
t r -

IV AD—A066 99U WHARTON SO$OO~ PHI LADELPHIA PA DEPT OF DECISION SCIENCES F/S 9/2
S A COWIUNICATIONS SLERY LANSUASE FOR SEED. (U)
MAY 78 4 KAYWARDt R SANSA~. 0 P 8(I€MAN NDOO1~~ 75M.c~ Ofl2

UNCLASSIFIED 7S—OS—02 *1

A
~~: ‘cs ___________________________

1
END

DATE
FILMED

6 7 9

I
I

I:

• ~~ IIlIl~
2 5

_ _ _ ~~~~~~ 2 2

I.’ ~I. ~
:

~
~1rI~I 25

~~ IW~
6

~~~~~~~~~~~~~ I~t , ~~L t I l k ~N lI~~l



I 

H” 

D O G

APR j919

C

C-,

LU

I-

. .
S • ‘~~ •

‘~

79 ( ;4



~~~~~~~~~~~~i_ ~~ T i ~~~~ 
__

.1
I-,

1’

Q - A Communications Que ry
Language for SEED

Jonathan H ayward
Rajeev Sangal
Peter Buneman

78—05—02

•

S

Departnent of Decision Sciences
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

May 1978

•1

Research supported in part by the Office of Naval Research
under Contract N00014-75-C-0462.

-
~~~~

---J--- p ‘~~~~~~—~ ~
—.•——-—- ------—-,— —--— 

.‘ -
~-~~~~

--

~
--

~ — — — ~~~~~~~~~~
_ _ _ _  - —-- -- --——--- —-- - -

— t

Q — A Communication Query System for SEED Page 2

Introduction

With a few notable exceptions , query languages have

been designed to enable people to communicate with dataoase

systems. The advent of computer networking has made

increasingly important the task of designing languages with

which another prog ram may talk to a database system. The

DATACOMPUTER [1] supports a query language which , while it

may be used directly, was designed to be generated by other

programs . The DATACOMPUTER maintains a quasi—relational

database system with no direct linking~between recoras . Q

is an attemp t to do the same thing for a network database:

specifically SEED , whicn is a CODA SYL like system developed

at the Wharton School. In designing such a language there

are two main goals: first the language should be as terse

and as powerful as possible in order to reduce the message

traffic in both directions when a query is sent and

answered ; second to design a good message passing protocol

so that synchronization between programs is possible. In

the next section these goals are described more fully

together with more details of the operating environment for

which Q was designed .

J

‘l
.
~~ ‘ 51r
~: P~~I ..ur

I~



—~ 
- ~~~ T~~~~~~~~~ — — --

- -

Q — A Communication Query System for SEED Page 3

Tne problem of ~rog r am-to-or o~~~ rn communication

Generally, computer systems have concentrated on having

one or two languages (such ~s FORTRAN and COBOL) which are

standard on on a given system. The standardization has led

to a number of support packages written in FORTR AN or COBOL

which can be loaded only with other FORTRAN or COBOL
p

programs . SEED (21 is such a system . As understanding of

prog ramming languages has continued , one finds that special

purpose languages have been developed that can be used for

for production (as BLISS) •or research (as POP1Ø) . However ,

support programs written in FORTRAN or COBOL cannot

generally be loaded with languages such as POP1Ø or LISP.

Development of network communications has worsened the

situation. Until network communications became more

important , tne concept of machine independence was important

to allow transfer of programs from one system to another

more easily. FORTRAN and COBOL were the standard languages

for machine independence. Even after network communications

became important, one of the main uses was to transfer

progr ams from one machine to another (FTP on the ARPANET for

example) and machine independence was still important.

However , now , computer networking is starting to emphasize
the segmentation of program systems into various “tools”

- ~~• that are available at the sites on a network. The
possibility of using many tools on different hosts means
that a program cannot be loaded into one contiguous section

- 
.~a- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_____________________________ —~~ — 
_

1.
— A Communication Query System for SEED Page 4

p of memory. Consequently , the concept of prog ram

independence is not as important; linking tne independent

operation of separate tasKs becomes the main goal.

Both of these reasons lead to a concept in programming

that is not fully understood : that of oreaking apart a

large task into smaller asynchronous components which

synchronize activ ity by sending messages between themselves.

~Je have been faced with several research projects at

the University of Pennsylvania which require a database to

behave as a separate asynchronous component of a larger

system. DBLIOOK of the SEED database system has been used to

accomplish asynchronous operation in the past. Several

problems become apparent with DBLOOK when it is used as an

asynchronous task serving another task. DBLOOK is fairly

intelligent , and to a person using Di3LOOK , the results are

satisfying . DBLOOK carries on an “implied ” conversation.

It lets the user figure out what it is reporting and

requesting . For humans , the brevity of the output and input

is an exce llent feature , since it cuts out the information

the user already understands. Programs which use DBLOOK do

not have the same intelligence as humans , and have a muc h

harder time carrying on the conversation. For instance ,

when DBLOOK displays a record , it is not explicitly clear

wnere all the fields begin and end . 

