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1. ABSTRACT

Pattern recognition is a statistical technique that allows one to find

or predict a property of chemicals that is not directly measurable, but is

known to depend upon certain features or properties of the chemicals via

some totally unknown relationship. This technique has been applied to a

multitude of scientific probl ems. The same technique was used to classify

a chemical according to its relative hazard in bulk water-transportation

based on chemical structure and macro-scale properties such as density,

vapor pressure, structure-fragments, solubi lities , etc.

Using the Linear-Learning Machine, the overall prediction of the 47 
• 

-

compounds in training set was 68% correct. The predicted classifications

of the 240 compounds in the test set are approximately 68% correct. There

are many difficulties associated with properly classifying compounds on

• the basis of variables derived from structural fragments that must be

sol ved before great reliance can be placed on the results of a Linear-

Learning Machine classification.

I 
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2. INTRODUCTION

The U. S. chemical industry transports the bul k of its chemical feed-

stocks and products by water . This movement of large amounts of chemicals

by tankers, barges, etc., constitutes a definite fire, health and poison

hazard as wel l as possible physiological irritants and water pollutants

if sp~ll s occur (1). The U. S. Coast Guard has primary responsibility for

the safety of shipping, waterways and citizens of this nation. Some methods

of assessing the hazards of these chemicals during bulk transportation by

water have been developed by varfous organizations (1-5) for the U. S.

Coast Guard . The National Research Council ‘s Committee on Hazardous Mater-

ials (Division of Chemistry and Chemical Technology) (1) has issued a

Tentative Guide for the Evaluation of the Hazard of Bulk Water Transporta-

tion of Industrial Chemicals which outl ines a system of evaluation. It

al so tentatively rates 337 common industrial chemicals.

The Fire Hazard aspects of this overall problem has deeply concerned

the Coast Guard because of the potential loss of people, ship and damage to

the environment. Underwriters’ Laboratories, Inc . have tested 53 chemicals

determining the flame propagation effects and pressure piling developed by

various gas and/or vapor-air mixtures of these chemicals. They used the

Westerberg Explosion Test Vessel which measures flash points , ignition

temperatures and flammability limits of these chemicals. Using this data,

the Electri cal Hazards Panel of the Committee on Hazardous Materials (the

Division of Chemistry and Chemical Technology, National Research Counci l)
has tentatively classIfied 370 chemical s as to their relative fire hazard

with respect to explosion-proof electrical equipment. These tentative

classificati ons are based on the experimental data from the subset of 53

chemicals that have been tested by Underwriters ’ Laboratories, Inc. The

current classifications for a large number (>200) of chemical compounds 
•~ I

are essentially an educated guess by a panel of experts. 
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• 3. RESEARCH OBJECTIVES

The overall objective of the research conducted under this contract

was to utilize pattern recognition techniques to develop a computer program

that would quickly, cheaply and effectively evaluate a chemical compound as

to its fire-hazard classification for bulk water transport. The Information

to perform thi s classification would be obtained from the chemical structure

and other simpl e chemical-physical properties of the compound .

Chemometrics, a growing discipl i ne in chemistry, can be defined as

the study of new mathematical and statistical approaches to solving chem i-

cal probl ems. Pattern recognition (9), a subset of these mathematical

methods , has recently been applied to many chemical problems. Recent re-

views (8,9) reference much of the literature that demonstrates the unique

adaptations of pattern recognition techniques to solve probl ems In chemistry.

The same techniques have been appl ied herein to the problem of classifying

a chemical accord ing to its relative fire hazard during bul k water trans-

portation.

‘1 H
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4. SOFTWARE DEVELOPMENT

Almost 50% of our effort was spent on developing computer codes for use

on the fire hazard classification problem. A generalized factor analysis

program, 3-dimensional plotting and hierarchial clustering routines were

written for use on IBM-370/l55. These programs proved to be of marginal

use in solving the problem. A program named ARTHUR (12) wrItten by Duewer,

Harper and Kowaliski from the University of Washing ton and Fasching, We isel

and Stromberg from the University of Rhode Island was used to obtain the

data presented in this report. Appendix A and B explain in detail the terms,

behavior and capabilities of these programs.

- - • • -  

~~~~~~~~~~~~
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5. EVAL UATIO N OF VA RIOUS VARIABLES

The objective of this examination was to find the fewest number of

variables that gave complete separation of the compounds in the training

set according to their category . The variables were chosen because they

give distinguishing characteristics about each compound ’s reactivity, com-

bustibility , vapor pressure and/or some other property which might con-

tri bute to its fire hazard . All the variables being used are either chem i-

cal or physical values that are measurabl e quantities as either distinct

numbers or categorized from experimental data. Using measured quantities 
~ I

avoids any biases that would result from data that is subject to change be- Ii I

cause of extrapolation by the scientist. Variables for which no experimental 
~. I

data was found were estima ted by using a range of various values based on

other similar compounds and genera l trends for that variable.

The variable order (Table I) was determined using histograms (Fig.l);

two features of the linear learning machines in ARTHUR described below;

step-wi se discriminate function routines in the BMDP package (12); and the

Fisher-Weight , Variance Weight and Property Weight step-wi se discriminate

features of the SELECT routine in ARTHUR (Appendix II). Step-wise dis-

criminate methods assume that one can separate out variables on the basis

of decreasing importance with respect to variance.

The histograms allow us to determine which variable has the least

amount of assoc ia ti on , i.e. is the most independent. The two features

listed below describe how the linear learning machine was used to determine

the efficiency of a set of •variables in predicting the results . They are:

the smaller the number of passes made the quicker the results converged

and If 100% separation was not obtained which compound was incorrectly

classified . The second feature is useful since an examination of the

type of compounds Incorrectly classified in the training set shows whether

too little or too much emphasis is being Included about particu lar classes
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of compounds or functional groups The result of our variable selection on

the training set is listed in Table V and Tabl e VI. Table V shows that corn-
• plete separation of the compounds into the appropriate categories Is obtained

when all compounds are included . Table VI is a compilation of the results

of a JACKKNIFE study. The JAC KKNIFE procedure uses one of known compounds

as a test case and compares the predicted value with the experimentally de-

termi ned value. The complete trainin g set is treated in this fashion. When

all of the compounds are used 100% separation i nto the correct categories

is obtained . In JACKKNIFE this was not the case. For example when 2—nitro -

propane is used as a test compound, therefore, left out of training set

and not inc~uded in the determination of the elgenvectors , it is incorrectly

associated with the D group. Since 2-nitropropane is the only compound in

the training set containing a NO, group, It is probably that uni que charac-

teristic that aids in the compound ’s classification when included in the

training set (Table V). 2-nitropropane , therefore seems to be abl e to con-

tribute useful Information upon which decisions about other NO2 containing

compounds can then be made. Step-wise discriminate analysis (~described in

Appendix II) determines the order of importance of variables according to - 

—

how wel l a variable retains the compounds in the appropriate category .

The reasons these routines yielded the ordering found in Table I is

not very obvious as it depends on complex interactions among the variables .

The ordering is based on empirical results. A simple case of this is that

total chlorine and the number of chlorlnes attached to carbon seems to have

very different importance as they are listed as variable numbers 17 and 39

respectively, although one would guess that they should have very similar

importance . Actually In the data set chosen they are exactly equivalent ,

i.e. all chlorines present are attached to carbons. The step—wise dis-

criminant program in the BMDP package and those In the ARTHUR package

when presented wi th two variables that are equ i val ent or one that Is a

-20-



- _ ___  -- T~~~~~~~~~~~~~~~~~~~~~
’
~~~T~~~
’

~~~~~ ~~~~~~~~~~~~~~~~~~~~

linear combination of another or sets of others, recognize th’s fact and

essentially eliminates one of the variables by making its contr’bution to

the classifying function negli gabl e, thereby eliminating dupl icate info rma-

tion. In addition to elimi nating duplicate Information differences in the

unit size among variabl es was standardized by autoscaling to unit variance

and zero mean. This feature normalizes differences between variables due

to units , thus making it possible to compare values such as temperature,

solubility and number of functional groups present. It also makes it in-

consequential what units one chooses for measuring any variable, such as

ignition temperatures, whether it be degrees kelvin , centigrade or faren-

heit, provided the same unit is used for all compounds. I 
-

a Tabl e IV lists the 13 variables that were found to give the optimal

• results . An examination of Table IV shows that a combination of variables

that contain information distributed among all compounds, such as A lT, mol ec-

ular weight and solubilities must be coupled with information about specific

— functional groups such as epoxy, nitro and NH groups . We again wish to men-

tion that if any large family of compounds containing one type of functional

group is eventually going to be classified , it is important to have a few

exampl es of the family in the training set to see if that functional group

contributes to its classification or if its effects can be accounted for by

other variables present. The reason for the classifying function containing

both variables which contain values for all compounds and variables that

only a few compounds tha t have a value other than zero Is the following :

the first type of variable sets up a basis where very general trends are

found , such as high molecular weight compounds are less hazardous than

lighter ones. The second type, functional groups , are needed since they
can activate or deactIva~e the reactivity of a compound greatly, thus shift-
ing Its classification.

T 
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6 CLASSI FICATION PREDICTION

The variab les list generated , as described in the prev’ous sect1on , was

utilized to pvedict the categories of unknown s First , we tried to separate

the classified compounds i nto their appropriate categories and minimize the

number of variables needed for the optima l results This was then checked

to estimate the accuracy of our prediction and then was applied to unknowns.

A discussion of the procedures used to accomplish these steps follows .

All of the compounds that have been experimental ly classified into NAS

groups B, C, and D at temperatures of less than 25CC were used in this re-

search. (These are listed in Table V) The two compounds classified into

the A group, acetylene and carbon disulfide are inc l uded into category 8.

This produces a group of compound tha t include hazardous classification B

or above. The reason for this is that only two compounds do not provide an

adequate mathematical basis to-establish a legitimate pattern to distinguish

which variables are instrumental in classifying compounds or form a base for

predicting unknown compounds . Leaving the two compounds out completely does -~ -

not markly effect the B groups .

As mentioned abov e, only compounds classified experimentally below 25°C

are being utilized . Those whose data were obtained above 25°C are not being

included since their classification at the normalized temperature may not

be the same and therefore would contribute inaccurate information to the

list of variable values for those compounds The methyl acetylene-propadiene

(MAPP) gas mixture and gasoline mixtures are al so not being used , si~;ce

unique chemical and physical properties cannot be defined for these sub-

stances . it should be noted tha t the class ifying -method we are attempting

to develop cannot be used for any mixtures or heterogeneous substances .

The BMDP program used requires that a priority of weighting be set be-

tween the categories. This value should reflect both the suspected “cost ”

of the misclassifying of a compound that actuall y belongs to the group B 

~~~~~~~~~~~~~~~~~ -- ~-~~~~~ ---- -
_ L

-~~~~~ — — 
~ 
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into the group C, B into D, etc., and the probab ihty of a randoml y selected

compound being either a B , C, or D. A number of different priorities

were used with the ratio of B to C to D of 1 to 2 to 1 most prevalent . Thi s

ratio was calculated by estimati ng the cost of misclass ificat ion of a B into

a C and a C into a D category of five times (John M. Cece , private conmit~ni-

cation , 1976) since it is thought in the case of an accident the inadequate

safeguards would cause a higher loss of both life and material than the ex-

pense of using a higher safeguard system for a less dangerous compound . The

probability of random selection was calculated by dividing the total number

of compounds in each category by the total number of compounds listed in the

report entitled “Matrix of Electrical and Fire Hazard Properties and Classi-

fica tion of Chem ical s” by the Comittee of Hazardous Materials. It was

assumed that this report contained a large, randomly selected samples of

- 
- 

chemicals that will be shipped and that a reasonable number of assigned

categories are correct (~75% ) .

