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FOREWORD

The Operations Research Center at the Massachusetts Institute of

Technology is an interdepartmental activity devoted to graduate education
and research in the field of operations research. The work of the Center

is supported , in part, by government contracts and grants. The work re-

ported herein was supported by the Office of Naval Research under Grant

N00014—75—C—0556.

Richard C. Larson
Jeremy F. Shapiro

Co—Directors

ABSTRACT

~~~~~~~~~~ 
-~~~~~ Hierarchical planning systems support medium range planning de-

cisions in a batch processing production environment. In this approach,

higher level (tactical) decisions impose constraints on lover level

(operational) actions. Several heuristic approaches to hierarchical

production planning have been proposed in the management science

literature. ~~~~_p~irpoee--415his paper C _tkcompare~,conceptual1y

and empirically , four of these approaches.

The paper begins by discussing the direct optimization ap-
proach , and its associated drawbacks. The second sectiozL.pf the
paperC~~i~~ly describes several approaches to the design of a

hierarchical production planning system and the distinguishing

characteristics of the resulting algorithms. The third section ,of
the paper ~èTompares four different methodologies for disaggregating

tactical plans in a hierarchical setting. The paper concludes with
reco~~endations for specific approaches to disaggregation in differing

production environments.
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INTRODUCTION

The problem of planning and scheduling the production of a large

number of items over time involves a multitude of decisions~ manpower

planning , use of overtime, buildup of seasonal inventory, f r equency of

setting up for the production of specific goods and associated run

lengths. These problems have been approached from two distinct per-

spectives — attempts have been made to build an all inclusive direct opti-

mization model, and heuristic algorithms have been proposed to take

advantage of the hierarchical structure of production planning decisions

(e.g. Holt, Nodigliani, Muth and Simon (12], Winters (181 , Hex and

Meal [11], and Bitran and Hex (1J) .

The essence of the direct optimization approach is to capture

the indivisibilities of run lengths and economies of scale. This neces-

sitates planning at a level of detail where setup costs are incurred.

Unfortunately, the resulting mixed—integer progranming formulation is

too large to be solved by existing computational algorithms. Thus there

has been major emphasis on transforming the problem into an equivalent

linear prograsuning model which can be solved by using large scale program-

ming methods. Pioneering work in this area was done by Manne in 1958 (14].

This work was continued by Dzielinaki, Baker and Manne [5] , Dzielinski and

Gomory (6 1, and later by Lasdon and Terjung (13]. Theoretically,these

approaches guarantee an optimal solution and are a great contribution to

• the operations management literature. However, there are two principal

drawbacks to the implementation of direct optimization models — long range

k planning is not directly supported, and the models do not facilitate manager—

ial interaction with the solution process.

1
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The data required by the direct optimization approach are inappropriate

for supporting aggregate ,roduction decisions. Tactical decisions are

based on long run production plans for aggregate products. However , direct

optimization is forced to deal with products at the most detailed level, in

order to include all relevant costs, so to support tactical planning , detailed

product data must be aggregated. For example, a critical input for direct

optimization is forecasted demand for each item over the entire planning

horizon, typically one year. The use of detailed data in these situations

has two major drawbacks.

1) Detailed forecasting requires significantly more computation than

aggregate forecasting, thus not allowing as sophisticated modeling

techniques to be used.

2) Forecasting at the item level and then aggregating the forecasts results

in greater errors than aggregate forecasting.

A second practical disadvantage of direct optimization is the inability

to coordinate managerial interaction with the model’s solution. Managerial

interaction in terms of tactical and operational decisions is desirable.

For example, tactical decisions may involve manpowe r p lanning and seasonal

inventory buildup. Management may feel that there are special reasons to

limit overtime, other then avai1~b1e manpower. If they plan on adding a 
S

third shift in the near future , management may feel that it would be bad

for workers’ morale to become accustomed to overt ime hours which would be

unavailable after the addition of the extra sh i f t .  Direct optimizat ion

prohibits the coordination of these kinds of decisions with the model’s

output, as the model completely specifies the production plan. If top

management wants to limit overtime, it is difficult to determin, exactly

how to alter the pibuned production of the thousands of specific products In

-
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order to meet its goal. Moreover, it is virtually impossible to incor-

porate the goals of several levels of management into a single model. In

practice, corporations that use the direct optimization approach find that

changes made at differing managerial levels are frequently in conflict

with tactical and operational planning decisions.

The authors favor hierarchical production planning over direct optimi-

zation. The strengths of hierarchical production planning will be emphasized

as we describe this approach.

The objective of this paper is to compare four different heuristic

methods for disaggregation within a hierarchical production planning frame-

work: the Equalization—of—Run—Out—Time approach (12], the Winters approach [18],

the Hax—Meal approach [lii, and the Knapsack approach (1]. A brief summary

of the structure of the hierarchical model and how these four methods differ

is presented in the second section of this paper. The third section of the

paper describes the statistical comparisons we used on simulated data. A

section summarizing our results concludes the paper.

THE HIERARCHICAL APPROACH

The hierarchical approach is characterized by its recognition of the

need to separate tactical from operational decisions and by its ability to

deal with individual decisions at each level while using linking mechanisms

for transferring higher level results to lower levels. Hierarchical

production planning is designed to encourage managerial interactions at

all levels (see Figure 1). Lack of managerial interaction is a weakness

S 
of direct optimization not present in hierarchical production planning.

4 ~ The first level of the hierarchy determines an aggregate production

t plan: the timing of inventory buildups, manpower decisions, and capacity

and overtime schedules for the entire plann ing horizon, typically a full

year .
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Given an aggregate production schedule for the entire planning horizon,

a variety of methods have been proposed for disaggregating the production

schedule for the current time period. Basically, the second level of the model

attempts to minimize setup costs subject to constraints imposed by the

aggregate production plan .

The third and final level in the hierarchy schedules the production

quantities of each item in order to maximize the time until another setup is

required and maintains the constraints imposed by the previous levels.

Figure 1 shows the overall conceptualization of the hierarchical planning

effort.

For this planning structure three levels of product aggregation have

been identified — types, families, and items [11]. Items are defined as

the specific products and are used only at the most detailed level of

planning. Items sharing major setup costs are grouped into a family. This

is done in order to allow all items in a family to be produced jointly,

thereby avoiding unnecessary setup costs. At the highest level of aggrega—

tion, families with similar costs and productivity characteristics are

grouped into product types. This grouping is used to determine the optimum - 

S

aggregate levels of production, manpower, and inventory.

The Aggregate Model

The first level in hierarchical production planning is the aggregate
‘P

S

* 
level. The model used in our simulation was a linear program designed

to minimize the costs involved in accumulating seasonal stock, regular and

• overtime production costs, and holding costs. Other costs can easily be

added to the formulation. Any aggregate production planning model can

be used in the first stage of hierarchical production planning as long as

it adequately represents the practical problem under consideration . For

extensive discussions of possible models , see [4] , [8].

t
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Aggregate Plan for Types Management
(Aggregate Planning Reports) j Interaction

Family Disaggregation Management 1(Family Planning Reports) Interaction

(I t m P i ann g
°
~:~~~~a) 

