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1. ABSTRACT

Pattern recognition is a statistical technique that allows one to find
or predict a property of chemicals that is not directly measurable, but is
known to depend upon certain features or properties of the chemicals via
some totally unknown relationship. This technique has been applied to a
multitude of scientific problems. The same technique was used to classify
a chemical according to its relative hazard in bulk water-transportation
based on chemical structure and macro-scale properties such as density,
vapor pressure, structure-fragments, solubilities, etc.

Using the Linear-Learning Machine, the overall prediction of the 47
compounds ir training set was 68% correct. The predicted classifications
of the 240 compounds in the test set are approximately 68% correct. There
are many difficulties associated with properly classifying compounds on
the basis of variables derived from structural fragments that must be
solved before great reliance can be placed on the results of a Linear-

Learning Machine classification.
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2. INTRODUCTION

The U. S. chemical industry transports the bulk of its chemical feed-
stocks and products by water. This movement of large amounts of chemicals
by tankers, barges, etc., constitutes a definite fire, health and poison

hazard as well as possible physiological irritants and water pollutants

if spills occur (1). The U. S,‘Coast Guard has primary responsibility for 1
the safety of shipping, waterways and citizens of this nation. Some methods
of assessing the hazards of these chemicals during bulk transportation by
water have been developed by various organizations (1-5) for the U. S.

Coast Guard. The National Research Council's Committee on Hazardous Mater-

jals (Division of Chemistry and Chemical Technology) (1) has issued a
Tentative Guide for the Evaluation of the Hazard of Bulk Water Transporta-
tion of Industrial Chemicals which outlines a system of evaluation. It
also tentatively rates 337 common industrial chemicals.

The Fire Hazard aspects of this overall problem has deeply concerned
the Coast Guard because of the potential loss cf people, ship and damage to
the environment. Underwriters' Laboratories, Inc. have tested 53 chemicals
determining the flame propagation effects and pressure piling developed by
various gas and/or vapor-air mixtures of these chemicals. They used the
Westerberg Explosion Test Vessel which measures flash points, ignition
temperatures and flammability 1imits of these chemicals. Using this data,
the Electrical Hazards Panel of the Committee on Hazardous Materials (the
Division of Chemistry and Chemical Technology, National Research Council)
has tentatively classified 370 chemicals as to their relative fire hazard
with respect to explosion-proof electrical equipment. These tentative
classifications are based on the experimental data from the subset of 53
chemicals that have been tested by Underwriters' Laboratories, Inc. The
current classifications for a large number (>200) of chemical compounds

are essentially an educated guess by a panel of experts.
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3. RESEARCH OBJECTIVES

The overall objective of the research conducted under this contract
was to utilize pattern recognition techniques to develop a computer program
that would quickly, cheaply and effectively evaluate a chemical compound as
to its fire-hazard classification for bulk water transport. The information
to perform this classification would be obtained from the chemical structure
and other simple chemical-physical properties of the compound.

Chemometrics, a growing discipline in chemistry, can be defined as
the study of new mathematical and statistical approaches to solving chemi-
cal problems. Pattern recognition (9), a subset of these mathematical
methods, has recently been applied to many chemical problems. Recent re-
views (8,9) reference much of the literature that demonstrates the unique
adaptations of pattern recognition techniques to solve problems in chemistry.
The same techniques have been applied herein to the problem of classifying
a chemical according to its relative fire hazard during bulk water trans-

portation.
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4. SOFTWARE DEVELOPMENT
Almost 50% of our effort was spent on developing computer codes for use

on the fire hazard classification problem. A generalized factor analysis
program, 3-dimensional plotting and hierarchial clustering routines were
written for use on IBM-370/155. These programs proved to be of marginal

use in solving the problem. A program named ARTHUR (12) written by Duewer,
Harper and Kowaliski from the University of Washington and Fasching, Weisel
and Stromberg from the University of Rhode Island was used to obtain the

data presented in this report. Appendix A and B explain in detail the terms,

behavior and capabilities of these programs.

.
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5. EVALUATION OF VARIOUS VARIABLES
The objective of this examination was to find the fewest number of
variables that gave complete separation of the compounds in the training
set according to their category. The variables were chosen because they
give distinguishing characteristics about each compound's reactivity, com-

bustibility, vapor pressure and/or some other property which might con-

tribute to its fire hazard. A1l the variables being used are either chemi-

cal or physical values that are measurable quantities as either distinct

numbers or categorized from experimental data. Using measured quantities

avoids any biases that would result from data that is subject to change be- |

cause of extrapolation by the scientist. Variables for which no experimental

data was found were estimated by using a range of various values based on

other similar compounds and general trends for that variable.

The variable order (Table 1) was determined using histograms (Fig.1);
two features of the linear learning machines in ARTHUR described below;
step-wise discriminate function routines in the BMDP package (12); and the
Fisher-Weight, Variance Weight and Property Weight step-wise discriminate
features of the SELECT routine in ARTHUR (Appendix II). Step-wise dis-
criminate methods assume that one can separate out variables on the basis
of decreasing importance with respect to variance.

The histograms allow us to determine which variable has the least
amount of association, i.e. is the most independent. The two features 5
listed below describe how the linear learning machine was used to determine
the efficiency of a set of variables in predicting the results. They are:
the smaller the number of passes made the quicker the results converged E |
and if 100% separation was not obtained which compound was incorrectly
classified. The second feature is useful since an examination of the
type of compounds incorrectly classified in the training set shows whether

too little or too much emphasis is being included about particular classes

-
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of compounds or functional groups. The result of our variable selection on
the training set is listed in Table V and Table VI. Table V shows that com-
plete separation of the compounds into the appropriate categories is obtained
when all compounds are included. Tabie VI is a compilation of the results

of a JACKKNIFE study. The JACKKNIFE procedure uses one of known compounds

as a test case and compares the predicted value with the experimentally de-

termined value. The complete training set is treated in this fashion. When

all of the compounds are used 100% separation into the correct categories
is obtained. In JACKKNIFE this was not the case. For example when 2-nitro- ,
propane is used as a test compound, therefore, left out of training set

and not inciuded in the determination of the eigenvectors, it is incorrectly
associated with the D group. Since 2-nitropropane is the only compound in
the training set containing a No? group, it is probably that unique charac-
teristic that aids in the compound's classification when included in the
training set (Table V). 2-nitropropane, therefore seems to be able to con-
tribute useful information upon which decisions about other NO2 containing

compounds can then be made. Step-wise discriminate analysis ‘(described in

Appendix II) determines the order of importance of variables according to i
how well a variable retains the compounds in the appropriate category.
The reasons these routines yielded the ordering found in Table I is ;

not very obvious as it depends on complex interactions among the variables.
The ordering is based on empirical results. A simple case of this is that

total chlorine and the number of chlorines attached to carbon seems to have

very different importance as they are listed as variable numbers 17 and 39
respectively, although one would guess that they should have very similar
importance. Actually in the data set chosen they are exactly equivalent,

i.e. all chlorines present are attached to carbons. The step-wise dis-

criminant program in the BMDP package and those in the ARTHUR package

when presented with two variables that are equivalent or one that is a

o et 4 # !
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linear combination of another or sets of others, recognize this fact and
essentially eliminates one of the variables by making its contribution to
the classifying function negligable, thereby eliminating duplicate infoima-
tion. In addition to eliminating duplicate information differences in the
unit size among variables was standardized by autoscaling to unit variance
and zero mean. This feature normalizes differences between variables due
to units, thus making it possible to compare values such as temperature,
solubility and number of functional groups present. It also makes it in-
consequential what units one chooses for measuring any variable, such as
ignition temperatures, whether it be degrees kelvin, centigrade or faren-
heit, provided the same unit is used for all compounds.

Table IV 1ists the 13 variables that were found to give the optimal

results. An examination of Table IV shows that a combination of variables

that contain information distributed among all compounds, such as AIT, molec-

ular weight and solubilities must be coupled with information about specific
functional groups such as epoxy, nitro and NH groups. We again wish to men-
tion that if any large family of compounds containing one type of functional
group is eventually going to be classified, it is important to have a few
examples of the family in the training set to see if that functional group
contributes to its classification or if its effects can be accounted for by
other variables present. The reason for the classifying function containing
both variables which contain values for all compounds and variables that
only a few compounds that have a value other than zero is the following:

the first type of variable sets up a basis where very general trends are
found, such as high molecular weight compounds are less hazardous than
Tighter ones. The second type, functional groups, are needed since they

can activate or deactivaée the reactivity of a compound greatly, thus shift-

ing its classification.

il i sl o e st 2
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6 CLASSIFICATION PREDICTION

The variables 11st generated, as described in the previous section, was
utilized to predict the categories of unknowns First, we tried to separate
the classified compounds into their appropriate categories and minimize the
number of variables needed for the optimal results This was then checked
to estimate the accuracy of our prediction and then was applied to unknowns.
A discussion of the procedures used to accomplish these steps follows.

A11 of the compounds that have been experimentally classified into NAS
groups B, C, and D at temperatures of less than 25°C were used in this re-
search. (These are 1isted in Table V) The two compounds classified into
the A group, acetylene and carbon disulfide are included into category B.
This produces a group of compound that include hazardous classification B
or above. The reason for this is that only two compounds do not provide an
adequate mathematical basis to-establish a legitimate pattern to distinguish
which variables are instrumental in classifying compounds or form a base for
predicting unknown compounds. Leaving the two compounds out completely does
not markly effect the B groups.

As mentioned above, only compounds classified experimentally below 25°C
are being utilized. Those whose data were obtained above 25°C are not being
included since their classification at the normalized temperature may not
be the same and therefore would contribute inaccurate information to the
list of variable values for those compounds. The methyl acetylene-propadiene
(MAPP) gas mixture and gasoline mixtures are also not being used, siuce
unique chemical and physical properties cannot be defined for these sub-
stances. It should be noted that the classifying method we are attempting
to develop cannot be used for any mixtures or heterogeneous substances.

