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PREFACE

This study was conducted by Gunars Abele, Research Engineer, and F. Donald
Haynes, Materials Research Engineer, of the Applied Research Branch, Ex-
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House Laboratory Independent Research, Work Unit 248.

Dr. Samuel Colbeck and Dr. William St. Lawrence technically reviewed the
manuscript of this report.
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NOMENCLATURE
T Temperature (°C)
v Rate of deformation (cm s™)
v(slow) = 0.042 cm s~'
vimed) = 0.42 cm s™'
v(fast) = 4.2 cm s™'
Qo initial density of snow (g cm™ = Mg m™Y)
Qomy initial density of snow-water mixture (g cm™)
Q density of snow-water sample at any time during load application (g cm™)
o, major principal stress (bar)
(kg cm=2 = 0.98 bar = 9.8 X 10* Pa)
E, specific energy (M) m)
(M) m= =10 bars)
w water content (ratio)
w = WJW,
where W, = weight of water added to sample (g)
W, = weight of snow before addition of water (g)
S saturation (ratio)
S =V,
where V, = volume of water added to sample (cm?)
V, = volume of voids (cm?)
Note

Water content w and saturation S in this report are expressed as ratios, not as
percentage values (to convert w and S into the conventional percent values,
multiply by 100).

Relationships (for derivations see App. A)

where

w = 5[1/00(1)—1/0110-

e =0917gcm™?
@. =density of water = 1.00 g cm™*
Qotmy = Qo (WH+1)
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EFFECT OF WATER CONTENT ON

THE COMPRESSIBILITY OF
SNOW-WATER MIXTURES

Gunars Abele and F. Donald Haynes

INTRODUCTION

The addition of water to snow to increase its
density, and therefore its ultimate strength, has
been widely used in snow road and runway con-
struction and foundation preparation in deep
snow areas. The compressibility characteristics
of dry snow over a wide range of densities and
temperatures have been studied by Abele and
Gow (1975, 1976). Colbeck (1973, 1976, 1978) has
conducted extensive theoretical and experi-
mental studies on the behavior of wet snow and
has analyzed the mechanisms of densification
under a constant load, particularly in relation to
the thermodynamic principles that affect the
deformation of snow containing liquid water.

Hanamoto et al. (1976) conducted a study on
the feasibility of using a snow-water slurry for
backfilling truss enclosures at the DYE radar
sites in Greenland. In support of this study, tests
were conducted to investigate the effect of
water content on the compressibility of confined
snow-water mixtures under load applied at con-
stant rates of deformation.

DESCRIPTION OF STUDY

Sample preparation

The snow used in these tests had been stored
in sealed plastic bags in a coldroom at a
temperature of —35°C for a period of a few
months. Several days before the tests, the snow

bags were placed in the sample preparation
room at a temperature of —3°C.

The sample containers were aluminum
cylinders with an inside diameter of 20.3 cm and
a height of 5.0 cm, coated with Teflon on the in-
side walls and on the removable baseplate.
Snow was sieved into the containers by rubbing
snow blocks through a no. 20 sieve (0.84-mm
mesh size) and then leveled even with the top of
the container. The resulting snow density for this
procedure was approximately 0.4 g cm™. To ob-
tain densities around 0.5 g cm™, manual com-
paction with a thick metal plate was required. A
Materials Testing System (MTS) machine was
used to precompact the snow to approximately
a0.6-g cm™ density.

A predetermined amount of 0°C water from
an “ice bath” was poured slowly, and as evenly
as possible, into the snow sample, which was at a
temperature of —3°C. The sample was im-
mediately placed in an insulated Styrofoam con-
tainer, carried to the test room, removed from
the container, and placed in the cold chamber
(—3°C) of the test apparatus. The elapsed time
between the addition of water and the start of
the compression test was approximately 2 min.

Test equipment and procedure

The compression tests were conducted with
the 10,000-kg load capacity servocontrolled
MTS machine equipped with an environmental
test chamber (temperature controllable to -50°C)
and a calibrated ram speed control; the MTS is
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Figure 2. Relationships between in-
itial density of snow, density of
snow-water mixture, water - 2ntent
and saturation.

capable of applying deformation rates to the
test specimen from O to 40 cm s™' The load vs
ram displacement trace is displayed and stored
on the oscilloscope screen; a Polaroid
photograph of the trace is taken after each test
(see App. B). The load and deformation data are
obtained from the photographs.

