UNCL	ASSIFIE	DEC	78 P	WKIRK	LIN, D	L RHYN	AF	APL-TR-	78-89	F33615-	77-C-2	047 NL	
	10F 2 AD 6827				E .			American Strategy (Constraint)	Transformer Transf				
		tamina (The second secon	<text><text><text><text><text></text></text></text></text></text>			A set of the set of th		 Hord Carlos Carlo		
		A second							We determine the second secon	$\label{eq:starting} \begin{split} & from a starting sta$	A set of the set of th		
	The second secon	<text><text><text><text><text></text></text></text></text></text>			<text><text><text><text><text></text></text></text></text></text>								
I I I I I I I I I I I I I I I I I I I	And the second s		Tarra International Internatio	THE TRANSPORT		 The second second		A second					The second secon

LEVEL

AFAPL-TR-78-89

DDC FILE COPY

FACTORS AFFECTING ELECTROSTATIC HAZARDS

P. W. KIRKLIN

MOBIL RESEARCH AND DEVELOPMENT CORPORATION PAULSBORO, NEW JERSEY 08066

DECEMBER 1978

TECHNICAL REPORT AFAPL-TR-78-89 Final Report Period Covering April 1977 to July 1978

Approved for public release; distribution unlimited.

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

79 04 02 119

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Charles R. Martel

Charles R. Martel Fuels Branch Fuels and Lubrication Division

Irehur V. Chu

Arthur V. Churchill, Chief Fuels Branch Fuels and Lubrication Division

FOR THE COMMANDER

iman

Blackwell C. Dunnam, Chief Fuels and Lubrication Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify <u>AVAPL/STP</u>, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/7 March 1979 - 250

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER 29 AFAPL-TR-78-89 Final Technical Repets 15 Aprpl 1977 - 15 Julg 1978 TITLE (and Subtitle) FACTORS AFFECTING ELECTROSTATIC HAZARDS PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(s) 7. AUTHOR(.) Rhynard F33615-77-C-2047 P. W. Kirklin PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element 62203F Mobil Research and Development Corp. 3048-05-85 Paulsboro, N.J. 08066 11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Aero Propulsion Laboratory (SFF) December 1978 Air Force Systems Command NUMBEROUTAGE -Wright-Patterson AFB, Ohio 45433 187 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified 15e. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) static electricity Reticulated (Open-Pore) Foam electrostatic hazard conductivity additives additives JP-4 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Conductivity additives ASA-3 and Stadis 450 have been found to significantly reduce static electricity in JP-4 containing approved additives when fuel conductivity is at least 100 CU at use temperatures. In the absence of conductivity additives, some additives caused increased charge accumulation which may have contributed to previous static ignited aircraft fires. Tests were performed in a Mobil Research small-scale electrification unit modified to simulate USAF fueling velocities and aircraft fuel tank configurations. DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS The start of the start of

PREFACE

This project on the influence of additives on electrostatic charging was sponsored by the USAF Aero Propulsion Laboratory at Wright-Patterson Air Force Base under contract F33615-77-C-2047. Mr. C. R. Martel of the Aero Propulsion Laboratory was the USAF Project Engineer responsible for monitoring this work. His guidance and suggestions are gratefully acknowledged.

Mr. D. L. Rhynard, was the principal investigator of record for the first half of the contract work period and is credited with the design of the experimental program. Further, Mr. Rhynard served as consultant to his successor and his contribution to the successful conclusion of the project is gratefully acknowledged.

			_/
ACCESS	ON for	re Section	
DOC MA ^{su}	ICA ION ICA ION	att Section	
BY		WAN ABI'TTY	ADDES
Dr	STRADULUM,		SPECIAL
	R		

79 04 02 11

Table of Contents

1

2 material

	Page
Section I. Introduction	1
Background	1
Objective	2
Test Apparatus	3
Test Program	7
Section II. Results	8
Preliminary SSET Results - Procedures Development	8
SSET Modifications	8
Effect of Foam and Bladder Materials on Conductivity	8
Effect of Foam on Field Strength Measurements	9
Effect of No. 4, Red Polyester Foam	12
Preliminary Conductivity Additive Results	18
SSET Reticulated Foam Results	40
Additive Charging and Compatibility Results	42
Base Fuel	42
Fractional Change in Field Strength	47
Additive Study Procedures	49
Coalescer Charging Studies	52
1. DuPont DCI-4A	52
2. UOP Unicor J	52
3. Petrolite Tolad 246	55
4. Hitec E-515	55
5. Apollo PRI-19	55
6. Ethyl 733	58
7. DuPont A033	58

Table of Contents (Cont'd.)

		Page
8.	N,N'-disalicylidene-1,2- propanediamine (MDA)	58
9.	DuPont DCI-4A + Ethyl 733	62
10.	Hitec E-515 + Ethyl 733	62
11.	Petrolite Tolad 246 + Ethyl 733	62
12.	Hitec E-515 + MDA	66
13.	Petrolite Tolad 246 + MDA	66
14.	Ethyl 733 + MDA	69
15.	Petrolite Tolad 246 + Ethyl 733 + MDA	69
16.	Summary of Coalescer Charging Studies	73
Separato	r Charging Studies	73
1.	DuPont DCI-4A	75
2.	UOP Unicor J	77
3.	Petrolite Tolad 246	77
4.	Hitec E-515	77
5.	Apollo PR1-19	77
6.	Ethyl 733	81
7.	DuPont A033	81
8.	N,N'-disalicylidene-1,2- propanediamine (MDA)	81
9.	DuPont DCI-4A + Ethyl 733	85
10.	Hitec E-515 + Ethyl 733	85
11.	Petrolite Tolad 246 + Ethyl 733	85
12.	Hitec E-515 + MDA	89
13.	Petrolite Tolad 246 + MDA	89
14 .	Ethyl 733 + MDA	89

ví

Table of Contents (Cont'd.)

	Page
15. Petrolite Tolad 246 + Ethyl 733 + MDA	93
16. Summary of Separator Charging Studies	93
Effect of Additives on Conductivity Improver Response	96
Effect of Fuel Water Content	99
MST-SSET Charging Correlation Results	99
Section III. Conclusions	108
Section IV. Recommendations	110
Appendix	111

LIST OF ILLUSTRATIONS

Figure		Page
1	Block Diagram of Small Scale Electrification Test Rig	4
2	Effect of Reticulated Foam Level on Field Strength Measurements	17
3	Effect of SSET Flow Configuration	19
4	Effect of Fuel Conductivity on Charge Accumulation	23
5	Comparison of Jet A and JP-4 Charge Accumulation	25
6	Effect of ASA-3 on JP-4 with Fuel Flow Through Coalescer	29
7	Effect of Stadis 450 on JP-4 with Fuel Flow Through Coalescer	30
8	Effect of ASA-3 on JP-4 with Fuel Flow Through Separator	32
9	Effect of Stadis 450 on JP-4 with Fuel Flow Through Separator	34
10	Effect of Temperature on JP-4 Conductivity with ASA-3 and Stadis 450	36
11	Effect of ASA-3 on JP-4 with Fuel Flow Through Coalescer and Separator	37
12	Effect of Stadis 450 on JP-4 with Fuel Flow Through Coalescer and Separator	38
13	Typical SSET Field Strength Traces from Conductivity Additized Fuels at Various Temperatures - Jet A w/ASA-3 on Red Foam	41
14	Effect of FSII on Charge Accumulation	45
15	Effect of DuPont DCI-4A on Fractional Change in Field Strength-Fuel Flow Through Coalescer	53
16	Effect of UOP Unicor J on Fractional Change in Field Strength-Fuel Flow Through Coalescer	54

and "speaks and an

- -

Figure		Page
17	Effect of Petrolite Tolad 246 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	56
18	Effect of Hitec E-515 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	57
19	Effect of Apollo PRI-19 on Fractional Change in Field Strength Fuel Flow Through Coalescer	59
20	Effect of Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	60
21	Effect of DuPont A033 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	61
22	Effect of Metal Deactivator on Fractional Change in Field Strength-Fuel Flow Through Coalescer	63
23	Effect of DuPont DCI-4A and Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	64
24	Effect of Hitec E-515 and Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	65
25	Effect of Tolad 246 and Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Coalescer	67
26	Effect of Hitec E-515 and MDA on Fractional Change in Field Strength-Fuel Flow Through Coalescer	68
27	Effect of Tolad 246 and MDA on Fractional Change in Field Strength-Fuel Flow Through Coalescer	70
28	Effect of Ethýl 733 and MDA on Fractional Change in Field Strength-Fuel Flow Through Coalescer	71
29	Effect of Tolad 246 and Ethyl 733 and MDA on Fractional Change in Field Strength-Fuel Flow Through Coalescer	72
30	Effect of Corrosion Inhibitors on Fractional Change in Field Strength-Fuel Flow Through Coalescer	74
31	Effect of DuPont DCI-4A on Fractional Change in Field Strength-Fuel Flow Through Separator	76

* ...

Figure		Page
32	Effect of UOP Unicor J on Fractional Change in Field Strength-Fuel Flow Through Separator	78
33	Effect of Petrolite Tolad 246 on Fractional Change in Field Strength-Fuel Flow Through Separator	79
34	Effect of Hitec E-515 on Fractional Change in Field Strength-Fuel Flow Through Separator	80
35	Effect of Apollo PRI-19 on Fractional Change in Field Strength-Fuel Flow Through Separator	82
36	Effect of Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Separator	83
37	Effect of DuPont A033 on Fractional Change in Field Strength-Fuel Flow Through Separator	84
38	Effect of Metal Deactivator on Fractional Change in Field Strength-Fuel Flow Through Separator	86
39	Effect of DuPont DCI-4A and Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Separator	87
40	Effect of Hitec E-515 and Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Separator	88
41	Effect of Tolad 246 and Ethyl 733 on Fractional Change in Field Strength-Fuel Flow Through Separator	90
42	Effect of Hitec E-515 and MDA on Fractional Change in Field Strength-Fuel Flow Through Separator	91
43	Effect of Tolad 246 and MDA on Fractional Change in Field Strength-Fuel Flow Through Separator	92
44	Effect of Ethyl 733 and MDA on Fractional Change in Field Strength-Fuel Flow Through Separator	94
45	Effect of Tolad 246 and Ethyl 733 and MDA on Fractional Change in Field Strength-Fuel Flow	
46	Effect of Corrosion Inhibitors on Fractional Change	95
	in Field Strength-Fuel Flow Through Separator	07

1. "Pr 1" 1

Figure			Page
47	Comparison and SSET	of Hitec E-515 and MDA Charging by MST Coalescer and Separator Elements	101
48	Comparison and SSET	of Ethyl 733 and MDA Charging by MST Coalescer and Separator Elements	102
49	Comparison and SSET	of Tolad 246 and MDA Charging by MST Coalescer and Separator Elements	103

.

•

+

xi

24.200

1

1

2 Junio 194

Figure		Fage
A1	Effect of DuPont DCI-4A on Field Strength-Fuel Flow Flow Through Coalescer	112
A2	Effect of UOP Unicor J on Field Strength-Fuel Flow Through Coalescer	113
A3	Effect of Petrolite Tolad 246 on Field Strength-Fuel Flow Through Coalescer	114
A4	Effect of Hitec E-515 on Field Strength-Fuel Flow Through Coalescer	115
A5	Effect of Apollo PRI-19 on Field Strength-Fuel Flow Through Coalescer	116
A6	Effect of Ethyl 733 on Field Strength-Fuel Flow Through Coalescer	117
A7	Effect of DuPont A033 on Field Strength-Fuel Flow Through Coalescer	118
A8	Effect of Metal Deactivator on Field Strength-Fuel Flow Through Coalescer	119
A9	Effect of DuPont DCI-4A and Ethyl 733 on Field Strength-Fuel Flow Through Coalescer	120
A10	Effect of Hitec E-515 and Ethyl 733 on Field Strength-Fuel Flow Through Coalescer	121
A1 1	Effect of Tolad 246 and Ethyl 733 on Field Strength-Fuel Flow Through Coalescer	122
A12	Effect of Hitec E-515 and MDA on Field Strength- Fuel Flow Through Coalescer	123
A13	Effect of Tolad 246 and MDA on Field Strength-Fuel Flow Through Coalescer	124
A14	Effect of Ethyl 733 and MDA on Field Strength-Fuel Flow Through Coalescer	125
A1 5	Effect of Tolad 246 and Ethyl 733 and MDA on Field Strength-Fuel Flow Through Coalescer	126

Figure	Pag	e
A16	Effect of DuPont DCI-4A on Field Strength-Fuel Flow Through Separator	
A17	Effect of JOP Unicor J on Field Strength-Fuel Flow Through Separator	
A18	Effect of Petrolite Tolad 246 on Field Strength- Fuel Flow Through Separator	
A19	Effect of Hitec E-515 on Field Strength-Fuel Flow Through Separator	
A20	Effect of Apollo PRI-19 on Field Strength-Fuel Flow Through Separator	
A21	Effect of Ethyl 733 on Field Strength-Fuel Flow Through Separator	
A22	Effect of DuPont A033 on Field Strength-Fuel Flow Through Separator	
A23	Effect of Metal Deactivator on Field Strength- Fuel Flow Through Separator	
A24	Effect of DuPont DCI-4A and Ethyl 733 on Field Strength-Fuel Flow Through Separator 135	
A25	Effect of Hitec E-515 and Ethyl 733 on Field Strength-Fuel Flow Through Separator 136	
A26	Effect of Tolad 246 and Ethyl 733 on Field Strength-Fuel Flow Through Separator 137	
A27	Effect of Hitec E-515 and MDA on Field Strength- Fuel Flow Through Separator	
A28	Effect of Tolad 246 and MDA on Field Strength- Fuel Flow Through Separator	
A29	Effect of Ethyl 733 and MDA on Field Strength- Fuel Flow Through Separator	
A30	Effect of Tolad 246 and Ethyl 733 and MDA on Field Strength-Fuel Flow Through Separator 141	

xiii

LIST OF TABLES

1

٨

A 475

Table		Page
1	Effect of Foam and Bladder on Fuel Conductivity	10
2	Effect of Reticulated Foam on Field Strength Measurement	11
3	Effect of Foam and Bladder on SSET Charging Parameters at Nominal 80°F	14
4	Effect of Foam and Bladder on SSET Charging Parameters at Nominal 25°F	15
5	SSET Temperature and Test Configuration Results on JP-4 - Red Polyester Foam	20
6	Properties of SSET Test Fuels	21
7	SSET Results on Jet A and JP-4 Containing ASA-3 - Red Polyester Foam	24
8	SSET Temperature Effects with Jet A - Red Polyester Foam - Fuel Flow Through Coalescer	26
9	SSET Temperature Effects with JP-4 - Red Polyester Foam - Fuel Flow Through Coalescer	27
10	SSET Results - JP-4 w/Stadis 450 - Red Polyester Foam	31
11	SSET Results - JP-4 w/ASA-3 - Red Polyester Foam	33
12	SSET Results on JP-4 w/Stadis 450 and ASA-3 - Red Polyester Foam - Fuel Flow Through Coalescer and Separator	39
13	Comparison of Charging with Red and Blue Foams - Fuel Flow Through Coalescer	43
14	Additive Studies - Fuel Systems Icing Inhibitor (EGME)/ASA-3	46
15	Concentration of Conductivity Additives for 100 CU at 20° and 0°F	98
16	Total Water Content of SSET Fuels	100
17	Comparison of Charge Densities from MST and SSET Coalescer, Separator and Receiver Vessels with	104
		1114

I

LIST OF TABLES (Cont'd.)

Table					
18	Comparison of Charge Densities from Coalescer, Separator and Passi	MST and	SSET		Page
	Fuel 77D-3316	Vessels	with		105
19	Comparison of Charge Densities from Coalescer, Separator and Receiver	MST and Vessels	SSET with		
	ruer //b=3514	• • • •		• •	106

Sec. Dag

A second s

. C.A.

LIST OF TABLES (Cont'd.)

Table		Page
A1	Additive Studies - EGME/DCI-4A/ASA-3/Stadis 450- Fuel Flow Through Coalescer	142
A2	Additive Studies - EGME/Unicor J/ASA-3/Stadis 450- Fuel Flow Through Coalescer	143
A3	Additive Studies - EGME/Tolad 246/ASA-3/Stadis 450- Fuel Flow Through Coalescer	144
A4	Additive Studies - EGME/Hitec E-515/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	145
A5	Additive Studies - EGME/Apollo PRI-19/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	146
A6	Additive Studies - EGME/Ethyl 733/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	147
A7	Additive Studies - EGME/DuPont A033/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	148
A8	Additive Studies - EGME/MDA/ASA-3/Stadis 450- Fuel Flow Through Coalescer	149
A9	Additive Studies - EGME/DCI-4A/Ethyl 733/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	150
A10	Additive Studies - EGME/Hitec E-515/Ethyl 733/ ASA-3/Stadis 450-Fuel Flow Through Coalescer	151
A11	Additive Studies - EGME/Tolad 246/Ethyl 733/ ASA-3/Stadis 450-Fuel Flow Through Coalescer	152
A12	Additive Studies - EGME/Hitec E-515/MDA/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	153
A13	Additive Studies - EGME/Tolad 246/MDA/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	154
A14	Additive Studies - EGME/Ethyl 733/MDA/ASA-3/ Stadis 450-Fuel Flow Through Coalescer	155
A15	Additive Studies - EGME/Tolad 246/Ethyl 733/MDA/ ASA-3/Stadis 450-Fuel Flow Through Coalescer	156
A16	Additive Studies - EGME/DCI-4A/ASA-3/Stadis 450- Fuel Flow Through Separator	157

xvi

astrong the

LIST OF TABLES (Cont'd.)

