o AD=A066 994 WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/6 9/2
@ A COMMUNICATIONS QUERY LANGUAGE FOR SEED.(U)
. MAY 78 J HAYWARDs R SANGAL+ O P BUNEMAN NOOO14=TS=C=0462
UNCLASSIFIED 78=05=02 NI

END !
DATE ’
FILMED |
6 79 !
boc ¥

e
||||| TR
5 L2

2 s nee

MICROCOPY RESOLUTION TEST CHARL
NATIONAL BURE AL () ANDAR Wi A
|- ——

o

g \.3‘
3
o
0
©
-~
:.\f‘;
=3

University of
Pennsylvania
Philadelphia PA 19104

NOC FILE copY

7 R 4o il 3 5 e o

ML, g o b

Q - A Communications Query
Language for SEED

Jonathan Hayward
Rajeev Sangal
Peter Buneman

78-05-02

Department of Decision Sciences
Department cf Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

May 1978

Research supported in part by the Office of Naval Research
under Contract NOOOl4-75-C-0462.

R

Q - A Communication Query System for SEED Page 2

/—
Introduction

with a few notable exceptions, gquery languages have
been designed to enable people to communicate with datapase
systems. The advent of computer networking has made
increasingly important the task of designing languages with
which another program may talk to a database system. The
DATACOMPUTER [l] supports a query language which, while it
may be used directly, was designed to be generated by other
programs. The DATACOMPUTER maintains a quasi-relational
database system with no direct linking/betwéen records. Q
is an attempt to do the same thing for a network database:
specifically SEED, which is a CODASYL like system developed
at the Wharton School. In designing such a language there
are two main goals: first the language should he as terse
and as powerful as possible in order to reduce the message
traffic in both directions when a query 1is sent and
answered; second to design a good message passing protocol
so that synchronization between programs is possible. In
the next section these goals are described more fully

together with more details of the operating environment for

which Q was designed.

Q - A Communication Query System for SEED

The prooblem of program-to-grogram communication

Generally, computer systems have concentrated on having
one or two languages (such as FORTRAN and COBOL) which are
standard on on a given system. The standardization has led
to a number of support packages written in FORTRAN or COBOL
which can be 1loaded only with other FORTRAN or COBOL
programs. SEED [2] 1is such a system. As understanding of
programming languages has continued, one finds that special
purpose languages have been developed that can be used for
for production (as BLISS) .or research (as POPld). However,
support programs written in FORTRAN or COBOL cannot

generally be loaded with languages such as POPl9 or LISP.

Development of network communications has worsened the
situation. Until network communications became more
important, tne concept of machine independence was important
to allow transfer of programs from one system to another
more easily. FORTRAN and COBOL were the standard languages
for machine independence. Even after network communications
became important, one of the main uses was to transfer
programs from one machine to another (FTP on the ARPANET for
example) and machine 1independence was still important.

However, now, computer networking is starting to emphasize
the segmentation of program systems into various "tools"

that are available at the sites on a network. The

possibility of using many tools on different hosts means

that a program cannot be loaded into one contiguous section

Bl

Q - A Communication Query System for SEED Page 4

of memory. Consequently, the concept of program
independence 1is not as important; 1linking the independent

operation of separate tasks becomes the main goal.

Both of these reasons lead to a concept in programming
that is not fully wunderstood: that of preaking apart a
large task into smaller asynchronous components which

synchronize activity by sending messages between themselves.

We have been faced with several research projects at
the University of Pennsylvania which require a database to
behave as a separate asynchronous component of a larger
system. DBLOOK of the SEED database system has been used to
accomplish asynchronous operation in the past. Several
problems bpecome apparent with DBLOOK when it is used as an
asynchronous task serving another task. DBLOOK is fairly
intelligent, and to a person using DBLOOK, the results are
satisfying. DBLOOK carries on an "implied" conversation.
It lets the wuser figure out what it 1is reporting and
requesting. For humans, the brevity of the output and input
is an excellent feature, since it cuts out the information
the user already understands. Programs which use DBLOOK do
not have the same intelligence as humans, and have a much
harder time carrying on the conversation. For instance,
when DBLOOK displays a record, it is not explicitly clear

wnere all the fields begin and end.