After the snow sample was positioned in the
test chamber, the load plate attached to a load
cell was moved down to the top of the sample
and the oscilloscope trace adjusted to the zero
position. The MTS was set to the desired defor-
mation rate, and the temperature in the chamber
was checked.

To eliminate any friction between the load
plate and the inside of the cylinder, a radial
clearance of 0.15 cm was provided (Fig. 1). Small
holes were drilled through the load plate to per-
mit air and water escape from the sample during
compression. A fitted sheet of Pellon, a material

easily permeable to air and water but not to
snow particles, was placed between the surface
of the snow sample and the load plate.

All tests were performed to the maximum load
capability of the testing system. The maximum
final stress on the 20.3-cm-diam sample was ap-
proximately 2.5 MPa (25 bars).

Three rates of deformation were used: 0.042,
0.42 and 4.2 cm s™'. The maximum available rate
of 42 cm s™' caused a considerable splash of
water within the test chamber, implying that
deformation rates of this magnitude may be less
effective for compacting snow-water mixtures
than slower rates.

After removal of the sample from the test
chamber, the excess water, which had been
squeezed out during the test, was poured off and
the remaining sample returned to the coldroom
where it was weighed and measured. The density
of the sample at any stress during the test was
computed from the deformation data obtained
from the oscilloscope photographs.

A total of 62 tests were performed. The first 12
were trial tests to get a feel for the behavior of
snow with various water contents under various
compaction rates and to establish a suitable test
procedure.

Test sample characteristics

The characteristics of the test samples (initial
snow density, density of the snow-water mixture
and water content) and the rate of deformation
are shown in Table I.

Figure 2 shows the relationship between snow
density, water content, saturation, and the
resulting density of the snow-water mixture. The
equations for these relationships are shown in
the Nomenclature.

The amount of water in each sample was
originally computed in terms of water content
by weight (weight of water/weight of snow). To
make the equations and relationships numerical-
ly correct, the water content (and saturation)
figures used in this report are in terms of their ac-
tual numerical values (ratios), instead of the
usual percentage values used in soil mechanics.

To conveniently illustrate the range of the test
sample properties, a graphical presentation of
all the samples, arranged according to their den-
sity characteristics, is shown in Figure 3. Figure 4
shows the test samples arranged according to
their snow density and water content
characteristics.




Table I. Test sample characteristics.

Rate of Density Water
deform Snow Mixture  content
v Qots) Qotm) w
Test (cms™') (gcm™) (gcm™) (ratio)
42 0.042 0.42 0.42 0
38 0.042 o4 0.45 0.10
39 0.042 0.40 0.50 0.23
40 0.042 0.42 0.60 0.43
41 0.042 0.42 0.70 0.66
55 0.042 041 0.82 1.01
53 0.42 o4 o4 0
22 0.42 0.39 0.43 0.10
1 0.42 04 0.51 0.24
20 0.42 04 0.54 0.32
19 0.42 0.44 0.67 0.53
18 0.42 0.38 0.70 0.85
54 42 041 04 0
17 42 0.4 0.44 0.07
16 4.2 0.42 0.49 0.18
15 42 0.42 0.57 0.35
14 42 043 0.68 0.59
13 42 0.40 0.74 0.88
32 0.042 0.52 0.52 0
28 0.042 0.49 0.55 012
29 0.042 0.48 0.59 0.23
30 0.042 0.51 072 o4
3 0.042 0.50 083 0.67
61 0.042 0.51 09N 081
37 0.42 0.51 0.51 0
33 0.42 053 0.60 014
34 0.42 0.51 063 0.25
35 0.42 0.50 on 0.40
36 0.42 0.51 083 0.62
27 42 0.50 0.50 0
23 42 0.49 0.54 on
24 42 049 0.61 0.24
25 42 0.51 072 0.42
26 42 0.50 083 0.66
62 42 0.52 09 0.79
47 0.042 0.60 0.60 0
43 0.042 0.60 0.66 0.10
44 0.042 0.60 0.74 0.23
45 0.042 0.62 0.88 0.40
46 0.042 0.62 09 0.45
60 0.42 0.63 0.63 0
56 0.42 0.62 0.69 0.12
57 0.42 0.58 073 0.25
58 0.42 0.61 0.87 0.42
59 0.42 0.61 0.89 0.46
52 42 0.60 0.60 0
48 42 0.62 0.67 0.09
49 42 0.61 0.75 0.22
50 42 0.59 083 0.39
51 42 0.59 0.89 0.51