The BMDP program used requires that a priority of weighting be set be-
tween the categories. This value should reflect both the suspected “cost"

of the misclassifying of a compound that actually belongs to the group B

e
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into the group C, B 1nto D, etc., and the probability of a randomly selected
compound being either a B, C, or D. A number of different priorities

were used with the ratio of B to C to D of 1 to 2 to 1 most prevalent. This
ratio was calculated by estimating the cost of misclassification of a B into
aC and a C into a D category of five times (John M. Cece, private communi-
cation, 1976) since 1t is thought 1n the case of an accident the inadequate
safeguards would cause a higher loss of both 1ife and material than the ex-
pense of using a higher safeguard system for a less dangerous compound. The
probability of random selection was calculated by dividing the total number
of compounds in each category by the total number of compounds Tisted in the
report entitled "Matrix of Electrical and Fire Hazard Properties and Classi-
fication of Chemicals" by the Committee of Hazardous Materials. It was
assumed that this report contained a large, randomly selected samples of
chemicals that will be shipped and that a reasonable number of assigned
categories are correct (.75%).

Table V is a 1list of the 47 chemical compounds that were used as a
training set for the various pattern recognition techniques. Only compounds
that were not experimentally tested at elevated temperatures were included.
A training set is a group of compounds that the programs assume to be
correct and 1s used to train the program to predict classification of test
samples. The two principal learning machines that were finally used to
solve the fire hazard classification problem were PLANE and MULTI. The
programs can train themselves to be 100% correct with respect to the train-
ing set. (Appendix II)

Table VI is a 1ist of the same training set shown in Table V, but
each compound was considered to be a test set respectively. Forty-seven
computer runs were subsequently performed using the JACKKNIFE procedure
described previously with the 46 chemicals being the training set. The

results of these experiments are summarized in Table VII. The programs

ks e o i
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PLANE and MULTI correctly predict the training set~70% of the time when each
compound 1n the training set is considered as a test compound.

A summary of the compounds that were misclassified 1s given, by cate-
gory, 1n Table VII. Category D was predicted at a reiiability between 74%
and 79%, category C at 67% and category B at 43%. A possible explanation
for the misclassifications of the experimentally determined compounds are
derived from their spark gap values. Boundaries of spark gap values of
0.010" and 0.030" are the apparent divisions between the B and C categories
and C and D categories respectively. There are a few compounds that are
classified in a category cther than would be suggested by these cutoffs
due to their anomalous high pressure piling values (>250 psig). We have
predicted a number of these compounds to be different from the assigned
category. They are ethylene diamine, vinyl chloride, cyclopropane, 1,3
butadiene and propylene. An additional number of compounds within 0.005"
of the spark gap boundaries are also misclassified (Table 1II). Two com-
pounds with whose category we have agreed have spark gap values on the
"wrong" side of the boundary. They are isoprene, classified as a C with
a spark gap values of 0.037", and acrolein, classified as a B with a
spark gap value of 0.018". It seems probable, therefore, that some of the
problems we have had could be due to the boundaries between categories not
being clear cut and pressure piling values only being considered when they
are very large.

Three of the misclassified compounds in the training set (hydrogen,
hydrogen sulfide and carbon disulfide) are the only inorganic compounds
present. Since organic and inorganic compounds do not react the same way
chemically, it is possible that these were placed in an incorrect category
since we based their prediction on information derived from organic com-

pounds.
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The si1ze of the training set and the uniqueness of certa'n characteris-
tics present in the chemical being tested may result in incorrect classifica-
tion. If a character%stic is not present in any compounds remaining in the
training set yet contributes greatly to the fire hazard of the chemical
tested, an incorrect result would occur. The classification would there-

fore be based on other features of the compound because there is no infor-

mation about that unique feature.

Table IX lists the test compounds that have been classified into a
higher category than in current use (5). Alcohols, long chain alkanes,
alkenes and benzene substituted compounds comprise a large portion of this
table. A possible explanation for our higher classification of these four
types of compounds may be the result of insufficient data because of simi-
lar compounds are not found in the training set, and/or training set com-

pounds in these groups are being classified in the higher category.

T
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7. CONCLUSIONS

The results for the training set of 47 compounds 1s summarized in Table

VII. The two linear learning machine called PLANE and MULTI were used to
classify the compounds. The predicted classifications in Table VII con-
sider each chemical to be a test sample and the routines are trained on the
other 46 chemicals. This set of analysis gives an overall estimate of 68%
correct classification. Table VIII Tists the results of PLANE and MULTI
when the 47 compounds are used as the training set and the 240 compounds
are used as a test set. The predicted classifications are approximately
68% correct. Almost all long chain and short chain alcohols are classified
one category higher by both routines. Table IX lists the compounds that
have been classified upwards one category.
The final results of this research are encouraging and they have

definitely indicated the direction of future research.
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8 RECOMMENDATIONS

The ai1fficulties of properly classifying compounds on the basis of

variables derived from structural fragments has been well documented in

this report and current literature

It 1s our opinion that these results could be mproved if the follow-

ing four

{

¢ ‘eas were given further consideration:
Use pattern recognition techniques based on a property descrip-
tor instead of Classes (A, B, C, D). We can predict measured
experimental variables such as AIT, pressure piling etc. much
better than abstract classifications that are based on these
variables. We would also have the ability to accurately check
our results using this approach and scientists would make the
final evaluation.
Explore the use of general molecular descriptors, thermodynamic
properties and electron density parameters as variables in the
pattern recognition techniques. Such variables would be obtained
from molecular orbital programs, CHETAH etc. and used in this
work to improve the prediction capability.
Devise better feature extraction procedures and transformations
to eliminate the random or noise components. A major problem
in pattern recognition concerns the mathematical ability to
separate noise from real and useful information in a variable.
Better techniques for this problem must be found.
Design a better learning machine program. The learning machine
has many faults but one great advantage. It 1s extremely simple
to use after it is trained. In fact, it can be done on ac™=-
Swmple calculator. Its major problem (accuracy) has been well
documented in the report. If program modifications could be

developed to solve these problems, the pattern recognition field

would make a major leap forward.
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14.
15.
16.
17.
18.
19.
20,

Auto ignition temperature
Total number of hydrogens
Epoxy groups

NO, groups

Molecular weight
Solubility in ether

CH; groups

NH, groups

Total number of carbons
Carbon-carbon single bonds
Carbon-carbon triple bonds
Ether linkages

Total number of sulfurs

NH groups

Solubility in alcoho)
Carbon-chlorine bonds

NHy groups

Carbons without hydrogens
Carbon-nitrogen triple bonds
CH groups

Variable Ordering

21
22

23.
24.
25.
26.
27.
28.
29.

30

31.
32.
33.
34.
35.
36.
37.
38.
39.

N-C=N groups

Ethyl groups

COH groups

Total number of nitrogens
Hydrogens alpha to C=0
Ester linkages

Nitrogens without hydrogens
Solubility 1n water
Hydrogens alpha to C=C
Flash point

Total number of oxygens
Boiling point

HC=0 groups

Melting point

CH, groups

COOH groups

C=0 groups

Carbon-carbon double bonds
Total number of chlorines
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TABLE 11
CLASSIFICATION FUNCTIONS®

VARIABLE # GROUP D GROUP C GROL'® B
1 X(1) 7.13600 4.97641 2.76057
2 X(2) -0.36106 -0.43583 -0.40036
4 X(4) -0.06152 0 12287 0.10499
5 X(5) 20.51698 8.62925 10.51797
6 X(6) 12.02098 20.64725 18 11748
7 X(7) 6.67528 6.92967 3.76196
8 X(8) 4.35670 -6.77126 -6.94182

10 X(10) -17.96806 -31.78358 -26.15622
11 X(11) -37.05293 -22.64537 -7.63201
14 X(14) 53.06761 115.01823 112.80058
15 X(15) -31.01567 -25.29327 -15.60228
16 X(16) -26.66524 11.50037, 29.91949
17 X(17) -21.73500 53.08704 61.99918
19 X(19) -3.70266 5.61196 12.42352
20 X(20) -47.82832 56.20058 58.74736
21 Xx(21) -48.94760 33.24651 30.70747
23 X(23) -53.36461 -145.65991 -10§ . 30605
24 X(24) -86.22984 -109.46097 -89.71614
26 Xx(26) -146.34658 -104.83170 -70.20551
27 X(27) -43.60481 -113.88313 -73.73346
30 X(30) -25.06001 -14.32377 -3.85582
31 X(37) -66.89027 -13.61657 6.76443
32 X(32) -13.45770 -13.57369 2.25790
33 X(33) -182.14958 -114.14978 -40.13753
34 X(34) -54.96423 -50.60464 -66.21277
35 X(35) -85.81082 23.76089 55.32253
36 X(36) 0.45324 0.41791 0.42203
37 X(37) -4.26777 ~9.11450 -6.22199
38 X(38) -3.09302 -4.28917 -2.83177
39 X(39) -33.49681 -17.37549 6.43740
CONSTANT -224.74899 -199.83459 -188.00497

8tach numerical value in the table 1s the coefficient of a linear polynomial of the
39 variables plus the constant. For example, y = ac+a,X;*asX.*a:Xs+. . The cal-
culated values of y for each compound can be used to determine the appropriate
.classification.




