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Abstract
]
This dissertation presents a collection of protocols for coordinating transactions in a
distributed information system. The system is modeled as a collection of processes that
communicate only through message passing. Each process manages some portion of the data
base, and several processes may cooperate in performing a single transaction.

The thesis presents a model for computation in a distributed information system in
which the sites and communication links may fail. The effects of such failures on the
computation are described in the model. The thesis discusses implementation techniques that
could be used to limit the effects of failures in a real system to those described in the model.

A hierarchical protocol for coordinating transactions is presented. The accesses to be
performed during a transaction are pre-analyzed to select the protocols needed to coordinate
the processes that participate in the implementation of the transaction. This analysis can be
used to guide the organization of the data base so as to minimize the/ amount of locking
required in performing frequent or important transactions. An important aspect of this
mechanism is that it allows transactions that cannot accurately be pre-analyzed to be
performed and correctly synchronized without severely degrading the performance of the
system in performing more predictable transactions.

A novel approach to the problem of making updates at several different sites
atomically is also discussed. This approach is based on the notion of a polyvalue, which is
used to represent two or more possible values for a single data item. A polyvalue is created
for an item involved in an update that has been delayed due to a failure. By assigning a
polyvalue to such an item, that item can be made accessible to subsequent trangsactions, rather
than remaining locked until the update can be completed. A polyvalue describes the possible
values that may be correct for an item, depending on the outcome of transactigns that have
been interrupted by failures. Frequently, the most important effects of a transaction (such as
the payment of money) can be determined without knowing the exact values of the items in
the data base. A polyvalue for an item that is accessed by such a transaction may be
sufficient to determine such effects. By using polyvalues, we can guarantee that a\ data item
will not be made inaccessible by any failure other than a failure of the site that holds the
item. \
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A strong motivation for the development of these protocols is the desire that the
individual sites of a distributed information system fail independently, and that a site or a
group of sites be able to continue local processing operations when a failure has isolated
them from the rest of the sites. Many of the previous coordination mechanism have only
considered the continued operation of the sites that remain with the system to be important.
Another motivating factor for the development of these protocols is the idea that in many
applications, the processing to be performed exhibits a high degree of locality of reference, in
that most operations invoive only a small number of sites. By structuring the coordination
mechanism to take advantage of this locality of reference, one can have protocols that are
simple, efficient, and robust for the particular application.

keywords: distributed data bases, synchronization, message passing systems, reliability.




PN

CONTENTS

Ll Lo e s O 2
ADMEIEE. 5 il it s S i i i P K R s e ks s 3
AR O COMVININ i vvicimimvsh shdnien oy e et PR b s e S o i 5
A GF PRI <o vionimnsivedN i daiisn v insi b R G uhsisdin e s s i e 8
K ERIOOMRCEION «.ovoiersoscsiveomsensiinarsmivinimontesstbimsvibdmoin ssxssaney saearissess wsowennss veees 9
BE. ROUsNS FOF DIIBMIION < oo cviaisinivsivismminmmmiasinismssemnsissasiremessetasmssns solenes 9
1.2. The Concurrency Control Problem in a Distributed Information System ................ 12
13. Basic Assumptions and GOals ................cecviiet verrnuieerniiiinrereeeeereneeeeeeeseeennnns 14
1.4. Related Work ............ e s e A T S W e 18
15. Thesis Plan e 28
2. The Process Model of Distributed Computing .............. seevesessssenzen ETTTITPIPPINS + |
LB R R R I R T WRICESR e R 29
22. Atomic Transactions Revisited ...............cccocviiriieeniiuieeieniinnrereeeseeeeeeeeeeeeenenns 45
R RO R R L S N N 53
3. Atomic Broadcasting ..............cccevvuneernne ésssvarvasseveveuseve sovevevsssensenasses Sesteeauns 55
DL EOEIURIONIE . -ivansosossimpunnomssimmattosnens i scnmssorivr s st i sl it 55
3.2. An Illustration of Atomic Broadcasting .............ccccevuiiinureeniiuneeeeeerirnnnnnnnnns 58
33. A Mechanism for Atomic Broadcasting ...........cccooueeuieieerneessinneesesnneeeseeesnns 59
3.4. Other Ordering Restrictions on Broadcast Messages ........................cccvvvurennnenn. 65
A THIDIITIIMREMNN 5o o civmnummsonnnibrinsiinmomets s cers eI e bun Hs by SR o 68
L. TEVIINITION: oo invimmsstsonneoniintninsion ssoversanitiuiaiefon s vamsiessassdhievssiniiuss 80
T L R R S A SR U S S 85

R T

v i L &

o




-6 -

4. Atomic Transactions in the Process Model ................ccccuuumiiiiiinniinnicrerneseennennes 87
4.1, Analysis of TranSaCtioNS .............oouiiiiiiiiiiniiireeerririieeeerernieeersnneerreenneesneennes 87
4.2. A Simple Approach to Transaction Synchronization .................cccceevvuieeeriennnnnn. 9¢
45 'Chisses of TERNSACHONS . ... cuoviis v avnaldyuntns oansmmmnssssnsessavsssnon dasanses o apspsannsns 99
4.4. A Hierarchical Scheme for Transaction Synchronization ...................ccccveueneen.. 103
4.5. Implementation of Hierarchical Locking ............cccoiiiiiiiiiiiiniiiiiiiin i eciieneanns 106
46. A Rejected Alternative SOIULION .............cccoviviiiiiiiiiiiiieniiieieeerennnneeeereaneesnnns 19
4.7. Conclusions Nt SUMMBLY ........cccconiiiireiasacsciasaasssasssarasassussasssssssressssnsssssans 122

5. Polyvalues: A Mechanisin for Performing Atomic Updates to Distributed Data .... 125
51. Motivation (The Trouble with Locking) ............ccccoeiiiiiiiiiiiiiinnniiiiieeinieeinnenn. 125
5.2. The Polyvalue Mechanism for Avoiding Delay Due to Locking ........................ 132
53. Recovery of Pending TTansactions .................cooieiiiiuiiieeirinieeresnnernneesnaesneennnn 138
5.4. Use of Polyvalues in the Hierarchical Locking Scheme ................ccccocevviiinnnnnn. 142
55. Restricting the Spread of Polyvalues ....................cciiiiiiiiiiiiiniiiiieiieeieeenennnens 148
SO SUMMINIE R 0 Lo re it s s Vs D G s caon SRR RS S P S b e A s S e 150

6. Application of the Techniques to the Design of a Distributed Information System 151

Gl FHEPIODWN <. covcci i teniniantisismin iy s G R T e s s s St B oo aes e s s bt 151
G2 CANRIYSES Of the TIRNERCIONS c.iov vt cinicininesisssiinstsssnsvasidsinses vonnsn mabibssssrasne e 155
6.3. Comparison with Other Mechanisms ..................ccccieiiiiiiiiieieinereiieieneensennnens 168
0 R 13Ty ] APPSR NIRRT o o s M SO LR B et T 7
7. Conclusions and Areas for Further Research ............ccccceevviiieeiiinnnuneeeerunenennnns 178
Tk SUMMEEY, OF THENS WO .. cuviiinnutimmnistmimninsisisassissovis it isisssiys 173
7.2. Areas for Further Research ..............c.ocooiiiiiiiiiiiiiiiiiiiiniiiieeeieiieceeieneaneans 175
B3 SUTTHTIEY = 6t e A A A R b B e A b O R AR A s 178
L] R RN Ry Uy Rurs, e PO K e i SRR 117 L SNt L 179
A. Proofs of the Protocols ...................... LR R e o R Ve sevssvve weveve 182
A.l. Formalization of Atomic Broadcasting ..............cccceiiiiiiiiiiiieiiiniineeeeeeeeecnnnnnns 182
AL YO of AROTNC BYORBORIINE << v cvovvverivsisisnmsivsrassnensruises tasaiseitaseesnris 184
A.3. Correct Relative Sequencing of Broadcasts ...........cccccceviiiiiiiiiiiiiinnniineesienneenns 186




M -7-

B. An Analysis of the Propogation of PolyValues .................coevvevevveereereeenesonnn. 190
B.l. A Model for the Creation and Deletion of Polyvalues ..................................... 190
B.2. Simulation of the Use of POlyVaUS ....................c.ooovemiieeeineeeeeeeeei 195

S 197




Figure 21

Figure 3.1

Figure 3.2
Figure 33
Figure 3.4
Figure 35
Figure 3.6
Figure 4.1

Figure 4.2
Figure 43
Figure 4.4
Figure 45
Figure 5.1

Figure 5.2
Table 6.1

Figure 6.1
Figure 6.2
Figure 63
Figure 6.4

Figure 6.5
Figure 6.6
Tabie B.1
Table B2

S ———. < —— g —

-8 -
FIGURES
The Execution History of @ Process .............cccoeiiviiiiiiiiniiiiiiieninianen.. 32
The Abbreviated Execution History of a Process .................c..coooiiinene. 56
Non-Atomic BrORACASUNG .. «cvuxrsoessasnussinossssonvoasnorasnssnaasasnsnsssnssassases 57
Coordinating Atomic Broadcasts with Message Forwarders .................... 61
MOVING & PIOCESS: .....ounsreisnssinseasseransmnassanssonsessnsssasensasasonsssassarssvesas 7
A Physical Communication Topology ..........ccooerviiiiiiiiiiiiiiiiii., 8l
A Logical Topology for the Network of Figure 3.5 ..................co.ooiiets 82
A Simple Transaction Graph ...........oooiiiiiiiiiiiiii e 88
An Activity Graph For an Implementation of T ..........c..ocooiiiiiiiin 9l
A Joint Activity Graph .....co.cooeiiiieiiiiieiiiientiiiesenssietasirascensensnassaseaes 93
A Transaction Using Delayed Locking ...............coooiiiiiiiiiiiiiiiiiiinne. 114
Concurrency Restrictions Due to Hierarchical Structure ........................ 121
A Two-Phase Commit Protocol ............ccouuiriniiiiiriniriniieiiennieienenns 131
Recovery of Pending Transactions ..............coooouuiiiiiiniiierierneiiineienns 143
Transactions for Inventory Control .............coocoiiiiiiiiiriiiniiiiiiiinnenns 154
Transaction Graphs for Inventory Transactions ...............coccovcivenennnne. 157
A Joint Transaction Graph of The Inventory Transactions .................. 158
An Activity Graph for a Simple Data Base Organization ..................... 159
An Activity Graph for a more efficient Organization of the Data ........... 161
A More Complete Activity Graph ..........cooooiiiiiiiiniiiiniie e, 162
An Activity Graph for a Redundant Data Base Organization ............... 167
Typical Predictions of the Number of Polyvalues in a Database ............ 194
Results of the Simulation of Polyvalues ..................c.ooiiiiiiiinnian. 196

N




-9-
Chapter1

Introduction

Recent developments in electronic technology have made practical the interconnection
of a large number of computer systems to form what I will refer to as a distributed

information system. Each of the computer systems (or sites, as they are more frequently

called) in the resulting system maintains some information and tools for accessing that
information. The sites that make up a distributed information system may not be under the
control of a single administrative authority. A distributed information system allows any
user of any of the individual sites controlled access to the entire body of information
managed by the system, while it allows each of the individual computer systems to control

the use of the tools and information that it holds.

1.1 Reasons For Distribution

There are several good reasons for choosing such an organization for an information
system rather than placing all of the information in a single large, shared computing facility.

I will discuss some of these reasons briefly.
LL1 Autonomy

A very important reason for choosing a distributed organization for an information
system is the autonomy of the individual sites. A recent study [DOliveira77] has shown that
the ability to partition the authority and responsibility for information management in a

distributed system is the most important reason for many businesses considering distributed
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information systems. In a distributed system, each site has control over the information that
it manages, and can set its own policies for controlling the availability of that information.
As we shall see, autonomy has important implications for the assumptions that can be made
about the cooperation of individual sites in the execution of processing operations, and for

the protocols that can be used to coordinate such operations.
1.1.2 Reliability

A second reason for distribution is reliability. There « two ways in which a
distributed information system can be made more reliable than a central facility. One way to
achieve greater reliability in a distributed system is to replicate information, storing it at two
or more of the sites in a distributed system. Replication increases the availability of
information in a system with unreliable sites. A single failure does not make replicated
information inaccessible. Unfortunately, modifying replicated information is much more
difficult than modifying non-redundantly stored information. While a great deal of research
has gone into the development of protocols to update replicated data, the problem remains
difficult, and such updates are costly in that they require extensive communication between

sites, reducing the economic advantage of distribution.

A second source of increased reliability, and one which I consider to be much more
important, is the the failure of a single site or communication link does not necessarily make
the entire system fail, while in a single, centralized system, the failure of a single component
frequently interrupts all processing in progress. The individual sites in a distributed
information system will be smaller and simpler than a single large computer system with
storage and processing power equivalent to the total of that of the individual sites. This
simplicity should mean that the sites in a distributed system fail less frequently than the

single machine of a centralized system. Thus if a distributed system can be constructed so as

B e L
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to limit the effects of a failure at one site to the interruption of processing that requires
information at that site, the reliability of a distributed information system as seen by any

individual user will be substantially better than that of a single shared machine.
1.1.3 Economics

A third reason for distribution is an economic advantage that makes a group of
small computer systems less costly to manufacture than an “equivalent” single large machine.
A single computer with a certain processing rate and storage capacity costs substantially more
than a collection of smaller machines with the same aggregate processing rate and storage
size.  In addition to the computing hardware, communication and software development
contribute to the cost of a distributed information system. Frequently, the information to be
managed can be partitioned in such a way that most of the processing operations do not
require information from more than one of the partitions. Each partition can be assigned to
a small computer system capable of performing the processing required for the information
in that partition. The cost of communication between sites in such a system would be
relatively small. If the extra cost of developing software for a distributed information system
can be kept small, a distributed information system may be substantially less costly than an

equivalent central facility.

1.1.4 Flexibility

A fourth reason for distribution is flexibility. Changes in the amount of information
to be managed by the system can require increasing or decreasing the storage and processing
capacity. In a central system, this may require replacing the entire machine with one of a

different capacity.  In the distributed system, capacity changes can frequently be

!
|
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accomplished by adding or deleting sites, with minimal impact on the sites not being

changed.

Consider, for example, a corporation that has just acquired a subsidiary, and needs to
modify its administrative information management system to manage the new subsidiary.
Merging the information management systems of the parent company and the subsidiary
into a single central facility could be very difficult. If the information management system
being used by the corporation is distributed, however, the merger can be accomplished by

adding one or more sites to manage the subsidlary.'

1.2 The Concurrency Control Problem in a Distributed Information System

Several problems must be overcome in order to make a distributed information
system as easy to use as a central facility. The subject of this thesis, and what I believe to be
the most difficult of these problems, is controlling the sequencing of user specified processing
operations. The result of performing such processing operations concurrently should be the
same as that obtained by performing them in some sequential order. Before this problem
can be discussed in detail, we must have a more precise definition of the way in which stored
information can be manipulated. For this purpose, I adopt terminology that has commonly

been used in data base systems.

I. In rare cases, the existing information systems of the parent and the subsidiary may be
compatible, requiring virtually no effort for the marger. Even if the information
management system of the subsidiary must be substanticiiy modified to fit into the parent’s
distributed system, this effort should be less than that required to merge both into a single
shared facility.

" . W ———
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The stored information consists of a set of individual data items, each of which
represents some independently accessible piece of information. For each data item there is a

current value that is the information that that item currently contains.!

A data base state is
a mapping from the set of items that makes up the data base to the set of values, specifying

the current value of each item in the data base.

The high-level operations that are to be performed on stored information are known
as transactions. A transaction can be viewed as a function mapping one data base state to
another. Each transaction is performed as a set of primitive operations, called accesses, on
individual data items. Some accesses to an item cause the current value of that item to be
changed, and are known as updates. The set of items whose values are changed by the

transaction are the output items of the transaction.2 The new values produced by the

transaction for these items are known as the output values of the transaction. Each

transaction computes its output values based on the values of the items in the data base state
that is the input to the transaction. The items that are used by the transaction in computing
the output values are refered to as input jtems, and their values as supplied to the

transactions are the input values of the transaction.

The user of a distributed information system views each transaction as a simple,
complete operation, such as "deposit $50 in account number 13542". Each transaction “seess”
the effects of previous transactions in the values that it obtains for its input items. A
problem arises when several transactions are performed concurrently. Each transaction may
see the effects of the others on the shared data items. In order to preserve the illusion that a

transaction is a simple, complete operation, the transactions must be atomic, in that each

1. The term “version® has also been used for what I will refer to as a value
(Reed78,Stearns76).
2. This has also been refered to as the write set of the transaction [Bernstein77).
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transaction sees either all or none of the effects of each other transaction on the data items

that it accesses. The definition of atomic will be made more precise in a later chapter.

The problem of insuring that transactions which are run concurrently are atomic is

known as concurrency control and is common to both distributed systems and to centralized
data base systems, where transactions are run concurrently to increase the utilization of
resources. While there is a great deal of literature on this general problem, the particular
characteristics of a distributed information system aggravace the problem of concurrency
control, and make many of the mechanisms that have been developed to solve this problem

in centralized data base management systems inappropriate for a distributed information

system.

1.3 Basic Assumptions and Goals

Two common problems in evaluating a mechanism to solve a complex problem are
understanding the goals of that meckanism and knowing the assumptions made about the
effects of failures. This section sets forth my own goals and assumptions, to allow the reader
to evaluate more precisely the mechanism proposed here. These assumptions and goals may
not be appropriate for all applications, but I believe that they are most appropriate for many

uses of a distributed information system as described above.
1.3.1 Implications of Delay

A characteristic of distributed information systems is that communication between

sites is slower, more costly, and less reliable than communication within a site. An

| S—
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implication of this characteristic is that unnecessary inter-site communication should be

minimized, even if this requires more computation or more storage at each individual site!

A second implication of communication delay is that no one site can readily obiain a
view of the global state of all transactions in progress. State information from remote sites is
delayed in communication and may be out of date. The lack of global state information
makes concurrency control schemes in which some decisions (such as deadlock detection and
backup) are made based on global information awkward for use in a distributed information
system. Thus, ideally, the protocols used for performing transactions should allew each site

to base its actions on its local state only.

A third implication of delay is that any operation involving several sites may be
delayed for a long period of time before it can be completed. This means that the
information should be organized such that frequent or important operations can be
accomplished locally at some site. While I will not discuss the task of partitioning
information in detail, I assume that the operations to be performed exhibit a high degree of
locality of reference. Each operation requires only a small amount of the total information
available, and the information can be partitioned so that very few operations require

information from two or more sites.

This assumption is necessary to make a distributed information system practical. It
seems quite reasonable for many applications, including management information systems,

process control, and personal computing.

I. T am not addressing the concept of a "multi-microprocessor” distributed system consisting
of a large number of small processing and storage elements linked with very high bandwidth
communication
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1.3.2 Partial Operability

As noted above, the individual sites in a distributed information system should fail
less often than a single centralized system of equivalent processing power and storage
capacity. If each site failure interrupts only those transactions which require resources at the
failed site, then a transaction involving only a small number of sites should be less likely to
be affected by a failure in a distributed information system than it would be in a centralized
system. Thus as a goal, the mechanism for performing transactions should allow a group of
sites that are functioning and can communicate with each other to perform transactions local
to that group. [ refer to this goal as partial operability. The most important aspect of
partial operability is to allow any transaction that is entirely local to one of the sites to be

performed whenever that site is operating and the request to perform the transaction can be

communicated to that site.

This is a very different form of enhanced reliability from that achieved with
replication, as described by Alsberg et al. [Alsberg76). 1 believe that the goal of partial
operability more accurately reflects the needs of most applications. We shall see later that
both replication of data within one site and replication of data items at several sites fit

naturally into the mechanism that [ am proposing.

An implication of partial operability is that the dependence of one site on another to
perform purely local transactions must be minimized. Protocols requiring a site to receive
external authorization to perform local transactions, such as that used by Thomas in

[Thomas76), should be avoided.
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A more important implication of partial operability is that error detection and
recovery are concurrent with the execution of transactions. Backward error recovery
strategies (Randell78), which stop processing new transactions when an error is discovered
and cause the data base state to be “rolled back” to a previously saved state known to be
consistent, do not achieve the goal of partial operability. Because processing continues
during error recovery, a site that encounters an error can “get behind" in that it may not be
aware of recent transactions. For example, a site holding a copy of a redundant data base
may discover that the values that it holds are out of date because they do not reflect
transactions that were performed on other copies. The failure recovery mechanism must
record any information sent to a site during a failure of that site, so that the site can be

brought up to date on recovery.
1.3.3 Autonomy

As noted above, the autonomy of individual sites in a distributed information system
is an important reason for choosing such a system over one with a central shared facility.
One implication of autonomy consistent with the goal of partial operability is that individual
sites should not be dependent on the system as a whole in that they should be capable of
performing local transactions when not in communication with other sites. Thus we cannot
assume that a site which is not in communication with any other sites stops all processing, as

is done by SDD-1 [Bernstein77).

Another implication of autonomy is that each site controls the operations that can be
performed on the data items that it holds. Thus any site may refuse to perform some
operation at any time. One method of dealing with this possibility is to require that each

transaction obtain permission to perform all of its component operations before any of these
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operations is carried out. This can substantially increase the cost of performing some

transactions, by increasing the need for locking (see Chapter 4).

For many transactions, the administrative policies of all of the sites that must
cooperate are known in advance and examined in determining whether or not a site will
cooperate in performing a particular transaction. Verifying that a transaction will not
encounter access restrictions is similar in principle to verifying that a transaction preserves
consistency constraints (i.e. that it always maps one consistent state to another). 1 will assume
that even though the sites are autonomous, they will cooperate in performing a large class of
common transactions. Thus in many cases, the acceptability of a transaction to be run can be
simply verified before it is run, and will not interfere with synchronization. Dynamically
changing access restrictions must be checked as a transaction is run, and will add to the cost

of performing and synchronizing transactions.

1.4 Related Work

The work of this thesis concentrates in two main areas: concurrency control in data
base systems, and reliability techniques. | will discuss the previous research in these areas

separately first, and then relate it to this thesis
1.4.1 Concurrency Control

Several papers [Bernstein77,Gray75Gray77Stearns76] discuss the problem of
controlling the concurrent execution of transactions so that each sees a consistent version of
the data base. Gray et al. [Gray75] give definitions for four different levels of consistency
and discuss locking strategies to achieve each. Atomic transactions as | have defined them

maintain the highest level of consistency (level 3) defined in that paper. This is the level
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that places the greatest constraints on concurrent execution of transactions.! The locking
strategies presented by Gray are efficient, in that they allow the data base to be constructed

so that a high degree of concurrency may be obtained with little locking overhead.

A second paper by Gray [Gray77) discusses a mechanism for concurrency control in a
distributed system that makes use of the locking strategies described in the first paper.
While this mechanism performs transactions correctly unless highly improbable failures
occur, it fails to meet two of the goals outlined above. The locking strategy allows
transactions to deadlock, requiring some mechanism to detect deadlock and abort one of the
transactions involved in a deadlock in order to allow the others to proceed. Deadlock
detection requires a view of the global state of all transactions in progress, violating the

condition of making decisions based on local information.

The two-phase commit protocol used by Gray and others insures that a transaction is
atomic, no matter what failure occur during its execution. If a failure occurs at the wrong
time, however, one or more of the sites involved in a transaction may be obligated to hold
onto locks set by the transaction until the failure is recovered, preventing the execution of
transactions local to that site that set locks which conflict with those set by the transaction

suspended by the failure. This violates our goal of partial operability.

I. While the authors claim that forcing all transactions to see level 0 or level 1 consistency

allows transactions to be constructed to see higher levels of consistency, and may save locking
overhead by allowing many transactions to run at the lower levels of consistency, they also
point out that output values produced by a transaction reflect the level of consistency that
that transaction saw. These low-level consistency values are propagated by any transaction
that reads them, so that transactions desiring a high level of consistency can never read
values produced by those observing a lower level. Thus low level of consistency transactions
would appear to have very limited use.
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A study by Stearns and Rosencrantz (Stearns76) discusses a model for distributed
data bases in which the data are partitioned among sites and each transaction is performed
by a process that migrates among the sites that hold the values that the transaction accesses.
Each site is responsible for controlling the execution of transactions at that site, and the sites
communicate only when a transaction is moved and when a transaction is completed. The
authors describe a class of control algorithms that work by assigning an order to the
transactions to be processed and use that order to resolve conflicts between processes
attempting to access the same data, possibly by aborting and restarting them. The necessity
of restarting some transaction that has completed a substantial amount of processing is
undesirable, but seems unavoidable in this model of concurrency control. Similarly, the

protocols developed by Gray [Gray77] also require deadlock detection and backout.

Several papers [Bernstein77,Hammer78 Rothnie77] discuss the SDD-| database system
in which the set of transactions to be performed on the data base is analyzed to determine
the amount of locking needed. Transactions are divided into classes by the sets of items that
they read and write, and transactions in the same class are performed serially with respect to
each other. Transactions in different classes can be performed concurrently. The conflicts
between the sets of items read and written by different classes are used to select
synchronization protocols to be used to coordinate concurrent transactions from different

classes. Frequently, transactions can be run concurrently with little synchronization overhead.

The approach used in SDD-1 of pre-analyzing the set of expected transactions to
minimize the synchronization overhead for the most common t « 'sactions seems to be very
promising. The proof that this technique works, (i.e. that all trair « 1ons are atomic),
however, is so long and complicated as to be unconvincing. Making SDD-I robust in the

event of failures also appears difficult. The synchronization protocols used frequently
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involve waiting for messages that may be delayed by failures. The techniques used to insure
that delayed messages do not cause excessive delay in the processing of transactions are
extremely complicated, and may reduce some of the efficiency of this synchronization scheme

by requiring additional message exchanges.

The reliability goal of SDD-1 is also somewhat different from that of this thesis. The
goal in SDD-I is to keep the system as a whole running, even if this means that sites that are
separated from the network while involved in a transaction that spans several sites must

stop. Thus SDD-1 does not achieve our goal of partial operability.
1.4.2 Reliability

The work in reliability is perhaps less developed than that on concurrency control.
An important paper by Johnson and Thomas [Johnson75) describes an algorithm for
updating redundantly stored data such that all copies converge to the same final value. The
paper uses the notion of a timestamp, which expresses the order in which updates should be
performed, so that all copies converge to the same final value, even if the updates are
delayed, duplicated, or arrive out of order. Timestamps have been used in many protocols
for reliable synchronization. This paper does not discuss the problem of synchronization for

concurrent updates.

Thomas [Thomas?6) proposed an extension of the ideas in that paper to provide
synchronization. An algorithm was developed to allow updates to be performed as long as
more than half of the sites were functioning. The algorithm is complex, and several flaws
were found in the early versions. Another major problem with the Thomas algorithm is that

it applies only to cases where the entire data base is stored at each site.
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Alsberg and Day [Alsberg76) have developed a robust multi-copy update algorithm
with a somewhat different approach. They designate one copy as the primary, and insist
that all accesses occur through the primary copy. The other copies serve only as backups in
case the primary fails. This strategy eliminates one of the major advantages of replication of
data, that of greater concurrency in access. The algorithm does, however, seem applicable

where the only concern is greater reliability, and not greater concurrency.

A forthcoming paper by Lampson and Sturgis [Lampson76] presents a general
discussion of performing atomic transactions in a distributed system. The paper presents a
method of storing and updating information in a single machine, such that it is preserved
and updated correctly even if crashes occur during updates. This storage technique is useful

for implementing an atomic update within one site.

