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FQL -- A Functional Query Language

1.0 INTRODUCTION

Formal database query languages are extraordinaiily
varied, ranging from the algebraically based relational
languages [3, 10] to those 1lanquages provided with some
CODASYL systems [4] which give the user direct access to the
data-manipulation routines within the database management
system. The Functional Query Lanquage described here, FQL,
was originally desianed and implemented in an effort to
provide a npowerful and structured interface to a CODASYL
database management system. Constructing an interface to
other database systems should, however, present little'
difficulty as the data model used by the language is quite
general: FQL may in fact.serve as a common query language

for communication with different database systems.

FQL is an aoplicative language; and embodies manv of

the ideas concerning functional programming systems recently
described by Backus [l]. The only control structure in fact
available to the user is the abilitiy to combine functions.
The means for exolicit data reference (i.e., variables) have
been purposely omitted from the lanquage. As a result, FOL

differs from other aquery lanquades in several imoortant

resoects.

l. There is no notion of data currency: many querv
systems (the relational 1langquages aire a notable
exceotion) operate on a "record-at-a-time" Dbasis
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FQL -- A Functional Query Language Page 2

strongly reminiscent of what Backus terms the
"von-Neumann bhottleneck".

2. Complex queries may be develooed incrementally from
simpler queries: a guery in FQL is no more than
another function over the database which, using the
mechanisms provided by the 1langquage, can be
combined with other Jueries.

3. Full computational power is orovided: many gquery
languages lack the ability to do basic arithmetic,
let alone recursion (some relational 1language are
particularly weak in this respect).

4. The lanquagqe itself is independent of any database

system: the data model it emoloys can be
interfaced with database systems other than
CODASYL.

It should be emphasized that we do not see FQL as the
"ideal" end-user gquery language; nor do we believe that
such a language exists. Rather, it 1is presented as a
precise and powerful formalism for the exdression of
database queries. Our hope is that FQL (or some syntactic
variant of it) can serve both as a tool for those wishing to
construct complex queries and as an intermediate 1langquage
into which one's "favorite" query lanquage may be readily
translated (an early version of FOL is currently in use as a

database interface for a natural language system [7]).

The main ourpose of this oaver is to provide an
informal introduction to FQL. 1In the following section the
rudiments of the language together with simnle examples of
their apnlication are presented. Some issues of
imolementation are then outlined. The final section of the
paper is devoted to a discussion of the future development

of FQL including its extension to other database systems and

b ot detoicia ocauts
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its more general role as an aonlications langquage.

2.0 THE LANGUAGE
2.1 A Functional View Of Databases

Since FQL is a functional language, we need to adopt a
functional view of databases. We regard a database as a
collection of functions over various data-types. Fiqure 1
shows the schema of a (very simple) database containing

entities of tyoe EMPLOYEE and of tyme DEPARTMENT.

DEPARTMENT

Fiqure 1

The function DEPT in this examole reoresents a mapring
between these types; that 1is, given an EMPLOYEE, DEPT
returns that DEPARTMENT in which he works. In addition,
this database furnishes functions which map these entities
into basic tyves: the functions ENAME and DNAME each return
a CHAR(acter string):; the function SAL(arv) vyields a
NUM(eric) value; and the BOOL(ean) function MARRIED serves

as a oredicate. To summarize using conventional notation:

————— D —— o P S R
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¢ DEPT EMPLOYEE  =-> DEDPARTMENT

|

1 ENAME  : EMPLOYEE  =-> CHAR
| sSAL : EMPLOYEE  => NUM
n MARRIED : EMPLOYEE -> BOOL
z DNAME  : DEPARTMENT -> CHAR

Of the five data-tyves seen here, CHAR, NUM, and 300L

Sl v Gl

F are standard in that they exist independently of any :
i @ database. On the other hand, the tyoes EMPLOYEE and :

DEPARTMENT together with the five functions described above
are svecific to this database. It should also be noted that

¥ we regard all of these types as scalar. Information about

EMPLOYEEs or DEPARTMENTs may only be obtained through those
database functions which map thege entities into "printable"

¥ types (e.g., CHAR).