AE-

<,. R R
P

TABLE 11
CLASSIFICATION FUNCTIONS?
! VARIABLE # GROUP D GROUP C GROUP B
W 1 x(1) 7.13600 4.97641 2.76057
W . 2 X(2) -0.36106 -0.43583 -0.40036
i 4 x(4) -0.06152 0 12287 0.10499
| 5 X(5) 20.51698 8.62925 10.51797
Ei 6 X(6) 12.02098 20.64725 18 11748
4 7 X(7) 6.67528 6.92967 3.76196
| 8 X(8) 4.35670 -6.77126 -6.94182
10 X(10) -17.96806 -31.78358 -26.15622
11 X(11) -37.05293 -22.64537 -7.63201
14 X(14) 53.06761 115.01823 112.80058
15 X(15) -31.01567 -25.29327 -15.60228
16 X(16) -26.66524 11.50037, 29.91949
17 X(17) -21.73500 53.08704 61.99918
19 X(19) -3.70266 5.61196 12.42352
20 X(20) -47.82832 56 .20058 58.74736
21 x(21) -48.94760 33.24651 30.70747
23 X(23) -53.36461 -145.65991 -10y . 30605
24 X(24) -86.22984 -109.46097 -89.71614
26 X(26) -146.34658 -104.83170 -70.20551
27 X(27) -43.60481 -113.88313 -73.73346
30 X(30) -25.06001 -14.32377 -3.85582
31 X(31) -66.89027 -13.61657 6.76443
32 X(32) -13.45770 -13 57369 2.25790
33 X(33) -182.14958 -114.14978 -40.13753
34 X(34) -54.96423 -50.60464 -66.21277
35 X(35) -85.81082 23.76089 55.32253
36 X(36) 0.45324 0.41791 0.42203
37 X(37) -4,26777 -9.11450 -6.22199
38 X(38) -3.09302 -4.,28917 -2.83177
39 X(39) -33.49681 -17.37549 6.43740
CONSTANT -224.74899 -199.83459 -188.00497
8tach numerical value in the table is the coefficient of a 1inear polynomial of the
39 variables plus the constant. For example, y = ae+a,X;*a.X,*a X:+. . The cal-
culated values of y for each compound can be used to determine the appropriate
.classification.
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TABLE 111
R R
Compound Classification (inches) (Obs/sg. in.) Compounds
Methane D .044 77
Ethylene Diamine D '.029 82 ®
Ethylamine D .039 65
g Styrene D .037 133
QE Vinyl Acetate D .041 128
,{ Vinyl Chloride D .029 165 *
1 Al1y1 Alcohol c .026 120 *
| Epichlorohydrin C .022 149
| Hydrogen Sulfide c .026 60 *
2-Nitropropane C .021 130
Triethylamine C .021 125
Cyclopropane C .034 147 *
Methyl Acetylene C .025 185 x
Ethylene C .027 180 .
1,3 Butadiene B .03 260 ”
Carbon Disulfide B .002 205
‘ Propylene Oxide B .021 280 &
i Hydrogen B .003 845

R e

aSpark gap tentative standards are less than 0.010" for A, B between 0.010" and
0.030" for C, and greater than 0.030" for D.

bCompounds with sparks ¥0.005 of the tentative standards are marked in this column.
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!
|
!

el il s s AR s A NN 4 |

ke it

P T )




-18-

TABLE Iv
VARIABLES USED

(1) Molecular weight
(2) Solubility in ether

(3) Solubility in alcohol
(4) CH, group '
(5) Carbon-carbon single bonds ?
(6) NH groups

(7) NH, groups |

(8) NO, groups

(9) Ester linkages '
(10) Total number of carbons
(11) Total rumber of hydrogens
(12) Auto ignition temperatures

(13) Epoxy groups
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N TABLE V

| TRAINING SET ¥

COMPQOUNDS MULTI PLANE**

Al1yl Alcohol
a Acrolein
A sec-Butyl Alcohol
f | n-Butyl Aldehyde
Crotonaldehyde
Diethylamine
Diisobutylene
Epichlorohydrin
Ethyl Acrylate
Ethylene Diamine
Ethyleneimine
Hydrogen Sulfide
Isopropyl Ether
Mesityl Oxide
Morpholine
2-Nitropropane
Pyridine
Tetrahydrofuran
Methane
Methyl Formal
Dimethyl Ether
Di-n-Propyl Ether
Ethylamine
Triethylamine
Cyclopropane
Methyl Acetylene
Propane
Acetaldehyde
Acrylonitrile
Ammonia

PN
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criminant program in the BMDP package and those in the ARTHUR package

when presented with two variables that are equivalent or one that is a

&
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e ——————— i

-20-

Table V cont'd.
COMPOUNDS NAS MULTI

1,3 Butadiene B
Carbon Disulfide B*
Ethylene Dichloride D
Ethylene Oxide B
Isoprene C
Propylene D
B
D
C

Propylene Oxide
Styrene

Unsymmetric Dimethyi-
Hydrazine (UDMH)

Vinyl Acetate D
Vinyl Chloride D
Para-Xylene D
Hydrogen B
€
&
D

OO OO WO ®m W

Diethyl Ether

Ethylene

Butane

Acetylene B*

WO O O ® o o o

*Compounds in A category with the B category.
**PLANE decides between two categories.

PLANE**

(o]
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TABLE VI
TRAINING SET CLASSIFICATIONS

COMPOUNDS NAS MULTI PLANE**
Al1y1 Alcohol o (o Dc
Acrolein B B BC
sec-Butyl Alcohol D ] DC
n-Butyl Aldehyde C (o CD
Crotonaldehyde € C CD
Diethylamine C C CD
Diisobutylene D D DC
Epichlorohydrin c B BD
Ethyl Acrylate D ) Dc
Ethylene Diamine D B Bc
Ethyleneimine o C CB
Hydrogen Sulfide C 8 Bc
Isopropyl Ether D D Dc
Mesityl Oxide D D Dc
Morpholine C (o CD
| 2-Ni tropropane c 0 D
Pyridine D D Dc
;; Tetrahydrofuran €} » ¢y
E - Methane D . c ¢
0 Methy) Forma) c ¢ &
} ~ Dimethyl Ether c ¢ &
EE - Di-n-Propyl Ether c c G
' ! Ethylamine D C CD
Triethylamine c B Dc




tween the categories. This value should reflect both the suspected “cost"

of the misclassifying of a compound that actually belongs to the group B

«22-
TABLE VI cont'd.
i ; COMPOUNDS NAS MULTL PLANE**
: Cyclopropane c 0 Cy
Methyl Acetylene c D Dc
Propane D D Dc ;
Acetaldehyde c c CD j
Acrylonitrile D D D 3 i
Ammonia D D D¢ : i
1,3 Butadiene B c Unclassified*** |
Carbon Disulfide B* c CB 1
Ethylene Dichloride D D DC :,
Ethylene Oxide B B Bc ﬂ
Isoprene C C CB
Propylene D D Dc
Propylene Oxide B C CD
Styrene D B DB
Unsymmetric Dimethy]l C C CD
Hydrazine (UDMH) ,
Vinyl Acetate D D Cp .
F Vinyl Chloride D D CD
ii Para-Xylene D D D¢
: Hydrogen C C CD
Diethyl Ether C C CD ]
| Ethylere c B B .
; Butane D D DC
§ Acetylene B* B B¢ :
*Compounds in A category grouped with the B category.

**P| ANE is a two category classifier, with the subscript being the category
choice between the two categories originally not selected by plzne.

***PLANE, which examines only two groups at a time, did not give a unique answer
| for all three pairs.
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described previously with the 46 chemicals being the training set. The

results of these experiments are summarized in Table VII.

The programs

Category

Category

b

Methane (C)

Ethylene Diamine (B)
Ethylamine (C)
Styrene (B)

15/19 = 79%
Total 32/47 = 68%

b

Methane (C)

Ethylene Diamine (B)
Ethylamine (C)

Vinyl Acetate (C)
Vinyl Chloride (C)

14/19 = 74%
Total 31/47 = 66%

anppendix 11

=23

TABLE VII

INCORRECTLY CLASSIFIED

MULTI®

¢

Epichlorohydrin (B)
Hydrogen Sulfide (B)
2-Nitropropane (D)
Triethylamine (B)
Cyclopropane (D)
Methyl Acetylene (D)
Ethylene (B)

14/21 = 67%

PLANEY

¢

Allyl Alcohol (D)
Epichlorohydrin (B)
Hydrogen Sulfide (B)
2-Nitropropane (D)
Triethylamine (D)
Methy1 Acetyene (D)
Ethylene (B)

14/21 = 679

B

1,3 Butadiene (C)
Carbon Disulfide (C)
Propylene Oxide (C)
Hydrogen (C)

3/7 = 43%

1,3 Butadiene (C)
Carbon Disulfide (C)
Propylene Oxide (C)
Hydrogen (C)

3/7 = 43%
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TABLE VIII

Test Compounds taken from "Matrix of Electrical and
Fire Hazard Properties and Classification of Chemicals"

Compound Name

Formic Acid
Acetic Acid
Propionic Acid
n-Butyric Acid
Acrylic Acid*
Acetic Anhydride

Propionic Anhydride
Phthalic Anhydride

Methyl Alcohol
Ethyl Alcohol
n-Propyl Alcohol
iso-Propyl Alcohol
n-Butyl Alcohol

sec-Butyl Alcohol
iso-Butyl Alcohol

tert-Butyl Alcohol
n-Amy1 Alcohol
iso-Amy1 Alcohol
Hexanol

Methylamyl Alcohol*

Methyl Isobutyl Alcohol*

Ethyl Butanol*
Cycohexanol

&

o e ©Oo o 9 o9 9 O o o 9 g 9 v oPp v o e oo 9 9

Classification

MULTI®

o M Y o OO 99 9 ¢ 9 D 9 9

Training

OO O H OO 6 O O

PLANE®

Unclassified**
Unclassified**

el ot




Number

24
25
26
27
28
29
30

31
32

33
34
35

36
37

38
39
40

4
42

43
44
45
46
47
48
49

50
51

TABLE VIII cont‘d

Compound Name

n-0Octyl Alcohol*
iso-Octyl Alcohol*
2-Ethyl Hexanol*
Nony1 Alcohol*
Diisobutyl Carbonal*
n-Decyl Alcohol
iso-Decyvl Alcohol*

Undecanol*
Dodecanol

Tridecanol*
Tetradecanol*
Pentadecanol*

Allyl Alcohol
Diacetone Alcohol

Formaldehyde Solution
Acetaldehyde
Propionaldehyde

n-Butyraldehyde
iso-Butyraldehyde*

Valeraldehyde*

3-Methyl Butyraldehyde*

iso-Pentyl Aldehyde*

. 2-Ethylhexaldehyde

is0-0ctyl Aldehyde*
n-Decaldehyde*
iso-Decaldehyde*

Acolein
Crotonaldehyde

TEST COMPOUNDS

€W @ O O 0 6 6 cx © 0 a0

Classification

MULTT
C

O O O A0 o 0o o o o o

Training
D

C(pure)
Training
C

Training

Training
Training

=
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| TABLE VIII cont'd. TEST COMPOUNDS

