
D L W  OCK 
IN THE DYNAMICS Off DEFORMABLE AIRCRAFT . (LI)

RAE—TM—STRUCTURES—933 ones p4.

~~~ 2
40 e 

DRIC BR

ho —

I—

I



.0 ~ ~
~~ IIO~2

11111 1 . I

IIIIi!..~.! lIIII~
.
~. HhII~ :~

4

MICROCOPY RESOLUTION TEST CH~~T
NA T O ~ A1 BUREAU OE STAt~DARD$-1963- ,~



STRUCTURES 933 STRUCTURES 933

R O Y A L  A I R C R A F T  E S T A B L I S H M E N T

~~~~~~~

f

~~~

I 

_ _ _ _ _ _

~~ > ‘! THE USE OF STRIP THEORY IN THE DYNAI(ICS OF DEFORMABLE AIRCRAFT _ /~~~ ~~~~~~-——- --- ~~~~~ . .-. .~

by

L ./ Woodcock/ 
-

CLY~~~~~~ 
0 0 0

_

~~~~~~ I / /  ~ f \  1’~~i ~~~~~~~~~~~~~~~~~~~~~~~~~~ 7/
/

J~
)_~ z:~

, ._ Z~T T ~~~~~~~~7
— 

— — 
- -a.

foT public rel~~~ ~~id ~~~~ 1*distributIon ~s _ _ _ _ _

!J~ ~! :  _ . j1f 
~~~~~~~~~~~ 

ô

_ _ _ _ _ _ _  

79 04 04 O~’ 
-t



I

R O Y A L  A I R C R A F T  E S T A B L I S H M E N T

Technical Memorandum Structures 933

Received for printing 26 August 1978

THE USE OF STRIP THEORY IN TEE DYNAMICS OF DEFORMABLE AIRCRAFT

by

D. L. Woodcock

SU~~ARY

A detailed formulation of the equations of motion of a deformable aircraft
is given. The development is from Lagrange’s equations for an inertial frame,
and is made in terms of the position, orientation, force and inertia properties
of narrow strips of the aircraft which lie fore and aft in the unperturbed state.
The latter is one of constant linear velocity and zero angular velocity.
Particular account is taken of the deformation and loading in the unperturbed
state.

—7

0
j~.s~t ~CYI M

— 

~~~~~~~~ ~ ~‘~ S

• tIJ
Copyr ght

Contp ojj ep lIMBO London
19?8

• --~~ I -~ ‘~~ A r~ “ 
-
~

~ ‘ ‘ _
~~~
_

~~_ _ _ _ _ _ _ _ _  — -  -- -~~~~~



-
~Y~~~~~

---- .
~ 

2

LIST OF CONTENTS

Page

INTRODUCTION 3
2 THE DATUM MOTION 3

3 THE SEMI-RIGID MODEL 4
4 THE AERODYNAMIC FORCES 13

4.1 The velocities 13
4.2 The forces on a strip 16

4.2.1 Their representation 16

4.2.2 An equivalent form 23

4.2.3 In terms of the generalised coordinates 30

4.3 The overall forces and moments on the aircraft 32

4.4 The generalised forces 40

4.5 Strip interference 49

4.5.1 Using two—dimensional theory 50

4.5.2 And in terms of the generalised coordinates 60

5 THE OTHER CONTRIBUTIONS TO TEE GENERALISED FORCES 62
5.1 The gravitational contribution 64

5.2 The structural contribution 69

5.3 The propulsive contribution 71

6 THE GENERALISED EFFECTIVE FORCES 76
7 THE EQUATIONS OF MOTION 8 1

8 CONCLUDING REMARKS 83
Appendix A A generalisation of the generalised force expression

obtained in Ref 1 85
Appendix B Determination of the location of the principal axes of inertia 93

Appendix C A brief consideration of the use of strip theory in a
body—fixed axes context 95

Glossary of terms 105
List of symbols ~O8
References 1 1 7
Illustrations Figures 1 and 2

• Report documentation page inside back cover

‘1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _



3

1 INTRODUCTION

There are two ways of trying to understand a complicated problem. One is,

as it were, to stand back and see the thing as a whole without being confused by

all the detail — to look at the wood and not the trees. The other is to p ick
on a basic unit — the tree ot ~he phrase — and look at that first. In each case

one has ultimately of course to bring in the details — to look closer at the wood

or to build up the wood from the trees. In Ref I the first approach was adopted;

but a recent note by Baldock5 showed that there are some, and they belong to the
category of those who do it rather than those who show you how to do it, who want
to use the other route. The consequence in this paper, which is a considerable

generalisation of what Baldock did, written in a notation which harmonises with

that of Ref I (and indeed of Ref s 3 and 4).

2 THE DATUM MOTION

We wish to consider perturbations from a datum motion. What then should be

the unperturbed state? How general a motion should it be? What restrictions

should be placed upon it? One view would be to select it to suit flight conditions
encountered in practice; but alternatively one could choose it to ensure the

minimum of complication in the analysis, and then, if necessary, generalise when
required. We have taken the latter approach and in particular have said that the

datum motion shall be such that the shape of the aircraft remains constant

throughout. In particular, this ensures considerable simplification of the aero-

dynamics and kinematics of the system. To ensure, in general, that there is no
change of shape during the datum motion we therefore specify that:

(i) the aircraft’s mass and mass distribution are constant,

(ii) the atmosphere and the earth’s gravitational field are uniform, and

(iii) the motion is one of constant linear velocity and zero angular

velocity relative to earth fixed axes.

We also assume that the aircraft is symetric in the unperturbed state.

Consequently, we take a set of constant—velocity axes O~x~y~z~ which has
zero angular velocity and constant linear velocity Vf in a direction in the

plane O x
~
z
~ 
, and is such that it is fixed in the aircraft, ~~~~ being fore

and af t, throughout the datum motion. Thus the datum motion is defined by:

I..
U,
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U
f 

- Vf C08 (
~~ 

- Yf) (2 1)

V
f 

0

W
f 

sin (ef — Yf)

4’f 0 (2—2)

ef

- - 

0 -

where e
~ 

is the angle of inclination, Yf is the angle of climb, the angle of
bank is zero; and, with no loss of generality for our purpose, we have taken the

nose—azimuth angle and the angle of track both also to be zero*. Thus the

constant—velocity axes coincide, during the datum motion, with the body—fixed
axes used to define the attitude of the aircraft. One could choose the latter

axes to be the principal axes of inertia of the aircraft and consequently obtain

some simplification in the expressions for the reversed effective and generalised

gravitational forces at the expense of having to find out where the principal

axes of inertia are (of Appendix B). Another choice, which may appeal to some,

would be to take body—fixed axes which, for the particular datum motion being

considered, coincided with the body—path axes having the same origin. In this

case one would have the angles of climb and inclination equal (Y f — øf).

3 THE SEMI-RIGID MODEL

We assume the aircraf t consists of a number of strips each of which is
based on a mean line which, in the datum motion, is normal to °c~

’c passes
through the strip centre of gravity, and is more or less fore and aft. Each

strip is made up of two rigid portions** joined by a hinge at a point on the mean

line. The plane separating a strip from an adjacent strip is not necessarily

norma l to O y , but instead is chosen to be roughly normal to the external

surface of the aircraft at their line of intersection. We also arrange that the

* The three attitude angles (angle of bank, angle of inclination, nose—azimuth
angle) define the attitude of the aircraft, ic of some axes fixed in the
aircraf t, relative to normal earth—fixed axes. The two flight—path angles U,

(angle of climb, angle of track) define the direction of flight relative to
the same axes (of Ref 3, sections 5 and 6).

**Thig image includes the case of a single rigid portion as the case where one of
the two portions is of zero length.

L_
~~~~. • . .~~~~~~~~~~~~~~~~~~~~ ,- - . - , - —— - --~~~~~
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mean line of a strip does not extrude from the strip through either of its
separating planes. Such a strip models a wing (or tailplane or fin) chordwise

strip with a control surface; or, with rather more engineer ’s licence, even an
engine pod or a store or a fuselage.

In Ref I an intermediate frame of reference, defined by the no—deformation—
body-f ixed axes OnXnYnZn , was used in the specification of the perturbed

position and shape of the aircraft. In the present context it is convenient also

to use sets of strip—fixed axes, one set being associated with each strip. Let

the strip—fixed axes for a typical strip be 0 .x .y .z . where 0 .x . is the
Si Si Si 51 51 91

mean line mentioned above, the hinge is on O51x51 , ie at, say,

~~ ~~~~ z~~’} = o, o} (3—1)

and the axes are fixed in one of the rigid portions of the strip such that the

hinge axis of rotation is parallel to the direction O8~y51 
, and O51x51z5~ is

• a mean plane between the planes dividing the strip from the adjacent strips.

Thus for a wing section with a trailing edge control one would take 
~~ 

to be

some reference point such as the quarter chord point, ~~~~~ to be forward
along the chord line , and xhsj. to be the (negative) value of x

51 
at the

control surface hinge*. We will call the portion of a strip, in which the strip—

fixed axes are fixed, the main part ; and the other portion, when it exists, the

flap (of Appendix B).

As in Ref I we represent the perturbation of the aircraft, from the

unperturbed position and shape it would have had at the same instant dur .~ the

datum motion, as being made up of rigid body translations and rotations which
move a set of body—fixed axes from coincidence with the constant—velocity axes to

coincidence with the no—deformation—body—fixed axes, followed by some further

perturbations which we call deformations. The first part of these perturbations

is therefore (of Ref 1) made up of the two successive steps:

(i) translations, as a rigid body, ~
(c)

, y
(C)

, ~
(c) 

in the directions

of the respective constant—velocity axes;

• (ii) successive rotations ti,, 0, $ about the carried axes Oz, Oy, Oz

where Oxyz are the above—mentioned body—fixed axes.

I’
‘I

* The control surface hinge and th. hinge of the strip model do not necessarily
coincide. If the control surfac• has a swept hinge m d  th. strip is fore and
aft they will not.

.Ai•i’~•1i
• •
~Lk.
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The second part of the perturbations — the deformations — we write in a somewhat
different form from that of Ref 1.

The transformation from the no—deformation—body—fixed axes to the strip—

fixed axes for the ith strip is achieved by:

(a) Translations xr~
, ~~

n) 
5~

n) 
in the directions of the respective

no—deformation—body—fixed axes where these translations are compounded of the

datum state separation between the strip reference point 0
3~ and the point 0~

and a deformational contribution, viz:

(nx1 
= + K q1 (3—2)

(n)

(n)
z. z. q
1 .fl

• K is a modal matrix whose elements are functions of the strip being considered ,

and + q~ are the generalised coordinates for the deformational freedoms.

For example if, for a wing, the strip reference points are at the quarter chord

point, then K describes the deformational shapes of the quarter chord line in

the various modes*.

(b) Successive rotations 4’~~ O~, $~, about the carried axes , which are
written in a form similar to (3—2):

= •jf + F . (3—3)

le. e.
1 if

*jf

Thus F is a modal matrix. It can be thought of as a ‘torsional’ modal matrix
along with K as a ‘flexural’ modal matrix. The condition that a strip mean line

O .x . is normal to °c~c 
during the datum motion is satisfied by making

• — 0 , and this does not impose any other restriction, as we will show
following equation (3—21). For, say, a wing whose reference axis (line of strip
reference points) is parallel to the plane O~x~y~ (ie ZI

~ 
— constant), whose

* All the values of K can be thought of as a three—dimensional array of numbers.
It is this array which describes, in this case , the deformation&l shapes of the

— 

quarter chord line. 

-
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only flexibility is in torsion about the reference axis (ie the matrix K is

zero for all wing strips), and whose strips are fore and af t (ie O81x5~ parallel
to OnxnZn) during the datum motion, •if and 

~if 
will be zero and Oi f will

be the sum of the strip jig ‘incidence’ and the strip ‘incidence’ due to twist in

the datum motion*.

In addition to the displacements and deformations represented by these two
axes transformations we have deformation in the strip itself. The main part of

the strip, by definition, cannot be displaced relative to the strip—fixed axes,
but the flap part can. We therefore have on the flap part of the strip**

x~7 Xh i + 

~“~if 
I + — 6if~ 

0 0 1 r x i  —

o 0 0 0 • 

~
‘sie

— 1 o L Z .  

(3-4)

where is the angle of flap rotation, 6~~ is the flap rotation in the datum

motion, Xsie , etc are the values of x
5~ , etc, when there is no flap rotation,

and P61f is the axes transformation matrix (attitude deviation matrix) for the

single rotation about O51y8~ which is given byt

6if 
cos 6if 0 — sin 6~~~ . (3 5)

0 1 0

sin 6. 0 cos 6.if if

* Strictly speaking these angles should be called angles of inclina tion (in the
no—deformation—body—fixed axes reference frame) rather than angles of
incidence (of Ref 3, sections 5 and 6).

** We have used the general symbol 6 , specified by Hopkin (Ref 3, Section 8)
for a motivator rotation rather than decide the primary purpose of our flap
(say to produce a rolling, pitching or yawing moment) and take th. appropriate
symbol (F~, i~ or ~) .

t Thus $~
— (P6 1f) — 0 q 

~61fb o oL i o o

.~~~~~~~~_ _ _ _ _ _ _ _  

_
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(For a general rotation the axes transformation matrix S is of the form

S = R
~

P0Y
~, 

— of Ref 4 , Appendix A.) The above expression (3—4), assumes that
6. — 6if is small. Putting 6. = 6

~~~ 
, as in the datum motion, we therefore

find that*, on the flap,

- - T - -
X
5 if — + P

6 
X .  — Xh~~ 

. (3 6)

(us) o y .
sif sie

- 
0 

- 
Zsie 

-

The perturbation in the flap rotation is related to the generalised deformational

coordinates by a flap modal vector f

— — fT [-~1 
(3—7)

and so , on the flap

~ x~~~ + 

~if 
~ ~ I - x.ns . fT q1 . (3-8)

0 0 0 
~sie

.1 —1 o o
Si sif sie

Combining the successive deformations (equations (3—2), (3—3) and (3—8)) we

- I find that, for a point on the flap, its position relative to the origin of the

no—deformation--body—fixed axes is given by

x
C’,

* The superscript (us) is here introduced to show that these are the coordinates
referred to the unperturbed (datum motion) orientation of the strip—fixed axes.
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X
1~ 

+ K

)~jf

~~
) 

Zi f

+ S~ ~~~~~ + P~ 0 1 x .  - f T q

~ 0 o 
~sie

— I 0 0 Z~~ 

(3—9)

where S~p1 (= Rs1Pe1Y,p~
) is the axes transformation matrix for the change in

orientation from the no—deformation—body—fixed axes to the strip—fixed axes

(of Ref 4 , Appendix A)

R = 1 0 0 (3—10)

0 coS O
~ 

sin

O — sin $~ 
cos $~

p
0 

= 
[cos

e~ 
0 — sin O

~ 
( 3—11)

I sin 6. 0 cos 0.
L 3 1

and

= r ~~~ s~ n ‘~i 
01 . (3—12)

•
1 — sin 

~~
. COS 4

~i Oj

L o  o

Writing

[a. = Q~ [~ 
— •i~~ 

= Q~~~F q
11 

(3— 13)

I~i I e i — e l f i
L~- ~ 

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. .
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where Q
$ 

= 1 0 — sin 
~~ 1o cos $j f sin •j f COS O i

f

o — 8~ fl •~f cos •.f COS O ifj

it can be shown that*

S
~ ~ 

(i 
— A J)S, (3— 15)

where A0 0 — y ~ 8
~ 

. (3—16)

0 -a .
3. 1

— 8 .  a. 0
3. 1

Thus to first order, making use of the fact that, for matrices of the latter

type,

• A,rxl = _ A
x E••4

~1 
(3-17)

1~ I i e t
[zJ Ld

we have

(n5 
- 

Tx .  — x . + S  x .
ni if sif

(n) (us)
~ni ~if ~sif

(us)
ni if sif

+ K - S~~~A~~~~ Q~~~F + S~~~~P~ 0 1 
[Xg~~~ 

- x
h l i  

fT 
[q1

~‘sie J HI
— 1  0 oL  Z

5i5 j [q~j 
(3—18)

* Thus the angles a
~ ... are an approximation to the Euler angles which produce

the orientation transformation from the unperturbed position of the strip—fixed
axes to their perturbed position when the perturbations $, 6, ~I’ are zero
(of equation (4—40)) .
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This expression gives the position of a particle on the flap part of a strip

relative to the origin of the no—deformation—body—fixed axes and resolved along

th ~e axes. For a particle on the main part of a strip one merely takes the

modal vector f to be zero. This equation compares with expression

= X
f 

+ R q1 (3—19)

(j ~)

L used* in Ref I (equation (1)). Thus for the strip model, the modal matrix R

has the form:

R = K — sT A Q F + sT ~T o o fl • — x. . fT (3—20)
~~. (us) $. 41. ~S. ~.i. e nsii f x .  if if if

sif o 0 o l y .sie

— 1  0 ol zsie

at the ith strip, and the unperturbed ~oordinates of a particle, relative to

and resolved along the body—fixed axes, in the datum state, are:

- - 
T (us)x x. + S x .  ( 3 2 1 )

f if 
~Pjf 

sif

(us)
Yf Y1f ~sif

z z •f _ 1~ sif

for a particle on the ith str ip . If this stri p is , as required , in a plane

normal to O y then, for a point on ~~~~ 
= Z

S
i
f 

= 0), y~ must

be constant . Consequently the 12 term of S$1f must be zero and so

(of equations (3— 10),  (3—11)  and (3—12))

cog elf Sin 
= 0 . (3—22)

m
a’

* There is however a difference of some significance : (3—19) is a precise state—
ment of the deformation used in Ref I while (3—18),  for our present model, is
only a first order approximation in the generalised coordinates q1(of Appendix A).

-

~

-

~

-- •

~

- -

~ -



This is satisfied by 0..~ = (,T/2) or 
~if = 0 . However , any transformation

with 0 if = ( I T/ 2)  is equivalent to another transformation with l P i f  = 0 , and

so we will always take

~‘Lf 
= • (3—23)

This makes

S = R P = r cos O. 0 — sin8 .
41if 41if 8if I 

i f

Is” 4 1 i f 
5]~fl 0

~ f C05 if 5]. fl $ i
f 

COS

[cos $ i
~~~ 

sin 0 if 
— S]•fl 4I i f  COS •jf COS 0jf 

(3—24)

There is one other expression for the position of a part icle on a typ ical
(the ith) strip that we may require, and that i.s for its position relative to

the origin of the constant—velocity axes and resolved along those axes. This is

easily seen to be

• X
1~~ + S~ ~~~~ + R

~~(C) 
Y1f

Z~~f ~:~
) 

q

+ - 

(A~ 
+ S~ A ( ) S

4 1 )  
41

Sif(c) 8 

( 3 — 2 5)

where R is given above (equation (3— 2 0)) .