The last part of that paper gives an algorithm for performing updates at several
different sites atomically. A complicated protocol is used to distribute the updated values to
each site, such that during most of the procedure, each site can independently decide to abort
the update if messages are slow in arriving. There is still, however, a time window in which
a site must wait for the arrival of message from other another site, and cannot decide
whether or not to abort the update if such a message is slow in arriving. This algorithm is
similar to the two-phase commit protocol described by Gray (Gray77] and that used by Reed
[(Reed78). The Lampson and Sturgis algorithm makes the time window during which a site
can not abandon a transaction interrupted by a failure quite small by insuring that all of the
computation done by the transaction will be completed before any site is prevented from
abandoning the transaction. This is accomplished via extra steps in the protocol and extra

message exchanges. Chapter 5 discusses commit protocols in much greater detail.
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Reed [Reed78] is also working in the area of robust synchronization mechanisms. He
has developed a scheme in which each value assigned to an item can be named as a version
of that item. The scheme allows a transaction to obtain a set of mutually consistent values
for the items that it accesses by choosing the proper version names. This scheme is subject
to the same limitations as the Stearns and Rosencrantz scheme, in that a transaction may
need to be aborted to avoid deadlock. This problem is solved by having all of the updates
performed by a transaction (by creating new versions) be conditional until the transaction

has been completed.

This same mechanism of conditional transactions is used to solve the atomic
distributed update problem. The mechanism is simple and corivincing, but still leaves a time

window in which a failure can cause delay in processing new transactions.
1.4.3 Relationship of this Thesis to Previous Work

This thesis presents a model for distributed computing that specifies the effects of
failures on computation. The model is similar to the Actors model of computation
[Hewitt76,Hewitt77). The model describes computation performed by an unreliable system, in
which components can fail and failures effect the cutcome of the primitive operations of the
model. The thesis discusses implementation techniques that can be used to insure that the
actual effects of failures conform to their effects as described in the model. The techniques

used build on the work of Lampson and Sturgis [Lampson76] and Gray [Gray77).

While much research has been done on the problems of synchronization in message

based models of computation [Atkinson78Halstead78,Hewitt77), much of this work has

centered on developing primitive synchronization techniques that achieve mutual exclusion.
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This thesis shows how to apply such techniques (the atomic process steps of the model) to a

more complicated problem: coordinating transactions.

Most of the work on control of concurrent transactions has been on mechanisms that
allow transactions to deadlock, using some mechanism to detect a deadlock situation and
abort one of the transactions to resolve the deadlock and allow the others to proceed. The
mechanism presented in this thesis instead avoids deadiock. This mechanism allows more
concurrency than many other deadlock avoiding synchronization schemes, by postponing the
actual locking of a resource until it is needed or must be locked to avoid deadlock with some
conflicting transaction which needs that resource. This approach avoids unnecessary locking

that restricts concurrency.

The mechanism used for synchronization in this thesis is based on control of the
order in which messages are delivered. Implementations of the control algorithm that make
efficient use of the kinds of communication networks frequently used to interconnect sites in a
distributed information system are given. This approach is quite different from and can be
substantially less costly than the approach taken by most of the work on synchronization in
distributed systems which makes no assumptions about the communication network and

implements synchronization constraints with higher level protocols.

The technique used to coordinate transactions involves an analysis of the access
pattern of transactions that is similar to that used in SDD-1 [Bernstein77), but more fine
grained in that the actual derivation of each output of a transaction from the inputs to that
transaction is used in the analysis, rather than basing the analysis on the assumption that
every output of a transaction depends on every input, as is done in SDD-1. This analysis
shows how to structure the synchronization scheme so that frequent or important transactions

can be performed with minimal overhead due to the synchronization.
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The thesis includes a proof that it is impossible to solve the “atomic distributed
update” problem for all cases in a way that achieves the goal of partial operability, given the

semantics of the model presented here. The proof applies arguments advanced by [Gray77)

and [Akkoyunlu75] to the model of distributed computing presented in the thesis.

A novel approach to the atomic distributed update problem is presented. This
approach involves keeping several current values for some data items, and builds on the
version naming synchronization schemes of Reed (Reed78) and Stearns et al. [Stearns76).
This approach is not limited to the particular synchronization scheme discussed in this

thesis, but is applicable to any of the synchronization schemes discussed above.

To summarize, 1 feel that the important contributions of this thesis are:

A model for distributed computing in which the effects of failures

are well specified and implementation techniques for meeting these
specifications

A technique for coordinating what I refer to as an “atomic
broadcast” that can be implemented efficiently in the kinds of

computer networks currently used to connect sites in distributed
information systems

A technique for analyzing a set of transactions to be performed to
determine which ones can be performed without locking

A mechanism for locking data items at several sites in order to
perform a distributed atomic update without allowing a failure to
delay access to the locked data indefinitely, in most cases
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1.5 Thesis Plan

Chapter 2 presents the process model of distributed computing that is used
throughout the thesis. Techniques for implementing a distributed system that behaves as
specified by the process model are discussed. The problem of synchronizing transactions is
formulated in terms of this model. The chapter discusses several ways in which the order of
execution of transactions can be controlled, and shows that only one of these achieves the

goal of partial operability.

Chapter 3 discusses a simple synchronization problem that consists of coordinating

what I refer to as an atomic broadcast. An atomic broadcast distributes a set of messages to
a set of receivers such that the order in which any one receiver sees messages from several
such broadcasts is consistent with the order in which the broadcasts are received by any
other receiver. A simple mechanism to perform this task is presented. This mechanism
forms the basis of the synchronization mechanism for concurrent transactions discussed in
Chapter 4. Implementations of this mechanism that take advantage of the synchronization
constraints imposed by the communication network are discussed. These implementations
distribute the messages with very little overhead attributable to the enforcement of

synchronization constraints.

Chapter 4 discusses the problem of synchronizing transactions. A technique for
analyzing a set of transactions to determine what synchronization protocols are needed is
discussed. This analysis is used to show that correct synchronization of all transactions
cannot be accomplished with a protocol that achieves the goal of partial operability. Three
different classes of transactions are distinguished, on the basis of their access patterns. A
mechanism that builds on the aulzmic broadcast mechanism of Chapter 3 is presented to

perform transactions. This mechanism can be tailored to minimize the cost of synchronizing
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transactions that are expected to be performed frequently. The mechanism is general,
however, in that any transaction, expected or unexpected, will be correctly synchronized.
Unexpected transactions have little impact on the efficient operation of the synchronization

mechanism for the expected transactions.

Chapter 5 considers the implications of the need for locking on the goals of partial
operability and autonomy. These goals dictate that a site that has set a lock for some
transaction should be able to decide to abort that transaction if a failure interferes with the
prompt completion of the transaction or if the transaction violates the access policy of the
site. I show that there is no protocol that can be used to insure that no failure can prevent a

functioning site from promptly completing or aborting a transaction requiring locking.

As a solution to this problem, I propose a novel mechanism that allows locked data
items to be made available to other transactions before the completion or abortion of the
locking transaction is decided. This mechanism is appropriate for systems in which the
ability to perform transactions in real time, without fong defays waiting for focks to be

released, is important.

Chapter 6 presents a comprehensive example showing how to apply the techniques of
this thesis to a typical distributed information system. The example is an inventory control
system described in a report on SDD-1 [Bernstein77). The techniques of this thesis are used
to develop a robust synchronization scheme for this example with little overhead due to the

synchronization.

Chapter 7 summarizes the new ideas in the thesis and discusses areas for future

research.
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Chapter 2
The Process Model of Distributed Computing

This chapter presents the model for distributed computing that will be used in
discussing synchronization in a distributed information system. The first section presents the
model which includes specifications of the effects of failures on computation expressed in the
model. Implementation strategies for limiting the impact of actual failures to the to the
failure effects specified in the model arz discussed. The second section poses the problem of
performing transactions (as described in Chapter 1) atomically in the framework of the
model. Various techniques that could be used for synchronization are discussed to show that

only one of these can be used by a system that achieves the goal of partial operability.

2.1 The Model

Based on the assumptions and goals set forth in the previous chapter, I will now
describe a model for computation in a distributed information system. In order to centralize
the description, this chapter presents all of the model, even though some of the concepts will
not be used until much later in the thesis. This model includes two forms of communication:
message passing, and changes in state observable by later computations. Message passing

may occur between sites or within one site. Communication through state changes, however,

occurs only within a single site.




2.1.1 Definitions:

The basic unit of the model is a gp;_ce_ssu.' A process can be viewed as the unit
within which communication through state changes can occur. A process consists of a Jocal
state, a set of input ports, and a set of process step specifications. The computation
performed by a process takes place in a series of process steps. A process step maps an
input local state and a set of input messages into an output local state and a set of output

messages. Each process step specification specifies the form of a process step, by stating:

A set of input ports for the step. One message is received by the
step from each port in this set.

The output local state as a function of the input local state and the
messages received.

A set of output messages and their destination ports. Both the
message contents and destination ports must be specified as
functions of the input Jocal state and the messages received.

An important point to note about a process step is that it computes its output
messages and output local state. Thus a single process step can be used to perform
computation on the local state of the process and the messages received, rather than simply
retrieving information from the local state or storing information in the local state in
response to messages. This capability of a process step to perform computation is used in the

implementation of a transaction, as will be discussed in Chapter 4.

I. The word process has been used to denote a number of ill specified concepts in the
literature. My use of the term process is not inconsistent with the common usage of the term,
however the reader should realize that the term has a very specific meaning in this thesis.
Other terms that have been used for very similar concepts are Actor [Hewitt76), and message

handler [Reed78).
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Conceptually, each process resides at one site, its home site. The home site of a
process is the location of the process state of a process. The home site also is responsible for
‘ carrying out process steps. The fact that each process is implemented at a single site will be

used in determining the effects of failures on the execution of process steps in this model.

!. Each of the process steps of a process is atomic with respect to the other steps of that

process. The output local state of one process step becomes the input local state of the next

step in the sequence. The execution history of a process consists of the sequence of steps
| that have been performed by that process. For each process p, there is an ordering <p on

the steps of p, such that s; <p S9 if 5| preceded sq in the execution history of p.

The set of messages that a process has received in each of its process steps and the
initial local state of the process form a complete description of its execution history. From
the messages received at each step and the process step specifications, one can deduce the
messages that are produced and the changes made to the process state. The input messages
to each step can be represented by a set I of [message,port) pafrs describing the messages

received and the ports at which they were received.

Figure 21 shows an example of an execution history. The figure shows a list
describing the input messages to the process steps of P. The first process step of P is
represented by the bottom entry in the list, with subsequent process steps higher in the list.
This list may be thought of as a log that records the messages received by P. When a
process receives messages at a single port only, the execution history can be represented by a

list of messages received, as each step receives a single message at that port.
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Figure 2.1

The Execution History of a Process
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The local state of a process is private to that process and can only be changed by
process steps of that process. Similarly, for each port, there is a slngE process that receives
the messages sent to that port! The lack of "sharing™ of ports or local state between

processes greatly simplifies the implementation of processes in a distributed system.

The charactensncs of a process stated above (sequential execution of process steps,
each process at one home site, and no sharing of process state) describe the beavior that a
process must exhibit, not its implementation. In practice any implementation that behaves as
described above is satisfactory. In an implementation of processes, for example, process steps

may be executed concurrently so long as the behavior is the same as that produced by

sequential execution.

l. Note, however, that several processes may send messages to the same port.
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One can view the execution of a process as being performed by an interpreter that
carries out the execution of all of the processes in a system. This interpreter maintains a
local state for each process and a set of messages for each input port. One cycle of this
Interpreter selects a process step specification of some process, selects a message from each of
the input ports for that step, and carries out the selected step. The interpreter deletes the
received messages from the sets of messages for the input ports, changes the local state of the

process, and adds any output messages produced to the sets of pending messages for the

appropriate ports.

The interpretation can be distributed (one interpreter for each process) because the
only interaction between steps of one process and steps of some other process is the sending
of output messages produced by process to input ports of some other process. This
Interaction can easily be accomplished by message passing between the distributed

interpreters.
2.1.2 Effects of Failures in the Model

The process step specifications completely specificy any computation taking place in
the absence of failures of the underlying mechanism that carries out the process steps. This
section discusses the kinds of failures that can arise in a distributed information system and
their effect on the execution of process steps and on message passing between processes. Two

extensions of the process model to include a specification of the effects of failures on

computation are presented.
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2.1.2.1 Types of Failures

Two different kinds of failures can occur in a distributed information system: site
failures, and communication failures. A site failure is local to some site, and can cause
processing at that site to be suspended, or cause information stored at that site to be lost or
damaged. A communication failure causes inter-process messages to be lost, delayed,
damaged, or delivered to the wrong recipient. Many implementation techniques can be used

to hide the effects of failures from a user computation.

An error detecting code, or checksum, can be used to detect messages that have been
damaged or delivered to the wrong recipient. While it is impossible to detect all such errors!
the probability of undetected communication errors can be ‘- le arbitrarily small by
increasing the proportion of each message devoted to error detection. I will therefore make
the assumption that all communication errors can be detected and henceforth ignore the
arbitrarily small, but non-zero probability of an undetected error. If any message that is
found to be in error is discarded, the possible effects of communication errors are limited to

9
lost or delayed messages.©

The most common effect of a site failure is that computation at that site is
temporarily suspended, and that some of the computation in progress at the time of the

faslure may be lost. If a site failure were to occur during the execution of a process step, that

I. No matter what kind of error detecting code is used, there is a chance that a
communication failure will cause a message to be transformed so that it appears to be correct
to the error detection mechanism but does not correspond to the original message.

2. Many communication systems exhibit another failure mode in which a message is
duplicated.  In designing a communication protocol, one has a choice as to whether to
guarantee that all messages are delivered reliably, possibly delivering some twice, or to
guarantee that each message arrives at most once, and that some messages may be lost. |
have chosen the latter alternative. In the next section, | introduce the concept of robust
sequenced communication which hides the effects of both of these kinds of failures.
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step might be left partially completed, with the local state of the process corresponding to
neither the input state nor the output state of that step. This can be prevented by using a
robust storage management technique for storing the local state of a process. Such a
technique allows a group of updates to be made atomically to information stored at one site,
such that if a failure occurs either all or none of the updates take place. The atomic stable
storage mechanism of Lampson and Sturgis [Lampson76] is such a technique. A description
of all of the updates to be performed, known as an intentions list, is formed and written to
permanent storage in a single operation before any of the updates are carried out. A failure
occuring before the intentions list is generated or one interfering with the writting out of the
intentions list causes none of the updates to be performed. Once the intentions list has been
written, however, the error recovery mechanism can use it to insure that all of the updates
specified will be made, even if the site making the updates fails after having partially
completed them. The write-ahead-log protocol of Gray [Gray77] also provides the same
capability for making a collection of updates atomically, by writing out a description of the

updates to be made to a log tape before any of the updates are made.

Each process step can be implemented as an atomic update to stable storage. This
implementation insures that a site failure leaves the local state of a process executing a
process state either at the input state to that step or the output state of that step, and not

some intermediate state or mixture of the two.

2.1.2.2 Two Ways to Include Failure Effects in the Process Model

By using the low level implementation techniques discussed above, one can constrain
the way in which failures affect execution of processes. By augmenting the definitions of the
process model to include specifications of the effects of failures, we can produce a model that

describes computations in a “real” distributed information system in which site and
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communication failures can occur. The choice of the specifications of the effects of failures
should be made so as to reduce the effects of actual failures on the model, but also to be sure
that an implementation of processes in which the effects of failures are limited to the
specifications can be obtained. I consider two different failure specifications, one that is easy
to implement and one that is harder to implement but limits the effects of failures more

severely.

2.1.2.2.1 Simple Processes

Using basically the techniques described above, one can build an implementation of
processes in which the effects of a site or communication failure are limited to lost or delayed
messages. This is done by using error detecting codes to detect communication errors and
discard messages that are in error, and storing the local state of each process in atomic stable
storage. Some care must be taken in the implementation of a process step to insure that no
possible failure causes messages to be apparently duplicated, by causing some part of a
process step to be repeated. If a process step is restarted, after being partially completed,
then it may send out the same message twice (once before being restarted and once after), or

may modify its local state as if it had received the same message twice.

These undesirable effects can be avoided by performing a process step in three
stages. First, delete any record of the input messages to the step so that a site failure
occuring at this point would cause them to be lost. Then, perform the process step and
update the local state of the process to reflect its completion. Finally, distribute the output
messages of the process step to their destination ports. A site failure occuring before the local
state of the process is updated can result in the process step not being performed, or an
apparent loss of all of the input messages to that step. A failure after this point may cause

output messages of the step to be lost. No failure causes the local state of a process to be

|
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modified as if a process step were performed twice, or causes the messages produced by a

process step to appear to be duplicated.

A less likely result of a site failure is that the information stored at a site in
permanent stable storage is damaged. This can be detected, with high probability, through
the use of error detecting codes. As with communications failures, however, it is impossible
to detect all such errors. The local state of a process can be replicated within one site to
decrease the probability that a failure will destroy all copies. A process step is implemented
as an atomic update to all of the copies of the process state. Any copy of the local state of a
process that survives a site failure can thus be used to become the current local state of the

process.

To summarize, the effects of a site failure can be limited to lost messages (through a
process step that was aborted after receiving messages), or delay of processes at that site.
This is achieved by using atomic stable storage to represent the local state of processes,
replicating local states, using error an error detecting code to detect damage to a local state,

and indefinitely suspending any process for which no valid focal state can be found.

Limiting the effects of failures to lost messages or delayed execution can easily be
achieved without excessive communication or processing overhead. Many applications
require a higher degree of reliability. In the next section, 1 discuss a different

implementation of processes that gives a greater degree of reliability with greater overhead.
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2.1.2.2.2 Robust Sequenced Processes

The effects of failures on simple processes are well specified, but still undesirable for
most applications. For many applications, guaranteed delivery of all messages sent by a
process to a port is desirable. This is a very difficult constraint to express, as indefinite delay
of the delivery of any particular message by a communication failure cannot be prevented.
In order to clarify what I mean by guaranteed delivery, I will introduce a constraint that I
refer to as sequencing on the delivery of messages. Sequencing implies that messages sent
from one process p to a port q are received at q in the same order in which they were sent

by p. Robust sequencing implies in addition that no messages are lost.

For each port q define the ordering <q on the messages received at port q to be the
total order in which those messages were received. For each process p the ordering <p on
the process steps of p describes the order of occurrence of those steps. What I mean by
robust and sequenced message delivery is th'at for any process p that sends messages to poit
q, the order <q in which the messages sent by p are received at q is exactly the same as the
order in which the steps that produced those messages are ordered by < This means not
only that the messages are received at q in the same order in which they were produced, but

also that there are no gaps in the sequence of messages received. Reception of message m

sent by p to q can only occur after reception of any message m’ for which m’ <p m.

Robust sequenced processes can be implemented by separating the execution of
process steps from the actual communication of messages from one site to another. This can
be done by maintaining a process database for each process. The process database for a

process p contains the local state of p, an input message queue for each input port to p, and

an output message queue for each port to which p has sent a message. Each output

message queue contains a list of messages and a transmit sequence number (TSN). The
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input message queue for a port q contains a list of messages and a set of receive sequence

numbers (RSNs), one for each process that has sent a message to q. A process database is
stored using atomic stable storage, so that a site failure during modification does not cause a

process database to be left in some intermediate state.

A process step of p can now be implemented as an atomic update to the process
database of p, which removes the messages received by that step from the input message
queues, changes the local state of p, and appends the messages produced by that step to the

output message queues. (If there is no queue for some destination port, a new one is created).

Messages can be transfered from an output message queue of a process p for a
destination port q to the input message queue for q with a robust communication protocol
using the sequence numbers RSN and TSN. Briefly, each site periodically attempts to send
the first message in any non-empty output queue, attaching the TSN of that queue to the
message sent. When the site holding port q receives a message sent from p, it verifies that
the sequence number attached to that message is equal to the RSN of q for p, and if so
updates the process database of the process assocnafed with port q to add the message
received to the end of the input queue for q, and to increment the RSN of port q for p.
Whether or not the sequence number of the message received is correct, the receiving site
sends an acknowledgement to the site holding p containing the RSN of q for p. This
acknowledgement informs the sender of the most recently received message. The
acknowledgement either acknowledges receipt of a message or informs the sender that
retransmission of some message may be required. When the site holding p receives such an
acknowledgement, it verifies that the sequence number in the acknowledgement is the same
as the TSN of the message queue for q in the process database of p, and if so deletes the

first message in that queue and increments the TSN.

R
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I will not at this point explain how the message queues are initially set up when two
processes first begin to communicate with each other. This is somewhat complicated and will

be discussed at length in Chapter 3, where a use for robust sequenced processes is discussed.

This implementation of processes guarantees delivery of inter-process messages in
sequence. The cost of the protocol is the extra messages (acknowledgements) used, and the
storage required for the message queues and sequence numbers. This cost is small if each
process converses with relatively few processes, and if messages in the output queues are
promptly forwarded.! In the synchronization protocols used in this thesis, each process
converses directly with relatively few other processes, thus the cost of robust communication

is small.
2.1.3 A Justification for This Model

A number of models have been proposed for distributed computing. 1 feel that the
model described above best reflects the goals and assumptions of the kind of distributed

information system discussed in Chapter 1.

One semantic model that has been proposed for distributed computing is the object
model [Liskov77Saltzer78]. In the object model, information is represented by typed objects.
For each type of object, there is a set of operations, such as add subtract, multiply, and
divide for integer objects, which can be used to manipulate objects of that type. In addition

to primitive objects, such as integers or booleans, any user may define a new type of objects,

I. Any site that does not wish to devote space to large input or output message queues can
refuse to execute a process step for a process with non-empty output queues, and can refuse
to acknowledge a message sent to a port with a non-empty queue. These measures do,
however, introduce the possibility of deadlock if the application requires buffering between
processes.
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describing the operations that can be performed on objects of the new type and a
representation for objects of the new type. Computation is performed as sequences of

operations on the sets of objects.

While the object model is a very natural one for many users, several problems arise
in the application of the object model to distributed computing. The most serious of these
problems is that it is unclear what the appropriate semantics for accessing remotely managed
objects should be. Many suggestions have been made, including treating all object references
uniformly, whether local or remote, treating references to remote objects specially and
maintaining a local copy of the remote object, and disallowing references to remote objects,
and instead using message oriented communication between sites. The first of these
suggestions is difficult to implement, while the others violate the conceptual simplicity of the

object model.

The uniform object model (in which a user computation does not distinguish
between references to local and to remote objects) is difficult to implement reliably.
Operations that involve objects at different sites can fail in different ways (due to the
possibility of communication failures) than operations on objects all at one site. Hiding the
different failure modes from the user is difficult or impossible, forcing the user to deal with
the problem of determining what the outcome of a sequence of operations on objects will be

if failures interfere with their normal completion.

Several similar semantic models based on message passing have been developed for
distributed computing. These include Actors [Hewitt76), the u-calculus [Halstead78), and
data flow [Dennis75]. These models in their pure form all describe computation such that
the only communication between primitive computation events is through explicit message

passing.
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The Actors model provides a uniform way of describing any computational activity

as a group of events, each event being the reception of a message by an Actor. One
problem with the Actors model is that exactly which Actors are primitive, implementing their
effects directly rather than sending messages to other Actors to achieve ther effects, is left
unspecified. Thus it is sometimes awkward to deal with the Actors model, as there is always !

another level of description "below" any level that you choose.

Side effects are introduced into the model with the notion of a cell, an Actor that
remembers one of the messages that it has been sent and repeats that message on request.
This primitive mechanism can be used for modeling computation in which the processing to
be applied to some message is not known in advance and is dependent on some future event,
such as storing a data item for later transactions. Cells are also used to implement events in
which two or more messages are logically "received” (by using cells to store messages}, as the

Actors model does not allow an Actor to receive two or more messages in a single event.

'_I'he u-calculus is similar in principle to the actors model. It, however, provides a
mechanism for introducing primitive functions that are not implemented by message passing.
Cells are used in this model as well, for storing values for later use. In addition, a
mechanism called a token is introduced to provide a way for a pair of messages to be
received in one event. While the token mechanism is more straight-forward than using a
cell, it is still rather hard to understand. Moreover, the implementation of a distributed
system based on the u-calculus seems difficult (and in fact the protocols presented for one
such implementation [Halstead78] are very complex), particularly in implementing cells and

tokens.
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Data flow schemas have frequently been used as a tool for describing repetitive
processing, such as computing a Fourier transform. A data flow schema provides a natura’
mechanism for events in which two or more messages are received, unlike the above models.
Unfortunately, computations in which the processing to be applied to some message depends
highly on the contents of the message are hard to describe in data flow. Recursion and
iteration are somewhat difficult to express naturally, and greatly add to the difficulty of
implementation. A data flow description of computation where a lot of information is stored

for later (unknown) use, such as a data management system, is awkward.

The process model previously described is an attempt to bring together some of the
good features of the models described above, without the disadvantages. The two different
forms of communication provided in the process model represent the properties of
communication in a distributed system better than either observation of state changes or
message passing alone. It is easy to specify the effects of a failure in a system based on
processes, and to build an implementation of processes that meets the specifications.
Distinguishing between intra-process and inter-process communication encourages the user to
plan his application carefully so as to minimize unnecessary communication between sites,

and to plan for site or communications failures.

The process model also captures the concept of autonomy. All stored data is
represented by the local states of the processes. No process can be “"coerced” into performing
some function for any other process. All access to stored information is mediated by some
process that can implement its own access control policy. This allows the problem of access
control to be largely ignored in the model, as each process can provide its own access control
policy. At the same time, the process step specifications of a process specify the access control

policy of that process by stating what the process does in response to the messages that it

—
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receives. Thus a user implementing some application can examine the process step
specifications of processes providing services that he wishes to use and can in many cases

determine whether or not access restrictions will be encountered in his application.

Also inherent in the process model is the notion that some processing activities can
be performed simply by one site. Although each process has an overall specification of its
operation, in a real system most processes will be implemented from smaller pieces. I will not
specify what those pieces are, as the implementation of a process could be based on a
message passing system, a conventional programming language, or the object model,
depending on what is deemed most convenient. Within one process, however, one need not
deal with the special problems of a distributed information system, as each process is

executed solely at one site.

The mechanism used to specify a processing event that logically receives messages
from two or more sources (multiple ports) seems much more natural in the process model
than the mechanisms using cells or tokens. As events in which two or more memgé are
received are common in many applications and can be constructed from the primitives in the
Actors or p-calculus models, there seems to be no reason not to include this important special
case in the model. Inclusion of this capability identifies for the implementor of the system
the cases where two messages are being received by what is logically one process step. This
makes it simpler to construct an efficient and robust implementation than if the multi-port

receive were simulated using some more general mechanism.

The association of several independently named ports with one process is a very
useful feature of the process model. It can be used to group several independent processing
activities that wish to communicate via a shared data base in a single process. Such

processing activities can be implemented as independent process step specifications of the
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same process, each of which receives its input messages through a different set of input ports.

This use of processes is similar to a monitor (Hoare74), or a critical section.

A second, more important feature of ports is that they provide a way to classify the
messages sent to a process before messages are received. One application of this capability
would be a process with several queues of pending messages that are serviced with some
priority algorithm, not necessarily in the order in which the messages arrived. Ports also
allow a process to temporarily ignore one class of messages while exchanging messages with
other processes to complete some processing activity. This use of ports will be demonstrated

by the locking strategy discussed in Chapter 4.

The differences between my model and the others are a reflection of different goals.
My model is an attempt to provide a way to express applications for a distributed
information system clearly, such that the effects of failures are well specified. Others have

been more concerned with formality and minimization of the primitive concepts.