-« SSIFICATION OF THIS PAGE (Whan Data Entered) ~

READ INSTRUCTIONS

va, * o

Tl'lLt L L e N e L S Moty £ @
o ' Technical Kep
Qe A Communlcatlons Query Langua%_“) l Apr&@ 78 ‘-Harﬂh 79,
- REPORT WUMBER

. * REPORT DOCUMENTATION PAGE <. - * - 'BEFORE COMPLETING FORM
N GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
~ 7885-p2 8-45-p2 l/r :

for SEED.

> e— e
” = ...-—-—)./..-.~

-1 6.

7. AUTHOR(s) s A e e . : s
Jonathan]Ha ward v F T i
b IR : .1@001!4-75-&95%2 m-

J Ra)eev/Sangal P . p
% % - 10. PROGRAM ELEMENT, PROJECT, TASK
@ . 2 SPmAE" g AREA & WORK UNIT NUMBERS

8. CONTRACT OR GRANT NUMBER(®)

Department of Decision Sciences’

Philadelphia, PA 19104

University of Pennsylvania _(// 'Task.NROu9-272

12. REPORT DATE

May 197§

1. CONTROLLING OFFICE NAME AND ADDRESS

Office of }ia.val\“Re'se.a_rch' : 13. NUMBER OF PAGES _
: . A . e

14, nONITDRlNG AGENCY_NAME & . ADDRESS{‘L dllln-n(from Canlrol"n. Oflice) |
ﬁncla551f1ed

1S. SECURITY CLASS. (of thie report)

- 1

.

m , 15a. DECL Ass:ncrnonlbo'uanmwc E—
. \ PCH HEDUOLE™=T - - . .

IL = p.
srmaunon STAEEMEN Tfof m.aw;.&.(G TS /

e

]
R 1-| IPTSRU NPT

Approved for public release; distributionvunlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

Distribution unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

query languages, computer networking, datacomputer,
network database, communlcatlon query system :

-§20. ABSTRACT (Conllmn an reverse slde if necessary and identity by block m.-bol)

e advent of computer networking has made 1ncreaslngly important the task of
designing languages with which another program may talk to a database system.
The DATACOMPUTER supports a query language which was designed to be generated
by -other programs. It maintains a quas1 -relational database system with no
direct linking betueen records. Q is an attempt to do the same thing for a
network database-‘ spgcxflcally SEED, which is a CODASYL like system

developed at the Wharkon School. o it

DD . ““ n]473A¢ :omon or f;wv ¢s13omsoLETE -

Sl i B

l/l blo:-ou- 6601 |

g .) . » Wt = .'J/" :

e —— ——

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Enters i

-

2 - A Communication Query System for SEED Page 5

DBLOOK also has some limitations on 1its capability

which make some queries difficult to perform. DBLOOK cannot

give back values which are the result of computations on
fielas 1in the database. In addition, the CODASYL DML
functions are not very appropriate once one has decided to
access a database through a separate task. The DML

definition was based on the ability to access a global area

containing all the records easily (the UWA).

It is the intention of this project to try to overcome

A

some of these problems by:

E—

1l - designing a gquery language whicn is concise, allows
complicated gqueries to be processed simply.

2 - designing a control structure for executing the

query which allows simple synchronization between “
the communicating tasks.

3 - reporting output in formats which contain all the
information for a program to easily ascertain what

the output means.

Of course all of these criteria are quite vague.
Number 1 is especially vague, since that is the object of
any query language. In considering what other «criteria we
might apply, we decided to adopt the following:

4 - the language should allow any query to be processed

whicn does not reguire storage that increases more

than linearly with the size of the query.
5 = the language snould not allow any explicit control

W
1
it 0
. Q - A Communication Query System for SEED Page © { 4
i
) structures, such as do loops or conditional
3 brancning, yet should be able to selectively
k process portions of tne database.
. ' :
: Statement 4 effectively rules out any processing which i
would require sorting or merging. '
’ Statement 5 eliminates the need for any functions such '

S —

as "find first" or "find next". 1In the limited scope of a

query language, it would be burdensome to require an

i

' explicit "find" for every record, since a "find" is
generally necessary. In addition, we arpitrarily decided to g
g 3
limit ourselves to exploring the database by defined set ? ;
. relationships. 3
y Query Language
We look at the database as a hierarchy by starting at
”% £ one particular point in the database. Then, the particular
§ fields that one wishes to access can be specified. Items . |
rg called computed fields can be defined that are computed on g
lg ¢ the basis of other fields. Computed fields can be given a ;

name for later reference, or used to restrict further \

processing. The functions that are allowed in computed

e fields are PLUS, MINUS, MULTIPLY, DIVIDE, EQUAL, GT, LT, GE,
LE, AND, OR, NOT, and INT. Two more functions are provided

which "reduce" portions of tne tree. They are SUM and ‘
COUNT.

