s -
" r 16 if
A -2(2 0 x(2) :
& % (2) ,5(2) P
E-‘ ~
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e :E: i b
' & st Bl md o Rk
- 31 L§§) bi¢ xfﬁ) bif xifL
0
L ;
K (s)
ok A il TR S 76
' ST | B x(2) 05
3 0 if
(s)
25

4.4 The generalised forces

The generalised aerodynamic forces could be determined using the expressions
derived in Ref 1, and generalised in Appendix A, which are in terms of the
overall and local forces referred to the constant velocity axes (cf equations
(A-18) and (A-19)).

being considered in this paper it is more convenient to proceed rather differently.

However, for the particular semi-rigid and aerodynamic models

The linear velocity of the strip reference point, and the angular velocity
of the strip-fixed axes, both resolved along the strip-fixed axes, are, for the

ith strip, respectively (cf equations (4-1), (4=3), (4-41) and (4-42))

= FA% = = =
S e ]+ s8T [x®] 45 |29 v s | (4-77)
3. ¢i 1 i 1 f
(s) * (n) (n) *(c)
'y 1P Yi Y Ve
(s) s (n) (n) s (c)
:,i —- ~.fi' - in - _ZI - ng_d
and, by a well known relationship (cf for example, Ref 4)
~(s5] iy 1
ui
(s) :
9 %ui
(s) .
8 [ Vui]

where ithe rotations ¢ui etc satisfy equation (4=39), Q¢ui is defined by

equation (3-14), and it can be shown that, using (4-39)
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where Q(i) = ri ;(SF ik Q e I ; 1] * ;(ST
i aqj ci x(§) Sui aqj ui i
ci
y(§) o .| Ygs)
cl ul 1
(s) (s)
Zei | A
- YT 38,
3 F F (sY] i
+1Q — | . T, + B, —— - (4-82)
¢ui aqj ui : : i aqj
s
< eui } Mi
(s)

By analogy with (4-78) and (4-79) we have, for any column vector {x y z}, and

indeed as regards this equation the other vector {¢ui ] wui* is also arbitrary,

ui

BS¢ -BS¢
) ui ui T
-AQ — [s = S x| = —S§ X . (4-83)
2 ¢u1 qu o ¢ui an aqj ¢ui
ot y ¥
lpui = *

Substitution therefore verifies that, for ¢ui etc, satisfying (4~38), we have*

i 3 I
— : = — 0. -— . -84
Q¢ui T bui Q¢i 5 o.] + S¢iQ¢ Ty ¢ (4-84)
e 6. 8
ul P 2
L?ui L?i Lw—

Bearing in mind equation (3-15), and the fact that

* This expression can be deduced considering the angular velocity of the strip-

fixed axes as the sum of the angular velocity of the no-deformation-body-fixed
axes, and the angular velocity, relative to these axes, of the strip-fixed

axes.
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. (4=79)

The position of the strip reference point, relative to the origin of the

constant-velocity axes, resolved along the strip-fixed axes, is given by, say

] - Sy, E 2 (7] &[] (4-80)
@l 1| be
el RS
and so
:gsﬂ - -:':ST = K s ;i(s)q +5, S —u; i (4-81)
T e
| = el i

Consequently, from the work done in time 6t , going to the limit &t = 0, we find

that the virtual work done by the forces on the strip in small displacements i

qu, e 6qn+6 is

(2]
(3¢
(=3}
o
d
w
&
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(4-85)
where J is defined below (equation (4-88)), we see that, using (4-83)
— Ny o N s
3 (s) (s) (s) T.T T.T
-N_l [xci Yei zci] = |¥ SOi L Qﬁ‘,(l)
ci
3 (s) (s) (s) T.T
'371; [ ci ci 'ci] s soi
T T
b - S
. . s ‘:C .i
3 (s) (s) z(l) (¢)
aqn06 ci ci ci 4
f z(¢:)
i - i 1 -
T.T T.T T
~ |K's, -FQ S, A S
it *if ®if %if %if
T
s
it
0
1T T.T T T
+|k"sT A -F'Q° Ja_+s, A S, A -A S, A S {- =
$¢ % ‘1:3 L T T T LA TR TR (4-86)
: T.T - T
+ cos 6, FJ S, A_ S
LE 70.~05e ¢ %if %if %if

ks ¥ d
A,S A
$ e ey
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where

and

Q.
1

etc is given by (3-13), ¢; = O by (3-3),

[« |

Similarly, using (4-84), we have

TT

6 [¢u1 ui u1]Q¢

Q

-

— -
e xfcﬂ ¥ L
if
4 ch) 1}
(c)
q
R - el §
P0 0 0
I, = p
0 0 =-¢
0 ¢ 0
B
0
T.T
%Ss,
1 7 ¥ T -
- 0, FJ
F Q¢if + cos o ¢1fQ¢
0 0
T T.T T
s =y %8 A
LT Y% Y%

f

(4-87)

(4-88)

(4-89)
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Furthermore, since, from (4-80), (3-2) and (3-15),

i
A = S SA S™ + A + A S
x'8) o5 x(© e [X[aq]\] ¢

Q2
wn
>
w
+

evscece (4-90)
we have

® (& @], 3 T
["ci Vei ‘ci] * gy lui fu “ui]Qoui‘x(g)
c1

|

LY
0
—

|

(s) (s) (s) 3 T
[xci. Yei Zei ] i ﬁ; Mt % q'\u‘.]Qo“iAx(g)
ci

)|
£a
~N

. ) (s) (s) (s) ? T A
| 39,6 [xci Yei zci.] & 39,6 [.ui Oui wuilqoui xé;)-J
o . - i -
. KTsT N~ [« + sz: Ay
.i oif iF L
T.T T T T
sTs s AsT +sT a
11 it Y% o
T (T ¥ T T T b T
QCfsTa,. -a s AL S LB & ea st -aTa s
e s %7\ s L"if T % tie o [K[U| i ¢ ie LT
Y§°) .
- .'(°)
[=)] — p—
1 5] b —
E™
wv
[ =4

evcsnce (6"9] )
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The forces and moments which appear in the strip contribution to the generalised
force, equation (4-82), are given by equations (4-60) and (4-6'!'), and so using

these equations, along with (4-89) and (4-91), we have, writing

n+6
- 1) . 2
Qj Z Qj ij * Z ijqk (4-92)
i k=1
P (Fer AN . Cer™ . . e8]
Q = Z K'S X. + |FQ 0 + |fB,
1£ - ¢if if ¢if if
. T (2)
. ﬁ s e ) Mg &IE G |
T (2) T
A S Z. S 0 0
_Q““"i | Bt T St SRR B S0 S G |
= (see equations (4-64) and (4-73)):
-Z ([t [L@], .1t [ .7 @) |
K'S X + FQ 0 + B, (4-93)
- $i¢ | 3 LT 1%
(2)
< 0 L \
(2)
Z. 0
! [ if | - J