~~~~~~~~~~~~~~~~~~~~~~~~

Detailed Status Reports

Figure 1: Conceptual Overview of Hierarchical Planning System
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The model finds the optimal feasible solution for an entire year .

Tactical managerial decisions may affect the solution of the model at

this stage. This aggregate model is run every period’with a rolling

horizon. All four of the disaggregation methodologies tested use as a

primary input the aggregate production levels specified by the aggregate

model.

The annual forecasts required for the model are of aggregate product

types. Therefore, the forecast accuracy associated with the hierarchical

approach is greater than that associated with direct optimization, which

requires annual forecasts for each item. Since decisions on

regular time, overtime , hiring and firing , and other production—rate

parameters are based on total demand, more accurate forecasts of total

demand should improve the model’s decision—making ability.

The Disaggregation Methodologies

A critical step in the hierarchical scheme is to determine how

aggregate production quantities should be allocated among the families

belonging to each product type. It is at this level in the hierarchy

where setup costs are considered. To insure feasibility and consistency

in the system, the sum of the production of the families in each product

type must not be greater than, and is ideally equal to, the amount dictated

by the aggregate model for this product type . This paper compares four

distinct disaggregation methods proposed in the literature: Equalization—

of—Run—Out—Ti mes (EROT ) (12], Winters (18] , Hex and Meal (lii,  and Knap-

sack [1] . Figure 2 displays a flow chart comparing the algorithms.
is

, _ _ _ _ _ _ _ _ _ _ _ _ _

‘A period is defined as 4 weeks , and a year as 13 periods.
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i
Define the Bet of Produce an EOQ of as

families to schedule many families as
as those that will possible (constrained

ruz~—out in the by the aggregate capa—
current period city determined at the

previous level in the
hierarchy) beginning
with the first family

to run out.