Q - A Communication Query System for SEED Page 7

The gquery language will be explained with reference to

the following datapbase structure:

STUDENT CLASSES
:studname:...: :classname:..cceee.:
\ F
% /
X / ROSTER
\ TAKES 4
\ /

\ ENROLLMENT @

- —— ——— — - —— — " ——

igradet.....oens

- —— — ———— - ——— ——

The language is designed around the concept of streams.
We wuse the term "stream" to denote a generator for a
sequence of objects (records, field values, other streams).
The term 1is wused 1in preference to "set", which denotes a
specific data structure in the database and "list"™ which
denotes a specific in-core database. A stream is
effectively a procedure for generating a specified sequence
of objects. See Burge (3] for a detailed explanation of
this concept. One creates a stream by openning a set of
parentheses preceded by a set or record name. For instance:
-STUDENT(...)
creates a stream of students. Operators can be applied to a
stream to define elements of the stream:
-STUDENT (NAME : STUDNAME)

or to create a stream of streams:

P SR

g ot e

R o st AR

e

Q = A Communication Query System for SEED Page 8

-STUDENT(!TAKES(...))
In tne former case, a stream of student names 1is created.
In tnhne latter case, a stream of enrollments for student is
created. wWnen defining a stream of streams, a "!" 1is used
to 1indicate that the stream owns a set of items represented
by the inner stream. A "“" indicates that the outer stream
is owned by one item in the inner stream. "!" and """ allow
traversal of the Bachman diagram representing the schema.
"-" is wused to indicate that the stream that is being
defined is simply a set of records, and is not related to
any other streams. ("-" can only appear at the outside of

an expression).

Items in the schema are referenced by placing the item
name in the parentheses. If a name followed by a ":"
precedes tHe item then the name is a user defined name for
the 1item. In the example above. "NAME" is the user defined

name for tne item "STUDNAME" in the schema.

Once some items have been defined, they can be printed
with a "§P". For example: ;
~STUDENT (NAME : STUDNAME, !TAKES (GRADE, "ROSTER (CLASSNAME,
$P NAME, $P CLASSNAME, $P GRADE)))
will print out tne names of students, and the <classes they

are taking, and the grades they have in the classes.

Suppose we would like to know how many classes the

students are taking. Then we could say:

-STUDENT (NAME :STUDNAME , !TAKES (GRADE) NUM:COUNT GRADE,

P ———

el it i it

= 1 VIR OV IR SRS WL N P SO SR

Q - A Communication Query System for SZED Page 9

3P NAME, $P GRADE)

The function count produce a count of the number of items in
the stream given as an argument. 3Suppose we wish to get the
average grade of all the students:

-STUDENT (NAME:STUDNAME, !TAKES (GRADE) S1:SUM GRADE,

N1:COUNT GRADE, AVE:DIV S1 N1, $P NAME, $P AVE)

The function divide will divide S1 by N1 to produce thne
average grade. dut, a problem could cccur with the gquery
above if a student is not taking any courses. A division by
zero would occur. To eliminate certain portions of a
stream, a restriction can be introduced:

-3TUDENT (NAME :STUDNAME, !TAKES (GRADE) N1:COUNT GRADE)

SR GT N1 9 (S1:COUNT GRADE, $§P NAME, AVE:DIV S1 N1,

$P AVE)

The function after the "S$R" is used to restrict any further
processing of streams that contain no grade records. "S$R"
might also be used to look at the record of a particular
student:

-STUDENT (NAME :STUDNAME) SR EQUAL NAME 'MARTIN MEYERSON'

* (!TAKES (GRADE, "ROSTER (CLASSNAME) ,

$P CLASSNAME, $P GRADE))

The control structure for executing queries 1is very
straightforward. One has the option of entering a query,
opening the database, processing a query, and abo:ting
execution. If an error should occur, the system waits for a

specific response to resynchronize itself with the

controlling task. The system also informs the controlling

Q - A Communication Query System for SEED Page 14

task when tne orocessing o0of a request nas started and

stopped.