=
w
t
o
O
w
w

peeyes et e
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‘ ~ and
b |
{ (T 1.1 (s) ,(8) (s) T T (8) o(8) (8)
(o] - Z xsoif LA Al ol B rQ.“ 0 o o +|¢ E’iq u o
i
- (8) (8) (8)
s‘if 0 0 0 0 e Mz M 0
T (8) (8) (8) T
A S g(8) glek ol s 0 0 0 0
ﬁ et lte & Yie
O T -
o[- xSy A ,)Q, F-cose FiL, F 0 0
if x{2) ;¢ Q 0
if 0ie
(s
if
0
T T
-S A Q F 0 -8 A b
¢ (2)% 3 (2)%
TR i x5’ “ut >
Sy A Sy KA Sy A )0 F ' =X T [, T
| Pie x2) 05 %ig % x;2) e A st [xP] . 0
if if x. o0, | if N
if it e}
T M
-85 A )9 F if
i L3’ el .
e » J

R (4-94)

where £  is the lower triangular matrix formed from the elements of {¢ 8 w} viz

¢
L, =[o o ¢ (4-95)
v 0 0
| -0 ¢ O
and so
£¢~.c: L (4=96)

) 5 @ 5

In addition Yif s Leg s Nog are each zero and so

™
[2e,
=)
-
Lo
w
&
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-
2 -
Ax(z) 0 Zif 0 (4-97)
if (2) P
Zig ’ Xif
(2)
L9 X .
and
i (2)
AL(Z) = 0 0 Mif 5 (4-98)
i 0 0 0
: (2)
LfMif 0 0
]
The second and third rows of submatrices in the matrix [Qij] are, as expected

(ef Ref 1, equations (74) to (78) and Table 3), closely related to the
coefficients in the expressions (see equations (4-64), (4-72), (4=74) to (4-76)
and (4-62)) for the overall forces and moments. Making use of the general

relationships (4-96), (4-5), and

A = AA - A A

T x [T T X i
A S S S
xo|¥ ol o/
Y Y Y :
] Z z
= A sT S. = sT SA (4=99)
X AX ¢ ¢AX X

we find that f
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These expressions for the
(equations (4-93), (4-94) and (4-100)) are not restricted to the two-dimensional

(c T

o 3 Z %t ?

oz ] (2)%%
1 if X“ if

M(a)
oz
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oz

(e)
X

(c)
T

(e)
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L(c)
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(see Equation (4-93))
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strip theory aerodynamic approximation.
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(e B
g
(e)
o
(e)
%y
T L@ T
x®] 4 s 0
Xig $ig| if LT
. @
if
(2)
Zi¢ 0
(4-100)

aerodynamic contributions to the generalised forces

As remarked in section 4.23 they can be

used in general provided the appropriate meaning is given to the various aero-

dynamic coefficients.

4,5 Strip interference

An important factor affecting the dynamical behaviour of an aircraft,

particularly when it is moving largely as a rigid body, is the aerodynamic inter-

ference between wing and tail,

This is a particular manifestation of the fact

that there is in general such interference between any two parts of the aircraft,

Ze in our representation, between any two strips.

have largely

ignored such interference.

So far, in our analysis, we

The various formulae that we have

obtained can, as we have pointed out, be used with three-dimensional values for

the aerodynamic coefficients, and so full account* can be taken of the inter-

ference effects.

For example, the expression (4-21) for the overall forces on a

strip referred to the strip-fixed axes could be extended to include terms

* Provided of course, that one has a useable aerodynamic theory for the whole

configuration.,

for the subsonic case.

Refs 8 and 9, for example, go a good way towards providing this
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proportional to the perturbations of the velocities and control angle of the other
strips - one or more of them - and the perturbations of their relative positicns

and orientation., Thus we can write

.
()] ~ [L(s] Z [2(5)  o(s)  a(8)  a(s)] [(s) _  (us)]
X, e L %y %8 gk e
]
Yi(s) 0 0 0 0 0 w8 _ us)
J It
(s) (s) 5(8)  5(8)  p(s) 5(s) (s)
W %if | Zixj iz 28 %is}] 9y
L "
.
[a(s)  o(s)  a(s) a(s) o(s) o)l [ 4
*Rix Yixy o Yijz X Kije  Xije| |%%4;
0 0 0 0 0 o | 1%i;
9(8) 2(3) ols) (s} () o)} [%%1;
A e S0 % % =
L_1_1x ley 21Jz 213¢ 2139 zxng 2é. . >
1]
A8, .
1]
g

seeroe (4-101)

and similar expressions for the moments and hinge moment on the ith strip. In
these expressions Axij etc are measures of the change in the relative position
and orientation of the ith and jth strips. The coefficients ﬁé;; etc will be
functions of the position and orientation of the ith strip (ith strip-fixed axes)

relative to the other strips (in the other strip-fixed axes) in the unperturbed

; state., The coefficients in the last term, iﬁ;l etc, can be taken as constants -
the coefficients in the middle term, ﬁi;g etc, will in general be differential

operators - since any differential operator terms can be included in the other

r coefficients,

4,5.1 Using two-dimensional theory

: Equation (4-101) indicates the possibility of making use of two-dimensional

theory for interfering surfaces when one hasn't an adequate three-dimensional

£€6 43S WL

theory. It is, however, difficult to do this in general. A rather crude
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approximate way of doing this is therefore suggested below. In certain circum=—
stances it will become a good approximation, and in any case it should be in the

right street.