~I_
_.1 ~~~~~



-S —.- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~
~~~~~~~~ - — -  ~~~~~—  - 

‘~~~~~

~~.•‘ ~~~~~~~ ~~~~~~~~~~ - — ~s Ir ,cATt o N OF THIS PAGE ~‘$), .,i Oat. ~ nI.v•~~
‘ - ..

. 1. • ‘... -. . - . -

r • . ~~LI ~~ La~~C ‘. . . - READ DISTRUCTIONS• REPORT DDCUMENTATIur~ rM~2~~ BEFORE ~OMPLZ11NG FORM -.

j~~.aLrBflT
~~~s • GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER

- —
~~~~~~~~~ ~~~~~~~~~ 

_ _ _I TITLE (—.~ S bun.) 0

.- -
- - .Technical /ep~~t.0 . A C.ornmunications Quer.y Language I A pr~~ 78 M a r* 79

•

-

-
.

fo r SEED. .

• .

.

• 7. A~ ,~ iIOR(.~ -
- . -

S. CONT RACT OR G R A N T NUMBLR(Si -

• •, __ 7 _
~~~~~~~~

• . - -

~~~~~~~ R a j e e v/ S a n g al  ~~~ :. 
.. L N ~

0O14_75_c_
~~

62 .~•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

TASk
• 

•
. Department of Dec isb n Sc iences  - . •

• . U n i v e r s i t y  of Pe n n s y l v a n i a  Task NR 0 14 9 -272
- Philadelph ia , PA 19104 . -

.

- II. CONTROLLING OFFICE NAME AND ADDRESS 
- 

12. REPORT DATE -

• .
.. 

. -.  . • - May 197w
- 

- O f f i c e  of Naval Research . i i.  NUMB EROF PAGES
- 

22
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

OfficJ IS. SECURITY CLASS. (.1 lAS. ..po4~J

~~~~ ~~~~ WNG*ADIN G 

=
IS. DISTRIBUTION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ — ‘

•

Approved for  public release , distribution unlimited

- 17. DISTRIBUTION STATEMENT (.1 h. .b.Ir. cI ~~~~~~~ In Block 20, If dlff.. it from R.p.st) 
-

- 

. Distribution unlim ited . 
‘ 

. 
-

F . - - •
~~~ 

.
. •

•

-

- IS. SUPPLEMENTARY NOTES -

II. K EY WORDS (ConIIrw. _. ,...,as .Id• II n.c.um~~ ,d Sd.,etIfr b~ block ni~~ b.r)

query l a n g u a g es , comp u te r n e t w o r k i n g , d a t a c omp u t e r ,
ne twork d a t a b a s e , c o mm u n i c a t io n~ que ry sy s t em .

-

-

.

-

.

a .

• 20. A BSTRACT (C.nft nt. om r.°at.• .14. II ,,.c... ~~~ m.d Id.nII~~ 5, block ,om.b.r)

-— t~~be advent of computer networking has -ma de increasingly important the task of
designing languages with which another program may talk to a database system.
The DATACOMPUTER . supports a query 1angi~ ge which was des~igned to be generated

•
. •

- . by.other program$. It maintains a quasi-relational database system with no
direct linking bei:ween records . Q is an attempt to do the same thing for a

• network database:’ sp~cif ical1y SEED, which is a C0DA~YL.1ike system .
developed ar th~ Wh ar~ton School. .

-
.11~

— •

DD , ~~~~~~
.1473k’ EDIflON 04’ f $OV SI It OBSOLETE .

. •

• •
.

~
- • r i g,p, 0102-014-UDI I •

- -

- • - . SECURITY ~~~A&RIFICAT~~N OF THIS PA CE ~~~~m. D~~a ~~~~~~

- -
. . . .

-
. - .

~/ ._ , l
~~

__
• • • •

- - V . •

- •

- - - - -~~~~~~~ -
_ _ _ _ _ _ _ _ _- ~~— . .. --~~--- — — - V . - -V -~~~~~~~~~~

V . -

V

— A Communica t ion Query System for SEED Page 5

DBL~)OK also has some limitations on its capability

which make some queries difficult to perform. OBLOOK cannot

• give back values which are the result of computations on

fielas in the database. In addition , the CODASYL OML

functions are not very appropr iate once one has decided to

• access a dataDase through a separate task. The DML

definition was based on the ability to access a global area fr

containing all the records easily (the UWA) .

It is the intention of this project to try to overcome

some of these problems by:

1 — designing a query language whicn is concise, allows

complicated queries to be processed s imply .

2 — designing a control structure for executing the

query wh ich allows simple synchronization between

the communicating tasks.

3 — r eporting output in formats which contain all the

i n f o r m a t i o n f o r a prog r am to easily ascertain what

the ou tput means.

Of course all of these criteria are quite vague.
0

Number 1. is especially vague, since that is the object of

any query language. In cons ider ing wha t other c r i t e r i a we

might apply, we decided to adopt the following : V

4 — the language should allow any query to be processed

whicn does not require storage that increases more

than linearly with the size of the query .
5 — the lang u ag e snould not allow any e x p l i c it con t ro l

--~~~ - - V - .

-~~~~
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~ ~ V VV 1Ii~~~~ii - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p

Q — A Communication Query System for SEED Page 6

- P structures , sucn as do loops or conditional

branching , yet should be able to selectively

process portions of the database.

Statement 4 effectively rules out any processing wnich

would require sorting or merging .

Statement 5 eliminates the need for any functions such

as “find first” or “find next” . In the limited scope of a

query language, it would be burdensome to require an V

explicit “find ” for every record , since a “find ” is

generally necessary. In addition , we aroitrarily decided to

limit ourselve s to exploring the database by defined set

relationships.

-1
p

Que~~ Languac~

We look at the database as a hierarchy by starting at

• one particular point in the database. Then , the particular

fields that one wishes to access can be specified . Items •

called computed fields can be defined that are computed on

the basis of other f i e lds . Computed f ie lds can be g iven a

name for later reference , or used to restrict further

processing . The functions that are allowed in computed V

fields are PLUS , MIN (JS, MULTIPLY , DIVIDE , EQUAL , GT, LT, GE , V

LE, AND , Oa, NOT, and INT. Two more functions are provided

wh ich “reduce ” portions of tne tree. They are SUM and
COUNT.

_ _ _ _ _ - V .’.-

V V V~~~~~~~~ Jj iiii iirir~~1I1~~~
~~~~~~~~~~~~~~~~~~~~~ V V V ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