Classification
Number Compound Name NAS MULTI PLANE i

52 2-Ethy1-3-Propyl Acrolein* C C CD
53 Glyoxal* c B B
54 Glutaraldehyde* C C CD | ;
55 Furfural C c G »;
56 Methane D Training ( d
57 Ethane D D D¢ i 3
58 Propane D Training E
59 Butane D Training | ;
60 n-Pentane D CD - 1
61 iso-Pentane D D Dc i
62 n-Hexane D c CD
63 iso-Hexane D c CD %
64 n-Heptane D C CD i
65 Octane D c G |
66 Nonane D ¢ é .
67 Cyclopropane C Training E
68 Cyclohexane D C |
69 Monoethanolamine* D D DB
70 Diethanolamine D c Cp
71 Triethanolamine* D D DC
72 Monaisopropanolaminé* D D DC
73 Diisopropanolamine* D o D¢
74 n-Aminoethyl Ethanolamine D C CD
75 Ethylamine D Training
76 iso-Propylamine D D DC
77 Dimethylamine C C c
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TABLE VIII cont'd. TEST COMPOUNDS i
Classifications
Number Compound Name NAS MULTI PLANE i 1
78 Diethylamine c Training '
ii 79 Di-n-propylamine* c c Cp
g§  . 80 Diisopropylamine* o c Dc
i 81 Triethylamine C Training
82 Ethylene Diamine D Training
83 Hexamethylene Diamine Solutions* D D-B Dc
84 Diethylenetriamine D c % 1
1 ’ 85 Triethylene Tetramine* D c DC ?
§ 86 Tetraethylene Pentamine* D C Dc | 3
87 Ethylenimine ¢ Training ;
§ 88 Hexamethylenimine* c c Cp i
:} 89 Aniline D D DC
-f 90 Pyridine D Training
1. 9 2-Methy1-5-Ethy] Pyrdine* D
i 92 Benzene D D
1 93 Toluene D D
;f 94 Ethyl Benzene D D
| 95 Cumene D D
96 Decyl Benzene* D C
97 Undecyl Benzene* D C
98 Dodecyl Benzene* D C
99 Tridecyl Benzene* D C
100 Tetradecyl Benzene* D c
101 0-Xylene D D
102 m-Xylene D
103 p-Xylene D Training




TABLE VIII cont'd.

Number
104
105
106
107

108
109

110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

Compound Name
Xylene (mixture)
p-Cymene
Diethylbenzene
Triethyl Benzene*

Styrene
Vinyl Toulene*

Naphthalene
Tetrahydronaphthalene
Mixture

Methyl Acetate

Ethyl Acetate
n-Propyl Acetate
iso-Propyl Acetate
n-Butyl Acetate
sec-Butyl Acetate
iso-Butyl Acetate
n-Amyl Acetate
iso-Amyl Acetate
Methylamyl Acetate*
Vinyl Acetate

Methyl Acrylate*
Ethyl Acrylate
n-Butyl Acrylate*
iso-Butyl Acrylate*
2-Ethylhexyl Acrylate

-28-
TEST COMPOUNDS

NAS

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

Classifications

MULTI
D
D
D

Training
D

D
D

© O U O v O O O O

D-C
Training
D
Training

2 .

i
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TABLE VIII cont'd. TEST COMPOUNDS
Classification
Number Compound Name NAS MULTI PLANE
129 1so-Decyl Acrylate D D Dc
130 Methyl Methacrylate* D D Dc
131 Propiolactone* o 8 CB
132 Caprolactone* D C CB ‘
133 0-Dibutyl Phthalate D D Dc
134 0-Diheptyl Phthalate* D C Dc
135 Dioctyl Phthalate D ¢ . - '
136 Dinony] Phthalate D c D ;
137 Diisodecyl Phthalate* D c D i
138 Diundecyl Phthalate* D Dc
139 Butyl Benzyl Phthalate* D D Dc
140 Ethyl Ether C Training
141 iso-Propyl Ether D Training
142 Ethylene Oxide B Training
143 Propylene Oxide B Training
144 Tetrahydrofuran c Training
145 1,4 Dioxane c C CD
146 Morpholine c Training
147 Epichlorohydrin C Training
148 Dichloroethyl Ether - D Unclassified**
149 Methyl Formal C Training
150 Propyl Formal* c c G
| . 151 n-Butyl Formal* c c &
' 152 iso- Butyl Formal* c c ¢
153 Furfuryl Alcohol o D D¢
154 Ethylene Glycol D C CD
155 Propylene Glycol D D CD
156 1,3 Butylene Glycol D C DC
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TABLE VIII cont'd. TEST COMPOUNDS
Number Compound Name NAS
157 Hex ylene Glycol d
158 Ethylene Glycol Monomethyl c
Ether

159 Ethylene Glycol Monoethy!l C
Ether

160 Ethylene Glycol Monobutyl Ether C

161 Diethylene Glycol c

162 Diethylene Glycol Monomethyl C
Ether*

163 Diethylene Glycol Monoethyl c
Ether*

164 Diethylene Glycol Monobutyl C
Ether*

165 Diethylene Glycol Monobutyl C
Ether Acetate

166 Dipropylene Glycol* C

167 Triethylene Glycol C

168 Tripropylene Glcyol* C

169 Methoxy Triglycol* c

170 Ethoxy Triglycol* C

171 Tetraethylene Glycol* c

172 Ethylene Glycol Monoethyl C

Ether Acetate

173 Ethylene Glycol Monobutyl C
Ether Acetate

174 Triethylene Glycol Di-(2-Ethyl C
Butyrate)*

175 Glycol Diacetate* D

176 2-Hydroxyethyl Acrylate* D

177 Glycerine D

178 Methyl Chloride D

179 Methylene Chloride D

180 Methyl Bromide D

181 Ethyl Chloride D

Classifications

MULTI
c

c

c

D-C

2 © 9 O

PLANE

Unclassified**
Unclassified**
Unclassified**

Unclassified**

3
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TABLE VIII cont-d

Number

182
183
184
185
186
187
188
189
190
(2
192
193
194
195
196
197
198
199
200
201

202
203

204
205
206

207
208

Compound Name
Ethylene Chloride

1,1,1-Trichloroethane
1,2-Dichloropropane
Ethylene Chiorohydrin
Vinyl Chloride
Vinylidene Chloride
Trichloroethylene
Dichloropropane

Allyl Chloride
Chlorobenzene
o-Dicholorobenzene
1,2,4-Trichlorobenzene
Acetone

Methyl-Ethyl Ketone
Methyl Isobutyl Ketone
Diisobutyl Ketone*
Mesityl Oxide
Cyclohexanone
Isophorone
Acetonitrile

Acrylonitrile
Ethylene Cyanohydrin

Acetone Cyanohydrin
Adiponitrile*
Ethylene

Prppylene
Butylene

“-Q_ﬂ | — g

TEST COMPOUNDS

Classifications

=
>
w

UOGUUUOOUUUUUUUUUUUUUUOOUOU'

MULTI

Training
D
D
D

Training

O O U © U v v O O O ©

Training
D
D
D

Training
D

D
D
Training

Training
C

- A A

PLANE |

D¢

5
Unclassified**

D

Unclassified** ;

Unclassified**
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TABLE VIII cont'd. TEST COMPOUNDS
Classifications
Number Compound Names NAS MULTI PLANE
209 Butadiene B Training '3
210 1-Pentene D c ¢ |
é; ' 2N Isoprene D Training i
i 212 Hexene D B CD :
! 213 Heptene D B cD :
ii 214 Octene D B CD 4
ff 215 Diisobutylene D Training
14 216 Nonene D CD f
%3 217 Tripropylene* D C CD
| 218 Decene D c CD
219 Turpentine D D Dc
220 Dipentene D C CD
221 Undecene* D c DC-CD
222 Dodecene* D c DC
223 Tetrapropylene* D C Unclassified**
224 Tridecene* D c CD
225 Tetradecene D C CD
226 Dicylcopentadiene* C C CD
227 Acetylene A Training
228 Methyl Acetylene-Propadiene B - -
229 Aluminum Triethyl - - -
230 Ammonia (anhydrous) D Training
231 Carbon Disulfide A Training
232 Dimethy1formamide D D DC
233 unsym-Dimethyl Hydrazine C Training
234 Monomethyl Hydrozine* C C Bc ri
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TABLE VIII cont'd TEST COMPOUNDS
Classifications
Numbers Compound Name NAS MULTT PLANE
235 2-Nitropropane C Training
236 Nitrobenzene 0 C CD
237 Dinitrotoluene C C Unclassified **
238 Hydrogen B Training
239 Hydrogen Sulfide C Training
240 Phenol D D Dc

Compounds and NAS classifications are from "Matrix of Electrical and Fire Hazard
Properties and Classfications of Chemicals" National Academy of Sciences, Washington,

D. C. (DOT-CG-41680-A), 1975.

qMULTI is a multicategory separator contained in the statistical package
routine called ARTHUR. (Appendix II)

aPLANE is a two category separator contained in the statistical package
routine called ARTHUR. The subscript denotes the choice between the two
categories the compound was not classified as. (Appendix II)

*These compounds had auto-ignition temperatures and/or solubilities
missing. A range of their possible values was made by examining similar
compounds and trends within the groups. A maximum interval of 50° was used
for the auto-ignition temperature and of one unit for the solubilities. In

cases in which a decision could not be made both chosen categories are listed.