If the y strip-fixed axes, of the ith and jth strips, were parallel, and
the x strip-fixed axes were coplanar, in the datum state, and the datum flight
path direction was parallel to that plane, then we could consider these strips
as part of a two-dimensional configuration and obtain the aerodynamic interference
accordingly. However, this is an exceptional situation. The way the aircraft has

been divided into strips ensures that the last two conditions are satisfied when
Yig * Yy (4-102)

but to satisfy the other condition, we must have
either

¢if = ¢jf = 0 (4-103)

or ¢if = ¢jf and 0. T . (4=104)

It is therefore suggested, as a rough approximation, that one should, for any
pair of strips which satisfy (4-102), obtain (two-dimensional) interference
aerodynamic forces, assuming (4-103) was true, and then multiply these* by

cos (¢i = ¢j) . Thus (4-101) is rewritten as (c¢f equation (3-3))

* The difference, between a force in the isolated and tandem configurations, is
multiplied by cos (¢; = ¢.) and then added to the force for the isolated
configuration. J




i

where the jth strip is one which satisfies equation (4-102) = we are assuming,
as will almost certainly be the case, that there is only one such strip - the

subscript (i - j) denotes the difference between the values of the modal function

14

)] ., [ 2@
I-’-‘if Al ST
0 0 0
22 5(2) 5(2)
_1f_J | ix 1z
\
(o, @ @
1] 1jx ijz
0 0 0
2 (2) 5(2) 5@
| dgf | [ ijx i}z
] _
2(2)
s Z st
k=i, j
0
20029
%k
s =
(G B8 ()
Aege = %ie pOb 0
0
€2 ()

ijf ~ 4if

at the ith and jth strips, and

Ax = {(xgn) - xgn)) cos 6, = (zfn) - zg“)) sin 8.}
d 1 1 J 1 i

- {(xjf - xif) cos eif - (zjf - zif) sin eif}

£(2)  2(2)]
T
0
(2 eai(2)
2,8 2
if?) Ax
136
0 Az
52 1 ag
1JQ_ .
2(2) 2(2)
Riak 1dk
0 0
5(2) 5(2)
“ise 218
OJ(F)i-j ql
qn
T_—

" (s) _ (us)]
o R T

08 _ )

1 T f
q(S) }

i
bS5 S
o
£(2)] [T (s) _ . (us)]
ookl 1% Y
(s) __(us)
A S L
2(2) (s)
15k N
R
sin (¢1f = ¢jf)

s e A i

cos (¢if -¢jf)

(4-105)
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Az = {(zgn) - zgn)) cos 6. + (xgn) - xgn)) sin 6.}
j 1 1 ] = 5 <

- {(zjf - zif) cos eif + (xjf - xif) sin eif}

/ ecesee (4-107)

A6 (ej = ei) = (6jf = eif) . (4-108)

The use of equations (3-2), (3-3), (3-7) and (4-59) will enable one to write
(4=105) entirely in terms of the generalised coordinates. The expressions for

the moments and hinge moment at the ith strip will be similar to equation (4-105).
The interference coefficients in the expressions, such as XE?%, iiiz, 2§§;
will be functions of x.J 11 g1l 8

etc,

£0 Zpa 07, Uiey Woo, Sog, ij, inter alia (ef Fig 2),
where
xéj = (xjf - xif) cos eif - (zJ.f - zif) sin eif (4=109)
zéj = (zjf - zif) cos eif + (xjf - xif) sin eif (4=110)
o = B (4=111)

To avoid ambiguity, the coefficients with subscripts 1ijx, ijz or 1j6
(eg ﬁg?l} are taken to be constants. The other coefficients may be differential

operators.

For some the significance, in some respects, of these descriptions, such
as (4=105), for the forces and moments on a strip, may be illuminated if we

consider the 'purely two-dimensional' case, when*

$ig ™ Ve =V
e (4=112)
vf = 0 j

* From our specification of the datum motion (section 2) and the division into
strips (section 3), wif and ve are always zero.
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and similarly at the jth strip, and the perturbations are expressed as displace~
ments relative to an inertial frame. No loss in generality is achieved by taking
this frame to be the unperturbed strip-fixed axes (for each strip) and the body

(c)
1

freedom displacements x s eesy &5 «ees to be zero. Then (ef equations

(4-59), (3-2), (3-3), (3-7), (3-15) and footnote)

") GasTY . T3 5 : 1 (us) 7]
ug use )5 ) (wf cos eif-ruf sin eif) 0 e s
(s) __(us) ) . (us)
wo woe 0 D (uf cos eif we sin eif) 0 z;
(s) 2
q; 0 O D 0 ei eif
BRI 490 g A S T
esccee (4-113)
Also
7 = . i 5 ij - (us) _ _(us)7]
Ax 1 0 zg cos ef sin ef 0 xi X ¢
B i AR ER 5 ij (us) _ _(us)
Az 0 1 xf sin Bf cos ef 0 zi zif
AB 0 0 -1 0 0 ] 6. -0,
1. 1.F
Xgus)__xgus)
] Jf
(09 _(u9)
] if
8. =0,
 ER | .

cosees (4=114)

and so, for example, the forces on the ith strip, in the direction of the

unperturbed strip-fixed axes, are:
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2

0
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e =

'purely two-dimensional case', where, with
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cos ef ijz sin ef + xi&j

Xisi
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(us) (us)
= ]

(us) _ _(us)
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i

9% =%

l(ul) " l(uu)

3 if

2(us) _.;:-)

i
8. -9,
SIS 14

6. -
im4¢

R (4_115)

senvys (G=116)

(4-117)

(4-118)