Q — A Communicati .~n Query System for SEED Page 7

The query language will be explained with reference to

tne following dataôase structure:

STUDENT CLASSES

:studname:...: :classname : :

\ /
\ /
\ / ROSTER
\ TAKE S /

V \ /
\ ENROLLMENT /
:g rade

V

.
The language is designed around the concept of streams .

We use the term “stream ” to denote a generator for a

sequence of objects (record s, field values , other streams).

The term is used in preference to “set” , which denotes a

specific data structure in the database and “list” whicn

denotes a specific in—core ~latabase. A stream is
V effectively a procedure for generating a specified sequence

of objects. See Burge (3] for a detailed explanation of

this concept. One creates a stream by openning a set of

• parentheses preceded by a set or record name . For instance:

—STUDENT(

creates a stream of students. Operators can be applied to a

stream to define elements of the stream :

-STUDENT(NAME :STLJDNME)

or to create a stream of streams :
-

V

_ _ _ _


~~~~~
— —---— T~~~~TT ~~~~~~ ~~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p

— A Communication Query System for SEED Page d

—STUDENTUTAKES (. ..))

In trie former case, a stream of student names is created .

In the latter case , a stream of enrollments for student is

a created . ~nen defining a stream of streams , a “ ! “ is used

to indicate that the stream owns a set of items represented

by the inner stream . A “~~~
“ indicates that the outer stream

• is owned by one item in the inner stream . “1” and “ “ allow

traversal of the Bachman diag ram representing the schema.

“— “ is used to indicate that the stream that is being

o defined is simply a set of records , and is not related to V

any otner streams . (“— “ can only appear at the outside of

an expression) .

Items in the schema are referenced by placing the item

name in tne parentheses. If a name followed by a “ :“

precedes trIe item then the name is a user defined name for

the item . In the example above . “NAME” is the user defined

name for the item “STUDNAME ” in the schema.

• Once some items have been defined , they can be printed

with a “$2”. For example:

—STUDENT(NAME :STUDNAN E, ! TAKES (GRADE, ~ROSTER(CLASSNAME ,

$P NAME , $P CLASSNAME , $2 GRADE)))

will pr int out the names of students , and the classes they

are taking , and the grades they have in the classes.

Suppose we would like to know how many classes the

L students are tak ing . Then we could say:

—STUDENT (NAME:STUDNAME , !TAKES(GR ADE) NUM :COUNT GRADE ,

r~ •~

V

V

- ~~~

-

__V. r V__V ~~_V~ _~ ~ pV~ -7
~~~~~~~~ 

~~~~~~~~~ 7_
~~~~~~~~~~

_V

- “-V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~--~~~~~~~~~~~~~ I~~ 
V ~~~~~~~~~~~~~~~~~~~~ 

—.  - -

p

Q — A communication Query System for SEED Page 9

$~ NAM E , $2 GRADE )
p

The function count produce a count of the number of items in

the stream given as an argument. Suppose we wish to get the

average grade of all the students:

— S T U D E N T ( N M E : S T U D N A M E , !TAKES ( GRAD E ) Sl:SUM GRAD E ,

Nl:COUNT GR AD E , AVE :DIV Sl Ni, $2 NAME , $2 AVE) I I
The function divide will divide Sl by Ni to produce the V

averag e grade. But , a problem could occur with the query

above if a stu~ent is not taking any courses . A division by

zero would occur. To eliminate certain portions of a

s t r e a m , a r e s t r i c t i o n  can be i n t roduced :

— S T U D E N T ( N ~~- 1E:S~~JO NA ~4E , !TAK ES ( GRADE ) N i :CO LJ NT G R ADE)

• 
$R GT Nl ~) (S l : C OU N T  GR AD E , SP NAME , A V E : D IV S i N l ,

$2 AVE )

The f u n c t i o n  a f t e r  the “ $ R ”  is used to r e s t r i c t  any f u r t h e r

processing of s t r eams  t h a t  c o n t a i n  no grade records. “$R ”

inignt also be used to look at the record  of a p a r t i c u l a r

student :

-STU DE N T(N AM E :STU DNA ME ) $R EQUAL NA~’1E ‘MARTIN ME YERSO L ’I’

• ( !TA K ES(GRAD E , ~‘R O S T E R ( C L A S S N A M E ) ,

$P CLASSNAN E , $2 GRADE ) )

The control structure for executing queries is very

straightforward. One has the option of entering a query ,

opening the database , processing a query , and abc’.ting

execu t ion .  If an error should occur , the system waits for a

specific response to resynchronize itself with the

controlling task. The system also informs the controlling

_____________________ 
I 

V _ _



_ _ _  _ _  _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~~~~~~~~~-
i