En this section , we have introduced the generalised coordinates -
~~ 

q
~ 

.

To complete the set we take ~~~~ ~
(c) 

~
(c) 

~ e as the other six generalised

• coordinates ~~~~~ •
~~~

•
~~ ~~~~~~~~~~~ 

and subsequently we will  use either notation

capriciously. q
‘~0

_______ _______ .1 : ~~~~~~~ ~~~~~~~~~~~~~~~~~~ -* ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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4 THE AERODYNA14IC FORCES

4.1 The velocities

The main reason for the adoption of the strip model described in sec tion 3
is of course to facilitate the use of strip theory aerodynamics so beloved by

many. The air forces on a strip will depend on the velocity of the air relative

to the strip. The velocity of a particle referred to the strip—fixed axes is

(95 
= 

(~) 
+ ~ + s~

TsT ~\ s
(s) 

+ 
115

81 •~ $1 Si. 1

v~7~ 
• i )

(a) (s) (s) • (n)
_ si . si i

+ s~
T ra5 + ~ 

•(c5 + s

(n) 
;(c) 

v:

c) 

(4—1)

This expression can be obtained either by taking the expression for the position

of a particle, relative to the origin of the normal earth—fixed axes and resolved

along the constant—velocity axes , differentiating, and then premultiplying the
result by S~ iS to refer the velocity to the strip—fixed axes; or by add ing
together the various relative velocities making use of the facts that

(of Ref 4 , Appendix A):

(i) If some axes O
axaya

za have angular velocity {p 
)
q ~r )} relative

to axes Obi%YbZb and resolved along O
a
XaYaZa , then the linear velocity of a

point relative to °b resolved along the a—axes is

(ID + A
(a)) 

Xa 
+ 5

~~b ~ (4—2)

• (b) I
~
‘a ~

‘ab
C,,
C,,
0’ Z Z ab

j



where •ab etc are the standard Euler rotations which transform to the
a—directions from the b—directions , and x~~~ etc are the coordinates of 0
relative to °b and resolved along the b-axes, 

a

(ii) In the situation described in (1)

(a 
= 

ab 
+ab (4 3)

(a)• 0ab

r~~~b ab
1

(of equation (3—14)), and

A =~~~~~(a) 
ab ab

= —~~~~~ sT (4 4)41ab ab

and (iii) [f lx y z~ is any vector and S any axes transformation matrix then *

A = S A S T (4—5)

(S[
i~
J) 

x •

~ (s) (s) (s)~ - . . •In equation (4—I) ~x .  y~~ z .  is given by equation (3—8), f being
put equal to zero for a particle not on the flap portion of the strip, Ft~ 

8i~by equation (3—3), and {x
(’
~ 

~~~~~
ii) 

~(n)} by equation (3—2).  Substituting these
expressions, and making use of (3—15), (3—17) and (4—5),  we have

• .* (4—5) is of course , also true with S replaced ~~ S , i.e

z
A T C’,(sT rxl\ - sA S

S .

‘& ly l ,
‘ U 4 !

ki 
_____ 

________________________________



S
~ 

+ S
. 

A
U
S
~ 

Q, F

V .  V
f

(s)
V .  V q

+ S
~~~

K - + 
6~~ : : ~ ~~~~~~~~~~~~ fT

- 1  0 0] Z. cn]

+ S
. 

+ S
+1f

A
uf 1:1 - (A (US) s, + S

.If
Ax
If) 

:

•

111
, .

• . .•.. .  (4—6)

The matrix factor S
~ifQ$if , in the second term, has, consequent upon (3—14),

(3—23) and (3—24), the particularly simple form

S~~~Q41 — [ COS 0 . (4—7)

0 I O f

I— gin O . 0 iiL —~

It will also be noticed that the term in the ~ is S$ifR (of equation (3—20)).
The square of the resultant speed of the strip reference point is easily seen to
be

C,,

0~

14
4.’
C’,

I



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

v~ [u~~~ v~~~ w (?)] ~~~~~

‘Iii

(s)
W .  (us ) 

= 0— — x
S~~f
(us)

~s if

sif

= [U f vf wf]  uf + 2 ~ (c) 
— A

~ 

-

~ 
+ K

- 
(c)

Vf 
~ (c)

= V~ 1 + —s. ~U
f 

V
f 

WfJ — A + K (4—8)

(c)

~ (c)

4.2 The forces on a strip

4.2.1 Their representation

Consider a vortex whose axis lies along Oy in a frame of reference Oxyz
which is moving with linear velocity lu v w}, referred to the same axes, and zero

angular velocity, through a fluid. Then the force on that vortex is

~~PAu O ~~~p 0 0  r u (4-9)

r 0 0 0  V

0 — r  0 0 w

referred to Oxyz , where r is the vortex strength . In applying strip theory

we represent the strip by a set of bound vortices* whose axes are parallel to

* Plus also a semi—infinite layer of free vortices which move with the fluid and
so have no force exerted upon them.

— - ~~~~ - -  ~ -
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O5~y5
. . The strengths of these vortices will be functions of the boundary

condition and so of the velocity of the strip normal to its surface. We will

approximate to this on the main part of the strip by w~7~ 
at points on ø .x .

and on the flap part of the strip by the velocity normal to 05~~5~ and to the

line (of equations (3—6) and (3—8)) given by y8~~ 
— Z

sie 0 , La the line

x x~~J~ 
+ (x~~ — x.~ .) cos 6if — sin 6if fT

0 0 0

• 

0 = sin 6~~ cos 

(4—10)

This latter velocity is therefore the last element of P6 u~~~ at points on

w 7~
(4—10), which to the desired accuracy is (of equations (3—5) and (3—7))

[o o ij “6if ~~~ 
+ ~ 

— 1’ó~~ 
u~7~ f

T 
q1

v
~~ L 

0

v~~] i 0 0 w~7~ q

~ [o 0 i] 
~6if 

- C05 6~~ + (x~~ - xhS~ )}(O i o) p
~~

~~ q~~S)

• ~~ ~~

+ 0 0] 
~~~~~~ 

f
T 

q1 
— (xgje — 

%Si~~
T 

~~

C,, V
f 

q~~

14 
( 4— 1 1)



- —- . - -~~-~~~~~~~----~~~~~~~~~ 
-

where 
{~

(s) 
~~~ ~(s)} and {

~ (s) 
q
(S) 

~~~~ are given below. It will be seen

that w~7~ 
at a point on O .x5~ 

on the main part of the strip is the same

expression with f and 6 if both zero. The abbreviations used are:

— — . . . — -

u~~~ u~ + A sT 
~ 

F + K + •(c) 
+ A

~ 41 — A3. 41 .,~ Uf if if f if f~
- 

• 

V
f 

(c)

‘(c) 
~
, 

(4— 12)

(s) Q F + SA ~ 
. (4—13)

if “if

q~
5) ê

(8) .

ri 
q
~

The boundary condi tion is therefore made up of certain multiples of four basic
conditions (at the points described above):

normal. velocity of air = 1

-

s ie
‘I = H(x. . — x . )flsi sie

= (x. . — x . ) H ( x .  . — x . )nsi sie nsi sie

where H is the Heaviside step function.

The multiples are:

~4s)

(8)
q3.

~~~~ sin 6if + w~~~(cos 
~~~ 

— 1) + q~9)x~
51

(1 — cos 6 j f )

and 
+ 
(~~~

s COS 6if — W j f sin 6
1f)

(6
1 

— ô j f )

(us denotes unperturbed—strip—fixed axes).

- ~~~~~~~~~~~~ ~~~~
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The strength of the vortex will therefore be a function, for a given datum

state, of these four scalars* and of its position relative to the wake and to the

points where the boundary condition is applied . Thus we can say equivalently

that the vortex strength is a function of

~~~ , ~~~~ q
(8) 

end

F 

Thus, for small perturbations the strength of a vortex has the form

r r + r ~~~~ — ~
(us)”

~ + r — ~~~~~ + r q c8 + r (6. — 6. )f ut, i if / w~ i. if / q i 6 1 if 

(4—14 )

where rf. r~
, etc are functions** of ~~~~~ ~~~~ , and 

~~~ 
. The velocity

of the vortex relative to the fluid will be in the direction of the boundary

line. The enforcement of the boundary condition ensures that there is no

relative velocity normal to this line. The force on the vortex is therefore

normal to this line. The relative velocity of the vortex, and consequently the

force on the vortex will be a function of the same four scalars as the vortex
strength (of equation (4—14)). Thus the local aerodynamic force at a point on

the strip will have the form

— X1~ 
;in 6~~ + ;iu ~~ 6jf ~~~ 6j~f 

Xjq 8311 6if ~~ 
sin + X if COS

ff8) 0 0 o 0 o

g~~
) cos 6~~ X~~~

cos 6
~ 1 X iv C08 6if X iq C0S 6if X~ 6

c08 &~ f X1f C05 61f

~ 
;(~

) 
— sr 

• (4~ 15)if

—

(8)

* 5 .  — 6.
- i  if —

C,,

* We are taking the view that the strength at an instant is determined by the
14 boundary condition (and a finite number of its derivatives with respect to

time) at the same instant.

** r
~
, 
~~ 

rq1
, r6 may contain terms involving the differential operator D —
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v where ~~~ (15 the trig, functions) and X if (in the perturbation part)

are put equal to zero off the flap portion, and the coefficien ts ~~ X iw~ Xjq~
may involve the differential operator D . In addition, there will be a

leading edge ‘suction ’ force, as will be seen if one imagines the infinitely
thin leading edge, of our aerofoil model , as the limit of a rounded edge. The

Kutta—Joukovski theorem tells us that for a two—dimensional aerofoil moving with

constant and uniform velocity the overall force on the aerofoil is normal to the
direction of motion. The leading edge ‘suction’ force, which has only a
component in the O .x . direction, can be written as*

— x~~ + 
~~~~ 

~~ ~~ x~ J ~
) 

— u~~~ (4—16)

-

(s)

- 
6 i 

- 6if _

• and so it can easily be shown that

x~~ - - 
~~~~~~~~~~~~ 

X~~ + 

~~~
Xif cos 6.~~ - 

~~~~X if sin 6if (4-li)

~
jj
~)~ 

{~~I

’
Xif + 

~~~
X if cos 6

~f} 
— :~ {~~~~~

‘

~~ 1~~ 
+ 

~~

“
X1~ 

COS IL
f}

— ~~ ~~~ + 0(D) (4—18)

(us)
— — 

~~~~ 
X if + cos — 

~~~~~~~~~~~ 

+ ~~~~~~~

— 

~iv ~~~ 6if + 0(D) (4— 19)

* The (2) superscript indicates two—dimensional values, and the circumflex aupra—
script has been used to indicate the affinity of these coefficients with the
body—fixed axes coefficients of Ref I.

4’ 
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(us)
~(2) Wjf rX160 — — 

~~~~
., Xif COS 6 if + 

~~~~ L~ 
X 1f 8311 6if

if
(us) ,

— 

u~~
s 

+ Xi*5 
coS — 

~~

“

~i*5 ~~~ 
+ 0(D) 

(4—20)

where indicates a sunmiation over the main part of the strip, and

indicates a sumeation over the flap part.

The overall forces on a strip are (of (4—16)) written as*, referred to the

strip—fixed axes (see Fig I)

+ ~~~ ~ (2) 
*

(2) ~ (2j ;~ ) 
— ~~

1a8) 
(4—2 1)if ix iz i.O i6 if

i
(s) 

—
3. 3. if

~
?) 

~ ?) ~~~~~~ ~~~2) 
q
(S)

i if ix is i.O i6 i

6. — 6.
— 1  if

and so we find that

= ~~~

‘
X~~ + ~~~~Xj~ COS 6if (4—22)

X j~ + X j~ COS 
~~f} 

+ 0(D) (4—23)

— 
~~~~~~~ 

+ x1~ cos 6
jf} 

+ 0(D) (4—24)

* — 

~~~~ 
+ ~~

‘
x~6 cos 6 if — 

~~~
Xif ~~~~ ~~~~ 

+ 0(D) (4—25)

C.,

0•*

14

* The subscript i has been used to indicate a typical strip whereas, in Ref 1 ,
e.g. was the force due to unit displacement in the ith mode.

L i  
_ _
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(us)
(2) 

— 
Vjf (2)X1f (us) Zif (4—26
u.

H if

(us) (us)
) = — 

w.~ 
~~~~ + 2 + 0(D) (4—27)

u.f ((us)
‘if

(us)
(2) 

= — 

Vif 

~
?) 

— _____ + 0(D) (4—28)(us) iz (us) if
u. U.
if if

(us)
= — 

W.f 
~~~~ + 0(D) . (4—29)

U1f

Some further consideration is given to this aspect in section 4.22 where a

further relationship (4—50) is obtained (see also equations (4—54) to (4—58).

Similarly the overall moments on the strip are writ ten as , referred to the strip—
fixed aXes*,

— 

o~ + 

— 

0 0 o o 
- 

~~ — . (4—30)1 i if

ç~
(?) 

~
(?) ~

(
~) ~ (2) u (s) 

— ~
(us)

i if ix iz ie i6 i

0 0 0 0 0 q~8)
3.

* 5.  — 6.
i if

There will be no contribution to these from the leading edge ‘suction’, and so
we find that

= 
~~ Xif 3Csie 

- 

(~~~

“
X1f)

x
~si cos ó i

~ 
- 1) (4-31)

= - 

~~~XiU
XSie 

- 

(~~~

“
x~~)~~~51(c05 6if - (4-32)

* In accordance with our practice the symbols for the moments should also have a
subscript s to show that the moments are about the origin of the strip—fixed ‘~
axes but this has been omitted to avoid confusion with the subsequent use of
subscript s to denote structural. ‘~‘

---—• ---

~

—

~ 

----- ~~~~~~~~
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- 
~~ X iwXsie - ~~~~~~~~~~~~~~ 6if 

- 1) (4-33)

= - 

~~~Xiq
3Csie - (~~~

“
xi~~x~8i (cos 6 if - (4-34)

= - 

~~~X i6Xsie 
- (
~ ~~)~~~

.(cos *5if - 1)

+ (
~ 

“
x1~)x~51 sin 6i1 (4—35)

The strip hinge moment can be obtained as a particularisation of this obtained
by imagining the reference point (of the strip) to be at the hinge and perform-
ing the sunmiations for the flap part only. Thus it is

B. — B~
2
~ + rB~ ~~~~ B !?) B~2)l ~~ — 

~~ 
(usT 

(4—36)i ~~ L ix iz i6 j i if
• 

- 
~~ 

(us)
I if

(s)

6. — *5 .- 1 if —

where 
~~~ = - X i! ( x . e 

-

B~
?) - - X iu (lCsie 

- 

%si~
(4—37)

— — X~ 6 (3c8~~ 
—

4.2.2 An equivalent form

It is of interest to express the aerodynamic force on a strip in terms of
C coordinates which describe the position and orientation of the strip relative to

its position in the datum motion. The position of the strip reference point, 

~~~~~~~~~~~~~~~~ •._..



relative to its position in the datum motion , resolved along the constant—

velocity axes is (of section 3 and equation (3—2))

(c) — (c) -+ ~T (ii) 
—

ui 1 41 i if

(c) (c) (n)
yui Y l Y 1f
(c) (c) (n)

Z I  Z~• if

~ ~~~ 
— A 41 + K q 1 . (4—38)

(c) 
X.f 

o

(c)

The axes transformation matrix, for the change in orientation going from the

unperturbed position of the strip—fixed axes to the strip—fixed axes, is

s = s s 5T ~ s sT — S A sT (4 39)
ui i ~ 41if 41i if 4I~ f 41 41 i f

and, so, making use of equations (3—15) and (4—5), the standard Euler rotations

which achieve this change In orientation are

41ui ~ %if
F q 1 + S

41 41 . (4 40)

e .  o

4,

It follows therefore from equations (4—12) and (4—13) that

C’,
“I

‘.0

—-. _ .____
~
__ 1_•~

_ _.. . ~II
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(s) 
— 

(us) 
~ + A sT ;

1 if Ui U~ $ •
~ 

Ui

— 
(us) 

y
(~) e

i if ui

— 
(us)

i if ui.