B e
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(2) e (2) “(2) ¥
Bt T 1JZ X;3i° (4-119)
X§22 = if?) cos 831 + if?) sin 61J + X(z) (4-120)
iz] ijz f ijx £
(2) = (2) £(2) 135(2) 1J (2)
Xiei 1Jf Xije TR xijx 5 lez
- (w. cos 0., + u,. sin 6, )X(z) + (u. cos B8._. - w_ sin 8 )ﬁ
£ if f if Miki f if £ if’izi
2(2) :
& XiGiD (4=121)
) 2 %(2) _ £(2) i 2(2)
163 = 136 (wf cos ejf +ug sin le)letJ + (uf cos ejf we sin le)X1zj
2 (2) _
+ xiejD (4=122)
2 _ (2 i
161 » 161 (4-123)
(2) . “(2) &
%53 = Xis; (4=124)

and similarly for the ‘Z coefficients with in particular

22) o _x@ _ 5@ , ,ijz(2) _ (1i7(2)
161 1Jf 36 Zg ijx % 1JZ
i (2) = 2 =[(2)
(wf cos eif + ug sin elf)z + (uf cos eif we sin 0. )Z121
(2) -
+ 2191 ‘ (4=125)
These equations enable one to derive the 'circumflexed' coefficients from the
'uncircumflexed' coefficients. If we introduce the notation*
e( ) = steady* part of ( ) (4=126)
By om (hegd W (4=127)
* Thus for F=F.+FD+F D2
0 1 2
e(F) = F0
9(F) = Fl + F2D &
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Ziei ¥
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= e sin eif)a(xgz)

(4-128)

(2) . (20 _ i (2)
19] + (wf cos ejf *+ ug sin ejf)a(xixj (uf cos ejf we sin le)a Xi 4
eevee (4-129)
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- B[z @) 4 (Ei (@) L x@ (4-130)
£ ixi f 121 1_]f
(2) . (2)\ _ = (2)
16_] + (wf cos ejf + ug sin ejf)a(zixj (uf cos ij Ve sin le)a isi] *
ecceve (4-131)
ve
@] o [x@ @ _y
ije % 1x1 1z1 ifi
0 0 0 0
5(2) (2) (2) -z*
1394 1x1 121 iei
r(2) ij (2) ij (2 ij (2) ij % E
= € ix_1 cos ef +x i sin ef 123 cos ef -x sin ef xiej
0 0 0
(2) ij ., 2(2) £ L olB) g od] o
$5 cos Of +Z smﬂ)f { cosef AR ix; sxnef ziei]
eeccee (6-132)
22 2@ 22 oy k8 T
1xk 1£k xiék d 1xk 1zk xi.Ok = (4-133)
0 0 0 0 0 0
’“(2) 2(2) 2(2) (2) (2) z*
L ik “itk  “ifk] Lidk  Zigk 10Kk|

L&
“
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These two equations, along with (4-123), (4-124) and their partners, give all the
'circumflexed' coefficients required in (4-105). Similar equations will give the

coefficients appearing in the expressions for the moments and hinge moment.

For this 'purely two-dimensional' case the moment about the strip reference

point referred to the unperturbed strip-fixed axes is

4 - - =
L) ~ T | o] = 3 0 (4-134)
i o
w(us) (s u(s)
i i i
ui“s) 0 0
P Vi SR e
and so the moment about the origin of the unperturbed strip-fixed axes is
— — o — r —
v L[] oy [ )
ui i x(us) i if
i
w(us) uus) 0
ul 1
gl |y (08) _(ue)
ul i i if i
|
~ [[o7] + 0 . (4=135) i
WO k@ G @0 ) ‘
i ijfti if ijEUL 1t
0 0

We write this in a form similar to (4-116), Ze f
- ;5

@s) o (2 @ @ @ @] [ws __ @]

i Bage? Z [Mixk Mizk Mok Midk] X Xt g

(us) _  (us)
" %3

k=1i,j

%% = ks

S = Sxe N

seeses (4=136)
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while writing Mi(s) in the form of (4-105) and using (4=113) and (4-114) gives,

after some analysis, the relationships:

|

|

E&f%’ 5 g ~<2>] 3 [M* . M*] |
ijx ijz ij6 1X1 izl 101 |

[ 1
E ! = € Ed(z) cos G;J +M(23 sin eéj M(z:)l cos 6;3 -M(Z) sin Gf M:GJ 1
| cnaeale Ca=137)

:

‘- 22 52 {@) PR 8

[n’ck Mtk 16k] 53 al}"ixk M; 2k Miek] (4-138)
Afgi i fgi (4=139)
* X (2) 7(2) oo
where Men = Wi * 1J Y, (k = i)
o (2) . B
3 lxk (k # 1) (4-140)
* = u2 _ (2) aay
T T 1Jf (k = 1)
- @ . i
- M (k # 1) (4-141)
and
* o k) : (2) [
Miek hos Miei + (wf cos eif + Uf sin eif)a (MiXi) '

e (2))
(uf cos eif we sin eif)a(Mizi

(2) (2) (2) (2) .
B zf { ijf E( 1x1)} i xf { 1_'|f e( 121)} (k = i) ;
u(2)

2 . (2)
Miok ¢ (g cos O, + u, sin °kf)3(“ixk

- (uf cos ekf - e sin ekf)a(ugl)‘) . (k¢ 1) (4=142)
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1
The corresponding relationships for the hinge moment coefficients are easily seen
b | to be
(2) “(2) "(2) b (2) (2) *
€ ¢ B, B
1]x 1]2 1]6 1x1 izi 181

= e[(z) cos 613 +B(2) sme (2)

ch (2) *
ixj b3 f in ot ef 8 ixj sin ef Biej

eeeees (4=143)

2y 2¢2) (2] _ (2) (2) _=* i
[1xk Bise Pidi] = PPim Piak Piex (4-144)
202y o (2) =
Bise ™ Bisk (4=145)
* - 3 . (2)
where Biek = 161 + (wf cos eif + ug sin eif)a(Bixi)
= = . (2)
(uf cos eif we sin eif)a( 121)
KA £(2) e
zg e(Bixi) xf ( iz (k = i)
(2) - 2)
= 16k + (wf cos ekf + ug sin ekf)a (Bixk
- (u. cos 6, ., - w_ sin 6, )3 B(Z) (k ¢ 1) (4=146)
& kf £ kf iz
4,5,2 And in terms of the generalised coordinates
From equations (3-2) and (3-3), it is easily seen that
Ax] = cos eif 0 - sin eif (K)'-i +10 0 O (F)j
Az sin eif 0 cos eif 0 0 0
A 0 0 0 0 | 0
3
ij g
- 10 zg o (F). . E
il
0 Xg 0 ©
w
0 ! 0