~~~~~~~~~~~~~ 
:~~

p

— A C o m m u n i c a t i o n Q u e r y Sy s t e m f o r SEED Pan e lJ

task wnen tne oro~essing o~ a request .ias started and

stopped .

The responses given back are straigntforward. They V

fall into 4 categories:

3. — E r r o r s

2 — Data
1

3 — Synchronization

4 — R e s yn c h r or i i z a t i o n r e q u e s t

~~~~~~~ ~~~~~~~

To start the query system , one simpl y types “R Q” at

the monitor level. ~‘Then the system is ready , it will type

“READ Y ” . At tnis point , comma nds can be entered . Legal

commands are DBOPEN , PROGR A , RUN , VERIFY , DBCLOS , and EXIT.

DBO P EN w i l l  open a da t abase .  The name of the da tabase  m u s t

follow the DBOPEN command as the 7th through l2tn

characters on tne line. The privacy key must start in

the 14th character position.

PROGR A will allow the lines following it to be entered as a

query . Syntax is checked as the query is entered. To

end tne entry of the query , an “4” is typed as the

first character on a line. To abort , an “@“ is typed

as the first character on a line . If a filename is

specified after the PROGRA , then the file is used as

the source of input for the query .

_ _ _ _ _ _ _ _ _ _ _  V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



- 

—~~ — - -~-~~~~~ - -~~~ - — c”
$

Q — A Communication Query System for SEED Page 11

RUN will process the query. First the query is checKed

V against the schema to make sure that all the items and

sets are correctly defined . Then the database is

accessed to process the query.

I I VERIFY will check a query against the schema.

DBCLOS closes the database.

EXIT stops the execution of the system .

V The system responds to commands with the following 
V

keywords in the first 6 character positions of a line :

STAR T , DATA , DONE , SCHERR , RUNERR , SYSERR , CMDERR , CLRACK ,

ASOK , ENTER , SYNE R R , FILE . 
V

START indicates that the processing of the request has

started .

V DATA indicates tnat the rest of the line contains output

from a print request in the query

ENTER indicates that the query system is waiting for a line

of the query to be typed . ENTER will appear if the

query is not input from a file.

FILE will appear if a query is input from a file. The V

remainder of the line contains a line of data as read

from the file.

SYNERR indicates that an error in the syntax of the query

exists.
L1t

DONE indicates that the processing of the query is complete.
SCHERR indicates that the query is in conflict with the

schema.

R(JNERR indicates tnat a run error has occurred .

V V ~~~~~~ V V V ~~~~~~~~~~~~ V~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j



V V — VV~~~~~ V~ _ __  V

F . ~_ V__~ 
-- _V~ V - . _V . E  V -. — V - ~VV 

-
- —  —~~ - - — — ~__ V V _~_ -V_ 

~~~~ V V ~ 
- V

p

— A Communication Query System for SEED Page 12

V

SYS ERR indicates tnat an error has been detected in the

system ’s operation

CMDERR indicates that the processing of a command is

incomplete because of an error.

Any SCiIERR will automatically cause a CMDER1~ at the end

of the VERIFY process. After a CMDERR , SYSERR , RUNERR , or

SYNERR the word “CLEAR ” must sent back to the query system

to indicate acknowledgement of the error. The query system

• acknowledges with “CLRACK ” .

To abort processing of a “RUN ” , or “PROGRA” , an “
~~~~

“ can

be typed. The system will respond with “ABOK” when it
p

recognizes the abort request. (The system only checks for

abort before printing a DATA statement) .

a

Fur ther  Deve~~~ ment s

• The idea that record selectors could be generalized to

work over streams (or streams of streams) of records and

that the usual boolean operators and arithmetic operators V

t could be similarly extended originally led us to believe

that we could develop an “AP L for databases” . The semantics

of tne language have taken us some way towards this goal; r

C howeve r the syntax is still lacking . One of the main
problems is that one needs to be able to define new record
types and their selectors in the middle of a query . For
example , in the student — course database described earlier

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _  

I,. -

~~~~~~~~~~~~~~~~~


_ _ _ T~~~i~
_
~i-~

v— --- —-
- - -- - —

1L~
•

Q — A Communicat ion Query System for SEED Page 13

there is a query in which one constructs a stream of

triples: (student number of courses taken , total grace)

We have no very good method of labelling this stream for

H future use in the query. A second difficulty is the

standard problem in applicative programming : that of giving

the same argument to two different procedures without using V

an assig nment. The l a t t e r problem can be solved by the use
V

of comoinators [4] or by the syntax suggested by Friedman

and Wise (5] , but we know of no practical language which

exploits these.