Table		Page
A17	Additive Studies - EGME/Unicor J/ASA-3/Stadis 450- Fuel Flow Through Separator	158
A18	Additive Studies - EGME/Tolad 246/ASA-3/Stadis 450- Fuel Flow Through Separator	159
A19	Additive Studies - EGME/Hitec E-515/ASA-3/ Stadis 450-Fuel Flow Through Separator	160
A20	Additive Studies - EGME/Apollo PRI-19/ASA-3/ Stadis 450-Fuel Flow Through Separator	161
A2 1	Additive Studies - EGME/Ethyl 733/ASA-3/ Stadis 450-Fuel Flow Through Separator	162
A22	Additive Studies - EGME/DuPont A033/ASA-3/ Stadis 450-Fuel Flow Through Separator	163
A23	Additive Studies - EGME/MDA/ASA-3/Stadis 450- Fuel Flow Through Separator	164
A24	Additive Studies - EGME/DCI-4A/Ethyl 733/ASA-3/ Stadis 450-Fuel Flow Through Separator	165
A25	Additive Studies - EGME/Hitec E-515/Ethyl 733/ ASA-3/Stadis 450-Fuel Flow Through Separator	166
A26	Additive Studies - EGME/Tolad 246/Ethyl 733/ ASA-3/Stadis 450-Fuel Flow Through Separator	167
A27	Additive Studies - EGME/Hitec E-515/MDA/ASA-3/ Stadis 450-Fuel Flow Through Separator	168
A28	Additive Studies - EGME/Tolad 246/MDA/ASA-3/ Stadis 450-Fuel Flow Through Separator	169
A29	Additive Studies - EGME/Ethyl 733/MDA/ASA-3/ Stadis 450-Fuel Flow Through Separator	170
A30	Additive Studies - EGME/Tolad 246/Ethyl 733/MDA/ ASA-3/Stadis 450-Fuel Flow Through Separator	171

SECTION I

INTRODUCTION

This report summarizes the investigation, "Factors Affecting Electrostatic Hazards," Contract No. F33615-77-C-2047, conducted by Mobil Research and Development Corporation (MRDC) in Paulsboro, N. J. The test program was conducted April 15, 1977 through July 15, 1978, D. L. Rhynard was the initial principal investigator and on December 1, 1978, P. W. Kirklin succeeded him as principal investigator.

Background

Since the fall of 1974, the USAF has experienced several fuel system fires believed to have been initiated by electrostatic spark discharges. The reported incidents all involved aircraft equipped with fuel tanks containing bladder cells packed with reticulated polyurethene foam. It was suspected that high fuel flow velocities, splashing and/or spraying of fuel into receiver tanks, or passage of fuel through porous media, e.g. filter-separator elements or reticulated foam could result in electrostatic charge separation in aviation turbine fuels during USAF aircraft fueling operations.

Currently, MIL-T-5624K allows for the optional use of the conductivity additive ASA-3 to minimize static charge buildup. Conductivity additives have been used for many years for static electricity protection in ground distillate fuels and commercial jet fuels, but it was not known if the AF fueling systems were conducive to the use of conductivity additive treated fuel. In the

AF system, fuel is often delivered at high velocities through restrictive nozzles into fuel tanks that may be lined with low conductivity bladder material and filled with reticulated plastic foam. If static charges are generated as fuel is delivered to the tank, the insulating properties of the foam and bladder may inhibit the ability of the anti-static additive to relax the induced electrical charge. Thus, it was considered necessary to evaluate the electrostatic hazards and additive effect in an Air Force type fueling system.

Ob jective

The primary objective of the MRDC contract was to provide specific information for guidance to the USAF on the use of conductivity (i.e. anti-static) additives in JP-4 fuel (MIL-T-5624K) as a means of reducing static electricity hazards throughout the ground refueling and aircraft fuel system.

The necessary research and testing were to be performed in order to determine the following:

(a) Are there additives or combinations of additives that aggravate the static spark discharge hazard?

(b) Does temperature or water content significantly change the effects of various additives or combinations so as to increase or decrease the static discharge hazard?

(c) Are there interactions among the fuels, additives, reticulated plastic foams, and fuel bladder cells that affect the static discharge hazard? (d) Do various fuel additive combinations significantly affect fuel charging by filter-separator elements, in high velocity fuel flow streams, and at fuel discharge conditions (i.e., fuel tank inlet ports)?

(e) Can the use of conductivity additives at too low a concentration increase the electrostatic hazards?

To meet the objectives, the contract investigated the effect of conductivity additives, ASA-3 (Shell) and Stadis 450 (DuPont) on electrostatic charge generation and accumulation in JP-4 fuel with various other additives currently permitted including fuel system icing inhibitor, (FSII) (ethylene glycol monomethyl ether, MIL-I-27686), corrosion inhibitors (QPL-25017-12) and antioxidants and metal deactivators listed in MIL-T-5624K.

Test Apparatus

The primary test apparatus was the Small Scale Electrification Test (SSET) rig developed by Mobil. This device is shown schematically in Figure 1. The SSET consists primarily of a fuel supply drum, pump, separate vessels containing coalescer and separator elements and a fuel receiving vessel, each electrically isolated via Teflon blocks. In AF refueling systems, dirt and water are removed from the fuel by similar filter-separator (F/S) elements; however, these porous media can also cause significant electrostatic charging of the fuel. In the SSET studies with clean dry fuels, the F/S elements are used primarily as charging devices and are not intended to simulate DOD water and dirt removal F/S elements or USAF

F/S practice. The SSET fuel supply, coalescer and separator vessels are interconnected by 5/16-inch (O.D.) stainless steel tubing through Teflon blocks for electrical isolation. However, the receiver fuel delivery tube is 1/2-inch (0.D.) from the Teflon block to the receiver as shown in Figure 1. Square-end orifices of either 0.10 or 0.12-inch (I.D.) can be attached to the drop tube to provide further variation of fuel linear flow velocity into the receiver. The drop tube terminates about 1 inch below the top of the receiver and about 1 inch above the fuel level at 90% full. The coalescer and separator vessels each have a net volume (total volume less the elements) of about 31.3 inches. Each contains 9 elements in parallel (Facet models CC9234 and CS9235, respectively). Fuel enters the 9 coalescer elements simultaneously through a radial distribution manifold and exits the separator elements through a similar type manifold. These manifolds are machined into the covers of the coalescer and separator vessels. Appropriate valves are provided in the SSET to allow a choice of fuel flow configurations to the receiver:

- 1) through the coalescer only
- 2) through the separator only
- 3) through the coalescer and separator in series
- 4) directly into the receiver, bypassing both

coalescer and separator.

The relaxation volume for fuel from the coalescer is primarily the net vessel volume. For fuel flow through the coalescer only, the SSET relaxation volume, including tubing is 33.8 cubic inches (0.15 gal.). For fuel flow from the separator, the SSET relaxation volume is the exit tubing volume and is equal to about 1.6 cubic inches (0.007 gal.). At flow rates of 2 gallons-per-minute (gpm) these volumes allow 4.4 and 0.2 seconds, respectively, for fuel charge relaxation before entering the receiver vessel. The receiver volume is about 5.1 gal. at 90% full.

Streaming currents to ground are measured with separate Keithly Model 445 digital picoammeters at the coalescer, separator, and receiver vessels. The reported charge densities are calculated from streaming currents by:

C.D. = $1.585 \cdot 10^{10} \cdot A/F$

where A is streaming current in amps and F is fuel flow rate in gpm. Field strengths are measured with a HP-400E AC voltmeter connected to a Chevron fieldmeter mounted in the cover of the receiver vessel. The polarity of the streaming currents were indicated by the picoammeters but the field strength meter noted field strength magnitude only.

For these studies, the fuel and mechanical components of the SSET were located in a temperature controlled room at 0° to 70°F. The electronic and monitoring devices, including a Bell and Howell, Datagraph 5-234 recording oscillograph, were located outside of the cold room. The connecting cables are depicted by broken lines in Figure 1.

Fuel charging effects are very sensitive to minute differences in fuels. Since the fuel effects are often unpredictable, it was desirable to use a single lot of fuel for all comparative studies. For Jet A studies, fuel from a single refinery run

was clay treated and drummed. A single drum of fuel was then used for each study, no fuel was re-used in the program. Two batches of JP-4 were drummed for this study. The first batch of JP-4 was clay treated and used in studies comparing Jet A and JP-4, a single drum of fuel was used for each study. The second drummed batch of JP-4 (from a different refinery than the first) was used for additive studies in JP-4, again, a separate drum of fuel was used in each additive study.

Test Program

The test program was divided into 6 specific tasks:

- Modification of the SSET; preliminary charging tests; determining the effect of bladder and foam on fuel electrification.
- The temperature-charging relationships of ASA-3 in Jet A; the effect of conductivity level on charging.
- 3) The temperature-charging relationship of ASA-3 in JP-4; the effect of conductivity level on charging; comparison of charging tendencies of Jet A vs. JP-4.
- The temperature-charging relationship of Stadis 450 in base fuel; the effect of conductivity level on charging.
- 5) Additive charging and compatibility program.
- Correlation between SSET and another fuel-charging tendency test.

SECTION II RESULTS

SSET Results - Procedures Development

This section presents the results of experiments performed to establish the effects of key variables in the SSET additive study program.

<u>SSET Modifications.</u> In Task 1, the SSET was modified to simulate the fueling flow velocities of the aircraft types that have experienced static ignitions. The pumping system was enlarged to increase the linear fuel flow velocity in the primary piping to about 20 fps. A 0.01 inch (I.D.) discharge nozzle was installed so that the fuel discharged into the reservoir at a flow velocity of about 82 fps at a 2 gpm volumetric flow rate. As a safety precaution, nitrogen inerting was installed for the tests on JP-4.

Effect of Foam and Bladder Materials on Conductivity. The fuel reservoir was fitted with a USAF-type rubber bladder liner and various reticulated foams. The USAF bladder material and reticulated foams were supplied by the USAF Project Engineer, C. R. Martel of the USAF Aero Propulsion Laboratory, Wright-Patterson AFB. Seven samples of reticulated foams and one fuel tank bladder were soaked in approximately 3 gallons of fuel, each, to determine if the fuel would leach conductive components from the bladder or foams. No significant change in fuel conductivity was observed after soaking 2 weeks in the bladder or 4 weeks with the foams. Thus, it was concluded that there would be no appreciable conductivity effect from the bladder or foam materials during the course of an individual fuel study. These results are shown in Table 1.

Effect of Foam on Field Strenth Measurements. The effect of foam on field strength measurements was investigated with the field meter calibration arrangement. Here a 300V DC voltage is impressed across two parallel metal plates 1.0 inch apart to obtain a field strength of 12 KV/m. The field meter is affixed in an opening in the upper plate. When 1.0 inch of No. 4 red polyester foam was placed between the plates, field strengths of 50 and 55 KV/m were measured with dry and fuel-wetted foam, respectively. If it is assumed that there is no charge accumulation on the foam, 12 KV/m is the expected result. If it is assumed that the foam surface accepts all the applied voltage, an infinite surface voltage is expected. This assumption and data are in Table 2. When the foam surface was lowered to 0.5 inch, a field strength of 22 KV/m was measured. This is approximately the expected field strength if the applied voltage is at the foam surface. From these data, it is apparent that the foam is being charged and is affecting the field meter results. Fine pore, blue polyether foam also accepted the applied voltage but more slowly than the No. 4 red polyester foam. Further studies with No. 4 red polyester foam and fine pore blue polyether foam appear in a later section of this report.

TABLE 1

EFFECT OF FOAM & BLADDER ON FUEL CONDUCTIVITY

all and the

ł

			Conducti	vity ((Store	CU) Af	ter ae	
No.	Designation	Initial	24 Hrs	7- K	2-WK	3-WK	4-MK
10	Jet A Base Fuel #1	2.2	2.4	1.7	1.6	•	•
:	Base fuel #1 + fuel Tank Bladder*	3.0	3.7	1.7	2.5	•	•
-	Jet A Base Fuel #2	1.2	2.9	3.0	2.5	1.9	1.5
~	Jet A Base Fuel #2	1.3	2.9	2.4	1.4	1.0	1.0
m	Base Fuel #2 + F-5 Foam #1, Yellow, Medium Pore	4.7	3.2	2.6	1.9	2.3	1.8
S	Base Fuel #2 + Polyester Foam 3, Pink, Fine Pore	2.9	3.8	3.3	2.9	2.6	2.9
9	Base Fuel #2 + Used Polyester Foam 3, Pink, Fine Pore	2.7	3.1	2.9	2.5	3.0	4.7
~	Base Fuel #2 + A-10 F-15 #4, Red Polyester, Fine Pore	2.3	2.3	1.9	1.3	1.3	1.0
4	Base Fuel #2 + New Polyether Foam 2, Blue, Coarse Pore	3.2	4.7	5.2	5.4	5.6	5.7
80	Base Fuel #2 + New X5 Pļolyether Foam 2, Blue, Coarse Pore	3.3	4.9	5.6	5.9	6.4	6.4
•	Base Fuel #2 + Polyether #6, Orange, Medium Pore	3.3	5.0	6.0	5.9	4.3	4.0

*Uniroyal Type US-566-RL (nitrile fabric)

οτ

TABLE 2

EFFECT OF RETICULATED FOAM ON FIELD STRENGTH MEASUREMENTS

Air Gap Filler*	Measured Field Strength, KV/m	Calculated Field Strength from Foam Surface
None	12	
0.5 inch No. 4, Red Polyester Foam, Dry	22	24
1.0 inch No. 4, Red Polyester Foam, Dry	55	8
1.0 inch No. 4, Red Polyester Foam, Jet A Soaked	50	8
0.75 inch Blue, Fine Pore Polyether Foam, Dry	29 (After 2.5 min.)	48

*300 vdc applied across 1 inch gap.

Effect of No. 4, Red Polyester Foam. This section focuses on specific foam effects but considers only No. 4 red polyester foam.

Charge Generation and Accumulation: When fuel is dispensed from the drop tube into the receiver, in the absence of reticulated foam, severe fuel frothing occurs. This causes erratic field strength readings at about 75% full (and above) when the froth begins to contact the meter. Therefore, to avoid this problem and compare fuel charging effects with and without foam (No. 4 red polyester foam) and bladder, comparisons were made at 70% full. These data are summarized in Tables 3 and 4. Charge densities are calculated from streaming currents measured from the coalescer, separator and receiving vessels. Because these components are electrically isolated from each other, the charge densities reported in Tables 3 and 4 show no effects for foam and bladder in the receiver which is down stream from the detection point. Field strengths are assumed to be measures of charge accumulation in the receiver vessel. Generally, highest field strengths are obtained with fuel flow through the coalescer. In general, the foam and bladder have little effect on charge accumulation.

• Charge Relaxation: Fifty percent charge relaxation times are related to the effective fuel conductivity, k. This is obtained from the relation:

 $E_{t} = E_{0} \exp - (k t/\varepsilon \varepsilon_{0})$

where E_0 and E_t are field strengths at time equal o and t seconds, respectively. ϵ_0 is the absolute dielectric constant of a vacuum (8.854 pA sec/V m) and ε is the dimensionless relative dielectric constant (equal to 2.0 for most hydrocarbon liquids). The effective conductivity in terms of the 50 percent relaxation time, t 1/2 is:

$$k(CU) = 12.27 / t_{1/2}$$

with dimension of k in conductivity units, CU, equivalent to units of picosiemens/m. Effective conductivity vs. rest conductivity differences would be of interest in distinguishing effects of different conductivity additives. Unfortunately, these fuels generally had fifty percent relaxation times of 1-2 seconds, or less, which could not be measured with better precision using the conventional methods of this study. Therefore, although static conductivities of nominal 100 CU generally yielded experimental $t_{1/2}$ of about 1 second, the resultant maximum effective conductivities of 12 CU are apparently too low and too insensitive to distinguish between additives.