= S~ ~~~ — A41 ~S41~ U
f 

( 4—4 1)
if ui if

‘(c)y .  V
Ui £

• (c )z .  wui f

and

(s) —• 
~~~~~~ i (4—42 )

~(s)

~~~

Now, since 4)•f is zero, S411f is given by equation (3—24), and so

~~
s) 

- 

- 

~~~~~~ (O~~ + ef 
- Y f ) - sin (O ff  + 8f - If)

— ~~~
s) cos 

~~~~~ 
sin(01f + Of 

— -vi) con cos (O jf + Of 
—

q~
5) 

— 

0

- -. (dpT
— cos tj~• f 

s~n (e1f + Of — Y~) x .

COS (O~~ + — Y f )

V O .V f

~~~~ if 0 0 sin (8if +Of~~
Yf) 

~~~‘)

I,’ — I — sin 
~
0 if ’

~°f Yf ) 0 
~f 41ui

0 0 0 

(4— 43) 
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where we have written

(dp5’ T (cx .  — 

~Of—Yf 
Xui (4—44 )

(dp ) (c)
yUi Ui

(c)
__ui - _ ui _

The single rotation (Yf 
— Of)~ 

whose effect is represented by this last equation ,
has been made so that x(~P) is the perturbation of the strip reference point in

the direction of the datum motion — the superscript (dp) can be thought of as

meaning datum path*. Now since, using (3—24)

(us) 
= V S cos (

~ — ~ 
)

if f 4 11f f f

~~~~~ 0
if

~~~ (Of 
— If )

= Vf COS (O~~ + Of 
- Y~ ) (4—45)

~~~~ •j~f 
8111 (O ff + Of 

— Y~)

C05 if sin (Ojf + Of 
— Y~)

we can rewrite (4—43) as

— 
. I (us) 

— w~
h15) sec •. — 

~~~~~~~~~~~ ~
(dp)

i if Vf if if if if ui

— 
~~~~ 

(us) 
cos •. ~~~~ 

•(dp)
i if if if if if ui

q~
5) 0 0 D V O .

i 
— — - 

fui

+ 

tan :~f 0 0 ~~~~ 
•(dp)

— Vf C05 if — 
~~~~~ 0 Vf4 1 i

0 0 0 Vf * 1 
(4-46)

I..,

* See the definition of datum—path earth axes in the Glossary of terms.
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Incidentally, the angles •
~ f ’  O~ f 

+ Of 
— are one of the pairs of angles

(of Ref 3, section 6.2) which can be used to specify the incidence of the strip
in the datum motion. That is

elf + O
f 

— 1f is the ‘incidence magnitude’

•if is the ‘incidence—plane angle’

• Thus (4—43) is an expression purely in terms of incidence angles, while (4—46)

is its transcription in terms of velocity components and one incidence angle.

The latter could have been written purely in terms of velocities at the expense

of the inconvenience at a

From equations (4—21) and (4—46), the overall forces on a strip can then

be written as

= c (2) 
+ u~”~~ + Ic

(2) (us) .*(2) (us) 
s e c4 1 .  ~~

(2) (us) 
~if ix if iz if ix if if iz if if

v
(s) 0 0 0

Z(~
) 1(?)~~

(us ) + ?) w ( t5 1  _ ?
~w~”~~ sec41 +1

(2) (us)
i if ix if iz if ix if if iz if if

_
~~?)~~

us) +~~?)u~
U8) +x~Pr, ~(2)ix if iz if iO i6 ui f

0 0 
.(d P)/v

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1(2) e
ix if iz if iO i6 ui

6. — 6.
- i iL

+ tan •i
~~~ 

~ X••V f COS 41If ~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~ )/~~;

0 0 0 41ui
• 

— cos ‘~ ~~~~~~~~~ ~~~~~~~~ 4,iz f if iz if ix if Ui

C., 
(4—47)

14• 
U, (Similar expressions can be obtained for the moments and hinge moment , from

equations (4—30) and (4—36), but we will not detail them here.)
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To compare with the form taken by some other authors (eg Baldock5) it is

necessary to take the quasi—steady form — all the terms containing the operator

D in the above rectangular matrices are omitted and we make use of the relation-

ships (4—27) to (4—29) — in the case where the incidence plane angle •If of the

strip in the datum motion is small. The force on the strip then has the magnitude

(to a first order approximation).

IC

— 
‘ (dp) 

-

x +_ .
yE

)u
~~

+ ? ) w
~

8) zc~ ! _+  ( _ v + 1 ~~~u~~~)) ~(2] ~
C
ui

~(dp)

+ eui

6.  — 6.
1 if 

(4—48)

and to the same degree of accuracy, it acts in a direction normal to the direc-
tion of motion. Note that in (4—48) 1%) , and similarly with the other
coefficients, must be understood as the part of that coefficient which is

independent of D . Baldock5 wrote the same forces as

(V + x a linear function of ~~~~~~~~ e . and (6 . — 6. )
ut / ui ui 1 if

Assuming that he does not dispute the usual conclusions that, in the quasi—

steady state, in his notation

= 0

(4— 49 )
I = I.
a z

then his form is equivalent to (4—48) ~with the proviso that (quasi—steady)
Cfl

+ ?~w~’~~ — ~~~~~~~ ~ (4— 50)
ix if is if if

____________________________________ ~~~~~~~~~~~~ •- ~~~
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This of course what one gets from two—dimensional potential flow theory. For

example for a two—dimensional aerofoil, in an incompressible fluid , moving with
speed (Vf + 6V) at any incidence a , the lift is proportional to
(V
f 

+ 6V)2 sin (a — a~) where a0 is the no—lift incidence. Consequently, the

normal force on the aerofoil is*

z Zf
+ Z~ ( u — u f)

+Z.(w—w
f)

— C {— V~ sin so — 2V f 5111 (u — Uf)

+ V
f cos ~~ 

— W~~)} 
( 4— 5 1)

where C is a constant, and so, since

U
f 

= Vf 
(4—52)

W
f 

= 0

2 .Z u  + Z•w = — 2CV sin ax f  z f  f 0

= 2Z
f . (4—53)

The relationship (4—50) did not appear from the reflections of section 4.2.1

since there we took account only of our knowledge of the direction of the

resultant force on the aerofoil rather than its magnitude. If (4—50) is corn—

bined with equations (4—26) to (4—29) we have the relationships

(us) (us)
= — 

W•f 
Z .f  = — .

~~ 

{

~~~~w~~5) + £~
) 1 } 

+ 0(D) (4—54)
Uif uif

2(us) (us)
= •

~j {— (us ) ~~~ + 

~~~ 
1~)J + 0(D) (4—55)

* We are taking a
~ 

— 0 for simplicity, but this involves no loss in generality.
The same relationship (4—53) is obtained for any a~ .

~—-• --••- -—-- -— - •-— —- -~~~~~~~—---~~----• -~-- —.•-* - - - -•— - - - -
~~~~

---- --— -~-~-_ _
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A (2) Wj f *(2) *(2)X. • — — 
~ (us) ~~ • . — Z. . + 0(D) (4— 56)

ri! 

= — 

~~~~~ 
~~~ + 0(D) . (4—57)

A similar relationship to (4—53 ) holds for the pitching moment — this will

be readily appreciated if one again considers the two—dimensional incompressible
- 

• 
flow case*, ie we have

M~
2
~ = 1 J ~~(2) ( us) 

+ M~?~w~~
’
~4 + 0(D) • (4—58)if 2 1 i x  if iz if j

Finally, one would remark that one can allow, to some extent, for such things as

viscous effects, by permitting infringements of the above relationships (4—54)
to (4—58).

4 .2 .3 In terms of the generalised coordinates

From equations (3—7), (4—12) and ( 4— 1 3 ) :

z 
= [~ ~

] 4 1 [~~~~~~~ 41 + kD ID A — 
A D 1  

q 1

q~
S) [o i o] [ Q$1f

F’~) 0 S41 D ] q~
1

6. — iS. fT 0 0 1
— 1 if — — — (c)

. 4’ -

: ...... (4—59)
U,

* The pitching moment, about the centre of the circle from which a prof ile  is
generated by conformal transformation, is proportional to
(Vf + ~5V) sin {2(a — a 1 )) .
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(of equations (3—14), (3—24) and (4—7)) and so, from (4—21), the overall forces

on a strip, referred to the strip—fixed axes, are

~~ + 

- 

~~~ 0 ~~~ S
, [A S~~~Q+

F + I~ ID A _A
~~~D]

• 
i

(s) 
0 0 0 ~

0
i if ix iz

+ : ~ : [sif 
0 s4 D~ + ~~~~ fT

*(2)0 Z~.’ 0 Z. f 0 0
iO i6 -

x q~ 

- 

= (say) + X~~~ X~~~ ~~~~ 

•
q

1 

-

• : 0 0 0 0 :

~11 

~~~ Z~
2

~ z (8) 
~~~

x~~~ 
if iq ix i,.. ?n*~

(c)
y1

(c)

41

0

4,
-  (4—60)

Similarly the overall moments on the strip, about the strip reference point,

referred to the strip—fixed axes, become, from (4—30)

L_I 
-
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k 0 + 

• 

0 0 0 S rA 5T F+KD ID A -A
r 1 

~~~~ L Uf 41if Si f  U
f 

X 1f
(s) (2) ~‘( 2 )

M. M. M.. 0 M.~

~~~~ 0

+ 0  0 o lrQ FD 0 S D 1 + 0 0
I I  41j f i f I

L —‘ ~~2) T0 14..’ 0 1  M . Z 0 0
10 u S

0 0 0j 0 0 0
N — — —

x q 1 = (say) 0 + 0 0 0 q 1 1
M.~~

2) 
~~~~ ~~~~ ~~~~

0 0 0 0

(c)

41

0

4, (4—61)

From (4—36) we see that the hinge moment B. has the same form as the pitching

moment — all the M coefficients are merely replaced by B c o c f f i c i ent s .

The final forms of the above expressions can of course be used even when
one is not using two—dimensional strip theory — ~~~~~ ~~~~~ ~~~~ (with  the 2
rep laced by a 3), and the row vectors etc , being given appropriate three—
dimensional values.

4,3 The overall forces and moments on the aircraft

• The overall forces on a strip, referred to the constant—velocity ~ixes,

are, using the relationshii,s (3—15) and (4—5) along with equation (4—60) 
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(c5 
— ~~~~~ ~~ (c) 

1.

3. 1

S~ - A (2) 
~~~~ 

q

1} 

+ 

if
+

qnj 4’

S
~ + ~~~~~ : ~~~~if J

f If~~if 
ID A

u
_A

D]

z~2 h I  I~
9) 0 2 )1

i fj  Lix izJ

+ 0 ~~~~ + X~~~D ~~i rQ F 0 S 1if iO 
I [ if 41ifj

~~~~~~~~~~ 0 x (2)I
if

(2) a(2)o —x . +Z .’D 0if iO

+ 
j(2)fT 0 0

0 0 0

(c)
2~

2) f T 0 0 x 1u6 

Li
= S~~~~~~~X~~~

TJ 
+ xi;

) 

~~~ 
x

~
1_ A~~~~[Q,

F 0 S.] 
1

~q 1

C 0 1  0 0 0 1
( 2 )1  (a) (a) (e) lZifJ Zj q  Zj ~ 

Z~4 1j

...... (4—62 )
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Similarly the overall moments on a strip about the strip reference point*,
referred to the constant—velocity axes , are

~ S~ 

11~
2
f 

+ 

~~ : 1 4 1 [~~~~Q, ID 
U X ]

-
• 

L o L o o oj

+ 

[0 ~~~~~ 
0 ]  

~Q, F 0 s
5 ]

+ 0 0 0~ ~ 1
~ (2) f T o 01 :uS .

0 o oJ 
e

11

(c)

(c)

41
8

= S
+

if{[M]

~~~~ 

~~

([
~~~~ 

M~~ M~
Z3 

- A
L~~)[Q$1f

F 0 S
.
if]) 

[q~~
j} 

. (4—63) ‘~

* In accordance with our practice the symbols for the moments should also have a
subscript s to show that the moments are about the origin of the strip—fixed
axes but this has been omitted to avoid confusion with the subsequent use of a
subscript s to denote structural.
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The overall forces on the aircraft, referred to the same axes, are given simp ly
by sunsning (4—62) for all strips, viz

= ~(cY ~ (say) Xf + ~(c) x~
0) 

X~~ q1 (4-64)

~ (c) ~ ,~(c) ~,(c) ~(o) :

Zf z~°~ z~
0) z

~
°’ q

~~6

where = ~~ S (4—65)

Yf 
0

Zf if

— 

~~~ 

— A (2)Q$ F (4—66)

7
(c) 0
q

q 
- 

i~q

= ~~ S~ ~~~ (4—67)

~(o) 0
x

ix

— ~~ S~~•~ ~~~ — A
x

(2) Ss.f 
. (4—68)

(a) 0 
if

z~
8)

41 1.•

1.4
U,

x

~

- * -

~ 

~~~~ - -  -- -• - *~~~~ - •~~~~~ - *~~~~-~~~~~~~~~~ -



The overall moments on the aircraft, about the origin of the constant—
.1

velocity axes, and referred to the same axes, are

= ~~ + A
x~c) 

x~~ (4-69)

M
(12) M~’~ 

1 
~ (c)

• N (c~

where ~~~ 
• 

= 
(c) 

+ sT (r i)
1 1 41 i

(c) (c) (n)y i Y 1 Y
~

(c) (n)
1 1 1

~~~ 

- A + K q 1 + (4-70)

Zif q (c)

(cf equation (4—38)), and so

A ( )  x~~ A X~~ + A ( )  A 41 - K q - —

1 
~(c) ~(c) (c)

z~ 4’ q~ 
~ (c) -:

= A + S~~~A (2)S41 A
~ 

41 — K q — ~
(c)

~ (c) if (c)

4’ q ~
(c) 

(4—71)

•

~

• “ •

~

. 
_ _ _ _ _ _  _ _ _ *__~~~~~ _~~~~~~• 

_______
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Thus we have

= L
f 

+ q1 (4-72)

M
f 

M~
O) 

~~~~ ~~~~

N N~°~ N~°~ N~°~ ~nc f cq cx c$
(c)
11

~ 
Cc)

41
0

where 

[L

~~ = 
~~~ 

{S

~ 

[0] 

+ A S ~ 

[x
~ ]} (4-73)
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= 
~~~~~~ A~(2)S41~~K + 0 0 0 

— 

541ff  (AUf
S~ 1f

Q411f
F + KB)

• 
i 1 ‘(2)cq ix iz

0 0 0cq

— 
+ 

- 

0 0 — M ~~ Q41 F + 0

0 M~~~ D 0 çf (2)
f T

iO iS

0 0 0if

+ A sT ç~
) 

0 S (A sT Q F + KDX .
f 41 i f  1X 1Z 41• f \ 

U
f 

41 ff  41 j •f

0 0 0

• 

• 

1~~ 0

+ 0 Z~
2
~~+~~~~ D 0 Q F +if i.8 iS

0 0if if

0 ~~~~~~ + Z ~~~~D ~ 1(2)
f T

= 

~~~if [M~l 
- A (2) Q41 

F - A (2)S41
K 

- - iS 
-

L~J
+ A sT — A Q F (4—74)Xif 41if ~q X~

2
~ 

41ifif x
0

I’s) ‘o

“1
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= ~~ s~ 0 0 0 + A sT ~~~ o ~~~~ 
- 

S DCX L...j 41if x
~f 

Sj f ix is 41if
1 

0 0 0 0

0 0 0
_ i2~~~~

)  0

— 5T A /• 4’if x~ ’ •~ fif

= 

~i: 
s~ o~ + A S ~ — 

~~~~~(2) 41 (4—75)

~~~~ 0

0
_._

and

= ~~~ 

{A
X

(2) S41 If
A
X.f 

+ 

[ 

: 0] 

4 1 (u  
— AX D)

0 0 0

+ 0 0 _ 14~~) S41
0 M~~~D 0

M~
2
~ 0 0

if

+ A 8T 0 S (A — A D
X 1f 41if iX iZ i f\  ~ f X l

f

0 0 0

0

+ 0 Z~
2
~ + x ~?~D 0 S =

(2) 
ie 

(2) 
41if

U, -Z .  0 X .
if if

0 — X ~
2
~~+ 1~~~ D 0if

_ _ _ _ _  ~~~~~~~~~~~~ — - -
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= ~~~~~~ 

(s

~~~

{[o] 

- A (2) S41 + A (2)S41
A }

+ A S ~ - A (2) S41 . (4-76)

if

(s)

4.4 The generalised forces

The generalised aerodynamic forces could be determined using the expressions

derived in Ref 1 , and generalised in Appendix A, which are in terms of the

overall and local forces referred to the constant velocity axes (cf equations

(A—18) and (A—19)). However, for the particular semi—rigid and aerodynamic models

being considered in this paper it is more convenient to proceed rather differently .