(4=147)
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Equation (4-59) gives the other coordinates that we require in terms of the
generalised coordinates. The coefficients in equation (4-105) are given by
equations (4-123), (4-124), (4-132) and (4-133). Putting all these together we
obtain the following expression for the overall forces on the ith strip:
e IR U (‘ = 208 {hyp ‘°jt)) ¥ *§§; co8 (b;p=41g)
r(® 0 0
1
(s) ) (@)
% Zit Zije
(2) (2) T
+ 3 xix 0 xiz S‘if [Aufs'ifq.“(r)io(x)in 1D A“f-A'“D]
0 (1] 0
) )
b zix g ziz

E
0 o o 0 0 o0
* (2),,T
¢ Wy et v 9
2) @) T
+ a|x2) o xPls. [a sT q . e D W A -a D
RZ. ik L LT [‘ Tl AL L "u]
"1,)
0 o o
@) @)
zixk o zizk
* (2) (T N @) L(2) &
+3]0 xiek 0 [%kf(l-‘)kb 0 s'kfﬂ + X“k(f )k 00 € xixi xh‘ X‘M x
4 o o0 o ) 00 o 4 ®
p * (2) (T (2) H(2) o»
OF Zggy O Zigp(f)y 0 0 Zini Zia1 Ziog

x [fecos 6, 0 -sins,; [(x)j_i 0 ﬂ +[o o o [(r)j 0 6]
i sin °if 0 cos 9” ¢ o O
0o o 0 Lo 1 o ;
« i ij -
0z 0 [(l’)i 0 (ZI cos (¢, ‘if)
0 -x;j 0
Lo 1
(2) _,(2) : & -
o o [xije - %ie [I 0 o] [(F)i_j 0 O]un G450 | 9 . (4-148)
o .
0 . |
o : .
b ) _,(2)
= W T Yo
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The interference coefficients (Ze all the ones with a triple subscript) in the
¢ 5 ; ij ij ij
above expression will be functions of xf s Zgs ef s Usps Wogy dif and G.f

(ef equations (4-109) to (4-111). Similar expressions can be obtained for the
moments and hinge moment on a strip, to take some account of the aerodynamic
interference between strips, using the relationships (4-137) to (4-139) and
(4-143) to (4-145).

5 THE OTHER CONTRIBUTIONS TO THE GENERALISED FORCES

The contributions to the generalised forces* from the other forces*
(gravitational, structural, etc) acting on the aircraft can be obtained, as is
most convenient, either by obtaining expressions for the translational forces,
moments and hinge moment on a strip and proceeding as we have done for the aero-
dynamic forces (cf section 4.4 and in particular, equations (4-82), (4-89) and
(4-91)), or by substituting the expressions for the local forces and modal
functions in the formula obtained in Ref 1 (section 6.1) and extended, for our
form of deformation, in Appendix A of this paper (equations (A-12) and (A-13).
With the latter approach, the modal functions required are (see equations (3-20)
and (A-7)):

T T T T
R o« k=g A Q. F+SI P 6 o lx. -x .}¢ (5-1)
b x(U8) 0y 0 Sy sie ” “hsi
sif
0 0 0 v . i
sie
-1 0 O Z
sle
at the ith strip ,
M = S q P (5-2)
9 LETRIT:
Ny = st r—A( 59 F+2p§ 00 Hlie, -n . fT~ y (5=3)
if|  x\U8) Pif if .
sif 0 0 0 }
‘ Ysie
-1 0 O .
sie
§ J
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* The word force, without the adjective effective, is to be understood as meaning
applied force. The distinction is between applied forces and reversed effective
forces (cf section 6).
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1
i M, = sg Pg 0 (5-4)
i
9 f
0
i
F T T
gl iieig W & 0 (5-5)
! Pie Sif *sie Fhsi
£
0
and
)
T T
U = cos 0..S;, A Q ) . (5-6)
if70:¢ xé‘:;)( Vig

With the former approach, that is proceeding as in section 4.4, if typical

forces, moments and hinge moment onm a strip are, referred to the strip-fixed axes,

S = o n+6 .
ot S | B R | 9 (5-7)
k=1
o Ty
Kl B e I
— - nEb —
:—‘fs; - |5 *Z Lie | % e
i B S S
=(s) =(us) =
wE o | ik |
and
n+6
B, = B, + z Eiqu (5-9)
k=1

then the contributions of these forces to the generalised forces are found to be

n+6
(1) & st =(1) by
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+ !_- KTST A Q, F - cos GifFT.L‘ 4
if -1
s

The gravitational contribution

The gravitational force on a particle is

L]

= 6mg£¢
f

cevees (5-12)

(5-13)
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referred to the constant-velocity axes where 2¢ is the last column of S¢
£ f

and the vector {d} GE 1%} is given by equation (2-2). Thus

g¢} - - sin 6 = [- sin ©; - (5-14)
sin ¢} cos GE 0
| cos d>f cos Gf_ ¥ cos ef_

Consequently the local gravitational force referred to the strip-fixed axes is

[ (s)] _ i
egi = 6mgS¢iSIL¢f (5-15)
f(§)
gi
(s)

ggi

and the overall forces, moments, and hinge moment on a strip are, respectively,
making use of equations (3-15) and (3-8), and defining m, as the mass of the

ith strip (ef equation (6-17)).