Table V is a list of the 47 chemical compounds that were used as a

training set for the various pattern recognition techniques . Only compounds

that were not ex per imental ly tested at elevated temperatures were incl uded .

A training set is a group of compounds that the programs assume to be

correct and is used to train the program to predict classification of test

samples. The two principal learning machines that were finally used to

solve the fire hazard classification problem were PLANE and MULTI. The

programs can train themselves to be 100% correct with respect to the train-

ing set. (Appendix II)

Table VI is a list of the same training set shown in Table V , but

each compound was considered to be a test set respectively . Forty-seven

computer runs were subsequentl y performed using the JACKKNIFE procedure

described previously with the 46 chemicals being the tra ining set The

results of these experiments are suimiarized l f l  Table Vii. The programs

L • —- •~~~~~~~~ _ _- -  - .
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~Li

~~~~~~~ L~ - 
~~~~~~~~~~~~~~~~ .- ,  

- 
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______________



_ _ _  
_ _ _ _ _ _ _ _  

_ _  
-

-11-

PLANE and MULTI correctly predict the train ing set -7O~ of the time when each

compound in the training set is considered as a test compound .

• A sumary of the compounds that were misclassified is given , by cate-

gory, in Tabl e VII. Category D was predicted at a reliability between 74%

and 79%, category C at 67% and category B at 43%. A possibl e explanation

for the misclassifications of the experimenta ll y determined compounds are

derived from their spark gap values . Boundaries of spark gap values of
4

0.010” and 0.030” are the apparent divi sions between the B and C categories

and C and D categories respectively. There are a few compounds that are

classified in a category other than would be suggested by these cutoffs
‘1 due to their anomalous high pressure piling values ( >250 ps-ig) . We have

predicted a number of these compound s to be different from the assigned

category. They are ethylene diamine , vinyl chloride, cyclopropane, 1 ,3

butadiene and propylene. An addit ional number of compounds within 0.005”

of the spark gap boundaries are also misclassified (Table III). Two corn-

pounds with whose category we have agreed have spark gap values on the

“wrong ” side of the boundary . They are isoprene, classified as a C with

a spark gap values of 0.037”, and acrole in, classi fied as a B wi th a

spark gap value of 0.018”. It seems probable, therefore , that some of the

problems we have had could be due to the boundaries between categories not

being clear cut and pressure piling va lues only being considered when they

are very large.

Three of the misclassified compounds in the training set (hydrogen,

hydrogen sulfide and carbon disulfide) are the only inorganic compounds

• 

. 

present. Since organic and inorganic compounds do not react the same way

chemically, it Is possibl e that these were placed in an incorrect category

since we based their prediction on information derived from organic corn-

pounds. 

•—•  —.- • - - 
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The size of the training set and the uniqueness of ce~ta’n characteris-

tics present in the chemical being tested may result -in incorrect classifica-

tion . If a characteristic is not present in any compounds remaining in the

training set yet contributes greatly to the fire hazard of the chemical

tested, an incorrect result would occur. The classification would there-

fore be based on other features of the compound because there is no infor-

mation about that unique feature.

Table IX lists the test compounds that have been classified into a

higher category than in current use (5). Alcohols, long chain alkanes,

al kenes and benzene substituted compounds comprise a large portion of this

table. A possible explanation for our higher classification of these four

types of compounds may be the result of insufficient data because of simi-

lar compounds are not found in the training set, and/or training set corn-

pounds in these groups are being classified in the higher category.
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7. CONCLUSIO NS

The results for the training set of 47 compounds is sumarized in Table

• VII . The two linear learning machine called PLANE and MULTI were usec to

class ify the compounds. The predicted classifications in Table VII con-

sider each chemical to be a test sample and the routi nes are trained on the

other 46 chemicals. This set of analysis gives an overall estimate of 68%

correct classification. Table VI II lists the results of PLANE and MULTI

when the 47 compounds are used as the training set and the 240 compounds

are used as a test set. The predicted classifications are approximately

• 68% correct. Almost all long chain and short chain alcohols are classified

one category higher by both routines . Table IX lists the compounds that

have been class ifi ed upwards one category.

The final results of this research are encouraging and they have

definitely indicated the direction of future research.
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8 RECOMMENDATIO NS

The difficult ies of properly classifyin g compounds on the basis of

variables derived from structural fragments has been wel l documented in

this report and current literature

It -is our opinion that these results could be improved if the follow-

ing four ~ eas were given further consideration:

1. Use pattern recognition techniques based on a property descrip-

tor instead of Classes (A, B, C, D). We can predict measured

. experimental variables such as AlT, pressure piling etc much

better than abstract classifications that are based on these

variables. We would also have the ability to accurately check

our results using this approach and scientists would make the

final evaluation .

2. Explore the use of general molecular descriptors, thermodynamic

properties and electron density parameters as variables in the

pattern recognition techniques . Such variables would be obtained

from molecular orbital programs, CHETAH etc. and used in this

work to improve the prediction capability.

3. Devise better feature extraction procedures and transformations

to eliminate the random or noise components. A major problem

in pattern recognition concerns the mathematical ability to

separate noise from real and useful information in a variable ,

Better techniques for this problem must be found .

4. Design a better learning machine program. The learning machine

has many faults but one great advantage . It is extremely simple

to use after It is trained . In fact, it can be done on a~~-

t$i~ te calcula tor. Its major problem (accuracy) has been well - -

documented In the report. If program modifi cations could be

developed to solve these problems , the pattern recognition field

would make a major lea p forward. 

- -
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TABLE I

Variable Ordering

1. Auto igni tion temperature 21 N_CaN groups

2. Total number of hydrogens 22 Ethyl groups

3. Epoxy groups 23. COH groups

4. NO2 groups 24. Total number of nitrogens

5. Molecular wei ght 25. Hyd~ogens alpha to C O  —

6. Solubility in ether 26. Ester linkages

7. CH3 groups 27. Nitrogens without hydrogens

8. NH2 groups 28. Solubility in water
9. Total number of carbons 29. Hydrogens alpha to C=C

10. Carbon-carbon single bonds 30 Flash point
11 . Carbon—carbon triple bonds 31. Total number of oxygens

12. Ettj.er linkages 32. Boilin g point
13. Total number of sulfurs 33. HC~O groups
14. NH groups 34. Melting point
15. Solubility in alcohol 35. CH2 groups
16. Carbon-chlori ne bonds 36. COOH groups
17. NH, groups 37. C=O groups
18. Carbons wi thout hydrogens 38, Carbon-carbon double bonds
19. Carbon-nitrogen triple bonds 39. Total number of chlorines

20. CH groups

_ _ _ _ _ _  ,~~
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TABLE II

CLASSIFICATIO N FUNCTIONS a

VARIABLE # GROUP D GROUP C GROV” B

1 X(l) 7.13600 4.97641 2.76057
2 X(2) -0.36106 -0.43583 —0.40036
4 X(4) -0.06152 0 12287 0.10499
5 X(5) 20.51698 8.62925 10.51797

6 x(6) 12.02098 20.64725 18 11748
7 X(7) 6.67528 6.92967 3.76196
8 X(8) 4.35670 -6.77126 -6 94182

10 X(lO) -17.96806 -31 .78358 -26 15622
11 X( ll ) -37.05293 -22.64537 -7.63201
14 X(l4) 53.06761 115.01823 112.80058
15 X( l5)  -31.0 1567 -25 19327 —15.60228
16 X(16) -26.66524 11.50037, 29.91949r 17 X(l7) —21.73500 53.08704 61 .99918

19 x(19) -3.70266 5.61196 12.42352
20 x(20) -47.82832 56.20058 58.74736
21 X(2l ) —48.94760 33.24651 30.70747
23 X(23) —53.36461 -145.65991 —i c~ .30605
24 X(24) —86.22984 -109.46097 —89.71614
26 X(26) -146.34658 -104.83170 -70.20551
27 X(27) —43.60481 -113.88313 —73.73346
30 X(30) —25.06001 -14.32377 -3.85582
31 X (31) —66.89027 -13.61657 6.76443
32 X(32) —13.45770 -13 . 57369 2.25790
33 X(33) —182.14958 -114.14978 —40 . 13753
34 X(34) -54.96423 -50.60464 —66.21277
35 X(35) —85.81082 23.76089 55.32253
36 X(36) 0.45324 0.41791 0.42203

- - 37 X(37) —4.26777 -9.11450 —6 .22199
38 X(38) -3.09302 —4.28917 —2 .83177
39 X(39) -33.49681 -17,37549 6.43740
CONSTANT -224.74899 -199.83459 -188.00497

aEach numer ical value -in the table is the coefficient of a linea r polynom~al of the39 variables plus the constant, For example , y ~~~~~~~~~~~~~~ - The cal-
cula ted values of y for eac h compound can be used to determ~ne the appropriate

- classification. 