**PLANE, which examines only two groups at a time, did not give a unique classifica-
tion for all three pairs.
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TABLE IX

Compounds Classified Upwards

B Methyl Alcohol
Ethyl Alcohol
iso-Propyl Alcohol

Cyclohexane
Diethanolamine
Diisoprapanolamine

n-Butyl Alcohol n-Aminoethyl Ethanolamine
‘ n-Anmy1 Alcohol Diethylenetriamine

iso-Anfny1 Alcohol Triethylene Tetramine

Hexanol Tetraethylene Pentamine

Methylamyl Alcohol
Methyl Isobutyl Alcohol

Decyl Benzene
Undecyl Benzene

2 Hydroxyethyl Acrylate

Glycerine
Butylene
1-Pentene
Hexene
Heptene
Octene
Nonene
Tripropylene

Ethyl Butanol
Cytlohexane

n-0Octyl Alcohel
iso-Octyl Alcohol
2-Ethyl Hexanol
Nonyl Alcohol
Diisobutyl Carbiné]
n-Decyl Alcohol
iso-Decyl Alcohol
Undecanol

Dodecanol
Tridecanol
Pentadecanol
iso-Pentyl Aldehyde
2-Ethyl Hexaldehyde
iso-Octyl Aldehyde
Glyoxal

n-Pentane

n-Hexane

n-Heptane

Octanes

Dodecyl Benzene
Tridecyl Benzene
Tetradecyl Benzene
Methylamyl Acetate
n-Butyl Acrylate
iso-Butyl Acrylate

2-Ethylhexyl Acrylate

Propiolactone
Caprolactone
0-Diheptyl Phthalate
Dioctyl Phthalate
Dinonyl Phthalate
Diisodecyl Phthalate
Diundecyl Phthalate
Ethylene Glycol
Propylene Glycol

1,3 Butylene Glycol
Hexylene Glycol
Triethylene Glycol

Decene
Dipentene
Undecene
Dodecene
Tetrapropylene
Tridecene
Tetradecene
Momethyl Hydrazine
Nitrobenzene
Acrylic Acid
Nonane
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APPENDIX I

Simple Experiments for Understanding

Factor Analysis and Hierarchial Clusterirg
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INTRODUCTION

Modern analytical tools, such as neutron activation analysis and
atomic absorption spectroscopy, have enabled scientists to collect large
amounts of quantitatively accurate information from individual samples.

When many samples are involved, the scientist is then faced with the

R i e i i i 2

dilemma of interpreting his data. The conventional first step is to
place all of the data in table form. Examining multivariable data tables

in this way can cause eye strain, but, except where data values are

A g i i M i

dix

unusually different, it can often lead to little else. Simple statistics f

such as standard deviations and t-tests may tell the scientitst which

are outliers, but once again will often show him little of the complex

.

interrelationships among the variables or samples. The researcher may

then plot two-dimensionally certain variables of his data versus other
variables. This step can be a great aid to interpretation since he can
now see a spacial representation of relationships among the selected vari-
ables. At the same time, however, it is quite limited in the amount of

information that can be displayed.

Another step which has recently been applied to chemical probiems
is computerized pattern recognition, in which all of the variables (or
samples) may be compared to one another to determine their inter and intra-

] relationships. Pattern recognition is a developing branch of artificial ‘

4 intelligence (1) which has been used for such diverse purposes as medical
diagnosis (2,3), the identification of rocks (4), and hand drawn character

identification (5). Jurs (6), Kowalski (7), and Isenhour(8) have described . |

.f how pattern recognition can be useful in solving a variety of chemical
problems. Chemical applications have included the identification and

interpretation of mass spectra data (9), IR specta (10), NMR data (11),
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gamma-ray spectroscopy from neutron activation (12), and stationary
electrode polarography (13). Other studies have included the deter-
mination of the correct chlorine dosages for water treatment (14); the
relationship between mass spectra data and the pharmacological activity

of drugs (15); analysis for oil in natural waters (16); screening pros-

pective anti-cancer drugs (17); and the classification of archeological

artifacts from trace element data (18).

Factor analysis is a form of pattern recognition in which the i
linear combinations of a set of experimental data are developed and this

hopefully reduces the number of variables. Its method has been described 1

in detail by Veldman (19) and Harman (20). This technique has been applied

to such diverse areas as biology to determine the growth patterns in p1anté b

(21); psychology to study word recognition (22) and cultural differences

(23); meteorology to study coastal air and water temperatures (24); and
geology to define deformational modes in rock (25). Chemists have used
factor analysis to study data from nuclear magnetic resonance spectroscopy
(26) and from gas-liquid chromatography (27). Factor analysis has also been
used to correlate trace element and other chemical data collected from a .
numher of samples. Examples include the study of chemical pollutants in
air samples (28, 29) and the correlation of rocks based on their chemical
composition (30, 31).

Pre-treatment of the raw data may include normalizing the variable
(or sample) values to the mean standard deviation. The data may then be

reduced to a correlation coefficient matrix. A number of correlation

coefficient methods may be used, including cosine coefficient, distance
coefficient, and Horner coefficient. The product moment correlation coeffi-

cient is used in this article's examples:
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The factor analysis method used by the authors takes this correlation
coefficient matrix and determines the set of eigenvalues for the linear
combinations, the cumulative percentages of these eigenvalues, the
eigenvectors, and finally the loaded factor matrix for each of the
eigenvalues. The general method model used, that of principal
components was:

zj = ajTFT + aszz el ajnFn (32 oonatt)

" where each of the n observed variables of the new data matrix was des-

cribed linearly in terms of the new uncorrelated components, F (20).
The "a" coefficients are the factor loadings. Those eigenvalues
considered to be significant factors are retained: significance usually
being defined as a value greater than or equal to 1.00. The loaded
factor matrix of significant factors then undergoes varimax rotation
in order to maximize the differences among the factors. This rotated
factor matrix is normalized to range from -1.0 to +1.0. A positive
value of a variable in a factor shows a direct relationship of the
variable to that factor. The greater the value the stronger the rela-
tionship indicated. A negative number shows some inverse or negative
relationship and a value close to zero infars that there is no direct
relationship between variable and factor. This rotated factor matrix
may then be studied in either table or graphic form in order to interpret
the initial data.

Another useful pattern recognition method is hierarchial clustering

(19). This unsupervised learning method clusters the samples from either
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the raw data or a normalized data matrix according to their n'th dimen-

sional distance vector across the variables. The mean distance between
samples or clusters is used to determine the relative error of the
grouping and used as the new vector distance value for future groupings.

Those groups closest in distance values will cluster first. Eventually, |

all groups will be clustered into two groups. A dendrogram can then be {
made of the series of clusters to give a graphical representation of the
calculations. The original data matrix may be transposed and similar

clustering may be made of the variables as they vary across the samples.

el b i Bl s

EXPERIMENTAL
The authors have developed a FORTRAN IV computer program to handle

statistical evaluation of data, perform correlation analysis, factor

P ——
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analysis and hierarchial clustering, and to display data and results
in either table or graphical form (Table I). A1l calculations were
done at the University of Rhode Island's Computer Science Center on an 4
IBM-370/155 computer and graphics were done on a Broomall Industries

2000 Series Incremental Plotter. Data input to the programs is accepted
from either cards or from general disk storage data banks. Four corre-
lation coefficients are presently available: product moment correlation
coefficient, cosine coefficient, distance coefficient, and Horner coeffi-
cient. The graphic displays can handle any data matrix from the routines,
from the raw data to any calculated coefficients. Almost all routines
may be accessed at any time during program operation, specific use being

governed by program read control cards. Once the raw data has been

entered, it may be treated by any of the procedures and the output may

be returned to the user in either table or graphic form. The programming

package has been designed so that the user need not have programming
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experience to operate it.

To illustrate factor analysis as an interpretive tool, a synthetic
data set consisting of fifty groups of length, width and height values,
or in other words, fifty random boxes, was generated from a random num-
ber table (32).

A group of linearly related variables (Table II) were generated
from the length, width and height values. Using factor analysis these
ten variables were reduced to three significant factors, each contain-
ing about one third of the total variation among the variables. The
rotated factor matrix is shown in Table III. It is useful to graph
the variable values of the rotated factor matrix as they vary across
the factors. The two dimensional plot of factor one versus factor two
(Figure 1a) indicated that the length variable was strongly associated
with factor one while unrelated to factors two and three. The width
variables was strongly associated with factor two and unrelated to fac-
tors one and three, and the height variable was unrelated to either factor
one or two. The linear combination variables were arranged according to
their weighted length, width or height value. The plot of factor one
versus factor three (Figure 1b) was nearly identical to the previous
figure, except that width and height has been reversed. Plotting fac-
tor two versus factor three also showed a similar result (Figure 1c),

this time reversing length and width. Since each factor contained about

33 percent of the total variation, each two-dimensional plot could only give

about 2/3 of the information available. Comparison of these three factors
on one three-dimensional plot (Figure 2) simplified the interpretation of
the problem by allowing 100 percent of the information to be presented

at one time. The x-axis (right side) and y-axis (left side) represented
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factors one and two, respectively, and factor three was the z-axis.

The peaks in the rear three corners represented a value of 0.0, or in
other words, a non-relationship of the variable to factor three. It was
interesting to note in Figure 2 the successive progression along diagonals
of the associated length-weighted, width-weighted, and height-weighted
variables. The valid interpretation from this information was that
factors one, two and three were actually length, width and height, respec-
tively. Such an interpretation would be nearly impossible to make from
observation of the raw data alone. Table IV 1s a partial listing of the
initial input information for this example.

Factor analysis was designed to associate linear related variables,
but it may also be used to correlate variables with non-linear relation-
ships. To prove this point, a variable data matrix of cross product in-
formation from the boxes (Table II) was tested in a similar manner. When
these variables were handles exactly the same as the preceding examples,
three nearly equal factors were again obtained from factor analysis,
although in this case they contained about 92 percent of the variation
instead of the 100 percent found in the linear example. When their rela-
tive positions on the three-dimensional plot of these three significant
factors were observed (Figure 3), the variables length, width and height
were very strong in factors one, two and three respectively. The inter-
pretation once again was that length, width and height were the three
significant factors, as would be expected.