2.2 Creating New Functions

’

Knowing that the database defines a set of functions we
need mechanisms -~ functional forms as Backus terms
R them -- for combining these onerators to create new and more
j power ful functions. of these mechanisms, the most
P fundamental is composition. One might, for instance, wish
kj . to define a function which, qiven an employee, returns the

name of the devartment in which he works:

DEPTNAME: EYPLOYEE->CHAR = DEPT.DNAME;

This example shows the svntax of an FQL function Aefinition:

DEPTNAME is declared to be a function from EMPLOYEE to

W i Lt

i i b BN it i
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CHAR (acter string) and defined to be the composition of the
functions DEPT and DNAME (as denoted by the operator ".").
Observe that these functions are composed, and hence
evaluated, from left to vright (reverse Polish): the
DEPARTMENT returned by apclying DEPT to an EMPLOYEE serves
as the operand for DNAME which, in turn, produces a value of
type CHAR. Using reverse Polish for functional composition
in fact seems quite natural: the left to right ovder of the
functions determines a corresponding 9ath through the

database schema.

So far, we have considered only those functions within
the database which map scalars into other scalars; and thus
any functions one might define usina composition would be
scalar as well. We have yet to deal with collections of
objects such as the set of all EMPLOYEEs within a varticular
DEPARTMENT. To do so, we must augment our view of the
database to include the inverse of functions. Returning to
our samole database the inverse of the function DEPT,
written !DEPT, maps a DEPARTMENT into a seaquance of all
those EMPLOYEEs who belong to the given department;
similarly, the function !DNAME maos a CHAR(acter string)
into a sequence of DEPARTMENTs®, We shall use the term
stream to refer to such a secuence of obijects of a given

data-tyve. (A stream, following Landin [8] and Burae (2},

}. Strictly soeaking !DNAME is not the mathematical
inverse of DNAME as the inverse of a function contains no
notion of seaquentiality.

S ————— R ————
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is a "virtual" seaduence of obiects whose ohysical
reoresentation should ce of no concern to the
orogqrammer == it may be a list in orimary store, a file in
secondaty store, a aznerating function, or some combination
of these.) wWhether or nnt the inverse of a given function is
available devends upon the database: there is no guarantee
that, because the function SAL exists, its inverse, !SAL,
will also be »nresent., Database systems Jo, thouah, usually
emoloy sonhisticated mechanisims for reoresenting inverses
of functions when they ave required. For examole, !DEPT
would ce implemented through a CODASYL set, while [IDNAME

might be implemented using a hash table.

We retutrn now to the task of cireating new functions, in
patrticular functions which mao streams into other streams.
For this, we introduce two additional functional forms,

extension and restriction. The first of these allows, sav,

the function SAL (a manoina from EMPLOYEE to NUM) to be
“extended" into a function, denoted *SAL, which, given a
stream of EMPLOYEEs, returns a streanm of NUMs by aoolying
the function SAL to each EMPLOYEE within the stream. The
second functional form allows streams to be filtered by
oredicates over individual elements: the function |MARRIED
maos a stream of EMPLOYEEs into the sub-stream of EMPLOYEFESs
satisfying the condition that they be MARRIED, QNote that
while extension will oreserve the lenath of a 1iven strean,
restriction aenerally will return fewer elements. AS an

axample, thess overators are used to create a function which

s s
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returns a stream of salaries of all married amoloyvees within

3 3iven department:

MARRIED=-SALS: DEPARTMENT=->*NUM = !DEPT,|MARRIED.*SAL;

devre, MARRIED-SALS is defined as a function from tvoe
DEPARTHUENT into a stream of NUMs (we use *NUM to denote the
data-tyoe of a stream of entities of tyoe NUM). It is
foirmed by aoplying the inverse of DEPT, (DEPT, to nroduce a
stream of EMPLOYEEs; this stream 1is vestricted to that
sub-stream satisfying the oredicate MARRIED; the function
SAL is then anolied to each of the remaining E“PLOYEEs

vieldina a stream of NUMs,

A final functional form, construction, 1is needed to

create functions that returns tuonles of objects; for
instance, an emoloyee's name and salary. In that case the
notation [ENAME,SAL] signifies a mapping from EMPLOYEE to a

pair comorising a CHAR and a NUM, Thus we would write:

NAME-AND-SALS: EMPLOYEE=-> [CHAR,NUM] = [ENAME,SAL];

The range of this function, [(CHAR,NUM], denotes the
data-tyme of tuvles of type CHAR and NUM, Tuples, in fact,
will become impvortant when overators such as addition are
introduced since, by desian, all FQL functions (orimitive or
comoosite) are monadic: the overator "+" 1renresents a
maoping from a vsair of NUMs into a NUM; €T,