-~~~ -:~~~~ ~—_ _ _ _ _ _ _ _ _ _ _ _ _ _



_ _ _  _ _  -

TABLE II

CLASSIFICATION FUNCTIONSa

• VARIABLE a GROUP 0 GROUP C GROUP B

1 X(l) 7.13600 4.97641 2.76057
2 X(2) -0.36106 -0A3583 —0 .40036
4 X(4) -0.06152 0 12287 0.10499
5 X(5) 20.51698 8.62925 10.51797
6 X(6 ) 12,02098 20.64725 18.11748
7 X(7) 6.67528 6.92967 3.76196
8 X(8) 4.35670 -6.77126 -6 94182

10 X(1O) -17.96806 -.31 .78358 -26.15622 j
11 X( l l)  —37.05293 -22 .64537 -7.63201
14 X(14) 53.06761 115.01823 112.80058
15 X (l5) —31.01567 -25.29327 —15.60228
16 X(16) -26 .66524 11.50037, 29.9 1949
17 X(l7) —21.73500 53.08704 61.99918
19 X(19) —3.70266 5.61196 12.42352
20 X(20 ) —47.82832 56 .20058 58.74736
21 X(2 l ) —48 .94760 33.24651 30 .70747
23 X(23) —53.36461 -145.65991 -lc~.3O6O5
24 X(24) —86.22984 —109.46097 —89.71614
26 X(26) —146.34658 -104.83170 -70.20551
27 X(27) —43.60481 -113.88313 —73.73346
30 X(3 0 ) —25.0600 1 -14.32377 -3 .85582
31 X(31) —66.89027 -13.61657 6.76443
32 x(32) —13.45770 -13 57369 2.25790
33 X(33) -182.14958 -114.14978 -40 13753
34 X(34) -54.96423 -50.60464 —66 .21277
35 X(35) -85.81082 23.76089 55.32253
36 X(36) 0.45324 0.41791 0.42203
37 X(37) -4.26777 -9.11450 —6.22199
38 X(38) -3.09302 —4.28917 —2.83177
39 X(39) -33.49681 -17.37549 6.43740
CONSTANT -224.74899 -199.83459 —188.00497

aEach numer ical value in the table is the coefficient of a linear polynom i al of the
39 variables plus the constant, For example, y ~~~~~~~~~~~~~~ - The ca l- 1 

-

culated values of y for each compound can be used to determine the appropriate
.ciasslficatlon .
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TABLE III

NAS Spark a Pressure bGaps Piling Borderl ine
Compound Classifi cation (inches ) (~bsisq.. in.) Compounds

Methane 0 .044 77

Ethylene Diamine D .029 82 *

Ethylamine 0 .039 65

Styrene D .037 133

Viny l Acetate D .041 128

Viny l Chlori de D .029 165 *

Allyl Alcohol C .026 120 *

Ep-ichlorohydrin C .022 149

Hydrogen Sulfide C .026 60 *

2-Nitropropane C .021 130

Triethylami ne C .021 125

Cyclopropane C .034 147 *

Methyl Acetylene C .025 185 *

Ethyl ene C .027 180 *

1 ,3 Butadiene B .031 260 * :1
Carbon Disulfi de B .002 205

Propylene Oxide B .021 280 *

Hydrogen B .003 845

aSpark gap tentative standards are less than 0.010” for A , B between 0.010” and
0.030” for C, and greater than 0.030” for D.

bCompo nds with sparks ±0.005 of the tentative standards are marked -In this column .
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TABLE I V

VARIABLES USED

(1) Molecular weight

(2) Solub ility in ethe r

(3) Solubi lity in alcohol

(4) CH 3 group

(5) Carbon-carbon single bonds

(6) NH groups

(7) NH 2 groups

(8) NO2 groups

(9) Ester linkages

(10) Total number of carbons

(11) Total number of hydrogens

(12) Auto ignition temperatures

(13) Epoxy groups

ITT TTT ~~ TT u~ - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
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TABLE V

TRAINING SET

COMPOUNDS NA S MULTI PLANE**
A l l y l  A lcohol C C C
Acro lein B B B

- 

- 
sec-Buty l Alcohol 0 D D
n-Buty l Aldehyde C C C
Crotonal dehyde C C C
Diethy l ami ne C C C

1. Diisobutylene 0 0 0
Epichlorohydrin C C C
Ethyl Acrylate D 0 D
Ethylene Diami ne D 0 0
Ethyleneimi ne C C C
Hydrogen Sulfi de C C C
Isopropy l Ether 0 0 D
Mesityl Oxide D 0 0
Morpholine C C C
2-Ni tropropane C C C
Pyridine 0 0 D
Tetra hydrofuran C C C
Methane D D D
Methyl Formal C C C
Dimethy l Ether C C C
Di-n—Propy l Ether C C C
Ethyl ami ne 0 D D
Triethylami ne C C C
Cyclopropane C C C
Methyl Acetylene C C C

• Propane 0 D 0
Acetaldehyde C C C
Acrylonitril e D D D
Annonia 0 D D

-~~~~~~~~ - --- - -- - .~~~~~~~~~~~~~~~~~
--— --
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criminant program in the BMDP package and those in the ARTHUR package

when presented wi th two variab l es that are equivalent or one that is a
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Table V cont’d,

COMPOUNDS MS MULTI PLANE**

1 ,3 Butadlene B B B
Carbon Disulfi de B* B B

— Ethylene Di chloride D 0 D
Ethylene Oxide B B B
Isoprene C C C
Propylene 0 0 D
Propylene Oxide B B B
Styrene 0 D D
Unsyninetri c Dimethyl— C C C

Hydrazine (UDMH)
Viny l Acetate D 0 D
Viny l Chloride 0 D D
Para-Xylene 0 D D
Hydrogen B B B
Diethyl Ether C C C
Ethylene C C C
Butane D D D
Acetylene B* B B

*Compounds in A category wi th the B category.
**PLANE decides between two ca tegor ies.
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TABLE VI

TRAINING SET CLASSIFICATIONS

COMPOUNDS NAS MULTI PLANE**

Allyl Alcohol C C DC
• Acrolein B B Bc

sec-Buty l Alcohol D 0 DC
n-Butyl Aldehyde C C CD
Crotonaldehyde C C CD
Diethy lamine C C CD
Dlisobutylene D D DC
Eplchloroliydrln C B

Ethy l Acrylate 0 0 Dc

Ethylene Diami rie D B BC
Ethylenelmine C C CB
Hydrogen Sulfide C B

Isopropyl Ether 0 D DC
Mesityl Oxi de D D Dc
Morphol i ne C C CD
2-NI tropropane C 0 DC
Pyrl dine D D DC
Tetrahydrofuran C C C0
Methane 0 . C CD
Methyl Formal C C CB
Dimethyl Ether C C C0

7
’ • DI-n-Propyl Ether C C CD

Ethylaml ne D C CD
Triethylami ne C B Dc 

~---.— - -
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tween the categories. This value should reflect both the suspected “cost”

of the misclassifying of a compound that actuall y belongs to the group B
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TABLE VI cont’d.

COMPOUNDS MS MULTI PLANE**

Cyclopropane C 0 CD

Methyl Acetylene C 0 DC

Propane 0 0 DC

Acetaldehyde C C CD - I

Acryloni trlle 0 0 Dc
Anirionla D D DC

1,3 Butadlene B C Linclassified***

Carbon Disulfi de B* C C8
Ethylene Otchior ide D D D~
Ethylene Oxide B B Bc

Isoprene C C CB
Propylene D D

Propylene Oxide B C CD
Styrene D B 08
Unsyninetri c Dimethyl C C C0

Hydrazine (UDMH )
Viny l Acetate 0 D CB

Vinyl Chloride D D CD

Para—Xylene 0 0 D
~

Hydrogen C C C0
Diethyl Ether C C C0
Ethylene C B Bc
Butane 0 D Dc
Acetylene B* B Bc
*Compounds in A category grouped wi th the B category.
**PLANE Is a two category classifier , with the subscript being the category

choice between the two categories originally not selected by pl~ne.
***PLANE, which examines only two groups at a time, did not give a unique answer

for all three pairs . 

~~ -~~~~~-
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results of these experiments are sumarized in Table V II. The programs
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TABLE V II
INCORRECTLY CLASSIFIED

MULT I a

Category 0

Methane (C) Epichlorohydri n (B) 1 ,3 Butadiene (C)
Ethylene Diami ne (B) Hydrogen Sulfide (8) Carbon Disulfide (C)
Ethylami ne (C) 2-Nitropropane (0) Propylene Oxide (C)
Styrene (B) Triethylami ne (B) Hydrogen (C)

Cyclopropane (D)
Methyl Acetylene (D)
Ethylene (B)

15/19 79% 14/21 = 67% 3/7 = 43%

Total 32/47 = 68%

PLANE8

Category 0 C B

Methane (C) Allyl Alcohol (D) 1 ,3 Butadiene (C)
Ethylene Diami ne (B) Epi chlorohydri n (B) Carbon Disulfi de (C)
Ethylamine (C) Hydrogen Sulfi de (B) Propylene Oxide (C)
Viny l Acetate (C) 2—Nltropropane (D) Hydrogen (C)
Vinyl Chlori de (C) Triethylami ne (0)

Methyl Acetyene (0)
Ethylene (B)

14/19 = 74% 14/21 67~ 3/7 ~3%
Total 31/47 = 66% 

-
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TABLE VII I
Test Compounds taken from “Matrix of Electrical and

-
~~~ Fi re Hazard Properties and Classifi cation of Chemi cals ”

Number Compound Name Class ification
MULT I a pLANE a

1 Formi c Acid 0 D DC
2 Acetic Acid D D DC
3 Propionic Acid D 0 Dc
4 n-Butyric Acid 0 0 Dc
5 Acrylic Acid* C C D-C

6 Acetic Anhydride 0 0 Dc
7 Propionic Anhydride D 0 Unclassifiedk*

8 Phthalic Anhydride 0 D Unclassifiedk*

9 Methyl Al cohol D C

10 Ethyl Alcohol 0 C C0
11 n—Propyl Alcohol 0 D Dc
12 iso—Propyl Alcohol 0 C C0
13 n—Butyl Alcohol D C C0
14 sec—Butyl Alcohol 0 Training
15 iso-Butyl Al cohol 0 D

16 tert—Butyl Alcohol 0 0 Dc
17 n—Ainyl Alcohol 0 C CD
18 Iso—Arnyl Alcohol 0 C CD
19 Hexanol D C C0
20 Methylamyl Al cohol* 0 C C0
21 Methyl Isobutyl Alcohol* D C D—C

22 Ethyl Butanol* 0 C D—C
23 Cycohexanol 0 C CB
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TABLE VIII cont’d .

TEST COMPOUNDS Classification
Number Compound Name NAS MULTI PLANE

24 n-Octyl Al cohol* 0 C DC
25 fso—Octy l Alcohol* D C Dc
26 2-Ethyl Hexanol* D C DC
27 Nonyl Alcoho l* D C DC
28 Diisobutyl Carbonal* D C D

~ 
—

29 n-Decyl Alcohol U C 0c
30 iso-Dec,vl Al cohol* D C D

~
31 Undecanol* D C 

- - 
- - — --—Dc — -

32 Dodecanol D - - --C~ D
~

33 Tridecanol* D C DC
34 Tetradecanol* 0 C Dc
35 Pentadecanol* D C Dc

36 Allyl Alcohol C Training
37 Diacetone Alcohol D D DC
38 Formaldehyde Solution - C(pure) CB(pure) 

-

39 Acetaldehyde C Training

40 Propionaldehyde C C C0
41 n—Butyraldehyde C Training
42 iso_Butyraldehyde* C C CD
43 Valeraldehyde* C C CD_B

44 3—Methyl Butyraldehyde* C C C0
• 45 iso-Pentyl Aldehyde* C C—B C0

46 2—Ethyihexaldehyde C ~B CD
47 Iso-Octyl Aldehyde* C B C~
48 n_Decaldehyde* C C CB
49 lso_Decaldehyde* C C C0
50 Acolein B Training 

- 

I
’

51 Crotonaldehyde C Training

• 
~~~~~~~~~~~~~~~~~~~~~
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TABLE VIII cont’d. TEST COMPOUNDS
Classifi cation