Po(m). Initicl Density of Snow-Woter Misture (gcm™>)

OA 3
oY) LX) 06 o7 08 09
Po(s)» Initial Density of Snow (gcm™>)
Figure 3. Density range of test samples.
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DISCUSSION OF RESULTS

Data presentation format

The stress-density test data are shown in the
following graphs. The format of all the graphs
(except Fig. 24 and 29) is the same: the major
principal stress o, is plotted vs the density of the
sample @ at any poini during the compression
test.

Below each graph, the sample properties
(snew density, water content and the resulting
mixture density) are shown in an auxiliary graph.
This seemed to be a more meaningful method of
identifying the initial sample properties than to
indicate the three properties numerically on
each curve. This method also permits a con-
venient comparison of the similarities or dif-
ferences between the samples in a specific
group shown on each graph. The samples are
identified by test number for cross-referencing.
(Test data of some samples with a high
snow-water mixture density were below the
range of the stress scale on the y axis and,

therefore, do not appear on the stress vs density
plot.)

Effect of water content and mixture density

Figures 5-13 show the influence of water con-
tent on the compressibility of snow-water mix-
tures with approximately the same initial snow
density and at the same rate of deformation.
That is, on each figure showing the stress-densi-
ty relationship, the initial snow density @,.,, and
rate of deformation v are constant, with the
water content w (and thus the mixture density
Qo(m) being the variable. The samples were di-
vided into three groups with snow densities of
approximately 0.4, 0.5, and 0.6 g cm™. Three
rates of deformation (0.042, 0.42, and 4.2 cm s™')
were used for each density group (refer to Table
1).

It is quite evident that an increase in the water
content increases the compressibility of the
snow-water mixture. That is, an increase in the
water content decreases the stress required to
reach a particular density of the mixture, as has
been also demonstrated by Colbeck et al. (1978).
During rapid deformation of a snow-water mix-
ture no shear forces can be supported by the in-
terparticle contact, because the ice surfaces are
separated by a water film of sufficient thickness
to prevent ice-to-ice contact (Colbeck 1976).

Effect of water content and
initial snow density

The effect of water content can be better il-
lustrated by treating the initial snow density @)
as a variable and the mixture density o, as a
constant, thus comparing the stress-density rela-
tionship of dry snow vs wet snow at the same
density, as shown in Figures 14-21. The samples
were again divided into three groups with mix-
ture densities of approximately 0.5,0.6, and 0.7 g
cm™. (Only 24 out of 50 samples could be
classified in these three groups.) For various
snow-water mixtures of the same density, the
one with the highest water content will require
the least stress to reach a particular density, the
dry snow being the most difficult to compact.

The effects of both the initial snow density
Qoty and water content w on the stress-density
relationship are summarized for the slow
(0.042-cm s”') and fast (4.2-cm s™') deformation
rates in Figures 22 and 23. Some of the curves
were obtained by interpolation of data, since a
complete set of samples with the exact density
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and water content characteristics shown was not
available. These graphs give an indication of the
decrease in stress with an increase in water con-
tent for any particular density condition.

Another method of illustrating this effect is
shown in the example in Figure 24 where the
stress required to obtain a density of 0.8 g cm™?
at the slow (0.042-cm s°') deformation rate is
plotted vs the water content of the three snow
density groups (from Fig. 22).
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Figure 24. Major principal stress re-
quired to reach a snow-water mixture
density of 0.8 g cm™* vs water content
for various initial snow densities (v =
0.042 cm s™).

Effect of deformation rate

To observe the influence of the deformation
rate on the stress-density relationship at a
specific water content, one pair of samples (one
at the 0.042-cm s™' rate, the other at 4.2-cm s™')
was selected at a low initial density and another
pair at a high initial density, both pairs having
the same or similar water contents. The results
for four groups of water contents (0, approx. 0.1,
approx. 0.2, and approx. 0.4) are shown in Figures

12528

After a certain stress level, an increase in the
rate of deformation increases the stress required
to reach a specific density, the initial density and
water content being the same. That is, a
snow-water mixture can be compacted more
easily at a slower compaction rate. The
significance of this effect increases with an in-
crease in water content.