The linear velocity of the strip reference point , and the angular velocity

of the strip—fixed axes, both resolved along the strip—fixed axes, are, for the

ith strip, respectively (cf equations (4—1), (4—3), (4—41) and (4—42))

(s) 
= + 5~T (n) 

+ ~ + S ~~ (4—77)
i i i 1 - f

;
(n) 

y~
fl) ~~(c) 

V
f

~~~~ 
• (n ) (n) • ( c )

i i 1 _ _ 1~~ f

and, by a well known relationship (cf f or example, Ref 4)

= (4-78)

~~i.

(s)r .

U,

where the rotations etc satisfy equation (4—39), Q4 1 .  is defined by

equation (3—14), and it can be shown that, using (4—39)

a - - . - - - . - - - - . - . -_ . ‘•~ ~~~~~~~~~ .~~- - 
. - . 
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-

~~~ where Q~~ = ~~~~~ ; (~~~ - A Q ~~~ 

• T
- - 

- 
.3 aq. ci •~i ~~ 

in i

Z( *ui Z i

+ 

~~~~ ~~~ 

T 
L~~~ + B. . . (4—82)

• 8 .
Ui 1

N~~~

By analogy with (4—78) and (4—79) we have, for any column vector lx y z~ , and
indeed as regards this equation the other vector 

~~~~~~~ 
8ui ~~~~~ is also arbitrary,

~s
T — 3s

- 

. — A
~

Q
41 

•

~ 
41ui. = S

S 3~ 
= 

aq
h1
~ S~ x . (4— 83)

Substitution therefore verifies that, for 41 4 etc , satisf ying (4—38), we have*

~~~ 
~~T ~ui 

= p 41 . $T ~ 
+ 5

41 Q41 
.
~~~~

_ 41 . (4—84)

8

4’

Bearing in mind equation (3—15), and the fact that

U,
* This expression can be deduced considering the angular velocity of the strip—
fixed axes as the sum of the angular velocity of the no—deformation—body—fixed
axes , and the angular velocity, relative to these axes, of the strip—fixed
axes.

Li 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ • •~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~ ~~ •~~~•
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41

A = 5  S(s) ui 41ui

.T • T T
= S

41 S41 + S~ SS S41 - (4—79)
i i ‘r~

The position of the strip reference point, relative to the origin of the

constant—velocity axes, resolved along the strip—fixed axes, is given by, say

= S41 ~ 
;(cT 

+ 
(nj (4—80)

(5) (c) (n)
~‘ci 

y 1

(s) 
5

(c) (n)
ci _ i _ i —

and so

= — A (5) p
~~~ 

+ S~~ S u~ . (4—81)

v~~ ;
(s) 

q~
S) 

v
i ci i f

w
- — 

ci _ i - -

Consequently, from the work done in time St , going to the limit St = 0 , we find

that the virtual work done by the forces on the strip in small displacements

6q 1, • • •~~ ~~~~ ~~

n+6

~~~~

i — I

0~’

‘.4
‘I
U,

- —  ~_~~~~~~~~~~~ —_*__-- *T*~~. ~~IJIIII~~~ ~~~~~ ~~~~~~~~~_
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Q• 
- cos

= - C05 eif(Q,)J  F 
(4-85)

where J is defined below (equation (4—88)), we see that, using (4—83)

F. ~ 
~~ ~ 

- ~T - FTQT A

._L ~~ 
(a) ~(s)] sTsTaq2~~c1 ci ci

_ Q
~

k

s x ~c 
S~

~~~ 
z~~~] ( E~:~) -

— KTST _ F TQT S A
•j~ •j f •j~f X j f •j f

TS,if

0

• ;T5
T A — ~TQT 

~~ + S A 5T Aa — A S A~ 
ST [ (4 86)

•j f  aj  •j f( •j f X1f •j f j j jf j f

+ cos 8 F~J~ — Q~~ 
S A STif •j •j f •j f •j f Xj f  •j f

A S T •5T ~$ $ j f •~ f a1

- A (C)
S$Lf

14
‘I
U, 
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where a. etc is given by (3—13), 41i 
— 

if by (3 3),

= 

• 

~~~~~~~~~~ + K q (4—87)
41if

(c)
y

1 :
• (c)
• 

~ 1 _
and

0 0  e . (4—88)

0 0 — 4 1

0 4 1  0

Similarly , using (4—84), we have

- 

• 

_

-

~* 
[41 .8 .4, .]Q~ 

= ;TQ
T

5 [41ui 0ui4’ui11~~ui 
0

T T

i

• 
U~~ Ui ui ui

~ F~ Q~ 

— 

+ ~~ 8. f F J ~ Q~
1 

. (4—89 )
4 1 • f  i i if if

S~~1
f 

- 

_ J
~S~~~~+ S~ .f

Aa. 
-

U,

‘1

‘.0
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Furthermore, since, from (4—80), (3—2) and (3—15),

A (5) — S41 A ( ) S
T 

+ A +

1 ~~~ 

~~~~~~~~~~~ 

+ 

~
S

$ 

A ( K [ j )  

S~ 
- A S 41 A S ~ + 

i f x ~~~~~if

+ S  A 5T A41 . x. 41 . a.
if if if i

• .. .... (4—90 )

we have

a 
[s

(s) y~7) ~~~ + 

~f 1~uj ~ut W~,1)Q~~~A~~~~

.
~~~ — [x

( ’)  ~~~ z~~~] 
+ 

~~~~~~ lu i  ~ui ~~~~~~~~~~~

~~~~ +6 
~~~~ 

z~~~’] + 
~~~~ ~~ 

e~~

— • 
— 

T r T T
— KLSL K S  + ICS $ A

•i j f

-~ 5T5T 5T A S T ~~~~ A
•1 $~ f if if 1

— A

( [(c
J])

S~~ 
AXj f

S$~f 
4 

A(x
~~~

)

S
~if 

— 

~~~~~~~

...... (4—91) 
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The forces and moments which appear in the strip contribution to the generalised

force, equation (4—82), are given by equations (4—60) and (4—6!), and so using

these equations , along with (4—89) and (4—9 1) ,  we have , writing

n+6

Q~ 
= 

~~ Q~~~ ~ + (4—92)

- 

Q~f 
= 

~ 
~~~~ X~f~ 

+ ;TQ
T 

0 + fB~~~

IC 41if if

~n+6,f Xif~~if 
S~ 

- 

0
_ — 

0 
-

= (see equations (4—64) and (4—73)):

K
T
S
T (25 

+ FTQ~ 

14(2) 

+ fB~~~ (4—93)

if

x 1

zd

rtf
Hf
N

L~
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and 

- fl :: ii + 

~~~~~~ H ~ 
~~~~~

+ :K TST A Q F — co’ 8 F C  y 0 0 
—

j f x1f~ :: A 2 ~ ~ 0 — 5T A (2)S,jf X~f~ 1f $11 if

• 

— — Ax S
~~

A (2)Q$
F 0 — £ 

A S f ~~~
] 

• s~

— 5T A (2) Q F I 0

— 

U L1f if ~~)j o

...... (4—94 )

where is the lower triangular matrix formed from the elements of 
~
$ 0 4,~ 

viz

= I~~
0 0 01

1 * 0 0 1
L - o , o J

and so

— A41 . (4—96)

In addi tion ~~~~ ~~~~~ N~
2
~ are each zero and so

• if if if

0~.

Ii
1-a
U,
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A (2) = 0 0 (4 97)
X i f  

~~~~ 0if if

0 oif

and

A (2) = 0 0 M~~)] . (4—98)

if 0 0 0

— M~
2
~ 0 0

if

The second and third rows of submatrices in the matrix [Q..J are, as expected

(cf Ref I , equations (74) to (78) and Table 3), closely related to the

coefficients in the expressions (see equations (4—64), (4—72), (4—74) to (4—76)

and (4— 62) )  for the overall forces and moments. Making use of the general

relationships (4—96), (4—5), and

A

(T )  

= A A

(T )  

- A

(T )

A

= AXSTAXS
. 

— S
~
A
X

SA (4 99)

we find that
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~n+I .I ~n+I .~+6 
— 

~~~~~~~~ 

x
~d1 z

~01 1
‘~°‘I ~~ I ‘~~~~ 

I
(o)I (0) I• 

~a+6,i ~n+6.n+6 q J 2x j  2~ j
(ol (nfl + 5T A S -

I ~~~~ ~~ 
Ni~
) ~ 

£ xif
~1 + 

~~ (2)

?JZ) ,~~ z~j

— (i.e Equetion (4—93))

~~~ 7~~
) 

• 0 0 ol . (4—100)

7
(0) y(o) ~(o) 0 

~~ 
-4]

~~~°‘ ~~~°‘ z (01
q x •

~
4’o) 

L~°~ 
i/o)

oq cx o,

M1’0) M~°~ ~~~~oq ~~ 0$

N~°’ 5
(0) 

5
(0)

oq cx 0$

These expressions for the aerodynamic contributions to the generalised forces

(equations (4—93) , (4—94) and (4—100)) are not restricted to the two—dimensional

strip theory aerodynamic approximation. As remarked in section 4.23 they can be

used in general provided the appropriate meaning is given to the various aero-

dynamic coefficients.

• 4.5 Strip interference

An important factor affecting the dynamical behaviour of an aircraft,

particularly when it is moving largely as a rigid body, is the aerodynamic inter-

ference between wing and tail. This is a particular manifestation of the fact

that there is in general such interference between any two parts of the aircraft,

ie in our representation, between any two strips. So far, in our analysis , we

have largely ignored such interference. The various formulae that we have

obtained can, as we have pointed out, be used with three—dimensional values for
• the aerodynamic coefficients, and so full account* can be taken of the inter-

ference effects. For example, the expression (4—21) for the overall forces on a

strip referred to the strip—fixed axes could be extended to include terms

* Provided of course, that one has a useable aerodynamic theory for the whole
configuration. Ref s 8 and 9 , for example , go a good way towards providing this
for the subsonic case. 

~~~~~~ • • •~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~ _ _ _ _ _
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proportional to the perturbations of the velocities and control angle of the other

strips — one or more of them — and the perturbations of their relative positicns
and orientation . Thus we can write

+ 8) 
u~~~ 

—

v
(s) o 0 0 ~~~ 

—

~~ 
q

(s)

S.  — 6 .
- •j jf

+ i
(s) 

i
(s) 

i
(s) 

i
(s) 

i
(s) 

i
(s) 

~~i jX ixy iJZ ij41 ijO ij4 , ij

0 0 0 0 0 0 ~~i j

i
(s) 

i
(s) 2 (s)  ( )  ( )  ( )  .

~
zij

i jx i jy  ijz ij41 i jO ij4 ’
iJ

se ..
13

...... (4-101)
• and similar expressions for the moments and hinge moment on the ith strip . In

these expressions 1~x.. etc are measures of the change in the relative position

and orientation of the ith and jth strips. The coefficients etc will be
lxi

functions of the position and orientation of the ith strip (ith strip—fixed axes)

relative to the other strips (in the other strip—fixed axes) in the unperturbed
• a(s)

state. The coefficients in the last term , X.. ete, can be taken as constants —

LJX
the coefficients in the middle term, X~~ . etc , will in general be differential

operators — since any differential operator terms can be included in the other

coefficients.

4.5.1 Using two—dimensional theorjr

Equation (4—101) indicates the possibility of making use of two—dimensional

theory for interfering surfaces when one hasn’t an adequate three—dimensional

theory. It is, however, difficult to do this in general. A rather crude

L ______ 
~~~~• 

• .



approximate way of doing this is therefore suggested below. In certain circum-

stances it will become a good approximation, and in any case it should be in the

right street.

If the y strip—fixed axes, of the ith and jth stri ps , were parallel, and
the x strip—fixed axes were cop lanar , in the datum state, and the datum flight
path direction was parallel to that p lane , then we could consider these strips
as par t of a two—dimensional configuration and obtain the aerodynamic interference
accordingly. However, this is an exceptional situation. The way the aircraft has

been divided into strips ensures that the last two conditions are satisfied when

y1f = Y5f 
(4—102)

but to satisfy the other condition, we must have

either •if = 41jf = 0 (4—103)

or 41jf — 41j f  and 0if — 0j f  • (4—104)

It is therefore suggested , as a rough approximation, that one should, for any

pair of strips which satisfy (4—102), obtain (two—dimensional) interference

aerodynamic forces, assuming (4—103) was true , and then multiply these* by
cos (41 . — 41 . ) - Thus (4—101) is rewritten as (cf equation (3—3))

m

0~’

* The difference , between a force in the isolated and tandem configurations , is
multiplied by cos (41k 

— 41.) and then added to the force for the isolated
configuration .
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cos (4’jf ~ 41j f )
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6k 5kf 
—
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+ - x~~ [ 1 0 O](fl1_~ sin (S~ f 
- Sj f) (4-105)

o : 1

— Z~
2
~ijf if

where the jth strip is one which satisfies equation (4—102) — we are assuming,
as will almost certainly be the case, that there is only one such strip — the
subscript (i — i) denotes the difference between the values of the modal function
at the ith and jth strips , and

= - cos e. - (z~
n) 

- 
(n)~ .

• i /  1 \ j  1 /
• 

- {(x~f 
- X~f) cos e~~ — (Z ~~~

f 
- z1f ) sin O

if} 

(4—106)
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F~
= — cos ~~~. + 

(

~~~
(

~
1) 

— sin

— { - z
:f
) cos e

~f 
+ (x~f 

— x1f ) sin e
lf}

/ (4—107)

= (O~ — 8~~) — (O j f  
— O .f) . (4—108)

The use of equations (3—2), (3—3), (3—7) and (4—59) will enable one to write

k (4—105) entirely in terms of the generalised coordinates. The expressions for

the moments and hinge moment at the ith strip will be similar to equation (4—105).

The interference coefficients in the expressions, such as ~~~~ ~~~~ ~~~ etc,
ijf lxi iXj

13 13 13 .
will be functions of X

f 
, Z

f 
, O

f 
, Ui f,  Wi fe 6if ’  6j f ~ 

i~nter alza (cf Fig 2),
where

~~ = (x
Jf 

— x
~f
) cos — (Z~f 

— zif ) sin 8if (4—109)

• 
z~~ = (z.~ 

— Zif ) cos Oi f + (X.f — Xif) sin 8.~ (4—110)

= e — e (4—111f j f  if

To avoid ambi gui ty, the coefficients with subscripts ijx, i jz  or ij O
“(2 )(eg Xi .) are taken to be constants. The other coefficients may be differential

ope rators.

For some the significance , in some respects , of these descriptions, such

as (4—105), for the forces and moments on a strip, may be illuminated if we

consider the ‘purely two—dimensional’ case, when*

41if = 4,if 
= 0

= = 0 (4—112)

V = 0
f

0’.