Number Compound Name 
.~~~~~~~. MULTI PLANE

52 2—Ethyl-3—Propyl Acroleln* C C C0
53 Glyoxal* C B B

54 Glutaraldehyde* C C C0
55 Furfural C C CD

• 56 Methane D Training

57 Ethane D 0 DC
58 Propane 0 Training

59 Butane 0 Training

60 n-Pentane 0 C C~
61 iso—Pentane D 0 DC

• 62 n-Hexane 0 C

63 iso—Hexane 0 C CD
64 n-Heptane D C C0
65 Octane D C C0

• 66 Nonane D C CD
67 Cyclopropane C Tra in ing

68 Cyclohexane D C C

69 Monoethanolam lne* D 0 DB
70 Diethanolami ne 0 C C0

- 

• 71 Trlethanolamlne* 0 D DC
72 Monaisopfopanolaminé* D 0 0C
73 Dlisopropanolamine* 0 C DC
74 n—Amtnoethyl Ethanolaml ne 0 C CD
75 Ethyl aml ne D Training
76 iso-Propylaml ne 0 D D~
77 Diniethylamlne C C C0
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TABLE VIII cont’d. TEST COMPOUNDS
Classifications

Number Compound Name NAS MULTI PLANE

78 Diethy l ami ne C Training

79 Di_n_propy l amlne* C C C0
- ~~ • •

. 80 Diisopropy lami ne* C C D
~

- ‘ 81 Triethylami ne C Training

82 Ethylene Diami ne 0 Tra in ing

83 Hexamethylene Di amine Solutions* 0 0—B DC
84 Diethylenetri amine 0 C C0
85 Triethylene Tetramine* D C DC
86 Tetraethylene Pentami ne* D C DC
87 Ethylenimine C Training

88 Hexamethylenimine* C C CD
89 Aniline 0 0 Dc
90 Pyridlne 0 Training

91 2-Methyl-5-Ethyl Pyrdine* D 0 DC
92 Benzene 0 D DC
93 Toluene D 0 DC
94 Ethyl Benzene D D Dc
95 Cumene 0 0 Dc
96 Decyl Benzene* 0 C DC

• 97 Undecyl Benzene* 0 C Dc
98 Dodecyl Benzene* D C DC
99 Trldecyl Benzene* 0 C

100 Tetradecyl Benzene* 0 C DC
101 O-Xylene D 0 Dc
102 m-Xylene D D DC
103 p-Xylene 0 Training

_ _ _ _ _ _ _ _ _ _ _ _ _  - - . - — - .—-~~~~~~~ -• --- -—•  - -~~~~~~~~~ - • - -~~~~~~~~~~~ -~~~~~—• - - • - •-
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TABLE VIII cont1d . TEST COMPOUNDS
Classifications

Number Compound Name HAS MULTI PLANE

104 Xylene (mixture) D - —
105 p—Cymene 0 0 •

106 Diethylbenzene D D DC
107 Triethyl Benzene* D D DC
108 Styrene 0 TraIning
109 Vi nyl Toulene* 0 0

110 Naphthalene 0 0 DB
111 Tetrahydronaphthalene D 0 Dc
112 Mixture D - -

113 Methyl Acetate D D DC
114 Ethyl Aceta te 0 D Dc
115 n—Propy% Acetate 0 0 DC
116 -iso—Propy l Acetate D 0 DC
117 n—Bu tyl Acetate D D DC
118 sec-Butyl Acetate 0 0 DC
119 iso—Butyl Acetate 0 D DC
120 n—Amyl Acetate 0 D DC
121 iso—Amyl Acetate D D DC

122 Methylamyl Acetate* 0 0—C DC
123 Viny l Acetate 0 Training

124 Methyl Acrylate* D 0 Dc
125 Ethyl Acrylate 0 Training

126 n-Butyl Acrylate* D C Dc
127 iso-Butyl Acrylate* D D-C DC
128 2-Ethylhexyl Acrylate 0 C Dc
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TABLE VIII cont ’d. TEST COMPOUNDS

Classification

Number Compound Name NAS MULTI PLANE

129 -i so-Decyl Acrylate 0 D Dc
130 Methyl Methacrylate* 0 D

131 PropiolactOne* C B CB
132 Caprolactone* 0 C CB

133 0-Dibuty l Phthalate 0 0 D
~

134 0-Diheptyl Phthalate* 0 C DC

135 Dioctyl Phthalate* D C Dc
136 Dinonyl Phthalatet D C DC
137 Diisodecy l Phthalatet 1) C 0

138 Diundecy l Phthalate* D C Dc
139 Butyl Benzyl Phthalate* D 0 Dc
140 Ethyl Ether C Training

141 iso-Propyl Ether D Training

142 Ethylene Oxide B Training

143 Propylene Oxide B Training

144 Tetrahydrofuran C Training
145 1 ,4 Dioxane C C CD
146 Morphol ine C Training

147 Eplchiorohydri n C Training

148 Dichloroet hyl Ether - 0 Unc1ass~fied**

149 Methyl Formal C Training
7 150 Propyl Fonnal* C C CD

151 n-.Butyl Formal* C C C0

152 Iso- ~~~~~~~~~~ C C C0 
I 

-

153 Furfuryl Al cohol C 0 DC
154 Ethylene Glycol 0 C CD
155 Propylene Glycol 0 0 C0
156 1 ,3 Butylene Glycol D C DC 

- - ------ .
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TABLE VIII cont’d, TEST COMPOUNDS

Classifications
Number Compound Name !.~~. 

MULTI PLANE
157 Hexylene Glycol d C DC
158 Ethylene Glycol Monoinethyl C C CDEther
159 Ethylene Glycol Monoethyl C C C~Ether
160 Ethylene Glycol Monobutyl Ether C C CD
161 Diethylene Glycol C C CB
162 Dlethylene Glycol Monomethyl C C CDEther*
163 Diethyl ene Glycol Monoethyl C C C0Ether*
164 Diethylene Glycol Monobutyl C C CDEther*
165 Diethylene Glycol Monobutyl C 0 DCEther Acetate
166 Dipropylene Glycol* C C CD
167 Triethylene Glycol C D C0
168 Trlpropylene Glcyol* C C UnclassIfied**

169 Methoxy Triglycol* C C Unclassified**

170 Ethoxy Triglycol* C C Unc1assified~~
171 Tetraethylene Glycol* -C C UnclassIfied**

172 Ethylene Glycol Monoethyl C 0 D
~Ether Acetate

173 Ethyl ene Glycol Monobutyl C 0 DCEther Acetate
174 Trlethylene Glycol Di-(2—Ethyl C C D

Butyrate)* C
175 Glycol Dlacetate* 0 0 DC
176 2-Hydroxyethyl Acrylate* 0 D—C DC
177 Glycerine D C C

D
178 Methyl Chlori de D D Dc
179 Methylene Chloride 0 D DC
180 Methyl Bromide D U Dc ‘

I

181 Ethyl Chlori de D 0 Dc

_- -  

- —
-- -•



p’—. —•- - — 
‘

—I,- • .—-
~

• 
~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

Ft 
- 

- —— — - - - —— —- - — - - - 
— — —.-

~

-•—

~

—. 
— 1:-!

-31-

TABLE VIII contd . TEST COMPOUNDS
Classifications

Number Compound Name MULTI PLANE

182 Ethylene Chloride 0 Training

183 1 ,l ,l—Tri chloroethane 0 D

184 1 ,2-Dichioropropane D D Dc

185 Ethylene Ch i orahydrin 0 D Unclassified**

186 Viny l Chloride U Training

187 Vinylidene Chlori de U 
- 

U DC
188 Trichloroethyl ene 0 0 Dc I:
189 Dichloropropane D 0 Dc

190 Allyl Chloride 0 0 DC
-
, ~ 191 Chlorobenzene D 0

192 o—Dicholorobenzene D D Unclassifled** ~
. 

-

193 ) ,2,4—Tri chlorobenzene 0 D Unclassifled**

194 Acetone U D DC
195 Methyl—Ethy l Ketone 0 D D

~
196 Methy l Isobuty l Ketone D D DC
197 Di -isobutyl Ketone* 0 0 DC

198 Mesityl Oxide D Training

199 Cyclohexanone D D Unclassi fied**

200 Isophorone U D 0C
201 Acetonitrile 0 0

202 Acrylonitrlle 0 Training

203 Ethylene Cyanohydrin 0 D Dc
204 Acetone Cyanohydrln 0 D DC

205 Ad iponitrile* 0 D Unclassified**

206 Ethylene C Training

207 Prppylene C - Training
208 Butylene 0 C C0 
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TABLE V IlI cont d ,  TEST COMPOUNDS

Classi fications
Number Compound Names NAS MULTI PLANE

209 Butadiene B Train ing

210 l-Pentene 0 C C0

211 Isoprene 0 Training -
•

212 Hexene 0 B CD
213 Heptene U B CD
214 Octene D B CD
215 Dil sobutylene D Trai ning

216 Nonene 0 C CD
217 Tripropy lene* D C C0
218 Decene 0 C C0
219 Turpent ine 0 D D C - 

-

220 Dipentene - D C C0
221 Undecene* 0 C Dc—C0
222 Dodecene* U C DC
223 Tetrapropylene* 0 C Unclassified**

224 Tridecene* D C CD

- 
1 225 Tetradecene D C C0

226 Dicylcopentadiene* C C C0
227 Acetylene A Training

228 Methyl Acetylene—Propadiene B — -
229 Aluminum Triethyl — — —
230 Anmionia (anhydrous) 0 Training

231 Carbon Di sulfi de A Training

232 Dimethylformamlde 0 0 Dc
233 unsym—Dlmethy l Hydrazine C Tra in ing

234 Monomethyl Hydrozine* C C Bc •

_ _ _ _ _ _ _ _ _ _ _ _  -- 
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TABLE V ttt cont ’d TEST COMPOUNDS

Classifications

Numbers Compound Name NAS MULTI PLANE

- . 235 2-Nitropropane C Training

236 Nitrobenzene 0 C C0
237 Dinitrotoluene C C Unclassified **

— 
- 238 Hydrogen B Training

239 Hydrogen Sulfide C Training

240 Phenol D 0

Compounds and NAS classifications are from “Matrix of Electrical and Fire Hazard

Properties and Classfications of Chemicals~’ National Academy of Sciences , Washington ,

0. C. (D0T-CG—4l68~i-A), 1975.

aMULTI is a multi category separator contained in the statistical package

routine called ARTHUR. (Appendix II)

8PLANE is a two category separator contained in the statisti cal package

routine called ARTHUR. The subscri pt denotes the choice between the two

categories the compound was not classified as. (Appendix 11)

*These compounds had auto—ignition temperatures and/or solubilities

missing . A range of their possible values was made by examining similar

compounds and trends wi thin the groups. A maximum i nterval of 500 was used

for the auto-igniti on temperature and of one unit for the solubilit ies . In

cases in which a decision could not be made both chosen categories are listed .