2.2 Atomic Transactions Revisited

This section examines the problem of performing transactions atomically as expressed
in the framework of the process model. We sh:w how the simple definitions of transactions
given in Chapter 1 can be stated in terms of the process model and show how to express the
property that transactions are performed atomically as constraints on the order of execution

of process steps. Several mechanisms that could be used to control this order of execution to

achieve atomic transactions are discussed.
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2.2.1 Expressing Transactions in the Process Model

Recall that a transaction is a set of accesses to stored data items. The definitions of a
data management system given in the previous chapter can be mapped onto the process
model by using several processes (at least one for each site) which 1 refer to as data
managers. Each data manager maintains some of the data items as components of its local
process state. The process steps of a data manager perform the accesses to the data items
held by that manager. If a data item is replicated, with several sites having copies, then

several data manager processes maintain copies of that item.

A transaction in the process model consists of a set of process steps of the data
manager processes which together carry out the accesses needed to perform the transaction.
Each data manager may perform several steps in carrying out a single transaction. If
communication between managers is required to perform a transaction, then the output
messages of some of the processes steps that perform that transaction will be used as input

messages in some of the other process steps performing the same transaction.

In addition to the data manager processes, which implement accesses to data items,

there are transaction processes, which perform the function of translating from a high level

description of the transaction to a set of messages to be sent to the data managers. These
messages direct the data managers to perform the necessary accesses to carry out the
transactions. A more detailed description of the function of the data managers and

transaction processes is given in Chapter 4, which discusses mechanisms for performing

transactions.
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2.2.2 Performing Transactions Atomically

Intuitively, a transaction is atomic if either all or none of its effects are visible to
other transactions. There are two ways in which one transaction may observe the effects of
other transactions: messages sent by steps of one transaction that are received by steps of
another transaction, and the modifications of local process states that are made by steps of

one transaction and later observed by steps of another transaction.

The first methed of observation, direct message passing, rarely occurs. This is
because a transaction is a complete, independent processing acﬁvity and does not in general
communicate directly with other transactions. The exception to this case is that the user who
submits a transaction (by sending a message into the distributed information system) may
know of other transactions by having received messages sent from other transactions.
Controlling sequencing of transactions so that the order of transactions as perceived from
explicit message passing is consistent with their order as perceived from observations of
modifications to local state is relatively simple. For the moment, I will present a definition of
atomic transactions that ignores this method of observing ordering. Chapter 3 discusses this

problem further.

The second source of communication between transactions, the local process states, is
much more important in most applications. Recall that for each process p there is an
ordering relationship < ) that defines the relative order of occurrence of process steps of p.
These local ordering relationships can be used to define an ordering of the transactions as

follows:

Transaction T) < Ty Iff there is a process p and process steps s; and
sg of p such that sy is a part of T}, and s is a part of Ty and s; p

52.
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Thus two transactions are ordered if both: contain steps of the same process. This ordering
is a reflection of which transactions may have directly observed effects of which other
transactions. A transaction T can also observe the effects of some transaction Tg indirectly
if there is some transaction Ty such that Ty < Ty (because of the order of process steps of
some process p) and Ty < T (because of the order of process steps of some other process .
Indirect observation can occur because the effects of a transaction may depend on the values

that that transaction saw.

The condition that we require for a transaction to be atomic is that either all or none
of its effects be reflected in the data values seen by other transactions. If a group of
transactions is performed atomically, then the effects of those transactions (modifications
made to the values of data items and messages produced by the transactions) are the same as
if the transactions were performed serially in some sequence, with each transaction being
entirely completed before the next transaction in the sequence is begun. This requirement
can be expressed as a condition on the < ordering resulting from the execution of

transactions as follows:

Transaction t is atomic with respect to a set of transactions T if
there is no sequence of transactions ty, .., t, in T such that t <t

for 1 <i<n,and t, <t <t;. Equivalently, a set of transactions is

atomic if the transitive closure! of the < ordering, <*, is a partial
order on that set of transactions.

In order to insure that a set of transactions is performed atomically, we must insure
that the < ordering resulting from any concurrent execution of those transactions is cycle free.

One way to insure this is by choosing the assignment of data items to data managers such

1. Throughout this thesis, I will use the superscript » to designate a reflexive transitive
closure (i.e. x <" x for any x).
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that for each transaction there is a single data manager that can perform that transaction.

Thus each transaction is seen by only one data manager, and no cycles in the < ordering can

arise. |

This approach can be rejected because the assignment of data items to managers is |
not solely under control of the system designer. The autonomy of individual sites dictates
that certain items must be managed by processes at certain sites. Some transactions may need
to access data items from several different sites. Because each process must be executed at
one site, there is no way to have one data manager process perform a transaction at several

oy |
{ sites.

Perhaps a more serious objection to this proposal is that it makes the addition of new
transactions, which access items in patterns that were not planned, difficult or impossible.
Adding a new transaction may require complete redesign of the system so as to allov * vew L

transaction to be performed by a single process.

We therefore must show how to coordinate transactions that involve process steps
from several different processes. This can be accomplished by controlling the order in which
the data managers perform the process steps which perform accesses of transactions. The
b next section discusses four primitive mechanisms that could be used in coordinating the

process steps of the data managers.

l. Recall that the specification of the effects of failures on the execution of a process was
greatly simplified by the fact that each process is executed at one site. Therefore, we do not
wish to abandon this assumption.
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2.2.3 Primitive Synchronization Mechanisms in the Process Model

There are several mechanisms available in the process model that could be used to
constrain the order in which processing operations are performed by processes. These
mechanisms could be used to construct a solution to the problem of performing transactions
atomically, in much the same way as mechanisms such as Semaphores [Dijkstra68) or
Monitors [Hoare74] are frequently used to construct solutions to other synchronization

problems.

To achieve the goal of partial operability, the synchronization scheme for
transactions must allow a transaction that is purely local to one data manager to be
performed whenever a request to perform that transaction is sent to the data manager. Thus
synchronization mechanisms that do not allow such transactions to be performed promptly
should be avoided. The goal of partial operability will thus serve as a guide in selecting

synchronization techniques for transactions.

One synchronization technique that has already been introduced is the sequencing of
messages sent between processes. Sequencing consists of guaranteeing that messages sent
from one process to a port are received at that port in the same order in which they were
produced by the process. As we shall see in the next chapter, robust and sequenced message

communication is sufficient to provide proper synchronization of many kinds of transactions.

Sequencing alone does not compromise the goal of partial operability. The only case
in which the constraint of sequencing prevents a message sent from a process p to a port q
from being promptly received and acted upon is the case in that there is a previous message

from p to q that has not yet been received at q. Using the implementation of robust

sequenced processes described earlier in this chapter, this situation is quickly remedied

T
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whenever it occurs. Unfortunately, as we will demonstrate in Chapter 4, sequencing alone is

not sufficient to perform all transactions atomically.

A second technique that could be used to control the order of execution of
transactions is one that I call explicit locking. Explicit locking consists of postponing the
reception of some class of message by a process until some other message has been received.
Chapter 4 will discuss locking in greater detail and will introduce a mechanism for explicit

locking into the process model.

A synchronization scheme using explicit locking does not achieve the goal of partial
operability. Using explicit locking, a data manager could postpone the reception of a request
to perform some local transaction until that data manager had received other messages.

Explicit locking could cause the local transaction to be delayed indefinitely.

Sequencing and explicit locking both control the order of processing operations by
controlling the order in which messages are received by processes. Another approach to the
control of the order of execution of processing operations is to control what action is taken by
a process on receiving a message. The following two synchronization techniques use this

approach.

One way in which a process can postpone the processing operation requested by a
message that that process receives is to record the message in the local state of the process.
The stored message can be retrieved and acted on in a later process process step. One could

call this technique squirreling.

Using squirreling, a transaction local to one data manager can be delayed indefinitely

because the request to perform that transaction can be squirreled away indefinitely by that
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data manager, pending reception of some other message. Thus squirreling does not achieve

the goal of partial operability.

Another mechanism that can be used to postpone the processing requested by a
message is to have a process that receives a message that the process should not yet act on
send the message to another process. That other process would either . ' on the message, or
pass it on again, possibly back to the first process. This technique could be refered to as
buck passing. Buck passing also does not achieve the goal of partial operability, as a
request to perform a transaction could be deferred indefinitely by being passed from process

to process.

Both buck passing and squirreling are what could be called implicit locking
(because request messages are not explicitly postponed, but the requested processing is
postponed). Implicit focking is characterized by the fact that two or more process steps of the

data manager receiving a request are used to perform the processing requested by a message.

When two or more process steps of a single data manager are used to carry out a
transaction, the goal of partial operability is not achieved. If two or more process steps carry
out accesses for a transaction, then other transactions that access the items accessed in those
steps may have to be excluded from occurring between the two steps. If a failure delays the
second step of a data manager performing accesses for a transaction, then transactions local
to that data manager that must be excluded may be indefinitely delayed. If only one process
step (of two or more) of a data manager performs accesses for the transaction, then some
condition must be preventing those accesses from being performed by the first step of the
data manager. The manager must in effect be waiting for some message before it will
perform the accesses for the transaction. That message could be delayed indefinitely,

delaying the transaction.
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To summarize, the sequencing mechanism is the only one of the techniques for

controlling concurrency in the process model that achieves the goal of partial operability. In

Chapter 3, we will demonstrate a mechanism that uses sequencing to provide control for
many processing operations. In Chapter 4 I demonstrate that sequencing alone is insufficient
for coordination of all possible transaction, and show that some mechanism in which two

process steps of some process are used to perform one transaction is needed.

2.3 Summary

This chapter presents a semantic model for a distributed information system in which
the effects of failures are well specified. The model combines features of Actors, Data Flow,
and the Object Model. The model makes a strong distinction between two forms of
communication: inter-process messages, and intra-process communication through shared

state information.

Two different classes of failures in a distributed information system were discussed:

site failures and communication failures. We showed two ways in which the process model
could be extended in order to include a specification of how computation is affected by such i
failures. One extension (simple processes) was easy to implement, but allowed failures to
have relatively severe effects. A second extension (robust sequenced processes) limits the
visible effects of failures, but requires more overhead in its implementation. The remainder
of this thesis will make use of robust sequenced processes in developing algorithms for

performing transactions.

The problem of performing transactions atomically is translated into the terminology

of this model, and a plan for an implementation of a distributed information system based
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on the model is given. A condition for determining whether or not a transaction is atomic is

expressed in terms of the ordering relationships of the model.

Finally, techniques for controlling the order of execution of process steps were
discussed. One of these techniques (sequencing) was shown to be consistent with our goal of
partial operability. Other techniques allow a failure to delay the completion of a local
processing operation indefinitely, but as we shall demonstrate in Chapter 4 are necessary for

coordination of some kinds of transactions.
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Chapter 3
Atomioc Broadcasting

Many transactions performed by a distributed information system can be decomposed
into independent component operations, each of which is performed at one site and does not
depend on any other site. In the model of the previous chapter, each component of such a
transaction is performed by a single process step. All of the messages that form the inputs to
these process steps can be constructed in advance, before any step is performed. The
ordering of such a transaction relative to other transactions is controlled by the order in

which these messages are received.

In this chapter, I introduce a mechanism for atomic broadcasting, which distributes

a set of messages to a set of destination ports so that they are received atomically with respect
to other such sets. If an atomic broadcast is used to distribute the input messages for a
transaction with independent components, that transaction is performed atomically. Atomic

broadcasting is a simpler problem than that of coordinating arbitrary transactions.

3.1 Definitions

For convenience, 1 assume that all messages and all ports are uniquely identified.
Many processes receive messages at a single port only. For such processes, I will use one
identifier such as p to refer both to a process and the port at which that process receives
messages. Recall that for each process p there is an ordering < pon the messages sent to p
that reflects the order in which those messages are received. Each message m {s included in

the order b when it is received by p. The ordering <p for a process can be determined
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from the execution history of p. For a process that receives messages at one port only, the
execution history can be represented as a list of messages received, as shown in Figure 3.1
This representation can be viewed as a log, recording each message received by p as it is

received. The most recently received message in the execution history is at the top of the list.

I define a broadcast message to be a set of messages and destination ports. A
broadcast message B can be represented by a set of pairs, {[my,p/], ... [m,p,,]} such that m, is
a message, and p; is the name of the port (and process) to which m; is sent. The individual
messages that make up a broadcast are referred to as the components of the broadcast. The
order in which a group of receiving processes receive a group of broadcast messages can be
derived from the order in which the components of those broadcasts are received by the
individual processes. The order of two broadcast messages By and By, is defined as By < By
if By contains a message m; sent to a process p, and By contains a message mo also sent to p,

and m; <p Mo. This definition is completely analogous to the definition of the < ordering

Figure 3.1

The Abbreviated Execution History of a Process
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on transactions. Similarly, a broadcast message M is atomic with respect to some set of

broadcast messages if the < ordering on those messages is cycle free.

Figure 3.2 illustrates the reception of three broadcast messages that were not atomic.
B, includes two component messages myx for X and m;y for Y. Similarly, By and By
contain components for X and Z, and for ¥ and Z respectively. In this example, X receives a
component of B, before one from By,  receives a component of B4 before one from Bo, and

Z receives a component of Bo before B;. These ordering relationships constitute a cycle.

A second way in which two broadcast messages could be considered to be ordered is
if the sender of one message was one of the receivers of the other. For the moment, 1 will
ignore this kind of ordering relationship. A later section extends the notion of an atomic

broadcast described here to include such relationships.

Figure 3.2
Non-Atomic Broadcasting
Bl = {(ml'x.X)Kml'Y,Y)}

32 = {(lnz’x.x%(mzZoz)}
Bs = {(!ns'Y.Y>.<m3.z-Z>}
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3.2 An lllustration of Atomic Broadcasting

The independence of the process steps to be coordinated in an atomic broadcast (the
steps that receive the messages that make up the broadcast message) makes coordination of
atomic broadcasts simpler than coordination of more general operations. A simple real world
analogy may help to illustrate this point. Consider an office in which all communication is
through interoffice memos. Sending some important notice to all employees about a change
in working procedures is an instance of an atomic broadcast. The notice should be sent
atomically, so that employees working on and communicating about the same project receive
the notice at the same point in their work. This can be accomplished relatively easily
through the office mail system. At one instant, all of the notices are entered into the mail
system and take their places in the queues of mail waiting to be delivered to and read by the
employees. After that, each employee will find the notice at the same point (relative to other
mail) in his list of messages. It does not matter that some employee on vacation may not see
the memo for a month or more, as he will eventually see it in the proper sequence relative to

other mail.

Compare this situation with that of a group project, which requires a joint discussion
by a group of employees. To complete such a project atomr- !y with respect to other work
in progress effectively requires that each group member set aside a certain time for the
discussion. Scheduling the meeting is a much more difficult problem than placing a notice
in each employees in basket. A second, more serious problem is that if the meeting has to be
suspended for some reason, the members of the group can not work on any other project that

may conflict with the group effort, as the effects of such work will not be known to other

members of the group.

b it e
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This analogy is crude, but gives a feeling of the differences involved. The
distribution of the memo as an atomic act is easy, because there are no constraints on when
the recipients actually read the memo. It is sufficient to place the memo in the correct

sequence in each employee's mail.

3.3 A Mechanism for Atomic Broadcasting

In this section, I present a mechanism for coordinating atomic broadcasting that uses
robust sequenced communication between processes to distribute the component messages of a
broadcast message to their destination ports. The solution uses processes that I refer to as

message forwarders to distribute these messages. Each message forwarder receives messages

at a single input port. A message forwarder has a single process step specification which can
be described by a function f{M) = {{m,p]}, mapping each message received to a set of output

messages and destination ports for those messages.

The messages received or sent by a message forwarder each contain a set of
component messages and destination ports. The components of each such message form a
subset of the messages that comprise some atomic broadcast. Each process step of a message
forwarder receives some input message and partitions the components of that message among
the output messages that it produces. For each such step, the output messages together

contain exactly the same set of components as the input message to that step.

The protocol for atomic broadcasting organizes all of the processes in the system,
(message forwarders, transaction processes, and data managers), in a hierarchy. Each process
p has a unique parent £ in the hierarchy. I will also describe this relationship by saying that
p is a child of f. I say that p and q are relatives if either p is the parent of g or ¢ is the

parent of p. In the hierarchy used for this protocol, each process f that is the parent of some
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other process is also a message forwarder, and there is a single message forwarder r which is
the root of the hierarchy, and is an ancestor of all other processes. The transaction processes
and data managers form the leaves of this hierarchy. Any hierarchy of message forwarders
can be used to perform atomic broadcasting. As we shall see, however, the organization of
the hierarchy determines the number of messages that must be sent to distribute each

broadcast, and should be made with some knowledge of the expected communication

patterns.

In order to send an atomic broadcast, a process formulates a single message
containing a set of components, each of which specifies a message to be sent and a
destination port. This single message is sent to any message forwarder that is above all of
the destinations in the hierarchy. Recall that each step of a message forwarder partitions the
components of the message received among the output messages produced. Each message
forwarder sends output messages only to its children in the hierarchy. On receiving a
message, a message forwarder partitions the components of that message such that each

component is sent to the child that is above the destination port of that component in the

hierarchy.

Figure 33 illustrates the operation of this protocol in distributing the three broadcast
messages shown in Figure 3.2. The processes are organized in a three-level hierarchy, where
f is the parent of processes ¥ and Z, and 7, the root, is the parent of f and X. Figure 33 a
shows the orderings for all processes after By and By have been received by r and B, has
been received by f. Figure 33 b shows an intermediate state in the distribution of messages

to X, Y, and Z. Figure 3.3 c shows the final state when all components of all three broadcasts

have been received.
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A brief argument for the correctness of the solution is given here. A more detailed
and more formal proof appears in an appendix to this thesis. Any two broadcast messages
B; and By are initially sequenced by one message message forwarder, the highest message
forwarder receiving messages connected with both broadcasts. Because the message stream
between any two processes is sequenced, the order of two broadcasts sequenced by a message
forwarder is preserved as the messages connected with those broadcasts travel down the
hierarchy toward their destinations. This sequencing insures that no pair of broadcasts in

the < ordering can form a cycle. (ie. there are no messages for which By < B and By < B)).

The proof that no larger cycles can arise is substantially more complicated. The
proof of the message forwarder protocol given in the appendix covers cycles of all sizes.
This proof uses the properties of the hierarchy to show that no cycles can be achieved

without a violation of sequencing between a process and its parent in the hierarchy.

There are several desirable properties of this protocol that are not obvious. One is
that each process executes a single process step for each broadcast. This mechanism does not
use locking as defined in Chapter 2. The solution insures that all processes, including the
message forwarders, receive the messages sent in distributing a broadcast message atomically.

The transaction synchronization mechanism described in the next chapter makes use of this

property.

Another point to note is that the protocol works for structures of message forwarders

other than hierarchies. I will use the term synchronization network for the logical

organization of processes used in the protocol. A synchronization network is simply a
directed graph that describes the parent - child relationships among processes. The proof of

the message forwarder protocol given in the appendix depends on the synchronization
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network only in that it requires that there be at most one path in the synchronization

network between any twe processes. This property is, of course, satisfied by a hierarchy.

A second requirement that must be imposed on the synchronization network used in
the distribution of a broadcast B is that the destinations of the components of B must have a
common ancestor in the synchronization network. If this were not the case, there would be
no way to distribute B using the protocol, because there is no process to which B can be sent
initially. If we are designing a synchronization network capable of coordinating any
broadcast message involving a group of processes, then we must insure that all of those
processes have a single common ancestor. This requirement, taken together with the
requirement that there be at most one path between processes in the network, means that
such a synchronization network must be a hierarchy. If, however, the set of broadcast
messages (or at least their destinations) is known, and a synchronization network is being
designed specifically to distribute those messages, then it is possible that a non-hierarchical

network could be used. This is illustrated by the example in Chapter 6.

3.4 Other Ordering Restrictions on Broadcast Messages

The above protocol insures that each process receiving a component of a broadcast
receives that component in the same order relative to those of other broadcasts. Thus a
broadcast is atomic as viewed by the receivers. Recall, however, that there is another way in
which the processes may perceive ordering among broadcasts, in that the sender of one

broadcast may have been a recipient of other broadcasts.

In general, each process step that produces a broadcast may have received some
knowledge about other broadcasts. This potential knowledge can be described by the should

follow relationship among messages described below. Each message m sent by a process p in

|
|
|
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a process step s should follow a message m’ received by p whenever:

a) There is a message m” received by p in process step s or in a step
that preceded s, and m' and m” are components of the same
broadcast.

OR

b) There is a message m” received by p in step s or in a step that
preceded s, and m” should follow m’".

This relationship describes ordering constraints among messages that must be enforced in
order to prevent the system from behaving anomalously if the correct interpretation of a
message m sent by a process p to a process ¢ depends on ¢ having received messages

containing information that was derived from broadcasts received by p before p sent m.

For example, if I could in one atomic broadcast send my paycheck to be deposited at
the bank and checks drawn on my account to pay monthly bills, it would be disturbing to me
if when one of those checks was sent to my bank to be cashed, it arrived before the deposit.
This kind of behavior does not violate the definition of an atomic broadcast given above.
In this example, there are two separate actions: my distribution of the deposit and payments,
and my creditor’s sending of the check to the bank to be cashed. Each of these could be sent
in a separate atomic broadcast, however they cannot be part of the same atomic broadcast, as
the debtor's action is not known until the check is received. Nothing in the definition of
atomic broadcasting prevents these two broadcast messages from being sequenced in the
apparently anomalous order, because the causal relationship between the two events that

produced these broadcast messages is not recognizad.
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Unfortuhately. the protoco! described above allows such anomalous sequencing to
occur. Consider the hierarchy shown in Figure 3.3 . A message m sent to both X and V
must be initially sent to the message forwarder r. It is possible for X to receive its
component, and construct and send a message to ¥, and have this new message received by

Y, before the component of m sent to ¥ is received at V.

A simple extension of the message forwarding system described above provides
correct sequencing. Each broadcast B must initially be sent to a message forwarder f in the
hierarchy that is an ancestor of the sender of B as well of as all of the processes associated

with the destination ports of B.

Notice that if a component of some broadcast B has been received at any port, then
any component of B that is destined for a process p and has not yet been received by p must
be awaiting reception at the input port to some process that is an ancestor of p. The
extended protocol prevents anomalous sequencing by insuring that a message B enters the
hierarchy above all of the messages that B should follow. The sequencing of messages
between the message forwarders then insures that any message that B should follow will be

received at its ultimate destination before B. A more detailed proof appears in the appendix.

This solution to anomalous sequencing is very simple (though the proof that this
solution works is somewhat complicated), and easily implemented. Therefore, I will only

consider the implementation of the more complete solution.
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3.5 Implementation

In this section, I will present two simple implementations of the synchronization
protocols described above, one using point-to-point communication, and one taking
advantage of communication technology that makes distribution of one message to several
receivers relatively inexpensive. There are many optimizations that could be used to
improve these implementations. [ present them merely to show that such a system could
easily be implemented, and that I have not ignored any difficult problems by making

unreasonable assumptions about the implementation of message forwarders.
3.5.1 Atomic Broadcasting Using Point-to-Point Communication

In chapter two [ presented a simple implementation of robust sequenced
communication. This implementation can be extended to implement message forwarders.
Robust, sequenced communication insures that messages sent from a message forwarder to
some port arrive in the sequence in which they were produced, and are not lost. In addition
to proper sequencing, we must show how the hierarchy of message forwarders can be

maintained.

A serious problem of the protocol described above for message forwarders is that
each process that sends a broadcast message must know the location, in the hierarchy, of
each of the destinations of the components of that broadcast. This knowledge is necessary to
select a message forwarder that is above all of the destinations. A second problem is that

each process may send messages to a large number of ports. This is expensive using the
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implementation of processes described in Chapter 2, because message queues must be

maintained for each such port.

I solve these problems by changing the protocol for distributing the components of a
broadcast slightly so that each process need only communicate with its parent and children
in the hierarchy. This is accomplished by changing the process step specification of a
message forwarder so that if all of the components of a message received by a message
forwarder are bound for descendants of that message forwarder, the message is partitioned
among the children of the message forwarder as before. If, however, the destination of some
component is not a descendant of the message forwarder, the message is sent, intact, to the

parent of the message forwarder.

To send a broadcast using this modified protocol, a process formulates a message

containing a list of the component messages of the broadcast, and sends that message to its

parent in the hierarchy. This message rises in the hierarchy until it is above all of the

destination ports of the components of the broadcast (as well as its sender). When the
message reaches a message forwarder that is above all of the destinations, it is distributed as
before. Each process communicates directly only with its immediate neighbors in the
hierarchy, thus the number of message queues needed to maintain robust sequenced

communication is small.

We can now consider how the necessary information about the hierarchy could be
maintained. Each message forwarder f must know which processes lie below each of its
children in the hierarchy. This knowledge could be built into each message forwarder, or be

built into the structure of process names. If the life of the hierarchy exceeds the usefulness of
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individual processes, however, we must expect that processes will be created, deleted, or even

moved in the hierarchy, and that these changes must be reflected to the message forwarders.

In showing how to add a process, I will assume a mechanism for generating unique
process names, and will not attempt to solve the problem that a process being added to the
hierarchy may already be part of it. I also assume that it is possible to determine from a
port name which process receives messages at that port. This knowledge allows the message

forwarders to determine the destination process of a message from its destination port.

To add a process p to the hierarchy, some message forwarder f is selected to be the
parent of p. Process p informs f of this choice by sending a “request for adoption” message.
This message establishes the message queues and sequence numbers for sending messages

from p to f. Message forwarder f can reply to p either by accepting or rejecting this request.

If the request is accepted, the mechanism for sending messages from f to p is
established with the sending of the reply, and p can begin to send and receive atomic
broadcast messages. Message forwarder f sends a message to its parent which is propagated
up the hierarchy informing all processs that are now ancestors of p of the presence of p.
Before any message can be sent to p, the sender must be informed of the existence of p. Any
message that could inform a process of the presence of p must either have been sent by p or
should follow (as defined in the previous section) some message sent by p. The messages
that inform the message forwarders of the presence of p will always precede any message sent
by p (and therefore any message that should follow a message sent by p) at the ancestors of

p. because of the sequencing. Thus any message forwarder encountering a message with a

component sent to p is guaranteed to know whether or not p is one of its descendants.

e e———
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Special care must be taken when the request for adoption is rejected.
Communication failures can cause either the request for adoption or the reply to that request
to be lost. We must be sure that loss of messages cannot cause p and f to become confused
such that one thinks that the request was successful while the other does not. Such confusion
is particularly likely if the request is re-transmitted by p if £ does not respond promptly.
This problem is similar to that of initiating a connection in a communication protocol, such

as TCP [Cerf74] or DSP [Reed76). The solution that I am using is similar to that of DSP.

When a message forwarder rejects a request for adoption, it may be doing so because
it has insufficient resources to establish communication with a new child. If this is the case,
we do not wish to burden the message forwarder with the task of remembering that it has
rejected a request. Therefore, we must keep in mind that if a message forwarder f is sent a
request for adoption several times (because the sender of the request re-transmitted the
request when f did not reply promptly with an acceptance), then f may first reject the request
and subsequently accept it. (Once a request has been accepted, however, the message
forwarder can know to accept any subsequent re-transmissions of that request). This means
that a process that has sent a request may not negotiate with another potential parent if it
receives a rejection or no prompt reply. If the original request (or a re-transmission of the
original request) were later accepted, this could allow one process to have two parents in the
hierarchy. Thus we require that if a process receives a rejection (or no reply at all), it must
either keep trying (re-transmitting its request) until it is accepted, or choose a new unique

name and attempt to establish communication with another parent.

This approach may result in a message forwarder adopting a process that no longer
exists (because that process has chosen a different name), but this does not cause a problem.

No messages will ever be sent to or from such an abandoned process. An abandoned process
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will be detected and deleted from the hierarchy through the same mechanism that deletes

processes that is described in the following paragraph.

A process can remove itself from the hierarchy by sending a message to its parent
notifying its parent of its intention to leave the hierarchy. When a message forwarder
receives such a request, or a message forwarder can reliably determine that one of its child
processes no longer exists then that message forwarder can reclaim the message queues for
that process and inform the ancestors of the message forwarder of the disappearance of the
process. Once a process has left the hierarchy, it must choose a new name in order to re-join

unless it can be determined that no process remembers the old name.