The other omission of Q is that there is no provision

for performing updates .There are some straightforward

me thods of specifying an update and these should be added.

To give full power to Q, one also needs to implement the

operators wriicn take the union , join etc. of streams. Such
V

instructions may be computationally expensive and it is not

clear that the database should be charged with performing

them .

In spite of these drawbacks it is gratifying to see

that Q is being used for allowing a LISP program to access a

database. The progr ammers , who have to l earn the language ,

develop the ability to construct monstrous and opaque
— “one—liners ” and in a r a the r l imited sense , our ambi t ion to

develop an APL f o r databases has been f u l f il l e d .

V
V (

I
~~~~~~ VVL TTT1 V 

V V V V V  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



—- -V - - — -

Q — A Communication Query System for SEED Page 14

Re fe renc es

1.. DATACOMPUTER Users manual. Computer Corporation of

America. 1976.

2. Ger r i t s en , R. et al. Seed Reference Manual.

Decision Sciences Work ing  Pape r , Un ive r s i t y  of

Pennsylvania , 1977

3. Surge , ~~~.d. Recursive Pr~~~~ammin ~ Techniques ,

Adison Wesley , 1974

4. Hindley , J.R ., Lercher , S., Seldin , 3.2.

Introduction to Comb in atory  Lo~ ic , Camoridge , CUP

1972

5. Friedman , D.2. and Wise , D. “Cons should not

evaluate its arguments ” ,Technica]. report 24, Dept

of Computer Science , Indiana University (1974)

p

I

b

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

‘: ~~~~~~~~~~~~~ —_ V 
__ __  V —

p 
Q — A Communication Query System for SEED Page 15

Appendix A — Sample Execution

p

The fol lowing example is taken f rom tne CTEC data base

describing a naval scenario. The portion of the database

wnicn we are exploring involve s ships and radar , and the

confluency between them.

$
R18SHIPO8 ship record radar record

:I18NAMEO8 shipname : :137NAL4E12 
V

: ra dar name
/$ / \ /

/ /
51878 / \ Sl822 / 53722

I
, \ /

R~ 8$PNAM0S/ sriipname s \ /radar ship confluency

:I78NAMEO8 snipnaine : :122S 2R0R08 number of radar on
: ship

READ Y
DEOPEN ONRSUB CTEC
START OF PROCESSING
DONE QUERY RUNTIME : ~L~3l3 SEED RUNTIME : 1.624
PROGR A Q0.DAT

~~~~~~ ~r~~ CE SSING
FILE —R 78S P NA 140 8(NA M E: I 78N A M EO 8) $R EQUAL NAME ‘CHICAGO ’
FILE (S1878(SHIPNAtIE:I18NAMEO8,!51822(NUMBER:I22S PRDRO8,
FILE S3722(RADARNAME :137NME12, $2 SHIPN AME , $2 RAD AR N AME ,
FILE $2 NUMBER))))
DONE QUERY RUNTIME: 0.575 SEED RUNTIME : 0.000
RUN
START OF PROCESSING
DATA SiIIPNAME CHICAGO
DATA RAD ARN ME S2$—l0
DATA NUMBER 1
DATA SHIPNAME CHICAGO V

DAT A RAD AR N AME ~SPS-3v)
DATA NUMB ER 1
DATA SdIPNAI4E ZCkIICAGO
DATA RAD AR N ALIE

DATA L~1UM5ER - 1

¶

~~~~~~~~~~~~~~~~~~~~~~~~ 

V 
VV V

I ~A V 
V~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ V V V V  V ~~~~~~~~~~~~~~~



V V~~~~~~~~ - -
~~

--
~~-- -- ----~~~~T_

-
~~~ 

V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- y-~~ ~~~~~ V~~~~~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p
Q — A Communicat ion Query System for SEED Page 16

DArA $k1I?L~4AM E
DAT A RADARNAL4E -SPS-48
DAT A NUM B ER = 1
DATA SdIPNAM E —CHICAG O
DATA RAD AR N AME -SPS-52
DATA NUMBER — 1
DONE QUERY RUNTIME: 1.878 SEED RUNTIME : 0.998
PROGRA Q4.DAT
START Of~~~ CESSINGFILE —R18S5I20 8 (S HI PNAM E :I 18N AM E O8 , 151822(N:I22S PR DRO 8) ,
FILE TOTALR AD:SUM N, NTYPE :COUNT N) $ R GE NT YPE 2
FILE ($P SHI PNAM E , $P NTYPE , $P TOTALRAD ,
FILE 1S 1822(NU MB E R :I22S PRDR O 8 ,S3722