The responses given back are straigntforward. They
fall into 4 categories:

1 = Brrors

2 - Data

3 - Synchronization

4 - Resynchronization regquest

System Operation

To start the query system, one simply types "R Q" at
the monitor level. When the system is ready, it will type
"READY". At this point, commands can be entered. Legal
commands are DBOPEN, PROGRA, RUN, VERIFY, DBCLOS, and EXIT.
DBOPEN will open a database. The name of the database must

follow the DBOPEN command as the 7th through 12tn

characters on the line. The privacy key must start in
the 1l4tn character position.

PROGRA will allow the lines following it to be entered as a
query. Syntax is checked as the gquery is entered. To
end tne entry of the query, an "#" is typed as the
first character on a line. To abort, an "@" is typed
as the first character on a line. If a filename 1is
specified after the PROGRA, then the file is used as

the source of input for the gquery.

i

Py

;‘,wg‘é,ﬂw;‘,u.‘ S T

-
Y

Q - A Communication Query System for SEED Page 11

RUN will process the guery. First the gquery 1is checked
against the schema to make sure that all the items and
sets are correctly defined. Then the database is
accessed to process the query.

VERIFY will check a query against the schema.

DBCLOS closes the database.

EXIT stops the execution of the system.

The system responds to commands with the following
keywords in the first 6 character positions of a line:
START, DATA, DONE, SCHERR, RUNERR, SYSERR, CMDERR, CLRACK,
ABOK, ENTER, SYNERR, FILE.

START indicates that the processing of the request has
started. :

DATA indicates tnat the rest of the 1line contains output
from a print request in the query

ENTER indicates that the query system is waiting for a 1line
of the query to be typed. ENTER will appear if the
query is not input from a file.

FILE will appear if a query is input from a file. The
remainder of the line contains a line of data as read
from the file.

SYNERR indicates that an error in the syntax of the query
exists.

DONE indicates tnat the processing of the query is complete.

SCHERR indicates that the query is in conflict with
schema.

the

RUNE ;
VERR indicates tnat a run error has occurred.

Lt

X ag L S T B Rl b R a
2
Q - A Communication Query System for SEED Page 12
’ SYSERR indicates tnat an error has been detected in the]
system's operation
CMDERR indicates that the processing of a command is
’ incomplete because of an error.
Any SCHERR will automatically cause a CMDERR at the end *
» of the VERIFY process. After a CMDERR, SYSERR, RUNERR, or -
SYNERR the word "CLEAR" must sent back to the query system || 3
P
to indicate acknowledgement of the error. The query system 3
5
acknowledges witn "CLRACK". ;

|
To abort processing of a "RUN", or "PROGRA", an "@" can i }
be typed. The system will respond with "ABOK" when it '
recognizes the abort request. (The system only checks for

abort befeore printing a DATA statement).

Further Developments

The idea that record selectors could be generalized to
work over streams (or streams of streams) of records and
that the usual boolean operators and arithmetic operators
could be similarly extended originally led us to believe
that we could develop an "APL for databases". The semantics b

of tne language have taken us some way towards this goal; B

however the syntax is still lacking. One of the main b
problems is

that one needs to be able to define new record |
types and their selectors in the middle

of a gquery. For

exam i
Ple, in the student - course database describped earlier

priliinin <l

-

Q - A Communication Query System for SEED Page 13

there is a query in which one constructs a stream of
triples: (student number of courses taken, total graae).
We have no very good method of labelling this stream for
future wuse 1in the Qquery. A second difficulty is the
standard problem in applicative programming: that of giving
the same argument to two different procedures without using
an assignment. The latter problem can be solved by the use
of combinators [4] or by the syntax suggested by Friedman
and Wise [5], but we know of no practical language which

exploits these.

The other omission of Q is that there is no provision
for performing updates.There are -some straightforward
methods of specifying an update and these should be added.
To give full power to Q, one also needs to implement the
operators whicn take the union, join etc. of streams. Such
instructions may be computationally expensive and it is not
clear that the database should be charged with performing

them.

In spite of these drawbacks it is gratifying to see
that Q is being used for allowing a LISP program to access a
database. The programmers, who have to learn the language,
develop the ability to construct monstrous and opaque

"one-liners" and in a rather limited sense, our ambition to

develop an APL for databases has been fulfilled.

"

Q - A Communication Query System for 3EED Page 14
References

l. DATACOMPUTER Usérs manual. Computer Corporation of

America. 1976.