I_____

etho /
.7

Knapsack Hax—Meal

Schedule an EOQ of each
Minimize the sum of the family that is to be
setup costs times the scheduled.

expected # of setups (the -

annual demand divided by Increase or decrease the
the production quantity scheduled production for
scheduled) such that each family proportionately
total production — so that the suni is equal to

allocated production. the aggregate capacity -

• 
allocated.

Figure 2: The Disaggregation Algorithms
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The—Equalization—of—Run—Out—Times Approach (EROT)

EROT [121 defines run—out time to be the expected length of time

until it is necessary to produce again (available inventory less the safe-

ty stock divided by the annual demand). The concept behind the EROT algo-

rithm is to ignore setup costs for the current period and maximize the time

until any item in the product type requires another setup . The primary con-

cern is future costs. This approach disaggregates directly from product

types to items.

The Winters Approach

The Winters approach was first proposed in 1962 [18]. Its central idea

is to exploit the Economic Order Quantity (EOQ) principle. If the aggregate

model sets production for a product type consisting of N families to be

Y units, the Winters method schedules the production of an EOQ of

as many of the N families as possible, while keeping the total production for

the N famulie8 under Y. The families chosen to be produced in the current

time period are selected in the order of their expected run—out times.

The flax-Meal Approach

The Hax—Meal algorithm was developed in 1973 [11]. The concept behind

this algorithm is to base Initial allocations on the classical EOQ formula

and then to adjust these levels to better fit the aggregate model. The

flax—Meal approach recognizes that holding costs over future periods have

been determined by the aggregate model, and that the primary concern should

be minimization of setup costs. This methodology allocates production capacity

only to those families that will run—out in the immediate period in lot sizes

proportional to their EGO’s. If overstock limits’ er: reached, other families

are produced up to their overstock limits. For example, if the sum of the

~Overstock limit is used for products that have limited sales seasons . It is
aimed at maximizing expected return by balancing the cost of underatock with
that of overstock.

‘l 
-
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EOQ’s of each of the products that will run out is less than the total

production allocated, the Hex—Meal approach will increase the quantity of

each family produced until total production is exactly equal to the capac-

ity allocated, while the Winters approach will either produce an EOQ of

another family, if there 18 sufficient capacity remaining, or else not use

the remaining capacity.

The Knapsack Approach

The Knapsack was formalized in 1977 (11. It was an attempt to build

the flax—Meal concepts into a sub—optimization model. This approach schedules

the production of families to minimize expected setup costs over a year, in

such a way that all allocated capacity is used.

The Item Model

The final stage in the hierarchical production planning process is the

scheduling of items within a family (note: the EROT approach does this in

the second stage). For this task, overstock limits an~ service requirements

must be observed. The general approach to accomplishing this task is to

equalize the expected run—out times for the items in a family. The expect-

ed time until it is necessary to set up the family again is thereby maximized.

An alternate approach, similar to the Knapsack approach , has been proposed - 

k
by Bitran and flax (1), but is not being tested here.

F:.

.1 

. - —
~~~~~ - - .- — 

. 
~~.-~~•— —- , ,  - . -

~~~ 
- - - . . . 

_:I



_--

-10-

THE STATiSTICAL COMPARISON

When working with production planning, we believe there are two

critical dimensions: costs and backorders. To compare the approaches,

costs and backorders are generated over a full year. We felt that by

using annual data we would avoid confusing random and seasonal differences

with long run overall differences.

Previous comparisons have put a cost on backorders and reduced

the comparative vector to one dimension. We believe that putting a cost on

backorders would limit the effectiveness of the comparison. By separating

backorders from costs we can impute the backorder costs which would make

the methods comparable. In general, it is difficult to price the intangible

concept of goodwill and backorders.

For our comparison, we generated a large data base, which was fairly -

representative of all situations that might use hierarchical production

planning. The data used was representative of actual scenarios drawn from

the authors’ experiences. We held the product structure constant and varied

the forecast error , available capacity, seasonality of demand for each

product, family setup costs, and the planning horizon. The ranges of

variation of these parameters were chosen to encompass all situations in

which hierarchical production planning might be used. For a justification

of the variables held constant and for a description of the ranges chosen,

see Appendix 1.