+ : [UUM,NUM] -> NUM,
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2.3 Zueries

A querv is a svpecial kind of function whose vrange is
some "printable" object. (The tvpe of a printable object is
tecursively defined as either that of a standard scalar, a
tudole of orintables, or a stream of such.) As an exampnle, we
might wish to know "“the devartment names and salarvies of all
narried emdlovees." To realize this query, however, we need
access to the stream of all emplovees within the database.
Again, our functional view of the database must be extended,
this time to include a set of "constant" functions. 1In our
database these include:

{EMPLCYEE ¢ => *EMPLOYEE

{DEPARTMENT : =-> *DEPARTMENT
(The absence of a data type to the left of the "->"
indicates a constant functicn.) The functions !EMPLOYEE and
!DEPARTMENT resvectively return streams of all values of
tyope EMPLOYEE and DEPARTMENT currently in the database. Of
course, these functions are not truly constants in that they
are database dependent and that their values can, and often
30, change over time. Returning, then, to our gquery that
produces the devartment name and salary of each married

emoloyee:
Ql: =->*[{CHAR,NUM) = !{EMPLOYES.|MARRIED,.* [DEPT,.DNAME,S\L);

For convenience, we will assume that the database is current

and thus @21, 1like the function !EMPLOYEE, is a "constant"
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whose domain will remain unspecified. Also observe that the
function being extended by the "*" in this examole is itself
the result of apolving the construction overator to a naiv
of functions, one of which is the composition of vet two

other functions.

To recapitulate, we have viewed a database as a
collection of functions over various data-tyoes and have
nresented four functionals -- composition, extension,
restriction, construction -- for combining these functions
into new functions; and ultimatelv into cueries. We have
also introduced two modes for structuring tyoes -- streams
(*¢) and tuoles ([«,p...]) -- where Greek 1letters denote
arbitrary data-tyves. The tyoes of the functions FQL's
functionals oroduce are summarized in the followina where
lower-case letters signify functions.

l., Composition. If f and g are such that f:« =>8 and

3: P=->Y then f.q: «=>Y,

2. Extension. If f:x=>RB then *f operates uoon a
stream of these tyves; i.e., *f: *«(->*p,

3. Restriction. If o is a oredicate over & (i.e.,
p: & =>hool) then |p: *&=>*x,

4. Constl‘uction. If f‘ : o -> Bﬁ' f: :“ ->BL."
fﬂ:«->Bﬂ then [falfg "’fl\]zd->[BL’Bz"'Bﬂ]'
2.4 Standard Functions

The class of queries one can formulate usina onlv the

functions 4given by the database is rather limited. Our
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lanquage therefore contains an arvay of standard functions
including the familiar arithmetic, relational, and boolean
onerators, a set of constructors and selectors for
structured data-tyoves, and a number of "stream-reducing"
functions which mao streams into scalars. To point out the
use of several of these functions (a comprehensive listing
may be found in an. aooendix) consider a auery which returns
"the names of those emplovees who 2arn above the averaae
salary for their devartment. First, thouagh, let us define a

function AVRG which computes the mean of stream of numbers:

AVRG: *NUM->NUM = [/+,LEN]./;

Cd

tlere, the function "“/+" (borrowing from APL) sums the
elements of the qiven stream while "LEN" returns its lenath;
this pair of NUM(bers) then serves as the operand for the
division ("/") function. Next, 1let us define a oredicate
over EMPLOYEEs:
EARNSMORE: EMPLOYEE=->300L =
[SAL,DEPT.!DEPT.*SAL.AVRG] .GT;

EARNSMORE returns the value "true" if the given EMPLOYEE
earns more than the average salary among his co-wotkers and
“false" otherwise. The sub-exoression "DEPT.!DEPT" returns
the co-workers per se; *SAL retrieves their respective
wages, and AVRG computes the mean; this wvalue 1is then
compared to the original EMPLOYEE's salary using the

relational overator "GT." And finally, the Juerv:

o ——————

aited

_..,.,,.w.__..,..
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02: =>*CHAR = !EMPLOYEE.|EARNSMORE.*ENAME;

As a further demonstration of the language we now turn
to a more complex cuery: "the names of those devartments
and all of their employees in which the averagqe salary is
below $20,000 and some of the emolovees are not married.”
First, the cuerv itself:

Q3: =>*[CHAR,*CHAR] =
!DEPARTMENT.| ((P1,P2].AND) .* [DNAME, ! DEPT. *ENAME] ;
The cquery is formed throuah restrictina the stream of all
DEPARTMENTs by the conjunction of predicates Pl and P2 as
soecified below (note the use of parentheses to enforce the
scope of the restriction operator); for each DEPARTMENT’TH
this sub-stream a pair consisting of its name and a stream
of its EMPLOYEE's names is then constructed. The predicates

Pl and P2 are defined as follows:

L

DEPARTMENT=->BOOL = [!DEPT.*SAL.AVRG,#20000].LT;
D2

DEPARTMENT->BOOL = !DEPT,* (MARRIED.NCT)./OR;

The first predicate compares the averaqge salary earned in a
qiven DEPARTHENT with the value 20,000 (more orecisely. with
the value of the constant function 20000). The second
oredicate tests for the nresence of some EMPLOYEE who is not
married: the exoression *(MARRIED.NOT) yields a stream of
BOOL (eans) while the function "/OR" returns the value "ttue"

if some member of this stream is "true."

o Ay - =
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N 2.5 A Bill-of-Materials Processor

As a final exammle, we will attack the infamous
bill-of-materials oroblem which, to our knowledae, eludes
» solution (or at least an elegant one) within onmost database ‘

;= query systems. The difficulty here lies with the fact that #

é the schema required is inherently recursive: wvarts contain
sub-narts which themselves are varts; these, in turn, are
built-uo out of other parts; and so on. The specific task

we"shall address is that of finding the total cost of a

given part. If we associate with each part a "cost" meaning i 1
either the purchase orice (in which case it has no sub-parts
of interest to us) or else the expense of assembly, then the
total cost of a part is its own “"cost" added to the total

cost of all of 1its sub-parts. To complicate matters

somewhat we will assume the comvonents of parts are used in §
differing guantities: an engine may reaquire four pniston
assemblies and two carburetors. Fiaure 2 depicts a possible

scnema for such a database:

Fiagure 2
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The relation bhetween a vart and its sub-narts is
reoresented by the USAGE tyve. For example, if an enaine
requires two carburetors, a USAGE entity will be defined
whose PT is an engine, whose COMP is a carburetor, and whose
QTY is 2. The exoression !PT.*COMP therefore mans a aiven
PART into a stream of its immediate COMP(onents);
conversely, !COMP.*PT returns a stream of PARTs in which a
given PART 1is an immediate constituent. We may now define

the function TC which comoutes a part's total cost:
TC: PART->NUM = (COST,!PT.*([QTY,COMP.TC]eX)oe/+]+;

For a given PART, the total-cost (TC) of each of its
sub-parts is multiplied by the required guantity and then
summed together, after which this total is added to the COST

of the original.

What is remarkable about this wvarticular function is
that its definition, despite recursion, includes no expolicit
basis for termination! (FQL queries do not usually require
the IF-THEN-ELSE construct normally associated with
termination in recursive functions.) Yet, comoutation will
halt since the database is finite. This can be seen by
examining the simolest case: given an atomic part (one with
no sub-parts), aoolication of the function !PT would yield
the emnty stream; apolying the parenthesized exoression to
each element of this stream oroduces, of course, another
emnty stream; the sum of the empty stream of NUMs is, by

definition, 0 (the identity for addition) which is then

s
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added to the COST of the original oart. And assuming the
components of all oarts are ultimatelv atomic the function
TC will converge. Incorporation of the function into an

aporopriate aquery is left to the reader's imaaination.

Finally, we should mention that FQL does include a set
of basic stream-maniovulating orimitives based uvon the
list-processing functions, CONS, CAR, CDR, etc. of LISP,
(These are described in an avpendix.) It is interesting to
note that for most database queries exolicit use of these
operators is not required: they are implicit in extension
and restriction. Constructing a bill-of-materials orocessor
which 1lists all the sub-parts of a given part would,
however, call for a dirvect use of CONS. (Again, this is

left as an exercise for the reader.)