14
‘I

* From our specification of the datum motion (section 2) and the division into
strips (section 3), 4’~~ and Vf 

are always zero.
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— and similarly at the jth strip, and the perturbations are expressed as displace—

ments relative to an inertial frame. No loss in generality is achieved by taking

this frame to be the unperturbed strip—fixed axes (for each strip) and the body

freedom displacements ~
(c) 

~~~~~~~~ ~~~, 
.. ., to be zero. Then (cf equations

(4—59), (3—2), (3—3), (3—7), (3—15) and footnote)

(s) — u~
’
~
T 

~ D 0 — (w cos e . +u sin 0. ) ~~ ~~~~ 

-

i if f if f if i

(s) (us) . (us)
w. —w. 0 D (u cos e. — w sin e .  ) 0 z.
i if f if f if i

q
(S) 0 0 D 0 0. —0.
i i if

6 .  — 6 .  0 0 0 1 6 . — S .— 1 if — — — — i if- 

(4—113 )

Also

Ax = — 1 ü — cos e~ sin e~ 0 ;(us) 
—

Az 0 — i x~~ 
— sin e~ c.os 0 (us) 

— 
(us)

AO 0 0 —1  0 0 1 9j 0jf

(us) (us)x. — x.
3 jf

(us) 
— 

(us)
Z~ Z~~~

0. —0.
3 jf — 

(4—114)

and so, for example, the forces on the ith strip, in the direction of the

unperturbed strip—fixed axes, are:

-3

‘1

c-a
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(4—115 )

This can be written as

x~~~ ~ + 
(us) (us)

~(us) 0 
k=i , j  

0 0 0 0 — 
(us)

z~~ z~~ z~~ z~~ z~~?~

6k 
6kf 

(4—116)

in the ‘purely two—dimensional case’, where , wi th j ~ I

x~
2
~ = - + X~~~D (4-117)

ixi ijx iXI.

cos - sin ~~~ + (4-118)
JXJ ijx f ijz f ikj

x
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= — ~ (2) 
+ X~~~D 

(4—119)
izi ijz izi
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2
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2
~.D (4—120)
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x~
2
~ = ~(2) (4-123)

i S i  itS i

= ~ (2) (4—124)
iSj iSj

and similarly for the Z coefficients with in particular
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2
~ = — — (~~~~)  

+ 
ij~~(2) 
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iJ~~(2))

i0i i3f o~, ij O f i3X f ijz

— (w cos 0. + u sin 0. )Z~~~ + (u cos 0 .  — w sin 0. )Z~
2
~f if f if ixi f if f if ih

+ . (4—125)

These equations enable one to derive the ‘circumfiexed’ coefficients from the

‘uncircumfiexed’ coefficients. If we introduce the notation*

c( ) = steady* part of ( ) (4—126)

~( ) = ( 1  — c)(  )D~~ (4—127)

* Thus for F = F
0 
+ F

1
D + F

2
D
2

- • 
c(F)=F0

3 (F) = F
1 

+ F2D
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“I and write, j ~ I

X~8. = + (W
f cosO.f 

+ U
f 

sin e. f )a(x . .) — (u
f c o s O .f  — wf sinO.

f)3(X..)
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+ uf sin 0jf )3(X IX~) 

(u f cos 0~ f 
— wf sin e~ f ) a(x~ZJ) 

(4—129)

Z~0. = + (w
f cosO.f + U

f sin8if)3(Z. .) — (uf cos0.f 
— wf sin Oi f)3(Z.f)

— ~ij ~ (z~2~~.+ ij (z(2)
’
~ + 

(4—130)
f \ iX3./ f \ 121/ ijf

Z~0
. = ~~~~ + (w

f cosO.f + u
f sinO.f)3(Z. .) — (uf cos 0.f — wf sin e~f)a(zI1~) 

(4—131)

Then we have

~ (2) ~(2) ~(2) = ~ ~~~ _ x ~2? — x ~ijx ijz ij0 ixi izi iOi

0 0 0 0 0 0

~ (2) 2 (2) 2 (2) Z~
2
~ Z~

2
~ ~~~ijx Ijz IjO 

- 
ixi izi i0i

= ~ ;
(2) 

~~ e~
i ÷ x ~

2
~ ~~~~ x~

2
~ ~ 8

ij 
~~ sin e~ x’~ixj f izj f tzj f ixj f iOj

0 0 0

z~
2
~ cos e ij  

~~~~~~~~~~~ siu 0~~ z~~ cos 8~~ -Z~~~ sin B tJ z~ -ixj f izj £ izj f ixj f iOj 

(4—132)

and

- • ~ (2) ~ (2) 
~

(?) = ~ ;
(2) 

X~
2
~ X’~

’ 
— 

. (4—133)ixk i~k iek ixk izk iOk

0 0 0 0 0 0
14

~ (2) ~ (2) ~ (2) Z~
2
~ Z~

2
~ Z~’i~ck i~k iOk ixk izk 10k

L t .  
• •  ~~~~~~~~~~~~~ • ‘4
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These two equations , along with (4— 123) ,  (4—124) and their partners , give all the
‘circumfiexed’ coefficients required in (4—105). Similar equations will, give the

coefficients appearing in the expressions for the moments and hinge moment.

• For this ‘purely two—dimensional’ case the moment about the strip reference

point referred to the unperturbed strip—fixed axes is

1
(us) 

~ 

— 

0 ~ 0~ (4—134)

M~
t15) 

~~~~

N~
t15) 0 0

and so the moment about the origin of the unperturbed strip—fixed axes is

= L
(u5) 

— A ~
(us) _

~~
(us)

U~ i 
x~

t15) i if

~~~~~ 0

• 
~~~~~ N

(
~
.s) (us) 

— 
(us)

ui i i if

~ 0 + 0 . (4—135)

[M
~~

] 
[x

~~~~~ Z~~~
5)

~~~Z~~~5)} - Z {x ~~~~-x~~~~

We write this in a form similar to (4—116) , ie

+ ~~~~~ ~~~~ M~~~ M
~~?( ~~~~ 

(us) 
— 

(us)

k=i , j (us) 
— 

(us)
Zk Zkf

0k
0kf

- 6kf
- - -3x 

(4—136)
‘1

‘.0
4-)
4-)
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while writing in the form of (4—105) and using (4—113) and (4—114) gives,
after some analysis, the relationships:

~~~~~~~~ 
= - - . M~ I

L ~~ ~~ L ~~~~ izi iOiJ

= ~ cos e~ +M~
2
~ sin~~

’
~ M~

2
~ cos O~’~ —M~

2? sin G’3 M~ ]
L ~~~ f iZJ f izj f ix j  f i03

-• 
(4— 137)

~ 
M~~~ II

~~~
] 

= a[M
)
~~ M

~~k 
M”
ek] 

(4-138)

= ~~~~ (4—139)

where = M~
2
~ + (k i)

ixk ixi ijf

= (k ,‘ 1) (4—140)

M’~ = M~
2
~ 

— (k = 1)
izk izi ijf

= M~~~ (k ~ i) (4-141)

and

= + (w
f cos G i f  + u

f 
sin 0.f)3(M~~~)

— (u
f 

COS 0if 
— W

f 
sin e.f )3(M. .)

— + — ~~~~~ — (k = i)

= M
~~?C 

+ (w
f cos 8kf + U

f 
S~ fl e

kf ) a (M . k)

— (u
f 

cos 0kf 
— w

f 
Sin ekf )3(M . k) . (k i) (4—142)
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The corresponding relationships for the hinge moment coefficients are easily seen
to be

3 FB~
) 

~~~~~~~ — B~
2
~ B* I

LiJX liZ  i3 OJ L iX3 iZi  iOl.J

= c [g~
2~ cos O~’~ + B~

2
~ sin O~~ B~

2
~ cos O~~ — B~ 2~ sin 0’~ B

1
~~
] 

. (4—143)

~ 
~~~~ 

~ 
= 3[B~

2
~ B~

2
~ B’

~ek] (4—144)

~ (2) 
— B~

2
~ 4— 14 515k — 

iSk )

where B~ = B~
2
~ + (w cos 0. + u sin 8. )31’B~2?

iOk i0i f if f if ix,

( ( 2)
— (U

f 
COS 0 if 

— W
f 

51fl

— Z~
iC(B~~~) 

+ X~
i
5(B~~~) 

(k = 1)

= + (W
f 

COS 0kf + Uf B ITt °kf~
3 (~~?()

— (U f COS 0
kf 

— w
f sin ekf)3(BIZk) (k # i) (4—146)

4.5.2 And in terms of the generaliged coordinates

From equations (3—2) and (3—3), it is easily seen that

Axi 
~ 

rcos 0if 0 —sin Oifl (K). . + 0 0 0 (F) .

A z i  Jsin O i f  0 cos 8.
f J  

0 0 0

AoJ L o  0 o J  o i 0

-Jo z~~ 0 (F) 1 -

(4=147)

I’
_________ -~~ i~~~

_ _ _ _ . S— - -~-— 
•- —•-•-- -- — -- -•- ---- —

~~~~~~~~
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Equation (4—59) gives the other coordinates that we require in terms of the

generalised coordinates. The coefficients in equation (4—105) are given by

equations (4—123), (4—124), (4—132) and (4—133). Putting all these toge ther we
obtain the following expression for the overall forces on the ith strip :

[ 

)~ ui 

[4 2] 

(i — co. ($ j(
_

~~ j f )) * rX3J f 1 CO IC (6jf~~+jf)
(2)1

0 ( 0

z(~ Iz (2
~Lt i fJ
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~ ~l •j, [ u , Ut X , I+ 

[Ia 
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2
~ 0 X<2~ S A S Q ~~~(P). + (K)

1D ID A —A

~I o  0 0 1
I 
~ 

0 z (2)
JI i~~ it

• a r0 ~~ 01 [Q, F) 1D 0 S, D] 
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2)UT) 0 011(1 — co. 
~~~~~~~IC 0 01 0 of~

z~ oJ [
~~2)(fT) 0 ojj

I ~~ fa 
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0 x (251 S 
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sT Q, ~‘~k (K)kD ID A —AI ixk izk I kf l
f kf kf U~~ Xk f J

0 0 0

0 z (2 ) I
L ixk (zkJ

(8k I (xi Lit ieilkf kf I (6k+ a [~ x’ °1 [Q, (F)kD 0 S + 
r ;(2) (f T ) 0 — ~ 

1 (2) X~
2
~ ~~~ .

0 0 o~ f 0 o o ~ l o  0

I z 2
~u~0 7. 0] L 16k ~k 

0 ojJ l z (2) 
Z~

2
~iOk L iii L i

co. 0 .  0 — s i n  e l  
[ (K) ._ . 0 0] + 0 0 0if i l l .1 1

• 

([s

i n e . 0 cos e 0 
0] 

[(F). 0 o]

if if !

L0 00 0 0 J

[~ ii— ~ o~~[~~1 0 0] co. (0~~~~— . ~~~ )

ii

1~(2) _~~(2i] [~ o a] [ ( F ) .... 0 o] sin (• j f  — • rq 1l . (4’148)O n I  h f  if
0”
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~ijf if

Li Ii
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The interference coefficients (ie all the ones with a t r ip le subsc ript)  in the
above expression will be functions of x~

3, z~
3 , 8~~, Ujf~ w1f, ~f1 and

(cf equations (4—109) to (4—111). Similar expressions Can be obtained for the

moments and hinge moment on a strip, to take some account of the aerodynamic

interference between strips, using the relationships (4—137) to (4—139) and

- : (4—143) to (4—145).

5 THE OTHER CONTRIBUTION S TO THE GENE RALISED FORCES

The contributions to the generalised forces* from the other forces*
(gravitational, structural, etc) acting on the aircraft can be obtained, as is

most convenient , either by obtaining expressions for the translational forces,
moments and hinge moment on a strip and proceeding as we have done for the aero-

dynamic forces (cf section 4.4 and in particular , equations (4—82 ) ,  (4—89) and

(4—91)), or by substituting the expressions for the local forces and modal

functions in the formula obtained in Ref I (section 6 .1)  and extended, for our

form of deformation, in Appendix A of this paper (equations (A—12) and (A—13).

With the latter approach, the modal functions required are (see equations (3—20)

and (A— 7 ) ) :

R = K — S~ A ( ) Q41 F + S~~~ P~ 0 1 ~~~~~~~~~~~~~ fT (5— 1)

sif 0 0 0  y .sie
— 1  0 0  z .

sie

at the ith strip ,

H
0 

= 5
T 

~ 
F (5—2)

if if

N
0 

= S~~~.f 
_A

x(us)
Q41if

F + 2P~ .f Sle X•hSi f T
• 

~ (5— 3)

0 0 0  y .sie

— 1 0 0  z .sie

-3x
Il)
rt

* The word force, without the adjective effective , is to be understood as meaning
applied force. The distinction is between applied forces and reversed effective
forces (of section 6).
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= S~~.f
P~~.

f 

[0] 

(5-4)

T T• N
1 = — S

4
P4S Ax _ x

h 

[f:T]

and

U = cos oif s41 A
(US)(Q4 1 )  

. (5—6)

With the former approach , that is proceeding as in section 4.4, if typical

forces , moments and hinge moment on a strip are, referred to the strip—fixed axes,

- - - rt+6 - —
~~s) = ~ (u s) 

+ 
~~~~~ ~ —“

~ (us)
i if 1k

i(s) ~(us)
I if 1k

- — - - n+6 - -
= t~

us) 
+ :~ii: ~ik ~~ 

(5—8)

k= I
fl(s) ~(us)i if 1k

fl(s) ~ (us)
i if 1k

and
n+6

B
1 

= B.f + (5=9)

k—I

then the contributions of these forces to the generalised forces are found to be
On
0’

14

L ~(i) ~~~ + ~~~~ (5-10)

k-I
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where = KTS~ + ~~~~ + (5—H)

5
T j(us) 

0 ~ (us) 
0

. 41•f if if

~ (i) A sT ~ (us) 5
T ~ (us )

• n+6,f X if if if 41j f  if

and

Q(~ — KTS~ X 1 1 . - .  + ~TQT L.1 . . .  6 
+ 

F~1~ ’ ‘‘ 810+6]

s~ ~ 0 
~ 

LoJ

AX
S
~ 

1. ~~~ ~i1 

+ 1 
~~~~~~~~~~~~ — O. 1F~C 

— l —(us 
a 0 

—

Q$ L~
if 

~ (us)

— S~~~A~~~~~Q,
F 0 — S~~~A~~~~~S4

— A  ST A Q F _ S T A Q F 0 -Z
X .~ •.~ ~ (us) $jf •it E~~’~ it A S ~ ~(us) +

~(us) ~(us)
— S, A ( , ) S6 1( 

(5—12)

5.1 The gravitational contribution

The gravitational force on a particle is

~~~ (5—13)

H
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referred to the constant—velocity axes where is the last column of S~

and the vector ~
(1)
f 
O
f ~

11
f is given by equation (2—2). Thus

= — sin = — sin . (5—14)

sin l~f cos 9
f 0

cos 0l)
f 

cos O
~ 

cos

Consequently the local gravitational force referred to the strip—fixed axes is

~~~ = SmgS~~S2~ (5—15)

f
(~)
gi

(s)
~gi

and the overall forces , moments, and hinge moment on a strip are, respectively,
making use of equations ( 3—15 )  and (3— 8) ,  and defining m. as the mass of the

ith strip (cf equation (6—17)).

m.gS ~~g]. i 4 j 4
~f 

—

gi.

gi

m .g S~~~Z~ + 

[S~~~
A~~)

S~~~Q~~~F 0 S
~~~

A
~~
)] 
1

q

11 

(5—16)

[~n+6J

On
On
0’

14

U)

Ii

14
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•— - — - - - - • ~~~~~~ ~~~~~~~ - —•.- --~ 
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I

- ~~~~~~~~atrtp at

— •i
s{A

sIo
s
.lf

t.
f 

* 
[A. 

S, A~ S~~~Q, F - P~~~A P 6 S, L,fT 0 A 5, At ][~1] 

(5—17)

• glO I OI( ~ lmA () )s.1
st.fflap si thu

* [_ L 3 6 ~~~~~~~~t~~~~~~~~• 
- .~1P6 S,

L,fT 0 - h i3P
i 

S
~ 

A~ 

(5—18)

where , when the flap angle is zero , referred to the strip—fixed axes

the strip cg is at {x10 0 o}

and the flap cg* is at {xhSj~ 
+ x12 o o}

and where rn., n1m1 are respectively the mass of the strip and of the flap part

of the s trip, and

-3

U)

P1

* For an unniassbalanced flap one will expect x~2 to be negative .
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a.
1 

= ~.x.2 (5-19)

a.3 = ~~~•~~~~•2  [
~1 - (5-20)

a. = r~. Tt .x.1 + P a. . (5—21)iO iO i i2 6. il
0 J if

0

In this case , it is clearly much simpler to use the formulae of Appendix A
(equations (A—12) and (A—13)) rather than carry out a similar analysis to that of
section 4.4. Using (5—13) we then find that the gravitational contribution to the

• generalised force in the jth degree of freedom is

n+6

- = - - 
~~~~ (5-22)

where 

— 

G 1f 

- 

= - g ~~~~~ mj (K
T 

+ F
T
Q~~~ A S

, 
- 
f43P6 S~ ) ~ 

(5-23)

Gn+6 f 
- 

m
1
A,~ 

-

with X 1 f0 E X •
f 

+ (5—24)

Y1f0 Y1f0’
14 z.• 1-I ifO if

and I a 3 x 3 unit  matrix , and

—
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_

~~~~~~~~~~~~~~~

-

~~~

- • • - - .-— -

~~~~~~~~~

- - -

~~ 

• -—
~~~~~~~

-

[c.kJ = - g ~~~~~~~~ : ~ (5-25)

0 ~~~~

and the non—zero submatrices in G.k are

~~~ = FT 

fQ
~~~A S

4’
A S ~~~Q - cos 

~~~ 
£

~~~~~ _~~ A S 
F

\ 4I if a.0 4’~~ fJ

_ F TQT ~T A P S L fT
4’. 6. a. 5 . 4’. (~ )

if if i3 if if

— fa~3
P6 S

4’
A~~~S~~~Q F

• 
— fa~ 1P6 s

4’ 
~~, f

T 
(5—26)

if if f

~~~ {K
T 

+ FTQ~~~A S
4’ 

- fa~3P6 S
4 ’ }  

A~ (5-27)

(5-28)q4’

A~~~~A~ - C
(A~~~~~~~

) 

. (5-29)

In obtaining these expressions use has been made of the general relationship,
for any vectors $4’ . . .  and $x -

.1
x

U)

41

‘.0
4-)
4-)