2. Gerritsen, R. at al. Seed Reference Manual.
Decision Sciences Working Paper, University of

Pennsylvania, 1977

3. Burge, W.H. Recursive Programming Technigues,

Adison Wesley, 1974

4. Hindley, e Re Lercher, Bisy Seldin, J.P.

Introduction to Combinatory Logic, Campbridge, CUP

1972

5. Friedman, D.P. and Wise, D. "Cons should not
evaluate 1its arguments",Technical report 24, Dept

of Computer Science, Indiana University (1974).

— SIS e

Q - A Communication Query System for SEED Page 15

Appendix A - Sample Execution

The following example is taken from tne CTEC data base
describing a naval scenario. The portion of the database
whicn we are exploring involves ships and radar, and the

confluency between them.

R18SHIP@8 ship record radar record
:I18NAMEJ8 shipname - :I37NAME12 :
----------------------- : radar name :
/ N e——————
\ /
/ \ /
51878 ¥ \ S1822 f 837132
F i X
R78SPNAMAS/ snhipnames \ /radar ship confluency
:178NAMEB8 shipname :I22SPRDRO8 numpber of radar on :
--------------------- : ship 3

READY

DBOPEN ONRSUB CTEC

START OF PROCESSING

DONE QUERY RUNTIME: 9.813 SEED RUNTIME: 1.624

PROGRA Q@.DAT

START OF PROCESSING

FILE -R78SPNAM@8 (NAME:I78NAME@S) SR EQUAL NAME 'CHICAGO'
FILE (S1878(SHIPNAME:I18NAME@8,!S1822 (NUMBER:I22SPRORDS,
FILE S3722(RADARNAME:I37NAME12, $P SHIPNAME, $P RADARNAME,
FILE $P NUMBER))))

DONE QUERY RUNTIME: ©.875 SEED RUNTIME: 9.000

RUN

START OF PROCESSING ,

DATA SHIPNAME =CHICAGO

DATA RADARNAME =Sp5-10 \

DATA NUMBER = 1

DATA SHIPNAME =CHICAGO :

DATA RADARNAME =3pS-30 ‘

pan e, : : -'
=

DATA RADARNAME .ggg€2€°

DATA NUMBER = 1

Q - A Communication Query System for SEED

-R18SHIPO8 (SHIPNAME:I18NAMED8,!151822(N:122SPRDROS) ,

=CHICAGO
=SPS-48
=CHICAGO
=SPS-52

1.878 SEED RUNTIME: 0.998

TOTALRAD:5SUM N,NTYPE:COUNT N)SR GE NTYPE 2

0.936 SEED RUNTIME: 0.000

=DOWNES

=SPS-40

=BOWEN

=S5PS-10

=SP5-40

DATA SHIPNAME
DATA RADARNAME

DATA NUMBER

DATA SHIPNAME

DATA RADARNAME

DATA NUMBER

DONE QUERY RUNTIME:

PROGRA Q4 .DAT

START OF PROCESSING

FILE

FILE

FILE (SP SHIPNAME, $P NTYPE, SP TOTALRAD,
FILE 1S1822 (NUMBER : I22SPRDRO8,53722
FILE (RADARNAME : I37NAME12,$P RADARNAME,
FILE $P NUMBER)))

DONE QUERY RUNTIME:

RUN

START OF PROCESSING

DATA SHIPNAME

DATA NTYPE

DATA TOTALRAD

DATA RADARNAME

DATA NUMBER

DATA RADARNAME

DATA NUMBER

DATA SHIPNAME

DATA NTYPE

DATA TOTALRAD

DATA RADARNAME

DATA NUMBER

DATA RADARNAME

DATA NUMBER

DATA SHIPNAME

DATA NTYPE

DATA TOTALRAD

DATA RADARNAME

DATA NUMBER

DATA RADARNAME

DATA NUMBER

d

ABOK ABORT RECOGNIZED

EXIT

END OF EXECUTION

CPU TIME: 11.24 ELAPSED TIME:

EXIT

- [NN [o [N [Ll [(S J N}

Page 16

£)

h‘ it o i F— ’ t— X

Q - A Communication Query System for SEED

Appendix B - Query Language Syntax

The query language uses the following syntax.
Y. indicate optional <clauses. wii and-)™
mandatory clavses.
<stmt>::=((""" or "!")<setname> or
"-"<recordname>)" ("<los>")" [<restmt>]
<restmt>::="$R"<bool exp>["("<los>")" [<Krestmt>]]