p FILE (1~ADARNAi4E:I37NAMEl2,$P RAD AR N AME ,
FILE $2 N U M B E R)))
DONE QUERY RUNTIM E : 0 .936 SEED RUNTI M E : 0 . 0 0 0
RUN
~~ART OF PROCESSING
DAT A S~~IPNAM E aDOW NE S

r DATA NTYPE 2
DATA TOTALR AD = 2
DATA RADARNANE =SPS—40
DATA NUMBER = 1
DATA RADARNAME =SPS-10
DATA NUMBER = 1
DATA SHIPNAM E TRUE TT
DATA NTYPE = 2
DAT A TOTALR~D = 2
DATA RAD AR N AME =SPS-10
DATA NUMBER = 1
DATA RAD AR N AME =SPS—40
DATA NUM BE R = 1
DATA SHIPNA M E BOWEN
DATA NT YPE = 2
DATA TOTALR AD = 2
DATA RAD AR N AME SPS-10
DAT A NUMBER = 1

* DATA RADARNA M E =SPS—40
DAT A NUi4BER — 1

ABOK ABORT RECOGNIZED
• EXIT

* END OF EXECUTIO N
CPU TIME : 11.24 ELAPSED TIME : 4 : 2 5 . 8 3
EXIT

I n

_ _ _

--

~~~~~~ — — —~~~ - 
V~~~~V~ V - • ~~~~~~~~~~~~~~~~~~~~~~~~~~ -



— —i_---- •_ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—•-~ 
— 

—,•-

a
Q — A Communication Query System for SEED Page 17

Appendix B - Query Language Syntax

The query language uses the following syntax . “
~~~~~~~ 

and V

“]“ indicate optional clauses. “ (“ and “)“ indicate

man datory clauses.

<stznt>::i ((~ *~ or “ !“)<setname > or

“— “<recordname>)” (“<los>”)”[<restmt>]

<restmt>:: ”$R”<bool exp> [“(“<los>”)”[<restmt>]] V

<].os>::<sS> [,<ss>1*

C <ss>::=<iteml> or <name>” :”< item2> or <name> ” :”<e xpr > or

<s tmt> or “ $ P ” < a r g >

<expr>: :=<unaryexp> or <binaryexp>

<unaryexp>::=<unaryop> ” “< ar g>

<b ina ryexp> : :=<binaryop> ” “< arg> ” “<ar g>

<arg>::=<integer literal> or <realliteral> or <stringliteral>

or <name> or < i temi>

<iteml>: :=<item>

<item2> : :=<item>I
< i tem> : := item name f r o m schema

<se tname>: :=se tnam e f r o m schema

< r e c o r d > : :— record name f rom schemaC
<naxne>::= a user defined naME -

<un aryo p > : : = ”INT ” or “NOT” or “SUM ” or “COUNT”

< b i n a r y o p > : :— ”PLUS ” or “MINUS ” or “MULTIPLY” or “DIVIDE” or
ci L

This is subject to rev i s ion : if problems are encountered ,
please contact Rajeev Sangal.

C c . .

V — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T IVV . V - V - V - V
V_ _ V

_ _ _ _ _ _ _ _ - V —
-

Q — A Communicat ion Query System fo r SEED Page 18

“EQUAL ” or “GT” or “LT” or “GE” or “LE” or “AND” or

“OR”

-
p

I V

p

p

0

C

V~~~~~~~~~~~~V V_ V V .

_ _ _ _

I L~~~~~~V—~~~~~
--—

~~~~
-

~~~~~~
--—--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V - -- ~~~ ~~~~~~~ ~



--- - - V- V ~_ _ V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -V ~~~~~~~~~ V - -  
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S Q — A CommunLcatlon Query System fo r  SEED Page 19

Appe ndix C — Q Internal Documentation

S

Q is based on the concep t of recur sive for tran by

having a centra l  subrout ine  which calls a function for you ,

to which you “RETURN” witn a particular parameter if you

want to execute a call. All functions have computed goto ’s

at the beginning so that they can remember where they

executed the “call” . (see the beginning of q3.F4 for

details). A recursive structure made life much easier since

$ the syntax of the language is defined recursively .

Fur thermore, the parser produces a list structure of

“statements” wnicn can also be traversed recursively for

* 
execution.

The execut ion of a query is a 3 step process. The

query is read in , parsed , and a l is t  s t r u c t u r e  is produced
* in step 1. Then the list structure is preprocessed , to

verify that all the referenced items are in the database ,

and have the correct relationship to one—another. Step 2
S

also includes allocating temporary variable space , and V

noting where all the relevant  UWA locations are .  In step 3,

the query is actual ly  processed . Every t ime the list

struc ture  goes another level deep , a new loop is entered - V

which beg ins wi th  a FINDAP , FINDPO , FINDO or FIN DC , which
ever is appropriate. From there on , the “statements” in ther V  l is t  st r u c t ur e  are processed one at a time . The subrout ines
PR OGS , VMS , and RUNS do these tasks.