A process p can be moved from one location in the hierarchy to another location in
the hierarchy in a series of small steps of the form shown in Figure 34. Each such step
changes the parent of p from f to g, where f is the parent of g, or g is the parent of f. Both

cases are essentially similar, so I will only describe the former.

1) p sends a message to f (the current parent of p) requesting
movement, and stops sending messages to f.

2) f receives this request, and performs an atomic modification of its
state with the following changes: A request to close is put at the end
of the output message queue for p, p's request is put in the output

message queue for g and f's view of the hierarchy is changed to
reflect p’s movement.

3) p receives the request for close from f, drops its now empty queue
of messages for f. p now sends a request for adoption to g.

4) g receives the request from f, establishes a queue for p, and

accepts p's request for adoption. g now updates its view of the
hierarchy to include p

The last two steps take place in either order, depending on the relative timing of the
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messages sent from f to p and g. No knowledge of the move must be propagated beyond f
and g. Note also that the transfer should be negotiated in advance to prevent g from

refusing the request for adoption.
3.5.2 Atomic Broadcasting with a Broadcast Medium

In many communication architectures, it is no more costly to send a message to a set
of receivers than to a single destination. A broadcast network such as a ring network
(Farber72] or an Ethernet [Metcalfe76] has this property, as does communication through
shared memory on a single site. Our scheme for atomic broadcasting can be modified to
take advantage of this ability to distribute component messages of a broadcast to several

receivers.

In the absence of errors, a broadcast network acts like a message forwarder. Each
site presents its messages to the network. The network receives one message at a time, and
distributes that message to the intended receivers. Messages sent through the network are

totally ordered, just as messages sent through a forwarder.

To send an atomic broadcast message to a set of receivers on the same network, all of
the component messages of that broadcast are packaged into a single message for the
network. If the packet size of the network is too small to hold all of this, the contents of each
component message can be pre-distributed to its intended receiver. The sender picks a
unique identifier for the broadcast and attaches it to each component message, sending the
component messages singly or in groups to the intended receivers. When such a component
message is received, it is saved by the receiver and not placed in the stream of incoming
messages. When all components have been distributed, the sender sends a message

containing the unique identifier to all receivers using the broadcast capability of the
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communication network. The unique identifier is used by the receivers to identify the
component message that was pre-distributed and insert that message into its stream of
incoming messages. The broadcast networks designed thus far all have a packet size large

enough to accomodate such a unique identifier.

If very large messages are sent, it would seem that we are not obtaining any benefit
from the availability of the broadcast mechanism over the point-to-point scheme described
above. Note, however, that if we were to use the point-to-point scheme for coordinating
atomic broadcasts among the processes executing on sites connected by a broadcast network,
then in general each cﬁmponent of a broadcast message would have to be transmitted over
the network twice, once to reach the common ancestor of the recipients, and once to reach its
destination. The protocols of this section transmit eack component of a broadcast message

exactly once,! thus saving extra message transmissions.

If the network and sites were completely reliable, including all components of an
atomic broadcast in a single message would be sufficient to distribute the component
messages atomically. Unfortunately site failures or simple lack of buffering can cause a site
to miss a message from the network. To solve this problem, there must be a mechanism that
uniquely orders the broadcast messages, even if failures occur during the transmission of a
broadcast. Such a mechanism would allow each site to know the order in which incoming
broadcast messages should be processed by that site, even if failures cause some of the
transmissions to the site to be lost or to arrive out of sequence. A mechanism must also be

provided to allow a site that has missed a message to obtain a copy of that message.

1. This excludes re-transmissions necessitated by errors. .
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This can be accomplished by appointing one site as the coordinator of the
broadcasting. The coordinator has the responsibility for arbitrating the broadcast messages
on the network, and does so by assigning a sequence number to each. To send an atomic
broadcast, a site assigns a unique identifier to that broadcast and transmits the components
of that broadcast in one or more transmissions on the broadcast network. Each transmission
is identified with the unique identifier, so that the receivers can identify the transmissions

that are used to distribute an atomic broadcast.

These transmissions are seen by every node on the broadcast network, including both
the recipients and the coordinator site. Each recipient receives and stores its component of
the broadcast from the transmissions used to distribute that component. This stored
component is not yet included in the input message queue of the receiving process at that
site. The coordinator receives and stores all of the components. When the coordinator has
received all of the components of an atomic broadcast, the coordinator assigns a sequence
number to that broadcast and transmits a message to all sites containing the sequence
number, the name of the sending site, and the sending site’s unique identifier for the
broadcast. This message informs all receivers of components of that broadcast of the proper
sequence in which that broadcast is to be included with components from other broadcasts.
The message from the coordinator also serves as an acknowledgement to the sender of the
broadcast that the broadcast has been distributed and the sender can delete it from its output

message queues.

It is relatively simple to see that this scheme works if no errors occur, as it is
essentially the same as the scheme for distributing large broadcasts in the absence of errors
described above, with the exception that the coordinator distributes the single message that

demands all receivers to include the broadcast in their input message queues, rather than
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having the sender of the broadcast do this. To see how this scheme also works in the event

that messages are lost on the broadcast network, let us consider the possible errors.

One error that can occur is that one of the transmissions used to distribute the
components of the broadcast is not received by one or more sites. If it is the coordinator that
misses one of these transmissions, then the coordinator will never detect the broadcast as
being complete, and will not send the sequence number message. After a suitable timeout
interval, the sender of the broadcast can detect that something is amiss (because it does not
receive the message from the coordinator) and can retransmit the components. Any site that
received the components correctly the first time can identify and discard the retransmission

because of the unique identifier assigned by the sending site.

If one of the receivers fails to receive a component correctly, but no other errors
occur, then eventually the coordinator will transmit the sequence number for the broadcast.
The receiver will discover that it has not stored the component for the broadcast identified
in the message sent by the coordinator, and can request re-transmission of that component by
the coordinator. Thus the coordinator also acts as a backup for obtaining copies of lost

messages.

Another error that can occur is that the the message sent by the coordinator may be
missed by one or more sites. If the sender of the broadcast does not see this message, it will
begin a needless retransmission, which again can be discovered and discarded by the

receivers. The coordinator can retransmit its message to acknowledge the distribution of the

broadcast to the sending site.
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If one of the receivers misses the coordinator’s message, this may not be immediately
detected. The receiver will detect that it is out of date when it next receives a message from
the coordinator. That receiver can then request retransmission of the messages that it has

missed from the coordinator.

The protocol described above for atomic broadcasting using a broadcast
communication network is relatively simple, makes efficient use of the network if no errors
occur, and works correctly if messages are lost or duplicated by the network. There are
several points about this protocol that must be clarified before it can be used as the basis for

a practical implementation of atomic broadcasting.

The coordinator site must record all of the broadcast messages, and must keep each
broadcast until it knows that that broadcast has been received by all receivers. In order to
avoid having to save broadcasts forever, we can have each site periodically send a message
containing the sequence number of the most recent broadcast that that site has received
correctly. The coordinator can use these messages to determine when it is safe to delete a
saved broadcast message, and when a site is out of date and should be sent information
about one of the saved broadcasts. The message sent by the coordinator must identify which
of the sites are receivers of the broadcast. This information can be determined from
examining the components of the broadcast, and can be encoded in the message by using a
bit vector with one bit for each site indicating whether or not that site is a receiver of the
broadcast. The bit vector is used by a receiving site in order to determine whether or not
that site should have received a component of the broadcast. This in turn tells the site

whether or not it missed the transmission of the component by the sender.
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Each site must keep track of the most recent sequence humber sent by the coordinator
that has been seen and correctly processed by the site. In a typical application of this
protocol, it might be the case that each site is a receiver in relatively few of the atomic
broadcasts. If this is the case, it may be necessary to filter the messages sent by the sender
and by the coordinator in the receiver's network interface in order to avoid interrupting the
receiver unnecessarily. This could be done by maintaining a register in a site's network
interface, which contains the sequence number of the most recent broadcast that that site has
correctly processed. When a message from the coordinator is seen by the network interface, it
examines the message to determine whether or not the sequence number in that message is
one greater than that in the register in the network interface. If this is so, and if the message
does not describe a broadcast in which the site is a receiver, then the register is incremented,
and the receiving site is not interrupted. If a message from the coordinator does not meet
these conditions, then it is reported to the receiving site, which either detects that the
sequence number indicates that the receiving site is out of date, or that the message pertains
to the receiving site. If the message pertains to the receiving site, then the receiving site
incorporates the broadcast described by the message into its input message queue (in stable
storage), and then updates the sequence number in its network interface! Otherwise, the

receiver requests retransmission of the missed message(s) from the coordinator.

1. Notice that if a second message comes in before a message received by a site has been
incorporated, the sequence number in the network interface of the site may be out of date.
This causes no problem, as the site detects that it has missed the second message and
immediately obtains it. The sequence number cannot be updated before the message has
been recorded in the input message queue, as a failure of the site may cause the message that
has been received but not yet recorded in the queue to be lost.
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3.5.3 Use of Broadcast Networks and Point-to-Point Communication Together

The schemes for providing synchronization of atomic broadcasts using a broadcast
network can be used in conjunction with the message protocols for point to point
communication in a network with a number of different physical communication media. To
do so most efficiently, all of the processes running at sites linked by a broadcast network
should be made children of a single message forwarder representing the network. Other
broadcast networks and sites are linked through message forwarders representing gateways

connecting networks.

To see how this is done, consider the physical communication topology shown in
Figure 35. The physical configuration is three broadcast subnetworks, with sites F and G
acting as gateways between Netl and Net2, and between Net2 and Net3 respectively. One
possible efficient hierarchy for this network is shown in Figure 36. This figure is a skeleton
hierarchy showing one message forwarder for each site. The processes at a site would be
descendants of the single message forwarder shown for that site. Consider a broadcast
message sent by a process at site g to processes at sites D, E, H, and /. Site G would use the
broadcast network Ner2 to distribute components to sites D, E, and F This message
forwarders at D and E would route their components to the proper destination processes.

The message forwarder at F would use Net3 to distribute the messages for H and /.

3.6 Evaluation

The algorithm described here for coordination of an atomic broadcast is only one of

many that could have been used for this purpose. The desirability of this algorithm as

opposed to the others depends mainly on the extent to which the hierarchy of message
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Figure 3.5
A Physical Communication Topology

Net3
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Figure 3.6
A Logical Topology for the Network of Figure 3.5

forwarders reflects the logical and physical communication paths in the distributed

information system.

I have already argued that many applications for a distributed information system
exhibit a strongly hierarchical organization. This is a reflection of hierarchical management
policies. If the hierarchy of message forwarders is chosen so that processes that need to
communicate frequently are nearly always children of the same message forwarder, the
message forwarder scheme involves little extra message passing beyond direct communication

between processes.
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This is particularly true if the physical communication network is also hierarchical.
If the physical communication network is hierarchical, (counting broadcast networks as a
single node in that hierarchy), then the atomic broadcasting mechanism described here is as
reliable as any other communication mechanism. Each message follows the shortest path in
the hierarchy between its source and destination. Two transmissions take place for each link
in the hierarchy that a message traverses (one carrying the message and one carrying an
acknowledgement). This is the minimum number of messages needed to deliver a message

reliably, and the synchronization adds no extra messages.

If, however, the physical communication network is strongly non-hierarchical, with
many alternate paths between any two sites, imposing a logical hierarchy may cause
communication between some sites to be very inefficient, where a direct link between those
sites exists. This problem can be alleviated to some extent by sending the contents of all
large messages over the shortest possible route, and sending a message header through the
hierarchy to designate when the pre-distributed message contents are to be included in the
incoming message stream of the receiver, as was done for broadcast networks with small
packet sizes. This technique reduces the communication overhead due to the hierarchy, but
does not reduce the vulnerability of the hierarchy to failures. If much communication is

local, however, this vulnerability may not be a problem.

The message forwarder scheme has several advantages over other synchronization
mechanisms for distributed systems that could be used to coordinate atomic broadcasting.
One advantage is its simplicity. The message forwarder protocols can all be described by
simple statements. Each step is deterministic, and the only source of non-determinism is the

order in which two messages sent to the same process are received.
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The inability of two processes to determine reliably whether or not some message sent
between them was received does not cause a problem in the message forwarder scheme.
Using the protocols described above, once a message has been sent, the sender assumes that
that message could have been received, and does not take any action inconsistent with that

assumption. Once a message has been sent, it is re-transmitted indefinitely until it gets

through.

Another interesting feature of this solution is that the sender of a broadcast need not
participate in the completion of a broadcast. Once the broadcast message has been delivered
to a message forwarder, it will eventually be delivered to all receivers, even if the sender
crashes. The sender of a broadcast cannot, however, know when that broadcast will be
delivered, as that depends on the availability of the message forwarders and receiving ports,
and on the order in which messages are received by those ports. The broadcasts from one

sender are, however, delivered in the same order in which they were sent.

A third distinctive feature is that the order in which a broadcast is received relative
to other conflicting broadcasts is not determined in one decision. The decision is distributed
among the message forwarders through which the messages of one broadcast pass, each of
which performs some arbitration. In a scheme using timestamps to arbitrate between
concurrent messages, once a timestamp has been assigned to a message its order relative to
other messages has been fixed. Postponing this decision by distributing it among the

message forwarders provides greater flexibility that can be important in some circumstances.

Even after some of the component messages of a broadcast have been received by
their destination ports, other messages from the same broadcast may still be held by the
message forwarders, and thus other non-conflicting broadcaste ent later may be received

earlier.  This flexibility is important if the communication network connecting ports
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partitions, in that broadcasts local to one or the other of the partitions can continue to take
place, even if there are messages from more "global” broadcasts that have not yet been
delivered. The extended protocol and the implementation discussed above guarantee that
this flexibility does not allow messages to arrive out of order, in that any port p receiving a

message B will have received any message that the sender of B could have been aware of

before receiving B.

The message forwarder scheme takes advantage of “locality of reference” in
communication more effectively than many other synchronization schemes that could be
applied to atomic broadcasting. Some schemes, such as those using timestamps, require
periodic communication among all of the sites. Such a scheme would be expensive for a
distributed information system in which most operations involve only one or a few sites.
Sending an atomic broadcast using message forwarders, in contrast, requires only the

participation of the sender and receivers, and possibly a few additional sites holding message

forwarders.

One point that remains to be explored is to determine exactly what kinds of

operations can be performed using an atomic broadcast. This question will be answered in

the next chapter.

3.7 Summary

This chapter has discussed one simple synchronization problem in a distributed
information system: that of sending a set of messages to a set of destinations "atomically”. A
mechanism was ‘developed to provide the proper synchronization by using message

forwarders to distribute atomic broadcasts to their receivers. The mechanism was extended
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to prevent anomalous behaviour if correct interpretation of one message depends on prior

reception of some message.

Two implementation strategies for message forwarders were presented. One

implementation that was independent of the physical communication network, using robust

sequenced processes was developed. The protocols allow processes to be added, deleted, or !
moved within the hierarchy of message forwarders. A more efficient implementation that

takes advantage of a broadcast communication network was also outlined.
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Chapter 4

Atomic Transactions in the Process Model

In this chapter, the problem of performing transactions atomically in a distributed
information system described by the process model of Chapter 2 is considered in greater
detail. A method is presented for describing the data flow that a transaction causes among
the items that it accesses. The difficulty of coordinating transactions to be performed

atomically is shown to be dependent on the interaction of their data flow descriptions.

A synchronization scheme consistent with the goals set forth in the first chapter is
developed. This scheme makes use of the hierarchical mechanism for atomic broadcasting

described in Chapter 3. The mechanism is simple, efficient, and frequently avoids locking.

4.1 Analysis of Transactions

The techniques needed for synchronizing a set of concurrent transactions are
-dependent on the data flew among data items caused by performing the transactions. The
set of input items to each transaction and the way in which those inputs are reflected in the
updates made by that transaction affect the way in which transactions interact. I will use an
abstraction which I refer to as a transaction graph to describe the data flow between items

caused by performing a particular transaction.

A transaction graph is a directed graph in which the nodes are the data items in the

data base. These arcs show how the output items of a transaction are derived from the

input items to that transaction. The transaction graph for a particular transaction T

Lasea
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contains directed arcs pointing at each item that is updated by T. For each such item i,

there is an arc running from each item j such that the new value given toi by T depends on

the value of j seen by T.

Figure 41 shows the transaction graph for a simple banking transaction. This
transaction modifies the values of three items, X, y, z. The transaction could represent a
bank’s action on cashing a $50 check for a customer, where x represents the amount of cash
disbursed by the bank, y represents the account balance, and z represents the customer’s

"overdraft protection” loan account!

Figure 4.1

A Simple Transaction Graph

® € i ¥

The Transaction T:

Set x = x-50;

If y < 50 then do;
Setz=12+y-50;
Sety =0,
end;

else Set y = y-50;

1. In this simple example, we assume that the overdraft protection is unlimited and ignore
any other bookkeeping that must be done by a "real” banking system.
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The transaction graph depicts the way in which the outputs of the transaction are
computed. The arc from y to z in the transaction graph of T reflects the fact that the value
for y must be obtained before the value produced by T for z can be determined. Such arcs
describe constraints on any implementation of a transaction in that the access to an item that
is the source of some arc must be performed before the access to the item that is the

destination of that arc.l

In the process model of a distributed information system, a transaction is carried out
as a set of process steps. A transaction graph can be used to construct a similar abstraction,
which I refer to as an activity graph, describing the data flow among the process steps that
implement a transaction. Two points cause an activity graph for a transaction to differ from

its transaction graph:

1) Several of the items accessed by a transaction may be held by a
single data manager, allowing all of the accesses to those items to be
performed in a single process step.

2) Some data items may be replicated, with copies held by several
sites. This means that one access in the transaction graph may be
performed by several process steps in the activity graph.

The nodes of an activity graph are the processes that participate in performing the

transaction. For each arc from an item x to an item y in the transaction graph for T, the

activity graph contains one arc pointing to each manager that holds a copy of y from some
manager holding a copy of x. Arcs connecting a process to itself are not shown. If an item x
which is the source of some arc in the activity graph of T is replicated, then we have a

choice of which copy of x to use in computing the output of T dependent on x. This choice

I. Note that if a transaction graph contains a cycle, this means that some item in the cycle
must be accessed at least twice in any implementation.

e ————————
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is reflected by the arc in the activity graph of T connecting some process holding a copy of x
to the process that holds an item whose new value depends on x. If transactions are run
atomically, then all copies of a replicated item seen by a transaction have the same value, and
thus the choice of which one to use will not effect the output values produced by the

transaction.

Figure 4.2 shows the activity graph for an implementation of the transaction depicted
in Figure 4.1, in which each of the items is replicated at two of the three data managers.
The graph indicates several decisions made about the implementation of T. M holds copies
of items x and y. The new values produced for these items depend only on their previous
values, so a decision has been made so that M is to compute the new values for its copies of
these items from their previous values at M. Similarly, M, is to use the old values of the
copies of y and z that it holds to compute their new values. M 3, however, holds a copy of z,
but no copy of y from which to compute the new value of z. A decision has been made that

M 3 is to obtain this information from the copy of y held by M ,.

Notice that in this example, all three managers participate in the computation of the
outputs of the transaction. This results in some duplication of effort, as, for example, both
M and M 3 compute new values for x. We could have centralized the computation of the
outputs of the transaction in one of the three managers and distributed the results to the

other managers, which would have lead to a radically different activity graph.

The model of a transaction used in this thesis, in which various parts of a
transaction are performed in parallel, is different from the model used by many other
researchers in which the accesses required to carry out a transaction take place in some well
defined sequence. Allowing for parallel execution of various parts of a transaction not only

allows the transaction to be completed faster, but also simplifies the task of synchronization
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because the synchronization mechanism can choose the order in which two parts of a

transaction that are logically independent (such as those performed by M; and M, in this

example) are performed.

The arcs in an activity graph represent constraints on the order in which the process

steps used to perform a transaction can occur. Some step of a process that is the source of
one of these arcs must be completed before some step of the process that is the destination of
that arc. Recall that performing a transaction atomically with respect to other transactions
also constrains the order in which process steps occur. The difficulty of coordinating a
group of transactions to be performed atomically depends on the interaction among their

activity graphs.

For a group of transactions, we can construct a joint activity graph, which is a
merger of the activity graphs of the individual transactions. The joint activity graph

contains an arc between two processes whenever the activity graph of some transaction in the

Figure 4.2

An Activity Graph For an Implementation of T
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Assignment of Items to Managers
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group contains such an arc. Each arc is labeled with the names of the transactions that

contribute that arc. Figure 43 shows an example of such a graph for three simple

-transactions.

Each of the three transactions is responsible for one of the three arcs in their joint
activity graph. This is because each transaction transfers information for an item held by

one manager to an item held by some other manager.

Activity graphs and joint activity graphs can be viewed as finer grained versions of
the L-U graphs used to describe transactions in SDD-I[Bernstein77). The analysis of
transactions in SDD-1 does not examine the derivation of outputs from inputs, but instead
assumes that each output of a transaction may depend on any of the inputs. In fact, each

output may depend on only a small subset of the values read, a fact that is represented in

activity graphs.

Activity graphs provide a simple way of describing the way in which input values
seen by a transaction affect the output values produced. The arcs in an activity graph also
describe ordering relationships among the process steps that carry out a transaction in that
the process step at the source of some arc must be completed before the process step that is

the destination of that arc.

The next section of this chapter examines the impact of the patterns of accesses of a
group of transactions, as described by their joint activity graph, on the synchronization

techniques that must be used to coordinate those transactions.

B e R T T TN N W i e = A PR e '7" "

5
|




e

-03 -

Figure 4.3
A Joint Activity Graph
Ty Ty
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Transactions:
Ti:SetB=B+A
Ty:SetA=A+B
Tg:SetC=C+A
Assignment of Items to Managers:
My A

MZ:B
M,:C

e e =S - AN R A




- 04 -

4.2 A Simple Approach to Transaction Synchronization

In the previous chapter, I presented a simple mechanism to distribute a set of
messages to a set of receivers as an atomic broadcast. This mechanism could be used to
distribute a set of input messages to the process steps of a transaction. In this section, I
explore the applicability of the atomic broadcast mechanism to the problem of performing
transactions atomically. I show that that mechanism can be used only when the joint activity

graph of the group of transactions to be performed does not contain a cycle.

The simple synchronization scheme developed for atomic broadcasting cannot be
used directly to coordinate a transaction that has an activity graph containing an arc
connecting two processes. This is because there is no way to describe such a transaction in a
set uf independent messages to be delivered to the data managers as an atomic broadcast.
The process step at the source of an arc must be completed before a message describing the

access to be performed by the process step at the destination of that arc can be formulated.

One might expect that the atomic broadcast protocol could be modified somehow in
order in to synchronize a group of transactions using sequencing of messages between
processes to control the order of process steps. If the joint activity graph of the transactions
does not contain a cycle of arcs, then this can be done, as will be shown in the following
section. If, however, the joint activity graph of the set of transactions to be performed

contains a cycle, any protocol for coordinating the transactions must use some form of

locking, as will be shown subsequently.
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& % 4.2.1 Synchronization of Transaction Groups Without Cycles

First I will show how to coordinate a group of transactions whose joint activity graph

SN

contains no cycles. The approach I will use is to modify the message forwarder scheme of

the last chapter to allow a process to act both as a message forwarder and a data manager.

RIS & ' RSN VPR,

Such a process receives a message and produces a group of messages for its children in the

e

hierarchy in each process step. The messages produced need not be a simple partitioning of

| the message received, but can depend on the local state of the receiving process.

} One can perform the transaction depicted in Figure 4.2, for example, by making '4
! process M , the parent of both M;and M ; in the hierarchy. The transaction could then be
performed by sending a message ;'lescrlbing the transaction to M, using the atomic
broadcast protocol described in Chapter 3. This message propagates through the hierarchy

until it reaches M,. When this message is received M, that data manager performs the

specified updates to its copies of y and z. In the same process step, M, forwards the portion

of the request relevant to M;, and sends a message to M ; describing the accesses to be

performed on x and z for M3 M, includes the current value of y in the message sent to |

Al M. :

i Including some of the data managers as message forwarders in the hierarchy allows

some of the process steps of a transaction to be performed before the input messages sent to

G N A Wi i e -

other steps are constructed, while retaining the hierarchical structure of message sending.
Recall that the message forwarder protocol of Chapter 3 insures that all of the processes, 3 .

message forwarders and data managers alike, see a broadcast as atomic. The request to

perform a transaction in this scheme is treated like an atomic broadcast, and thus is seen as i

atomic by the data managers.
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A group of transactions can be performed atomically with the modified message
forwarder scheme whenever a hierarchy of message forwarders and data managers can be
constructed so that the arcs in the joint activity graph always run from a process to one of its
descendants. This can be done whenever the joint activity graph contains no cycles. In a
later section, I show how assignment of data items to data managers can be chosen so as to

eliminate cycles from the joint activity graph of any expected group of transactions.
4.2.2 Synchronization of Transactions with Cycles in the Joint Activity Graph

If there is a cycle in the joint activity graph of a group of transactions, then there is
no way to construct a hierarchy so that a process that is the source of some arc is always an
ancestor of the destination process of that arc. Thus the message forwarder protocol cannot
be used. The following paragraphs give an argument to support the claim that any protocol
that correctly coordinates a group of transaction whose joint activity graph contains a cycle

must use locking.

Consider first a group of two transactions that form a cycle, such as Ty and Ty in
Figure 3. The execution of a transaction consists of a set of process steps. The arcs in the
ji':int activity graph indicate that Ty must be performed by a set of process steps in which a
process step of M precedes a process step of M. Similarly, in performing T, a process step

of M, must precede a process step of M.

To perform the two t}ansactions atomically, either both steps performing T; must
precede both steps for Ty, or vice versa. To perform the transactions without locking, recall
from ghapter two that at most one process step of each data manager can be used for each
transaction, and that the sequenceing of messages between processes is the only restriction

that can prevent a message that has been sent from being received promptly. We must
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therefore prevent, somehow, the situation that the process step of T) at M; and the process
step of Ty and M, are both completed before either transaction is completed. This can be
shown to be impossible by demonstrating that this undesirable situation can be forced to
occur in an execution of any protocol for the synchronization of Ty and Ty that does not use

some form of locking.

Consider the state of the system during the execution of T; in which M ] s
performing its process step of Ty. If Ty were begun at this point, the synchronization
protocol must prevent the execution of the process step of M, related to Tq from preceding
that which accomplishes the completion of T;. Without using locking to control the order in
which messages are received, the only way to control the order in which M, receives the
messages pertaining to the two transactions so that the undesirable order is avoided is to
have both messages sent by M), and use sequencing of messages between M; and M, to

force the messages to be received in the correct order.

Thus to force the execution of the process step of M 2 that completes T, to precede
that that begins Ty, both of these process steps must be triggered by messages sent from M I
This means that the execution of Tq must include two process steps of M, one that precedes
the step of M, and one that follows that step. Using two steps o of one process to perform
one transaction is a form of locking, therefore it is impossible to coordinate the cycle of two

transactions without locking.

This argument can be extended to cycles of any size by demonstrating that unless
locking of some form is used, then it must be possible to reach a state in the execution of the
system in which each transaction has completed a process step in one of the processes in the
cycle, making it impossible to complete the execution of the transactions atomically. We are

left with the conclusion that some other mechanism must be needed in order to synchronize a
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cycle of transactions. The locking mechanism used in this thesis is explicit locking. This
locking mechanism consists of delaying the reception of a message until some other message
from some other process is received.! Locking is to be avoided wherever possible, because a
failure of the sender of the expected message, or of the communication network, may delay
processing of messages from other sources. This violates our goal of partial operability, as
now a group of functioning sites cannot necessarily carry out a transaction purely local to
those sites, because one of the processes involved in the transaction may be locked, wiiting

for a message from some other site. This problem will be considered in greater detail in

Chapter 5.