At nominal 80°F, the data of Table 3 indicate that neither the flow configuration or the presence of No. 4, red polyester foam and bladder have a measurable effect on charge relaxation. At 25°F, charge relaxation times are longer than at 80°F and according to the data of Table 4, the foam and bladder result in apparent increases in fifty percent relaxation times of 400-900%. (Separate data were not obtained with bladder only or foam only at this temperature.) If charge relaxation were truly much longer with this foam and bladder, much greater charge accumulations should also occur. Since this was not observed, it is assumed that reticulated foam holds the charge giving an indicated TABLE 3

1 A. 1 4 4

ł

EFFECT OF FOAM AND BLADDER ON SSET CHARGING PARAMETERS AT NOMINAL 80°F

	0/M	Foam* or BL	adder	14	Foam* and BL	adder
Fuel Flow Configuration	Charge Density, µC/m3	Field Strength, KV/m	50% Charge Relaxation Time, Sec.	Charge Density, µC/m3	Field Strength, KV/m	50% Charge Relaxation Time, Sec.
Through Coalescer Coalescer Receiver	+126 -114	- 09	10	+130 -118	- 22	1 00
Through Separator Separator Receiver	-54	54 -	1 00	-47 +26	1 10	1 00
Through Coalescer and Separator Coalescer Separator Receiver	+159 -102 -48	1 . 1 80	1100	+105 -83 -21	110	1 1 00
「hrough By-Pass Receiver	+3	14	. 2	9-	15	œ

77

*No. 4, Red Polyester Foam

TABLE 4

apter 27

N.N

EFFECT OF FOAM AND BLADDER ON SSET CHARGING PARAMETERS AT NOMINAL 25°F

	m/0	Foam* or BL	adder	3	Foam* and B	Ladder
uel Flow Configuration	Charge Density, µC/m3	Field Strength, KV/m	50% Charge Relaxation Time, Sec.	Charge Density, vC/m3	Field Strength, KV/m	50% Charge Relaxation Time, Sec.
ihrough Coalescer Coalescer	+61		' ;	+59	';	' ;
Receiver	10-	001	17	U-	1/0	128
hrough Separator Separator	-46		•	-45	•	•
Receiver	+23	30**	11	+20	44	104
hrough Coalescer						
Coalescer	67+	•	•	+53	•	•
Separator	-53	•	•	-44	•	•
Receiver	-20	11	16	-21	32	73
hrough By-Pass						
Receiver	-19	50	15	-17	24	55

*No. 4, Red Polyester Foam **Erratic Results: data varied from 6-58 KV/m

ST

high field strength reading, while the bulk of the charge bleeds from the fuel as usual. Thus, the height of the reticulated foam in the SSET will affect the apparent field strength measurement. Typical experimental field strength recordings at two different foam heights are shown in Figure 2. Here fuel flow is through the coalescer and the receiver is lined with bladder and filled with No. 4 red polyester foam (red foam). With foam height equal to the fuel level at end-of-test, lower end-of-test field strengths are noted compared to foam height 1/2-inch above the final fuel level. Also, at end-of-test, the charge relaxes to negligible charge faster with fuel level at or above the foam surface compared to fuel level below the foam surface. These results further support the earlier assumption that the foam surface tends to become charged and the charge is relaxed more slowly from the foam than from the bulk fuel. In subsequent SSET studies, the height of the reticulated foams was cut to correspond to the final fuel level in order to minimize the foam effects on the SSET field strengths and relaxation times.

• Charge Polarity: Charge polarity was deduced from the observed sign of the streaming current from the respective electrically isolated SSET component. It was assumed that the resultant fuel polarity is opposite to that of the measured SSET component. The usual charge characteristics for the various SSET flow configurations are as follows:

Figure 2. Effect of No. 4 Red Foam Level on Field Strength Measurements

17

prist's

Flow Configuration	Usual SSET Component Charge Polarity*	Relative Charging Rate @ 70°F
Through Coalescer	+	Highest
Through Separator	-	Intermediate
Through Coalescer and Separator	+	Intermediate
Through By-Pass		Low

*Fuel polarity is assumed opposite

• Temperature Effect: The SSET charge accumulationtemperature relationships with these configurations and JP-4 fuel are shown in Figure 3. The data for these studies are presented in Table 5. The largest effects between 0° and 70°F were observed with fuel flow through the coalescer elements. Fuel flow through the combination of coalescer and separator imparted an intermediate charge to the fuel because these elements charged oppositely and thus the charges partially neutralize each other. Field strengths were higher at low temperatures despite often lower charge generation because the rate of charge relaxation was always slower as shown in Tables 3 and 4. Highest charging was observed with fuel flow through the coalescer, and this flow configuration was emphasized in subsequent studies. However, fuel flow through the separator was also examined in order to compare effects of different charge polarity.

Preliminary Conductivity Additive Results

The effect of conductivity additives in JP-4 and Jet A was investigated in Tasks 2, 3, and 4. Physical properties of the two fuels are listed in Table 6. The field strength results

FIGURE 3. EFFECTS OF SSET FLOW CONFIGURATION

Kt an

1

7 100-175

SSET TEMPERATURE AND TEST CONFIGURATION RESULTS ON JP-4 - RED POLYESTER FOAM

rge	ton ec.																									
50% Cha	Relaxat Time, S		4	\$	4	4	21	20	102	82	•	•	1	19	64			4	4	20	75		2	7	33	34
	gce Voltage X Full, KV		1.0	1.2	1.9	2.0	4.8	4.1	6.7	5.8		2.0	0.1	0.6	1.5	•		9.0	0.5	1.1	8.0		0.1	0.6	2.2	3.3
	Surfa																									
	Field Strength @ 90% Full, KV/s		28	z	52	55	132	114	186	162		9	2	16	43			18	14	30	21		4	18	62	92
c/m ³	Receiving Vessel		231-	213-	-211	109-	87-	-99	47-	42-		t o	++	12+	æ		Separator	-99	-11	24-	12+		4-	22-	29-	29-
te Density, µ	Separator	coalescer	•			•	•	•		•	ionarator	4	52-	-62	45-	•	Coalescer and	143-	-96	-88	-65	sypass	•	•	•	•
Charg	Coalescer	low Through (256+	241+	28+	26+	24+	đ	5	ţ	INNOIUT NOT			•	•		low Through (217+	20+	20+	+11	I USNOJUI MOT	•	•	•	•
	Additive	Fuel F.	None				•				 Tana	None					Fuel F	None		=		I Tani				
Total	Ppa.		•	•	•	,	•	•	•	•		•	•					•	•	•	•		•	•		•
Rest Cond.	D 3114		1.0	0.8	1.5	1.5	0.8	1.0		•	• •	1.2	1.5	0.9	•			1.1	1.5	0.8	•		1.1	1.2	8.0	•
Fuel			67	68	14	94	25	25	10	12	;	2	46	24	13			69	46	25	77		73	47	24	14
	No.		17-399	400	607	410	414	11	423	424		704	412	417	426			105	411	416	425		403	413	418	427
	Fuel		Clay Treated JP-4	B77-2, D1												20										

.

PROPERTIES OF SSET TEST FUELS

	Jet A	JP-4
Properties	*	
Gravity, °API	46.9	53.5
Distillation,°F		
IBP	325	133
10%	348	190
20%	357	214
50%	385	306
90%	467	441
E.P.	536	475
Hydrocarbon Type		
Aromatics, % Vol.	19.8	12.3
Vapor Pressure, lbs.	AND CONTRACTOR OF A	2.3
Flash Point, °F	125	ipo <u>-</u> dour in
Freeze Point, °F	-44	<-60
Viscosity a -30°F	5.88	2.28
Existent Gum mg/1	0	0
Sulfur, % Wt.		0.079
Mercaptan Sulfur, pp	om –	7

.

21

The Contraction of the contract

of JP-4 and Jet A with ASA-3 at 65° and 85°F, respectively, with red foam and fuel flow through the coalescer are shown in Figure 4. These data are presented in Table 7. Charge accumulation, i.e. field strength, at 65° and 85°F decreased rapidly as fuel conductivity increased from the 1-2 CU of non-additized fuel to 5-10 CU. Increasing conductivity further caused an additional small decline in charge accumulation. JP-4 and Jet A responded similarly to increases in fuel conductivity at ambient temperature.

The effect of charge accumulation with temperature was examined for JP-4 and Jet A without additive and with each fuel additized to nominal 100 CU at 70°F with ASA-3. These results with red foam and fuel flow through the coalescer are shown in Figure 5. Both fuels accumulated charge similarly at room temperature. At low temperatures with fuel flow through the coalescer, JP-4 (solid line) base fuel charged significantly higher than Jet A (broken line) base fuel. However, with ASA-3 dosage to achieve 100 CU at 70°F, charge accumulation at low temperatures was considerably lower with JP-4 than Jet A. The data for these Jet A and JP-4 studies are presented in Table 8 and Table 9, respectively. From the data it is apparent that the differences between JP-4 and Jet A charging at low temperatures are not due to differences in fuel conductivity. Low temperature fifty percent charge relaxation times and charge accumulations (i.e. field strengths) tend to be higher for unadditized JP-4 than unadditized Jet A, while ASA-3 significantly reduced fifty percent charge relaxation times and field strengths in both fuels. These parameters tended to be lower

FIGURE 4. EFFECT OF FUEL CONDUCTIVITY ON CHARGE ACCUMULATION

E,

23

*

TABLE 7 SSET RESULTS ON JET A AND JP-4 CONTAINING ASA-3 - RED, POLYESTER FOAM

			Rest				Charge Deni	sity, µC/m ³			50% Charge
	Run	Fuel	Cond.	Fuel Water	an ha hh h	Flow field	Coalecrer	Receiving	Max. Field Strength, KV/m	Max. Surface Voltage. KV	Relaxation Time. Sec.
Teny	ŝ	Tem. T	3	Concent, ppm	NUTLINE	ALTOLICA , THE	TOTOTOTOTO	10001	- In the design		
flaw Treated	77-784	RA	2 8		None	81.7	+111	139-	36	1.4	6
Tet A B77-1	285	5 2	2.0		=		115+	150-	37	1.3	6
17-110 'V 190	286	5 8			ASA-3		67+	42-	2	0.4	9
-	287	8	9.5				+0+	32-	6	0.4	6
	288	3 %	5.5				•	47-	6	0.4	9
	289	98	5.5		:	:	63+	-67	11	0.4	9
	294	88	10.5				+69	55-	1	9.0	4
	295	88	10.0				+99	53-	1	0.4	e
	296	68	19.0		-	-	103+	-16	1	0.7	e
	297	68	19.0				103+	-11	1	0.7	4
	302	26	47.0	36		=	65+	58-	9	0.4	3
	303	76	46.0	7, 12	-	=	63+	58-	9	0.4	2
=	304	11	94.0	10, 30	8	2	10+	54-	5	0.3	24
	305	11	105.0	10, 14	:		10+	53-	S	0.4	2
	309	44	64	•	:		42+	-04	1	0.6	3
	310	44	64		=	=	53+	42-	1	0.6	3
Clay Treated	399	67	1.0	-	None	-	256+	231-	28	1.0	4
JP-4 B77-2.	400	. 89	0.8		-	=	241+	213-	34	1.2	5
	428	73	8.0	•	ASA-3	=	51+	-26	16	9.0	1
-	429	73	6.4		-	=	55+	87-	12	0.4	1
	437	20	12.3		:		51+	73-	5	0.2	2
	438	2	11.7	•			42+	-62	7	0.3	2
	442	75	23.4				25+	-16	6	0.3	2
	643	75	24.0	•	=	=	33+	-26	6	0.3	2
	451	65	64				103+	82 -	4	0.1	2
-	452	65	59	•			113+	-61	5	0.2	2
-	456	67	94				104+	-02	5	0.2	2
	457	67	94		=		106+	75-	9	0.2	2

-

FIGURE 5. COMPARISON OF JET-A AND JP-4 CHARGE ACCUMULATION

I link for

1 1 1

> SSET TEMPERATURE EFFECT WITH JET A - RED, POLYESTER FOAM .

(Fuel Flow Through Coalescer)

			Rest									
	Run	Fuel	Cond.,	Fuel Water Content, ppm		E	Charge Den	stry, uc/m3			50% Charge	
In	No.	TemF	0 3114	Total	Additive	Velocity, fps	Coalescer	Vessel	Field Strength 90% Full, KV/m	Max. Surface Voltage, KV	Relaxation Time. Sec.	
Clay Treated Jet A,	77-244	63	0.9		None	82	+8.9	-96				
D77-1, D7	245	63	0.8		=	5=	169		7 2	1.8	~ '	
	256	52	6.0	30			190	1 0	ຈ :	8.7	-	
	257	52	0.7	8		-	+26		3:	6.0	6.	
with a second	258	23	0.6		:		đ		3 9		•	
	259	23	0.6		:	=	5 a	4 6	201	3.2	53	
	260	23	0.5	30			; t	1.	707		44	
	267	80		12			5 3	-9[0.		4 -	
	268	80	0.2	ม	:	=	ŧ		0 4	0.7	4.	9
	269	80		ກ			; #	-91	77	1.1	4 0	6
	273	2	0.2	26	:		t,		÷	4.t	5 G	
	274	2	0.2	26	-		204	, J	2 ¥		40	
	. 275	e	0.2	×			+02		2 #		40	
	284	84	2.8	•	:		+111	-021	22	0.5	16	
No. of the second secon	285	84	2.0	•	:		1111	150-	s :	1.4	6	
	304	11	94	10.30	ASA-3	F	101	-77	3/	1.3		
	305	11	105		=	=	101		•••			
	309	44	64				107		-	4.0	2	
	310	44	64	•			174		.	9.0	m	
	316	22	41		:	=	120	-74	, س	9.0	m	
	317	22	44				1/0		83	6.0	m	
	318	9	24			-	1244	-130-	7 5	1.1	e .	
	319	e	26			=	1111		19	3.1	4	
	320	•	24		:		1001	-971	92	3.1	4	
							tent	120-	00		•	

Sept. 184

SSET TEMPERATURE EFFECTS WITH JP-4 - RED, POLYESTER FOAM

(Fuel Flow Through Coalescer)

			Reat				Charge Dens	ity. uc/m3			SAT Charge
Ini		Tan'	B	Water, ppm		Flow fre	Contractor	Receiving	Field Strength	Surface Voltage	Relaxation
	2	14.0.0	ATTC A	TOTAT	ATTTODY	ALL STITUTE	CONTENCEL	VEBBET	HAN TITAL YOL A	AN TITTLY AND A	11me, 960.
Clay Treated. JP-4	77-399	67	1.0		None	82	2564	231-	28	1.0	4
B77-2. D1	400	68	0.8	•	:		241+	213-	34	1.2	5
	404	47	1.5		:		284	-11	52	1.9	4
	410	9 7	1.5		:		264	109-	55	2.0	4
	414	2	0.8	•	:		244	87-	132	4.8	21
	415	12	1.0	•			10	-99	114	4.1	20
	423	19		•			t	47-	186	6.7	102
	424	2	•	•	=	=	ţ	42-	162	5.8	83
	456	67	46	- 8 - S	ASA-3		104+	70	5	0.2	2
	457	67	94		:		106+	75-	9	0.2	2
	466	46	49				85+	52-	9	0.2	1
	467	14	64		=		154	44-	1	0.3	2
	471	21	8				55+	41-	15	0.5	e
	472	12	35	•	:	-	45+	4	14	0.5	e
	480	4	18	•	-		27+	51-	21	0.8	4
	187	4	18	•	-		55 +	۲	8	1.1	2
	464	25	(180)*	-	ASA-3	=	51+	-12	10	0.4	2
	495	2	170	•	:		505	-59		0.3	
	485		46	•			32-	-18	24	6.0	
	486		105	24	=		31-	92-	24	0.9	7
*ASTH D 2624											
8 e											

22

.

.

for JP-4 than Jet A. The sensitivity of the fuel response to the conductivity additive may depend upon the micro and macro composition and characteristics of the particular fuel, the SSET flow configuration (as it effects charge magnitude and polarity), or the nature of the foam.

The effect of SSET flow configuration with JP-4 was investigated (with red foam) with base fuel, and base fuel additized to 100 CU at 70°F and at 0°F with ASA-3 and Stadis 450. Results of fuel flow through the coalescer are presented in Figure 6 (and Table 9) for ASA-3 and Figure 7 (and Table 10) for Stadis 450. ASA-3 effectively reduces JP-4 charge accumulation down to 3°F, or lower, with either dosage. However, Stadis 450 is ineffective at low temperatures with red foam and this fuel flow configuration (Figure 7). Fuel additized to 100 CU at 70°F with Stadis 450 is pro-static, i.e. accumulates more charge than base fuel, when the temperature is decreased below about 13°F. This fuel had conductivity of 32 CU at 19°F. At 0°F, fuel additized to conductivity of 100 CU at 0°F with Stadis 450 accumulated about the same charge as base fuel with fuel flow through the coalescer.