As an added test of factor analysis, the linear and crdss—product
data sets were then combined and tested the same way. A§;in three
significant factors were found, this time accounting for 96 percent of

the variation. There were no significant differences in the rotated
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factor matrix values from the previous two determinations, and a study
of the three-dimensional representation of the three factors (Figure 4)
showed nearly the same result that could be found if the three-dimen-
sional plots of the two data sets alone were superimposed.

Two additional tests were necessary to confirm the validity of
factor analysis in circumstances where the answer is not known before
hand. Subgroups of 40, 30,20 and 10 boxes from the linear variable
data set were studied (Table V) to determine the effect of sample size
on the results. In the second test, the values for the variables length,
width and height were deleted from the data matrix before factor analysis
in order to determine if the use of these three variables was biasing
the results. No significant differences were found in either experiment
from those results in the initial studies. Caution should be taken in
applying these results when interpreting real as opposed to synthetic
data. The size of the sample set is important, too few samples can cause
an incorrect clustering and hence false interpretations of the data. A
minimum of at least twice as many samples as variables is necessary.

It is possible with this program package to rotate the three-dimen-

sional representation about the z-axis or in the X-Y plane. The best

view is data dependent because cluster representations can mask each other.

The three-dimensional representation of the linear box variable factor
matrix was used in Figure 5 to demonstrate this rotation. Figures 5a and
5b show the plot rotated to relative positions of 20° and 70° about the
z-axis while maintaining the X-Y plane at 45°. In Figures 5¢ and 5d, the
z-axis position has been returned to 45° and the X-Y plane rotated to 20°
and 70° respectively.

Hierarchial clustering was applied to the same boxes and their assoc-

jated variables, which were examined earlier using factor analysis. The
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dendrogram of the linear variables of the boxes (Figure 6) showed a
clear separation of three cluster sets: 1length with length weighted
variables, width with width weighted variables, and height with height
weighted variables. As in factor analysis test, this was the relation-
ship that would be expected to occur among variables which are known

to have a linear relationship to one another. The same clustering

method was then used on the cross-product variables (Figure 7). The

interpretation of this plot was less defined than the first example. i
Length clustered with length side diagonal and area information, and

width clustered with width side diagonal and area information. Total

volume and total surface area also clustered with one another. Since
hierarchial clustering is an unsupervised learning method, however, the

multi-interrelationships among a set of cross-product related variables

tend toward noninterpretive clustering by this method. When both sam-
ple sets were combined and tested by hierarchial clustering, the result-
ing dendrogram (Figure 8) showed properties similar to each of the previous
two figures, that is, the linear variables were clustered into three
readily apparent groups of length-weighted, width-weighted, and height-
weighted values, and the two variables of total diagonal and length-plus-
width-plus-height variables also clustered closely.

One final experiment was performed on these boxes The data matrix
was transposed and the fifty boxes themselves were compared to one
another as they varied across the linear relationship variables. Factor
analysis gave three significant factors, each with about one-third of
the total information. Hierarchial clustering also showed three distinctly !
separate clusters (Figure 9), which can be accounted for by the general

groupings of boxes with a large width values and usually large height value
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bias, boxes with a small width bias with neither a length or height

value bias, and boxes with a small length value and a small height

value bias with no bias of the width value.
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-50-

LIST OF FIGURES

Two dimensional representations of the rotated loaded-factor
values of the linear box variables.

a) Principal-axis factors one and two.

b) Principal-axis factors one and three.

¢) Principal-axis factors two and three

The three-dimensional representation of the linear box variables
for the rotated loaded-factor values of the three principal-axis
factors.

The three-dimensional representation of the cross-product box
variables for the rotated loaded-factor values of the first three
prinicipal-axis factors.

The three-dimensional representation of the combination of linear
and cross-product box variables for the rotated loaded-factor values
of the first three principal-axis factors.

Rotation of the three-dimensional representation of the linear box
variables for the rotated loaded factor values of the first three
principal-axis factors.

a) X-Y plane at 45°, Z-axis rotated to 20°.

b) X-Y plane at 45°, Z-axis rotated to 70°.

¢) Z-axis at 45°, X-Y plane rotated to 20°.

d) Z-axis at 45°, X-Y plane rotated to 70°.

The dendrogram of the clustering of the linear box variables versus
the relative error associated with the clusters.

The dendrogram of the clustering of the cross-product box variables
versus the relative error associated with the clusters,

The dendrogram of the clustering of the combination of linear and
cross-product box variables versus the relative error associated
with the clusters.

The dendrogram of the clustering of the fifty boxes of the linear
box variables versus the relative error associated with the clusters.

WV SUFEN P



Input Statistics

Card Arithmetic Mean
Disk Geometric Mean
Median

Standard Deviation
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Linear Sum Variables

Length
Width

Height
L+W+H

2L+W+H
L+2W+H
L++2H
3L+W+H
L+3W+H
L+W+3H

TABLE II
Random Box Variables

Cross Product Variables

Length

Width

Height

L W Diagonal

L H Diagonal

W H Diagonal

Total Diagonal

L W Rectangle Area
L H Rectangle Area
W H Rectangle Area
Total Surface Area
Volume
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TABLE III

Rotated Factor Matrix
for Linear Box Variables

—— e

g

H Factor

Variable 1 2 3
Length 0.9986 - =
Width - 0.9992 -
Height - - 0.9986
L+W+H 0.5835 0.5640 0.5842
2L+W+H 0.8172 - -
L+2W+H - 0.8146 -
L+W+2H - - 0.8065
3L+W+H 0.9031 - -
L+3W+H - 0.9071 -
L+W+3H - - 0.8915
% of Total

Information 33.7 % 32.8 % 33.5 %
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_ TABLE IV
m Linear Variables for the First Ten Boxes
m. Box Length Width Height L+W+H 2L+W+H L+2W+H L+W+2H
A 1 283. 517. 245. 1045. 1328. 1562. 1290.
N 2 732. 115 838. 1571. 2303. 1572. 2409.
m 3 123. 596. 387. 1106. 1229. 1702. 1493.
| 4 281. 377. 796. 1454. 1735. 1831. 2250.
. 5 179. 136. 466. 781. 960. 917. 1247.
“ 6 522. 400, 577. 1499. 2021. 1899. 2076.
“ 7 229. 305, 859. 1393. 1622. 1698. 2252.
m 8 25. 484. 936. 1445, 1470. 1929. 2381.
{ 9 584. 620. 505. 1709. 2293. 2329. 2214.
w 10 349. 777. 517. 1643. 1992, 2420). 2160.
(]
3
L}
!
1
M
|
-tmrﬂﬂnmmwr;.a\uwv‘-‘ i i

3L+W+H

1611.
3035.
1352.
2016.
1139.
2543.
1851.
1495.
2877.
2341,

L+3W+H

2079,
1573.
2298.
2208.
1053.
2299.
2003.
2413.
2949.
3197.

L+W+3H

1535.
3247.
1880.
3046.
1713.
2653.
3111.
3317.
2719.
2677.




Factor 1
Variable

Length
Width

Height
L+W+H

2L+W+H
L+2W+H
L+W+3H
3L+W+H
L+3W+H
L+W+3H

Factor 2
Variable

Length
Width

Height
L+W+H

2L+W+H
L+2W+H
3L+W+H
L+3W+H
L+W+3H

Factor 3
Variable

Length
Width

Height
L+W+H

2L+W+H
L+2W+H
L+W+2H
3L+W+H
L+3W+H
L+W+3H
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TABLE V

Rotated Factor Matrices of Different

Number of Boxes

50 40 30
0.9986 0.9981 0.9993
0.5835 0.5780 0.5857
0.8172 0.8287 0.8365
0.9031 0.9157 0.9218

Number of Boxes

50 40 30
0.9992 0.9969 0.9998
0.5640 0.5532 0.5610
0.8146 0.8237 0.8120
0.9070 0.9190 0.9047

Number of Boxes

50 40 30
0.9986 0.9996 0.9995
0.5843 0.5989 0.5848
0.8065 0.8300 0.8321
0.8915 0.9111 0.9177

Sized Data Sets

20
0.9749

0.5158
0.8564

0.9559

20

.9898

.5713
.8593

O o o o

.9432

20

0.9979
0.6384

0.8813

0.9478

10
0.9947

0.6118
0.8760

10

0.9590
0.5277
0.8966
0.9790

10

0.9815
0.5893

0.8852

0.9576
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APPENDIX 11

A Description of ARTHUR

This appendix is abstracted from a paper entitled:

"ARTHUR and Experimental Data Analysis:
The Heuristic Use of a Polyalgorithm" ]

A. M. Harper, D. L. Duewer* and B. R. Kowalski :
Laboratory for Chemometrics |
Department of Chemistry :

University of Washington

Seattle, Washington 98195
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and
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Department of Chemistry |
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3 "ARTHUR and Experimental Data Analysis:
“
L? The Heuristic Use of a Polyalgorithm"

A. M. Harper, D. L. Duewer* and B. R. Kowalski
1. Laboratory for Chemometrics
F| ! Department of Chemistry
A University of Washington
‘ Seattle, Washington 98195

:f and

James L. Fasching |
Department of Chemistry i
University of Rhode Island
Kingston, Rhode Island 02881
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Most non-routine data analysis in chemistry is designed to-aid the k

formulation and/or evaluation of some model or hypothesis of the instrinsic

ke bbbl ks

data structure. The more detailed the model of the data's structure, that

is, the more complete the analyst's understanding of the data, the more facile

the selection of appropriate algorithms for the data analysis. Conversely,

where very little is known of the data's structure it is difficult to make

a _priori selection or evaluation of analysis methodologies.