- 

**PLANE, which examines only two groups at a time, did not give a unique classifica-
tion for all three pairs .

I! 

-
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TABLE IX

Compounds Classified Upwards
I

Methyl Al cohol Cyclohexane 2 Hydroxyethyl Acrylate
Ethyl Alcohol Diethanolam ine G)ycerine
iso-Propyl Alcohol Diisopropanolamjne Butylene
n-Butyl Alcohol n-Aminoethy l Ethanolami ne l—Pentene
n—Anmy l Alcohol Diethylenetriamine Hexene
iso-AriDyl Alcohol Triethylene Tetranine Heptene
Hexanol Tetraethylene Pentami ne Octene
Methylamy l Alcohol Decyl Benzene Nonene
Methyl Isobutyl A lcohol Undecyl Benzene Tripropylene
Ethyl Butanol Dodecyl Benzene Decev~eCyèlohexane Tridecyl Benzene Di2entene
n-Octyl Alcohol Tetradecyl Benzene Un~ecene
iso-Octyl Alcoho l Methylamy l Acetate Dodecene
2—E thyl Hexanol n-Butyl Acrylate Tetrapropylene
Nonyl Alcohol iso-Butyl Acrylate Tridecene
Diisobutyl Carbi,nol 2—Ethylhexy l Acrylate Tetradecene
n-Decyl Alcohol Propiolactorie Momethyl Hydrazine
iso-Decyl Alcohol Caprolactone Nitrobenzene
Undecanol 0-Diheptyl Phthalate Acryli c Acid
Dodecanol • Dioctyl Phthalate Nonane
Tr idecano l Dinony l Phthalate
Pentadecano l Diisodecy l Phthalate
iso—Pentyl Aldehyde Diundecy l Phthalâte
2-Ethyl Hexaldehyde Ethylene Glycol
fso-Octyl Aldehyde Propylene Glycol
Glyoxal 1 ,3 Butylene Glycol
n-Pentane Hexylene Glycol
n-Hexane Triethylene Glycol
n-Heptane
Octanes

~~~
-.
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APPENDIX I

Simple Experiments for Understandi ng

Factor Analysis and Hierarchial Clustering
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INTRODUCTION

Modern analytica l tools, such as neutron acti vation analysi s and

atomic absorption spectroscopy, have enabled scientists to collect large

amounts of quanti tatively accurate i nformation from individua l samples .

When many samples are involved, the scientist is then faced with the

dilema of interpreting his data. The conventional first step is to

place all of the data in table form~ Examining rnulti vari able data tables

in this way can cause eye strain , but, except where data values are

• unusually different, it can often lead to little else. Simple statistics

• such as standard deviations and t-tests may tell the scientitst which

are outliers , but once again will often show him little of the complex

interrelationships among the variables or samples. The researcher may

then plot two-dimensionally certain vari ables of his data versus other

variables . This step can be a great aid to interpretation since he can

now see a spacial representation of relationships among the selected vari-

ables . At the same time , however, it ‘Is quite limi ted in the amount of

Information that can be displayed ,

Another step which has recently been applied to chemical problems

is computerized pattern recognition , in which all of the variables (or

samples ) may be compared to one another to determine their inter and intra-

relationships . Pattern recognition is a developing branch of artificial

IntellIgence (1) which has been used for such diverse purposes as medical

diagnosIs (2,3), the identIfication of rocks (4), and hand drawn character

identificatIon (5). Jurs (6), Kowalski (7), and Isenhour(8) have described

how pattern recognition can be useful in solving a variety of chemical

problems . Chemi cal applications have Included the Identification and

interpretation of mass spectra data (9), IR specta (10), NMR data (11), 

-------- ----- - - - - ~~~~ -- 
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ganmia-ray spectroscopy from neutron activat ion (12), and stat ’onary

electrode polarography (13). Other studies have included the deter-

mi nati on of the correct chlori ne dosages for water treatment (14); the

relationship between mass spectra data and the pharmacologica l activity

of drugs (15); analysis for oil in natural waters (16); screening pros—

pective anti-cancer drugs (17); and the classification of archeologica l

arti facts from trace element data (18).

Factor analysis is a form of pattern recognition in whi ch the

linear combinati ons of a set of experimental data are developed and this

hopefully reduces the number of variables . Its method has been described

in detail by Veldma n (19) and Harman (20). This technique has been applied

to such diverse areas as biology to determine the growth patterns in plants

(21); psychology to study word recognition (22) and cultural di fferences

(23);meteorology to study coastal air and water temperatures (24); and

geology to define deformational modes in rock (25). Chemists have used

factor analysis to study data from nuclear magnetic resonance spectroscopy

(26) and from gas—liquid chromatography (27). Factor analysis has also been

used to correlate trace element and other chemi cal data collected from a

number of samples. Examples include the study of chemical pollutants in

air samples (28, 29) and the correlation of rocks based on their chemical

composition (30, 31).

Pre-treatment of the raw data may include normalizing the variable

• (or sample) values to the mean standard deviation . The data may then be

reduced to a correlation coefficient matrIx . A number of correlation

coefficient methods may be used , includ ing cosine coefficient, distance

coefficient, and Hom er coefficient, The product moment correlation coeffl-

d ent is used in this article’s examples~

- - ~~~~~~~~~~~~~~~~ -_ _



- I~~~~~~~~~~~ ~~—- -- - .~~~~~ --—- -~~~ _ --  -~ 
-

-40-

r ~~x1 -~) (y1 —~)xy - -£Z (x
~

— x ) 2 ]  1 /2 [~ (y1~y)2 ]

The factor analysis method used by the authors takes this correlation

coefficient matrix and determines the set of elgenvalues for the linear

combinations , the cumulative percentages of these eigenvalues , the

eigenvectors, and finally the loaded factor matrix for each of the

eigenvalues . The general method model used , that of princi pal

components was:

2
3 

= a~1F1 + a~2F2 
+ . . . + ajnFn (j’l ,2, .

where each of the n observed variables of the new data matrix was des-

cribed linearly -in terms of the new uncorrelated components, F (20).

The “a” coefficients are the factor loadings. Those elgenvalues

considered to be signifi cant factors are retained: sIgnificance usually

being defined as a value greater than or equal to 1.00. The loaded

factor matrix of significant factors then undergoes varimax rotation

in order to maximize the differences among the factors. This rotated

factor matrix is normalized to range from —1.0 to +1.0. A positive

value of a variable in a factor shows a direct relationship of the

variable to that factor. The greater the value the stronger the rela—

tionship indicated . A negative number shows some inverse or negative

relationship and a value close to zero inf2rs that there is no direct

relationship between variable and factor. Thi s rotated factor matrix

may then be studi ed in either table or graphic form in order to interpret 
•

the Initial data.

Another useful pattern recognition method is hierarchial clustering

(19). This unsupervised l earni ng method clusters the samples from either

b ____________________________________ _____________

~
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the raw data or a normalized data matrix according to their n ’th dimen-

sional distance vector across the variables - The mean thstance between

samples or clusters is used to determine the relati ve error of the

grouping and used as the new vector distance value for future groupings.

Those groups closest in distance values will cluster first. Eventually,

all groups will be clustered i nto two groups . A dendrogram can then be
- 

made of the series of clusters to give a graphical representation of the

- 
calculations. The original data matrix may be transposed and simi lar

clustering may be made of the variables as they vary across the samples.

- EXPERIMENTAL
- The authors have developed a FORTRAN IV computer program to handle

statistical evaluation of data , perform correlation analysi s, factor

analysis and hierarchial clustering , and to display data and results

in either table or graphical form (Table I). All calculations were

- done at the University of Rhode Island ’s Computer Science Center on an

• IBM— 370/l55 computer and graphics were done on a Broomall Industries

2000 Series Incremental Plotter. Data input to the programs Is accepted

from either cards or from general disk storage data banks . Four corre—

- 
lation coefficients are presently available: product moment correlation

coefficient, cosine coefficient, distance coefficient, and Hom er coeffi-

- cient. The graphic displays can handle any data matrix from the routines,

from the raw data to any calculated coefficients. Almost all routines

may be accessed at any time during program operation , specific use being

[ : governed by program read control cards. Once the raw data has been

entered, It may be treated by any of the procedures and the output may

- be returned to the user in either table or graphic form. The programing

package has been designed so that the user need not have programing 4 -
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experience to operate it.

To illustrate factor analysis as an interpretive tool , a synthetic

data set consisting of fifty groups of length , width and height values ,

or in other words, fifty random boxes, was generated from a random num—

ber table (32).

A group of linearly related variables (Table II) were generated

from the l ength, wi dth and height values. Using factor analysis these

ten vari ables were reduced to three signifi cant factors, each contain-

ing about one third of the total variation among the variables . The

rotated factor matrix is shown in Table III. It is useful to graph

the vari able values of the rotated factor matrix as they vary across

the factors. The two dimensiona l plot of factor one versus factor two

(Figure la) indicated that the length variable was strongly associated

wi th factor one whil e unrelated to factors two and three. The width

vari ables was strongly associated wi th factor two and unrelated to fac—

tors one and three, and the height variable was unrelated to either factor

one or two. The linear combination variables were arranged according to

their weighted length , width or height value. The plot of factor one

versus factor three (Figure lb) was nearly i dentical to the previous

figure, except that width and height has been reversed. Plotting fac—

tor two versus factor three also showed a sim i lar result (Figure ic),

• this time reversing length and width . Since each factor contained about

33 percent of the total variation , each two-dimensional plot could only give

about 2/3 of the information available. Comparison of these three factors

:~ 
on one three—dimensional plot (Figure 2) simplIfied the interpretation of

the problem by allowing 100 percent of the information to be presented

at one time . The x—axls (right side ) and y—ax ls (left side ) represented ~‘

- - - 
-
~~~~

- 
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factors one and two, respectively, and factor three was the z-axis.

The peaks in the rear three corners represented a valu e of 00 , or in

other words, a non-relati onship of the variable to factor three. It was

interesting to note in Figure 2 the successive progression along diagonals

of the associated length—weighted , width—weighted , and height—weighted

vari ables. The valid interpretation from this information was that

factors one, two and three were actually l ength , width and height , respec-

tively. Such an interpretation would be nearly impossible to make from

observation of the raw data alone. Table IV is a partial listi ng of the

initial input information for this example.