The particular mechanism that I will use for locking in the process model is to place
a pre-requisite on the process step specification of a process step. A pre-requisite lS a
predicate that may include variables in the local state of the process. A process step is not
performed unless the pre-requisite for fhat step is satisfied. By placing a pre-requisite on all
process steps that receives messages from one of the input ports of a process, one can inhibit

the reception of messages at that port until some condition is met.

With this locking mechanism, we can now extend the transaction synchronization

mechanism in the previous section to coordinate arbitrary groups of transactions.

I. Note that in sequencing, it is possible that the processing of a message is postponed, but
only until a message sent from the same sending process is received.
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4.3 Classes of Transactions

On the basis of the activity graph of a transaction, we can group transactions into
three classes. These classes reflect the difficulty of correctly synchronizing the transactions, in

terms of the mechanisms needed.
4.3.1 Transactions with Independent Components

The simplest class is that of transactions whose activity graphs contain no arcs. 1
refer to these transactions as transactions with independent components. A transaction
with an activity graph with no arcs can be performed atomically using only sequencing by
using the hierarchical protocol described in the previous section. Such a transaction places
no constraints on the organization of the hierarchy, as any hierarchy can be used. The
hierarchy can be chosen to optimize locality of reference, without concern for introducing the

need for locking in these transactions.

An example of such a transaction would be a transaction which adds 5% interest to
all of the savings accounts in a bank. The new value of each account depends only on its
previous value. No matter how the accounts are distributed among data manager processes,
each manager can compute the new balances of the accounts that it holds solely from their

previous balances.!

It is instructive to see just how large this class of transactions is. All “query
transactions”, which do not perform any updates to the data base, fall into this class. A

query transaction can always be performed by sending out a set of requests to the data

l. In this simple example, I have deliberately ignored other processing that such a
transaction may be required to perform in an actual banking system, such as accumulating a
total of the accounts or of the interest paid.
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managers as an atomic broadcast in order to obtain a consistent “snapshot” of the data base.!
Such requests can be sent as an atomic broadcast, using the mechanism of Chapter 3, in
order to obtain a snapshot that reflects either all or none of the effects of any other

transaction. The sender of the requests can then gather the replies and use them to satisfy

the query.2

A second class of transactions that always have independent components are
transactions that only make updates to the database. If the new values that a transaction
gives to items are completely independent of the previous state of the data base, such a

transaction has independent components.

A third class of transactions that always have independent components are
transactions in a fully redundant data base, such as that considered in [Rothnie77, Thomas76].
Many of the protocols that have been developed for synchronization of transactions in a
distributed data base work only for the fully redundant case. This point suggests that
synchronization of transactions in a fully redundant data base may be somehow easier than
synchronization in a data base in which each site holds only a partial subset of all of the
data items. In fact, the fully redundant case is easier, because ail of the transactions in a

fully redundant data base have independent components, allowing synchronization to be

accomplished without locking.

I If the data needed to satisfy a query cannot be accurately predicted in advance, this may
be a very large set of requests. An example of such a query would be “tell me the value of
the record that this record points at.”

2. Alternatively, the requests can ask the managers to make copies of the data items

involved in the query, and the copies can be processed to satisfy the query in any efficient
manner. ‘
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Actually, a fully redundant data base violates the assumption made about locality of
reference, as all transactions that update the data base involve all of the sites. All such
transactions must be sequenced by the root node of any hierarchy used for the hierarchical
synchronization scheme.! A much more interesting case is that of a data base that is not
completely redundant, but still has the property that all of the input items to a transaction
exist on any site that holds an item updated by that transaction. All transactions in such a

system have independent components, and may also exhibit locality of reference.
4.3.2 Transactions With Predictable Data Flow

A ‘second class of transactions based on activity graphs is those with activity graphs
with well defined arcs. I call this the class of transactions with predictable data flow. Some
of the process steps that perform such a transaction must be completed before the input
messages to other steps can be produced. A transaction in this class cannot be performed
atomically using the atomic broadcast scheme in every hierarchy, but instead requires that
each process that is the source of some arc in its activity graph be an ancestor of the process

that is at the destination of that arc.

An example of such a transaction would be the simple check cashing transaction
depicted in Figures 41 and 42. Any implementation of this transaction requires that an

access to the item y precede the access that updates the value of z.

I. Note, however, that query transactions can always be implemented as being local to one
site and run efficiently without locking.

=
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4.3.3 Unpredictable Transactions

A third class of transactions, partially distinguished from the second, is those for
which it is impossible to predict which items will be accessed and how until some of the
accesses are performed. If we were to construct an activity graph for a transaction whose
access pattern is completely unpredictable, that graph must include an arc between each pair
of managers. Such a transaction would cause a great many cycles in when included in a
joint activity graph, even though the probability that each arc is used in any particular
invocation of the transaction would be small. This suggests that such transactions need
special consideration so that they do not add to the cost of performing more predictable

transactions.

An example of such a transaction would be a transaction following a linked list of
records, performing some processing on each entry in the list. For such a transaction, it is
impossible to predict which records will be accessed before the transaction is run. The
transaction could potentially access any record in the file containing the linked list, and

might transfer information from any of those records to any other record.

It should first be noted that unpredictability comes in degrees. Frequently, one can
limit the set of items that a traﬁsaction could access, for example to the records in a
particular file. Even relatively crude bounds can reduce the number of arcs in a
transaction’s activity graph to the point where it could reasonably be treated as predictable.
The assignment of data items to managers can greatly affect the impact of unpredictable
transactions. If all of the items that could be targets for accesses of such a transaction are
under the control of a single manager, the unpredictability disappears. Thus if
"unpredictable” transactions are frequent, the choice of the assignment of data items to

managers should be made with this in mind.

St da
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The three classes of transactions discussed above are a categorization of transactions
according to the difficulty of performing them atomicallp. [ am assuming, and this
assumption appears to be consistent with current practice, that the most frequent transactions
will be those of the first two classes. In fact, in many current applications of distributed
information systems queries are much more frequent than updates, making the transactions
with independent components the most frequent. With this assumption in mind, I have
designed a mechanism to provide correct synchronization for all three classes of transactions
that is st.nbstantially more efficient and robust for transactions in the first two classes. This

mechanism is the subject of the next section.

4.4 A Hierarchical Scheme for Transaction Synchronization

In this section, I present a mechanism for synchronization of transactions in a
distributed information system that makes extensive use of the ideas developed above and in
Chapter 3. The mechanism is described in terms of restrictions on the patterns of message
passing that can occur during the execution of a transaction. In the next section, I consider

the implementation questions in greater detail.

The mechanism that I will use for synchronizing transactions is an extension of the
message forwarder mechanism described in Chapter 3. The processes are organized in a
hierarchy including both data managers, which hold items, and message forwarders, which
merely relay messages. Some of the data managers may act as message forwarders as well.
Each process in this hierarchy now has two types of ports, a front door port, and some back
door ports. The front door ports are used for receiving requests pertaining to new
transactions, while the back door ports provide a mechanism that allows a process to receive

additional messages pertaining to the current transaction without enabling reception of
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requests from new transactions. This mechanism, together with the use of pre-requisites on

process steps, will be used for locking.

A transaction can be initiated by any process by formulating a message describing
the accesses to be performed. This message invokes a set of process steps that together
perform the intended transaction. Some of these process steps are invoked by messages
received at the front door of some process, while others are invoked by back door message
reception. Messages sent to the front door of some process must follow a similar protocol to

that used in atomic broadcasting:

Messages sent to the front door may only be sent to the relatives (in
the hierarchy) of the sender.

A process receiving a message from one of its children through the
front door may either send the message intact to the front door of its
parent, without modifying its local state, or it may perform any
processing desired on the message and generate messages for the
front doors of its children.

A process receiving a message from its parent through the front
door may perform the desired processing and send messages to the
front door ports of its children.

Messages sent to the front door follow the direct route in the hierarchy between the
process that initiates a transaction and the data managers that perform the transaction. The
same argument that was used to prove that the hierarchy of message forwarders correctly
synchronizes atomic broadcasts can be used to show that the transactions are atomic as
ordered by front door message receptions. Not all transactions can be performed entirely
with front door message receptions, however. A back door message is required whenever the
process step to be performed by one process depends on data held by some other process that

is not one of its ancestors. In order to prevent the steps invoked t;y back door messages from
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introducing ordering relationships that would make transactions non-atomic, several

restrictions must be appud to back door messages:

Any process involved in a transaction may send a message to the
back door port of any other process involved in that transaction.

The reception of a message at the back door of a process in
conjunction with some transaction must be preceded by the
reception of some message concerning that transaction at the front
door of that process.

No steps receiving messages at the front door of a process can occur
between the step that receives a message at the front door about the
transaction and the steps that receive messages at the back door
about the same transaction.

These restrictions taken together insure that all of the steps of a process related to a
particular transaction are consecutive and that the first step of each process related to a
transaction is invoked through the front door. Thus the ordering of transactions as
observed through all message receptions is the same as that observed only through the
reception of messages at the front door ports, and thus the transactions are performed

atomically.

The restrictions on back door messages require advance planning before a back door
message can be sent. A process must know to expect a back door message from a transaction
so that it will not receive any messages from other transactions before getting the back door
message. Thus the message sent to the front door of a process that will subsequently be sent
a back door message must contain a lock request, which causes that process to stop receiving
messages at its front door until the expected back door message is received. The next section

describes how the messages are constructed and routed to achieve this effect.

s
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4.5 Implementation of Hierarchical Locking

This section discusses several details related tﬁ the implementation of the hierarchical
locking scheme. Fiist, I show how the messages needed in the implementation of a
transaction are constructed from the description of the transaction. This is the responsibility
of the transaction process, though the individual data managers must also send messages as
outputs of the process steps that they perform. Another issue discussed is the coordination of
messages sent to the back door ports to conform to the rules described in the previous
section. An efficient implementation is described in which lock requests can be sent to a
large number of processes without actually delivering the requests in most cases. This
implementation makes it practical to run unpredictable transactions using this mechanism.
Finally, I discuss the problem of choosing the hierarchy of processes. This hierarchy should
be chosen so as to conform closely to the physical communication network topology, to reflect

"locality of reference” in the transactions to be run, and to minimize locking.

4.5.1 Constructing the Messages

We must now show how a transaction process can perform its function of translating
from a high level description of a transaction to be performed into a message that will
eventually cause the desired transaction to be performed in accordance with the
synchronization rules described above. I will first consider the class of transactions with
predictable data flow, for which it is possible for the transaction process to know the set of
accesses to be performed (or at least the manager processes that perform those accesses) in

advance. Later, I will show how the scheme can be extended to transactions with

unpredictable flow.
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For a transaction with predictable data flow, the transaction process can know in
advance what accesses are to be performed and thus could formulate a message to be

distributed to the managers describing those accesses. Two steps must be carried out in

s i, el

formulating the set of messages. First, the acresses to be performed must be derived from the

high level description of the transaction, and then the set of messages to be distributed to the

.

managers must be constructed. The first of these tasks is performed by the transaction ‘

process.

The second task requires knowledge of the hierarchy as well as knowledge of the

{ transaction. We could require each transaction process to have this knowledge, allowing it to i
formulate the set of messages described below, however it seems more natural to delegate this ;
task to a process in the hierarchy that is above all of the data managers that are to

participate in the transaction.

The transaction process formulates a description of the transaction that describes the
accesses to be performed. This description may be similar to a transaction graph for the
transaction. The transaction process then sends a message containing this description to its

parent in the hierarchy.

Each process receiving such a description of a transaction to be performed examines ]
i the description to determine whether or not all of the data items accessed by the transaction
are held by data managers that are below the receiving process in the hierarchy. If not, the
description is forwarded intact to the parent of the receiver. If all of the data managers that

are to participate in the transaction are below the receiving process in the hierarchy, the !

receiving process has the knowledge to generate the messages necessary to perform the

transaction. The receiving process formulates a description of the transaction in a set of
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components, one for each manager that participates in performing the transaction. These

components are constructed as follows:

Each manager is given a description of the accesses that it is to
perform. This description may be at any level that is
understandable to the data manager, the transaction process, and
the process constructing this description.

Each manager that is to receive back door messages is in addition
given a lock request, which describes the nature of the expected
back door messages.

Each manager that must produce back door messages is given a
description of what messages are to be produced and their
destinations.

Each manager that must produce input for its descendants in the
hierarchy (because of an arc in the transaction graph) is given a
description of the input to be produced.

The process constructing this description then treats it like a message that it has
received through its front door containing component requests to be distributed. Each such

message is processed as follows:

A process M receiving a message through its front door port examines that message
to see if it contains a component for M. If not, the message is partitioned according to the
message forwarder algorithm of Chapter 3 and distributed to the children of M. If the

message contains a component for M, then M takes action on the message.

The action taken depends on whether or not the component of that message destined
for M contains a lock request. If it does not, then M performs whatever access is specified (it
is guaranteed to have sufficient information to do so), possibly modifies the other

components of the message to include data values to be passed to its descendants, and

distributes the components of the message to its children according to the atomic
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broadcasting protocol. Any back door méssages to be sent by M are also sent by the same

process step.

If the message contains a lock request for M, then M cannot perform all of its
accesses until it receives additional information. Some of the accesses to be performed by M
depend on receiving additional information from some other process. M distributes the
components of the message to its children (possibly modifying some of the components to
include values of data items held by M), and sends any back door messages that are
requested. M then stops receiving messages at its front door until necessary back door
messages are received. When M receives all of the back door messages associated with the
transaction that sent the lock request, it can perform the specified accesses and re-enable

message reception through the front door.

Some care must be taken with back door messages to avoid confusion. The back
door messages of several concurrent transactions for some process may become intermingled,
causing a back door message to arrive at a process before the corresponding lock request.
The simplest solution to this problem is to use a separate back door port for each
transaction. The transaction process initiating a transaction choses an identifier for each
transaction. This identifier can be combined with a process name to form a unique back
door port for each transaction and each process involved in that transaction. A process that
has received a lock request can then enable message reception only through the back door

for the particular transaction being performed.
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4.5.2 Coordination of Unpredictable Transaction

Two problems must be overcome in applying this mechanism to transactions with
unpredictable flow. Each process that could receive a back door message in performing a
transaction must be sent a lock request. Because the set of data managers involved in a
transaction cannot be predicted until some of the transaction has been performed, all
potential participants in a transaction must initially be sent lock requests. This allows the
accesses that cannot be predicted in advance to be performed by sending messages to the
back door of the appropriate manager when the access to be performed is known. The
component request sent to a manager may cause that manager to send and receive back door
messages dependent on the items that the manager holds and the information it receives in

the back door messages. Any transaction can be performed in this way.

The second problem comes in determining when a transaction has been completed, so
that the data managers sent lock requests can release those locks. Because the set of accesses
to be performed is not known in advance, a process that has received a lock request does not
know when it has received all of the messages connected with the transaction that it will ever
receive and thus when to release its lock. Each manager must remain locked until it has

received all of the messages that pertain to the transaction that sent the lock request.

A simple solution to the problem of determining when an unpredictable transaction
has been completed is to have some process monitor the progress of that transaction. When
the transaction has been completed, the monitoring process can send out back door messages
to all of the recipients of locks to release the locks. This strategy may sound very inefficient,
however the next section discusses the problem of distributing the lock requests, and

describes an efficient implementation of locking for unpredictable transactions based on the

approach of this section.
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The progress of an unpredictable transaction is monitored by having each process
that finishes some portion of the transaction report to a monitor process. Any process can act
as the monitor for a transaction, however communication will probably be minimized if the
highest process in the hierarchy involved in performing the transaction performs the

monitoring function.

Each message (front door and back door) sent in performing a transaction carries a
completion weight. A process initiating a transaction arbitrarily assigns completion weights
to the messages that it sends so that these weights sum to one. Each process step
redistributes the completion weight of the message that it receives among the messages
produced by that step. No message is ever assigned a completion weight of zero, and every
message sent by each process is given some completion weight.l If a step produces no output
messages for other processes involved in the transaction, it instead produces an output
message for the monitor containing the entire completion weight received at that step. Thus
completion weights are gradually returned to the transaction monitor process as the various
process steps of the transaction are completed. The transaction is done when the completion

weights in the messages sent to the monitor sum to one.2

l. An optimization of this scheme would be to recognize the special case of a a message
containing only lock requests. In performing an unpredictable transaction, many of the lock
requests that are sent may be completely unnecessary, and need not be delivered before the
transaction is completed. We can speed up the recognition of the completion of the
transaction by assigning any message containing only lock requests a completion weight of
zero. If the locks in that message are necessary, some other message with a non-zero
completion weight will be forced to wait until the necessary locks are received. The next
section describes a scheme in which the number of messages that must be sent to perform an
unpredictable transaction can be substantially reduced by postponing or eliminating delivery
of unnecessary lock requests.

2. The arithmetic on completion weights must be done carefully so as to avoid loosing or
gaining completion weight due to round off error. One could maintain completion weights
as rational numbers rather than as floating point solution so as to avoid round off error.
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A process performing some operation that does not pass information to other
operations thus returns its completion weight to the monitor. Each unfinished operation (as
represented by a message in transit) carries a non-zero completion weight, preventing the
completion weight returned from reaching one. When all of the messages concerning a

transaction have been received, there can be no outstanding completion weight.

When the completion weight returned to the transaction monitor reaches one, the
initiator sends a set of lock release requests to the processes that were sent lock requests

without specific instructions for what messages to expect. On receiving a lock release

message, a process enables message reception at its front door and continues processing.

4.5.3 Efficient Implementation of Lock Requests i

In the locking scheme described above, a process will frequently be sent a message
containing only a lock request, and no other instructions. This happens when a process is
the destination of arcs in an activity graph but not the source of any arcs. In an
unpredictable transaction, many processes may be sent lock requests with no further
instructions and never participate in the implementation of the transaction, because of the

particular data values seen by the transaction.

If such lock requests are delivered promptly, they can delay transactions that could
have proceeded concurrently with the transaction setting the lock. A lock request message
must travel through the hierarchy ahead of any later requests for the same transaction, but

need not be delivered promptly to its eventual recipient. Lock requests should travel slowly
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through the hierarchy, being forwarded only when "pushed” by subsequent messages or the

completion of the transaction setting the lock.

This can be accomplished by slightly modifying the implementation of the processes

in the hierarchy. Recall that each such process maintains a queue of messages to be

delivered to each of its relatives in the hierarchy. The implementation described in Chapter ;
2 attempted to forward message from each of these queues whenever they were non-empty.
One could instead construct the implementation so that messages are forwarded from a

queue only when the queue contains a message which is not purely a lock request.

P

Consider the hierarchy and transaction depicted in Figure 4.4. The transaction uses

——

the values of data stored at M to update data at Ms. M y's only participation is to take the 7’

s

value produced by M; and use it in an update. This transaction would be implemented by

sending a message containing components for both M; and Ms. When this request reaches
M4, these components are separated. The component for M, travels quickly down the
hierarchy to its destination. The component for M 5, however, contains only the lock request,
and will not be sent from M4 to M, until pushed by additional requests. Thus it is likely
that while M, is computing the value to be sent to Mg, the lock request will be held up
awaiting delivery to M4. This allows Mg to continue to participate in transactions local to :

the right hand half of the hierarchy while T is being performed at M.

This example raises another problem that must be solved: that of insuring that the
lock request for a transaction does arrive eventually, and arrives before the back door

messages of the transaction. This problem is partially solved by using a unique port for

receiving back door messages related to each transaction, as once the back door message
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Figure 4.4
A Transaoction Using Delayed Loocking

The Hierarchy

The Activity Graph of T
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be desirable if the lock request could be delivered promptly once the transaction has

produced a message for the back door port. This can be achieved in one of two ways.

The implementation of a process could notice when a message is waiting at the back
door port and send a request up the hierarchy to forward any lock requests. This strategy
would be effective, but may requires additional message sending. If the communication
network topology closely corresponds to the synchronization hierarchy, a second strategy may

be more effective.

If the communication network topology closely parallels the topology of the hierarchy,
then any message, including the back door messages, must essentially flow along the arcs in
the hierarchy to reach its destination. We can take advantage of this fact to provide for
prompt forwarding of lock requests when appropriate. Each process that is not a leaf node
in the hierarchy now has a third type of port, a pass through port. Each such process is
always ready to receive messages at its pass through port, and pass them on to one of its
relatives in the hierarchy. The pass through ports provide a mechanism to send back door
messages from one process to another in the hierarchy through intervening processes. Each
such message is identified with its ultimate destination, and sent to the pass through port of
the parent of the sender. When a process receives a message at its pass through port it
passes it on either to the pass through port of one of its relatives or, if the ultimate

destination is a relative of the receiving process, to the ultimate destination port.

The pass through ports provide a mechanism to allow each process in the path of a
back door message to notice its progress. A process can match a lock request with back door
messages that it is also forwarding by the unique port ID of the destination back door port.
When a process has a back door message to be forwarded to one of its relatives, it checks its

queue of front door messages to be forwarded to the same relative for a corresponding lock
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request. If such a request is found, then the back door message can be combined with that
request and replaced in the queue of front door messages. This will cause that request to be

promptly forwarded, as it is now not solely a lock request.

One point of caution should be noted. If the lock request is contained in a message
that has been forwarded but not but not yet acknowledged, it cannot be combined with the
back door message and both must be forwarded independently. This is because the process
to which the lock request had been sent may have already received it, so that it is too late to
modify it. Thus each process must keep track of messages that have been forwarded but not

yet acknowledged.

In the example of Figure 4.4, when M| has finished computing the value that it
sends to M, it sends it as a back door message. This message propagates up the hierarchy
through the pass through ports of M, and My When M4 attempts to forward this message
to My, it notices the corresponding lock request. It combines the back door message with the
lock request, and sends the combined message to the front door of M. When M g receives
the combined message, it performs the specified update, and realizes that its role in the
transaction is completed, setting and releasing a lock in the same process step. If, however,
M g were required to receive additional messages in carrying out the transaction, it would

remain focked until those messages were received.

Pass through ports also provide a mechanism to optimize the execution of
unpredictable transactions. In an unpredictable transaction, a great many processes may be
sent lock requests, and later lock releases and not participate in performing the transaction.
Using the scheme for forwarding lock requests described above, most of these requests will

not be delivered until the transaction has been completed, and will await forwarding at some

level of the hierarchy. Thus while an unpredictable transaction may send out a great many
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locks, few will actually be received. When the transaction is completed, however, lock release
messages will be sent out for all of the participants in the transaction. Because these are sent
out as back door messages, the processes forwarding the lock release messages will attempt to
combine them with the lock requests still awaiting forwarding. When a lock request is

combined with a lock release, it is known that the lock is unnecessary and both messages can

be discarded.

Using this implementation, it is likely that most lock requests will be retained at a
high level in the hierarchy. Most of the unnecessary lock requests will be canceled at a high
level, before much effort has been expended in delivering them to their destinations. This
implementation makes it practical to run transactions that are very uncertain and must lock a
large number of managers but in fact perform very few accesses. If, as assumed throughout
this thesis, most of the transactions invoive managers with a common parent at a low level of
the hierarchy, then running a transaction that sets many unnecessary locks interferes very
little with the execution of most of the transactions, as the lock requests that are not needed
never reach the level in the hierarchy at which they would interfere with the more frequent

transactions.
4.5.4 Choosing the Hierarchy

Several considerations should guide the choice of a synchronization hierarchy for a
distributed information system. The hierarchy should reflect the patterns of locality of
reference in the expected transactions. There are frequently natural boundaries of the
application, such as the local and regional offices of an organization using a distributed

information system for inventory control, which can guide this choice.
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A second point in guiding the choice of hierarchy was described in Chapter three.
The hierarchy should be chosen to reflect the underlying communication network. This
allows much more efficient implementation of the protocols in terms of true amount of
communication required. If the hierarchy exactly matches the network, the communication

required for these protocols is minimized.

lln many cases, the topology of the communication network closely parallels the
patterns of locality of reference. This is because it makes sense for the sites that must
communicate most frequently to be directly connected, or to be connected to a shared
broadcast network. One notable exception is networks in which the sites are connected
through a common carrier, such as the ARPANET, or TELENET. In these cases, many
independent distributed information systems share the same communication network. The
patterns of locality of reference in the individual applications are lost in the load seen by the
communication network as a whole. Thus the topology of such a network is not likely to

resemble the pattern of locality of reference in any single application.

A third factor in the choice of the hierarchy is the  *pacity and reliability individual
sites. Given some reasonable approximations for the expected transactions, one can estimate
the volume and importance of the message traffic through each site. These should be used
in evaluating whether or not a particular organization is suitable, by insuring that each site
has sufficient capacity to handle the expected message traffic, and that very impor:ant

transactions do not depend on the availability of a site that is known to be unreliable.

Another factor to be considered is the desire to avoid locking. Locking is
undesirable buth because it increases the number of messages that must be sent (the lock
request messages), and violates the goals of autonomy and partial operability. A process that

has received a lock request is dependent on other processes to complete the transaction and
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release the lock berore it can continue processing other transactions. In the next Chapter, I
will present a mechanism that provides a solution to this problem, allowing a process that
has received a lock request to continue processing other transactions before the outcome of

the transaction sending the lock is known. It is still desirable, however, to reduce locking,

and to choose the hierarchy so that frequent transactions do not require locking, and

processes managing frequently used data are rarely locked.

4.6 A Rejected Alternative Solution

This solution is of course only one of many that could be used for the problem of
controlling transactions. There are several solutions that provide correct synchronization
with simpler protocols. In this section, I discuss briefly one of these alternatives and the

reasons for its rejection.

Considerable complexity is introduced into the scheme by the ability to begin a
transaction at any level of the hierarchy. If we had required all transactions to begin with a
request sent to the root of the hierarchy, it would be easy to lock a large portion of the

hierarchy in order to perform some transaction. This could be done as follows:

When a process receives a message, it performs whatever action is required of itself,
and passes on the components of that message to its children as before. If the process
requires input from one of its children to complete its requested access, or if one of the
requests forwarded cannot be completed solely based on the information in that request, the
process sets a lock and stops receiving new messages until it can complete its requested action
and distribute all of the necessary information to each of its children. Each process makes a

local decision about locking and there is no difficulty detecting when a transaction has been

completed.
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I rejected this solution primarily because it requires that all transactions begin at the
root. If a transaction typically involves a set of managers that are logically near each other
in the hierarchy, then requiring that transaction to begin at the root greatly increases the
communication required. Starting at the root also places a tremendous burden on the
communication links to and from the home site of the root and on the reliability of the root
site. This violates the goal of partial operability, as when the root is down, no transactions

can be performed.

A second reason for rejecting this approach is that it unmecessarily restricts
concurrency. Using this scheme, the two transactions depicted in Figure 45 cannot be
performed concurrently. Both of the transactions would cause #'.¢ root of the hierarchy to
be locked until they could be completed. In the scheme described in the previous section,
while both of these transactions would begin by sending messages to the root, the locks
would be set on the individual managers involved in the transaction, and not on the root.

This allows the two transactions to be performed concurrently.

Another factor that introduces complexity in the solution is the ability to perform
independent parts of a transaction in parallel. This capability required the introduction of
completion weights to determine when a transaction had been completed. As noted above,
concurrency in performing a transaction allows a transaction to be completed more rapidly
and may make the task of synchronization easier. The extra cost and complexity of keeping

track of completion weights seem to be small compared to the potential benefits of this

approach.
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4.7 Conclusions and Summary

Several points about this solution should be noted. One is that a large number of
transactions can be performed without locking. The hierarchy can be arranged so that the
transactions expected to be most frequent do not require locking. Without locking, the
problem of deadlock detection and prevention, and the “distributed atomic update problem”

described in the next chapter, do not arise.