Fuel flow through the separator charges fuel to opposite polarity compared to the coalescer and generally to lower charge magnitude. Results with red foam and with fuel flow through the separator are shown in Figure 8 (and Table 11) for ASA-3 and Figure 9 (and Table 10) for Stadis 450. With this SSET fuel flow configuration, ASA-3 usage at a concentration to provide 100 CU at 70°F is not effective below about 40°F (Figure 8) but Stadis 450 usage to provide similar conductivity at 70°F (Figure 9) does control

)()

FIGURE 6. EFFECT OF ASA-3 ON JP-4 VITH FUEL FLOV THROUGH COALESCER

SSET RESULTS - JP-4 W/STADIS 4,50 - RED POLYESTER FOAM

50% Charge Relaxation Time, Sec. τε 4339225 108 23 L Surface Voltage @ 90% Full, KV 0.04 0.3 3.5 3.5 6.5 0.9 6.1 6.1 Field Strength @ 90% Full, KV/m 141 141 180 8 0 8 9 181 Receiving Vesse1 911988944 196-194-229-235-35+ 5273 Charge Density, µC/m³ Separator Coalescer Separator 5643 4684 24-1 1 Flow Through Coalescer Flow Through 3324 3364 3364 3364 3364 1914 1944 2954 2944 3214 3214 1764 11764 11834 11834 1964 450 450 Additive Fuel Fuel Stadis None . Stadis None : ... : . . . = = : : = = = : Total Water, mdd - - 32 4 - 52 - 44 **.**60 42,48 50,50 52 56 32,36 1 8682 828 1.181 39.38 1 1 Rest Conductivity, CU D 3114 D 2624 1 23 28 1 1 44 0 001 2823 130 81.5 105 44 44 105 233 34 74 44 1.9 0.9 0.9 0.9 0.6 0.9 1.1.0 19934 3388 1 1 Ten. 24444400 5599959vvvv 4 4 22 \$ 974 295 27 Run No. 77-508 509 513 514 522 523 523 523 523 570 575 575 585 586 590 591 592 593 613 616 609 610 525 521 573 578 588 595 4-4F Clay Treated B77-2, D3 Fuel

TABLE 10

1

SSET RESULTS - JP-4 W/ASA-3 - RED, POLYESTER FOAM

(Fuel Flow Through Separator)

	502 (urface Voltage Relay	90% Full, KV Time,		1.0	9.0	1.5 64	0.07		0.0	0.2	0.1
		Field Strength S	@ 90% Full, KV/m @	4		16	43	6	1.0	60	150	4 4
•	uc/m	Receiving	Vessel	+8	4	12+	ŧ	71+	147+	273+	300+	25+ 21+
	e Density,		Separator	-9	52-	-2	45-	51-	115-	269-	304-	82- 31-
	Charg		Coalescer		•	•	•		-	•		
			Additive	None	=	:		ASA-3		:		ASA-3
		Water, ppm	Total			•	•	•		•	9* 1	- 86
Kest	Cond.	B	D 3114	1.2	1.5	0.9		105	76	38	19	- 105
		Fuel	Temp., °F	72	46	24	13	69	97	21	\$	28
		Run	No.	77-402	412	417	426	459	469	474	484	497
				3P-4								
			Fuel	Clay Treated,	B77-2, D1							

test in the

static charge accumulation between 0° and 70°F. With conductivity additive dosage to provide 100 CU at 0°F, both additives satisfactorily control fuel charging. Since coalescer charged fuel was generally negative and separator charged fuel was generally positive, ASA-3 may be more efficient at controlling negative fuel charge while Stadis 450 may more efficiently control positive fuel charge. Alternately, there may be differences in coalescer and separator charging mechanisms with ASA-3 and Stadis 450 additized fuels. These results are not explained in terms of different fuel conductivities, since ASA-3 and Stadis 450 both responded similarly to temperature (Figure 10).

With red foam and fuel flow through SSET coalescer and separator, neither ASA-3 (Figure 11) nor Stadis 450 (Figure 12) are effective at both low conductivity (i.e. less than about 30 CU) and low temperature. Either charging or additive relaxation effects determine the combined result of flow through the SSET coalescer and separator elements with ASA-3 or Stadis 450. When the conductivity additive is most effective at controlling negative or coalescer charged fuel, as for ASA-3, essentially neutral charged fuel is delivered to the separator and separator charging and relaxation effects dominate. However, whenever high coalescer charging is not being controlled by the conductivity additive, as with Stadis 450, then the positive separator charge may not neutralize the unrelaxed negative charges and the effects of coalescer charging and relaxation dominate. The conductivity additive/JP-4 data for fuel flow through the SSET coalescer and separator are presented in Table 12.

SSET RESULTS ON JP-4 W/STADIS 450 AND ASA-3 - RED, POLYESTER FOAM

(Fuel Flow Through Coalescer and Separator)

			Rest Cond.			Charge	e Density,	µС/ш ³			50% Charge	
Fuel	Run No.	Fuel Temp., *F	CU D 3114	Water, ppm Total	Additive	Coalescer	Separator	Receiving Vessel	Field Strength @ 90% Full, KV/m	Surface Voltage @ 90% Full, KV	Relaxation Time, Sec.	
Clay Treated JP-4	77-510	74	2.0		None	161+	123-	-80	0	0	41	
B77-2, D3	515	40	1.0	80	:	123+	103-	*	13	0.5	90	
	524	21	6.0		:	+65	87-	41+	99	2.4	37	
	530		9.0			51+	-51	35+	30	1.1		
	572	73	94		Stadis	190+	253-	80+	4	0.1	1	
	577	40	42	64	450	294+	325-	55+	10	0.4	3	
	587	19	35			314+	356-	+62	102	3.7	4	
	594	5	23	42	:	178+	348-	36+	330	11.9	3	
	618	27		•		321+	365-	17+	2	0.07	1	
	611	4	94	48	-	356+	395-	+66	120	4.3	2	-
Clay Treated JP-4	401	69	1.1		None	217+	143-	-99	18	0.6	4	
B77-2, D1	411	46	1.5			20+	-96	-11	14	0.5	4	
	416	25	0.8		-	20+	-88	24-	8	1.1	20	
	425	12	•		=	+11	-65	12+	21	0.8	75	
	458	68	100	•	ASA-3	95+	158-	13+	1	0.04	2	
	468	47	20		:	62+	175-	120-	80	0.3	2	
	473	21	38	•		356+	284-	234+	09	2.2	3	
	482	4	19	•		205+	346-	303+	105	3.8	4	
	969	27			5-42A	+15	ţ	+66	e		Y	
	487	, o	96	22	-	153+	202-	32+	, IJ	0.5	1 01	

SSET Reticulated Foam Results

Effects of reticulated foam in the receiver vessel have been noted earlier. Field strengths obtained during the early portion of the run with conductivity additized fuel and the summary of effects between number 4, red polyester foam (red foam) and blue, fine pore, polyether foam (blue foam) are presented in this section.

Typical recorded SSET field strength traces as obtained while filling foam-filled receivers with fuel containing conductivity additive are shown in Figure 13. This example is for Jet A containing ASA-3 with fuel flow through the SSET coalescer and the receiver vessel lined with bladder and filled with red foam. Initially, there is an increase in the magnitude of the field strength during the first 10-40% of fill followed by a decrease in field strength. This is followed by another increase in field strength to a maximum at the end-of-test when the fuel level rises above the foam surface. While the field strength meter does not normally respond to field polarity, it was independently determined that this behavior represented, in some cases, an actual change of field polarity as the vessel fills. It is assumed that the initial maxima represent peak charge on the foam surface and the second maxima the charge on the fuel surface at end-of-test. The field strengths of this report are end-of-test field strengths. It is assumed that these field strengths reflect fuel effects while the shape, magnitude, or polarity of the field strength records when the receiver fuel level is below the foam surface, reflect foam effects and have minimal effect on fuel charging results. Future work should consider a detailed evaluation of these phenomena.

Although the additive compatibility studies were all with No. 4, red polyester foam (red foam), charging comparisons have been made between SSET charging effects with red foam and blue, fine pore, polyether foam (blue foam). Table 13 presents the SSET charge accumulation results with red foam and blue foam, with Jet A and JP-4, and shows the effects of temperature and conductivity additives ASA-3 and Stadis 450.

These results suggest:

- Without conductivity additive, with fuel flow through the coalescer, field strengths are generally much higher with blue foam than with red foam. This is especially true between 70° and 20°F which covers nearly all fuel handling temperatures in the field. At 5°F with Jet A (and one JP-4 drum), the data are less convincing.
- 2) With ASA-3, with fuel flow through the coalescer, charge accumulations are substantially reduced with either red foam or blue foam except at 5°F. In general, the field strengths are slightly higher with the blue foam:
- Stadis 450, with JP-4 fuel flow through the coalescer, does not control field strengths adequately with either foam at 20° and 5°F.

Additive Charging and Compatibility Results

Base Fuel. As previously noted, MIL-T-5624K requires or permits several additives in JP-4. FSII, ethylene glycol monomethyl ether (EGME) is a required additive and, therefore, 0.15%

COMPARISON OF CHARGING WITH RED AND BLUE FOAMS FUEL FLOW THROUGH COALESCER

	Field Stren	gth, KV/	m w/Red F	oam	Field Stre	ngth, KV	/m w/Blue	Foam
<u>Fuel</u>	<u>70°F</u>	<u>20°F</u>	<u>5°F</u>		70°F	<u>20°F</u>	<u>5°F</u>	
Base Fuels w/o Additive								
Jet A, B77-1, D7	33	60	68		220	104	45	
JP-4, B77-1, D2	10	133	193		130	335	305	
JP-4, B77-2, D1	30	137	206		250	253	255	
JP-4, B77-2, D3	25	175	190		230	150	40	
Base Plus ASA-3 (100 CU @ 70 F)								
Jet A, B77-1, D7	4	33	80		5	50	96	
JP-4, B77-2, D1	5	15	24		15	40	70	
Base Plus Stadis 450 (100 CU @ 70 F)								
JP-4, B77-2, D3	20	120	375		5	370	625	

EGME was used in the base fuel. Figure 14 and Table 14 show the effect of EGME on charge accumulation between 20° and 65°F with red foam and fuel flow through the coalescer. At 25° and 65°F the JP-4 base fuel field strengths are similar to those of EGME additized fuel but higher at 42°F. In general, measured field strengths tended to increase as fuel temperature decreased. While the opposite effect (decrease in field strength as temperature is reduced) was generally not observed, effects similar to the base fuel field strengths of Figure 14 did occur in several test series. It is assumed that charging differences may be attributed to undetermined fuel or SSET factors. All JP-4 fuels for these additive studies were from a single production run and were stored in separate fifty-five gallon drums for each additive study. Small differences in impurities were thus possible between various drums of fuel. Also for each additive study, nine new coalescer and nine separator elements are installed in the appropriate vessles and it is assumed that individual coalescer or separator elements may not charge identically. (Nine elements would tend to average small differences in charging properties but some small variations are still possible.) Further, each additive study used a fresh red foam sample in the receiver. These possible drum-to-drum variations of fuel, element-to-element variance of coalescers and separators, and the sample-to-sample differences of reticulated red foams are not independently controlled. Instead, the drum of fuel is sequentially additized and charging effects analyzed on the same fuel before and after additization. In summary, the results for this fuel, with fuel flow through the coalescer and red foam in the

FIGURE 14. EFFECT OF FSII ON CHARGE ACCUMULATION

45

.

-

1

N. A. SAND

2 matriana

ADDITIVE STUDIES - FUEL SYSTEM ICING INHIBITOR (EGME)/ASA-3

(Fuel Flow Through Coalescer)

	Bun	-	Cond.	Total		Charge Dens	ity, µC/m ³			50% Charge
Inel	No.	L.	D 3114	ppm	Additive	Coalescer	Vessel	e 90% Full, KV/m	e 90% Full, KV	Time, Sec.
P-4. 77D-3299	626	99	9 [75	None	¥69	51-	96	3.5	24
	627	99		99		44	41-	78	2.8	37
	623	44	1 4	67	:	61+	42-	120	4.3	76
	624	44				574	54-	120	4.3	65
	625	3		12	:	584	-0 1	115	4.1	65
	628	24	1.4	45		24+	19-	78	2.4	123
	269	24	0.0	59		21+	24-	102	3.7	54
	630	24	0.1	59	:	21+	24	96	3.5	78
	631	24	١.	1	-	17+	18-	52	1.9	32
	637	64	1.8	44.38	EGME	174	57-	70	2.5	10
	638	64			=	24+	46-	40		13
	639	64	1.8	45	:	254	45-	39	1.4	80
	640	65	2.0	44	:	284	43-	37	1.3	6
	634	44	3.5	40	:	484	æ	33	1.2	9
	635	44	1.8	32		33	ま	48	1.7	12
	636	44	1.8	40		28t	40-	51	1.8	1
	632	22	1.2	26.30		464	44-	110	4.0	26
	633	22	1.2	35		47+	41-	011	4.0	43
	641	25	Q	28.48	EGME/	194	-611	19	0.7	1
	642	ន	22	26	ASA-3	1194	154-	17	0.6	2
	643	27	116,123	32,35		126+	-961	п	0.4	1
	644	27	116	36		124+	-661	12	0.4	1

1

receiver indicate that EGME has no significant effect on charge accumulation at 23° and 65°F but may be pro-static, i.e. increases charge accumulation, at intermediate temperatures. After the tests with EGME, ASA-3 was added to the fuel and the fuel then retested. With fuel flow through the coalescer and red foam in the receiver, ASA-3 effectively reduces charge accumulation.

Fractional Change in Field Strength. In the preliminary SSET charging studies, absolute values of the field strength in the receiver (at 90% full) were applied for assessment of resultant charge accumulation. A slightly different approach was used to compare additive charging effects. As previously noted, in the additives and additive combination studies, a fresh drum of JP-4 fuel (all from the same batch) was used with new coalescer and separator elements and new red polyester foam in the receiver vessel. A base fuel (JP-4 + EGME) run was made each time and the effect of the additives determined relative to the respective base fuel. This relative comparison compensated for individual variations among drummed fuels, coalescer/separator elements and foam samples. The parameter, fractional change in field strength, dF, was defined:

$$dF = \frac{F - F_o}{F_o}$$

where F is absolute value of Field Strength with the additive and F_{o} is absolute value of field strength without the additive.

To illustrate: a negative value of dF indicates the additive is antistatic, i.e. results in less fuel charging. Complete elimination of static charge accumulation, i.e. F = 0, leads to:

$$dF = \frac{-F_o}{F_o} = -1.0$$

If the additive has no effect on charge accumulation, $F = F_0$, and

$$dF = 0$$

If the additive is pro-static and causes an increase in charge accumulation, dF is positive. For example, if the field strength doubles or triples, i.e. $F = 2F_0$ or $3F_0$ then

$$dF = \frac{2F_{0} - F_{0}}{F_{0}} = +1.0$$

$$dF = \frac{3F_o - F_o}{F_o} = +2.0$$

OT

The fractional change in field strength, dF, calculated from best-fit curves of the experimental field strength data, permitted comparable comparisons of different fuel charging conditions. In order to focus attention on the additive and additive combination effects in this report, only dF comparisons are made. Data summaries and absolute field strength plots for all additive and combinations studies are in the appendix. The order of the additive presentation does not correspond to the order in which the runs were made so that run numbers in the tables are not necessarily consecutive.

At temperatures around 70°F, absolute field strengths in the SSET were generally low. It is expected that static electric charging in the field is also low in this temperature range. Thus, increases in field strength of less than 100%, i.e. up to double the base fuel field strength, were generally considered not significant around 70°F. With fuel flow through the SSET separator, the absolute field strengths were generally low at all temperatures. However, the SSET separator generated a specific type of charge and it cannot be assumed that this type of charge is small in the field and thus are considered in these SSET studies in spite of their low magnitude. Therefore, although dF parameters from low field strength separator charging data are less precise than results from high field strength coalescer charging, the same dF criteria were used for noting significant effects. The test for dF significance in either SSET flow configuration (at temperatures below about 50°F) was that changes greater than ± 0.5 are to be considered significant.

Additive Study Procedures. In the additive and additive combination studies, the following experimental procedures were applied. Since FSII is mandatory in JP-4 fuel, 0.15% EGME was used in all base fuels. The usual practice was to add EGME at room temperature and then obtain at least duplicate runs with fuel flow through the coalescer followed by runs with fuel flow through the separator. After each test run, the fuel in the SSET receiver was returned to the supply drums. The temperature of the room was then lowered overnight to nominal 35°F and the run sequence repeated at the new temperature. The same procedures were repeated at nominal 0°F. After the base fuel runs were completed at 0°F, the approved additive or additive combination was added to the supply drum at 0°F. The fuel was pumped between the reserve drum and the

supply drum to achieve complete mixing of the additives. The SSET charging of base fuel plus additive was then examined successively at nominal 0°, 35° and 70°F. Following these tests at 70°F, the fuel was divided into two parts, one part was additized with ASA-3 and the other with Stadis 450. The fuel was circulated through the coalescer and separator elements to effect mixing and to condition these devices to the conductivity additive. SSET charging tests were run at nominal 25°F and 0°F with one additive before the second portion of fuel was additized and the test sequence repeated. To avoid contamination of the conductivity additives after the first conductivity additive had been examined, the coalescer, separator and receiver vessels (containing elements and foam, respectively) were flushed with clean Jet A until the conductivity of the effluent fuel was equivalent to fresh fuel. The test sequence of ASA-3 and Stadis 450 was alternated in successive additive studies. After each study, the fuel was discarded, i.e. a fresh drum of fuel is used for each study, no fuel is re-used.

The following list of fifteen additives or combinations were examined without and with conductivity additives, Shell ASA-3 and DuPont Stadis 450 (Fuel System Icing Inhibitor (FSII) ethylene glycol monomethyl ether @ 0.15% vol. was included in all fuels.):

- 1) Five corrosion inhibitor additives.
 - (a) DuPont DCI-4A @ 8 lbs./1000 bb1.
 - (b) UOP Unicor J @ 8 lbs./1000 bb1.
 - (c) Petrolite Tolad 246 @ 8 lbs./1000 bbl.
 - (d) Hitec E-515 @ 16 lbs./1000 bbl.
 - (e) Apollo PRI-19 @ 8 lbs./1000 bbl.