Factor analysis was designed to associate linear related variables ,

but It may also be used to correlate variables with non—linear relation—

• ships . To prove this point , a variable data matrix of cross product in-

formation from the boxes (Table II) was tested i n a similar manner. When

these vari ables were handles exactly the same as the preceding examples ,

three nearly equal factors were agai n obtained from factor analysis,

although in this case they contained about 92 percent of the variation

instead of the 100 percent found in the linear example. When their rela-

tive positions on the three—dimensional plot of these three significant

factors were observed (Figure 3), the variables length , width and height

were very strong in factors one , two and three respectively. The -inter-

pretatlon once again was that length, width and height were the three

significant factors, as would be expected.

As an added test of factor analysis , the linear and cross—product

data sets were then combi ned and tested the same way. Again three

significant factors were found , thi s time accounting for 96 percent of

the variation. There were no significant differences in the rotated
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factor matrix values from the previous two determinations , and a study

of the three-dimensional representation of the three factors (Figure 4)

showed nearly the same result that could be found if the three—dimen—

sional plots of the two data sets alone were superimposed .

Two additional tests were necessary to confirm the validity of

factor analysis in circumstances where the answer is not known before

hand. Subgroups of 40, 30,20 and 10 boxes from the linear vari abl e

data set were studied (Table V) to determine the effect of sample size

on the results . In the second test, the values for the variables l ength ,

wi dth and height were deleted from the data matrix before factor analysis

-in order to determine if the use of these three variables was biasing

the results . No signifi cant differences were found in either experiment

from those results in the initial studies . Cauti on should be taken in

applying these results when i nterpreting real as opposed to synthetic

data. The size of the sample set is important, too few samples can cause

an incorrect clusteri ng and hence false interpretations of the data. A

~-,inimum of at least twice as many samples as variables is necessary.

It is possible with this program package to rotate the three—dimen-

sional representatioi about the z-axis or in the X—Y plane. The best

view is data dependent because cluster representations can mask each other.

The three—dimensional representation of the linear box variable factor

matrix was used in Figure 5 to demonstrate this rotation . Figures 5a and

5b show the plot rotated to relative positions of 200 and 70° about the

z—axls while maintaining the X—Y plane at 45°. In Figures 5c and 5d, the

2—axis position has been returned to 450 and the X-Y plane rotated to 200

and 70° respectively.

Hlerarchial clustering was applied to the same boxes and their assoc-

iated variables, which were examined earl i er using factor analysis. The
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dendrogram of the linear variables of the boxes (Figure 6) showed a

clear separation of three cluster sets: length with l ength weighted

variables , width with width weighted variables , and height with height

weighted variables . As in factor analysis test, this was the relation-

ship that would be expected to occur among variables which are known

to have a linear relati onship to one another. The same clustering

method was then used on the cross-product variables (Figure 7). The

interpretation of this plot was less defined than the first example.

Length clustered wi th l ength side diagonal and area information , and

width clustered wi th width side diagonal and area information . Total

volume and total surface area also clustered with one another. Since

hierarchial clustering is an unsupervised learning method , however, the

multi—interrelationships among a set of cross-product related variables

tend toward noninterpretive clustering by this method. When both sam-

ple sets were combined and tested by hierarchial clustering , the result-

ing dendrogram (Figure 8) showed properties similar to each of the previous

two figures , that is, the linear variables were clustered into three

readily apparent groups of l ength—weighted , width—weighted , and height—

weighted values , and the two variables of total diagonal and length-plus—

width—plus—height variables also clustered closely.

One final experiment was performed on these boxes The data matrix

was transposed and the fifty boxes themsel ves were compared to one

another as they varied across the linear relationship vari ables . Factor

analysis gave three signifi cant factors , each with about one—third of

the total information . Hierarchial clusteri ng also showed three distinctly

separate clusters (Figure 9), whi ch can be accounted for by the general

groupings of boxes with a large wi dth values and usually large height value I! 
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bias, boxes with a small width bias with neither a length or he i ght

value bias , and boxes wi th a small length value and a small height

val ue bias wi th no bias of the width value .
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variables for the rotated loaded—factor values of the first three
prinicipa l— axis factors.

4. The three—dimensional representation of the combination of linear
and cross—product box variables for the rotated loaded—factor values
of the first three principal—axis factors.

5. Rotation of the three—d imensional representation of the linear box
vari ables for the rotated loaded factor values of the first three
principal —axis factors.
a) X— Y plane at 45° , Z—axis rotated tO 20° .
b) X—Y plane at 45°, Z—axis rotated to 700.

c) 2—axis at 45°, X-Y plane rotated to 20°.
d) Z-axi~ at 45° , X—Y plane rotated to 700.

6. The dendrogram of the clustering of the linear box variables versus
the relative error associated with the clusters.

7. The dendrogram of the clustering of the cross—product box vari ables
versus the re lati ve erro r assoc iated with the clusters ,

- 

~ • 
8. The dendrogram of the clusteri ng of the combinati on of linear and

cross—product box variables versus the relative error associated
wi th the clusters.

9. The dendrogram of the clustering of the -fifty boxes of the linear
box variables versus the relative error associated with the clusters .
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TABLE 1

PROGRAM ROUTINES

Input Statistics Correlation Coefficients

Card Arithmetic Mean Cosine Coefficient
- - - Disk Geometric Mean Distance Coefficient

Medi an Hom er Coeff icient
Standard Deviation Product Moment Coefficient

- - Mean Std. Deviation
Second Moment
Third Moment
Skewness
Kurtosis
Missing Values

Clustering Graphics

Factor Analysis 2—Dimensional Line Printer
Hierarchial Clustering 2—Dimensional Computer Graphi cs

3—Dimensional Computer Graphics
Dendrogram Computer Graphics
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TABLE U

Random Box Variables

Linear Sum Variables Cross Product Variables

Length Length
Width Width
Height Height
L+W+H L W Diagonal
2L+W+H L H Diagonal
L+2W+H W H Diagonal
L+W+2H Total Diagonal
3L+W+H L W Rectangle Area
L+3W+H L H Rectangle Area
L+W+3H W H Rectangle Area

Total Surface Area
Volume

- - - - - - - - --•- - - - - ~~- - - - - -
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TABLE I I I

Rotated Factor Matrix
for Linear Box Variables

Factor

Var iab l e  1 
• 

2 3

Length 0.9986 — —

Width — 0.9992 -Height — — 0.9986L+W+H 0.5835 0.5640 0.58422L+W+H 0.8172 - -L+2W+H - 0.8146 —L+W+2H - - 0.80653L+W+H 0.9031 - -L+3W+H — 0.9071 -L+W+3H - - 0.8915I

%of Total
Information 33.7 % 32.8 % 33.5 %

I

I
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TABLE V

Rotated Factor Matrices of Different Sized Data Sets

Factor 1 Number of Boxes
Variable 50 40 30 20 10 S

Length 0.9986 0.9981 0.9993 0.9749 0.9947
Width - - - — —
Height - — - - -
L+W+H 0.5835 0.5780 0.5857 0.5158 0.6118
2L+W+H 0.8172 0.8287 0.8365 0.8564 0.8760 - •

L+2W+H - - - -
L+W+3H - - - - -
3L+W+H 0.9031 0.9157 0.9218 0.9559 0.9476
L+3W+H - - - - -
L+W+3H - - - — — 

- 

--

Factor 2 Number of Boxes
Variable 50 40 30 20 10

Length - - — - —
Width 0.9992 0.9969 0.9998 0.9898 0.9590
Height - — - - —
L+W+H 0.5640 0.5532 0.5610 0.5713 0.5277
2L+W+H - - — — —
L+2W+H 0.8146 0.8237 0.8120 0.8593 0.8966
3L+W+H - - — —
L+3W+H 0.9070 0.9190 0.9047 0.9432 0.9790
L+W+3H - - — — -

Factor 3 Number of Boxes
Variable 50 40 30 20 10

Length - - — — —
Width - - — — —
Height 0.9986 0.9996 0.9995 0.9979 0.9815
L+W+H 0.5843 0.5989 0.5848 0.6384 0.5893
2L+W+H - - - - -
L+2W+H - - - -
L+W+2H 0.8065 0.8300 0.8321 0.8813 0.8852
3L+W+H - - - - -
L+3W+H - - - - —
L+W+3H 0.8915 0.9111 0.9177 0.9478 0.9576
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F igure 6
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Figure 7
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Figure 8

FASCHING/STROMBER$
50 BOXES’LDi.&CROSS

CODE * 988.3960

Ii. 7? 23. 55 35.32 4?. 10 58.87
RELATI VE ERROR

bull! ; ~~~~~~ -• -• -



~~:~~~i:~~~ ~~~~~~~~T I—  _ _ _  ~~~~~~

- --—
~

- —

-64- -

Figure 9
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APPENDIX 11

A Description of ARTHUR

S 

This appendix is abstracted from a paper entitled :

“ARTHUR and Experimental Data Analysis:

The Heuristic Use of a Poly algorithm”

A. M. Harper , D. L. Duewer* and B. R. Kowaiski
Labo ratory for Chemometr ics

Department of Chemistry
University of Washington

Seattle , Washington 98195

and

James L. Fasching
Department of Chemi stry

University of Rhode Island
Kingston, Rhode Island 02881
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“ARTHUR and Experimental Data Analysis:

The Heuristic Use of a Polyalgori thm”

A. M. Harper, D. L. Duewer* and B. R. Kowalski
Labora tory for Chemometr ics

Department of Chemistry
University of Washington
Seattle, Washington 98195

and

James L. Fasching
• Department of Chemistry

University of Rhode Island
Kingston , Rhode Island 02881

• ‘ Most non—routi ne data analysis in chemistry is designed to-aid the

formula tion an d/or eva l uat ion of some model or hypothes is of the instrins ic

data structure. The more detailed the model of the data ’s structure, that

is, the more complete the analyst’s understanding of - the data, the more facile

the selecti on of appropriate algorithms for the data analysis. eonversely,

where very little is known of the data ’s structure it -is difficult-to make

a priori selecti on or evaluation of analysis methodologies.

ARTHUR (i~
)
~ a system of data manipulation , pattern recognition and

robust statistical algori thms , is designed as a tool for the analyst in appli-

cations where the data ’s structure -is not we l l un derstood . The al gor ithms

included in the system are those which our l aboratory and other members of

- 
~~ I 

the Chemometr i cs Society have foun d useful in the anal ysis of a number of

quite different chemical and biological data sets. Recently implemented

provisions for the inclus ion of measuremen t uncer taint ies in the mathematical

methods (3) enable the determination of which aspects of the data structure

are truly inherent to the data. Descriptions of these algorithms can be

found in the appendix of this chapter. It should be noted that ARTHU R is

meant to be complementary to and not in competition with such primary

statistical systems as SPSS (4) and BMD (5).
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The primary utility of ARTHUR being in the formulation and

evalua tion of models for incompletely-understood data sets , it Is not

possible to speci fy given algorithms or sequences of algorithms which

are “best” . However , in the course of much data analysts (both fruitful

and frustrating) some “rules of thumb” or heuristic procedures have been

formulated. Following an Introduction to the ‘1ARTHURian ” terminology

of data analysis and pattern recognition, and a description of the

inclusion of measurement uncertainties in pattern reco~it tton methods,

the heuristi c techniques the developers and users of ARTHUR have found ;
-
~

most generally useful will be described.
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Def in i t ions

The followi ng terms and definitions have proved useful in describing

the types of data analysis algorithms available In ARTHUR and in des-

cribing the data to be analyzed.