ARTHUR (1,2), a system of data manipulation, pattern recognition and

robust statistical algorithms, is designed as a tool for the analyst in appli-

cations where the data's structure is not well understood. The algorithms

included in the system are those which our laboratory and other members of
the Chemometrics Society have found useful in the analysis of a number of
quite different chemical and biological data sets. Recently implemented
provisions for the inclusion of measurement uncertainties in the mathematical
methods (3) enable the determination of which aspects of the data structure i J

are truly inherent to the data. Descriptions of these algorithms can be

found in the appendix of this chapter. It should be noted that ARTHUR is ’ ;
| 3
E

meant to be complementary to and not in competition with such primary

statistical systems as SPSS (4) and BMD (5).
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The primary utility of ARTHUR being in the formulation and
evaluation of models for incompletely-understood data sets, it is not
possible to specify given algorithms or sequences of algorithms which
are "best". However, in the course of much data analysis (both fruitful
and frustrating) some “"rules of thumb" or heuristic procedures have been

formulated. Following an introduction to the "ARTHURian"™ terminology .
of data analysis and pattern recognition, and a description of the
inclusion of measurement uncertainties in pattern recognitiocn methods, |

the heuristic techniques the developers and users of ARTHUR have found

most generally useful will be described. T

b W
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Definitions

The following terms and definitions have proved useful in describing
the types of data analysis algorithms available in ARTHUR and in des~-
cribing the data to be analyzed.

Classification Analysis.

The data are known to be composed of specified groupings or categories.

The goals of such analysis are the identification of what parameters (if
any) qualitatively distinguish the known groupings and (if possible) the
selection of a classification rule for identifying the known groups.

Continuous Property Analysis

The data are known to represent a continuous range of responses
towards some given property(ies). The goals of such analysis are the
jdentification of what parameters (if any) are functionally related to
the property and (if possible) the selection of a rule which quantitatively
predicts that property.

Unsupervised Analysis

The data are not known to have any systematic characteristics. The
goal of such analysis is the discovery of what systematic behavior the
data exhibit (if any exists). Study of the regularities among objects
is generally referred to as cluster analysis; study of the regularities
among measurements is generally referred to as factor analysis.

Object

A compound, sample, individual or other entity for which a list of

characterizing parameters is present in the data base.
Measurement
An experimentally available parameter (independent variable) used to

characterize the objects.

i s A L S e e ey
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Feature

Any transformation of one or more measurements used to characterize
the objects. When referring to a parameter which can be either a measure-
ment or a feature, the term "measurement/feature" is used.
Data vector

The complete list of measurement/feature values used to characterize
a particular object. (The older chemical pattern recognition literature,
including that of the Laboratory for Chemometrics, refers to this as a
"pattern". Considerable semantic confusion over "patterns of patterns®
forced the change to the term, “data vector".)
Category

One of the groups of objects studied in the classification analysis
algorithms. Categories which are entirely independent of one another,
such asthe labeling of white bond papers by their manufacturer, are
referred to as discrete categories. Categories which have some dependence
upon one another, such as "low, middle and high", are referred to as con-
tinuous categories.
Property

A quantitative parameter characteristic of the objects for which a
functional representation is desired (dependent variable).
Training Set

The list of data vectors used to generate classification or prediction
rules.

Evaluation Set

The 1ist of data vectors used to evaluate the performance of classifi-

cation or prediction rules.
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Test Set

i v Tl SRR S i =

The 1ist of data vectors, in classification or prediction analysis,

oy

! for which the true category or property value is not known. The Evalua-
g tion and Test sets are functionally one and the same. The Evaluation set

is a "let's pretend" Teét set,

N Uncertainty 3 . 3
' The error associated with an analytical measurement. The uncertainty -

is assumed to include all sources of errors such as sampling, instrumental, i

T

i ; chemical, etc.

It should be recognized that these definitions are not particularly .

; rigid or mutually exclusive. A continuous property can certainly be { j
segmented into the low resolution categories "too low" and "high enough". @
f ‘ The parameter considered as a proper;y in one phase of analysis may well |
be a measurement in another. The Training and Evaluation set definitions ]
may be switched. It may even be desired to switch the definition of object

and feature. If the data are considered as a matrix (objects as rows and

features as columns), the switch is equivalent to the transposition of the

B

matrix. And it is certainly good practice, no matter what the specific

nature of the data analysis problem, to make at least cursory unsupervised

b

data analysis, if nothing more than to give a rough screen for some gross,

L

unsuspected structure in the data.
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Pattern Recognition: New Techniques that Utilize Analytical Error

The general problem that is amenable to solution by the techniques
available in ARTHUR is the analysis of patterns in an n-dimens{onal space.
In the past, applications utilizing pattern recognition have not taken
into account the errors in the measurements because the mathematical
methods currently available make no provision for their inclusion. However,
in most chemical data the inadvertent assignment of zero measurement error
which results is clearly an unrealistic assumption. This problem has been
investigated by Fasching, Duewer and Kowalski (3). As a result of this
study, several algorithms in ARTHUR have been modified to include the
uncertainties in the calculations.

Current pattern recognition techniques treat measurements as dimensions
in an n-dimensional space. If, for each member of a collection of objects
(samples), n measurements are known, the samples are represented as points
in the space formed by the measurements. Therefore, the value of a given
measurement for a particular object serves to exactly position the point
representing the object along a coordinate measurement axis in the n-space.
Figure 1 depicts the configuration of the data vectors from two samples in
a three-dimensional space. The set of all such vectors defines the data
matrix.

In analytical applications, where the uncertainties in the measurement
are either known or can be estimated, there exists a matrix of uncertainties
corresponding to and of the same dimensions as the data matrix. Mathematical
operations that transform the data matrix also change the uncertainty matrix
to a transformed uncertainty matrix. Each element of the uncertainty matrix
reflects the exactness (in units of : one standard deviation) to which the

corresponding element of the data matrix is known. Therefore, each measure-
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ment in the data matrix is now treated as a mean value with a probability
distribution defined by its error. The effect of the inclusion of uncer- ?
tainties on the vectors in Figure 1 1s illustrated in Figure 2. The
analytical uncertainties reflect the fact that a data vector is not,
in reality, a point in the measurement space, but is the most probable

value in a region of probability in this space. If the area of the elipsoid

in this example is defined at a 50% probability level of the standard devi-
ation of each measurement, then another set of measurements made on a sam-
ple would have an equal probability of 1ying outside the elipsoid as within
it. This model is more reasonable for most chemical problems.

At present, ARTHUR has been modified to include the analytical error
in representative method of preprocessing, display, supervised learning and
unsupervised learning. A full description of these modifications can be
found in reference 3. The current methods deal only with symmetric uncer-
tainties. A nonmetric (unsymmetrical) distance is defined; however, class-
ification and clustering routines utilizing distance have not, as yet, been
similarly modified to make use of this type of distance matrix.

Since the uncertainty matrix contains information about the error
associated with each measurement, it can be incorporated into the prepro-
cessing of the data matrix. The more realistic features generated can be
utilized in all reported methods of pattern recognition, thus eliminating
the need to change each analysis method. The scaling algorithms (SCALE)*
in ARTHUR have been modified to include uncertainties. An error-weighted

mean and variance are utilized in place of the feature mean and variance

in these calculations. The new mean of the jth feature in the data is
3 m
defined as: £ X, JJu .
& j=q Tad 1
XJ' = m :
GolaUe
o1 Visd

*Methods (names in capital letters) are described in appendix
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where the uj j‘s are the entries in the uncertainty matrix corresponding
’

to the data matrix measurement xi,j’ and the sum is over the training set
data vectors. Modification of the available distance metrics have also
been made along with the addition of new distance calculations based on
measurement uncertainties. The algorithms for these can be found in the
appendix (DISTANCE) to this chapter. The modified city-block distance and
the modified Mahalanobis distance are now weighted by a function of the
measurement errors associated with the features going into the calculation.
A new metric,the gaussian overlap-integral distance, greatly emphasizes
the features that have a small distribution with respect to their measure-
ment size and related uncertainties. A maximum distance of one is assigned
to features that differ greatly from each other or have very small uncer-
tainties. Another new distance calculation, the gaussian feature-space
distance, calculates a distance value that is proportional to the probabi-
lity that a feature in the 5 data vector belongs to the same population
as the corresponding feature of the jth data vector. These are summed over
all the feature space to give the intersample distance. The calculation
is nonmetric and the distance matrix is unsymmetrical.

The uncertainty matrix has also been incorporated in the Karhunen-
Logve transform. The modified technique transforms the uncertainties
into a new certainty matrix along with the sample matrix. The assumption
is made that the same degree of correlation applies to the uncertainty

matrix as is used in the transformation of the sample matrix.
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Introduction to Data Analysis Using ARTHUR

Different collections of objects may have qutite different data
structures varying from a random scatter to well defined clusters or
curvilinear shapes. Since each algorithm affects data reduction according
to the criterion upon which it is based, a thorough understanding of the

inherent assumptions imposed upon the data structure in the formulation >

of a technique and the 1imitations that may result can provide informa-
tion helpful in arriving at an understanding of the underlying structure !
of the data when the methods are applied in combination. {

Suppose, for example, the n-dimensional structure of two categories

Pramy TTUTSCR D T TN T TN WIS o W e T

of objects we wish to separate by pattern recognition classification ;
techniques corresponds to the one dimensional problem depicted in
Figure 1, where the shaded portions of the figure correspond to category

1 and the unshaded portions to category 2.

Figure 1. Bimodal distribution

Whereas in cone dimension the solution to the problem is obvious, in n-
dimensions the bimodality may not readily reveal i1tself. If PLANE or

SIMCA were applied to these data, the results might Tead one to believe
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g% : that the categories cannot be dist'nguished since the data are ne1}her

1 linearly separable nor continuous. However, KNN would encounter no prob-
lems since the objects in the near vicinity of a given point tend to be
of its class. Bayesian classification (as long as no a priori distribu-
tion is assumed) would also produce good results. (Note that plots of

E‘ the data might expose this distribution in a less ambiguous form. Con-

sequently, this example is meant only as an illustration of the effects

of the methods on an easy to understand distribution.)