<los>::=<ss>[,<ss>]*

Page 17

"["* and

indicate

<ss>::=<iteml> or <name>":"<item2> or <name>":"<expr> or

<stmt> or "$P"<arg>
<expr>::=<unaryexp> or <binaryexp>
<unaryexp>::=<unaryop>" "<arg>

<binaryexp>::=<binaryop>" "<arg>" "<Karg>

<arg>::=<integerliteral> or <realliteral> or <stringliteral>

or <name> or <iteml>
<iteml>::=<item>
<item2>::=<item>
<item>::= item name from schema
<setname>::=setname from schema
<record>::= record name from schema
<name>::= a user defined naME

<unaryop>::="INT" or "NOT" or "SUM" or "COUNT"

<binaryop>::="PLUS" or "MINUS" or "MULTIPLY" or "DIVIDE" or

This is subject to revision: if problems are encountered,

pPlease contact Rajeev Sangal.

Q - A Communication Query System for SEED

"EQUAL™ or "GT" aor "LT" or "GE" or “LE"

NORN

or

HAND“

Page 18

or

T
P eI

Q - A Communication Query System for SEED Page 19

Appendix C - Q Internal Documentation

Q is based on the «concept of recursive fortran by
having a central subroutine which calls a function for you,
to which you "RETURN" with a particular parameter if you
want to execute a call. All functions have computed goto's
at the beginning so that they can remember where they
executed the "call". (see the beginning of g3.F4 for
details). A recursive structure made life much easier since
the syntax of the language 1is defined recursively.
Furtnermore, the parser progduces a 1list structure of
"statements" whicn can also be traversed recursively for

execution.

The execution of a query is a 3 step process. The
query 1is read in, parsed, and a list structure is produced
in step 1. Then the 1list structure 1is preprocessed, to
verify that all the referenced items are in the database,
and have the correct relationship to one-another. Step 2
also includes allocating temporary variable space, and
noting where all the relevant UWA locations are. 1In step 3,
the gquery 1is actually processed. Every time the list
structure goes another level deep, a new 1loop 1is entered

which bpegins with a FINDAP, FINDPO, FINDO or FINDC, which
ever is appropriate. From there on, the "statements" in the

list structure are processed one at a time. The subroutines

PROGS, VARS, and RUNS do these tasks.

E.. .

Q - A Communication Query System for SEED Page 29

PROGS opens an input file, sets up glooal variables for
allocation of sympbol and statements. Then STMTS is called
recursively. The parser 1is organized into a set of
subroutines which follow the description of the syntax
exactly. Subroutine GETNEXT is used to get tne next key
word and separator from the input file. From that, next
allowable state of the parser is entered, oy calling STMTS,
RESTMTS, LOW, or S83. This process is continued until the

entire input is parsed.

VERS calls tne recursive function TRAN. TRAN
translates the statements, by checking item names and set
names, and their relations to one-another, by recording
where all the UWA inférmation exists in the unused portions
of the statement array, by allocating temporary variable
space, and copying literals into the temporary space, and by
changing the structure of "reduction" functions (suca as

count and sum) so that they consist of sequential statements

also.

RUNS calls LOOP recursively. LOOP takes as an argument

the type of FIND it is to do to get records from the data
base. If it is to do a FINDAP, it checks to see if it can

substitute a FINDC, and does so if possible. Then, it

executes the statements. If it finds a restriction that
yields a value of false, then it simply goes back to the

beginning of the loop for the next record out of the

database,

e T

L, S Y

Q - A Communication Query System for SEED Page

Appendix D - Q Main Data Structures

Internal list structure format:
stmt (l,n)=pointer to next list element
stmt (2,n)=statement type
P-item definition.
2-to owner set .
3-to owned set
4-assigned function
S-restricted function
6-not used
7i-start a record class
l1dl-header for start of record class
193-void function from "count" or "sum"
194-identity element for count etc
stmt (3,n)=not used
stmt (4,n)=pcinter to user defined symbol for
this assignment
stmt (5,n)=pointer to set name, item name,
function name
stmt (6,n)=pointer to argl of fn
stmt (7,n)=pointer to arg2 of fn