_ - •~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- .~~~~~~~~~~~~~~~~~~
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Q~A Q
4’ 

= cos 0 A
Q 1 ~1

= cos o £ 
— 

— £T . ( 5 30)
Q

4’
1rxl Q

4’
1rxl

Li L~i
5.2 The structural contribution

In this case it is simplest to use equations (4—91), (4— 89) and (4—82)

where the forces and moments in the latter equation are the structural forces,

moments and hinge moment on a strip. These forces will be indep endent of the

rigid body perturbation of the aircraft and so we can write them respectively as

- - 

= + 

~~ 

(5—3 1)

v(s) v
(s)

• si sif sik

z~~~ z
si 

- 
sif sik

7
) 

= + 

~: ~ (5-32)

~~~si sif sik

N~~ ~~~ N_ si_ •si~ _si~

and

B~7
) 

= B~7~ 
+ B

91~~~ (5—33)

Now the structure cannot exert any overall force or moment on itself and so it is

easily shown that

~~ ~~~~~~~ = 0 (5—34) 
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-~~ ~~ S~ [x . 1  .. - = 0 (5—35)

sif

~~~~~ + A S~
T X(7~

} 
= 0 (5-36)

and

~~ S~ 1[L5II ... L~~~ - A~~~~Q4’
F - A
0

S
4’

K

l[::~ :::::::j 
sif sif

+ A S ~ [x5• 1 ... - A~~~~Q4’
F = 0 IC (5—37)

L::~ :::::::j
We then find that the structural contribution to the generalised forces is
typically

- E. = = E.
f 

- 

~~~~ (5-38)

where 

[E

;f ] = — ~~ 

[K

TS~ X~7~ + FTQ~ L~7~ + fB~~

] 

(539)

n+6,f

rE.1 = -rE 1 (5-40)LJ ICJ 1
qq

1l o l
I II I
L 0  

~~~~~~~~~~~ -- ~~~~~~~ -~~~~~~~ -~~~~~~~~~~~~ -•-~~~~~~~~~~~ ~• . - —- -~~~~~~ • • - ~~~~~~~~~~~~
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~~1

and the submatrix E isqq

Eqq = ~~ K~S~ • 
XsiI Xsin 

- A ($)Q4’
F

Si 

zsil

+ F

T{ 

~~~~ 

~ ~~~~~~~~~~~~~~ 
— 

~~~~~~ 0~~

+ f [B~~~ ... B~~l - (5—41)L sil sinj

This all appears very simple, but of course quite a lot of work may be involved
• in getting the structural forces, x~7~ etc, on a strip . If the strip can be

considered as a slice of a beam then these forces and moments are the increments

in the shearing forces, bending moments , etc, going from one side to the other

of the strip.

5.3 The propulsive contribution

In Ref s I and 2 a very simple model of the propulsive force was used .

Improvement of that model is being considered , amongst other things, in another

paper6 currently being written . We will therefore in the present paper stick

to the simple model though for convenience it is not quite the same model as that

used previously
1 ’~ . Thus we assume that the propulsive force acting on a strip

is such that it has constant components in the direction of th~ strip—fixed

axes, and similarly for the propulsive moment about the strip reference point .

That is, we assume

= (5—42)p1 pif

v
(s) 

v(s)
pi pif

0’ pi pif
1.4 - - -

U, 
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= . (5-43)

- ~~~pi pif

~~~pi pif

We also assume that there is no propulsive force or moment on the flap part of

any strip.

The propulsive contribution to the genetalisod force in the jth degree of

freedom is then easily seen to be

n+6

-P. = ~~~~~~~~~~~~~~~~~ (5-44)

where (cf section 4.1) -

• 

- 

P
1f 

- 

= - ~~ K~S~ X~~ + FTQ~ i~~ 
— 

(

v
(s)
pif pif

p
n+6,f pif pif 

• 

•

xpf

Y~f

Z~f

L
pf

M
pf

N
pf

= - [;:: : (5-46)

P
4 ’q 

0 

•~~
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j
IC. the non—zero submatrices are

Pqq = - K
T
S~~~ A (S)Q4’ 

F - cos 
~~ 

F~C 
Q ’~~L~~~ 

(5 47)

[(s)j

• 
~xq = 

~I {— ~~~~~~~ 
= ;~~~T (5—48)

(c)
• pq

P
4 ’q 

= 

~~ 

{_ S
~~~

A (S)S4’
K

- 

(AX S~ A~~~ + S

~~~

A
())Q4’ FI 

= (5 49)

pif pif (c) I
M
p67

N 
(c)
pq

= 

~~ 

{_ S~ A~~~~S4’ } = - Ax (5—50)

P
s4 ’ 

= - £ 
A S ~ ~~~~ + S~ ~~~ 

• 

- - C~ (5-5 !)

pif pif

pif pif

On
On
0’ and the overall propulsive forces and moments, about the origin of the constant—
11

velocity axes , and referred to those axes are (of section 4.3)
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:~ 
= ~~~~~~~ S~ 

- A
(S)[Q4’

F 0 S~~
] 

q~

z~7~

= (say ) X f 
+ q 1 

(5—52)

~,(c) ~(c) ~(c)
pf pq pm

(c) 
~~~Zpf Z

pq PS P S %+6

— ~~~~ S~ L~~~~~ + A~~~S~ ~~~~ 1

* A
(S)

S, K - A
(S)% F} 

- s
T A 

- A
(.)S.} [~i~~

— A S ~~~A (9)Q,
F 

11 X~ 1f — AX S
~~~

A (S)S,

• (say) + 
~1 (5—53)

14 M~°~ M~°~ M~°~ 
-

pf pq ~ p6
(c) N~°~ NI(O)

14pf Mpq p~ P6

The corresponding matrix of coefficients 
~~~ 

given in Ref I (Table 3)
contained the matrix Pq of modal slopes at the aircraft reference point , ~e

P
q 

= 0 0 .
~~~~

-_ R . (5—54)

~~~~ reference point ‘IC’
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With our modal matrix R , equation (3—20), it is easily shown that

P = Q F’\ (5—55)q \ if 4’if ,10

L where the subscri pt 0 indicates that the expression is evaluated for the strip
containing the reference point . If therefore, the only propulsive forces acting
on the aircraft are acting on the main part of this strip, the submatrices in
(5—46) have the particular values:

P = — KTA
X 

P — cos 0 . FTC (5— 56)qq 
pf q if 

(Q

I s

{[LJ 

-

= - 
~~ P

q (5-57)
pf

P~q = - 

Ax f
(K)o 

- 

{~~~
f 

+ Ax f (Ax. f) }Pq (5-58)

P
5 

= — Ax
pf

P
4 ’4, 

= — C
L . (5—60)
pf

Thus, in this particular case , when the present assumption and that of Ref I , as
regards the propulsive forces, become identical , all  these, except for P
are, as expected , the same as the expressions* obtained in Ref I , Table 3. The

- • difference in the Pqq , as in the other contributions to the generalised forces ,
• arises from the fact that the expressions for the deformations, here and in Ref 1 ,

only agree to first order in the generalised coordinates (af Appendix A).
-
~~ 

0’

1.4
* On the main part of the strip containing the reference point

R = 
(K 

- 

(A~ 
- Ax.~~Pq) 

.

— ~~~~- - •  --—---— -------- - -
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6 THE GENE8ALISED EFFECTIVE FORCES

The velocity of the constant—velocity axes, resolved along the strip—fixed

axes for the ith strip, is, using (3—15),

(is HUf = S
4’

S U
f

( is)
V
f 

vf

(i s)
W
f 

S
5 

+ A S : Q, F 

~~~~~~~~~~ 

+ A 

[5]

~~ . (6-1)

Consequently, the velocity of a particle relative to the constant velocity axes,

and resolved along the strip—fixed axes, is , from (4—6),

u~
7) - S

5
K - A~~~~~Q4’

F + 

~~ if 
0 0 1 X ie 

- Xh i  q 1

— 
(i s) sif 0 0 0 

~sie
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~~~~ 

— 1 0 0 5
sie

+ 8
5•f 

~~~ - 

(A (
~~~~~

)
S

5j f  
+ 

Si f x i f)  ~
•(c)

- ( c )

= 
[s.f 

5
$ j f  

- 

~
A 
(us)

S
S.f 

+ ss.fAx.f)1 1 (6-2)

_  
~~~~~~~~
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~~~~~~~~~
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~~~~~~~~~~
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The kinetic energy W , of the system, relative to the constant velocity axes ,

is given by

W = A V óm [(s) _~~(i s) (s) (i s) (s) _
~~
(isi u~~~ -u~~~

~~~~~~—‘ L~~ 
mi f ml f j  mi

~~~ 
_~~(is)

ml f

~~~~~~

r 
mi f 

(6—3)

and so it is easily seen that the generalised effective forces are

~~~6m RTS~ V 

-

S~

d ~W - 

if ~ 
+ A S ~

~~ (~~n+~) ~~~~

> 
[s4’

R S
4’ _ (A

x~~7
)S4’if

+S
5if

A
x
if)] ~

= (say) [A.
k] 

4
11 

. (6 4)

Now, we have from (5—21) and (5—24)

~~~
6mA

X
f ~~~6m(AX.f 

+ S
~~.f

A
(US)

S
~~.f) 

- m .A
~ 

(6-5) 
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and we write*

- ~~~ 6mA 2 
- 

~~~~6m(A + 
~~~~~ ( u s ) 5 )  = ‘n (6—6)

sif

Thus, the inertia matrix is the symmetric matrix

[A.~~ = ~~6mR
TR ~~~6mR T 

- 

~~ 6niR~A~ (6-7)

V6tDR ml - V SmA
~~_., xf

~~ 6mA R 6mA I
- 

X
f 

xf I) 

—

where R is given by equation (3—20) and lX f Yf Zf} by equation (3—21). We can

write the various submatrices in (6—7) in terms of the inertia properties of the
strip though when transcribed at length the result is rather messy. To do so

we write

V 6mA 2 = - I - 
- 

1
( iO) _ 1 (iO) _ i U0) (6-8)

~~
(1

~
s) iO x xy xz

strip sif (10) 
~

(10) _ 1 (iO)
xy y yz

1
(iO) ~(i0) 

1
(iO)

xz yz z

V 6mA 2 
= - - 

- 
1

( i l )  _
~~

(i 1 ) 
~~~~~~ (6-9)

( Xi
~~~

Sh i )  ii x xy xz
strip f lap

~ (i 1) ~~~ 1)
xy y yz

1
( i I )  _ I~~~

1) 
1

(i 1)
xz yz a

and make use of the definitions of section 5.1 , equations (5—21) and (5—19),

which g ive

* If the constant—velocity axes coincide with the principal axes of inertia during
the datum motion then I will be diagonal ( diag~I I I ~) where I , I , In x y z x y z
are the principal moments of inertia of the aircraft in its datum state. ‘I

‘.0
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4

6mA = m.A (6—10)
-

• . x~
’
~~ 

i a.~
s t r ip  sif

6mA = m.A . (6—Il )
(x . —x. .) i a .

- sie flSl ii
strip flap

In passing, we note that this means that

~~ 
6
~~~sie 

= - 110 
- m . 

(A~~~~~~~~
A P 6 

— A~~~~

strip

÷Ip T A P — A  t A
6. a. 6. a. I x. -

~. 
if ii if iI j ri si

+ (P~~~I~ I
P6 

- (6-12) •

— and so, as with a. , I. is a function of 6.

tiO = (1.0)6 0
: mi (A ~~6 a 6  

- :

: i}  

+ ~P~~~A P 6 
- A l A

)

~~(~T ~~~ —~~ . .

~ 6. ii 45. ii
~ if if 

(6—13 )

With the definitions of equation (6—8) to (6—11) we find that the terms involving

the deformation modes in (6—7) are

~~ 6mR = ~~~~m . 
K _ S T A Q F

- 
4’if 

a.0 4’if
I

— sT ~T A rol (6—14)
4’. 6. a. I Iif if il 15T1

On 
I

On
0’ 0
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T 

+ S

~~~

A ) P T
A

L0JI

+ S~ 

fI

iO QS
F + P~~~Ii i

1oJ

~~

) 

(6-15)

~~6mR
TR = m . KTK - KTST A Q F

- 4’if a.
0 ~~I

IC + FTQ
T

A S K  _ (K
T
S~ + FTQ

T
A

])P
T A

[:J

+ [0 f OJA P
6 ( S  

K + A Q F )

+~~F
T
Q
T

I Q F  + FTQ~~~P~~~ I

{:J

+ [a f 0]I.
1
p

45 Q
5 

F
if if

+ [o f oJi
~~oj IC (6—16)

1f 11 x
I I U,I I
LUJ ‘l

‘.0
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The other terms are given by (6—5),

m = m . (~ — 17 )

and

‘n = ~~~ ~~~~~ - m. 
{A

2 
+ A S ~~~A S

5

+ 5T A S A - ((- —1 8)
Si f a.0 5if X .

f J

7 THE EQUATIONS OF MOTION

Lagrange ’s equations merely equate the generalised forces and the

~eneralised effective forces*. Stating this equality for our (n + 6) degrees of

freedom under the assumption of small perturbations gives two sets of (n + 6)

simultaneous equations . With the datum motion that we have taken — briefly

constant linear velocity, zero angular velocity in a uniform atmosphere

(cf section 2) — the first set state that the values of the generalised forces in

the datum motion are all zero , ie

~rf = 0 
- 

r = I -
~ (n+6) (7—I)

or in terms of the separate contributions (aerudynamic , gravitational , etc)

— 

~rf G~~ + P
f 

+ Erf = 0 r = 1 -+ n + 6 - (7—2)

Expressions for the individual elements in these equations have been obtained

above — equations (4—93), (5—23), (5—45) and (5—39).

The second set of equations express the continued satisfaction of

D’Alernb ert ’s principle during small perturbations of the datum motior .. lhe ’: art
written as the matrix equation

On
On
0’

* Often they are expressed on the equality of (on the left hand side) the
generalised effective forces minus the conservative generalised forces , and
(on the right hand side) the non—conservative generalised torces. This is the
form when the equations are written in terms of the Lagrangian function .

Li - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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IC.- 
{[ArsID

2 
+ [Crs] 

+ 1’
~rs~ 

+ [Ers] 
— 

~~rs]} q1 
= 0 (7—3)

where the constituent matrices are :

(i) the inertia matrix [A ], equation (6—7), where the various sub—

matrices are given by equations (6—16), (6—14) , (6—15), (6—17) and

(6—18) ;

(ii) the gravitational matrix [G 5], 
equation (5—25), where the non—zero

submatrices are given by equations (5—26) to (5—28);

(iii) the propulsive matrix [P S], equation (5—45), where the various sub—

matrices are given by equations (5—47) to (5—51);

(iv) the structural matrix [E 5], equation (5—40), which has one non-

zer o subma t rix given by equation (5—41);

(v) the aerodynamic matrix [
~ rs]’ equations (4—94) and (4—100),

see also sections 4.5, 4.5.1 and 4.5.2.

Equation (7—3) is almost the same* as the equation given in Table 3 of

Ref I except that it has been written in terms of sectional properties and in

terms of modal functions appropriate to a sectional description of the configura—

r tion . In particular a minor restriction is imposed on the form of deformation

in that what migh t be called ‘chordwise deformation ’ is forbidden apart from that

due to a flap rotation ; but more noticeable are the additional terms in the qq

submatrices resulting from different ways used to express the deformation

(cf Appendix A). Thus in Ref I the submatrix Gqq for  examp le , is nul l ,
whereas in the present development it is given by equation (5—26). There are

consequen tly some corresponding differences in the transformation to other forms

of the equations of motion . These differences have been demonstrated in cietail

in Appendix C.

* When the choice of constant—velocity axes is the same . In Ref I they have
been chosen to coincide with the princi pal axes of inertia during the datum

motion . This is equivalent to putting Vm1A = 0 , and
Lj X i f O

= diagjl I I~~~, in the present development .

~~~~~~~- 
- — —. • - I C ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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8 CONCLUDING REMARKS

This paper has been wri tten as a companion document to Ref I. In each case

the equations of motion of an aircraft , for small perturbations from flight wi th

constant linear and zero angular velocity, have been developed in detail. The

constrast has been that , whereas in Ref I we took an overall view of the aircraft ,
• we have here taken a fore and aft strip of the aircraft as our basic unit , con-

sidered the forces , etc on the strip, and built up from that. As a consequence ,

the representation of the aircraft deformation in the present paper cannot be

made to corresp ond exactly with that of the earlier paper . The deformational

representation is basically more complicated; and other complications, such as

local axes for each strip, are also introduced by strip approach. Of course a

lo t of these comp lications will disappear in the simplest cases (of Ref 5) bu t

even so , one would not recommend the use of the present method unless , as may

quite possibly be the case , it means that adequate basic data can be obtained

much more simply , as for example if two—dimensional aerodynamic theory can be
used.