Figure 29 shows the approximate stress vs
water content envelope at which the difference
between the slow (0.042-cm s™') and the fast
(4.2-cm s7') deformation rates becomes
noticeable. Below this envelope, the stress-
density relationship is not influenced by the
deformation rate. Above the envelope, the stress
required to reach a certain density at a low
deformation rate is lower that that required at a
high deformation rate.
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Figure 29. Stress vs water content
envelope at which the difference

between the 0.042 and 4.2 cm s™'
deformation rates becomes
noticeable.

In previous studies (Abele and Gow 1975,
1976) on dry snow, the rate of deformation was
found to have very little influence on the
stress-density relationship.

Effect of water content and rate of
deformation on specific energy

To determine the energy required to compact
snow with various water contents, the specific
energy was computed for each test. The area
under the load-deformation curve was
calculated by using an Autech A-12 Planimeter
with a 102-A Measurement Scanning Camera.
The error involved in using this optical method
for determining .reas was within 2%. The energy
corresponding to the area under the load-
deformation curve was then divided by the in-
itial snow volume to obtain the specific energy.
Since this type of a compressive test does not
result in what could be considered specimen
failure, the term ““specific energy” is used here
to indicate the required energy at the maximum
available compressive load, 8618 kgf.

Figure 30 shows the specific energy as a func-
tion of water content for three initial snow den-
sities, 0.4, 0.5 and 0.6 g cm™’, at the three dif-
ferent rates of deformation (0.042, 0.42 and 4.2
cm s°', with the corresponding approximate
strain rates being 0.01, 0.1 and 1 s™', respec-
tively). The same data are replotted in Figure 31
with the rate of deformation (instead of initial
density) being constant in each plot.

The following tentative observations can be
made from the available data on how the
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specific energy varies with water content in
snow which is being subjected to a maximum
stress of 25 bars:

1. The specific energy (E.) required to compact
dry snow (w = 0) is sensitive to the rate of defor-
mation (v) between 0.042 and 0.42 cm s™', but not
noticeably sensitive between 0.42 and 4.2 cm s™!
(Fig. 30), and it is insensitive to an initial snow
density (g,) between 0.4 and 0.6 g cm™® (Fig. 31).
That is, for dry snow E, decreases with an in-
crease in v (or an increase in the strain rate), the
initial snow density having no particular in-
fluence.

2. The specific energy for a snow-water mix-
ture is sensitive to the rate of deformation below
a water content of approximately 0.2 (20%). As
w is increased to 0.2, E, decreases for the low v
(0.042 cm s7"), but increases for the medium and
high v (0.42 and 4.2 cm s7'); this phenomenon oc-
curs for all three initial snow densities (0.4, 0.5
and 0.6 g cm™). For water contents above 0.2, E,
decreases gradually with an increase in w at the
higher v and g@,., values (Fig. 31b and 31c), or re-
mains approximately the same in the case of the
lower v and @,(, values (Fig. 31a and 31b).

It appears, therefore, that the addition of
water to snow for the purpose of decreasing the
energy required for compaction is of no benefit,
except when a very low strain rate (approx. 001
s7') is used (Fig. 31a). And even in this case, the
required energy level would not be decreaséd
below that required for compacting dry snow at
a higher strain rate (approx. 1 s, see Figs. 31b
and 31c). However, the addition of water is cer-
tainly beneficial for increasing the density, and
thus the ultimate strength, of the snow-ice mix-
ture. ]

Considering the mechanisms involved in snow
compaction, Colbeck* has indicated the impor-
tance of surface energy change. This concept in-
volves the assumption of a spherical snow grain
being transformed into a cubical shape to max-
imize the packing density. The change in energy
per unit volume is

AE, = AA o.n

where AA = change insurface area
0. = surface energy for the water-ice
boundary
= number of particles per unit
volume.

*S. Colbeck, CRREL, personal communication,
1977
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Figure 32. Generalized stress-density curves
for snow-water mixtures.

Based on the estimated average grain size of
0.2 mm in the test samples used, the AE, value is
0.046 MJ m~, which is only 1 to 2% of the
specific energy for snow being subjected to a
maximum stress of 25 bars and therefore
resulting in a final density approaching that of
ice. This indicates that other mechanisms such
as regelation are apparently more important fac-
tors in the snow compaction mechanism.

SUMMARY

The general influence of water content and
rate of deformation on the stress-density rela-
tionship of snow-water mixtures is summarized
in Figure 32.