stmt (8,n)=type of argl - @ undef, 1 character
literal in symbol tabple,

2 pointer ig integer

literal, 3 pointer is floating

point literal, 4 Pointer is symbol

21

@ - A Communication Query System for SEED Page 22

pointer
stmt (9,n) =same as above for arg2
For type 101:
stmt (6,n)=record class index from schema
stmt(7,n)=uwa offset to record (for get)
stmt (8,n)=uwa offset to area for set
- (for findpo, or findap)
stmt (9,n)=current level in structure
Symbol Table Information:
udef ()=pointer to header statement in which this
label was defined
ucalc()=0 if laoel is not a calc key. =index into
uwa for calc key if it is'a calc key
utloc()=location in tvar for stért of this variable
utlen()=length in bytes of storage in tvar
utyp()= @ - character variable
1l - floating point
2 - integer
3 - double precision floating point
symbol (1-6,n)=symbol itself
fdef()=function index if this label
represents a function

narg(function index)=number of args for the

function

e

4 DISTRIBUTION LIST

1

i Department of the Navy - Office of Naval Rescarch
{ ‘

i Data Base Management Systems Project

Ylaval Electronics Lab. Cener
ofens phﬁnlknlktlon Advencad Software Technology Piv.

Ty

C L’)
Caaeron Station p“’“ 200
i \lexandria, VA 22314 52n Ciejo, CA 92152 ,
4 12 conies E
E | ; dc. E. B. Gleissner
| YE €1 £ P2 N~ SOAT ‘\)-'V?l Shir Dacaaral _
z Office cf lzval PResearch aval >a1n Lesearch and
k| ~ranch Of fice, Chicaso Pevelopserit Center
E | 535 South Tlark Street

Coazutation and “atheretic Dent.
?Ctﬁlyxwa, “n o 26GS%4

Ny

Chicejo, 1L 60605

~

Office of {aval Resecrch
S PRIEERE E] R Je 3 e : o

ow York drea Office Technical Jdirector

115 3roadway - Sth Floor Inforration Systens Pivision
A York, 9.¥. LOGH3 OP-911G

Mr. Kim Thoot

7ot
5

Nffice of Chidf Maval Ogerations

A L. & voz\ s :

| K- 'F‘.]f, SR Wachington, D.C. 20350
] Sciontific Advi=or (RD-1)
¥ & e ~-~.~1~ S i - Sy Te o
{ Corrandent of the “larine Corgs Prof. Crar “irm

3 lashington D.C. 20380 & “Hio Uni i

3 S LN R SSA I S TS CToluthico University

3 e = ; in the City of iow York

3 (R Yies anarcenN 3 3 : -

i J\lxcccsf G L o tent. of Tlectrical Tngincerim
1 -CEIe S g and Computer Scisnce

i » S e b x 399 o i

Q’ irlinzton, VA 2217 ‘lew York, N.Y. 16u27

3 UfFice of ‘ktvel TD' or Cormender, Heovel Sea Systens Comoend

Infornation Systens Prejran

I ““ﬂirtm(nt of the ‘lavy
e ik e A lashinaton, D.C. 20362
\txznjton, va 22217 ATPE 10T PMR30611

25 comes

o T 1

< & = i Centaln Richerd Yertin, USW
DM fice of "layal Fecscarch Conaending Officar
ach ¢ Y~ AT J IR 3 :
iy Fff):e, S USS frencis “farion (LPA-249)
455 Suaver Street BP0 ew York (5501

Zoston, Y (2210 =

Cactain Grece it Hourer

Sffice of level P“=f?rCH NAICOM/IS Planning Brench

“rarch Office, Pesac

‘ = b iy 0pP-%160
! 103G Tast Sreen ufrcet Jffice of Chief of ‘loval Fesearch
‘ —)-,. A o 4 “ 4 ba . : C bo
zcadena, CA ¢1)35 weshington, D.C. 20350
vevsl Per2arch Letoratory yrean of Tibrery and
Tecknical Infcrrstion Tivision Irfor=ation Tciepce Parearch
: C°49.2027 : nutcers = The Steote MMiversity

| “ashincton, U.C. 20315

189 Collmie “weinue
NMew rounzwick, V.J. GBUU3
RTTERTION Ot =lonty Veos

6 cozies

SEfice of ‘lavel Recesrch
~ode £55 Cofense
srlinston, V» 2217 Toroor

im Asency
Ccntc

an
hic
anced Techroloav Tiv.

¢N|

B

.

! ATT I how
4, Coc’e 21300

£~ GENC “rondkes Lang
el ‘rashiaten, D.C. 2

Wit <o

@31