- 2) Two antioxidant additives.
 - (1) Ethyl 733 @ 8.4 lbs./1000 bb1.
 - (b) DuPont A0-33 @ 8.4 1bs./1000 bb1.
- 3) Metal Deactivator Additive (MDA).

N,N'-disalicylidene-1,2-propanediamine @ 2 lbs./ 1000 bbl.

On the basis of these tests, the following additive combinations were tested.

- Three corrosion inhibitor/antioxidant combinations.
 - (a) DuPont DCI-4A/Ethyl 733 @ 8.0 and 8.4 lbs./1000 bbl., respectively.
 - (b) Hitec E-515/Ethyl 733 @ 16.0 and 8.4 lbs./ 1000 bbl., respectively.
 - (c) Petrolite Tolad 246/Ethyl 733 @ 8.0 and
 8.4 lbs./ 1000 bbl., respectively.
- 5) Two corrosion inhibitor/MDA combinations.
 - (a) Hitec E-515/MDA @ 16.0 and 2.0 lbs./1000 bbl., respectively.
 - (b) Petrolite Tolad 246/MDA @ 8.0 and 2.0 lbs./ 1000 bbl., respectively.
- One antioxidant/MDA combination.
 Ethyl 733/MDA @ 8.4 and 2.U lbs./1000 bbl., respectively.
- One corrosion inhibitor/antioxidant/MDA combination
 Petrolite Tolad 246/Ethyl 733/MDA @ 8.0, 8.4, and
 2.0 lbs./1000 bbl., respectively.

Coalescer Charging Studies.

1. DuPont DCI-4A (corrosion inhibitor)

With fuel flow through the SSET coalescer, 8.0 lbs./1000 bbl. DuPont DCI-4A significantly increased the charge accumulation of base fuel, JP-4 + 0.15% EGME, between about 20° and 10°F. However, around 3°F the additized fuel accumulated only about half as much charge as base fuel. The trend reversal at 3°F was not typical. Generally, as the SSET temperature decreased, lower charge densities were obtained but these charges relaxed more slowly at low temperatures. The effect of longer relaxation times generally resulted in greater charge accumulation in the receiver at low temperatures. The results at 3°F with base fuel containing DuPont DCI-4A are not readily explained relative to other additive results. Increasing fuel conductivity to nominal 100 CU at 0°F with ASA-3 or Stadis 450 effectively reduces charge accumulation almost 100%. The DuPont DCI-4A results are shown in Figure 15. For DuPont DCI-4A with conductivity additives, studies were performed at 0°F only. The field strength results are presented in Appendix Figure Al. All data for this additive study are in Appendix Table A1.

2. UOP Unicor-J (corrosion inhibitor)

With fuel flow through the SSET coalescer, UOP Unicor J was antistatic, i.e. accumulated less charge relative to base fuel, between 20° and 70°F. Increasing fuel conductivity to nominal 100 CU at 20°F with ASA-3 or Stadis 450 reduced charge accumulation further by 70-80%. Data were not obtained below 25°F for this additive. These results are shown in Figure 16. The

- 2) Two antioxidant additives.
 - (1) Ethyl 733 @ 8.4 lbs./1000 bbl.
 - (b) DuPont A0-33 @ 8.4 lbs./1000 bb1.
- 3) Metal Deactivator Additive (MDA).

N,N'-disalicylidene-1,2-propanediamine @ 2 lbs./ 1000 bbl.

On the basis of these tests, the following additive combinations were tested.

- Three corrosion inhibitor/antioxidant combinations.
 - (a) DuPont DCI-4A/Ethyl 733 @ 8.0 and 8.4 lbs./1000 bbl., respectively.
 - (b) Hitec E-515/Ethyl 733 @ 16.0 and 8.4 lbs./ 1000 bbl., respectively.
 - (c) Petrolite Tolad 246/Ethyl 733 @ 8.0 and 8.4 lbs./ 1000 bbl., respectively.
- 5) Two corrosion inhibitor/MDA combinations.
 - (a) Hitec E-515/MDA @ 16.0 and 2.0 lbs./
 1000 bb1., respectively.
 - (b) Petrolite Tolad 246/MDA @ 8.0 and 2.0 lbs./ 1000 bbl., respectively.
- One antioxidant/MDA combination.
 Ethyl 733/MDA @ 8.4 and 2.U lbs./1000 bbl., respectively.
- One corrosion inhibitor/antioxidant/MDA combination
 Petrolite Tolad 246/Ethyl 733/MDA @ 8.0, 8.4, and
 2.0 lbs./1000 bbl., respectively.

field strength data are presented in Appendix Figure A2. All data are presented in Appendix Table A2.

3. Petrolite Tolad 246 (corrosion inhibitor)

With fuel flow through the SSET coalescer, 8.0 lbs./1000 bbl. Petrolite Tolad 246 had no significant effect on base fuel from about $5^{\circ}F$ to $70^{\circ}F$ within the dF tolerances of ± 0.5 . Increasing fuel conductivity to nominal 100 CU at $0^{\circ}F$ with ASA-3 or Stadis 450 significantly reduced charge accumulation by more than 80%. Conductivity additives were added at $0^{\circ}F$ only. These results are shown in Figure 17. Field strength data are plotted in Appendix Figure A3; all data are in Appendix Table A3.

4. Hitec E-515 (corrosion inhibitor)

With fuel flow through the SSET coalescer, 16 lbs./1000 bbl. Hitec E-515 was anti-static to base fuel between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0°F with ASA-3 or Stadis 450 decreased charge accumulations by more than 90%. These results are shown in Figure 18. Field strength data are plotted in Appendix Figure A4; the data are tabulated in Appendix Table A4.

5. Apollo PRI-19 (corrosion inhibitor)

With fuel flow through the SSET coalescer, 8.0 lbs./1000 bbl. Apollo PRI-19 was pro-static (dF > 0.5) below about 10° F. The pro-static effects above about 68° F may not be significant because, as noted, charge accumulation is generally low around ambient temperature and fractional increases less than 1.0 may not represent a static hazard. Apollo PRI-19 generally had no static effects on base fuel between 30° and 65° F. Increasing fuel conductivity to nominal 100 CU at 0° and 25° F with ASA-3 or Stadis 450

significantly decreased charge accumulation by more than 90%. These results are shown in Figure 19. The field strength data are plotted in Appendix Figure A5; all data are presented in Appendix Table A5.

6. Ethyl 733 (antioxidant)

With fuel flow through the SSET coalescer, 8.4 lbs./1000 bbl. Ethyl 733 was generally anti-static to base fuel or had essentially no effect. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 decreased charge accumulations further by more than 90%. These results are shown in Figure 20. The field strength data are plotted in Appendix Figure A6; all data are in Appendix Table A6.

7. DuPont A033 (antioxidant)

With fuel flow through the SSET coalescer, 8.4 lbs./1000 bbl. DuPont A033 had no significant effect on base fuel charge accumulation between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 resulted in decreases in charge accumulation of more than 90%. These results are shown in Figure 21. The field strength data are plotted in Appendix Figure A7; all data are in Appendix Table A7.

8. N,N'-disalicylidene-1,2-propanediamine (metal deactivator, MDA)

With fuel flow through the SSET coalescer, 2.0 lbs./1000 bb1. MDA had no significant effect on base fuel charge accumulation between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 resulted in decreases in charge accumulation of more than 90%. These results are

FIGURE 19. EFFECT OF APOLLO PRI-19 ON FRACTIONAL CHANGE IN FIELD STRENGTH

1

EFFECT OF ETHYL 733 ON FRACTIONAL CHANGE IN FIELD STRENGTH FIGURE 20.

FIGURE 21. EFFECT OF DU PONT A033 ON FRACTIONAL CHANGE IN FIELD STRENGTH

shown in Figure 22. The field strength data are plotted in Appendix Figure A8; all data are in Appendix Table A8.

9. DuPont DCI-4A + Ethyl 733

With fuel flow through the SSET coalescer the additive combination 8.0 and 8.4 lbs./1000 bbl. of corrosion inhibitor DuPont DCI-4A and antioxidant Ethyl 733, respectively, was antistatic relative to base fuel charge accumulation between about 3° and 70°F. Below about 3°F, the additized fuel was pro-static relative to base fuel. This agrees with earlier DCI-4A data which indicated pro-static characteristics at low temperatures (Figure 15). Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 resulted in significant reductions in charge accumulation of about 85-90%. These results are shown in Figure 23. The field strength data are plotted in Figure A9; all data are in Appendix Table A9.

10. Hitec E-515 + Ethyl 733

With fuel flow through the SSET coalescer, the additive combination 16.0 and 8.4 lbs./1000 bbl corrosion inhibitor Hitec E-515 and antioxidant Ethyl 733, respectively, had no significant effect on base fuel charge accumulation between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 resulted in significant reductions in charge accumulation of about 80-90%. These results are shown in Figure 24. The field strength data are plotted in Appendix Figure Al0; all data are in Appendix Table Al0.

11. Petrolite Tolad 246 + Ethyl 733

With fuel flow through the SSET coalescer, the additive

FIGURE 22. EFFECT OF METAL DEACTIVATOR ON FRACTIONAL CHANGE IN FIELD STRENGTH

combination 8.0 and 8.4 lbs./1000 bbl corrosion inhibitor Petrolite Tolad 246 and antioxidant Ethyl 733, respectively, was significantly anti-static to base fuel between about 13° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 resulted in further reductions in charge accumulation of more than 80%. These results are shown in Figure 25. The field strength data are plotted in Appendix Figure All; all data are in Appendix Table All.

12. Hitec E-515 + MDA

With fuel flow through the SSET coalescer, the additive combination 16.0 and 2.0 lbs./1000 bbl. corrosion inhibitor Hitec E-515 and metal deactivator MDA, respectively, was slightly prostatic to base fuel above about 50°F. As previously noted, modest increases in charge accumulation at ambient temperatures may not be significant because the absolute field strengths are generally low at these temperatures. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 and at 75 F with ASA-3 significantly reduced charge accumulation by more than 80%. These results are shown in Figure 26. The field strength data are plotted in Appendix Figure A12; all data are in Appendix Table A12.

13. Petrolite Tolad 246 + MDA

With fuel flow through the SSET coalescer, the additive combination 8.0 and 2.0 lbs./1000 bbl. corrosion inhibitor Petrolite Tolad 246 and metal deactivator MDA, respectively, had no significant effect on base fuel charge accumulation from about 0°F to 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 and at 70°F with Stadis 450 resulted

in reductions in charge accumulation of more than 90%. Those results are shown in Figure 27. The field strength data are plotted in Appendix Figure Al3; all data are in Appendix Table Al².

14. Ethyl 733 + MDA

With fuel flow through the SSET coalescer, the additive combination 8.4 and 8.0 lbs./1000 bbl antioxidant Ethyl 733 and metal deactivator MDA, respectively, was insignificantly antistatic to base fuel between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 and at 70°F with Stadis 450 resulted in significant reductions in charge accumulation of more than 90%. These results are shown in Figure 28. The field strength data are plotted in Appendix Figure Al4; all data are in Appendix Table Al4.

15. Petrolite Tolad 246 + Ethyl 733 + MDA

With fuel flow through the SSET coalescer, the additive combinations 8.0, 8.4, and 2.0 lbs./1000 bbl. corrosion inhibitor Petrolite Tolad 246, antioxidant Ethyl 733, and metal deactivator MDA, respectively, had no significant effect on base fuel from about 0° to about 65°F. The increase in charge accumulation relative to base fuel at ambient temperature may not be significant. Increasing fuel conductivity to nominal 100 CU at 0° and 25°F with ASA-3 or Stadis 450 and at 70°F with ASA-3 resulted in significant reductions in charge accumulation of more than 90%. These results are shown in Figure 29. The field strength data are plotted in Appendix Figure A15; all data are in Appendix Table A15.

EFFECT OF TOLAD 246+MDA ON FRACTIONAL CHANGE IN FIELD STRENGTH FIGURE 27.

70

....

)

٨

FIGURE 28. EFFECT OF ETHYL 733+MDA ON FRACTIONAL CHANGE IN FIELD STRENGTH

r

16. Summary of Coalescer Charging Results

The corrosion inhibitor results are summarized in Figure 30. With fuel flow through the SSET coalescer, Petrolite Tolad 246 generally had no significant (dF less than 0.5) electrostatic charging effect on base fuel, JP-4 + 0.15% EGME. Hitec E-515 and UOP Unicor J were generally anti-static relative to base fuel. However, DuPont DCI-4A and Apollo PRI-19 showed significant prostatic effects below about 30° and 10°F, respectively. Thus, in the absence of conductivity additives, DuPont DCI-4A and Apollo PRI-19 may be electrostatic hazards at low temperatures. Both conductivity additives, ASA-3 and Stadis 450, were significantly anti-static at 25° and 0°F for all JP-4/additive and additive combinations studied. (Conductivity additives were examined only at 0°F for DuPont DCI-4A and Petrolite Tolad 246; and only at 25°F for UOP Unicor J.)

Separator Charging Studies. Fuel flow through the SSET separator generally generates charges of opposite polarity than coalescer flow. Also, generally, the magnitude of the separator generated charge accumulation was lower. During the course of this study, the separator element manufacturer changed suppliers for the filter paper media used in the SSET separator elements. The magnitude of charging was much greater in these "new" separator elements although polarity and trends with temperature were as the "old" separators. In general, dF, fractional change in field strength, trends were not affected by the change in charging magnitude. Although the experimental data precision was generally

)(1)

less with fuel flow through the separator, the same significance criteria, i.e. dF greater than 0.5, was applied as for coalescer charged fuel.

In each additive study at a given temperature, charging was first examined with fuel flow through the coalescer followed by studies with fuel flow through the separator. Thus, data were alternately obtained with both configurations with the same fuels. In the following presentation of the separator charging results, additive concentrations are as presented earlier and are not repeated.

1. DuPont DCI-4A

Similar to previously observed coalescer charged fuel, separator charged fuel containing DuPont DCI-4A was significantly pro-static below about 45°F. Anti-static tendencies were observed above 50°F but this may not be significant because of generally low charging at these temperatures. These results are shown in Figure 31. Field strength data for this additive with fuel flow through the separator are plotted in Appendix Figure Al6; the complete SSET data are in Appendix Table Al6. In spite of the strong pro-static effects with this additive, increasing the conductivity of the generally negatively charged fuel to nominal 100 CU at 0°F with ASA-3 or Stadis 450 resulted in almost 100% reduction of the charge accumulation.

2. UOP Unicor J

With fuel flow through the SSET separator, this additive had a significant pro-static influence on JP-4 + EGME base fuel

below about 30°F. Similarly, pro-static activity was noted above 62°F but this may not be significant as previously noted. Increasing conductivity to nominal 100 CU at 23°F with either ASA-3 or Stadis 450 effectively reduced separator charge accumulation to negligible values. These results are plotted in Figure 32. Field strength data are plotted in Appendix Figure A17; all data are in Appendix Table A17.

3. Petrolite Tolad 246

With fuel flow through the SSET separator, this additive had no significant effect on base fuel charge accumulation between about 4° and 70°F. Increasing fuel conductivity to nominal 100 CU with either Stadis 450 or ASA-3 significantly reduced charge accumulation at about 5°F. Results for Petrolite Tolad 246 with fuel flow through the SSET separator are presented in Figure 33. The field strength are plotted in Appendix Figure A18; all data are in Appendix Table A18.

4. Hitec E-515

With fuel flow through the SSET separator, Hitec E-515 had a significant pro-static effect on base fuel from about 13° to 70°F. Increasing fuel conductivity to nominal 100 CU at about 5°F significantly reduced the charge accumulation at this temperature. Results for Hitec E-515 with fuel flow through the separator are shown in Figure 34. The field strength data are plotted in Appendix Figure A19; the complete data set for this additive and flow configuration are in Appendix Table A19.

5. Apollo PRI-19

With fuel flow through the SSET separator, Apollo PRI-19

EFFECT OF UOP UNICOR-J ON FRACTIONAL CHANGE IN FIELD STRENGTH FIGURE 32.

* * *

ones	2052	Artisteren erste kaltet al. Artisteren erste kaltet al. Artisteren erste kaltet al. Artisteren erste kaltet al.	1	10 11	Ta BI		AP	10-04				
	A8-69.7									A second se		
	Million Control of Con					<text></text>						the second
									4			

was significantly anti-static relative to base fuel between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0° and 20°F with either ASA-3 or Stadis 450 resulted in further significant reductions in field strength. These results are shown in Figure 35. The experimental field strength data are plotted in Appendix Figure A20; all data are tabulated in Appendix Table A20.

6. Ethyl 733

With fuel flow through the SSET separator, Ethyl 733 was slightly anti-static relative to base fuel charge accumulation between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at 0°F and 22°F with either ASA-3 or Stadis 450 resulted in further significant reductions in charge accumulation. These results are shown in Figure 36. The field strengths are plotted in Appendix Figure A21; all data are in Appendix Table A21.