—(sﬂ
X = m,gS, S%
gl 1,7
y(s)
gl
z(§)
gl
T
~ mgls, %, +l8 A s q 7 0 8 & q (5-16)
1% 70 % [¢if “«bf ®if Vif ®if “cbf] !

qn+6

™
o
(=)
-
&
&
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Y Z sua ] s, st
. strip *si A
n(f)
81
(s)
w
~mg|A S, g +|a s, A ST Q F-P] A P, 8, 1y £ o a5 & s
L TR T %i0 %if o ®if e if %3 %if %if f i0 *if "o || .
gh
crislvioce M= 17)
n!(‘:) - glo 1 0 Z smA (o 8,9ty
x .= & i f
flap si “*hsi
T T T T T T
~ mgl-alp, s, ¢ +f-aTp s A sT Q F-aFp, 5 2, f 0 -atp, 8 A q
i 13764 #:¢ ¢ [ 18 %ir to, %ir tie R T ‘¢}] -

N

senesy (5-18)

where, when the flap angle is zero, referred to the strip-fixed axes
the strip cg is at {xio 0 0}
n
and the flap cg* is at {%si *x, 0 0} ¥

and where m., m.m. are respectively the mass of the strip and of the flap part

of the strip, and

£€€6 23S WL

* For an unmassbalanced flap one will expect X to be negative.
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e ™ MR ] (5-19)
0
o
ajy = myxg,[0] (5-20)
0
1
a = X = < + PT a (5-21)
i0 i0 = Ti%¥i2 8. 21
0 1
0

In this case, it is clearly much simpler to use the formulae of Appendix A
(equations (A-12) and (A-13)) rather than carry out a similar analysis to that of
section 4.4. Using (5-13) we then find that the gravitational contribution to the

generalised force in the jth degree of freedom is

n+6
= Gj = - ij = Z ijqk (5=-22)
k=1
- % rjg: ‘T T.T T Y
where G]f = -g i mi(F + F Q¢15Aaios¢if = fai3p61fs¢if) 2¢} (5=23)
mI

Gn+6,{J EE: miAxifO 3

k. i
ith = 8 & (5-24)
i Xifol = |¥if ¢..2i0
it
- Yifo Yif
(=)
e Zi£0 Zif

and I a 3 x 3 unit matrix, and
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&
[ (2) T
= . l¢ G 2
g Z ml aq 76 (5-25)
0 0
(15, (Z)
G
%4 S |
and the non-zero submatriées in ij are
¢t o §T Qg B & ik sz G o Team 0l Ba F
q if %o if e, *ir %if : Q. A, S, %
if 30 Yif F
FTQg Pg s R £
if °if %13 °i¢ ¥ir
Sfg P s AE F
ST Yo Yif ?if
T T
fa- B & g f (5-26)
SR T
G(i) - {KT + FTQg g - fa‘f3p6 s, } A, (5-27)
q if 2i0 ®if 13 0:f %ir .
. v i
(z) ()
G - 5-28
. 6 ( )
) I J
G¢(1> = AxifOARq) L Ax 2'(!, i (5 29)
£ i€0 f |

In obtaining these expressions use has been made of the general relationship,

for any vectors {(b } and {x } s
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cos 6 A
Q X

cos 6| L - £T_ . (5-30)

g
QA%

5.2 The structural contribution

In this case it is simplest to use equations (4-91), (4-89) and (4-82)
where the forces and moments in the latter equation are the structural forces,
moments and hinge moment on a strip. These forces will be independent of the

rigid body perturbation of the aircraft and so we can write them respectively as

— = n =
XS) - xs(’ig + Z F;sik a (5-31)
sl el Tl
0] k] %
o
ZS)— - rLs(f? S Z Isi; Y (5-32)
Ms(i) Méi% it Msik
L S L+ S P
and %
Bl = aig* Z Beindk - (5-33)
k=1

Now the structure cannot exert any overall force or moment on itself and so it is

easily shown that

E & (s)
S X5 = 0 (5=34)
- ¢if sif
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T
E S R aere IR - A Q F = 0 (5-35)
SEL I e x(8) 70, ¢
T sif
PR L Rt ‘
sil ‘
zsil alakialste Wiote ;i

T ls) T ()| _ 3
j{: {S¢. LSif + Axi S¢ifXSif} = 0 (5-36)

and

i1 sif sif
si] terece
sil i
td 8 sit o Xaigl A ()0 F]l = 0 . (-3
Bf EHE X o2 i
sif y
si] LA LS %ﬂ
sil. ...... :
We then find that the structural contribution to the generalised forces is ‘
typically 4
e et E.p ™ Z{: E i (5-38)
k=1
ol T I o(8) . T.T . {e) (s) "
where E]f = j{: K S¢‘ xsif + F Q¢. Lsif + stif (5-39)
1 if if
= 0
En+6,f 0
E, = -[|E 5-40 =
B - [ o 2
T
0 B
O
w
0 s
]
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and the submatrix F is
a aq
T T g
B w j{: K'S ;PRI Sl TR R .
™ . Osed | aal ks x(8) 70
i sif
Y Ay aleratalale
ﬁ sil
| Zsil & A atee ety
T T
s Q - Lsii 3 L81n ol ks f £ (s)
if Q
T $ . if 31f
{ Gil ttereeee
L Sil . . ..

(s) (s)
+ f [%sil s Blc . (5-41)

sin

This all appears very simple, but of course quite a lot of work may be involved
in getting the structural forces, Xii) etc, on a strip. If the strip can be
considered as a slice of a beam then these forces and moments are the increments
in the shearing forces, bending moments, etc, going from one side to the other

of the strip.

5.3 The propulsive contribution

In Refs 1 and 2 a very simple model of the propulsive force was used.
Improvement of that model is being considered, amongst other things, in another
paper6 currently being written. We will therefore in the present paper stick
to the simple model though for convenience it is not quite the same model as that

2
used prev1ous1y it

Thus we assume that the propulsive force acting on a strip
is such that it has constant components in the direction of the strip-fixed

axes, and similarly for the propulsive moment about the strip reference point.

That is, we assume

(S) . (S) .
p1 i plf (5-42)
¢(8) ¢(8)

p1 p1f

7 (8) 2(8)

p1 p1f




L&) - [L©]

| pi pif
|

(8 4 (8)

pl pif

NS N8

pi pif

(5-43)

We also assume that there is no propulsive force or moment on the flap part of

any strip.