The tests we used to compare the algorithms consisted of:

- 1) the signed Wilcoxon — on all data for overall pairwise coniaprisons of
S 

‘

4 ~ both costs and backorders,

2) the signed Wilcoxon — applied to quartile regions of each input variable,

3) the signed Wilcoxon — applied to pr.spacifi.d regions defined by more than

I - _ -
- 

- -
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one input variable, 
-

4) a robustness comparison with respect to both costs and backorders, and

5) pointvise comparisons, for specific data points of interest.

In this section we present each of the tests and our interpretation of the

results.

The Signed Wilcoxon Comparison

To identify distinguishing characteristics of the algorithms, we chose

to compare the methods pairwise, using the Wilcoxon statistic (16]. The null

hypothesis tested by this statistic is that the difference in the result of

two methods applied to the same input conditions is randomly drawn from a con-

tinuous, symmetric distribution about zero. (For a fuller description of this

statistic, see Appendix 2.)

We compared the output of 112 sets of input data, covering the entire

input space tested. The output we compared consisted of total production

costs (setup , holding, regular—time and overtime costs summed over thirteen

periods of 4 weeks each), and total backorders.

The results of the Wilcoxon tests are displayed in Figure 3. From this

broad test, two conclusions can be tentatively drawn.

1) The Winters algorithm Is the least desirable. (Note: this conclusion is

strengthened by later tests.)

2) The Knapsack method compares favorably with respect to costs and unfavor—

ably with respect to backorders. In the aggregate, for the Knapsack

method to be equivalent to the flax—Meal approLch, backorders would have

to be valued at $1.01/unit/period. For the Knapsack method to be equiva—

lent to the EROT approach , backordera would have to be valued at $l.89/unit/

period. The holding costs used in the modeling effort were set at $.38/

unit/period and may be viewed as a minimum backorder cost.

~ 

• --  • . . 
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Sectional Wilcoxon Tests

We performed the sectional tests in two parts. We first broke each

input variable into quartiles and tested the data in aèh quartile for

each input variable. Then we identified specific regions of interest,

defined by more than one input variable (i.e. high forecast error and

high seasonality), and tested the data In each of these regions.

The quartile tests were done to narrow down the ranges of dominance.

For example, as forecast error increased so did the flax—Meal dominance

over the Winters approach with respect to backorders (see Figure 4).

For a summary of all the results, see Figure 5.

From the data presented in Figure 5, the following conclusions were

drawn:

1) there is no general situation in which the Winters approach

dominates, with respect to costs or backorders;

2) when seasonality is high or setup costs are high, EROT does very

poorly with respect to costs. It is the. only method ever

dominated by the Winters approach;

3) when setup costs are in their lowest quartile, EROT dominates

both the flax-Meal approach and the Winters approach; and

4) when capacity is at its tightest, Max—Meal dominates all othe r

methods.

• When examining regions defined by multiple criteria we divided

each input variable into two ranges. For each variable , the “high” and

“low” ranges were defined to be above or below the median , respectively.

The output of the Wilcoxon test applied tc these pr.specified regions,

presented in Figure 6, indicate that:

:~~~~—- 
— -, -. - • •

, -• . - •  — _.;._ -
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(Grouped by forecast error Into columns — and then ordered within columns
by the magnitude of the difference.)

0—7.5% 7.5—15% 15—22.5% 22.5—30%

O 0 0 0
O 0 0 0
0 0 0 0
O 0 0 0
O 0 0 0
0 0 3 7
O 0 4 —163
O 0 —19 —387
O 0 —134 —424
O 0 —151 —517
O 0 —389 —533
O - 0 —453 —743
o 0 —480 —962
O 0 —521 —1021
O 0 —611 —1219
O 0 —662 —1295
O —l —690 —1328
O 55 —755 —1518
O 138 —757 —1570

—5 —298 —914 - —1790
42 —305 —1023 —1906

—74 —547 —1171 —2430
—164 —696 —1414 —3786
—263 —1754 —1657 —5267

243 —2147 —1649 —6095
—2399 —5188 —2252 —7214
—6267 —5249 —4056 —10586
—8772 —7000 —25083 —10900