3.0 IMPLEMENTATION

In its current form, FQL is implemented in PASCAL as an
interface to SEED [6], a CODASYL-based database management
system written in FORTRAN, and is running on The %harton
School's DEC-10. Little difficulty is foreseen in
transferring FQL to other machines or, if necessary,
re-writing its source code in some other oroarammina
language. Interfacing to other CODASYL systems may reaquire
some additional code: unless routines are provided for
run-time interrogation of the database schema, as they are

in SEED, a opre-processor would Ye necessary to translate

T —— s . "’rj
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from the CODASYL data-definition lanauaae (COL) into a

separLate renresentation of the schema used by FAQL.

The maonina between a CONASYL schema and the functional
model oresented above oroves auite straiahtforward?,
Roughly speaking, sets and i&iﬂi corresrond to functions
while the records become types. The "functional" database
devicted earlier in Figure 1 would, for instance, derive
from a schema in which DEPARTMENT and EMPLOYEE were records,
DNAME and ENAME were resvectively items within these records
of tyme CHAR, and DEPT were a set owned by DEPARTMENT and
populated by EMPLOYEEs., ©Note, though, that the set DEPT
actually corresoonds to the inverse function !DEPT; the
function DEPT itself takes a member-record into its owner.
It should also be mentioned that inverse functions such as
!DNAME are only available when the corresvonding item (DNAME

in this case) serves as a CALC kevy.

Strictly speaking, CODASYL sets correspond to functions
only when membershio is both MANDATORY and AUTOMATIC. In
other cases we may only assume that a set defines a opartial
function. In order to cope with partial functions, a

standard object, UNDEF, has been introduced as a member of

2. Some CODASYL constructs cannot be renresented in F2L's
data model at oresent. These include arvays toaether with
sets in which more than one record tvne mav be owned. There
aopear to be no fundamental difficulties in extendina FQL to
cooe with these.

BT . oy
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everv tyme; and a standard oredicate, DEFINED, is available
to test whether or not an object is defined. Partial
functions can then be reoresented by (total) functions which

may, at times, return UNDEF,

One of the more interesting facets of the
imolementation of FQL 1is the manner in which streams are
handled internally. The nroblem here is to supoort the
user's 1illusion of constructina and traversina (possibly
very long) lists of data without monopolizinqg largqe amounts
of orimary store. To some extent out solution follows from
the work of Friedman and Wise [S5] though there are
significant differences. To consider an examole, the
"constant" function !EMPLOYEE does not 1literally return a
list of all EMPLOYEEs currently in the database (to do so
would not only be impractical but in certain cases
imoossible). Rather, this function generates a stream
represented by an ordered-vair comorising its head, the
first EMPLOYEE in sequence, and its tail, another function
which, when apolied, produces a stream of the remainina
EMPLOYEEs (i.e., it oroduces another ordered-pair). Amona
the advantages of this scheme is that the amount of orimaty
store required to orocess a sequence of indeterminate lenath

remains constant.

mr et - ——
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4.0 NDI3CUSSIOY

In this section we shall brieflv discuss extensions to
FQL and further related research areas. The present syntax
of FQL makes it somewhat unaainly as an end-user aquery
language. There are a number of changes that could be made
to alleviate this situation. At the cost of some trun-time
checking, the tyoe declarations on the left hand side of
function Adefinitions could be eliminated. Also, infix
teoresentation of the dyadic arithmetic and relational
operators may be found more convenient. It is also vossible
to have the "*" functional automaticallv inserted: much as
APL qeneralizes its standard functions over arravs, most
functions in FQL have an obvious extension over streanms.
Using this simplified syntax, the bill-of-materials gquery

Jescribed above reduces to:
TC = COST + !PT, (QTY x COMP,TC) .+/
which is a somewhat more readable version of the function.

We have suggested that the functional schema used by
FQL is general enough to allow reoresentation of other
database systems. One of the obvious extensions to FQL is
an interface to a relational system. ®riefly, each telation
defines a Adata-tyve and a set of functions, one for each
subset of its domains. Thus, usina conventional relational

database notation, if
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EMP: (ENAME, DEDPRT#, SAL)
describes a relation then, in the functional descrintion,
there is a data tyne EVP toaether with functions such as:

EMPCENAME, SAL>: EMP =>[CHAR,NUM]

EMPCDEPT#>: EMP=>NUM

etc.

Genetally, given a relation R, and a subset d;,d3...dg oOf
its domains, there is a function denoted by R<dy,dge«.dg>
which mans into the data-type [ty,t3...ty,] where t{ is the
data tvoe of d; (l<i<k). First normal foirm aquarantees that
such data types are alwavs »rintable. It is an easy matter
to imolement these functions and their inverses using the
overators of tne relational calculus. It may, however, be
oossible to translate FQL gqueries more directly into a
telational query language, though the problem of producing
efficient relational cueries from an FOL definition reauires

further work.