The propulsive contribution to the generalised force in the jth degree of

freedom is then easily seen to be

where (cef section 4.1)

FP il Z KTS'i. rx(?ﬂ

1
. ; J v(8)

s, ¢

-
.| = -|[P
[Jk] qq

n+6

+ FTQ:
if

N(S)

pif

-

(5-44)

(5-45)

(5-46)
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@
1 the non-zero submatrices are
b |
D :E: [T &, 0 7= con b, P y (5-47)
a9 . i x8) 8¢ i q? {LCe
i pif ¢ . pif
1f
ﬁ u(s) >
pif
(s)
L Npif
J
B | T [ ()]
- ) P = Z - S A Q F = (5_1‘8)
= : { %op x'8) Byp } *pq
] i pif
Y(c)
prq
(e)
&
[ Pa_
T
2 = Z - S A S K
4q . bie x(8) Oi¢
i pif
T T [ (e)]
-k K + 5, A G B o« iz (5-49)
( Xe Yip x;ié bi¢ Lézz) bif pq
M(c)
pq
N(c)
| Pq
T
P = Z =S A S = = A (5-50)
= . { %i¢ x(8) ¢if} L.
1 pif
%o m E il 1= -¢ (5-51)
) L
1 A st [x)] 46T [L68) pE
Lowi Vs pif ¢. pif
1f “1f b 5
ﬁ ¢¢8) MOME
pif pif
(s) (s)
: Zoif Noif

and the overall propulsive forces and moments, about the origin of the constant-

velocity axes, and referred to those axes are (¢f section 4.3)

[22]
o
(=]
o]
&
[72]
&




' 714
i
o R
o i ™ Y | -
b (eI - Z s x(?z -4 oy |%. F 0 5, qﬂ
H P — tie| | P2 i if
' (© : ] S ) |
| ) 1 pif . !
; !
; (c) (s) f
| Zy Zpif | In+6) :
E - et S e ~
f
ity TN 0 ST R ol
E = + |X X X (5-52)
i (say) | X,¢ pqg  px  pe y
1 Y Y(e) Y(c) Y(c) .
3 pf pq px p¢ .
A
‘ (c) (c) (c)
Z Z
] pr qu 205 L) 9h+6
oot et L - o
E 3 Z g Eof,. o Renl
o LR B e T Pij '
uis? b
pif pif
() ()
Noit T
R L R T T T q
¢ x;:; ®ie Lg’f 20 5 0 xg:)f ie Xig LP;; ief] |
T —S‘ifo(’;s%s o T e
- F { -
A"iﬁ%?xﬁf‘if o TR xéﬁ T .
- Gy [l o (20 L;:) z.;:) q, (5-53)
o
te) ,le) yle)
Nog Np: sz Np: (I

The corresponding matrix of coefficients ij given in Ref 1 (Table 3)

contained the matrix Pq of modal slopes at the aircraft reference point, Ze

E = 0 0 = R . =9
g e (5-54)

e . B 0 z

3z
£ »
4

9

- — [ reference point s
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With our modal matrix R , equation (3-20), it is easily shown that
T
P = (S¢ Q¢ F (5-55)
q R B

where the subscript 0 indicates that the expression is evaluated for the strip
containing the reference point. If therefore, the only propulsive forces acting
on the aircraft are acting on the main part of this strip, the submatrices in

(5-46) have the particular values:

SERga % £ T &
qu = K AX qu cos eif F L s (5-56)
P Q. S - A

pf pf

N

P P 0
P = - P (5_57)
w7 R
P ). - +A (A ) P (5-58)
¢q Axpf s {ALpf o\ Xig/ [
P = - (5-59)
x¢ Axpf
P, = =& ) (5-60)
¢4 Log

Thus, in this particular case, when the present assumption and that of Ref 1, as

regards the propulsive forces, become identical, all these, except for ij
are, as expected, the same as the expressions* obtained in Ref 1, Table 3. The

b

difference in the qu » as in the other contributions to the generalised forces,
arises from the fact that the expressions for the deformations, here and in Ref 1,

only agree to first order in the generalised coordinates (cf Appendix A).

* On the main part of the strip containing the reference point

M

L
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6 THE GENERALISED EFFECTIVE FQRCES
The velocity of the constant-velocity axes, resolved along the strip-fixed
axes for the ith strip, is, using (3-15),
[ (el _ -y
ue = S¢'S ug
1
(is)
Ve Ve J
“’éls) Vg
L ol e
oy T o Fla] e (6-1)
~ s u| + A q,| + A . -
*el] f My $ie V3¢ | ! ue
W L " 6l )
w q 1%
L £] L0l L

Consequently, the velocity of a particle relative to the constant velocity axes,

and resolved along the strip-fixed axes, is, from (4-6),

" i 7 :
(s) (isjw T . 8
u. —-u = S K~ A Q F + P 0 O 1 Yoo = q
mi £ ¢if xégz) ¢if 6if sie hsi ]
véi) = véls) A Ysie f . é
w(s) S w(is) o S Zsie 9n
| mi mi ] A i

[« ()] = !
+s % - [a 8 *+8 4 é g
ig |71 ( Perd xif)
;]<°> §
s(c) "
S 2
= s, R s - (A 8§ +8 A q . (6-2)
[¢if if (xi‘l‘z) TR "if)] !
S
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The kinetic energy W , of the system, relative to the constant velocity axes,

is given by

W =

Y o i -
mi £

of
m

s) __(is)
i Vg

w(g) T
ml

wéisﬂ

[ @)

mi

V(9) =
ml

(s) _

w_.
i

e
uéls)

vf(is)

wE.is)

i

cinieiaiea (6=3)

and so it is easily seen that the generalised effective forces are

po— r_ —
EgE aaw)_ aaw - Zém 2T .
9 9 if
_d_(aw) _ W &
de \3g,) ~ 3q, if
T ¥
S A + A S
g x9S Xip e
- sif %
i( 3w )_ oW
L?t aqn+6 Bqn+6
xla ® 8 - (A S +5 A 4
[“’if ®if ( x(38) ;e Hsp xif)] !
sif .
qn+6
= (say) E\J.k] q, (6-4)
qn+6
Now, we have from (5-21) and (5-24)
(6-5)

ZsmAx - ZGmA +s: A ue)®s - Z mA
£ Xif if x if T if0

sif
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and we write¥

2
i Z 7
- SmA £ - Sm(A # 5§ A S = I ¢ (6-6)
Z Xg ("if big x(us) ¢if) .