A second point is that deadlock is impossible in this scheme. The locks are set in
messages distributed in an atomic broadcast. Thus if any lock set by a transaction T
precedes a lock set by a transaction Ty, all of the locks set by T will precede those of Ty and

T, will be able to complete without deadlock.

Another point was illustrated by Figure 4.4. When locking is required, frequently the
setting of locks can be delayed, reducing the time interval in which items are locked. The
scheme presented does this by delaying ordering decisions, and distributing the decision of a

transaction’s order relative to other transactions through the hierarchy.

The hierarchical scheme for performing transaction achieves the goal of partial
operability to some extent. Without locking, a transaction can be performed as long as all of
the processes and communication links that lie on the paths between the processes that must
communicate in performing the transaction are functional. While this does not completely
achieve the goal, as it is possible that two processes will be prevented from performing some

transaction because of the unavailability of their parent in the hierarchy, the hierarchy can

be tailored to make this circumstance unlikely.
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Locking introduces the possibility that a process will be prevented from performing
local operations because a failure has delayed the transaction setting a lock. In the next

chapter, I present a mechanism to deal specifically with this problem.

This chapter introduced a method for analyzing the patterns of the accesses

performed by a transactions, namely transaction graphs and activity graphs. Using these
transaction graphs, we demonstrated that sequencing of messages between processes is not
itself sufficient to provide synchronization for some sets of concurrent transactions. Three
classes of transactions were discussed. Many of the transactions that we expect to be
" . performed in information system fall into either the class of transactions with independent
| components, or the class of transactions with predictable data flew. (The transactions in the
example system discussed in chapter 6 are nearly all in the first class.) These are the simplest

transactions to synchronize.

A mechanism was presented to coordinate concurrent transactions using the atomic
broadcasting mechanism developed in Chapter 3. This mechanism correctly synchronizes
transactions of all three classes, but works most efficiently (in terms of the number of
messages needed) on transactions in the first two classes. The mechanism can be optimized
to perform those transactions that are known to be important at the time of the design of the

system.

The implementation of this mechanism was considered to show how the messages are
generated from a description of the transaction, and how the processes are implemented.
This implementation demonstrated techniques to reduce the amount of overhead caused by
transactions requiring locking. Finally, the important properties of this solution were

summarized.
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Chapter 5

Polyvalues: A Mechanism for Performing Atomic Updates to
Distributed Data

In this chapter, I consider the implications of using locking on the problem of
achieving the goal of partial operability. First, I show that no system that uses focking can
achieve this goal. A mechanism is presented that solves this problem, by allowing a process
that is participating in a transaction and has set a lock to install the results of that
transaction conditionally, so that it can release the lock and continue processing other

transactions before knowing whether or not the transaction setting the lock will be completed.

5.1 Motivation (The Trouble with Locking)

In the previous chapter, it was demonstrated that some form of locking is necessary
for synchronizing certain groups of transactions. Unfortunately, locking compromises the
goal of partial operability, as a site that has received a lock cannot perform local transactions
conflicting with that lock until the locking transaction is completed. One could imagine a
solution to this problem in which a site that has received a lock could abandon that lock,
aborting the transaction setting that fock. This must be done in such a way that if a lock is
abandoned, all of the sites participating in the transaction which set that lock will decide to

abort that transaction.

To achieve the goal of partial operability, each site must be able to decide whether
or not to complete the transaction without consulting other sites.  In this chapter, I refer to

the decision of whether or not a transaction has been completed as the outcome of the
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transaction. The outcome of a transaction is different from the outputs of that transaction
which are the new values assigned to items that have been updated by the transaction. The

possible outcomes of a transaction are completed and aborted. A transaction for which the

outcome has not yet been determined is known as a pending transaction.

In the first part of this section, I present a brief argument demonstrating that there is
no protocol under which the sites involved in a transaction always decide the outcome of the
transaction consistently, if each site to decide the outcome independently, without consulting
other sites. The second section considers several approaches that have been used to get
around this problem, and introduces a new mechanism that, unlike these approaches,

supports the goal of partial operability.

5.1.1 Abortable Locking (The Two Generals Problem)

Several papers have presented arguments to demonstrate that it is impossible for two .

entities (processes, sites in a distributed system, or people) that communicate only by
unreliable message passing to reach a decision such that both entities know the decision in
some finite length of time [Akkoyunlu75,Gray77]. This is essentially what must be done in
order to allow a site participating in a transaction that has set a lock to decide whether or
not to abort that transaction. The following paragraphs present an argument to show that

this is impossible in the process model.

Consider two processes X and ¥ that are both using locking to postpone reception
and processing of some messages until a transaction in which both processes are

participating is completed. = The processes communicate either by directly exchanging

messages, or sending messages through intermediate processes.
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In order to achieve the goal of partial operability, the locking must not exclude
transactions local to process X or to YV indefinitely.  Failure of X or of ¥ or of the !
communication network connecting them may, however, delay any message sent between the

two indefinitely. This means that each process must at any point be able to decide whether

or not to abort the transaction in progress without communication with other processes. 4

A protocol of message exchanges between X and Y that decides the outcome of a
transaction can be viewed as series of process steps in each process. Each of these steps is
triggered by a message that may be delayed indefinitely, so that after each step, each process
must be prepared to decide whether or not to abort the transaction. This decision must be
‘,‘ based only on the information that that process had before beginning the protocol and the

information gained from messages received while performing the protocol. Both processes

must make the same decision at any point in the protocol.

If a failure delays messages after the first step of the protocol is performed in each of
| the processes, at least one of the processes must decide to abort the transaction. This is true
because the transaction being performed requires locking, and a transaction requiring
locking cannot be performed with a single process step in each process. Ther.efore. after each
process has performed one step of the protocol, at least one of the processes must have

1 insufficient information to complete the transaction, and thus must decide to abort.

If the execution of the protocol is not delayed by a failure, a step must be reached
after which one process would decide to complete the transaction if the next message in the 1
protocol were delayed by a failure. Let the first step of either process after which that

process decides to complete be known as the commit peint of the transaction and assume

that it is a step of process X. After the commit point, X would decide to complete the

transaction if a failure delayed the completion of the protocol.
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Now consider the decision made by process Y if a failure were to prevent
communication immediately after the commit point step. Because the commit point was not a
step of ¥, ¥ cannot be effected by the completion of that step, and hence must make the same
decision before the commit point as after. This is would be a contradiction, as ¥ must either

decide to complete before the commit point, violating the assumption that the commit point

was the first step after which either process decided to complete, or ¥ must decide to abort

after the commit point, resulting in an inconsistent decision.

This argument applies to any number of processes attempting to perform some

transaction requiring locking, and shows that there is no way to achieve the goal of partial

operability while performing transactions requiring locking. The argument depends on the

property of the process model that the immediate effects of performing a process step are 1
limited to one process, and that the observation of the completion of a process step by any

other process may be delayed indefinitely.
5.1.2 Approaches to the Problem of Abortable Locking

There are several approaches that can be used to reduce the probability that a

failure during the execution of a transaction requiring locking will cause indefinite delay. ;
These approaches provide only a partial solution to the problem of achieving the goal of
partial operability because a failure or combination of failures during the execution of a
transaction can cause indefinite delay of transactions that are completely local to a

functioning site, or cause the transaction to be performed inconsistently.




5.1.2.1 Accepting Inconsistency

One possible solution that has not been extensively used is to accept a small
probability that a transaction requiring locking will not be performed atomically if a failure
occurs at the wrong time. This approach is not appropriate for all appliéations. as strange,
inconsistent results may occur. If the consequences of not being able to perform some
transaction promptly are worse than the consequences of a synchronization error, (as would
be the case for a transaction controlling the landing of an airplane), then it may be desirable
to use a protocol in which a failure at the wrong time cause a transaction to be partially
performed, or may cause the transaction to be incorrectly sequenced with other transactions.
This kind of strategy has been used in image processing systems, in which the data base has
a great deal of redundancy that allows any observer to tolerate an inconsistent state. To my

knowledge, there are no distributed data management systems that use this approach.
5.1.2.2 Avoiding Locking

Another approach is to use synchronization protocols that minimize the need for
locking. The protocols presented in Chapter 4 of this thesis and those used by the SDD-I
distributed data base system[Bernstein77] are two examples of this approach. In Chapter 4, I
examined the problem of organizing the data base so as to reduce the amount of locking
required. Locking cannot be avoided entirely, however, unless the data base is replicated so
that each site has a complete copy. Such replication eliminates locking, but makes all
transactions that update the data base require the participation of all of the sites, eliminating

transactions that are local to one site.

PRV Y
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5.1.2.3 Minimizing the Window of Vulnerability

The approach most frequently taken to locking in a distributed system is to minimize
the time interval during which a failure causes indefinite delay. One example of this
approach is the two-phase commit protocol described by Gray [Gray77l. Each site
participating in a transaction goes through two phases, a lock phase in which locks are set
and the site computes the results of the transaction, and a wait phase during which the site
has completed the computation related to the transaction and has the information necessary
to make the updates requested by the transaction without further input from other sites, but
does not yet know the outcome. If a failure delays the completion of the lock phase at a site,
the site can decide on its own to abort the transaction, and all sites will eventually decide on
their own to abort or be told of the decision to abort. If a failure delays messages during the

wait phase, however, a site must wait until it receives a message indicating the outcome of

the transaction.

Figure 51 gives a finite state machine description of the action of one of the sites in
this protocol. The figure shows four states of the execution of the site. The allowed
transitions are shown by the arcs, each of which is labeled with the message received to

begin this transition, and the message sent in making this transition in italic type.

In the lock state, a site waits for messages containing the information necessary to
complete its portion of the transaction by determining the new values for the items at that
site updated by the transaction. After these have been received, the site enters the wait
Phase and sends an acknowledgement message indicating this fact. If a failure delays the
reception of messages by a site in the lock phase, that site can abort the transaction by
sending an abort message and entering the abort state, discarding any computation done by

the transaction. In either the abort or the done states, the site is ready to accept new

e
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transactions. The acknowledgement and abort messages sent by the sites are accumulated by
a coordinator for the transaction until either all sites have responded acknowledge, or any

site has sent an abort. The coordinator then generates done or abort messages for all of the

participants.

The motivation behind this protocol is that the time that each site spends during its
lock phase computing the results of the transaction is likely to be longer than the time spent

during the wait phase. This is not necessarily true, as one site may take much longer than

Figure 5.1

A Two-Phase Commit Protocol
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the others to complete its portion of the transaction, causing the other sites to remain in the

wait phase for a long period of time.

Lampson and Sturgis (Lampson76] present another commit protocol that includes an
extra round of message exchanges to avoid this problem. In their protocol, no site enters its

wait phase until all of the computation of the transaction has been completed at all sites.

5.1.2.4 The Polyvalue Approach

The motivation behind preventing a transaction from holding on to a lock
indefinitely is to be able to run other transactions that need to access the data that has been
locked without indefinite delays. Frequently, the results produced by a transaction depend
only loosely on the input values seen by that transaction. If the outputs to be produced by a
transaction holding a Jock are known but the outcome of the transaction is uncertain, there
are two possible sets of current values for the updated items. One could use these two sets of
values to determine for some transaction waiting to access the updated values, whether or not
that transaction depends on which of the possible sets of values is correct. Any transaction
that does not depend on which set of values are used can be run using either set before the
outcome of the transaction with the lock is decided. The polyvalue scheme described in the

next section is a generalization of this idea.

5.2 The Polyvalue Mechanism for Avoiding Delay Due to Locking

This section presents a mechanism that in many cases solves the problem of insuring

that no transaction is delayed indefinitely due to a lock set by some other transaction.




5.2.1 The Polyvalue Concept

If a twu-phase commit protocol is used to perform a transaction, a site that has
reached the wait phase knows output values of the transaction. If those values could
somehow be conditionally installed, such that a transaction accessing one of the updated
items would see both values, then the locks on the updated items could be released. This can
be accomplished by installing what | refer to as a polyvalue for each updated item. A
polyvalue is a bookkeeping tool for keeping track of several potential current values for an

item, depending on the outcome of currently pending transactions.

A polyvalue is a set of pairs, <v,c>, where v is a value and c is a condition, which is
a predicate on a set of identifiers for transactions. The pair <v,c> in a polyvalue for some
item | specifies that I has value v whenever c is true when c is evaluated in a model where
transaction identifier T is true if T has been completed. The conditions in a single
polyvalue must be disjoint (no assignment of truth to the transaction identifiers makes two
conditions in the same polyvalue true) and complete (for any assignment of truth values, one

condition is true).

Each transaction is assigned a unique transaction identifier. When a site that has
reached the wait phase for a particular transaction T cannot determine quickly whether T
will be completed or aborted, that site installs polyvalues for all of the items that T is trying
to update. The polyvalue installed for an item I has two pairs, <v'.T>, and <v,~T>, where v
was the value of I before the execution of T, and v' is the value produced by T. This

polyvalue describes the possible values that could be the current value of I, depending on

the eventual outcome T.
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Before installation, each polyvalue is simplified in three steps. First, individual pairs
are expanded. Any pair <v,c> where v is itself a polyvalue is replaced by a group of pairs.
This group contains one pair of the form <v,c;Ac> for each pair <v;c;> that was in v. Next,
redundant pairs are coalesced. The pairs <vyc> and <voCo>, where v| = Vo, are replaced by
the single pair <vjc;Vco>. These redundant pairs can arise because it is possitle that several
different possible outcomes of the pending transactions could produce the same value for an
item. Finally, the condition attached to each pair is simplified, and any pair <v,c> for which

c is logically false is discarded.

This simplification procedure reduces the polyvalue constructed to one in which each
pair has a simple value, and the number of pairs is minimized. A polyvalue with a single
pair <v,c>, must have a condition ¢ which is logically true, and is indistinguishable from a
simple value. Thus the procedure for constructing polyvalues for the results of a pending
transaction can be described without treating the cases where the new or old values of the

updated items are themselves polyvalues as special in any way.
5.2.2 Performing Transactions on Polyvalues

A transaction operating on polyvalued input items is known as a polytransaction. A
polytransaction produces polyvalued results, each of which specifies the real output value
produced under any possible outcome of pending transactions. The following is a simple

discussion of polytransactions.

I will first describe the computation phase of a polytransaction, in which input values
are read and outputs are computed. Each polytransaction T consists of a set of alternative
transactions T, each of which performs the same transaction on a different set values for

input items. Each alternative transaction T, is tagged with a condition c, which is derived
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from the conditions on the input values read by T, Each polytransaction begins with a

single alternative transaction T,,,, which begins to access items in performing the

transaction. When an alternative transaction 7. accesses an item whose current value is a
polyvalue v = {<v,c;>}, T is partitioned into a set of alternative transactions, {Tc/\ci}' each
of which has the same history as T, and each of which accesses one value vj from v and !
acquires the corresponding condition c;, in addition to the previous condition, ¢, on T. If

cAc; is logically false, then T A¢ can be abandoned, and not computecl.l

Thus the number of alternative transactions grows as a polytransaction T is run.
Each of these alternative transactions runs up to the wait phase (ie. each runs until the
outputs have been computed and distributed to all of the appropriate sites). Each site
receiving outputs of T constructs a polyvalue for each item I to be updated. This polyvalue

contains the pairs <v,c> where v is the value produced by T for L.

If all alternative transactions of T produce outputs for some item I, then this set of
pairs will be complete and disjoint.2 If, however, there are some alternatives of T which deo
not produce a value for I, then the conditions of the alternatives which do produce values
for T will not be compiete. This can happen if the decision of whether or not T updates I
depends on the input values seen by T. Under any outcome of pending transactions for
which T will not produce a new value for I, I would retain its previous value. Therefore, if

the conditions on the alternatives of T which produce a new value for I de not form a

1. As will be shown, outputs produced by a alternative transaction with a condition that is
logically false will never be used.

2. T begins with a single alternative with condition true. As the computation phase of T
progresses, alternatives of T are partitioned according to the conditions on the polyvalues
that they access. Because the conditions on the pairs of any individual polyvalue are

complete and disjoint, the conditions on the alternatives of 7" are at any point complete and
disjoint.
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complete set, another pair <v',~c'> is added where v' is the previous value of I, and ¢’ is the
logical OR of all of the conditions on the new values for 1! The wait phase of a
polytransaction proceeds as described above. Should a communication failure interfere with

the wait phase, a polyvalue can be produced from the cutputs of the polytransaction and the

previous values for the items updated by the polytransaction.

5.2.3 A Simple Example

Let us consider a simple example involving three items at three sites, and three

transactions on those items. Let A, B, and C be the items, and let the transactions be:

T;=1f A 2100 then {A = A - 100; B = B + 100}
T, = IF B 2100 then {B = B - 100; C = C + 100}

T3 = if B > 10 then B = 1.05:B

Now assume that before the transactions are run, each item has value 1", If a failure occurs

during the wait phase of T preventing the site holding B from learning the outcome of Ty
then that site gives B a polyvalue of {<200,T >, <100,~T p>}. If T 5 is now run, it will be run
as a polytransaction, because of the polyvalue of B. T, would produce new values for B and
C of {<100,T ;> <0,~T >} and 200. If a failure occurs during the wait phase of T, again
preventing the site holding B from learning the outcome of T 5, then after simplification, B
receives a polyvalue of {<0,~T AT 2>, <100(T II\TZ)V(—-T AT 2)>, <200,T ’/\—vT 2>}. Now, if
T3 is run, it is performed as three alternative transactions. Two of these alternative

transactions produce updated values for B, while the alternative for =T AT , does not,

because the input value for B read by that alternative transaction is too small. Thus the

I. One could alternatively always add this pair, and rely on the simplification procedure to
discover that —c' is logically false when the other conditions are complete.
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polyvalue assigned to B by T; after simplification s {<0,=T AT 5>,
<I0B(T JAT V(T AT 5)5, <2107 jAT 5>},

This example shows the mechanics of manipulating polyvalues, to perform
transactions, even after the occurrence of improbable failures. From this example, it is hard
to see what has been gained, as one cannot determine from inspection what the values in the

data base are, or what transactions have been completed.

The answer is that in many cases, a polytransaction will produce simple output
values. This is true of many query transactions, which attempt to determine whether or not
the value of some item falls in a certain range. 1n many cases, a query about an item can be
answered without knowing the exact value of that item. A polyvalue can provide all of the
information necessary to answer common queries. Consider, for example the test made by T 2
on B. The decision made by this test is the same when applied to both components of the

polyvalue for B.

Another area where polyvalues are useful is that of transactions that have real world
effects, such as authorizing transfers of money, or allocating a real world resource, like a seat
on an airplane. For such transactions, it 1s frequently more important to know what the real
world effect is than to know what the eventual values in the data base are. If such a
transaction is run on an input set containing polyvalues, then the real world effect can be
accurately determined when all alternatives produce the same effect. In many applications,
important real world effects can be determined without knowing the exact values in the

database.
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Consider, for example, a transaction which is to withdraw funds from a savings
account for which the current balance is represented by a polyvalue. The important effect
that the transaction must decide quickly is whether or not the customer is to receive the cash
from the withdrawal. Computing exactly the new balance in the account need not occur
rapidly. The transfer of funds depends only loosely on the balance in the account in that it
need only be determined that that balance is, under all possible outcomes of pending
transactions, greater than the amount withdrawn. Thus in most cases the withdrawal can be

quickly authorized.

5.3 Recovery of Pending Transactions

The mechanism described above installs polyvalues for the results of a transaction T
delayed in the wait phase by a temporary failure. When that failure is recovered, the wait
phase of T can be completed, determining whether T is to be completed or aborted. Thus
the value of the transaction identifier for T appearing in conditions in the pairs of

polyvalues can then be determined.

A site learning of the completion or abortion of a transaction T can reduce its
polyvalues by re-evaluating any condition that depends on the outcome of T, substituting
either true or false for T depending on whether T was completed or aborted. This
substitution simplifies conditions that involved T, and upon simplification, some of these
conditions may become logically false. Thus knowledge of the completion or abortion of
pending transactions can be used to reduce the number of possible values which a polyvalue

represents. Eventually, if the outcome of all pending transactions is known, each polyvalue

will have only one pair with a condition that is not logically false, and thus can be reduced
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to a simple value. Some mechanism must be provided, however, to propagate the knowledge

of the outcome of a transaction T to sites holding polyvalues with conditions involving T.

Such a mechanism must insure that all sites that hold a polyvalue with a condition
dependent on a transaction T will eventually learn of the outcome of T. We also desire that
knowledge of T be deleted when it is no longer necessary (i.e. when no condition involves T).
The record of the completion or abortion of a pending transaction is similar to a commit
record [Reed78] for that transaction. Unlike a commit record, however, knowledge of the
outcome of a transaction may still be needed even after all of the output values of the
transaction have been installed. Any polyvalue could potentially refer to any pending

transaction.

One could have each site maintain a table of outcomes of pending transactions, and
use a system-wide garbage collection strategy to delete entries that are no longer relevant.
While this scheme would work, it would be inefficient in the case that dependence on the
outcome of pending transactions does not in general spread very far. Most sites do not need

to know the outcome of most pending transactions.

Another possible mechanism is to give a site that creates a polyvalue for a pending
transaction the responsibility of maintaining a record of the outcome of that transaction until
such a record is no longer necessary. When a site wishes to reduce a polyvalue, it must ask
all of the sites that are responsible for maintaining a record of the outcome of the
transactions appearing in that polyvalue of those outcomes. To do so, information must be
passed along with the polyvalue to determine the relevant sites to ask. This scheme is

similar to that used with possibilities by Reed [Reed?78).
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There are two main problems with using this scheme for keeping track of pending
transactions. One problem is that it would be difficult to determine when the record of the
outcome of a pending transaction is no longer needed, and some form of garbage collection
may be necessary. A second problem is that the messages sent to inquire about the outcome
of a transaction may place a burden on the communication network, as the inquiring
message may be sent many times (once for each attempted access to the polyvalue) before the
outcome of the transaction is determined. The scheme described below overcomes these
problems by distributing the responsibility for maintaining the outcome of a pending

transaction among the sites that have polyvalues dependent on that outcome.

Each site maintains a table, referred to here as the polyvalue table, listing the items
that it holds that currently have polyvalues. This table is used to locate all of the polyvalues
that can be reduced when the site receives a message indicating the outcome of some
pending transaction. A second table maintained at each site, known as the transaction table,
keeps track of the spread of knowledge of pending transactions. Each entry of the
transaction table contains a transaction identifier, its outcome, (completed, aborted, or

pending), and a list of sites to which this site has sent information dependent on the outcome

of that transaction.

To maintain its transaction table, a site must make an entry for each transaction
identifier that appears in a condition of a polyvalue at the time that that polyvalue is

installed.! When a site sends a message containing a polyvalue to some other site, it must

I. No action is required if the site already has a table entry for that transaction.
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record the name of the site to which the polyvalue was sent in the transaction table entry for

each transaction identifier that appears in a condition in that polyvalue. :

The information in the transaction tables in the various sites is used to control the

distribution of knowledge of transaction outcomes. Each site that receives a commit or an

abort message for a transaction that it previously knew as pending can update its table entry x
for that transaction, and reduce any polyvalues that depended on that transaction. A site is

responsible for informing all of the sites that are listed in its transaction table entry for the

transaction of the outcome. This list was constructed to include all of the sites that were 3
given information dependent on the outcome of the transaction, and therefore may hold

polyvalues dependent on that outcome. Once all of these sites have been informed, the table

entry for the transaction can be deleted.

With this scheme, knowledge of a pending transaction propagates only to those sites
which have received polyvalues dependent on the outcome of that transaction. If a great
deal of computation has been based on the outputs of a pending transaction, then informing
all of the appropriate sites of the outcome of that transaction may require many message
exchanges.l If the outputs of a pending transaction are not used, however, only the sites that

hold those outputs need be informed of the outcome of the transaction.

Figure 52 shows how this scheme works in the example described above. Let T
and T2 be the two transactions described earlier on items A, B, and C. Assume that these

items are held by sites A, B, and C respectively. The figure shows the values of these items

I. In fact, if the polyvalues depending on a pending transaction are used frequently, a site
may have to be informed of the outcome of that transaction several times. It is possible for a
site to receive a polyvalue dependent on the outcome of a transaction after that site had been
informed of the outcome of that transaction and had forgotten that outcome. A site does not
need to remember transaction outcomes indefinitely. | 1
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and the tables of pending transactions in the sites maintaining these items at several stages:

initially; after T is suspended; after Ty is suspended; after T, is eventually completed; and

after Ty is eventually aborted.

5.4 Use of Polyvalues in the Hierarchical Locking Scheme

The discussion of polyvalues thus far has been at a relatively high level, so as to be
applicable to any distributed system in which locking without unbounded delay is needed.
The polyvalue mechanism described above could easily be incorporated into most of the
distributed update algorithms that appear in the literature. I shall now consider how to
apply these ideas specifically to the distributed locking scheme described in the previous

chapter.

Recall that in the locking scheme of the previous chapter, any process producing
outputs to a transaction depending on inputs obtained from another process which is not one
of its ancestors in the hierarchy is sent a lock request message. The lock request message
causes the process to refuse to receive any new messages pertaining to other transactions until
the transaction issuing the lock is completed. The processes involved in the transaction
exchange messages until each locked process has sufficient information to produce its outputs
and release its lock. In order to apply the concept of polyvalues, this locking strategy must
be modified so that each locked process goes through two phases, a computing phase in
which the process could abandon its lock and cause the transaction to be aborted, and a wait

phase in which the lock cannot be abandoned, but the output values are known.

I will first consider the case of a predictable transaction, where the set of processes
making updates is independent of the data values seen by the transaction. This assumption

simplifies the task of deciding when a transaction can be completed, as each process making
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Figure 5.2
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After T 5 has been completed, and A and B have been notified.

A B C

0 {<100,T 2>, <200,-T 2>] {<100,~T 2> <200,T 5>}

Transaction Tables:

(empty) T jdone,{C} T »,pending.{}

After C has been notified of T,
And T 2 has been aborted.

A B c

0 200 100

Transaction Tables:

(empty) (empty) (empty

updates knows when it can complete those updates, and the set of processes making updates

is known in advance.

For each transaction, one process serves the function of transaction coordinator.
The transaction coordinator has the responsibility for determining when all of the processes
involved in the transaction have reached the wait phase. To begin the transaction, messages
must be sent to each of the processes involved in the transaction in a single atomic broadcast.
The protocol of Chapter 4 must be slightly modified to send every process that is to perform
an update a lock request message. Recall that the protocol of Chapter 4 sends lock recuests
oniy to those managers that cannot complete the transaction in one process step. The extra

locking is needed in implementing polyvalues because we wish 0 be able to abort the
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transaction if the completion of the transaction is delayed, and thus cannot allow any

manager participating in the transaction to complete its portion of the transaction before the

decision to complete is made.

Each process performing an update thus receives a lock request, along with any other
instructions for completing the transaction. When a process has enough information to
perform its update, it sends a "ready” message to the coordinator. (For any process whose
update can be made without inputs from other processes, this happens immediately). Before
sending the "ready” a process can decide to abandon its lock at any point and cause the
transaction to be aborted. After sending the “ready” nziessage. a process enters its wait phase
and cannot abandon its lock. When all of the processés that were sent lock requests have
answered “ready”, the coordinator decides to complete the transaction and sends “complete”
messages to the back door ports of the processes which received locks. Upon receipt of the
“complete” message, a process completes its update and enables reception of new requests. If
too much time elapses before the ccordinator receives "ready” messages from all locked
processes, the coordinator can abort the update by sending "abort™ messages to all. The
“ready”, "complete”, and "abort” messages must all be identified with a unique identifier for
the transaction (probably assigned by the transaction process that initiated the transaction),

so that delayed mes:zages do not cause confusion.