On
On
0’
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U)

z
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Appendix A

A GENERALISATION OF THE GENERALISED FORCE EXPRESSION OBTAINED IN REF 1

In Ref I i t was assumed (equation (I)) that the deformation of the air-

craf t was given precisely by a first order expression , viz :

= x + R q . (A-I)n f

(n)

~
‘n Yf

(n)
z z q

-~~~~ -Ii

This assumption simplified some of the subsequent development , while making no

significant restriction to the freedom to represent , to a good approximation,
any deformation of the aircraft. However , in certain cases , such as a deforma-

tion which involves rotation of part of the aircraft as a rigid body, it is not

possibl e to represent the deformation exactly by (A—I) and still keep the number

of degrees of freedom , n , finite. The deformations assumed in this paper are

indeed of this type , and with the chosen degrees of freedom, their representation

is (cf section 3)

= Xi
f 
+ K q

1 
+ S~ x~~~ - (A—2)

(n)  . ( s )

~ni 
Y~ f : ~~~

(n) ~s)z • z. q z -if n 51

If we make use of the expansions

= 5T I + A
4’if 

~5. ~~if1 0~~8jf1

~~~~
+~~ A

2 — c osO. A
if 

(
~~if)_

1
j
[si

_s
i
~ [:~I:~1L5

~
-
~~d [eiIe.~j [ i i ~j

- 

S1 *1 
i ] .

• 

(A-3)



- • - - - -~~~~~ - --~~~~~~ - - -— ~~~~~~~~~~~~~~~~
-
~~~~~~~~~~~~~

- -
~~~~~~~ -

86 Appendix A

4

= P~ I + (6~ 
- 45 if~ 

[0 0 1] + - 45 .f) [- 1 0 01 +
if 

~ a o~ ~ ~

L - i o o J  L o o - i J  

(A-A)

along with the relationships

(sT 
- — 

T - -
x . = x. . + P x - — x. - (A—4a)

51 usi 6. sic
1

(s)
y .  0 y .
Si ste

0 z
Si - — - ste 

—

on the flap part of the strip

~
i 

= 4’•
~ 

+ F q 1 (A-5)

0
i ~if

~if

and

= 6if + fT 
[cu
1 

(A— 6)

then the second order approximation to the deformation is seen to be (using (3—6))

‘1

C,)

41

‘.0

4-)

~

1 
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(n) T (us)
H x .  x. + S  x .

ni if 4’. sif
if

(n) (us)

~ni ~
‘if ~sif

(n) (us)z .  z . z .ni if sif

• 
• 

+ K - S
~ if

A
x~~~)

Q
Sif

F + S~~~P~ [ o o 

I] 
[x .

~~~~~~~
.]f

T
~~ o

I1

— I  0 0 Zsi j[q0J

sT

Q F[q~~ 
4’if

4’if ~ if -

x - A~~~~~Q4’
F + 2P~ 

[0 

0 i

~ 

~Xs i;
:x

hsl1
fT

— I 0 0 L Z~~~ J

— 5
T ~T A 0

6if sie~~hsi
)[f~

+ cos 0if S
~ if

A 
(h1S)( ’~~~~f )  

(A-7)

This equation is a refinement of (3—18). It will be seen that the additional

0’ (of with Ref I) second order term has the form
4.4

U)

I-4

4 ; 
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[
~1 

(say) 

(AN[:] 

N~ + 
~~ [cl
] 
N

I 
+ 

~
1

F[:

] 

F) 
[:] 

(A 8)

where M0, N0, M1, N 1 and U are functions of location.

Now ,

n 

[
~
] 

~~
o( M

~~
5[

~

j  

N A M

[j)
y z] - ci

+ F

T(4[] - 4[:~~)U
T 

[ë]

= V (NTA M  - M
T
A N

L1 ~~s e s  s e s
s=O 

+ FT

(

~~~

T

+ £T

)F}
[:] 

(A-9)

and so we can see that the additional terms (A—8) in the expression for the

deformation produce additional terms only in the top left hand submatrix of the

matrix of generalised force coefficients and this additional submatrix is

~~ 
(~~~~~

M5 
- MTA_ N ) + F

T 
C + £T

T 
F - (A-b )

I~d lidLg~J L~LJ 
-

_ _  ~~
_ _ 
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Thus, from equation (73) of Ref I the matrix of generalised coefficients

resulting from a typical local force vector

_ (c) 
= e

f 
+ e

1 
... e~~~6 (A-Il)

f
f

— (c) — —g gf g 

is

(Q..) —

- e +61

~~~ I:A
[

~~I 
.. -

~: ::::ij
+ ~~~~~ 

~~~~~~~~~~ 
- MTA _ N

8) 
0

+FT(CT +CTT ~
~¼ 
U ë f U~~f)

0 0 0

- ~~A -R 0 + 0 ~N f M f

0 0 -L~

0 0  0
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For convenience we repeat , from Ref I (equation (22)) the formula for the datum

motion values of the generalised forces, viz:

~~I~ f = ~~~RT[ef
1 

. (A-13)

- 
L;~n+6 f

~~~~~ef

f
f

gf

e
f

f
f

gf

The additional second order terms (A—B) in the expressions for the deformation

(A—7) will of course, make no difference to the first order approximations to

the overall forces and moments on the aircraft and so, from Ref I (equations

(74) to (77))

n+6

~ (c) 
X
f 

+ ~ (c) 
q~ (A—I4)

j’I ~~(c)
f

~ (c) ~ (c)
f

where = (A-15)

x
Cl)
r~‘1
~0

4
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and
- n+6 -

= + q. (A—I6)

~~(c) j=1

c f

~ (c)
c f j

where ~~c) = 
~~~~Xf 

en+6 

~
[ ~~~~e Ax LA _ A ]  .

~(c) f

~(c) 

~I  

(A—I7)

We can therefore rewrite (A—12) and (A—13) as

(~~ )f 
= ~~~R

T 

~~ 
(A 18)

f
f

~~n+6~f 
gf

Xf

Y
f

Z
f

L
f

M
f
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and

[
~~

] — en+6

f 

g 

~~(c )
I n+6

~~(c) 

~~(c)  

j (c)  ~~(c)
n+6

r~{~ (NTA _ M  - M
~
A _ N

S) 0 ~~R
TA_

+ F T C Fu r
J~} uTr~

L~~

0 0 0

0 A~ [o
0

0 0 0
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(A-19)
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Appendix B

DETERMINATION OF THE LOCATION OF THE PRINCIPAL AXE S OF INERTIA

The determination of the location of the principal axes of inertia of the

aircraft in the datum state is basically simple but for completeness it was con-

sidered worthwhile to restate it here .

Let us take an arbitrary set of body—fixed axes as a first guess at the

principal axes of inertia. Having done so we can then divide the aircraft into

strips , locate the strip—fixed axes for each strip, and evaluate the quantities

Xi
f 

etc , etc , 6 i
f 

for each strip (cf section 3). Note that under our

definition the strip—fixed axes are found by moving, in one’s imagination , the

flap part of the strip until the position is found where the line joining the

cg of the strip and the cg of the flap part of the strip passes through the

hinge. This line then gives the direction of the x strip—fixed axis. A point

is chosen on this line as the origin of these axes (ic tbe strip reference point),

and the y axis is ‘drawn’, as near as possible , normal to both the sides of the

strip .

One can then evaluate the quantities (of equations (6—5), (6—6), (6—18)

and (6—19))

Xb (say) = ~ ~~ 6m x
fl 

( B — I )

Y
ff

Z
b zd

1b 
(say) = — ~~~SmA

2 
+ mA~~ . (B—2)

If our guess of axes had been correct , then JX b ~b 
Zb} would be zero and

would be diagonal. If this is not so, then we find the axes transformation

matrix S
4’b 

which makes S5bIbS~b 
diagonal. Thus the rows of S

4’b 
are the

eigenvectors of 1b normalised so that S,b 
= S;~ - This however leaves some

ambiguity — there are six possible matrices S4’b 
— due to the facts that any of

the three principal axes could be called the x—axis , and having done so, there
0’
4.1 is still the choice to be made as to which is the positive x direction . One

U) suggests therefore making the choice which makes the three diagonal elements of

most nearly unity. The first row and last column of S$b are as shown below
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I

S~ = cos ~~~~~~ 
~b 

COS e
b ~~~~~~~ 

~b 
— sin e~ (B—3)

cos 0
b 

sin

cos 0
b 

cos

and so , when Sq~ i s known , one can , taking the princ ipal values , in general*,

uni que ly determine the three Euler angles •b’ 8b ’ ~
‘b - The translation X

b~

~b ’ Zb , followed by the Euler rotations 
~b ’ 8b’ 4’b will then move our guessed

axes into coincidence with the principal axes of inertia of the aircraft. Of

course , one does not really need to determine the angles 5b 
etc; the matrix

SSb suffices to give the orientation of the principal axes of inertia .

When the location and orientation of the principal axes of inertia has

been determined one repeats the procedure:

(i) Divide the aircraft into strips.

(ii) Locate the strip—fixed axes for each strip.

(iii) Evaluate for each strip X
f Yif 5if

5if 0if IP• f

6.
if -

* The exception is when cos 0b = 0 - It then turns out that one can get only
either the sum or the difference of 5b and 5b • This does not matter of
course for this is the case when the carried axis about which the third rota—
tion is made coincides with the original axis about which the first rotation
was made. 
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A BRIEF CONSIDERATION OF THE USE OF STRIP THEORY
IN A BODY-FIXED AXES CONTEXT 

—

To use Lagrange ’s equation for a non—inertial frame one requires that the

generalised coordina tes for which it is used must not influence directly the

position , etc of the non—inertial frame . Taking the non— inertial frame to be the

body—fixed axes , and denoting the strip in which the body—fixed axes are fixed

as strip 0, we therefore choose generalised coordinates for the

deforinatiDnal freedoms such that the aircraft ’s perturbation from its datum

state can be achieved by the following successive steps :

~ (c) ~(c) ~ (c) -
(i) Translations x

1 , 
y 1 , z1 , in the directions of the constant—

velocity axes (also called 
~~~~ ~~+3 

respective ly ) .

(ii) Euler rotations ~~~, ~~~, ~ (in that order), about the carried (body—

f i x ed) axes (als o called 
~~~~~ q~~ 5, ~~~~ 

respectively).

(iii) Deformations relative to the body—fixed axes such that the position

and orientation of the strip—fixed axes of strip i , relative to

the bod y—fixed axes , ar e g iven by (cf equations (3—2) and (3—3))

X~ = + 1K — (K)
0} ~~ (C—I)

~
‘if

z. z. q
1 if

= + IF ~~oI ci ii -

e . I
1 f 1

~iJ

In addi tion , the f l a p  ang le perturbation is (of equation (3—7))

6
i 

— 6if = f
T 

~~~~~ 

(C—3)
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Consequently, du~ to  a typical force distribution which is such tLat the overall

forces , moments a:~I hinge moment on the ith strip are

v (s) 
~~
(Us)1 + ~~~ . . . .  ~~~ . (c- f.’

i if 11 ~,n+6 I

—(s) —(us)

~~ 
;:~ :i::;j ~L€

i
(s) = ~ (us5 + . . .  ~~~

. 

- 

(C-5)
1 if il i,n+6 I

~(us)if ~ i 1 

~(us)

L i  ~iE i 1 

~1 -
B~ = B1f + [B~ i . .  Bj n+6j 

q 1 
t C—6)

the contributions to Lh’.- generalised forces for the deformational freedoms are ,

calculated by the princi ple of virtua l work assuming the body—fix ed axes

stationary .

_

~~i~~ = (k - (~ ) ) T
S
1 x~~~ + (~ 

- (~~) )
T

Q
T + ~~ .

v
(s)

~~ s)

Now (of equations (3—13), (3—15) and (4—85))

~~~ 
+ A & )  (C—8)
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I

Q~ Q~ 
— COS e. f 

(IF_
a~)o~

[:j)

if 
(C—9)

where = Q ~ 
— (~)~ I 1~1 (C—IO)

+jf

and so (C—7) becomes
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Lagrange ’s equations for a non—inertial frame, taking the non—inertial frame

to be the body—fixed axes, will only provide us with the n equations for the

deformational freedoms. The other six equations are, as in Ref I , obtained from
consideration of the rates of change of the linear momentum, and angular
momentum about the aircraft reference point, resolved along the body—fixed axes.

Thus we require the resolutes along the body—fixed axes of the total applied

force and moment about the reference point. The contributions to these from a

typical force distribution and from the ith strip are (of equations (C—4) and
(C—5))
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It is not as easy to relate the derivation of this Appendix to that for

constant—velocity axes (in the main part of this paper) as it was in Ref I when

the deformation was not written in a form attractive for strip theory.
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4 The reader will have noted that in equations (C—I) and (C—2), we could not put

~K 
— (K)

0 F and ~F — (F)
0 ~‘ where K and F represented the same modal functions

as in the main part of the paper, but had to add the distinguishing circumflexes.

In particular it will be appreciated that the te rm (F)
0 ~~~ 

... 
~~~~ 

in (C—2),

does not represent a rigid body rotation, not even to a first approximation.

It is an approximately constant rotation about axes which vary from strip to

strip, or in other words it is, about one set of axes, the rotation

sT Q (F)O ~ 
+ higher order terms (C 14)

4
~jf 

‘ Yj ~f

which varies from strip to strip (of equations (3—13) and (3—15)). From

equation (4—7) it will be seen that this rotation is approximately constant if

0if is the same for all strips.

If the deformation of section 3 is associated with just sufficient rigid

body motion to make the displacement and slope , at the aircraft reference point,

due to the deformation, zero, it means that the rigid body displacements are:

rotations $ satisfying*

s = sT S (C—IS)
‘t
~0 0 f

and translations*

— 5T s (K) q; + (i — sT s , (C—16)
‘
~0 f 0  0~~Of/

(c)
yØf

(c)
- 

q~ Z 0f

0~.

1.4
U) 

* This means there is no change in orientation or position in going from the
unperturbed strip—fixed axes to the strip—fixed axes, for strip 0 (of equations
(4—38) and (4—39)).

iI
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Lqj
and 

(c) ~ - {(K)0 
+ A

X 
P
q} 

(C-18)

where P
q 

is given by equation (5—55).

Thus, if we take

— 

~~ O — S P = F — S~, sT Q,~ (F)
0 (c—19)

if +if q if “if +Of “Of

k — (k)0 = K — (K)
0 — (A — A ‘

~P (C—20)
\ X~~~ X i f /  q

which for arbitrary F , K can be achieved by taking

= F — Q~ s~ ~~ 
~~ 

(F)
0 (C—21)

if if Of Of

(and so, as expected , taking (F)
O 

= 0), and

= K + A  P (C—22)x~f q

then, to a first approximation, the modes of deformation relative to the strip—
fixed axes will be the same with both representations (that of section 3 and that

of this Appendix). This suggests that with the modal relationships given above

• the following relationship might not be far from the truth

= 

~~ 
~~~~~~~~~~~~~~~ 

,

X0f~~~ 
,

~~~ 

~~~~~~~~~~~~ 

. (~~ 23)
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I

From (5—11) and (C—Il) it is easily seen to be true for the datum motion values of

these generalised forces. For both models to represent, to a good approximation ,

the same perturbation there will be a similar relationship, corresponding to

(C—23), between the generalised coordinates, which we can deduce to be

q 1 ~ 

- 

I 0 0 . (C—24)

— 1(K) + A  P~~ I 0
J. 0 x~f qJ

- 
~ Pq 

0 I n+6

Comparing the expressions for the overall forces moments and hinge moment on a

strip — equations (C—4) to (C—6) with equations (5—7) to (5—9) we then

ininediately obtain the relationships

... ~~~. = .“ 3~. I 0 0
il i,n+6 ii

- 1(K) + A  P~~ I 0
11 il 1 ~ x0f qj

Z —P 0 I
_ il ii q 

(C—25)

e t  when the modal functions are related by equations (C—I9) and (C—20).

Substi t ing these relationships into equations (C—12) and (C—13) , and writing

— - n+6 —

= 
~n+I ~ ~n+1 ,f 

+ 
~n+ 1 ,k ci.~ (C—26 )

~ (i )  1 k-I
- 

n+6 
- 

n+6,~~ ~n+6,k

we then find , after some analysis , that (of equations (5—11))

0”
Ii
‘4
C,,
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Pq 
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(C—28)

This is exactly the same relationship as that obtained in Ref 1 (equation (161)).