sif
Thus, the inertia matrix is the symmetric matrix

-

=
3 T T & T A
[AJ.;I = deR R ZGmR ZGmR Axf (6-7)
jg:st ml - ZEZGmA
X
f
ZCSmA R Z&mAx I
Xe £ n v

e

where R 1is given by equation (3-20) and {xf Ve zf} by equation (3-21). We can
write the various submatrices in (6-7) in terms of the inertia properties of the

strip though when transcribed at length the result is rather messy. To do so

we write
2 PE SRS T R e
Z énle(l:ls) = IiO = Ix Ixy Ixz (6-8)
Strlp Slf s I(io) I(io) " I(io)
Xy J yz
& I(iO) ) I(iO) I(iO)
| Xz yz z ]
2 & o F kR (i1) ({117]
SmA i = -1, =z -| 1 -1 -1 (6-9)
strip fla (XSie ShSi) i . = =
p flap - 1) PLETHIEI ¢ 1)
Xy y yz
_I(il) _I(il) I(il)
L Xz yz z .

and make use of the definitions of section 5.1, equations (5-21) and (5-19),

which give

* If the constant-velocity axes coincide with the principal axes of inertia during

the datum motion then In will be diagonal (= dlag{Ix Iy Iz})where Ix’ Iy’ Iz

are the principal moments of inertia of the aircraft in its datum state.
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jz: e e miAaiO (6-10)
strip Xsif
SmA _ = m,A . (6-11)
(xsie xhsi) el |

strip flap

In passing, we note that this means that

E smAi = -I,-m |A {Pg £ 2, =k }
y sie = L Fheil g 41 Cif il
strip

and so, as with aig Iio is a function of Gif

e RG=13)

With the definitions of equation (6-8) to (6-11) we find that the terms involving

the deformation modes in (6-7) are

SmR = m. |[K-S, A Q F
= %ie %40 i

—s$ Pg A o (6-14)
it Sie %41l1
£
0




£ {
0 I
T T
+ S Lo S o ) (6-15)
Pip ] 194, fig Hl (T
0
ZGmRTR = Z m, KR = Kng A, Q F 1
- if 2i0 %if ‘
3 5
+FTQ$ A, s, K—é(Ts:f +FTQ$ A P'g A [o
if %0 %ir if if *nsi/ °if 24 4
0
+[0 £ 0Ja. P (s K+ A Q F)
251 Y3\ Y5 Xsi Yif
1
, +|Flq L% F+Fua P} 1 |
) if if if °%if 1 o1 i
0 T
+[0 £ oJi.p. q F
1 Sge Ve
|

+ [0 ¢ o]z, o . (6-16) ‘

=

=

- |
0 ~

o

W

w
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The other terms are given by (6-5),

m = z mi (6"’7)

and
T :E: ghopoa oo Wt x e g s
M : T T BT TR P T
+ s$ A, S, A } 5 (6-18)
if 2i0 %if *if
7 THE EQUATIONS OF MOTION

Lagrange's equations merely equate the generalised forces and the
aseneralised effective forces*. Stating this equality for our (n + 6) degrees of
freedom under the assumption of small perturbations gives two sets of (n + 6)
simultaneous equations. With the datum motion that we have taken - briefly
constant linear velocity, zero angular velocity in a uniform atmosphere
(ef section 2) - the first set state that the values of the generalised forces in

the datum motion are all zero, ze

Qrf = 0 . r=1-> (n+6) (7-1)

or in terms of the separate contributions (aercdynamic, gravitational, etc)

= Qrf * G v Pt Erf = 0 r=1-+n+6 . (7-2)
Expressions for the individual elements in these equations have been obtained

above - equations (4-93), (5-23), (5-45) and (5-39).

The second set of equations express the continued satisfaction of
D'Alembert's principle during small perturbations of the datum motion. Theyv are

written as the matrix equation

* Often they are expressed on the equality of (on the left hand side) the
generalised effective forces minus the conservative generalised forces, and
(on the right hand side) the non-conservative generalised forces. This is the
form when the equations are written in terms of the Lagrangian function.




{ia 0% + I v [7) + [2,0 - (9,1} 0] = © (-3)

n+6

where the constituent matrices are:

@1) the inertia matrix [Ars]’ equation (6-7), where the various sub-
matrices are given by equations (6-16), (6-14), (6-15), (6-17) and
(6-18);

(ii) the gravitational matrix [Grs]’ equation (5-25), where the non-zero

submatrices are given by equations (5-26) to (5-28);

(i1i) the propulsive matrix [Prs]’ equation (5-45), where the various sub-

matrices are given by equations (5-47) to (5-51);

(iv) the structural matrix [Ers]’ equation (5-40), which has one non-

zero submatrix given by equation (5-41);

(v) the aerodynamic matrix - [Qrs]’ equations (4-94) and (4-100),

see also sections 4.5, 4.5.1 and 4.5.2.

Equation (7-3) is almost the same* as the equation given in Table 3 of
Ref 1 except that it has been written in terms of sectional properties and in
terms of modal functions appropriate to a sectional description of the configura-
tion. In particular a minor restriction is imposed on the form of deformation
in that what might be called 'chordwise deformation' is forbidden apart from that
due to a flap rotation; but more noticeable are the additional terms in the qq
submatrices resulting from different ways used to express the deformation
(cf Appendix A). Thus in Ref 1 the submatrix qu , for example, is null,
whereas in the present development it is given by equation (5-26). There are
consequently some corresponding differences in the transformation to other forms
of the equations of motion. These differences have been demonstrated in detail

in Appendix C.

* When the choice of constant-velocity axes is the same. In Ref | they have
been chosen to coincide with the principal axes of inertia during the datum

motion. This is equivalent to putting zg}miAx =0, and
if0

In = diag{Ix Iy Iz}, in the present development.
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- 8 CONCLUDING REMARKS

This paper has been written as a companion document to Ref 1. In each case
the equations of motion of an aircraft, for small perturbations from flight with
constant linear and zero angular velocity, have been developed in detail. The
constrast has been that, whereas in Ref 1 we took an overall view of the aircraft,
we have here taken a fore and aft strip of the aircraft as our basic unit, con-
sidered the forces, etc on the strip, and built up from that. As a consequence,
the representation of the aircraft deformation in the present paper cannot be
made to correspond exactly with that of the earlier paper. The deformational
representation is basically more complicated; and other complications, such as
local axes for each strip, are also introduced by strip approach. Of course a
lot of these complications will disappear in the simplest cases (¢f Ref 5) but
even so, one would not recommend the use of the present method<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>