Each process in this protocol goes through two phases, a lock phase before sending
the ready message, and a wait phase after sending that message. After having sent a “ready”
message, a process knows the new values that some items in its local state will take on as a
result of completing the update. The process can, instead of waiting for a "complete” or
"abort” message, decide to install polyvalues for these items. Each data manager process acts

like a site in the polyvalue scheme described in the first part of this chapter. Messages sent
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from one process to another containing data items or results computed from data items can

contain polyvalues as well.

Two problems must be overcome in extending this scheme to arbitrary transactions.
First, the coordinator must be able to know when the transaction can be completed, as the set
of processes making updates is not known in advance. Second, each process that participates
in the transaction must be able to determine when it has received all of the messages that it

will receive as a part of the transaction, so that it knows when to enter the wait phase.

The first of these problems was discussed in Chapter 4, and the completion weight
mechanism was introduced for its solution. The transaction coordinator can also act as the

transaction monitor, which can determine when all of the computation of a transaction has

been completed.

We can modify the completion weight scheme to allow uncertain transactions be
performed with a two-phase protocol. Each process step of an uncertain transaction which
prepares a set of output values to be installed must return some completion weight to the
coordinator whether or not it also sends messages to other processes. The coordinator thus
receives messages containing completion weight from each process that has updated items to
be installed. When the completion weight sent to the coordinator reaches one, the
coordinator sends out lock-release messages as before. These lock-release messages are

distributed as described in Chapter 4.

In this protocol, each manager can at any point decide to abandon its fock and
continue processing other transactions. To do so, a manager installs any updates that the
transaction has made as polyvalues, and simply ignores any further messages about that

transaction (except for the lock release or abort messages from the transaction coordinator).
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This action may or may not cause a transaction to abort, depending on whether or not that
transaction requires further participation by the manager which has abandoned it. If the
manager abandoning the transaction is not needed to complete the transaction, then
eventually, the completion weight returned to the coordinator will sum to |, assuming no
other manager decides to abort. If, however, the manager deciding to abandon the
transaction must perform additional processiné to complete the transaction (either by
supplying more inputs, or making updates, the transaction will not complete, because the
portion of the transaction dependent on the abandoning manager can not be completed.

Eventually, the coordinator will decide to abort the transaction.

This scheme allows the polyvalue mechanism to be applied to the execution of
uncertain transactions. In this scheme, each update made by the transaction goes through
two phases, a lock phase before it is computed, and a wait phase after it has been computed,

and the manager holding the updated item has replied to the coordinator.

Another point that should be noted abcut the use of polyvalues in the locking
scheme of Chapter 4 is that the protocols that allow abortable locking described above may
require that more lock requests be sent than the simple protocols of Chapter 4. Note,
however, that any transaction that does not require locking with the simple protocols still

does not require locking, we are only increasing the number of locks sent for transactions

that already require locking.
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5.5 Restricting the Spread of Polyvalues

The polyvalue mechanism is expensive in that polyvalues consume a great deal more
space than do simple values, and a polytransaction may require a great deal more
computation. The simple analysis of the polyvalue scheme and a simulation of the protocol
reported in an appendix to this thesis demonstrate that in fact the expected number of
polyvalues in a distributed information system is quite small. Should further control be
necessary, any site can prevent the propagation of polyvalues by not installing polyvalues as
results of some pending‘transaction, and instead waiting until it knows the outcome of the
transacﬁon. or by refusing to perform some transaction with polyvalue inputs and instead
waiting until it can reduce the polyvalues. These decisions save resources at the expense of
possibly delaying important transactions that could have been performed promptly on

polyvalues.

In a system with real time response requirements, it is not unreasonable to expect that
the set of transactions that must be performed in order to produce needed results at the
proper time will be known. It is precisely these transactions that should be performed as
polytransactions, so that if possible, the needed results can be obtained despite uncertainty in

the database values due to the presence of pending transactions and polyvalues.

Consider a system controlling some manufacturing operation in which several
computers are used to control the manufacturing and are physically located near the
components that they monitor and control. Several different kinds of transactions act on the
data base. There are data entry transactions that are run periodically to enter data about
the operation being controlled into the database. There are also monitoring transactions
which are run periodically to determine whether or not the database values indicate any

potentially dangerous conditions requiring immediate corrective action. The monitoring
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transactions are structured so that many examine only values local to some site in order to

insure that a communication failure cannot interfere with monitoring.

In addition to these two kinds of transactions, there are control transactions that
direct the completion of specific manufacturing tasks. There are also transactions that
implement administrative decisions to change the manufacturing process by modifying items
representing parameters to the control and monitoring transactions, and transactions that
allow the state of the manufacturing process to be examined. The monitoring transactions
need to be performed in real time in order to prevent failures in the physical components of
the manufacturing process or "bugs” in the control transactions from creating a hazardous
situation. These monitoring transactions examine the values produced by the data entry
transactions and the parameters of the process to detect problems. Any normal set of

parameters and data inputs will not trigger corrective action.

In order to insure that the monitoring transactions function in real time, polyvalues
should be used for any data items that might be read by the monitoring transactions. The
control effects of the monitoring transactions should be independent of the exact value of the
data items describing the process, as long as those data items reflect normal operation. The
transactions which direct specific manufacturing tasks and the transactions implementing
administrative decisions may involve updates to data items at several sites, and thus may
require locking. The locking performed for such transactions should allow the creation of

polyvalues for their outputs if some failure prevents the locks from being quickly released.

Transactions representing administrative control of the manufacturing process or

control of specific functions may be deemed less important, and may not be executed as

polytransactions if necessary. Any process holding items accessed by the monitoring
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transactions, however, must be prepared to install polyvalues for those items to insure that

the monitoring transactions are not delayed.

5.6 Summary

This chapter has been devoted to a discussion of the "distributed atomic update”
problem. It was shown that it is impossible, given the failure semantics of the process model,
to construct a protocol which performs a distributed update atomically while not delaying
access to the updated items indefinitely at any functioning site.  Several strategies were
discussed to avoid the distributed atomic update problem in a transaction synchronization

scheme.

The remainder of the chapter presented a concept refered to as a polyvalue, which
may provide a practical solution to this problem in many cases. Polyvalues allow an update
to be performed conditionally, such that both the updated and non-updated values are
presented to subsequent transactions. In an information system where the most important
effects of transactions depend only loosely on the exact values stored in the data base, the
polyvalue scheme allows these important effects to be determined quickly, even when the
exact values of items in the data base are uncertain due to transactions that have been

started but not yet completed.

This chapter presented some simple examples of the mechanics of manipulating

polyvalues and discussed a possible application of polyvalues in a process control system.

il
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Chapter 6
Application of the Techniques to the Design of a Distributed

Information System

The past four chapters of this thesis have presented various aspects of an overall
approach to the problem of robust synchronization in a distributed information system. In
this chapter, 1 present an example of a distributed information system and show how the
techniques that 1 have developed can be applied to derive a synchronization scheme that
satisfies the goals set forth in Chapter 1. This solution is compared with those using other

distributed synchronization schemes.

6.1 The Problem

The chosen example is an inventory control system for a chain of supermarkets. The
problem is adapted from an example given in [Bernstein77). The data base is used to keep
track of the quantities of various products (cans of beans, paper napkins, etc) on hand, on
order, or in transit at each individual market and at the warehouses that supply the markets.
The supply chain of the supermarkets is hierarchical, with groups of markets supplied by

local distributers, groups of local distributers supplied by regional distributers, and so forth.

The following sections describe the data and the transactions to be performed.
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6.1.1 The Data Items

For each location (warehouse or supermarket) the data base contains a set of data

items describing each product. These are:

Quantity on Hand (QOH) -- The quantity of that product stored at
that location.

Desired Quantity on Hand (DQOH) -- The goal of how much of
the product to try to keep at this location to satisfy demand
(purchases by customers or orders from lower distributers or
supermarkets).

Re-order Quantity Threshold (RQT) -- A minimum quantity of the
product to keep on hand. When QOH falls below RQT, an order
is submitted to bring QOH up to DQOH.

Quantity on Order (QOO) -- The amount of the product that has
been ordered from the distributer for this location, but has not yet
been delivered.

Quantity in Shipping (QIS) -- The amount of the product that has
been shipped from the distributer for this location, but has not yet
been delivered.

The data items pertaining to each of the products are independently examined and updated
(ie. there is no single transaction that accesses input items pertaining to two or more
products), so I will consider only the items pertaining to a single product. In fact, a typical
supermarket may stock a total of 10,000 different products, and thus independent sets of these

items exist for each of these products.

The five items are maintained for each location, market or warehouse. To
distinguish between items describing different locations that are used by the same
transaction, I will use subscripts, such as QOH, to designate the level of the distribution

hierarchy to which an item pertains. Level 0 designates the local markets, while increasing




._‘—“"‘"“

=153

subscripts designate more global distributers. This is sufficient to distinguish the items

because each transaction accesses items pertaining to at most two locations: a location and its

supplier.
6.1.2 The Transactions

The transactions in this system serve both to reflect real world effects, such as the
unloading of a truck, to the data base, and to determine when some real world action should
be performed to keep supplies of all products available. For each product there are four

different kinds of transactions: Point of Sale, Re-Order, Shipping, and Receiving.

Point of sale transactions (P transactions) update the quantity on hand to reflect a
customer purchase. P transactions take place only on the QOH for the locations
corresponding to supermarkets, and not on those for the distributors. For a typical

supermarket, there are about 25,000 P transactions per day.

Re-order transactions (O transactions) generate new orders for merchandise which
has been depleted. An O transaction examines the QOH, QOO, RQT, and DQOH for
some location and produces a new value for QOO. For each location, approximately 2000 O

transactions are performed per day to determine which products must be ordered.

Shipping transactions (S transactions) reflect action by a distributer to fill an order.
A shipping transaction examines the QOH of the distributor and the QIS and QOO of one
of its customers in order to decide how much of the product to ship to that customer. The S
transaction updates the QOH of the distributor and the QOO of the customer to reflect the

shipping decision. S transactions are performed at the rate of about 15 per day per location.
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Receiving transactions (R transactions) record the arrival of shipped goods at a
location. Each R transaction adds the amount received to QOH, and subtracts it from QIS

and QOO. About 15 R transactions take place for each site each day.

These transactions are summarized in Table 6.1. In the paper which is the source of
this example, the authors were unconcerned with the details of how each transaction derives
its outputs from its input values. I have therefore made some "educated guesses” in deriving

a more complete description of the transactions.

Note in particular that the receiving transactions are presumed to take as a
parameter the amount of the product received, and to use that amount to update the items
QOO, QIS, and QOH. An R transaction always has independent components, because the
new value of each of the items updated depends only on its previous value and on the
parameter Q. Another possible interpretation would be to use the value QIS to determine

the amount received, thus making the new values of QOO and QOH depend on QJS. I

Table 6.1

Transactions for Inventory Control

Transaction Description Frequency
P QOH; = QOH(Q) 25,000
o QOO; := O(QOH;, QOO;, DQOH;, RQT)) 2,000
5 QS, := $(QIS;, QOO;, QOH,))

QOH;,; = $5(QIS;, QOO;, QOH;,) 15
R QOH; := QOH,;«(Q)

QOO = QOO,(Q)
QIs; = QIS Q) : 15
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believe that my interpretation more closely resembles what would happen in a real inventory
control system, as the parameter Q represents the amount actually received, and may not

correspond to QIS for variety of reasons.

Having a complete description of the data base and the transactions to be performed,

we can now proceed to analyze the system using the tools developed in Chapters 4 and 5.

6.2 Analysis of the Transactions

In this section, I present transaction graphs for the transactions to be performed by
the inventory control system. These are analyzed to explore the ways in which the
transactions interact with each other. This analysis is used to determine the protocols needed
to perform the transactions using several different organizations of the data base (choices of
which items are held at each site). The choice of the synchronization network for each of
these organizations is discussed. Finally, I discuss the use of polyvalues in this distributed

information system.

6.2.1 Transaction Graphs for this Application

The transaction graphs for typical transactions from these four classes are shown in
Figure 61 The P transactions are the simplest, as each P transaction accesses and updates a
single data item. P transactions will have independent components in any organization of

the data base.

The R transactions are somewhat more complex, as they access and update three
different items. As noted in the previous section, however, the new value of each of these
items depends only on its previous value. Therefore the transaction graph of an R

transaction does not contain arcs interconnecting the three updated items.
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The O transactions update a single data item (QOO for some location), but do so

based on several inputs. As shown in Figure 6.1, the transaction graph for a O transaction

has arcs connecting QOH, RQT, DQOH, and QOO to QOO.

The S transactions are the most complex. Each $ transaction updates two items (QIS
for some location and QOH for its supplier), based on the previous values of three different
items. The transaction graphs for these transactions thus contain cycles of arcs, connecting
QIS, QOH, and QOO to both QIS and QOH. These cycles indicate that S transactions are

likely to require locking in any organization of the data base.

The four kinds of transactions taking place at various levels of the hierarchical
organization of the locations interact. This interaction is indicated by Figure 6.2, which
shows a joint transaction graph for the transactions taking place at three levels of the
hierarchy. The joint transaction graph is constructed from the individual transaction graphs
in the same way that a joint activity graph is constructed from individual activity graphs.
To distinguish between the transactions taking place at different levels of the distribution
hierarchy, each transaction identifier is given a subscript to indicate the level that that

transaction pertains to.

The interactions among the transactions suggest that the processing to be performed
exhibits a high degree of locality of reference. If the items are grouped so that all of the
items pertaining to a single location are maintained by a single manager, the only
transactions that require the participation of more than one manager are the S transactions.
These transactions represent .05% of the total volume of transactions to be run (though they
probably represent a higher proportion of the processing, because they are more complicated

than the more frequent transactions).
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Figure 6.1

Transaction Graphs for Inventory Transactions

6.1a P Transactions 8.1b R Transactions

6.1c O Transactions 6.1d 8 Transactions
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Figure 6.2

A Joint Transaction Graph of The Inventory Transactions

6.2.2 Organizing the Data

In this section, I consider several different ways in which the data items could be
assigned to data managers. Each of these organizations for the data base is discussed to
show how. the four types of transactions would be performed in such an organization. The

actual choice of implementation would be based on the desired level of availability for the
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data items as well as the cost of performing the transactions and the processing and storage

capacities of the sites holding the data manager processes.

A simple organization for this data base would be to assign all of the items
pertaining to one site to one data manager process which executes at that site. A joint
activity graph of the four transactions as performed in such an organization is depicted in
figure 6.3. The graph shows that in this organization, the only type of transactions requiring
communication between data managers are the S transactions. All of the other transactions
can be performed by one of the managers alone, because all of the items involved in any of

the other transactions are under control of a single data manager.

Figure 6.3

An Activity Graph for a Simple Data Base Organization

Assignment of Items to Managers:

Mg My My
QOH QOH, QOH,
Q00 QOO QOO0
RQT RQT, RQT
DQOH, DQOH, DQOH,

QIS QUs, QSy
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In this organization, most transactions would r;equire no inter-manager
synchronization at all, and the rare S transactions would require locking with any
synchronization network of the data manager processes (because of the cycle involved in each
S transaction). Because none of the items in this organization are replicated, this

organization requires the minimum possible storage space.

While the S transactions are infrequent, the necessity of locking while performing an
$ transaction is undesirable. Locking makes the two sites involved in performing an S
transaction vulnerable to failures during the execution of the transaction. Many strategies
can be used to reduce this vulnerability to an acceptable level, such as using polyvalues (as
will be discussed in a later section), or running the S transactions at a time when there is
little other activity, such as after the stcres have closed. We can avoid the necessity of

locking for the S transactions by reorganizing the data base.

The arcs from M to My and from M 2 to M, result from the necessity to update the
QIS items at one manager based on the QOH items at the higher level manager. We can
avoid this dependency, by moving the item QIS; from manager M; to manager My, A

Joint activity graph for the resulting organization is shown in Figure 6.4.

In this organization of the data, again all transactions except for the § transactions
are z'tgain completely local to one of the data managers. The S transactions are performed by
two of the managers and require communication. Unlike the previous organization,
however, this communication is one-way, such that if a hierarchy of managers is chosen such

that M;,, is always a descendant of M;, then the § transactions can be performed without

locking.
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Figure 6.4

An Activity Graph for a more efficient Organization of the
Data

Assignment of Items to Managers:

Mg: My Mo
QOH, QOH, QOHy
Q00 QOO QOO0,
RQTO RQ_Tl RQT2
DQOH, DQOH; DQOH,
QISq QIS

Figure 6.4 shows the joint activity graph for 3 locations in the hierarchy of
distributers and supermarkets. In a real application, there would be several supermarkets for
each local distributer, and several local distributers. This makes the joint activity graph

somewhat more complicated, as shown by Figure 6.5.

Figure 6.5 shows the joint activity graph for this organization of the data, for a
system in which there are four supermarkets (Thus four M, managers) being supplied by
two local distributers. Each manager and each transaction is labeled with two subscripts, the
first indicating the level in the distribution hierarchy and the second indicating the location
at that level to which the manager or transaction pertain. The graph is hierarchical, with

an arc from each manager to its parent. Notice, however, that using the apparent hierarchy

in Figure 65 as the synchronization network would not allow the transactions to be

-
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performed without locking. Each manager (Except for the M, managers) must obtain
information from its children in the hierarchy to perform the S transactions. If the arcs in
Figure 6.5 were reversed, then the transactions could be performed without locking by using
the hierarchy in the joint activity graph as a synchronization network. I will refer to an

activity graph of the form of Figure 65 as an inverted hierarchy to distinguish it from a

hierarchical graph in which there is an arc running from each manager to each of its

children.

Figure 6.5
A More Complete Activity Graph

.,' . : el
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Given this organization cf the data base, we must chose a synchronization network
that allows the transactions to be performed with the protocols of Chapter 4. While the four
classes of transactions described here do not involve any transactions that access a large
number of items, presumably in a real inventory control system there would be other
transactions much less frequent than those in the four classes which perform functions such
as changing the parameters DQOH and RQT, or allowing a user to obtain a snapshot of
the quantities of some item in the various locations. In order tc provide the ability to
synchronize any possible transaction on the data, the organization of data managers must be

hierarchical.

Any hierarchy of data managers that 1s consistent with the inverted hierarchy
defined by the arcs in the joint activity graph must be some linear ordering of the nodes.
The conditions that M, 5 be a descendant of all managers, and that some process be an
ancestor of all managers, and that there can be only one path between any pair of managers
force a linear ordering. This is not a very desirable organization for synchronizing the
transactions, tecause the message sent from some manager M; to M,,; in performing an §
transaction may have to be routed through many other managers that do not otherwise
participate in that transaction. This makes S transactions expensive and vulnerable to
failures, however a failure occuring during an S transaction does not unnecessarily delay

other transactions, because there is no locking.

Another alternative is to abandon the ability to perform any arbitrary transaction
and restrict the synchronization mechanism to acting on the four classes described above. If
we are only interested in performing these four transactions, then the only communication
among managers that is needed is that described by the joint activity graph of the four

transaccion classes. A non-hierarchical synchronization network could be used to coordinate




- 164 -
the transactions. The inverted hierarchy of the Joint activity graph meets the requirements
for a synchronization network outlined in Chapter 3, (It has only one path between any two

processes), and provides all of the necessary communication paths to carry out transactions

from the four classes.

Thus the data managers could be logically organized in an inverted hierarchy. All
of the transactions except the S transactions would, as before involve only one data manager.
To perform an S transaction, a message would be sent to the manager M; holding the item
QOO;. This manager would obtain the value of this item ard send it to the manager M, ,

which holds QOH,;,, and QIS;. This manager can then update these items to complete the

transaction with no locking.

This organization of the managers is clearly most efficient, in terms of the amount of
locking and the number of messages sent, but has sacrificed the ability to coordinate other
kinds of transactions. One would probably not want to choose an organization of data

‘ managers in which it is not possible to synchronize any arbitrary transaction, as this may
“. make it very difficult to implement new kinds of transactions. Still, in a situation ‘n which
\ the transactions and the data base are permanently fixed, such as a distributed rocket

guidance system, choosing the logical organization of the data managers without considering

the kinds of new transactions that could be desired is not a problem.

’: 6.2.3 Replicated Organizations of the Data Base

The two organizations of the data base described above have a single copy of each
data item. In this section, I consider organizations in which some of the data items are

replicated. Replication could be desired either for greater robustness (less chance that a
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transactior: will be delayed due to a site being inaccessible), or in order to eliminate locking

by making more of the transactions have independent components.

One could, by replication, make all of the transactions have independent components.
This effect could be achieved by making sure that whenever a manager holds a copy of
some item I, it also holds copies of all of the items needed by the transactions that update I
in order to make that update. For each icem | held by a manager, that manager must also
hold copies of all items from which arcs in the joint transaction graph point at I. Thus, in
effect, each manager holding a copy of I must hold copies of all items that are linked to | by
a chain of arcs in the joint transaction graph. The joint transactior . ph of Figure 6.2,
indicate that a site holding a copy of the items QOH; or QOO must also hold copies of the
items QOHJ-. QOOJ, RQTJ-. DQOHJ, and leJ for all § < i, because of the chain of arcs
linking these items to QOH; and QOO This presents an awkward problem, as it means
that in order to mak: all transactions have independent components, a single site must hold
copies of all of the items and therefore must participate in all of the transactions. It

therefore does not seem practical to avoid Ibckmg through this approach.

This particular application appears to have little need for replication to increase the
availability of data items. The transactions that are most critical to perform quickly are the
P transactions and the O transactions. While we could replicate the QOHy) items in order to
increase the availability of these items, there seems to be little point in doing so. Because the
P transactions are by far the most frequent, replicating the QOH; items would add greatly to
the amount of communication and possibly the amount of computation required. A more
appropriate approach might be to make the sites which hold the QOH, items highly
reliable. Another approach that could be used is to use several sites to hold the data items

pertaining to each supermarket, partitioning the items so that for each product, there is one
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site that holds all of the items that pertain to that product. This approach may allow the
individual sites to be smaller, simpler, and more reliable than a single site managing all

items for a supermarket.

It would also, presumably, be important that O transactions be executed promptly, to
insure that supplies of products remain adequate. In order to make the O transactions less
vulnerable to failures, we could replicate the items accessed by the O transactions.
Unfortunately, the O transactions at each location access many of the items for that location,
including the QOH items. Thus, replicating items to make O transactions more reliable
would make many of the transactions more expensive, due to the necessity to update the

copies of the QOH items.

Another organization of the data that might be used is to replicate the QIS; and
QOO,; items so that M; and M;,; each have copies of both items. Figure 6.6 shows 1 joint
activity graph for this organization. In this organization, M; and M;,; each have copies of
the items pertaining to orders sent from location i to location i+l. This organization does not
provide any reliability advantage over the first organization considered in performing the
four transactions. Having the QIS and QOO items replicated may, however, allow the
human managers in charge of shipping and receiving at the sites to determine the status of

orders more easily, even if a failure interrupts communication between locations.
6.2.4 The Use of Polyvaues

Another way of increasing the availability of the data items in the event of a failure
is to use the polyvalue mechanism described in Chapter 5. As noted above, the P

transactions are the most critical. While locking in all of the above organizations of the data

i
|
|
|
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Figure 6.6

An Activity Graph for a Redundant Data Base Organization

Assignment of Items to Managers:

Mg: My Mo
Ly QOH QOH; QOH,
, RQT, RQT, RQT,
K. DQOH, DQOH, DQOH,
] QIS QIs, QISy
QIS QUS,
QOO0 QOO0

base is rare, it is possible that a failure during one of the S transactions could delay access to

the items used by those transactions. This could in turn delay other transactions.

By using the polyvalue mechanism described in Chapter 5, we can avoid this delay.

Two factors suggest that the polyvalue mechanism would be effective in eliminating

4; unnecessary delay of transactions local to one site by failures of other sites. First, many of the
transactions depend only loosely on the actual data base values. The O transactions, for

example, make a decision of whether or not to order that depends only loosely on the items

read. Second, very few of the transactions require locking, thus the probability that a

transaction requiring locking will be interrupted by a failure is small.
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Notice also that most of the transactions would not propagate polyvalues that have
been introduced into the data base. The P transactions and R transactions do not propagate
information among items in the data base, while the other two types of transactions may
propagate a polyvalue to at most one new item. This means that if a polyvalue is

introduced, it will not cause uncertainty to be propagated through the data base.

Whether or not the polyvalue mechanism should te used for this application
depends on the actual cost of implementing polyvalues (in terms of the extra checking that
must be performed in the course of performing a transaction to handle the possibility of
polyvalue inputs), and the concern for reliable operation. The cost of implementing
polyvalues is not likely to be high, but the benefits are likely to be small, as so little locking is
performed in this implementation as to make it unlikely that a polyvalue will ever be

produced.

6.3 Comparison with Other Mechanisms

Several other mechanisms could be used for performing synchronization of the
transactions in this example. This section briefly compares some of the other mechanisms

that have appeared in the literature with the solution described above.
6.3.1 Comparison with SDD-I

As this example is derived from one used for the SDD-1 system for synchronization
of distributed data bases, it seems natural to begin any comparison with SDD-l. This
discussion presumes that the reader is basically familiar with the SDD-1 mechanism and the

solution to this problem using SDD-I.
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Using the analysis and protocols of SDD-I, one concludes that the P transactions and ‘
1 the O transactions can be performed by the simplest (pl) protocol. This protocol requires no | |

locking and in fact closely resembles the protocol used to perform those transactions in the

solution described above. The other two transaction classes, however, require the p3 protocol
of SDD-1. This protocol performs locking, by forcing the various data managers to perform '
transactions in time-stamp order. Thus SDD-I locks for two of the four transaction classes,
while my mechanism locks for only one. The reason that two of the transaction classes
require locking in SDD-I is because the analysis techniques used by SDD-1 do not recognize {
| that the R transactions actually have three independent components. While these
components must be performed atomically with respect to other transactions, there is no flow
A of information among the three components, thus they can occur in any order with respect to ' |
! each other. The more fine-grained analysis used in the mechanism of this thesis discovers

this fact, which allows these ransactions to be performed without locking. i

The locking protocol used by SDD-I is similar in cost to that used in this thesis, if

the SDD-1 mechanism is implemented simply and without regard to failures. Both involve

sending a message to each of the data managers which will be involved in the transaction,
requesting that the data manager set aside some time to perform the transaction, and then
performing the transaction with as many additional messages as are needed to move the

data.

The robust implementation of the SDD-I protocols [Hammer78], however, is very
complicated, and may involve many extra messages. It appears to be quite difficult to be
! sure that the transactions are performed in timestamp order without allowing a single failure

! to stop all transaction processing.
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The robust implementation of the SDD-l protocols attempts to minimize the
probability that a failure will make data inaccessible through the use of abortable locking,
and a voting strategy to determine when a transaction passees its commit point. Using these
techniques may greatly increase the number of messages that must be sent and the processing
needed to implement transactions using the locking protocols. In contrast, using the
polyvalue mechanism to increase the availability of data that must be locked does not greatly
increase the cost of performing transactions if no failures occur. Only after a polyvalue has

been created does this mechanism begin to be more expensive.

In summary, the protocols used in this thesis are likely to be slightly less costly (in
terms of processing power, and messages sent) to achieve a comparabie level of robustness
than the protocols of SDD-l. This does not mean that my mechanism is always less costly

than SDD-L, as the cost of both mechanisms depends strongly on the application.
6.3.2 Comparison with Gray's locking strategies

Another distributed concurrency control mechanism is described in a set of notes by
Gray [Gray77). These notes describes a mechanism in which a set of sites, each of which is
capable of synchronizing local transactions, can communicate to perform multi-site
transactions atomically. This mechanism could be used for this example, by assigning the

items in the data base to various sites.