It is interesting to note that a relational database
with added semantics (the Smiths' aagregqation model (9] is a
300d examole) often gives rise to a much simmler functional
reoresentation. Direct functions between relations (the
"natural” joins) are available and schemata not unlike those
used in this paver may be irectly inferred from the

semantics.
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e would also like to extend FOL to be a more qgeneral
» ) . . -
database aoonlications lanauage. The nroblem here, as in all
aosolicative lanquages, is that of uodate. It should be
cossible to ad4 the abilitv to uodate functions; and if
$ this were done, it would aive the user the abilitv to define
high level transactions in a structured fashion. This may
; well be of advantage when working in a shared environment
E 2 where many undate anomalies are caused by the user having
2 exolicit control over data currency. Other additions we
would 1like to see to FQL include functions which describe
? the tvyoe of a database entity and what functions are
available. This would allow aqueries to interrogate the
structure of the functional schema and greatly enhance FQL's
» use as a general-purpose apolications lanquaqge.
¥ |
¢
3
|
O
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Apoendix 1 == FQL Svntax

¥
3elow is given the syntax for a function defintion, a
data-tyoe, a functional exporession, and a function itself.
Ontional components are denoted by LR L S while
b BTk ke signifies a set of elements may occur an
e arbitrary number of times.
. |
<def> ::= <named>:{<tyned>}*-><type>=<fexpr>;
<tyoe> ::= NUM
t:= CHAR |
: ::= 800L |
t:= *{type>d
t:= [<tyve>{,<type>:t]
<fexor> ::= <function>{,<function>}*
|
¢ <function> ::= <name> ‘
t:= *<function>
::= |<function> i
t:= [<fexor>{,<fexor>}*] i
t:= (<fexord)
'
¢
t 3
¢ |
{
4
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dnzendix 2 =-- Standard Functions

The standard functions supoorted hvy FQOL are arouned here
cateaory. “Yhere aooronriate, additional exolanation
nrovided.

B8
n <

Arithmetic functions

The functions +, -, x, /, and MOD all mao from [NUM,NUM]
into NUu., The functions /+ and /x oerform addition- and
times-reduction on streams of NUMs; i.e., they map *NUM
into NUwv, Given an emntv stream these functions return
their resnective identities, 0 and 1.

Relational and Boolean Functions

The operators ER, N2, GT, LT, GE, and LE man from either
(NUM,NUM] or from [CHAR,CHAR] into B300L. The functions
AND and OR return a R00L given [300L,B00L}; the
comnlement NOT takes a BOOL into another ROOL. The two
reduction ovoerators, /OR and /AND, reoresent maonings from
*200L to BCOL and, aiven empty streams, return the values
"true" and "false" resnectively.

Constant Functions

The notation #<number> reoresents a napcing =->NUM whose
value is the <number>; the notation ‘<character-string>’
similarly Jdenotes the maooing ->CHAR. The function NIL is
a constant signifying the empty stream of any tyoe; i.e.,
D%l ,

Basic Stream-manioulating Functions

Given a non-emoty stream, the overation 4D returns its
first element (™ =>A) while the overation TL returns a
stream of the remaining elements (*«=>*K), The function
CONS takes an element of some type and a (possibly emotv)
stream whose elements are of that same tyoe and returns a
new stream in which the individual element is its "heag"
while the original stream becomes its “"tail"; ie@ay
CONS : [at,*a]=>*d,

Other Stream-manipulating Functions

The function LEN computes the lenath of a aiven stream and
is thus a maooing from *« into NUM. CONC maos a pair of
streams [*«,*X] (whose elements are of the same tvoe) into
a single stream *«; /CONC nroduces a sinale strean *&X bv
"flattening"” an arhitrary stream of streams **«. The
overator DISTRI3 takes a tuole of the form [*«,R] and
returns a stream of tudoles *[«,R] with the value of tyoe 8
"distributed" over the stream of & 's,
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‘liscellaneous Functions

The function i (i=1,2...n) selects a comnonent from a
tuole; ieee, lag (B3 coedyq | =D Finally, ID represents
tne identity maooinao =->A,
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