Classifi cati on Analysis.

The data are known to be composed of specified groupings or categories .

The goals of such analysis are the -Identification of what parameters (if

any) qualitatively distinguish the known groupings and (if possible) the

selection of a c lassification rule for identifying the known groups . —

Continuous Property Analysis

The data are known to represent a continuous range of responses

towards some given property(ies). The goals of such analysis are the S

identification of what parameters (if any) are functionally related to

the property and (if pos~1bIe) the selection of a rule which quantftatfvely

predicts that property.

Unsupervised Analysis

The data are not known to have any systematic characteristics . The

goal of such analysis is the discovery of what systematic behavior the

data exhibit (if any exists). Study of the regularities among objects

is generally referred to as cluster analysis; study of the regularities

among measurements is generally referred to as factor analysis.

-. Obje~t

A compound, sample, Individual or other entity for which a list of

characterizing parameters is present in the data base.

Measurement

An experimentally available parameter (Independent variable) used to

characteri ze the objects .

I~~ 

S

- -. ~~
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Fea ture

Any transformation of one or more measurements used to characterize

the objects. When referring to a parameter which can be either a measure—

ment or a feature , the term “measurement/feature” Is used.

Data vector

The complete list of measurement/feature values used to characterize

a particular object. (The older chemical pattern recognition literature,

including that of the Laboratory for Chemometrics, refers to th is as a

“pattern” . Consi derable semantic confusion over “patterns of patternsTM f
forced the change to the term, “data vector” .)  j

Category

• One of the groups of objects studied in the classification analysis

algorithms . Categories which are entirely independent of one another,

such as-the l abeling of white bond papers by their manufacturer, are

referred to as discrete categories. Categories which have some dependence

upon one ano ther , such as “low , middle and hig h” , are referred to as con—

tinuous categories.

Property

A quanti tative parameter characteristic of the objects for which a —

func tional representa ti on is des i red (dependen t var iable ) .

Training Set -

The l ist of data vectors used to genera te class ification or predict ion

rules .

Evalua tion Set

The list of data vectors used to evaluate the performance of classifi—

cation or prediction rules.

____________  _ _ _  - _____
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Tes t Set 
. .The list of data vectors, in classi fication or prediction analysts ,

for which the true category or property val ue is not known. The EvaIua—

tion and Test sets are functionally one and the same . The Evaluation set

is a “let~s pretend” Test set,

Uncertainty
• - 

The error associated with an analytical measurement. The uncertainty

is assumed to Include all sources of errors such as sampling, instrumental ,

- • 
- 

chemical , etc.

• 

It should be recognized that these definitions are not particularly

ri gid or mutually exclusive , A continuous property can certainly be

segmented into the low resolution categories “too low TM and ~thigh enough” .

The para meter cons idered as a property in one phase of anal ysis may well

be a measurement in another. The Training and Eva luation set definitions

may be swi tched. It may even be desired to switch the definition of object

and feature. If the data are considered as a matrix (objects as rows and

features as columns), the switch is equivalent to the transposition of the

matrix. And it is certainly good practice , no matter what the specifi c

nature of the data analysis problem, to make at least cursory unsupervised

data analysis, if nothing more than to give a rough screen for some gross,

• unsuspected structure in the data,
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Pattern Recognition~ New Techniques that Utilize Analytical Error

The general problem that is amenable to solution by the techniques

available in ARTHUR is the analysis of patterns in an n—dtmenstonal space.

-. In the past, applications utilizing pattern recognition have not taken

• 

. 
i nto accoun t the errors i n the measuremen ts because the mathematical

methods currently available make no provision for their inclusion. However,

in most chemi cal data the inadvertent assignment of zero measurement error

which results is clearly an unrealistic assumption . This problem has been

investigated by Fasching , Duewer an d Kowa l sk i (
~
). As a resul t of th is

study, severa l al gorithms in ARTHUR have been modi f ied to inclu de the

uncertainties in the calculations ,

Current pattern recognition techniques treat measurements as dimensions

in an n—dimensional space. If, for each member of a collection of objects

(samples ), n measurements are known , the samples are represented as points

in the space formed by the measurements. Therefore, the value of a given

measurement for a particular object serves to exactly position the point

representing the object along a coordinate measurement axis in the n—space.

Fi gure 1 depicts the configuration of the data vectors from two samples in

a three-dimensional space . The set of all such vectors defines the da ta

matrix.

In analyti cal appl ications , where the uncertain ties in the measuremen t

are either known or can be estimated , there exists a matrix of uncertainties

• corresponding to and of the same dimensions as the data matrix. Mathematical

• operations that transform the data matrix also change the uncertainty matrix

to a transformed uncertainty matrix. Each element of the uncertainty matrix

reflects the exactness ( i n un its of one standard deviation) to wh ich the

corresponding element of the data matrix is known. Therefore , each measure—

-5-— —- - --5 - 
- 
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ment in the data matrix is now treated as a mean value with a probability

distribution defined by its error, The effect of the inclusion of uncer-

tainti es on the vectors in Figure 1 is illustrated in Figure 2. The

anal ytica l uncertainties reflect the fact that a data vector Is not,

in reality , a poi nt in the measurement space, but Is the most probable

value in a region of probability in this space. If the area of the elipsofd
S in this exampl e Is defined at a 50% probability level of the standard devi-

ation of each measurement , then another set of measurements made on a sam—

ple would have an equal probability of lying outside the el-Ipso-Id as within

it. This mode l is more reasonable for most chemical problems .

At present, ARTHUR has been modified to include the analytical error

in representative method of preprocessing , display, supervised learning and

unsupervised learning . A full description of these modifications can be

found in reference 3. The current methods deal only with syninetric uncer-

tainties . A nonmetric (unsyniiietrlcal ) distance is defined ; however, class—

ification and clustering routines utilizing distance have not, as yet, been

similarly modified to make use of this type of distance matrix.

Si nce the uncer ta i nty matr ix contains informa tion abou t the error

assoc iated with each measuremen t, it can be Incorporated Into the prepro-

cess ing of the da ta ma tr ix. The more real istic fea tures genera ted can be

utilized in all reported methods of pattern recognition , thus eliminating

the need to change each analysis method. The scaling algorithms (SCALE)*

In ARTHUR have been modified to include uncertainties. An error—weighted

mean and var iance are uti l ized in pl ace of the feature mean an d var iance

in these calcula tions. The new mean of the ~th fea ture in the data Is

defi ned as: m 
2

i=l ’ j /U j ,j

i=l 1 ,3

*Methods (names in capital l etters) are descri bed in appendix

----_ _ _ _ _  ~~~~~~ _ _~~~~~~~~~~~~ • • - --- 
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where the u
~~~

’s are the entries in the uncertainty matrix corresponding

to the data matrix measurement ~~~ and the sum is over the training set

data vectors. Modification of the available distance metrics have also

been made along with the addition of new distance calculations based on

measurement uncertainties . The algorithms for these can be found in the

appendix (DISTANCE) to this chapter. The modified city—block distance and

the modified Mahalanobis distance are now weighted by a function of the

measurement errors associated with the features going into the calculation .

A new metric,the gaussian overlap—integra l distance , greatly emphasizes

f the features that have a small distribution with respect to their measure—

ment size and related uncertainties. A maximum distance of one is assigned

to features that differ greatly from each other or have very small uncer—

tainti es. Another new distance calculation , the gaussian feature—space

distance , calculates a distance value that is proportional to the probabi-

lity that a feature in the th data vector belongs to the same population

as the corresponding feature of the ~th data vector. These are sunined over

all the feature space to give the intersample distance . The calculation

• is nonmetric and the distance matrix is unsymmetri cal .

The uncertainty matrix has also been incorporated in the Karhunen—

Loève transform. The modified technique transforms the uncertainties

i nto a new certainty matrix along with the sample matrix. The assumption

is made that the same degree of correla tion app li es to the uncer ta inty

matrix as is used in the transformation of the sample matrix.

_ _  --5-- - -  - - -  --•-• •- ~~~~ - --- _~~~~~~- - .
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Intro duction to Data Ana l ysis Using ARTHUR

Different col l ections of objects may have quite different data

structures varying from a random scatter to wel l defined clusters or

curvil inear shapes. Since each algorithm affects data reduction accordi ng

to the criterion upon which it ‘s based , a thorough understanding of the

inherent assumptions imposed upon the data structure in the formulation

of a technique and the limitations that may result can provide i nforma-

tion hel pful in arriving at an understanding of the underl ying structure

of the data when the methods are appl ied in combination ,

Suppose, for example , the n-dimensional structure of two categories

of objects we wish to separate by pattern recognition classification

techniques corresponds to the one dimensional problem depicted in

Figure 1 , where the shaded portions of the figure correspond to category

I and the unshaded portions to category 2.

In 
_-

~ 
.J.L f t .

Figure 1. Bimodal distribution

Whereas ir one dimension the solution to the problem is obvious, in n-

dimensions the bimodality may not readil y reveal itself. If PLANE or

SIMCA were appl ied to these data , the resul ts might l ead one to bel ieve 
-

•

-5 ——————5-—- 5 ‘:— - ———--
~~~

—— -.

~~
- —S., - — 

—.•1ilFIl~
-— 5-—-—-— --5 _~~~__~ ~~~~~~~~ S_a_L, ~~~ —&--_ 

— ~~~~~~~~~~~~~~~~ S —



~~~~~~~~~~~ ~ ~~. ~~~~~~~~~~~~~~ - ~~~~~~~~~~~ —~~~~~~~~~ •— —.--——~~~~.S’—~~~~ - - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~ -~~

I. ~l 
-

~~~~~~ 

______________________ 
—-  ________ ____________ - - —

-75-

that the categories cannot be dist i nguished since the data are ne’~her

linear l y separable nor continuous. However, KNN would encounter no prob-

l ems since the objects ‘n the near vic ini ty of a given point tend to be

of its class. Bayesian classification (as long as no a pr,ori distribu-

1 

• 
tion is assumed) would also produce good results. (Note that plots of

the data might expose this distribution in a less ambiguous form . Con-

sequently, this example is meant only as an illustration of the effects

of the methods on an easy to understand distribution.)