7. DuPon: A033

With fuel flow through the SSET separator, DuPont A033 had no appreciable effect on base fuel charge accumulation between 0° and 70°F. However, increasing fuel conductivity to nominal 100 CU with either ASA-3 or Stadis 450 at about 3° and 25°F resulted in significant reductions in charge accumulation. These results with DuPont A033 are shown in Figure 37. The field strength data are plotted in Appendix Figure A22; all data are in Appendix Table A22.

8. N,N'-disalicylidene-1,2-propanediamine (MDA)

With fuel flow through the SSET separator, MDA had no significant effect on base fuel charge accumulation between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU with either ASA-3 or Stadis 450 at about 5° and 25°F resulted in significant

reductions in charge accumulation. These results are shown in Figure 38. The field strength data are plotted in Appendix Figure A23; all data are in Appendix Table A23.

9. DuPont DCI-4A + Ethyl 733

With fuel flow through the SSET separator, the additive combination DuPont DCI-4A + Ethyl 733 had no significant effect on base fuel charge accumulation between 0° and 50°F. Increasing fuel conductivity to nominal 100 CU with either ASA-3 or Stadis 450 at about 5° and 25°F resulted in significant reductions in charge accumulation. These results are shown in Figure 39. The field strength data are plotted in Appendix Figure A24; all data are in Appendix Table A24.

10. Hitec E-515 + Ethyl 733

With fuel flow through the SSET separator, Hitec E-515 + Ethyl 733 had no appreciable effect on base fuel charge accumulation below about 45°F. However, from about 45°F to 70°F, this additive combination had a significant pro-static effect. Increasing fuel conductivity to nominal 100 CU with either ASA-3 or Stadis 450 effectively controlled the electrostatic charge accumulations at 0° and 25°F. These results are shown in Figure 40. Field strength data are plotted in Appendix Figure A25; all data are in Appendix Table A25.

11. Petrolite Tolad 246 + Ethyl 733

With fuel flow through the SSET separator, Petrolite Tolad 246 + Ethyl 733 had no appreciable effect on base fuel charge accumulation below about 45°F. However, from about 45°F to 70°F, this additive combination had a significant pro-static influence on

and in

86

1 A

materia tos

EFFECT OF HITEC ESIS+ETHYL 733 ON FRACTIONAL CHANGE IN FIELD STRENGTH FIGURE 40.

-

base fuel charge accumulation. Increasing fuel conductivity to nominal 100 CU at about 5° and 25°F with either Stadis 450 or ASA-3 resulted in significant reductions in charge accumulation. These results are presented in Figure 41. Field strength data are plotted in Appendix A26; all data are in Appendix Table A16.

12. Hitec E-515 + MDA

With fuel flow through the SSET separator, this additive combination was significantly pro-static between 0° and 70°F. However, increasing fuel conductivity to nominal 100 CU at about 5° and 20°F with either ASA-3 or Stadis 450 and to nominal 100 CU at 75°F with ASA-3, resulted in significant reductions in charge accumulation. These results are presented in Figure 42. Field strength data are plotted in Appendix Figure A27; all data are in Appendix Table A27.

13. Petrolite Tolad 246 + MDA

With fuel flow through the SSET separator, this additive combination was slightly anti-static to base fuel between 0° and 70°F. Increasing fuel conductivity to nominal 100 CU at about 5° and 25°F with Stadis 450 or ASA-3 and at 70°F with Stadis 450 resulted in significant reductions in charge accumulation. These results are presented in Figure 43. Field strength data are plotted in Appendix Figure A28; all data are in Appendix Table A28.

14. Ethyl 733 + MDA

With fuel flow through the SSET separator, this additive combination had no significant effect relative to base fuel charge accumulation between 0° and 70°F. Increasing fuel conductivity to

90

all all

nominal 100 CU at about 5° and 20°F with either ASA-3 or Stadis 450 and at 70°F with Stadis 450 resulted in significant reductions in charge accumulation. These results are presented in Figure 44. Field strength data are plotted in Appendix Figure A29; all data are in Appendix Table A29.

15. Petrolite Tolad 246 + Ethyl 733 + MDA

With fuel flow through the SSET separator, this additive combination had no significant effect on base fuel charge accumulation between about $8^{\circ}F$ and $63^{\circ}F$. At lower temperature $(8^{\circ}-0^{\circ}F)$ the additive tended to be anti-static relative to base fuel. At higher temperatures, $63^{\circ} - 70^{\circ}F$, this additive tended to be prostatic; however, at these temperatures, the effect may not be significant. At any rate, increasing fuel conductivity to nominal 100 CU at about 5° and 25°F with Stadis 450 or ASA-3 and at 70°F with ASA-3 resulted in significant reductions in charge accumulations. These results are presented in Figure 45. Field strength data are plotted in Appendix Figure A30; all data are in Appendix Table A30.

16. Summary of Separator Charging Results

With additized JP-4 fuel flow through the SSET separator, the observed additive combination pro-static effects all appeared related to the corrosion inhibitor. DuPont DCI-4A was significantly pro-static relative to base fuel below about 45°F as was found with fuel flow through the SSET coalescer. Hitec E-515 was also significantly prostatic relative to base fuel above about 15°F with this flow configuration. Additive combinations Hitec E-515 + Ethyl 733, Hitec E-515 + MDA, Tolad 246 + Ethyl 733, and Tolad 246 +

Ethyl 733, and Tolad 246 + Ethyl 733 + MDA also appeared to have some pro-static tendencies. The fractional change results for the five corrosion inhibitors of this study with fuel flow through the separator are presented in Figure 46. Significant effects are taken to be absolute values of dF greater than 0.5.

Effect of Additives on Conductivity Improver Response

The contract study examined the reduction of static electricity charge accumulation by the use of conductivity additives in JP-4 containing other military approved additives. The required concentrations of ASA-3 and Stadis 450 in JP-4 for nominal 100 CU at 20° and 0°F with the approved additives and combinations are listed in Table 15. Generally, lower concentrations of Stadis 450 than ASA-3 were required to achieve similar JP-4 fuel conductivity at nominal 0° and/or 20°F, except where synergistic effects were noted. Hitec E-515 has a positive synergism with ASA-3, i.e. increased fuel sensitivity to the conductivity additive while Tolad 246 appeared to have a negative synergism. Thus, Hitec E-515 additized fuels required 60-80% less ASA-3 for similar fuel conductivity than Tolad 246 additized fuels. Other additives and their combinations did not appear to significantly affect the ASA-3/fuel response. Generally, synergistic effects were less apparent with Stadis 450 additized fuels. However, Apollo PRI-19 reduced the Stadis 450/fuel response such that about twice as much Stadis 450 was required for nominal 100 CU compared to Stadis 450 concentrations with other approved additives. A slight positive synergism was observed for Stadis 450 with corrosion inhibitor/antioxidant

CONCENTRATION OF CONDUCTIVITY ADDITIVES FOR 100 CU AT 20° and 0°F

JP-4 + FSII + Additive	ppm ASA-3 @ 20°F	ppm ASA-3 @ 0°F	ppm Stadis 450 @ 20°F	ppm Stadis 450 @ O°F
Base Fuel (less FSII)	-	2.0	19-19-1	1.2
Base Fuel	1.1	-	16-188	-
DCI-4A	5	2.0	_	0.9
Unicor J	1.9	-	0.6	
Tolad 246	- 1	2.5		1.0
Hitec E-515	-	1.0	1 m - 2	1.0
Apollo PRI-19	1.4	1.4	2.1	2.1
Ethyl 733	0.75	1.5	0.9	1.0
DuPont A033	1.3	1.7	0.75	1.0
MDA	1.0	1.3	0.6	0.74
DCI-4A/E 733	1.7	1.9	0.5	0.6
Hitec/E 733	0.6	0.6	0.5	0.5
Tolad/E 733	2.5	2.5	0.5	0.5
Hitec/MDA	0.6	0.6	0.4	0.4
Tolad/MDA	2.0	2.8	0.8	0.9
E 733/MDA	1.5	1.6	0:75	0.9
Tolad/E 733/MDA	2.25	2.75	0.75	1.0

f lest gt & would be

and corrosion inhibitor/MDA combinations. These results are for a single JP-4 fuel. The synergistic effect of Hitec E-515 has been documented in other fuels but, in general, these results should be verified on other fuels.

Effect of Fuel Water Content

There was no apparent correlation between fuel charging and water content. This may have been due to poor precision in the water measurement; experimental deviations as much as ± 10 ppm at 30 ppm average total water were noted in some cases. Tables A1 through A30 also contain water content data in addition to other electrostatic charging data. The water content data for the various JP-4/additive studies are summarized in Table 16. Because the water content results are similar for all fuels, it was not possible with these tests to find a correlation between fuel water content and its charging properties.

MST-SSET Charging Correlation Results

The Mini-Static Test (MST), developed by Exxon R&D, has been used by Mobil and others to compare charge generation tendencies of hydrocarbon liquids. In this device, streaming currents from a metal filter paper holder are measured as fuel is forced through the filter paper by air pressure. Three SSET fuels were examined by both techniques at 70°F. MST charging was compared to 3SET charge densities from both the coalescer and separator vessels. Figures 47, 48, and 49 (and Tables 17, 18, and 19) for the additive combinations Hitec E-515 + MDA, Ethyl 733 + MDA, and

TOTAL WATER CONTENT OF SSET FUELS

ppm	Water	in	ppm	Water	in	ppm Wa	ter in Fuel
70°	35°	0.0	Addit	35°	<u>0°</u>	w/ASA-3 @	w/Stadis 450 @ 25°
34	30	•	32	27	24	•	
46	55	1	1	38	1	26	31
40	24	16	32	31	18	-	•
31	20	18	23	24	22	-	
29	30	20	35	29	22	25	21
30	21	20	32	23	16	29	33
34	35	21	27	23	20	21	18
34	27	20	33	33	18	30	28
42	38	39	42	33	29	33	24
47	44	1		40	18	41	16
51	35	21	41	30	ដ	17	16
42	37	28	50	40	24	32	32
35	28	18	38	27	20	31	27
•	51	20	35	28	24	21	26
55	35	26	60	49	21	32	32
	Ppm Base 70° 34 40 31 34 42 34 42 34 51 55 55	ppm water Base Fue 34 30 46 55 40 24 31 20 34 30 34 30 34 20 30 21 34 35 34 27 34 27 34 27 42 38 47 44 51 35 35 28 51 35 35 35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ppm water in Hase Fuel (eAdditized Fuel Additized Fuel $m/ASA-3$ (e3430-32 27 24 465538-29302120322316343521203223163021203223162934352120322316343521203333183435212123202134352133331830423839423333183042352141301517423728504024313528183827203150352660492132

•

,

Mark I & I & MA

ALC: N

COMPARISON OF CHARGE DENSITIES FROM MST AND SSET COALESCER, SEPARATOR, AND RECEIVER VESSELS WITH FUEL 77D-3315

		<u>JP-4</u> +	- EGME	JP-4 + <u>Hitec</u>	EGME + /MDA	JP-4 + Hited + 0.4 ASA	EGME + /MDA ppm -3
MST	Charge Density	-4020	$\mu C/m^3$	-360	μ C/m³	-6	$\mu C/m^3$
SSET	Charge Density						
1.	Fuel Flow Through Coalescer						
	Coalescer	+137	"	-107		+63	
	Receiver	-118	"	+100	"	-186	"
2.	Fuel Flow Through Separator						
	Separator	-25		-278		-219	
	Receiver	+31	"	+277	H	+99	"
Fuel	Conductivity	2.4	CU	11.9	CU	158	CU

COMPARISON OF CHARGE DENSITIES FROM MST AND SSET COALESCER, SEPARATOR, AND RECEIVER VESSELS WITH FUEL 77D-3316

	JP-4 + EGME	JP-4 + EGME + Ethyl 733/MDA	JP-4 + EGME + Ethyl 733/MDA + 0.6 ppm
MST Charge Density	-82 µC/m ³	-8 µC/m ³	-100 µC/m ³
SSET Charge Density			
 Fuel Flow Through Coalescer 			
Coalescer Receiver	+168 " -172 "	+58 " -74 "	+80 " -275 "
2. Fuel Flow Through Separator			
Separator Receiver	-63 " +60 "	-64 " +44 "	-219 " +26 "
fuel Conductivity	2.5 CU	1.2 CU	122 CU

2 September 2

COMPARISON OF CHARGE DENSITIES FROM MST AND SSET COALESCER, SEPARATOR, AND RECEIVER VESSELS WITH FUEL 77D-3314

	JP-4 + EGME	JP-4 + EGME + Tolad/MDA	JP-4 + EGME + Tolad/MDA + 0.5 ppm Stadis_450
MST Charge Density	$-12.6 \ \mu C/m^3$	-55.8 µC/m ³	+24.6 µC/m ³
SSET Charge Density			
 Fuel Flow Through Coalescer 			
Coalescer Receiver	+137 " -137 "	+20 " -70 "	+85 " -141 "
2. Fuel Flow Through Separator			
Separator Receiver	-40 " +37 "	-73 " +19 "	-135 " +70 "
Fuel Conductivity	1.2 CU	2.0 CU	162 CU

4 marine tra

Petrolite Tolad 246 + MDA, respectively, presents MST and SSET charge density results at 70°F. None of the MST results show trends similar to either SSET coalescer or separator charging. This lack of correlation is probably due to differences between MST and SSET filter media and their responses to the fuel-additive system. Also, because the MST uses relatively small quantities of fuel, its response is very sensitive to trace fuel impurities and fuel handling practices.

SECTION III

CONCLUSIONS

The following conclusions are made on the basis of these SSET results:

- Conductivity improver additives, Shell ASA-3 or DuPont Stadis 450, at conductivity levels of nominal 100 CU or higher, effectively reduce JP-4 charge accumulations generated by coalescer and separator F/S elements (or by piping and inlet nozzle restrictions) regardless of the presence of certain military approved additives (FSII, corrosion inhibitors, antioxidants, or metal deactivator) or their combinations.
- At conductivity levels less than about 30 CU, Stadis
 450 increased charge accumulation (i.e. was prostatic) in SSET coalescer generated, negatively charged fuel and ASA-3 increased charge accumulation in SSET separator generated, positively charged fuel.
- Without conductivity additives, DuPont DCI-4A has significant pro-static characteristics in both negatively and positively charged fuel; Hitec E-515 and its combinations with Ethyl 733 or MDA and Petrolite Tolad 246 + Ethyl 733 with and without MDA are significantly pro-static with positively charged fuels. The use of these additives by the USAF may

have contributed to the reported static charge ignited aircraft fires. Other additives or combinations examined either have little significant effect on charging or are anti-static.

- With the bladder lined foam-filled SSET receiver vessel, electrostatic charges on incoming fuel transfer rapidly to the foam surface. Red foam appears to accept fuel charges more readily than blue foam but the charges are more rapidly relaxed.
- Unusually high concentrations of conductivity additives may be required to obtain minimum fuel conductivity of 100 CU because synergistic effects with some military approved additives (i.e. corrosion inhibitors, anti-oxidants, or metal deactivators) reduces the fuel response to conductivity additives.
 The MST did not predict the charging performance

of fuels in the SSET.

SECTION IV

RECOMMENDATIONS

On the basis of these conclusions, the following recommendations are made:

- Because conductivity improver additives significantly reduced charging regardless of other additive effects, consideration should be given to the early introduction of conductivity improver additives Shell ASA-3 or DuPont Stadis 450 into USAF JP-4 fuel system at minimum 100 CU at the aircraft at the temperature of use.
- Electrostatic effects from charged reticulated foam surfaces during introduction of charged fuel into bladder-lined, foam-filled receivers were noted but not investigated. These effects should be the subject of future studies.
- Because some additive-fuel combinations require unusual high concentrations of conductivity improver additives for static hazard protection of 100 CU fuel at low temperatures, it is recommended that fuel-water separability of fuels with conductivities of 300-450 CU at temperatures of about 70°F be the subject of future investigations.

APPENDIX

1

I and all a

ł

Field Strength Plots and Data Summaries for Additive and Additive Combination Studies

)(. ×

.

1

FIGURE A2. EFFECT OF UOP UNICOR-J ON FIELD STRENGTH

11 -

114

1

The second

FIGURE A4. EFFECT OF HITEC E-515 ON FIELD STRENGTH

12 2

A LA A

FIGURE AG. EFFECT OF ETHYL 733 ON FIELD STRENGTH

and the and the and

EFFECT OF METAL DEACTIVATOR ON FIELD STRENGTH

119

1

a she is the

ļ

٨

.

FIGURE AID. EFFECT OF HITEC ESIS+ETHYL 733 ON FIELD STRENGTH

FIGURE ALL EFFECT OF TOLAD 246+ETHYL 733 ON FIELD STRENGTH

11

122

FIGURE AL2. EFFECT OF HITEC ESISHIDA ON FIELD STRENGTH

)

ļ

FIGURE A14. EFFECT OF ETHYL 733+MDA ON FIELD STRENGTH

....

FIGURE A16. EFFECT OF DU PONT DCI-4A ON FIELD STRENGTH

FIGURE A19. EFFECT OF HITEC E-515 ON FIELD STRENGTH

11 -

1.30

Specific .