Statistics associated with the above numbers

the first the second the third the fourth
quartile quartile quartile quartile

Mean difference —1740 —1916 —1941 —2680
0 of non—zero values 9 12 23 23

I Wilcoxon —29 —68 —270 —274

4 Std. dcv. of Wilc. 16.9 25.5 65.8 65.8

Figure 4 Max-Meal Backorders Less Winters Backordera 

—



-~~~- w

Hex-Neal lax—Meal 1101. Ra*- Ma*1 Winter. 1101.
Decis ion vs ~ 5. VI. VS. VS. - VS.
Crit erion • Winter. &RD.r Wint ers Enspeeck - Knapsack Knapsack

Overal l Cost UN 1.6 — E1.Ot 2.1~ ~i ~.j 
[ 

101 1.9 11 1.7

Costs Ordered by:

lackordera of — 184 2.1 — 1801. 2.3 — 1101. 2.3 — — 11 2.6 — — EN 2.1.
Product 2 ml 2.5 ml 1.8 1101. 1.8 — 11.01 3.2 WI 2.1 — — — WI 1.7 — —

nil 1.7 RN 2 .7 — — — 11OT 1.8 EN 1.8 — EN 1.1 — — —
Forscaet error

SM 4.1 101 4.2 — — 1101 2.0 — — — — — —
ml 4.2 — nil 3.6 — 1101 4.1 — 184 1.7 — — — — —

Cepecity

— — — — — — — — — 11 1.8 — noT 1.6

— — ~~~T 2.5 — 1.101 1.9 - — — — - 1907 1.5 —
Setup Coat.

III 2.3 1*1 2.8 SM 2.4 fill 1.4 — WI 1.8 — Ui 2.39 — — — EN 2.8

Ov*rall 184 2.2 154 2.1 1.107 ~.2 1.1.07 2.9 1101 2.7 1.1.01. 2.1 EN 2.1 - 19 2.3 — — —
S.eaonality — — — SM 1.7 — VI 1.7 aM 1.6 fin 1.8 — — — —

— nil 2.5 1.501. 1.8 — — EROT 2.2 EN 2.3 — — 11 2.0 19 1.9 1.801 1.6

50 6.58 — 6101. 6.56 UN 2.2 1.1 1.6 ENOT 1.6

lackorders Ordered by: -

SM 1.1 SM 2.7 — — — 1.1.01. 3.1 — — — — — —
lorsca.t error -

181 4.1 ml 4.2 — SM 2.8 1.101. 3.7 1.101. 4.1 SM 2.1 SM 2.2 EN 2.7 19 2.5 — 1.101 1.5

S.aionality of aM 3.6 WI 3.6 — — ~~0•~ 3.1 1101. 3.9 — — — — — —
Product Type 2 

~~ 3.4 ml 3.1 — — 11.01 3.3 1501 2.0 184 2.0 lx 2.3 — — — DOT 1.7

nil 3.8 lx 3.2 — — I~~ ? 3.8 1101 3.0 51( 1.9 101 1.1 19 2.3 112.2 — UOT 2.0
Cepacity

154 3.5 SM 2.8 — — 1101. 3.6 1507 2.9 — — UI 1.8 — — —
ml 3.2 184 3.7 — — 1101. 2.9 6107 4.0 nil 1.7 SM 2.0 — — not 1.6 —Setup Costa

- nil 3.2 ml 3.1 — - ml 1.9 1107 3.2 1807 3.2 — — UI 2.4 11 2.0 — —
ml 4.69 — — — 1807 4.9 — ml 1.6 181 2.01 — — ~~~~T 1.5 1101. 2.0

Iorison 

— 

ml 4.56 — — — 1101. 4.4 — — — — — — —

. $ntea * The n, b.r. in the box., indicate how .any standard deviations away
tics uro the r.ault. are. Only atatiacic ally ei~nificaut reaults
axe .~~~e. When orderi ng occur s the boxea are divided as follow .:

• F let 2nd
quartil. quartile

Si 

£~~~taited Co~~~Tiaen of ~~~~~
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Methods
~~~~~~~ being Hax—Mea flax—Meal flax—Meal Winters Winters EROT
N~ ompared

Regional Winters EROT Knapsac i EROT Knapsack Knapsack
Definition

NM NM RN WI - RNhigh setup costs
low capacity NM — — EROT ia~ —

low setup costs — EROT — EROT — —
high forecast
error NM EROT NM EROT RN EROT

high forecast NM NM — EROT — —
error

low capacity NM — — — RN —

short planning — . — — EROT — KN
(6 mo. horizon)

high seasonality NM — HM — — EROT

high forecast NM — — — — —
error

high seasonal ity NM — NM EROT — —

Notes: Dominance means that the Wilcoxon is more than 2 standard
deviations from zero. The initials in the boxes indicate:

cost dominance
__________________ 

;,

Backorder dominance

Figure 6: Comparisons of Well—Defined Regions

~ I
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1) We could not identify a situation where we would recomeend the

use of the Winters approach (reconfirming the indication given by

the first test);

• 2) EROT performs m ost poorly in situations with a combination of high

setup coats and low forecast error~ and

3) EROT outperforms all other approaches tested when forecast error

is high and setup costs are low.

The Robustness Teat

The robustness of each method was measured by examining its devia-

tions f r om an “ideal” vector constructed by combining the lowest backorders and

costs achieved by any method. For each method, a delta vector was def ined to

be the difference between the actual results and the “ideal” results. From

this delta vector we extracted the eleven largest elements, 10% of the

total data, and averaged them. Essentially, we measured how far the worst

points generated by each method deviated from the “ideal” Ce— ta and “ideal”

backorders. The results are given in Figure 7.

The following conclusions were drawn from this test:

1) the Max—Meal method is the most robust; - •

2) the Winters method is the least robust ( the backorder measure is 31

times as great as the Hex—Meal approach) .

The data indicated that when products had high setup costs the Winters

approach had its maximum deviations with respect to backorder ... To further

test the second conclusion above we simulated additional scenarios with

setup costs higher than we had previously allowed. (We let setup costs range

I

H
__a - —.--—-—-------- -- . . —  •-
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__________ 
Measure of “Robustness”

Backorder cost to equate
Costs Backorders method with Winters

Hex—Meal 8.3K 307 $.08/unit/period

Winters 7.6K 9304

EROT 11.9K 1105 ~‘.52/unit/period

Knapsack 10.6K 618 $.35(unit/period

I I -

mean 10% delta

Figure 7: A Robustness Comparison

Note: The holding cost used was $.38/unit/period and is

- an absolute minimum backorder cost. It is the cost one

would use if no cost was associated with loss of goodwill. - -

I.
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from 2 300 to 3300.) The five point. generated reconfirmed this conclusion .

On all of these points the Winters method had the greatest number of

backorders , at least three times that of Hax—Meal.

Pointwise Comparisons

The EROT approach performed differently for different levels of setup

costs (see Figure 5). We thought that the EROT approach would not perform

well when setup costs of different families within a product type were

varied. We ran a l imited set of data testing this hypothesis (6 points

across all methods). The hypothesis appears to be valid. EROT had

the highest costs on all six points, and never had the lowest backorders.

S.. Figure ;8 for an example.

I

~~~~~~~~~~
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THE INPUT DATA
Forecast error — 25%
Demand of Product type I — 100,000 units
Demand of Product type II 120,000 units

• Seasonality — High + Period . Demand for product type II varies between
2639 and 15593.

Capacity Tight

Product Structure and Setup Costs

Type I Type II

~

Fami1y II

~ E~
1 ~Famil~~I~~ E~1I~!’.4~4~~35 A~ 7\~ .

7/\
3 

~7\
item 1 item 2 item 3 item I item 2 item 1 item 2 item 1 item 2 item 1 item 2

:~~ 

row of numbers is the share of total demand allocated to each family or items

row of numbers is the setup cost

row of numbers is the number of periods demand 1 EOQ.

THE OUTPUT DATA

Method Total Cost Setup Cost Bacicorders

Hax—Meal 169150 69186 7~”)7

Winters 167816 65884 10449
EROT 172329 72488 7307 I’
Knapsack 165412 - 65334 7867

Typical + 1. Winters has a large number of backorders.
2. EROT has the largest total setup cost.
3. When seasonality and forecast error are high , the

Knapsack approach has a large amount of backorders.

Note: For Hex—Meal to be equivalent to Knapsack, backorders would need
to be priced at $6.67 per unit period.

Pigre 8: An Example Point with varying setup costs
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CONCLUS IONS

The Winters Approach

The strongest conclusion that can be drawn from our work is that the

Winters approach is the poorest, regardless of the dimension being measured —

costs, backorder., or robustness.