The protocols used by Gray require locking whenever two or more sites are involved
in one transaction. Thus the S and R transactions would require locking in this example.

The locking mechanisms proposed by Gray are a mechanism for recording the locks held by

each transaction at each site, and a deadlock detection mechanism to escape from settings of
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locks in which no transaction can proceed. The cost of setting the locks needed to perform a

transaction is similar to the locking mechanisms of SDD-I and this thesis.

The problem of deadlock detection, however, adds to the cost of Gray's scheme.
Deadlock detection requires analysis of the sets of locks held by all transactions at all sites,
and may be quite costly in a large system. Gray suggests that deadlock detection can be
partitioned, so that deadlocks among small groups of sites can be detected more rapidly and
with less computation than deadlocks involving a large number of sites. This strategy is
likely to work reasonably well in this application, as each transaction involves only a small
number of sites. Deadlock detection still represents an additional cost in operating the
system, over that of using the protocols of SDD-I and this thesis which use pre-analysis of

the transactions to avoid deadlock situations.

6.4 Summary

This application (the distributed supermarket inventory system) is typical of the
kinds of distributed information systems which this thesis addresses. The analysis shows
that the transactions exhibit a strong degree of locality of reference, and that most of the
transactions can be implemented without locking. The choice of which of the data base
organizations and synchronization hierarchies to use for this application depends on the
concern for reliability, and the desire to maintain flexibility to perform transactions other
than those initially planned. The overhead of synchronization in the organization in which
the hierarchy parallels the hierarchical organization of the locations is very small, as very
few transactions require locking, and no extra messages are used for the synchronization of

transactions which do not require locking.
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The polyvalue mechanism described in chapter five can be used in this a plication
poly P P

to minimize the probability that a failure will delay transactions.

The implementation of this application using the techniques of this thesis was
compared with two other distributed data base concurrency control mechanisms. This
comparison pointed out that the techniques of this thesis were likely to be less costly than the

other mechanisms in achieving a comparable level of robustness.

In conclusion, the synchronization mechanism of this thesis can be seen to be efficient
and robust for this application. At the same time, the mechanism allows a great deal of

flexibility, letting the system designer trade off the desire for reliability and efficiency against

the ability to incorporate unplanned transactions easily.
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Chapter 7

Conclusions and Areas for Further Research

This thesis has presented a model of synchronization of transactions in a distributed
information system, and several mechanisms for providing such synchronization. This
chapter summarizes the important contributions of the thesis to this field, and suggests some

areas for further investigation.

7.1 Summary of Thesis Work

The work of this thesis has concentrated in two areas: development of a model of
computation in a distributed information system, and development of specific mechanisms for
concurrency control in such a system. The major ideas of the thesis in each of these areas

are summarized below.
7.1.1 A Model for Distributed Computing

The process model of distributed computing presented in Chapter 2 is a framework
in which computation in a distributed information system can be discussed. This model
specifies that the effects of site failures or communication failures are lost or delayed
messages. The thesis discusses techniques that could be used to provide an implementation
of the concepts in the process model for which the effects of failures are confined to these

specifications.
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[ developed two basic strategies for synchronizing transactions described in the
process model: locking and sequencing. Sequencing achieves the goal of partial operability
defined in Chapter 1, while locking may allow a failure of one site to delay a transaction that
is local to some other site. In Chapter 4, I demonstrated that locking was needed to correctly
coordinate some groups of transactions. Chapter 5 presented an argument for the claim that
in any implementation of locking, a transaction local to one site may be indefinitely delayed
by a failure at some other site. Taken together, these results demonstrate that it is impossible
to achieve the goal of partial operability while correctly synchronizing all transactions, given

the possible effects of failures as specified in the process model.
7.1.2 A Hierarchical Concurrency Control Mechanism

Chapters three and four of this thesis present a hierarchical mechanism to coordinate
transactions. This mechanism has several interesting properties. First, it is quite simple to
describe, and relatively simple to prove correct. Many of the synchronization mechanisms
described in the literature are quite complex, and correctness proofs for these mechanisms are
very long and complicated. The simple implementations of the protocols described in
Chapters 3 and 4 suggest that my mechanism would be relatively easy to implement in an

actual distributed information system.

A second important property of my scheme is that it performs well when the patterns
of accesses to items in the distributed data base show a strong locality of reference. The
mechanism can be tailored so that frequent transactions require little overhead for
synchronization. The mechanism can also be designed so as to avoid locking whenever
possible. The thesis describes analysis techniques that can be used to assess the cost of
performing the most frequent or important transactions. This analysis can be used tc choose

an organization of the data and the synchronization netwo*k so that these transactions are
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performed efficiently and reliably. The mechanism provides correct synchronization for all
transactions, even those not anticipated in the design, however unanticipated transactions

may be much more costly to perform and more likely to be delayed by failures.

Chapter 5 of the thesis presents a novel solution to the problem of unavoidable
delays caused by failures during the execution of a transaction using locking. The polyvalue
mechanism in many cases allows a transaction to be run even if the values in the data base
accessed by that transaction can not be determined exactly, due to a failure. With this
mechanism, important transactions that must be performed promptly are, in many cases, not
delayed by the locks set by other transactions. The protocols presented for manipulating
polyvalues again are most efficient if most of transactions are local to one or to a small
number of sites. This assumption of locality of reference appears to be true of many

applications.

The model and mechanisms of this thesis shed some light on what is a very poorly
understood area of computer science. They do not by any means provide a complete solution

to the problem, and in fact suggest several interesting research problems.

7.2 Areas for Further Rescarch

There are a number of ways in which the work of this thesis couid be extended to
provide a better understanding of synchronization in distributed systems. These include the
investigation of the applicability of the process model to real physical systems, further

investigation of applications, better techniques for constructing the synchronization

hierarchy, and implementation of the protocols.

——— "
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7.2.1 The Applicability of the Process Model

The results of this thesis are based on the semantics of failures in the process model.
In particular, many of the results are based on the notion that there is no single event
detectable by two processes simultaneously. While I strongly believe that this is true of any
physical system, there may in fact exist ways of implementing communication in which the
sender of a message can know for sure whether or not that message was received. If this is
the case, one might be able to implement abortable locking as described in Chapter 5,
contrary to the arguments advanced in that chapter and in several other papers in the

literature.

Another related area for investigation is that of ways of including the effects of
failures in a model of computation. In the process model, I assumed that a failure could
delay any message indefinitely. It is possible that some less pessimistic assumption about
failures would lead to a workable model for a distributed information system. One might,
for example, assume that no more than N sites fail concurrently. While it would be
impossible to implement a system so as to conform to this assumption, if the probability that
the assumption is violated is sufficiently small, then a distributed information system based

on the assumption may be acceptibly reliable, and may be simpler to implement.
7.2.2 Applications

This thesis makes extensive use of the assumption that applications of a distributed
information system will exhibit locality of reference in their use of data. This assumption

appears to be true of some planned applications, however more careful statistics of actual

applications may be needed to confirm the validity of this assumption. We may in fact
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discover that the flexibility of a distributed information system will encourage different

organizations of information that do not exhibit the same patterns.
7.2.3 Analysis of Transactions

The thesis presented techniques for determining the cost of performing a transaction
(in terms of the number of messages required) using various logical organizations of the
data. Guidelines for choosing the synchronization network and data base organization,
given a description of the most frequent transactions to be performed, were given. These
guidelines are not, however, detailed algorithms that design the synchronization mechanism.
Considerable effort and ingenuity may be needed in chooging an optimal, or near optimal
synchronization network, and in choosing the assignment of data items to data manager
processes. These problems are similar to many others that occur in managing resources in a
computer system, and it would seem likely that good algorithms for designing a distributed
informa‘\tion system using the hierarchical synchronization mechanism of this thesis could oe

derived.
7.2.4 Implementation of the Protocols

Finally, the thesis presented only a few simple implementations of the synchronization
protocols. Improvements on these implementations can no doubt be made. One area that
seems of particular interest is using the hierarchical synchronization protocols in a computer
tailored to managing data. The hierarchical synchronization mechanism presented here fits
well with the proposed models of memory for a data base machine. This mechanism may

lead to a very efficient implementation of such a machine.
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Another implementation issue that bears further investigation is the design of a
communication network that supports atomic broadcasting. In Chapter 3, techniques for
using a broadcast network to implement the message forwarder protocol were presented.
The need for a coordinator site is a weak point in this scheme, as failure of the coordinator
site stops all atomic broadcasting. It is possible that the function of the coordinator could be
implemented in each site’s network interface, in such a way that a single site failure would
not stop broadcasting. If the network were designed specifically to support atomic

broadcasting, it is likely that broadcasting could be made efficient and highly reliable.

Several mechanisms have been developed to maintain several identical copies of a
redundant database. As noted in Chapter 4, this problem appears to be somewhat simpler
than that of synchronizing transactions in a distributed information system, because each site
has a copy of every item. The techniques that have been developed to manage replicated
data could be applied to maintaining copies of the process state and message queues of a
process, in order to obtain a more robust implementation of a process. Application of
techniques for maintaining duplicate data bases to the implementation of processes would be
an interesting research problem, and would lead to a more robust implementation of the

concurrency control mechanism presented in this thesis.

7.3 Summary

This chapter has presented a summary of tke results of this thesis, and presented
some of the open questions that this thesis leaves unanswered. Many of the conclusions of
this work are not decisive, however I hope that my work has shed some small degree of light

on a very murky and poorly understood field.
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Appendix A ]
Proofs of the Protocols |
|
|
This appendix gives a more formal definition of some of the concepts in the body of ‘ 3

this thesis and proofs of some of the results. For simplicity of description, the definitions and 5
proofs in this appendix are for the version of the message forwarder protocol in which each
broadcast message is sent immediately to a process which is a common ancestor of all of the
receivers and of the sender. In the actual implementation of the protocol described in
Chapter 3, each message may travel up the hierarchy in several hops. This difference does
" ’ not effect the results proven here, so long as only the message receptions which take place in
the distribution of a broadcast after that broadcast has reached the common ancestor are
used in determining the < ordering. This condition is consistent with the use made of the
protocol by the concurrency control mechanism presented in Chapter 4, in which the process
steps that take place in the distribution of a message after it has reached the common

3 \ ancestor are the only ones which have effects that could be observed by process steps related

to other messages.

A.l1 Formalization of Atomic Broadcasting

Definition: For each process p, there is an ordering <, on messages sent to p such
that m, <p Mo iff m) was received at p fe ore mo was received at p.
Each message sent to p is included in p when it is received.

Definition: A broadcast B = {[b, p;]l b; is a message which is to be sent to
process p; as a part of B}

Definition: For each message m, let B(m) be the broadcast message from which m
was derived. The set {m|B(m) = B} for some particular broadcast B
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then contains both the component messages of B and any other
messages that are received in distributing those components.

For broadcast messages B| and Bo, there is an ordering <, which is
defined as Bl < 32 if 3P. bl' b2 such that B(bl) - Bl' and B(bz) ~ B2,
and by p bo.

Broadcasting is atomic iff < is cycle free.

Let ~ be the Synchronization network relationship, which is a
relationship among pairs of processes and must satisfy the following
constraint. The graph defined by ~ must have no directed or
undirected cycles. Thus, there does not exist a set of three or more
processes py, ...pp, all distinct, such that either p; ~ p;,; or p;. ;1 ~ p;

for all i<n, and 7 and pp are related by ~.

With these definitions, we can now define the message forwarder protocol by defining the
process step specifications of the forwarders.

Definition:

Definition:

The process step specification of a message forwarder f is defined by
a function F(B):

F(B) = {[(X(B,p).p] | (f ~ p) A The set X(B,p) is non empty}

where B is the message received in a process step, F(B) is the set of
pairs, each of which lists one of the output messages produced by that
step and its destination process, and X(B,p) is a set describing the
contents of one of the output messages of the process step, which is
constructed as follows:

X(B,p) = {[bg) | [bgl € B A p ~* g}

Communication between message forwarders obeys the constraint of
Sequencing, which can be stated as follows. If b; <¢ by for messages

by and by and message forwarder f, and if [b'|,p] € F(by), and [b'y, p]
€ F(bg), where F is the protocol specification for £, then b, p B’y
after both b’ and b’y have been received by p.
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A.2 Proof of Atomic Broadcasting

To show that the protocol defined above distributes the components of a broadcast
message atomically, we must show that the < ordering in any system state reachable by an
execution of steps specified by the protocol is cycle free. To do so, I will show that for any
step permitted by the protocol, if the < ordering is cycle free before that step, then it will be
so after also. Because the starting state (before any messages have been received) has an
empty < ordering, which is trivially cycle free, by induction in any state reached by following

the protocol the < ordering will be cycle free.

Before proceeding with the proof, I would like to make an observation about the
protocol that will be useful in the proof. If two processes p and ¢ have each received a
message derived from the same broadcast B, then there is a path in the graph defined by
the~ relationship connecting p and ¢q. Each process on that path has also received a
message derived from B. This is true because the graph has no cycles, thus there is only one
path between p and ¢, and the protocol allows each broadcast to enter the network at one
point, from which it must reach all recipients. It is not possible for two processes to have
seen messages from a broadcast B unless all of the processes on the path between those two

processes have also seen messages from B.

In each step of the protocol, some message m is received at some process p, possibly
adding ordering relationships of the form b(m’) < b(m) for messages m" previously received
at p. We must show that introducing the relationship b(m’) < b(m) for any message m'
previously received at p can not introcduce a cycie. The proof will be divided into 3 cases,

depending on the origin of m and m’",

CASE I: m was not sent from a process P such that P ~ p. In this case, m is the initial
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entrance of broadcast message b(m) into the network of message forwarders. Therefore,
before the reception of m, there were no ordering relationships in < involving b(m), so that

the reception of m could not introduce a cycle in <.

CASE 2: m and m’ were both sent by some process P such that P ~ p. In this case, the
process P must have receivéd a message M such that B(M) = B(m), and a message M’ such
that B(M') = B(m’) in the process steps which produced m and m’. Because of the
sequencing of messages between P and p, the messages m and m' must have been sent by P
in the same order that they were received at p. Thus the ordering relationship b(m’) < b(m)
held before the reception of m (because of the receptions of M and M’ at P) and therefore,

by the assumption that no cycle existed before the reception of m, no cycle is created.

CASE 3: m was sent by some process P for which P ~ p, but m’ was not sent by P. This is
the most difficult case. To show that no cycle is introduced by the reception of m in this
case, I will assume that such a cycle is created and show that this assumption leads to a

contradiction or a violation of the conditions of the protocol.

Assume that the reception of m creates a cycle in the < ordering. Then prior to the
reception of m, it must be the case that there is a sequence of broadcast messages <By, ..
B> such that B; < B;,; for I <i <n,and B| = B(m), and B, = B(m’). Consider now the
set of processes py, .., pp.y at which these broadcasts were ordered. Now by the observation
noted above, there exists a path in the network from each of these processes to the next
process in the chain. Also, there exists a path between p, and P, as both have received
messages derived from b(m), and there exists a path between p,_, and p, as both have
received messages derived from b(m’). Thus because of this chain of broadcasts, there must

exist a path between P and p. If the path implied by the chain of broadcasts does not go

through the direct link between P and p, then we have discovered a cycle in the
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synchronization network, violating the conditions of the protocol. I will show that if that

path does go through the direct link between the two processes, then either the sequencing of

messages between P and p has been violated, or a cycle existed in the < relationship before

the reception of m at p.

If the path between P and p implied by the sequence of broadcasts includes the s

direct link, then some broadcast, call it Bj' must have been seen by both P, and p, and :

furthermore, we know that P must have received a message derived from Bj. and as a result

sent a message to p. The broadcasts Bj and B(m) must have been ordered by message
receptions at P, and B(m) < B, as otherwise there would be a cycle in the chain of
broadcasts. Now by sequencing, the reception of m at p must precede any reception of the i'
E [ message derived from Bj, which is impossible, as we know that a message derived from Bj
must have been received at p. This contradiction demonstrates that it is impossible for a
cycle to arise from the reception of m at p if the only path between P and p is the direct link. #

Thus another distinct path must exist in the synchronization network between P and p,

forming a cycle with the direct link.

This completes the proof of the third and last case, thus the synchronization protocol

of Chapter 3 correctly coordinates atomic broadcasts.

A.3 Correct Relative Sequencing of Broadcasts

In this section, I demonstrate that the protocol described in Chapter 3 for atomic
broadcasting correctly orders atomic broadcasts such that a process never receives some

message m before receiving some message that m "should follow". The proof will be for the ]

simplified case in which the ~ relationship is a simple hierarchy.
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Recall that the "should follow" relationship among messages was defined as: Each

message m sent by a process p in a process step s should follow a message m’ whenever:

a) There is a message m" received by p in process step s or in a step
that preceded s, and m' and m" are components of the same
broadcast.

OR

b) There is a message m” received by p in step s or in a step that
preceded s, and m” should follow m’.

A key factor in this definition is that if m should follow m’, then some process must have
received a message derived from b(m’). Using the message forwarder protocol of Chapter 3,
if any process has received a message derived from a broadcast message B, then for any
process p, if p will eventually receive a message derived from B, then that message must be
represented in some message awaiting reception at p or at one of the ancestors of p. This is
true because each broadcast message enters the hierarchy once, and all components flow
downward in the hierarchy from the point of entry. No component can be received before
the message is entered in the hierarchy, and once a message is entered, each component is

either above or at its ultimate destination.

I will now prove the claim that for any message m, there can be no message m' such
that m should follow m’, and the message containing the component containing m’ is above
that for m in the hierarchy. This, combined with the observation about the message
forwarder protocol described in the previous paragraph, is sufficient to prove that when a

message m is received at a process p, no message m' that should follow m will subsequently

be received at p.

P
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The proof of this claim will be by induction. Initially, the claim is true, as there are
no messages. We must show that in any state for which the claim is true, the reception of a
message m at a process p as specified by the protocol cannot cause the claim to become false.
There are two cases: one where m was sent by the parent of p, and one where m was sent by

some other process.

CASE I: m was sent by some process P such that P ~ p. When m was sent, all of the
messages that m should follow must have been in the hierarchy (or already received) and not
above P in the hierarchy. Therefore, because of the sequencing of messages between p and

P, messages that m should follow will not be above p in the hierarchy when m is received at

p-

CASE 2: m was not sent by the parent of p. In this case, we must consider the messages that
m should follow. These are all components of each broadcast message B for which s, the
sender of m, had received a component prior to the sending of m. The claim was true when
m was sent, so no message that should follow any of these broadcasts could have been above
s at the time that m was sent. Therefore, because p must be an ancestor of s, there are no

messages that should follow m that are above p when m is received at p.

This completes the proof of the claim, and thus the proof that broadcasts are
sequenced correctly by the message forwarder protocol using a hierarchical synchronization

network.

While the proof of correct sequencing of messages according to the "should follow”
relationship is somewhat involved, the principal of operation of the protocol is simple. Each
message pushes the messages that it should follow along paths in the hierarchy as it goes.

The protocol works because there is only one path between any two processes in the

e
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hierarchy, so that no message can sneak ahead of its place in the sequence of messages going

to some destination process.
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Appendix B
An Analysis of the Propogation of Polyvalues

A major area of concern regarding the polyvalue scheme presented in Chapter 5 of
this thesis is that failures may cause the number of items having polyvalues to become large.
This would waste storage space and cause a great deal of extra computation by the
polytransactions acting on the data base. This appendix presents a simple model of the
dynamic behavior of a distributed information system using the polyvalue scheme. An
analysis is given to show that with reasonable parameters for the expected transactions and
failure rates, the number of polyvalues in the data base remains quite small. A simulation of

the system agrees well with these predicted results.

B.1 A Model for the Creation and Deletion of Polyvalues

At any point in the execution of a distributed information system, we can calculate
the expected rates of creation and deletion of polyvalues, based on some assumptions about
the expected transactions, and the failure characteristics of the system. These rates can be

expressed as:

Creation Rate = Propagation Rate + New Failure Rate

Deletion Rate = Recovery rate + Propagation Overwrite Rate

Propagation iate is the rate at which polytransactions install polyvalues for their results in

items which previously held simple values. New failure rate is the rate at which updates in

progress are suspended, causing polyvalues to be installed. Recovery rate is the rate at
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which failures which caused polyvalues to be produced are recevered. Finally, propagation
overwrite rate is the (probably very low) rate at which an item with a polyvalue is updated
by a transaction producing a simple value. This occurs only if a transaction produces an

output that is independent of the previous value of the updated item.

With some additional terminology, we can develop more precise expressions for the
creation and deletion rates. 1 will use the following terminology to describe the data base,

the transactions, and the failure characteristics of the system:

U - Update frequency (Updates/Second). This is the rate at which
updates to the data base (not transactions) are made. U can be
calculated from the overall transaction rate, the percentage of
transactions which make updates, and the average number of
updates per transaction.

W - The probability of an update being delayed by failure. W can
be computed from the mean time between failures, the time window
in which an update can be delayed by a failure, and the update
rate.

I - The number of items in the data base.

R - The recovery rate for failures. This is the reciprocal of the
mean time to recover failures (in seconds). The description of
failure recovery in this way assumes that the mean time to recover
failures is exponentialiy distributed with mean of I/r.

Y - Update independence. This parameter is the probability that
the new value of an updated item will not depend on its exact
previous value. A value of 0 for Y indicates that the new value of
an updated item always depends on its previous value.

D - Dependence of updated items on other data items. This
parameter specifies on the average the number of data items in the
data base on which each update depends.

S P 5 T p—




— P— — e ———— e e

¥ - - e

AD=A066 996 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
ROBUST CONCURRENCY CONTROL FOR A DISTRIBUTED INFORMATION SYSTEM==ETC(U)
DEC 78 W A MONTGOMERY NO0018=T75=C=0661

UNCLASSIFIED MIT/LCS/TR=207 NL

303 END
AL DATE
A0BE0 98 FILMED
6-79
B




T
|
s

TR =
e .

2 flis nae

MICROCOPY RESOLUTION TEST CHARI
—




P T T——

T

-192 -

With these parameters, we can approximate the rates described above. In the
expressions given below for the rates, P represents the number of polyvalues in the data
base. This is a first order approximation in which the proportion of data items in the data
base having polyvalues is assumed to be small, thus terms involving (P/1)2 have been

dropped.

Propagationrate = U« D« P/ I
New Failure Rate = U « W

Recovery Rate = P » R

Propagation Overwriterate = U« P« Y / I

-

These terms can be combined to give the expected rate of chahge of the number of

polyvalues in the data base, yielding:

d—'} = UW + UsDsP/I - UsPsY/I - PsR

This is a sirﬁple linear differential equation for P which indicates that the number of
polyvalues would follow an exponential decay from its initial value to the steady state value,
given that the parameters accurately describe the behavior of the system. The steady state
expected number of polyvales can be obtained by setting the rate of change equal to zero

and solving for P. From this we obtain:

UsWsl

P = LR UsY-.UsD

Several non-intuitive properties of this solution should be explained. First, it would
seem that the denominator of this expression can go to zero, causing the steady state expected
number of polyvalues to be infinite or negative. This situation arises when the propagation

rate is equal to or greater than the rate at which polyvalues are removed through failure ':
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recovery or overwritten. If this were the case, we would indeed expect the number of
polyvalues in the data base to become large. In fact, the number of polyvalues in the data
base would grow so large that this simple first order analysis would no longer be correct, and
the number of polyvalues would be limited by second order effects which I have ignored. (I
have, for example, ignored the possibility that an item involved in a failed update or the

target of propagation already has a polyvalue, and thus does not represent a new polyvalue.)

A second feature of the equation which may seem strange is that it depends in a
non-trivial way cn I, the number of items in the data base. This is because the creation and
deletion of polyvalues directly due to failures is not dependent on the data base size, while
the propagation terms depend on the ratio P/I. If I is very large compared to P, then the
effect of propagation is small, as the chance that items with polyvalues will be used by
transactions is small. If, however, the data base is small, then the chance that items with
polyvalues will be involved in transactions is larger, and the propagation terms become more

significant.

Another point to notice about these equations is that they are stable, meaning that if
the current number of polyvalues is larger than the expected number, the expected change in
the number of polyvalues is a decrease. This indicates that if some catastrophe introduces a
large number of polyvalues into the data base, the number shouid soon decrease to the

expected number, given that the values of W and R are not effected by the catastrophe.

Table B.l gives some typical values for P. Several observations can be made about
this data. f)ecreaslng R causes an increase in the number of polyvalues, as would be
expected. Increasing W causes a proportional increase in the number of polyvalues.
Decreasing I causes the number of polyvalues to rise. The parameters Y and D have little

effect, unless the values of the parameters are such that the denominator of the equation for

Sl Bl e




P is near zero.

number of polyvalues remains quite small. These results indicate that the polyvalue scheme

is feasible in a distributed information system, and that the chances of a combinatorial

predictions of this model are reasonably accurate.

Notice that even for reasonably pessimistic failure rates and recovery times, the

explosion of the amount of computation are very small. The next section of this appendix
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contains a brief description of a simulation of the use of polyvalues, which shows that the
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0.001

0.005
0.0001

Table B.1

Parameters
1 R
1,000,000 0.001
1,000,000 0.001
1,000,000 0.001
1,000,000 0.001
100,000 0.001
100,000 0.001
100,000 0.001
100,000 0.001
20,000 0.001
11,000 0.001
1,000,000 0.001
1,000,000 0.001
1,000,000 0.0001
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Typisal Predictions of the Number of Polyvalues in a Database

prediction
P

0.10
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1.01
1A}
)}
200
333
1.00
200
11.00
1C.10
50.50
11.00
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B.2 Simulation of the Use of Polyvaues
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‘ ' In order to verify that the approximations made in analyzing the above model do
not lead to an inaccurate description of the behavior of the polyvalue system, 1 constructed a
simulation of the manipulation of polyvalues in a distributed information system which is

based on the above model, but not the approximations made in the analysis. 1

The simulation assigns unique identifiers to each failure creating a polyvalue, in -

order to distinguish them. For each item in the data base, the simulation maintains a vector | 3
containing the identifiers of the pending transactions on which that item depends, refered to

as the state of the item. An item has a polyvalue if its state is non-empty (i.e. if that item ?

depends on a pending transaction).

el et

Updates are simulated at the rate U. Each such update selects a random integer d
with mean D, and d random items from the data base. Some random item is selected as the
target of the update. The state of the updated item is replaced with a merge of the states of
the selected ¢ items. With probability (I-Y), the previous state of the updated item is also

merged into its new state.

With a probability W, the update is chosen to fail. A failure is simulated by
selecting a new identifier, adding it to the state of the updated item, and selecting a recovery
time for the failure. Recovery times are exponentially distributed, with mean I/R. When the
recovery time for a failure is reached, the identifier of that failure is removed from aii item

states.

The limits of the simulating program prevent the simulation of very large data bases,

or very high update rates. However, for the parameters that can easily be simulated, the

simulation agrees well with the predictions of the model. Table B.2 contains the results of
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the simulation for some sample parameter settings. The numbers of polyvalues obtained
through the simulation were in general somewhat smaller than those predicted by the H 7
analysis. This difference is primarily due to the fact that the rate at which polyvalues are
created is smaller than that predicted by the model, because the target of a failed update or
the target of a propagation may already have a polyvalue.

; ( In conclusion, these results show that the polyvalue scheme is feasible for preventing

delay due to locking, provided that reasonable measures are taken to minimize the number

of failures that introduce polyvalues.

Table B.2

Results of the Simulation of Polyvalues

parameters predicted actual

u w I R Y D P P
2 0.0t 10,000 o.01 0 1 204 2.00

5 0.01 10,000 0.01 0 1 5.26 27

10 0.01 10,000 0.01 0 1 nn 95
10 0.001 10,000 0.01 Y 1 R 0.74
10 0.01 10,000 0.01 0 5 20 198
10 0.01 10,000 0.01 I 5 16.7 158
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