23 martin

FIGURE A21. EFFECT OF ETHYL 733 ON FIELD STRENGTH

1

I

132

-

and a star

FIGURE A22. EFFECT OF DU PONT A033 ON FIELD STRENGTH

1. 1. 1.

all a star

FIGURE A24. EFFECT OF DUPONT DCI4A+ETHYL 733 ON FIELD STRENGTH

12 1

FIGURE A26. EFFECT OF TOLAD 246+ETHYL 733 ON FIELD STRENGTH

-

,...

als also

EFFECT OF TOLAD 246+MDA ON FIELD STRENGTH FIGURE A28.

1.1.

metrice + 6

1

*

ADDITIVE STUDIES - ECHE/DCI-4A/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

50% Charge	Relaxation Time, Sec.		S	9	13	101	19	52	16		14	ย	1 .0		9	9	9	52	•	51	52	32	0	•	1		2	
	Surface Voltage @ 90% Full, KV		3.3	3.0	2.4	2.3	5.7	5.5	13.5		11.5	11.5	2.2	2.2	1.8	1.4	1.4	5.4	4.1	4.9	3.8	5.7	0.1	•	0.2		0.1	
,	Field Strength @ 90% Full. KV/m		92	84	68	64	159	153	375		320	320	60	09	50	39	9	150	114	135	105	159	£	0	S		3	
tty, μC/m ³	Receiving		153-	-111	-99	63-	-02	84-	209-		179-	174-	4	67-	63-	+0+	58-	61-	49-	41-	43-	43-	394	54+	28-		-	
Charge Dens	Coalescer		170+	122+	684	66 +	73+	87+	182+ 182+		1564	1504	684	52+	4/4	474	424	284	284	204	20+	20+	190-	205-	254		284	
	Additives		0.15 2 - EGME	•	•	•	•	•	EGME + 8 1bs/1000	DCI-4A	:	:		:			:		-	=	2		Above +	2.0 ppm ASA-3	ECME +	DC1-44 +	0.9 ppm	Stadis 450
Total	Water		30,32	40	30	8	23,28	35	22		22	1	38	32	28	33	31		•	20	28	•	32,40	28	33		R	
Cond.	CU 0 3114		-	1.5	1.2	1.1	1.2	1.1	1.0		1.1	1	1.8	1.5	1.4	2.3	2.2	1.2	1.3	1.2	1.2	•	105	110	105		011	
	Temp.	•	69	20	45	45	23	23	23		23	23	43	44	44	72	72	4	4	•	•	•	•	•	7	•	7	
	Run		688	689	684	685	692	693	969		697	698	702	703	704	707	708	111	712	713	714	715	720	721	724		2	
	Ind		JP-4 77D-3301																									1942

TELEVERY COURT APPENDENCE

11 2

)

To link any -

ADDITIVE STUDIES - ECHE/UNICOR J/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

Number of the field									Chare	e Deneity.	c/=3	Field	Surface	50% Charge
Mail Mail <t< th=""><th></th><th></th><th></th><th>Conduct1</th><th>Ity.CU</th><th>Water,</th><th>ppa</th><th>The second se</th><th></th><th></th><th>Receiving</th><th>6 90X</th><th>Voltage @</th><th>Relaxation</th></t<>				Conduct1	Ity.CU	Water,	ppa	The second se			Receiving	6 90X	Voltage @	Relaxation
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fuel	Run No.	Temp. 'F	D 3114	9 2624	Total	Free	Additive	Coalescer	Separator	Vessel	Full, KV/m	90% Full, KV	Time, Sec
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4, 770-3300	77-645	74	3.0	•	46,64	•	0.15% ECHE	150+	•	155-	54	1.9	\$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-646	74	2.9	•	46	•		136+		139-	07	1.4	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-647	74	2.2	•	04	•		125+	•	129-	31	1.1	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-648	74	2.0	•	48	•		120+	•	-611	27	1.0	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-651	94	3.0		•	•		107+	•	103-	11	2.8	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-652	46	1.8	•		•		101+	•	100-	70	2.5	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-655	•	1.5		70,42	.1		64+	•	32-	18	3.0	18
-657 26 1.3 - 60 - 1.4 - 51- 60 2.2 10 -665 71 3.5 7 3.5 7 3.5 7 13- 60 2.2 10 -666 71 3.5 7 3.5 7 1 3.5 7 1 3.5 7 13- 10 2.2 10 -666 71 3.5 7 54,28 7 164 7 32- 12 12 12 12 13- 12 12 12 12 13 13 13 14 1 13- 13 13 13 14 1 12 13 12 12 12 12 12 12 13 13 14 1 13- 13 13 14 1 13- 13 13 14 1 13- 13 14 1 13- 14 1 13- 13 14 13- 13- 13- 13- 13- 13- 13-		-656	26	1.5	•	48	•		51+	•	58-	67	2.4	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-657	26	1.3	•	99	•		474	•	51-	60	2.2	61
-666 71 3.5 - - 8 lbs/1000bit 14+ - 32- 12 0.4 9 -669 44 2.2 - 66 71 3.5 - - 8 lbs/1000bit 14+ - 32- 12 0.4 9 -670 44 2.2 - 54,28 - 121+ - 22- 11 0.4 9 -660 27 1.5 - 60 - 121+ - 23- 12 1 2 23- 11 0.4 9 -661 277 1.5 - 60 - 111+ - 23- 11 0.4 9 -661 273 1.6 - 27,12 - - 11+ - 23- 24 23 24 24 23 24 10 11 12 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+ <th14+< th=""> 14+ <th14+< th=""></th14+<></th14+<>		-665	11	3.5	•	•	•	Above +	16+	•	31-	E	0.5	5
-660 44 2.2 $54,28$ Interv J -660 27 1.5 $54,28$ 124 2.2 $34,28$ 124 2.2 115 0.4 $0.$		-666	11	3.5	•	•	•	8 1bs/1000bb1	14+	•	32-	12	0.4	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								Unicor J						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-699	44	2.2	•	54,28	•		12+	•	22-	11	0.4	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-670	44	2.1	•	46	•		12+	•	23-	6	0.3	9
-661 27 1.5 - - - 47- 69 2.5 2.4 -662 27 - - - 18+ - 45- 69 2.5 2.2 <		-660	27	1.5		9	•		27+	•	58-	88	3.0	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-661	27	1.5	•	1	•		16+	•	47-	69	2.5	24
-673 24 1.8 - 26,18 - " 84 - 16- 18 0.6 14 -674 24 1.8 - 42,20 - " 84 - 11- 16 0.6 13 -676 23 100 115 24,32 - Above + 16- - 142- 16 0.6 13 -677 23 100 115 24,3 - Above + 16- - 142- 16 0.6 14 -680 20 100 115 24,3 - 1.9 ppm ASA-3 20- - 130- 14 0.5 1 -680 20 100 115 24 - 1.9 ppm ASA-3 20- - 119- 8 0.3 1 -681 20 105 110 - - EGME + 119+ - 119+ 8 0.3 1 -681 20 94 110 - - 159 - 13+ - </td <td></td> <td>-662</td> <td>27</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td>18+</td> <td></td> <td>45-</td> <td>62</td> <td>2.2</td> <td>22</td>		-662	27		•	•	•		18+		45-	62	2.2	22
-674 24 1.8 - 42,20 - " 84 - 11- 16 0.6 13 -676 23 100 115 22,32 - Above + 16- - 142- 16 0.6 13 -677 23 100 115 22,32 - Above + 16- - 142- 16 0.6 1 -677 23 100 115 24 - 1.9 pm ASA-3 20- - 130- 14 0.5 1 -680 20 105 110 - - EGME + 119+ - 119- 8 0.3 1 -681 20 94 110 - - 15 pm Stadis 134+ - 135- 6 0.2 1		-673	24	1.8	•	26,18	•		Ŧ	•	16-	18	0.6	1
-676 23 100 115 22,32 - Above + 16- - 142- 16 0.6 1 -677 23 100 115 24 - 1.9 ppm ASA-3 20- - 130- 14 0.5 1 -680 20 105 110 - - EGME + 119+ - 119- 8 0.3 1 -681 20 94 110 - - 1.5 ppm Stadis 134+ - 139- 8 0.3 1 -681 20 94 110 - - 1.5 ppm Stadis 134+ - 135- 6 0.2 1		-674	24	1.8	•	42,20	•	-	æ	•	-#	16,	9.0	1
-677 23 100 115 24 - 1.9 ppm ASA-3 20 130- 14 0.5 1 -680 20 105 110 EGARE + 119+ - 119- 8 0.3 1 -681 20 94 110 1.5 ppm Stadis 134+ - 135- 6 0.2 1		-676	23	100	SII	22,32	•	Above +	16-	•	142-	16	0.6	1
-680 20 105 110 EGME + 119+ - 119- 8 0.3 1 -681 20 94 110 1.5 pm Stadie 134+ - 135- 6 0.2 1 450		-677	23	100	SII	24	•	1.9 ppm ASA-3	20-	•	130-	14	0.5	
-681 20 94 110 - Unicor J + 1.5 ppm Stadis 134+ - 135- 6 0.2 1 450		-680	20	105	110	•	•	EGAE +	119+	•	-611	80	0.3	1
-001 20 94 LIU L:5 ppm Stadie 134+ - 135- 6 0.2 1 450								Unicor J +						
		100-	3	*	8		•	1.5 ppm Stadis 450	134+	•	135-	9	0.2	1

1

and a contractor

ADDITIVE STUDIES - ECHE/TOLAD 246/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

			Cond.	Total		Charge Dens	ity, µC/m ³			50% Charge
Fuel	Run No.	Ten.	D 3114	Ppm	Additives	Coalescer	Receiving Vessel	Field Strength @ 90% Full, KV/m	Surface Voltage @ 90% Full, KV	Relaxation Time, Sec.
JP-4 770-3302	728	68	2.2	36	0.15% EGME	144+	2-	76	2.7	6
	729	68	1.9	37		91+	-11	52	1.9	6
	130	68	1.6	46	-	87+	-9	50	1.8	6
	733	45	•	1	=	87+		117	4.2	42
	734	45	1.2	1		162	•	110	3.9	40
	735	45	1.0	24		63+	63-	90	3.2	42
	738	5	0.6	18		20+	25-	60	2.2	116
	139	5	0.6	14		17+	21-	78	2.8	146
	151	69	2.0		Above +	484	51-	28	1.0	9
	752	2	•	32	8 1bs/1000 bb1	+0 ⁺	47-	23	1.2	6
	747	38	1.2	•	Tolad 246	29+	36-	55	2.0	18
	748	38	1.8			24+	34-	58	2.1	26
	743	S	0.6			28+	40-	108	3.9	124
	744	s		18		204	30-	92	3.3	95
	767	e	123	32	Above + 2.0 ppm	58+	114-	14	0.5	1
	768	5	111	30	ASA-3	594	125-	14	0.5	I
	755	5	100	•	EGME + Tolad 246	170+	178-	20	0.7	•
	756	s	105		+ 0.9 ppm	182+	192-	21	0.8	e
					Stadis 450					

1

77T

-

2 materialte

ADDITIVE STUDIES - ECHE/HITEC E-515/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

50% Charge	Relaxation Time. Sec.		80	50	73	32	78	101	2	4	•	'n	2		- 1	• -	1.	;-
	Surface Voltage @ 90% Full XV		1.7	1.7	4.6	3.9	5.4	6.5	0.5	0.3	0.6	0.7	4.9	5.6	0.1			
	Field Strength @ 90% Full KV/m		9	8	129	108	150	180	14	6	18	20	135	155	4	4	01	- ac
eity, µC/a ³	Receiving	;	2	4	-70	3	24-	-	-96-	å	65-	55-	-42	-62	108-	-611	18-	22-
Charge Den	Coalescer	-	+14			4	t,	t	5	5	24+	32+	164	1194	14	95+	2-	7
	Additive	0.157 800						W	100 000T/80T TO TANON	1 CTC-2 777					EGME + Hitec E-515 +	I ppm Stadie 450	EGME + Hitec E-515 +	1 ppm ASA-3
Total	PPa	26	8	18	22	12	22		2 %		33	9		3		. 26	26	24
	D 3114	2.3	1.8	1.7	1.2	8.0	8.0	4.2							3	27	91	a
	Temp	14	74	*	*	e		67	67		32	2 -	••		•••	•••	•••	•
	Run No.	78- 5	•	11	11	ม	16	28	29	23	10	2	2	::	::	8 8	R	10
	Fuel	2770 3305																

-

12 4

1

ADDITIVE STUDIES - ECHE/APPOLO PRI-19/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

				Total		Charge Dens	stry. µC/m3			SOT Charge
Fuel	Run No.	Tem. 'F	Cond. CU D 3114	Ppm	Additive	Coalescer	Receiving Vessel	Field Strength @ 902 Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.
77D 3306	78-40	11	2.4	28	0.15% ECME	190+	113-	45	1.6	6
	14	n	2.4	8	-	166+	-26	34	1.2	
	42	2	2.5	30	-	146+	83-	27	1.0	5
	97	35	1.8	28		87+	-62	114	4.1	33
	14	35	1.5	26		162	-02	81	2.9	26
	48	35	1.6	*	-	83+	72-	63	2.3	38
	67	35	1.6	90		83+	-11	70	2.5	44
	52	4	1.3	16		52+	47-	123	4.4	127
	53	4	1.2	24		494	39-	138	5.0	102
	65	67	8.8	35	Above + 8 1bs/1000 bb1	124+	130-	17	1.1	9
	99	67	8.2		Appolo PRI-19	109+	130-	54	1.9	e
	61	33	4.6	8		+111	127-	48	1.7	9
	62	33	4.5	28		64	107-	54	1.9	1.
	26	\$	1.7	14		104+	166-	370	13.3	35
	57	•	1.1	8		884	155-	360	13.0	31
	69	21	100	18	Above + 2.1 ppm	#68	165-	12	0.4	2
	2	21	105	24	Stadis 450	+E6	168-	12	0.4	2
	81	5	110	16		t69	172-	21	0.8	2
	83	\$	110	22		134	17-	19	0.7	2
	73	19	110	22	EGME + Appolo PRI-19	24+	-66	9	0.2	e
	74	19	105	28	+ 1.4 ppm ASA-3	22+	95-	9	0.2	2
	11	-7	105	22	-	204	-68	10	0.4	2
	78	7	46	20		51	-88	50	0.4	2

and the second

.

97T

Ş

1

The Add at a

ADDITIVE STUDIES - ECME/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

-8e	i u							17	τ													
50% Chai	Relaxati Time, Se	10	80	80	6	92	70	e	5	5	4	2	64	55	1	4	1	1	1	I	٦	
	Surface Voltage @ 90% Full, KV	3.9	3.5	3.9	4.1	7.6	7.3	1.2	1.7	2.0	2.3	2.2	7.6	7.5	0.1	0.1	0.1	0.1	0.4	0.3	0.5	7 0
	Field Strength @ 90% Full KV/m	108	96	108	113	210	204	34	48	56	63	60	210	207	4	3	2	2	10	6	14	13
ty, µC/m3	Receiving	134-	126-	-111	103-	70-	-89	122-	108-	100-	-111	87-	-86	-88	87-	87-	-16	-06	234-	221-	190-	104-
Charge Densi	Coalescer	213+	194+	126+	1194	+62	+11	162+	134+	129+	126+	95+	92+	+62	35+	25+	4	4	190+	167+	155+	46.41
	Additive	0.15% EGME	-	-			-	Above + 8.4 lbs./1000 bb1	Ethyl 733	-					EGME + Ethyl 733 + 0.75 ppm	ASA-3	EGME + Ethyl 733 + 1.5 ppm	ASA-3	EGME + Ethyl 733 + 0.9 ppm	Stadis 450	EGME + Ethyl 733 + 1.0 ppm	Stadle 450
Total	Ppm	28	32	20	22	22	19	8	34	32	26	20	ม	16	28	29	20	20	98	8	22	27
	Cond. CU D 3114	1.8	1.8	1.2	1.3	0.8	0.6	3.8	3.9	3.9	1.8	1.6	0.6	0.6	105	100	105	110	110	105	105	105
		68	68	33	33	2	2	69	69	2	33	33	e		22	22		e	22	22	•	•
	Run No.	78- 85	86	68	06	93	94	105	106	107	101	102	16	98	110	III	122	123	114	115	118	110
	Fuel	770-3307																				

11 -

-

200

1. 4. 1.