Intuitive reasoning identifies two factors that contribute to its

poor performance. First, if the entire list of families in a type is to

be produced, the concept of multiple EOQ’s for some families is meaning-

less. The EOQ was designed to balance setup costs and holding costs. If

more than one EOQ of some good is produced, more than one setup cost is

not incurred. Offsetting a second setup cost against holding costs is

meaningless. Second, the Winters approach usually does not produce up

to the capacity allocated in the aggregate model. Typically an EOQ of

some number of families is produced, with the sum of the EOQ’s less than

the allocated capacity, but the difference is not large enough to allow

an EOQ of another product to be produced. As setup costs increase, so

do EOQ’s and the difference between allocated capacity and used capacity .

When capacity is tight this under—producing can lead to excessive back—

orders . It is also possible for the allocated capacity to be less than

that required to produce an EOQ of all products that will run out in the

imeediate period. All other approaches guarantee production of all items

that will run out in the imaediate period, while the Winters approach

does not.

The Winters approach resembles the approach that is most extensively

used in practice — the order—point order—quantity approach with the

order—quantity being represented by an EOQ and the order—point being

represented by the run—out time. Our results indicate that substantial



__ _•%__ w

—22—

production planning improvements are obtainable for companies using an

order—point order—quantity system by simply switching to a more robust

hierarchical production planning methodology.

The EROT Approach

Two distinct conclusions have been supported by the data regarding

the EROT approach.

1) The EROT approach should be used if

a) setup costs are low (an EOQ is < 3/4 period),

b) forecast error is high (greater than 24%), and

c) all families have identical cost structures in each product type.

2) The EROT approach should be avoided if either

a) setup costs vary between families, or

b) setup costs are high (so that an EOQ > 1 period’s demand).

These results are also intuitively justifiable. If the sole objec-

tive was to minimize backorders, constrained by the aggregate plans, the

EROT approach would be ideal. The probability of any family running out

is minimized with the EROT approach, as inventory is distributed evenly

over all irems~ However , if there is a small forecast error nothing may

be gained by the EROT approach. Our data indicates that forecast error

mus t be greater than 24% for this difference to be noticed. Hax—Meal

outperformed the EROT with forecast error between 18 and 23% by more

• than EROT outperformed Hax—Meal with forecast error between 24 and 30%.

Differing setup costs impair the effectiveness of the EROT approach.

The EROT approach does not discriminate based on setup costs and typically

produces all families in every period. When one family’s setup coat is

high relative to another family’s, more of the family with the high

• setup cost should be produced in order to minimize fut~ire costs. The

~This statement 
e~~~~~~~~~~i~~~g tons. 

errors 

T: 
families in
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purpose of this is to eliminate the need to setup for the higher cost

product in the next period.

The Knapsack Approach

The Knapsack approach is the best approach with respect to costs, and

is relatively robust, second only to the flax—Meal approach. It is the

only method that ‘bptim ized’with respect to setup costs while disaggregating.

W~en setup costs are high, forecast errorB are low and seasonality is low

the Knapsack approach dominates.

The algorithm implicitly assumes no forecast error and no seasonality.

When these assumptions are far from the truth, the flax—Meal approach out-

performs the Knapsack approach. This is explainable by the form of the

model. The disaggregation model minimizes, on an annual basis, the number

of setups necessary for each family. A more myopic view may work better

when seasonality is pronounced. For example, the annual demand figure may

indicate that setups will occur once every other month. When demand is at

its peak, more setups may be necessary and when it is at its trough a

setup every other month may still be necessary if the production size is

poorly set. -
The Hax,Meal Approach .

The Max—Meal algorithm has performed very well throughout the testing

procedure. There were only two very specific cases in which another approach

could be identified as outperforming the Rex—Meal algorithm (see Figure 9).

: The principal strength of the Max—Meal approach is that it is phenomenally

robust, and produceB good results over a wide range of production planning

situations. Overall, it is the method we would recoamend .

~ ~ -

_ _ _  
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CONDITION SUGGESTED METHOD BASED ON OUR TESTS

Low setup costs (EOQ < 3/4 pcriod)
and identical cost structures for

all products in a type, EROT

high forecast error.

Low Seaconalit ice ,
Loose Capacity,

Knapsack
High setup Costs,
Low Forecast Error

All other situations . Hax—Mial

Figure 9: Summeary of Conclusions -
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APPENDIX 1: THE DATA BASE

Given the large number of possible input parameters , we varied those

we felt were most important to test and held constant the holding cost ,

minimum service level, annual demand, productivity, and the product

structure. All variables held constant were set to values representative

of an actual large manufacturer of tires.