Figure 32a shows the general shape of the
stress-density curves at two rates of deforma-
tion for two snow samples having the same in-
itial snow density but different water contents,
thus resulting in different mixture densities
(Qo(m).

Figure 32b shows the same type of relation-
ship, except that the initial snow densities are
different and appropriate amounts of water are
added to produce the same mixture density.

Figure 32c shows the stress-density relation-
ship for two samples with different densities but
the same water content at two different rates of
deformation.
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In general, an increase in water content in
snow at a particular density (and thus an in-
crease in mixture density) or a decrease in the
rate of deformation (or strain rate) decreases the
stress required to reach a specific density of a
snow-water mixture, the water acting as a lubri-
cant between the ice particles.

The addition of water to snow does not help to
decrease the specific energy required for com-
pacting snow to a maximum stress of 25 bars, ex-
cept for low deformation rates (strain rates in the
order of magnitude of 0.01 s™') and water con-
tents below 0.2 (20%). At higher deformation
rates (strain rates on the order of 0.1 and 1 s7'),
the specific energy increases with an increase in
water content of up to approximately 0.2, and
then gradually decreases with further increase in
water content.
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APPENDIX A. DERIVATION OF EQUATIONS

V, total volume of snow sample W, = o.V.; forw(max): V., =0, V., = V, 1
V., volume of voids
V. volume of ice S We = oV, k
V.l = v-+ V. Ql == W'/Vn W' = Q‘Vl |
w = V.o./QV, @) i

V. volume of water :
wl/al; wl — Wl = Q.V.

V. volume of air V, = V,—V, V, = *
V. = V.+ V. "' Vl == Q'vn/ol; Vv = Vl—'(oavl/ol) |
V.= V.+V.+V, w = (V.= Vi/ede./eV. = (1—e/eleve. 1

w(max) = [(1/@.)— (1/Qdle. (3) ’

V. volume of snow-water mixture |

2. Water content at any saturation B
Vo= Vo+Vo+V, =V, ?
S=VuV, (4) |
VW, weight of snow V. = SVo W, = oV

W. weight of ice
w = W,/W, = aSV./W, = a.5V./o.V.
W, =W,
w = S[(1/e)— (1/elle 5) &

. weight of water w/S = [(1/e)—(1/e)le. (6)

-~ weight of snow-water mixture i
S = 1 at w(max)

Wo = WHW, ; }

3. Mixture density {

2=

@ density of snow ) " Qm = WalVp = (Wo+ W) V.. (7) L
Q@ density of ice |
@~ density of snow-water mixture : W.=wW,=wygV, |
. density of water ;»/
w  water content W.=aV, ’
§  saturation v
Wo+W, = o V.(w+1) b
1. Maximum water content for snow at any Bose|
density y Vo=V, ! Ly

w = f(o,) o= V.w+1)V,

w=W,/W, a) o =Qw+1)
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APPENDIX B. LOAD-DEFORMATION TRACES

Scale:
Deformation @¢—
T Y
| s‘
4536 kg ' ‘ Load
-]

i

P — Y- - alb— -
L |
TS Tt M

e—— 3.18 cm ——-c-i

Sample diameter = 20.3 cm
~ Sample area = 323.5 cm?

Sample height = 5.0 cm

Qotsy = initial density of snow (g cm™?)

w = water content (weight of water/weight of snow)

Qot=) = initial density of snow-water mixture (g cm™?)

v = rate of deformation (cm s™')
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A facsimile catalog card in Library of Congress MARC format
is reproduced below.

Abele, Gunars

Effect of water content on the compressibility of snow-
water mixtures / by Gunars Abele and F. Donald Haynes.,
Hanover, N.H.: U.S. Cold Regions Research and Engineering
Laboratory; Springfield, Va.: available from National
Technical Information Service, 1979.

v, 29 p., illus.; 27 cm. ( CRREL Report 79-2. )

Bibliography: p. 13.

1. Cold regions. 2. Compressibility. 3. Density.
4. Snow. 5. Strain rate. 6. Water. I. F. Donald
Haynes. II. United States. Army. Corps of Engineers.
III. Series: Army Cold Regions Research and Engineering
Laboratory, Hanover, N.H. CRREL Report 79-2.

*U.S. GOVERNMENT PRINTING OFFICE: 1979 = 600-748/308

B —— T U