Unfortunately, the solution to a real problem does not, in general,
tend to be as straightforward and may require a great deal of inter-
action and guidance from the analyst aided by pre-processors, display
methods, and statistics. For this reason, the capabilities of ARTHUR
for displaying the data are quite well developed when combined with the
ingenuity of the analyst as will be seen in a later section of this
chapter. On the other hand since preprocessing refers to any method
that translates, rotates, or in any way transforms the data, such in-
finite diverse possibilities arise that were we to include only those
methods that we and others have found useful, they would dominate the
code. Therefore, the set of preprocessing tools available in ARTHUR is
aimed mainly toward normalization, feature weighting, and dimensionality
reduction. In addition, ratios of features can be added to the feature

% list in TUNE and individual features can be transformed or combined in
f CHFEATURE. Since the methods chosen to preprocess the data can ulti-

mately determine success or failure in the solution of a problem by

pattern recognition methods and/or the cost of the ana]ysjs. methods not

i . available in ARTHUR should not be neglected. An example of this is the
utilization of the Fourier, Hadamard and autocorrelation functions for
the transformation of spectral data (6, 7).

Two assumptions made throughout any supervised pattern recognition

. . X0 ﬂm:;mv\h
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technique are that the features used contain information useful to the

solution of the problem and that, even when this 1s known to be the case,

the data can be transformed into a representation amenable to the algorithms

employed. When this is not the case it may become necessary to either
change the form of the question being asked about the existing data or
redesign the experiment from which the measurements are obtained. Hope-
fully, the information gained through prior analysis will serve to guide
the analyst in this endeavor.

We have discovered that techniques originally designed for unsuper-
vised learning applications are powerful tools in the early stage of
all data analysis problems. These methods have seen little application
in chemistry. Since the goal of these methods is the determination of
the existence of inherent data structures within a larger data structure,
neither training nor classification is attempted. TREE and HIER are
two unsupervised learning methods which are based on the similarity of
objects as defined by their distances in the feature space. Factor
analysis can also be utilized in this mode.

The following sections are a brief description of the basis of the
various pattern recognition methods used to analyze this data:
WEIGHT is a preprocessing method that weights each feature on the basis
of its individuai importance to the solution of a pattern recognition
problem. For categorized data, the criterion of importance can be either
the total variance or total Fisher weight for the feature. The variance
weight is a ratio of the interclass variance of two categories to the
intraclass variances of the categories. If Nj,m,n is a measure of the
utility of feature j in separating categories m and n, the variance

weight (UV)J . N 1s:
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where Ni is the number of data vectors in category i; the total variance
weight is the geometric mean of the individual category pair weights.
The Fisher weight is a ratio between the square difference in the cate-

gory pair means and the sum of intraclass variances:

- RY

e Y, = *n,g) ‘
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Pk med LT T knd n.d ,

k=1 Nm k=1 Nn | 4

The total Fisher weight is the arithmetic average of the individual
category pair weights.

For continuous property data the weighting is done on the basis of
the correlation of the feature to the property. The square correlation
to property of feature j is:

N > = @
RACIEENCEE -

N N

E{xgp =X )° %
k=1 ok 0T e

(pk iy 5)2

where N is the number of data vectors in the training set and Py is the
th

property of the k™ data vector.

SELECT (28) is a feature selection technique that generates orthogonal
features based on their importance to classification. The criterion for
importance for categorized data is the variance or Fisher weight and for
continuous-property data, the correlation-to-property weight (see WEIGHT).
The highest weighted feature is selected as the first feature. The re-

maining features are then decorrelated from the chosen feature. The de-




-78-

correlated features are reweighted and the feature whose new weight is
highest becomes the second selected feature. The process continues until
either a specified number of features is chosen or a given minimum weight
attained. The selected (unweighted) features are output to a file for
later use. The user can opt for the decorrelated features or the same
features in their unchanged form. Since one set is a linear combination
of the other set, the same information is retained for either option.
Only the representation is changed (i.e. the sub-feature space is either
rotated or not rotated to orthogonal axes).

GRAB. As a feature selection method, GRAB (12) is intermediate between
weight (with no feature decorrelation) and the more expensive SELECT
(with total decorrelation). A previously-weighted file of n data vectors
is input to the routine. Each feature is assigned an initial weight

n
2z

TORE {k ](xi’k-xi)Z}‘i

The feature with the largest weight is selected as the first new feature.

Each of the remaining features is reweighted such that if Ci j is the

correlation between the ith feature just chosen and the remaining feature

Js
w(Z)J- = w(])j”.'mi,jll
For the mth iteration the weight of the jth feature remaining is
m-1
W(m), = - = (R
(m)g = WDy T 01-14 511

LEAST performs a Teast-squares multi-linear regression that is best suited
to continuous property problems. If D is a data matrix with associated
property matrix p, then w=(DTD)']DTP is the least squares solution to the
set of linear equations P=DW where W is a vector which weights the utility

of the features in fitting the data.

Lawta,
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In actual practice, determination of the weight vector is done by

Torloapl

W= [E'CEIXP

=l is the inverted cor-

where X is obtained by mean normalization of D, C
relation matrix associated with D and E is a diagonal matrix whose elements
are the reciprocal variances of the features.

Prediction of an unknown property P' is based on the weight vector
obtained is therefore

P' = X'W

LEDISC is a multi-linear least squares regression designed for categorized
data. Except in property definitions it is computationally equivalent to
LEAST. For a data set of n categories, n linear regressions are performed

h

such that for the it regression the property P is defined as

P = {+] for all vectors in category i
0 for all vectors not in category i

An unknown data vector is placed into that class whose weight vector pro-
duces the largest value.

LESLT is a variable reduction technique which seeks to optimize category
pair separation in as few variables as possible. A feature derived is a
linear combination of the original data that describe the position of a
data vector relative to a hyperplane between two categories in the data
set. The input data matrix (X) of n categories is divided into n(n-1)%
submatrices. If Y is the submatrix containing only those patterns in
categories i and j plus the test data, an outcome column matrix of prap<
erties can be defined such that

gisd - {-1 for patterns in i
+] for patterns in j

Thus defined, there exists a vector wk of weights such that ka = Gi‘j.
(Determination of ”k is the least squares solution for this equation

(see LEAST).) The weight vector obtained is used to transform and classify
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all the data vectors in Y. This process 1s followed for all category
pairs. Once all the weight vectors are obtained, the entire data matrix
(X) 1s transformed such that X' = XW. The new matrix X' obtained has
n(n-1)/2 features which are approximate category-pair separators.
LEPIECE does a piece-wise least squares multiple regression for each
data vector in the training and test set. The property of each data
vector is predicted from the fit (see LEAST) using the k-nearest-neighbors
(see KNN) to the vectors. The value of k is a user-defined multiple of
the number of features. The criterion used for "nearest" is the inter-
pattern distance (see DISTANCE). Only those features used in the deter-
mination of the distance are used in the regression.

MULTI is a hyperplane discriminant function method designed for multi-
category data. Computationally, it is equivalent to PLANE, except in
category definition. For a data matrix of n categories, n hyperplanes

are generated such that the ith

h

hyperplane describes the separation of
the it category from the rest of the data.
PLANE generates and classifies on the basis of a linear discriminant
function and is best suited to data containing two categories {see MULTI
for multicategory case). By an error-correction feedback method it seeks
a hyperplane in an augmented n+1 space (where n is the number of features)
that best separates a pair of categories.

Each data vector in n space is considered a vector in n+l space

where the n+1th

feature is unity. Therefore, two classes can be defined
as lying on either side of a hyperplane (whose equation in n+l space is
WeY=@), through the origin with corresponding class numbers +1 and -1.

The discriminant function is calculated by first loading a weight vector
with random or user-defined values. Dﬁring training, classification of

vector Yk by this weight vector is a decision of the form

i . 8 e e & v sl 2
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correct, 1f the sign of the response rela-
w-Yk = Sk = tive to the hyperplane is the same as the
sign of its class

incorrect, if the sign is not the same
If a pattern is misclassified, the weight vector is adjusted by reflec-
tion of the hyperplane about the misclassified point. The new weight
vector is then used to classify the data. The process continues until
all patterns in the training set are correctly classified or a maximum
number of iterations are reached.

For more than two categories, a hyperplane separating each pair of
categories is found. An unknown data vector is then classified using a
majority committee vote procedure on all the discriminant function re-
sponses. The use of PLANE for multi-category data 1s equivalent to a
piece-wise learning machine.

REGRESS is a multidimensional multivariate regression method which com-
putes a linear discriminant function. It accepts both category and con-
tinuous data. Two optimization methods are available. Either the re-
sidual variance or the multiple correlation can be minimized.

STEP is a stepwise multi-linear regression method. Features used in the
regression are determined by their contribution to the overall variance.
In the regression, features are added one at a time such that the feature
that 1s added makes the greatest improvement in the "goodness of fit."
When a feature that is indicated to be significant to the reduction in
variance in an early stage of the regression i1s indicated to be insig-
nificant after the addition of several other features, it 1s eliminated
from the regression before addition of another feature. The criterion
for selection of a feature to add or remove from the calculation is as
follows:

Removal: If the variance contribution is insignificant at a speci-

fied F-level, the feature is removed from the regression.
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Add1tion: If the variance reduction due to add-tron of & feature 1s
significant F-level, this feature is entered into the regress‘on.
HIER is an unsupervised learning (cluster analysis) method based on the
relative similarity of a set of data vectors. Each vector 15 initially

assumed to be a lone cluster. A similarity matrix is constructed such

that if Sj j is the similarity between the 1th and Jth data vector, then
9’
di :
s e H—hl
51.J max

di 2
where E—hl is the interpattern distance of data vectors "i" and "j"
max

normalized by the largest interpattern distance dma in the data (see

X
DISTANCE) .

The matrix is scanned for the maximum similarity in the set. These
"most similar” vectors are clustered, removed from the matrix and re-
placed by a new vector whose location is the average of the two vectors.
In combining clusters, two options are available. Either the average
of the two clusters is weighted by the number of data vectors in each
cluster or each cluster is given equal weight. The new matrix is scanned
for the next greatest similarity and the procedure is repeated. The

process ends when all the data vectors form a single cluster. Output

is in the form of a connection dendrogram.
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