The relationship of Ref I also holds for those coefficients which express the

influence of the body freedoms on the deformational freedoms , but not, as one

• would expect because of the differences displayed in Appendix A , for the

‘deformation—deformation ’ coefficients. Comparing (C—Il ) and (5—12) we find that ,

for the modal relationships of (C—19) and (C—20),

Li H
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In Ref I , because of the slightly different model , the expression for & is

different and is & = & 77 where (ef equation ( 16 1)  of Ref I )

&77 P
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+~~~~
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A
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(c—3~)

the summation is over the ith strip, and R is given by equation (3—20) . One

term is clearly common to (C—30) and (C—31).

x
Cfl

‘1

‘.0
4..)
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GLOSSARY OF TERMS

(i) Frames of reference (all right—handed orthogonal cartesian)

body—fixed axes axes whose origin and orientation are fixed in a

small material portion of the body . (The ones used

are such that the origin is in the main part of

strip 0 during the datum motion.)*

constant—velocity axes having Constant linear and angular velocity

axes relative to an inertial frame. (The ones used have

zero angular velocity and are taken to be coincident

with the datum—attitude earth axes during the datum

motion.)

datum—attitude axes with which the body—fixed axes coincide during

earth axes the datum motion

datum—path earth axes with the x—axis in the direction of the datum

axes velocity, the xz plane vertical , and the z axis

downwards

no—deformation—body— an axes system , arbitrary except insofar as it is of

fixed axes the same order of nearness to the body—fixed axes

and the datum—attitude earth axes. (These three

frames of reference are all assumed to remain clc.se

togcther during the perturbed motion.)

normal earth—fixed axes fixed relative to the earth with the z—axis

axes vertically downwards

principal axes of axes with origin at the centre of gravity of the body

inertia and such that the three products of inertia about

the axes are zero

strip—fixed axes axes fixed in a strip of the aircraft such that their

origin is at the strip reference point the x—axis

passes through a point on the strip hinge (and in the

unperturbed state, the strip cg), the y—axis is

approximately normal to the planar sides of the strip,

* Whether the  body—fixed axes remain orthogonal, during perturbations of the
x .Aatum motion , or not , is irrelevant to the present development .

-.-~~~~•-- ~~~~~~~~~~~ -~~ — -•“



GLOSSARY OF TERMS (continued)

stri p—fixed axes and the positive x—direction is towards the strip

(continued) leading edge — cf Appendix B. (For a strip without

a hinge one would take the x—axis to be some chord

line and the y—axis to be, as near as possible ,

normal to the planes dividing the strip from the

adjacent strips.)

unperturbed—strip— axes whose position coincides with the position

fixed axes the strip—fixed axes would occupy if there was no

perturbation from the datum motion .

(ii) Orientation

(a) Attitude angles defining the attitude of the aircraft relative to the

normal earth—fixed axes.

angle of bank angle between the z—axis , of the body—fixed axes and

the vertical plane containing the x—axis of the

same frame

angle of inclination angle between the x—axis of the body—fixed axes
and the horizontal plane

nose—azimuth angle angle between the projection of the x—axis, of the

body—fixed axes, on the horizontal plane, and the

x—axis of the normal earth—fixed axes.

(b) Flight path angle defining the direction of flight relative to the

norma l earth—fixed axes.

angle of climb angle between the tangent to the flight path and

the horizontal plane, positive when climbing

angle of track angle between the x—axis of the normal earth—fixed

axes and the projection on the horizontal plane of the

tangent to the flight path , positive when a right—

handed rotation about the downward vertical takes

one from the normal earth—fixed x—axis to the flight

path projection .

~1
‘.0

L. ~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• GLOSSARY OF TERMS (concluded)

(c) Incidence angles defining the direction of flight relative to the air

incidence magnitude* magnitude of angle between the x—axis of the body—

fixed axes and the direction of the velocity of the

aircraft relative to the air

incidence—plane angle between the incidence plane and the zx plane

angle* of the body—fixed axes.

(iii) Miscellaneous

aircraft reference the material point on the aircraft which is the

point origin of the body—fixed axes

attitude deviation the matrix which by premultiplying a column vector

matrix changes the axes directions in respect to which the

vector is resolved into components

axes transformation synonymous with attitude deviation matrix

matrix

incidence plane the plane defined by the x—axis of the body—fixed

axes and the direction of the velocity of the aircraft

relative to the air

reference axis a line, not necessarily straight, joining the strip

reference points of the strips of a component , such
as the wing, of the aircraft

reference point synonymous with aitcraft reference point

strip reference a chosen material point on the main part of a strip

point taken as the origin of the strip—fixed axes.

m

0~
1.4
4.,
an

* These definitions can similarly be used for a strip or aerofoil section,
in terms of the strip—fixed axes.

k ~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Li~ T OF SYMBOLS

etc skew—symmetric matrices involving •, c , 4’, etc (see
equation (3—16))

A i
k 

ponderous inertia coefficient

B~ aerodynamic hinge moment on the ith strip

B .,B1ô etc aerodynamic hinge moment coefficients for ith strip

B. ., B . .. etc aerodynamic hinge moment coefficients of , say, a velocity of
~ strip j , in the expression for the hinge moment on str~~

B* . a modified B~
2
~ 

— see equation (4—146)iOj

B. .  ,B. .
~~~ 

etc aerodynamic hinge moment coeffici~nts expressing the effect , on1JX 13 the hinge moment on strip 1 , of a change in relative position
and orientation of strips i and j

D differential operator d/dt

— E. generalised structural force

E. structural stiffness coefficient
jk

F torsional modal matrix (see equation (3—3))

— G. generalised gravitational force

Gi k 
gravitational stiffness coefficient

H Heavf.side step function

I unit matrix

principal moments of inertia of undeformed aircraft

r matrix of moments and products of inertia of undeformed aircraft
(see equation (6—6))

I
~0 

matrix of moments and products of inertia of the ith strip
1 (see equation (6—8))

1.i matrix of moments and products of inertia of the flap of the
1 ith strip (see equation (6—9))

3 etc matrices formed from the elements of 8 4’~ etc,• see equation (4—88)

K flexural modal matrix (see equation (3—2))

L aerodynamic rolling moment

typical rolling moment

L
g~ 

L gravitational , propulsive rolling moments

L
~
,L 

~ 
etc rolling moments on ith strip

• M aerodynamic pitching moment

typical pitching moment
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LIST OF SYMBOLS (continued)

modal matrices, see Appendix A

M
g~

M
p 

gravitational, propulsi’~’e pitching moments

M
i~
M
gi 

etc pitching moments on ith strip

etc aerodynamic pitching moment coefficients for ith strip

M .• ., M . .. etc aerodynamic pitching moment coefficients of, say, a velocity of
X) ~ strip j , in the expression for the pitching moment on strip

M* .,M* . modified M. . etc — see equations (4—140) to (4—142)
Lxj 1Z) IX)

M.. ,M..0 etc aerodynamic pitching moment coefficients expressing the effect,
~ on the pitching moment on strip i , of a change in the relative

position and orientation of strips i and j
N aerodynamic yawing moment

N typical yawing moment

modal matrices, see Appendix A

gravitational, propulsive yawing moments

Nj~Ngj etc yawing moments on ith strip

— P. generalised propulsive force

P matrix of modal slopes at reference point (see equations (5—54)
q and (5—55))

P0 matrix which is ‘0 factor ’ of axes transformation matrix (see
equation ( 3 — f l ) )

• 
~j k propulsive stiffness coefficient

Q~ generalised aerodynamic forc e

total generalised f orce , or typical contribution to generalised
• force

Q~, matrix relating angular velocities and orientation (see
equations (3—14) and (4—3))

Q
(1) contribution to generalised aerodynamic force from strip 1

typical contribution to generalised force from strip I

aerodynamic coefficient

R modal matrix (see equation (3—20))

R
. 

matrix which is ‘$ factor’ of axes transf ormation matrix (see
1.4 equation (3—10))
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LIST OF SYMBOLS (continued)

• S,S,~ axes transformation matrix (see section 3). The subscript is
I added when it is necessary to specify the arguments — in this

case f . ,  8., ‘
~
‘
~ 

. Absence of a subscript means the arguments

are 4 ,  0, 4’
U modal matrix (see Appendix A)

V airspeed

W kinetic energy relative to the constant—velocity axes

X overall aerodynamic force resolute

X typical overall force resolute

X
g~
X
p gravitational , propulsive overall force resolutes

X.,X . etc overall force resoluted on strip i
1 gi

X . •,X .~ etc aerodynamic force resolute coefficients for ith strip

X . .., X . .. etc aerodynamic force resolute coefficients of, say, a velocity of
~ strip j , in the expression for the overall force on strip

X~0j modified X~0~ 
— see equations (4—128) and (4—129)

• X .. ,X . . 0 etc aerodynamic force resolute coefficients expressing the effect,
~ on the overall force on strip i , of a change in the relative

position and orientation of strips i and j
Y overall aerodynamic force resolute

typical overall force resolute

Y
5~
Y~ gravitational , propulsive overall force resolutes

Y,~ matrix which is ‘4’ factor ’ of axes transformation matrix (see
equation (3—12))

Y . , Y . etc overall force resolutes on strip i
1 gi

Z overall aerodynamic force resolute

Z typical overall force resolute

Z
g~
Z
p 

gravitational , propulsive overall force resolutes

Z.,Z . etc overall force resolutes on strip i
1 gi

Z . •,Z.~ etc aerodynamic force resolute coefficients for the ith strip

Z. ..,Z . .. etc aerodynamic force resolute coefficients of, say , a velocity of
~ strip j , in the expression for the overall force on strip

Z~0j modified — see equations (4—130) and (4—131)

C,,

‘1
‘.0

4..) 

~~~~*-- ~~~~-• .
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LIST OF SYMBOLS (cont inued)

a.0,a.1, a.3 certain column vectors — see equations (5—19) to (5—21)

e.,e x—component of local aerodynamic, gravitational force vector
1 g at ith strip

f flap modal vector (see equation (3—7))

y—component of local aerodynamic, gravitational force vector
g at ith strip

g acceleration due to gravity

g~
,g 

~ 
z—component of local aerodynamic, gravitational force vector

g at ith strip

third column of S,1, (see equation (5—14))
f f

aerodynamic derivatives — obsolescent notation (see section
4.22)

in mass of aircraft

m1 
mass of strip i of the aircraft

mass of a particle

n number of deformational degrees of freedom

p angular velocity resolute

angular velocity resolute of ith strip

q angular velocity resolute

q. angular velocity resolute of ith strip

q generalised coordinate

r angular velocity resolute

r. angular velocity resolute of ith strip

t time

u linear velocity resolute

u. linear velocity of ith strip reference point

umi 
particle velocity resolute at ith strip

v linear velocity resol’.te

v~ linear velocity resolute of ith strip reference point

Vmi particle velocity resolute at ith strip

w linear velocity resolute

w. linear velocity resolute of ith strip reference point
Cl, 1

w 1 
particle velocity resolute at ith strip

L I  
--- ~~~~~~~~~~~

. -
~~~~~~~~~~~~~~~~~~
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LIST OF SYMBOLS (continued )

x particle position resolute

~ q~~~) resolute of reference point position, relative to its position
in datum motion, excluding deformational contribution

x1 resolute of strip reference point position

x
~0 

x—coordinate of strip cg, referred to strip—fixed axes , when
the flap angle is zero

x .
2 

x—coordinate of strip cg, in datum motion, in body—fixed axes
1 frame of reference

~~ Si 
x—coordinate of strip hinge, referred to strip—fixed axes

13Xf 
see equation (4—309)

y particle position resolute

~ q +2~ 
resolute of reference point position, relative to its position
in datum motion , excluding the deformational contribution

y. resolute of strip reference point position

~~fO y—coordinate of strip cg, in datum motion , in body—fixed axes
1 frame of reference

z particle position resolute

z1 
(~ q +3~ 

resolute of reference point position , relative to its position
in datum motion, excluding the deforinational contriblition

2ifO z—coordinate of strip cg, in datum motion , in body—fixed axes
frame of reference

13zf 
see equation (4—110)

submatrix of structural stiffness coefficientsqq

~~~~~~~~~~~~~~ submatrices of gravitational stiffness coefficients

L ,L ,L ,~, subniatrices of coefficients in expression for aerodynamiccq CX C rolling moment about origin of constant—velocity axes

£ ,L ,L submatrices of coefficients in expression for propulsive rollingcpq CPX 
~
p moment about origin of constant—velocity axes

M . ,M . ,M . ,~ subinatrices of coefficients in expression for aerodynamiciq ‘2~X l~ pitching moment on ith strip

M ,M ,fvJ submatrices of coefficients in expression for aerodynamic pitch—cq CX C ing moment about origin of constant—velocity axes

M ,M 
~
,M0 • 

submatrices of coefficients in expression for propulsive
cpq 

~~ 
p pitching moment about origin of constant—velocity axes

N ,N 
~
,N , 

subinatrices of coefficients in expression for aerodynamic yawingcq C - moment about origin of constant—velocity axes

- . .-~~~~~~~~~~~~~~~~ • ~• • ~~~~~~~~~~~~~~-~~~~ - . _ _ _
_
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• LIST OF SYMBOLS (continued)

N ,N
~ 

,N submatrices of coefficients in expression for propulsive yawingpq p moment about origin of constant—velocity axes

p ,p ,p ~Iqq ~~ ~q ~ subniatrices of propulsive stiffness coefficients
p
X$,p4,4, J
X ,X ,X~ submatrices of coefficients in expression for overall aero—
q Z dynamic force resolute

X_z~ ~~~~~~~ submatrices of coefficients in expression for overall aero—
q dynamic force resolute on ith strip

X ,X 
~
,X ,~ subrnatrices of coefficients in expression for overall propulsivepq p p force resolute

~ subinatrices of coefficients in expression for overall aerodynamic
• q force resolute

Y ,Y ~ ,Y ,~ submatrices of coefficients in expression for overall propulsive
• pq 

~
‘ p force resolute

3 
~~~~~~ 

submatrices of coefficients in expression for overall aero—
q dynamic force resolute

Z.  ~~~~~~~ submatrices of coefficients In expression for overall aero—
dynamic force resolute on ith strip

Z ,Z , ,Z ,~ submatrices of coefficients in expression for overall propulsivepq 
~‘ 

p force resolute

r vortex strength

r ,i’ ,r ~rf coefficients in expression for vortex strength (of equation
U W q (4 3 3))

t~x,~ z,A0 see equations (4—106) to (4—308)

B angle of inclination

angle of bank

‘I’ nose—azimuth angle

incidence of aerofoil

no lift incidence of aerofoil

no pitching moment incidence for aerofoil — pitching moment is
about centre of the circle front which the profile is generated
by conforma l transforma tion

a. first element of column vector given by equation (3— 1 3)

(3~ second element of column vector given by equation (3—33)

y angle of climb
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LIST OF SYMBOLS (continued)

third element of column vector given by equation (3—13)

angle of flap rotation at strip i

mass of a particle

• 0 (~ q +5~ 
orientation angle of no—deformation—body—f ixed axes relative
to constant—velocity axes

0. orientation angle of strip—fixed axes relative to no—deformation—
1 body—fixed axes

O . orientation angle of strip—fixed axes relative to unperturbed—
Ui strip—fixed axes

e~
3 see equation (4—111)

p air density

see equation (4—87)

• (~ q~ ,,4) orientation angle of no—deformation—body—fixed axes relative
to constant—velocity axes

4 ’. orientation angle of strip—fixed axes relative to no—deformation—
1 body—f ixed axes

• . orientation angle of strip—fixed axes relative to unperturbed—
Ui strip—fixed axes

X if~Xiu~Xiw coefficients in expression for local aerodynamic force
(cf  equation (4—15))

X iq~X i,s

* ~ orientation angle of no—deformation—body—fixed axes relative to
constant—velocity axes

4’. orientation angle of strip—fixed axes relative to no—deformation—
1 body—fixed axes

4’ . orientation angle of strip—fixed axes relative to unperturbed—
Ui strip—fixed axes

& see equation (C—30)

&77 see equation (C—31)

a operator defined by equation (4—327)

c operator signify ing the ‘steady part of’ (of equation (4—126))
LA etc lower triangular matrix formed from the elements of ~$ 0 etc —

ef equation (4—95)

Cl)
I,
‘1
‘.0
4.4
‘4
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LIST OF SYMBOLS (continued)

Dress i ng~

(i) Subscripts

A quantity is relative to or about the origin of a particular set of

axes where

• c denotes the constant—velocity axes

n denotes the no—deformation—body—fixed axes

s denotes the strip—fixed axes (this subscript is often omitted to avoid
confusion with s for structural)

u denotes the unperturbed—strip—fixed axes

• This subscript , when present , is always placed first.

I indicates point or force on i th  strip

g indicates gravitational

p indicates propulsive

s indicates structural

0 indicates the strip i = 0 (the one containing the aircraft reference
point), or a leading edge suctional force, or a quantity associated
with the strip cg

The following two, when present , are always placed last except when

followed by a nought.

e datum value

f value during datum motion

(ii) Superscripts

applied to indicates a summation over the main part of a strip

applied to indicates a summation over the flap part of a strip

* denotes certain modified coefficients

T denotes the transpose of a matrix

(2) denotes the two—dimensional value

(I) denotes the contribution from strip i

Other bracketed superscripts denote the axes of resolution, viz:

(c) constant—velocity axes

(dp) datum—path earth axes

(is) strip—fixed axes of the ith strip

I
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LIST OF SYMBOLS (concluded)

(n) no—deformation—bod y—fixed axes

(s) strip—fixed axes (where it is clear which strip)

(us) unperturbed—strip—fixed axes

(iii) Suprascripts

(dot) denotes derivative with respect to time

— (bar) denotes typical or total

(circumflex) refers to body—fixed axes, encastré modes, displacement
body freedoms

(tilde) see equation (A—8)

crs

‘.0
‘4
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