The minimum service level was set at 95%. Varying the minimum service

level would only alter the safety stock. There would be no change in the

relative merits of one method versus another. If the service level were

increased, all methods would have a greater holding cost and all backorders

would decrease by a fixed number.

We believe that the productivity would principally affect the aggregate

model and not change the relative strengths of any of the disaggregation

approaches.

The product structure we chose to use throughout the simulation is

illustrated in Figure Al. Items sharing molds in the tire curing process,

and therefore sha ring setup costs, were grouped into families. Families with

similar seasonal patterns were grouped into types . The annual demand was

set to 100,000 bnits of product type I and 120,000 units of product type II.

Product Type I Product Type II TtPES
~~~~~~~~~~

P1 Family 1 P1 Fem~l~r 2 P2 P~~~i5 1 P2
,
~~~~1Y 2 -P2

_,
~~~i1y 3 FAMILIES

• 
- 11. 12 13 Il 12 Ii 12 Ii 12 fl 12 ITEMS

Figure Al: Product Structure -

We did not feel it was necessary to vary both the holding costs and

the setup costs , as altering either one alters the economic order quantity

and it is the ir relativ, magnitudes that are important for the purpose of

- -
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simulation, We chose to vary setup costs, and f ixed holding costs at 25%

of total unit costs.

The economic order quantity run legnthe were varied between one quarter

of a period and just over 2 periods, by altering the setup costs. It

was felt that economic order quantities larger than 2 periods would no

longer have setup costs secondary in nature, a fundamental assumption of

the hierarchical approach to production planning. Setting the economic

order quantity between 1/4 and 2 periods resulted in setup costs varying

from .3 to just under 15 percent of the total production costs.

Capacity was varied between 0 and 100, and was measured in the

following manner.:

(a) Determine at which of the thirteen periods there exists the highest

average demand per period (based on cumulative demand — see Figure A2) .

Let us call this period N.

/~~~- Note: the point where the tangent
from the origin intersects

- the cumulative demand curve
is the point of highest
average demand per period.

0 N period 13

Figure A2 
-

(b) At period N compute the average demand per period, or:

Avg. Deaand
~ 

— Cumulative demand up to period N/N.

(c) If capacity with no overtime is equal to avg. demandN, then capacity

is set to 100. If capacity with the maximum allowable overtime is

equal to avg. DIuandN, thin capacity is set to 0. At all points
4 p- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -: 
-a -
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between these two extremes, capacity is scaled appropriately.

Limits on forecast errors were fixed at a given percentage of demand.

Actual forecast errors were randomly distributed in the allowable range.

The limits on forecast error varied between zero and thirty percent of

demand.

Each demand pattern was treated as 2 connected sine waves (see Figure AS),

with peaks and valleys constrained to be less than one unit away from the

center. The waves could meet at any of the 13 periods. It was required

that the waves’ directions be opposite to one another. The seasonal

factors were then normalized, so that the average was equal to 1.0. As

a measure of seasonality, the coefficient of variation was calculated for

each demand pattern.

Seasonal 2.0 wave 1Factor 

1.0 
~~ 

—

l~ .wave 2
0.0 

_________________________

period 13Figure A3

We chose to examine 2 distinct planning horizons, 6 periods and 13 - 

-

periods , as these are the timings which are typically used for production

planning. (We defined a period to be equal to four weeks.)

1 .
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APPENDIX 2: THE WIL00XON TEST

The Wilcoxon statistic might be thought of as a cross between the t—

statistic, which makes assumptions about the distribution of the data and

is a function solely of the magnitude of the differences, and the sF’n t-~~ I .

which totally ignores the size of the differences. The Wilcoxon tc~st ~‘as

- originally designed for tests performed on pairs of twins. The data which

we generated fits well into this type of comparison, as pairwise points

were points generated from identical situations via different algorithms.

The use of matched pairs produces a powerful statistic, as it reduces the

variance of the differences between points and thereby enables us to obtain

a more accurate statistic with tighter confidence limits.

The Wilcoxon statistic is computed in the following manner:

1) Pair the data to be compared.

2) Compute the difference in all pairs of data.

3) Rank the differences by their absolute value.

4) To the rank of the ith absolute difference, attach the sign of the

difference. Denote this signed rank by r~.

5) The Wilcoxon statistic is equal to the sum of the signed ranks,

- W r
1 + r 2

+... - 

-

For a more in depth description of this statistic, the reader is referred to

Macteller [l5J.
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