(

_ _ _ _  V V~~~~~~~ VV ~~~V V _ ~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~ 
- VT. ~~~~~~~



- -

F -- — -— - ~~~~~~~~~~ ____________ 
— —— ~~~~~~~~~~~~~~~~~~~~~~~~~ V_~_ V _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

V _ _ _ _ _ _ _ _  ~~~~~V _~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p

Q — A Communication Query System for SEED Page 20

PROGS opens an input file , sets up glocal variables for

allocation of symool and statements. Vrhen STMTS is called

recursively. The parser is organized into a set of

subroutines which follow the description of the syntax

exactly. Subroutine G~ rNEXT is used to get tne next key

word and separator from the input file. From that , next

allowable state of the parser is entered , óy calling STMTS ,
I

RESTMTS , LOW , or SS. This process is continued until the

entire input is parsed .

$ VERS calls tne recursive function TRAN. TRAN

translates the statements , by checking item name s and set 
V

names , and their relations to one—another , by recording

C where all the UWA information exists in the unused portions

of the statement array , by allocating temporary variable

space , and copying literals into the temporary space, and by

chang ing the structure of “reduction ” functions (such as

count and sum) so that they consist of sequential statements

also.
H

RUNS calls LOOP recursively . LOOP takes as an argument

the type of FIND i t  is to do to get  records f rom the data 
V

base. If it is to do a FINDA .? , i t  check s to see if it can

subst i tu te  a FIN DC , and does so if possible.  Then , i t

executes the statements. If it finds a restriction that
yields a value of false , then i t  s imply goes back to the
beginning of the loop for the next record out of the

database.

~~~~~~~
1 V

~~~~~~~~~~V V~~~ -V -~~~~~~ .
- V V -



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~ ~~~~ 

Q — A Comrnunication Query System for SEED Page 21

Appenbix 0 — Q Main Data Structures
p

In t e rna l l is t s t r u c t u r e f o r m a t :

stmt(l ,n)=pointer to next list element

stmt(2 ,n)=statement type

0—item definition
-

-

2—to owner set .

3—to owned set

4—assigned function

5—restr icted function

6—not used

i—start a record class
V

V 101—header for start of record class

103—void function from “count” or “sum ”

104—identity element for count etc

•
s tmt (3 ,n) = n ot used

stmt (4,n)=pointer to user defined symbol for

this assignment

* stxnt(5 ,n)=pointer to set name , item name ,

function name

stmt(6 ,n)=pointer to argl of fn

t stmt(7,n)=pointer to arg2 of fn

stmt(8 ,n)=type of argi — 0 undef , 1 character

literal in symbol taole,
2 pointer is integer

li tera l, 3 Pointer is floating V

point literal , 4 pointer is symbol.

Ct

- - ~~~~_ V . V V j ~~~~~~ VV~~V~~~~~~~~~ - —
V

_ _ -~~~~~ ~~ TT_T~~~ ~~~~i~ TT~1 -- ---
~~~~~~~~~~~-- -

~~~~~

Q — A Communication Query System for SEED Page 22

pointerr
V stmt(9 ,n)=same as above for arg2

For type 101:

stmt(6 ,n)=record class index from schema

stmt(7 ,n)=uwa offset to record (for get)

stmt(8,n)=uwa offset to area for set V

(for findpo , or finaap)
V

strnt(9 ,n)=current level in structure

Symool Taole Information:

udef()=pointer to header statement in wnich this

laoel was defined

ucalc()=0 if laoel is not a calc key. =index into

uwa for caic key if it is a calc key

utloc ()=location in tvar for start of this variable

utlen ()=length in bytes of storage in tvar

utyp()= 0 — character variable

1 — floating point
V

2 — integer

* 3 — double precision floating point

symbol (l—6 ,n)=symbol itself

fdef()=function index if this label

C: represen ts a function

narg (function index)=number of args for the

function

:~~~~~~~~~~~~~~~~~
-

~~~
—-

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

n I S T R I B Ur I o N LIST

fl~I)art r n en t o f th~ N~ivy — O f fi c e of N a v a l Ro~~~a i

V

f l i t a B i :~~t~ ~
V
~~~~~l 1 ~~J m t  Sy s t  emS P r j ~~I:t

V V v~ 1 !~~1I ~~~~t C_-fl ~CS r~I’D . C~ I
V V r

C? I ~on ~
. ) (\] f l f tC  [~ ~~ fl(ll~ iy 1’ 1V

• ~~~~~~~ ‘
~~V~~

(V IO
~~~~ V V  V t  1)1) t f i t  IOfl
\l~ ::~ n i t ia , V~ 223 14 ~~~

r 1~~ 30 CA 92 152
1 . ‘ ‘1) 1 it? S

V - -r. . ~. l~ 1 - u i ~~r
V V - V — V -~~val (

~ j ~ j ~~.
~~~~~~~~~ ~