Unfortunately, the solution to a real problem does not, in general ,

tend to be as straightforward and may require a great deal of inter-

action and guidance from the analyst aided by pre-processors, display

methods, and statistics. For this reason, the capabilities of ARTHUR

for displaying the data are quite wel l devel oped when combined with the

ingenuity of the analyst as will be seen in a later section of this

chapter. On the other hand since preprocessing refers to any method

that translates, rotates, or in any way transforms the data, such in-

finite diverse possibilities ari se that were we to include only those

methods that we and others have found useful , they would domi nate the

code. Therefore, the set of preprocessing tools available in ARTHUR is

aimed mainly toward normalization , feature weighting , and dimensiona lity

reduction. In add i tion, ratios of features can be added to the feature

l ist in TUNE and individual features can be transformed or combined in

CHFEATURE. Since the methods chosen to preprocess the data can ulti-
- - mately determine success or failure in the solution of a problem by

pattern recognition methods and/or the cost of the analysis, methods not

available In ARTHUR should not be neglected . An example of this is the

uti l ization of the Fourier , Hadamard and autocorrelation functions for

the transformation of spectra l data (6, 7).

Two assumptions made throughout any superv i sed pattern recognition 
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technique are that the features used contain i nformation useful to the

solution of the problem and that, even when this is known to be the case,

the data can be transformed into a representation amenable to the algorithms

employed. When this is not the case it may become necessary to either

change the form of the question being asked about the existing data or

redesign the experiment from which the measurements are obtained . Hope-

fully, the i nformation gained through prior analysis will serve to guide

the analyst in this endeavor.

We have discovered that techniques originally designed for unsuper-

vised learning applications are powerful tools in the early stage of

all data analysis problems. These methods have seen little appl i cation

in chemistry . Since the goal of these methods is the determ i nation of

the existence of inherent data structures wi thin a larger data structure,

neither training nor classification is attempted . TREE and HIER are

two unsupervised learning methods which are based on the similarity of

objects as defined by their distances in the feature space. Factor

• analysis can also be utilized in this mode.

The follow ing sections are a brief description of the basis of the

var io~.gs pattern recognition methods used to analyze this data:

WEIGHT is a preprocessing method that weights each feature on the basis

of its individual importance to the solution of a pattern recognition

problem. For categorized data , the criterion of importance can be either

the total variance or total Fisher weight for the feature. The variance

weight is a ratio of the interciass variance of two categories to the

Intraclass variances of the categories . If Wj,m ,n i s a measure of the
.tility of feature j in separating categories m and n, the variance

ø.’-:P~’t ~~~~~~~ 
Is:
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where N1 is the number of data vectors in category i; the total variance
- 

- weight is the geometric mean of the individua l category pair weights .

The Fisher weight is a ratio between the square difference in the cat2—

gory pair means and the sum of intraclass variances :

(WF ) j m n  = Mm ~ m ,j 

-x 2

~ ~~~~~~~ m ,j 
+ ~ k,n,j n,j

k=l Mm k=l Mn

The total Fisher weight is the aritlinetic average of the individual

-‘ category pair weights .

For con tinuous pro perty data the weighting is done on the basis of

the correlation of the feature to the property. The square correlation

to property of feature j is:

N - -Z ( x .  - x .) ( p - p )
k=l j,k 3 k

N N
Z (x .  k - ~~~) 2  E -

k=l ~ ~ k=l

where N is the number of data vectors in the training set and 
~k 

is the

property of the kth data vector.

SELECT (28) is a feature selection technique that generates orthogonal

features based on their importance to classification. The criterion for

Importance for categorized data is the variance or Fisher weight and for

continuous-property data, the correlation-to-property weight (see WEIGHT).

The highest weighted feature is selected as the first feature. The re-

t 

maining features are then decorrelated from the chosen feature. The de- 
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correlated features are rewe-ighted and the feature whose new weight is

highest becomes the second selected feature. The process continues until

either a specified number of features is chosen or a given minimum weight

attained . The selected (unweighted ) features are output to a file for

la ter use. The user can opt for the decorrelated features or the same

features in their unchanged form . Since one set is a linear combination

of the other set, the same information is retained for either option.

Only the representation is changed (i.e. the sub-feature space is either

rotated or not rotated to orthogonal axes) .

GRAB. As a feature sel ection method , GRAB (12) is i ntermediate between - -

weight (with no feature decorrelation) and the more expensive SELECT

(with total decorrelation) . A previously-weighted file of n data vectors

is input to the routine . Each feature is assigned an initial weight

n
w(l). = {Z (x. 1,—x.)2} 2

‘ k=l ~~~~~~

The feature with the largest weight is selected as the first new feature.

Each of the remaining features is reweighted such that if ~~~ is the

correl ati on between the ~th feature just chosen and the remaining feature
S 

W(2)~ = W ( l )~ l1- Ic~~~I]

For the mt~i iteration the weight of ~~ ~th feature remaining is

W(m). W(l). TI [l_ IC
~ - I i

LEAST performs a least-squares multi -l i near regression that is best suited

to conti nuous property probl ems. If D is a data matrix with associated

property matrix p, then W= (DTD)_1 DTP is the least squares solution to the

set of linear equations P=DW where W is a vector which weights the utility

of the features in fitting the data , S
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In actual practice, determi nation of the weight vector is done by

-~~ W = [ETC 1 E)XTP

- - 
-. 

‘ where X is obtained by mean normalization of 0, C~ is the inverted cor-

relation matrix associated with 0 and E is a diagonal matrix whose elements

are the reciprocal variances of the features.

Prediction of an unknown property P’ is based on the weight vector

obtained is therefore -

P1 = X .W

LEDISC is a multi-linear least squares regression designed for categorized

data . Except in property definitions it is computationally equi valent to

LEAST . For a data set of n categor ies, n l inear regressions are performed

S such that for the 1th regression the property P is defi ned as

~
+l for all vectors -in category i
0 for all vectors not in category i

An unknown data vector is placed into that class whose weight vector pro-

duces the largest value.

LESLT is a variabl e reduction technique which seeks to optimize category

pair separation in as few variables as possible. A feature derived is a

l inear combination of the original data that describe the position of a

data vector relative to a hyperplane between two categories in the data

set. The Input data matrix (X) of n categories is divided into n(n-l)½

submatrices . If V is the submatrix containing only those patterns in

categories i and j  plus the test data , an outcome col umn matrix of prop~

ertles can be defined such that

= {~l for patterns in i
+1 for patterns in j

Thus defined, there exists a vecto r W k of weights such that YWk = 
~
‘“~

(De term ina tion of W k Is the le ast squares solu tion for thi s equa tion

(see LEAST).) The weight vector obtained is used to transform and classify
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all the data vectors in Y. This process is followed for all category

pai rs. Once all the weight vectors are obtained , the entire data matrix

(X) -is transformed such that X I  = XW . The new matrix X ’ obtained has

n(n-l) /2 features which are approximate category—pair separators .

LEPIECE does a piece—wise least squares multipl e regression for each

data vector in the training and test set. The property of each data

vector is predicted from the fit (see LEAST) using the k—nearest-neighbors

(see KNN) to the vectors. The value of k is a user-defi ned multipl e of

the number of features . The criterion used for ‘nearest” is the inter-

pattern distance (see DISTANCE). Only those features used in the deter-
mina tion of the distance are used in the regression. 

I -

MULTI is a hyperplane discriminant function method designed for multi -

category data. Computationally, i t  is equiva lent to PLANE, except in

category definition. For a data matrix of n categories, n hyperplanes

are generated such that the 1th hyperpl ane describes the separation of

• the 1th category from the rest of the data .

PLANE generates and classifies on the basis of a linea r discriminant

• function and is best suited to data containing two categories (see MULTI

for multicategory case). By an error-correction feedback method it seeks

a hyperplane in an augmented ni-i space (where n is the number of features)

that best separates a pair of categories.

Each data vector in n space is considered a vector in ni-i space

where the ~i-1th feature is unity . Therefore , two classes can be defined

as lying on either side of a hyperplane (whose equation in n+l space is

W.Y~Ø), through the origin with corresponding class numbers +1 and -1.

The discriminant function is calculated by first loading a weight vector

with random or user-defined values . During training , classi fication of

vector 
~k by this weight vector is a dec is ion of the form 

- 
- ~~~~~~~~~ -~~- -
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correc t, if the sign of the response rela-

W •Y
k 

5k = tive to the hyperplane is the same as the
- sign of its class

i ncorrect , if the sign is not the same

_ If a pattern is misclassified , the weight vector i~~ adjusted by reflec-

-
~~ tion of the hyperplane about the misclassif ied point . The new weight

— vector is then used to classify the data , The process continues until

- all patterns in the training set are correctly classified or a maximum

number of i terations are reached .
- For more than two categories , a hyperplane separating each pair of
• categories is found . An unknown data vector is then classified using a

majority committee vote procedure on all the discriminant function re-

sponses. The use of PLANE for multi-category data is equivalent to a

piece-wise learn i ng machine .

- REGRESS is a multidimensiona l mult ivar iate regression method which corn-
- 

putes a linear discriminant function. It accepts both category and con-

tlnuous data . Two opt ’mization methods are ava i lable. Either the re-

sidual va riance or the mu ltip le correlation can be minimized .

STEP is a stepwise multi -linear regression method . Features used in the

regression are determined by their contribution to the overall variance .

In the regression , features are added one at a time such that the feature

that is added makes the greatest improvement in the Hgoodness of fit •~
When a feature that is indicated to be significant to the reduction in

: variance in an early stage of the regression is ind i cated to be insig-

n-if icant after the addition of several other features , ‘t is el iminated

from the regression before addition of another feature, The criterion

for selection of a feature to add or remove from the calculat ion is as

follows :

Removal : If  the variance contribution i~ i nsign ificant at a spec i-

fied F-level , the feature i~ removed from the regression .

t__ 
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Add it ion: If the variance reduction due to add t’ori of a feature i -s

significant F-level , this feature i 5  entered i nto the regression .

H1ER is an unsupervised l earning (cluster analysis) method based on the

relative similarity of a set of data vectors . Each vector is in itia ll y

assumed to be a lone cluster . A similarity matrix i constructed such

that if S1 ,,~ is the similar ity b:tween the 1th and 3
th data vector , then

max
d. -

where is the interpattern distance of data vectors ~ j U  and “j ”
max

normalized by the largest interpa ttern distance dmax in the data (see

v DISTANCE).

The matrix is scanned for the maximum similarity in the set. These

“most similar ” vectors are c lus tered , removed from the matrix and re-

placed by a new vector whose location is the average of the two vectors.

In combining clusters, two options are available. Either the average

of the two clusters -is weighted by the number of data vectors in each

cluster or each cluster is given equal weight. The new matrix is scanned

for the next greatest similarity and the procedure is repeated . The

process ends when all the data vectors form a single cluster . Output

is in the form of a connection dendrogram .

- N
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