-t Jf~ce CL • V  v~ 1 - - t - ~I~~~~t ( - I J  -

V V
~~ (~~~ r~~~ h :~ffi c~ , Chk~~o 

I
~~~~

V
~1~ V l C i i I : ~ . t V r

V ~ 3t ~~~~~~~~~~~ ~ l - ~r~ ~t r cet
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V V
~~t .C}’~ c,~~o, IL ~ ‘T~~ T t ~~~-~~~a , 

) ~~~
~ffico of 

_ V~~~l ,~r~:;:~~rch . L~irn ~~~~~ 
- I)fl

C V 1  ~~~~~~~~~ • 
~~ f~3 Cf~f~ice ~~~~~~~~~~~~~~~~~~~~~ ~~ 

V~~ V~~~~ )~~

i15  L V
V

V V~~..f iY — )~~~~~ ClOOf In~ ot - .‘tion fl y ~~~~~~ ~~j~~ V j f l l~~~~~~

, -~.Y. 1U~ O3
Of ~ic~ of (‘~ i~-f ‘~v~ 1 ~~cr ~~t ions

f .  ~.t- . ~~l~~~~~~
-
~~~
l:

~~~~Y ~~~~~~~~~~ ). .C. 2 1I35i)
~ c i - V~~ t I f~~~C ‘ ‘vi  ~-~r ( :~ >V~l)
~o ~~~:~~~~cnt  of ttc f i r i ) C ?  ~uL :  

~ Pr of .  (
~ V r - ~V r - ir ~1—~~

‘-
~ ft ~~~~ p .C. / 1 3~ O ‘Th1t1~~)1~ ~n i v cr - ;i ty

in  tt- -e Cit ~y of ;(
V V~ \‘~ rk

c~c~ -~~~~ ~~~~~~ 1 ~~~~~~~~~~~~~~~~~~ 
r~~~~

V
~~t o1 ‘1’~(-~ r i C’~~~ ’ ~~~~

-: ~~~~~~

T Yn  453 ,~~~~~~~
V
~ O V V  :~ t~~r ~ci - :~ ce V

~-r ~ j r ~~~~~ r ’, i.- ’- 
~?2I ~ ~ew v~ r !< , ‘~.Y.  I C u 2 7

V~~~
, fjco I)f ~~

- ~~ ~~~~-i ’r  C )  
~~~~~~~~~~~~~~~~~~~~~ 

.: I , - 1
~~~~~~ 

L
yf lh i

V. (o
I~ for  ~~V~~ t~~~~~~ fl ~~~V ;~~~(

V~~~ •
~~~~~ ~r a~n 

i
V V V V

~~: r t V V I V 4
~ of he

~ ~~~~~~~~ -~
-
~ton ,

fl .C. :?U 362
‘riir i tor., v~ ~ ~217 \ V l ~ :V. y . j V y ~~. f~3ub1l V

2 co~ ir ~
~~~~~ ~j~— ~- i c~’:r ~ V V t V t j r

V
\~ I~ CC? ~~ ~V~~i~~ 1 ~~-~~:r  C~~ (V~~~)

V -~ rn irt-J -~)ffic?r.tTcL~~, Ty:~ ~~ U~S ~r~ncis ~~r ion (L —2~5)
V 4~5 Th ‘~—r ~tr~c’t 

~~~ ~~2’,: ~~~~~~~~~

~o:ton , ~ ~
~~~c~~~~ t~~~~j f l  ~~rf lc (? :~ . 3 ç •

~
T 4 I ice of ~~~ ~~ ~c r r C )  

~~ I~ O- - •/~~t ‘~1 ‘nni ~~ 
T
~~IL

V
V~~f l C

L
1

‘r - ~r c t  i fui~ e , F : V
V

V
l V V

V r V ~ 

~)~‘— ‘16~)l~ 3~ 
r

~~— t  ~r~~:-r ~t r .~~t 
~ f lice of Thief  of ~v,-’1 ~

‘ - :
~~~fl; b cn~~, ~~ ~1) 

~~~ hi:~-~toi, fl .~~~. 2U 3~ )

•-:~V VV~1 r~~~ — rc -~ f 
VV (~~ V ?tory :V) J r V  

~~~ t of  T ~~
‘
~~ tV (~~~~

T r : V n i C & 1 tn ~ cr - - ‘t ion r j j~~-~~~ V-~ fl I.~ .rC t iC’ri •V •

Co-~’- 2~:2 7 uL- ~~ r~ — ‘
~~~~~ V -t c  • ‘ -

~~~
-
.

- i - -
~~~~~~~ ”

~~~~~~~~~~~~~~~~~~~~~~~~ r ’ c • 2tJ 37 5 139 ~Tn~ 1~~,o • V • V
~ I~~

VVV

(i.
V -.

~ ~~~ ~~~~~~~~~~
-1 • l • I J V S ’ I VV V 3

V.C y~~
V

S ~i ’:” : L’ r • t - ~r .ry \V~~~ fl V:

- 4
~~r;~~ Ve of ~v~l ~.c :2Trc”

.c~ r :~~ e ~~~
V V V 1 I~~~~ ~c rc ’

~t Df l , v~• 22 17 ro:~~1r ~~~~ic Ccntcr
~~~~~~~~~ 

)~~~~V~~~ ~~~~~~~~~~~~~~~~~~~ ~v •
Co c’ ~l3u~I ~ 

• V  V V
r ~~~ ZC~ 1-

: 2 : . y~ V~~~tcn , 
-

-- - .c. ~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~ ~~~~~ 

V~~~~~~~~ V ~~~~~~~ V - -