*

- phanet - g

1

ADDITIVE STUDIES - EGME/DUPONT A033/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

age of	1.1							\$	37	τ														
Soz Charie Relaxatio	Time, Se	1	9	1	4	1	6	15	73	11	9	6	Ħ	1	74	20	1	٦	1	٦	٦	1	1	1
Surface Voltage	@ 90% Full, KV	2.6	1.8	1.7	2.2	2.8	3.1	3.3	7.2	7.2	2.2	2.4	1.6	1.8	6.3	5.8	0.3	0.3	0.4	0.3	0.3	0.3	0.5	0.4
Field Strength	@ 90% Full KV/m	72	51	97	62	78	98	93	201	201	60	99	44	50	174	162	8	7	10	8	80	80	14	10
ty, uC/m	Vessel	126-	101-	95-	103-	87-	-16	75-	61-	58-	115-	-66	63-	56-	51-	50-	130-	-611	100-	100-	174-	166-	. 153-	152-
Charge Densi	Coalescer	170+	158+	150+	109+	+06	496	76+	62+	584	126+	104+	65+	564	38+	33+	*	24-	33-	36-	122+	105+	107+	92+
	Additive	0.15% EGME									Above + 8.4 lbs./1000 bb1	DuPont A033					ECME + DuPont A033 +	1.4 ppm ASA-3	EGME + DuPont A033 +	1.7 ppm ASA-3	EGME + DuPont A033 +	0.75 ppm Stadis 450	ECME + DuPont A033 +	1.0 ppm Stadis 450
Total	mdd	36	34	32	32	8	36	z	22	20	28	26	22	24	20	20	22	20	18	22	16	20	18	14
In bud	D 3114	3.2	2.1	2.0	1.4	1.4	1.2	1.3	0.6	0.6	3.2	2.9	1.5	2.0	0.6	0.6	105	100	105	100	105	III	105	105
Tem		68	69	69	31	31	31	31	4	4	69	69	32	32	-	1	24	24	7	7	23	23	2	7
	Run No.	78-128	129	130	133	134	135	136	139	140	152	153	148	149	144	145	156	151	168	169	160	161	164	165
	Fuel	77D-3308																						

ADDITIVE STUDIES - EGNE/MDA/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

50% Charge	Itage Relaxation . KV Time, Sec.	DI	6	10	9	1	80	52	45	54	Ś	1	10	E	49	32	32		-					I	
	Surface Vo	1.7	1.5	1.0	0.6	1.5	1.4	3.0	3.5	3.3	1.1	1.2	1.0	1.0	3.9	2.8	2.4	0.1	0.1	0.2	0.2	0.2	0.2	4.0	
	Field Strength @ 90% Full KV/m	48	41	28	18	43	38	84	96	93	31	¥	27	27	108	78	99	4	•	9	9	9	9	10	~
Lty, µC/m ³	Receiving Vessel	104-	85-	78-	-61	83-	-89	47-	43-	45-	-88	87-	54-	48-	42-	43-	40-	92-	-11	120-	-611	142-	137-	136-	130-
Charge Densi	Coalescer	1184	+96	954	466	92+	+26	£.*	434	37+	191	+09	404	32+	284	21+	191	-62	-67	664	67+	53+	42+	53+	484
	Additive	0.15% EGME	-						-		Above + 2 lbs./1000 bb1	MON		Association and a second second	=	=	=	EGME + MDA + 1.0 ppm	ASA-3	EGME + MDA + 1.3 ppm	ASA-3	EGME + MDA + 0.6 ppm	Stadis 450	ECHE + MDA + 0.74 ppm	Stadis 450
Total	Ppm	. 07	28	32	36	24	8		20	1	•	90	32	34	16	18	20	28	32	18	•	•	28	18	•
	Cond. CU D 3114	2.1	1.8	1.7	1.8	1.8	1.6		0.8	•	1.8	1.5	1.4	1.5	0.9	1.0	0.8	105	III	III	129	105	110	120	129
	Ten.	67	68	69	20	98	8	4	4	e	67	69	EE	33	7	8	4	25	52	e	4	23	23	e	e
	Run No.	78-205	206	207	208	211	212	215	216	219	232	233	228	229	223	224	225	237	238	249	250	241	242	245	246
	Ind	770-3310																							

12 4

67T

ADDITIVE STUDIES - ECME/DCI-4A/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

				Total		Charge Den	sity uc/m3			50% Charge
Puel	Run No.	Temp 'F	Cond. CU D 3114	Nater	Additive	Coalescer	Receiving Vessel	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.
770 3313	78-383	69	2.7	40	0.15% EGME	143+	140-	59	2.1	5
	384	69	1.3	44	=	121+	115-	48	1.7	4
	387	36	1.5	•		+111	113-	07	1.4	2
	388	36	6.0		=	100+	100-	37	1.3	
	391	0	0.8	•	-	434	54-	108	3.9	48
	392	0	0.8			37+	-64	66	3.6	39
	604	65	1.8	04	Above + 8.4 lbs./1000bb1	36+	-62	28	1.0	4
	404	65	2.2	45	Ethyl 733 + 8.0 lbs./	284	72-	34	1.2	\$
	399	33	1.8	33	1000 bb1 DCI-4A	57+	-26	24	0.9	2
	400	33	1.5	33	the second secon	+0+	83-	26	0.9	3
	395	1	1.0	25	=	93+	158-	310	11.2	90
	396	1	1.0	32	-	88	150-	310	11.2	25
	401	68	88	07	EGME + Ethyl 733 + DCI-	27-	222-	10	0.4	1
	408	68	111	36	4A + 0.8 ppm ASA-3	22-	241-	10	0.4	1
	411	24	III		EGME + Ethyl 733 + DCI-	32-	198-	10	0.4	1
	412	24	117		4A + 1.7 ppm ASA-3	43-	190-	10	0.4	~
	423	4	105	12	EGME + Ethyl 733 + DCI-	37-	145-	12	0.4	1
	424	4	111	20	4A + 1.9 ppm ASA-3	38-	146-	11	0.4	1
	415	22	129	20	EGME + Ethyl 733 + DCI-	61+	162-	9	0.2	1
	416	24	130	24	4A + 0.5 ppm Stadis 450	544	138-	9	0.2	1
	419	3	100	12	EGMF. + Ethyl 733 + DCI-	+0 1	146-	п	0.4	1
	420		100	22	4A + 0.6 ppm Stadis 450	42+	135-	10	0.4	1

1 12 14

0

οςτ

TABLE ALO

2 - 4- 4- 15

1)(1

ADDITIVE STUDIES - EGAE/HITEC E-515/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

				Total		Charge Den.	sity, µc/a			50Z Charge
Tuel	Run No.	Temp	D 3114	Ppm	Additive	Coalescer	Receiving Vessel	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.
770- 3312	78-336	23	2.7	9	0.15% EGHE	225+	201-	98	3.0	9
	337	73	1.2	56		200+	176-	20	2.5	4
	336	73	1.2	46		194+	174-	63	2.3	4
	341	33	1.3	48		82+	83-	34	1.2	8
	342	33	1.0	40		87+	-92-	07	1.4	1
	345	*	0.6			¥54	51-	54	1.9	21
	346		0.8			187	55-	54	1.9	21
	358	. 99	716	•	Above + 8.4 1bs./1000 bb1	+++	-65	35	1.3	1
	359	99	7.0		Ethyl 733 + 16 lbs./1000	364	62-	07	1.4	1
	353	33	5.5	38	bbl Hitec E-515	27+	55-	25	0.9	-
	354	33	4.7	42		*	Å	8	1.3	3
	355	S	4.8	•		+11	21-	3	1.6	2
	349		2.9	22		21+	\$	36	1.3	9
	350	+	2.5	26		\$	-63-	42	1.5	80
	363	2	111	•	ECME + Ethyl 733 + Hitec	554	158-	•	0.3	1
	364	2	123	•	E-515 + 0.5 ppm Stadis	t04	151-	1	0.3	2
	375	•	100		450	٩	-611	51	0.5	1
	376	•	46	ž		16+	132-	15	0.5	1
	379	2	130	24	ECME + Ethyl 733 + Hitec	354	137-	1	0.3	1
	380	2	140	37	E-515 + 0.6 ppm Stadie 450	1 25+	130-	8	0.3	1
	367	26	129	4	EGME + Ethyl 733 + Hitec	+11	110-	•	0.2	2
· · ·	368	26	129	38	E-515 + 0.6 ppm ASA-3	\$	106-	1	0.3	2
	371	•	110		-	4	-99		0.1	1
	372	•	111	8		9	67-			1

TST

TABLE ALL

ADDITIVE STUDIES - EGME/TOLAD 246/ETHYL 733/ASA-3/STADIS 450

alescer)
rough Co
Flow Th
(Fuel

				Total		Charge Dent	sity, µC/m			SOZ Charoe
Fuel	Run No.	Temp F	Cond. CU D 3114	PPm	Additive	Coalescer	Receiving	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.
770-3311	78-286	11	2.3	38	0.15% EGME	150+	-911	30	1.1	4
	287	11	2.4	64	1	150+	123-	31	1.1	9
	290	35	2.0	8	-	+16	103-	150	5.4	37
	291	35	1.5	35		92+	-16	114	4.1	32
	292	35	1.8	35	A CONTRACT OF A	85+	85-	103	3.7	27
	295	4	1.0	20		42+	44-	90	2.2	27
	296	4	1.2	22	-	384	43-	60	2.2	25
	309	67	3.5	44	Above + 8.4 lbs./1000 bb1	18+	68-	10	0.4	5
	310	67	3.8	52	Ethyl 733 + 8.0 lbs./1000	æ	63-	80	0.3	1
	305	37	2.6	-	bbl Tolad 246	20+	65-	10	0.4	4
	306	37	1.8			12+	52-	80	0.3	9
	567	9	1.3	14		+92	119-	280	10.0	94
	300	9	1.3	20	Sheep a grading that they had	424	-26	220	7.9	39
	301	e	1.3	20		27+	-18	195	7.0	11
	316	26	121	14	EGME + Ethyl 733 +	16+	167-	9	0.2	1
	317	26	164	20	Tolad 246 + 2.5 ppm	19+	152-	9	0.2	-
	334	4	100		ASA-3	27+	171-	12	0.4	1
	335	4	123			22+	175-	80	0.3	2
	320	23	141	18	EGME + Ethyl 733 +	+69	85-	0	0	•
	321	23	146	14	Tolad 246 + 0.5 ppm Stadis	+99	-62	0	0	0
	324	•	82	•	450	+11	112-	12	0.4	1
	325	4	94		-	72+	105-	10	0.4	2
	330	9	180	20	EGME + Ethyl 733 + Tolad	444	58-	1	0.04	1
	331	9	176	-	246 + 0.75 ppm Stadie 450	404	-55-	2	0.07	. 1

ZST

2 mariante

1.1

ADDITIVE STUDIES - ECHE/HITEC E-515/HDA/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

								e	2																		
50% Charge Relaxation Time, Sec.	ส	ä	56	20	95	8	102	•	4	+	e	•			1	~	2	-	2	2	1	1	2	2	2	1	•
Surface Voltage @ 90% Fuil KV	3.6	3.0	6.3	4.6	4.2	4.5	4.4	5.6	6.0	6.3	6.4	5.8	5.0	0.3	0.3	0.6	0.6	0.9	1.0	1.0	0.8	0.8	0.8	1.5	1.3	0.9	9.6
Field Strength e 90% Full KV/m	100	84	174	129	III	126	123	156	168	174	177	160	140	-	80	11	16	26	27	28	23	22	21 .	14	37	24	30
Receiving Vessel	134-	101-	-11	5	45-	36-	32-	88	+111	48-	ş	-9	24-	201-	170-	164-	161-	171-	178-	181-	191-	122-	198-	209-	-217-	213-	-066
Charge Deni Coslescer	158	1154	+11	424	404	21+	24+	-66	-114-	64+	74+	53+	584	64+	62+	85+	+04	103+	88+	102+	+96	122+	+111	134+	136+	163+	1404
Additive	0.15% EGHE	-						Above + 16 lbs./1000 bbl	Hitec E-515 + 2 lbs./1000	bb1 MDA	-			EGME + Hitec E-515 + NDA	+ 0.4 ppm ASA-3	EGME + Hitec E-515 + MDA	+ 0.6 ppm ASA-3			ECHE + Hitec E-515 + MDA	+ 0.8 ppm ASA-3	ECME + Hitec E-515 + MDA	+ 0.4 ppm Stadis 450			ECHE + Hitec E-515 + MDA	+ 0 6 nms Stadie 450
Total Water PPm	•	•	•	•	•	•	•		•		38	•	22	52	46	•	32	22	•	24	•	90	34		•	•	
Cond. CU D 3114	3.5	1.9	1.0	1.0	1.0	0.6	0.6	12.9	11.0	4.6	4.7	1.5	1.8	152	158	111	123	117	123	141	146	123	129	•	105	164	170
Ten. '	22	75	35	35	35	5	2	13	73	35	R	4	*	75	75	23	23	5	5	5	9	2	22	\$	•	9	1
han Ho.	78-475	476	479	480	481	484	485	497	864	693	464	684	490	201	502	505	506	517	518	521	522	605	510	513	514	523	524
Puel	2779-3315																										

.

.

TZ3

in the second

ADDITIVE STUDIES - EGME/TOLAD 246/MDA/ASA-3/STADIS 450

(Fuel Flow Through Coalescar)

				Total		Charge Dens	ILEY, PC/=3			50% Charge	
Tuel	Run No.	Tem	Cond. CU D 3114	Ppm	Additive	CORLESCET	Receiving	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.	
770 3314	78-427	65	1.1	38	0.151 ROME	152+	156-	120	4.3	12	
	428	65	1.2	33	-	122+		8	3.2	9	
	429	65	1.2	38		119+	-11	78	2.8	-	
	430	65	1.3	34		120+	-571	8	2.9	50	
	433	*	1.2	•		108	108-	213	1.1	52	
	454	34	1.0	28	-	112+	112-	185	6.7	37	
	437	•	1.0			51+	52-	216	7.8	165	
	438	•	0.9	18	-	53+	58-	228	8.2	145	
	451	65	2.5	98	Above + 8 1bs./1000 bb1	22+	-11	53	1.9	20	
	452	65	1.7	39	Tolad 246 + 2 lbs./1000	17+	62-	64	2.3	II	
	447	32	1.2	24	Pb1 MDA	32+	73-	132	4.8	36	
	448	33	0.9	30		24+	58-	123	4.4	42	
	445	•	0.9	18	-	+0+	103-	340	12.2	116	
	643	•	1.1	22		364	-62	300	10.8	102	
	455	70	164	42	EGME + Tolad 246 + MDA +	85+	-141	4	: 0.14	2	
	456	20	158	38	0.5 ppm Stadis 450	85+	140-	*	0.14	2	
	459	23	H	25	ECHE + Tolad 246 + MDA +	+96	182-	14	0.5	2	
	460	23	111	30	0.8 ppm Stadis 450	92+	174-	12	0.4	2	
	114	1	111	20	ECME + Tolad 246 + MDA +	95+	193-	32	1.2	1	
	472	1	111	18	0.9 ppm Stadis 450	10 8	184-	27	1.0	1	
	463	24	111	8	EGME + Tolad 246 + MDA +	\$	158-	18	0.6	1	
	494	24	129	32	2.0 ppm ASA-3	+9	167-	18	0.6	2	
	467	1	46	18	ECHE + Tolad 246 + MDA +	16+	149-	23	0.8	1	
	468	2	100	22	2 25 mm 454-2	•	144-	23	80		

10

ADDITIVE STUDIES - EGME/ETHYL 733/MDA/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

		Cond. CU	Total		Charge Der	Receiving	Field Strength	Surface Voltage	50% Charge Relaxation
Run No.	Temp	D 3114	udd	Additive	Coalescer	Vessel	6 90% Full KV/m	@ 90% Full KV	Time, Sec.
78-527	76		•	0.15% BGHE	184+	195-	56	2.0	4
528	76	2.7	•		152+	149-	47	1.7	
531	36	1.2	53		152+	160-	216	7.8	H
532	36	1.0	48		142+	145-	180	6.5	26
535	9	0.6	24		101+	107-	320	11.5	48
536	9	0.6	16		1064	-113-	350	12.6	101
547	67	1.5	36	Above +8.4 1bs/1000 bb1	684	81-	37	1.3	1
548	67	1.1	*	Ethyl 733 + 2 1bs/1000	484	67-	38	1.4	- 00
				PDI HOW					
543	35	0.7	26		91+	100-	138	4.9	44
544	35	0.6	30		64	74-	117	4.2	59
539	9	0.6	28		56	105-	276	6.6	106
540	9	1.0	22		50	-96-	270	9.7	113
351	69	111	38	EGME + Ethyl 733 + MDA	81+	258-	2	0.1	1.
552	70	123	45	+ 0.5 ppm Stadis 450	14	292-	e	0.1	1,
555	21	111	26	BCARE + Ethyl 733 + MDA	1584	285-	13	0.5	2
556	21	123	26	+0.75 ppm Stadis 450	152+	285-	14	0.5	-
567	4	III	25	BGAR + Ethyl 733 + MDA	172+	303-	18	9.0	2
568	4	m	28	+ 0.5 ppm Stadis 450	144+	292-	16	0.6	2
559	20	4	24	BGHE + Ethyl 733 + MDA	22+	271-	14	0.5	2
560	20	105	18	+ 1.5 ppm ASA-3	14+	256-	. 12	0.4	1
563	2	ш	18	EGME + Ethyl 733 + MDA	æ	182-	10	0.4	1,
564	5	117	22	+ 1.6 ppm ASA-3	\$	187-	10	0.4	1
	78-527 78-527 533 535 545 545 555 555 555 555 555 555	Run Ho. Run 79-527 76 5228 76 5328 76 5328 76 5335 56 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 548 57 555 56 568 6 568 6 568 6 568 7 568 7 568 5 568 5 568 5 568 5 568 5 568 5 5 5 5 5 <	Run Bo. Run A. Cond. GI 78-527 76 2314 2314 532 533 56 2314 533 533 56 2314 533 56 6 11.2 544 57 11.2 2314 545 57 6 11.2 546 57 11.1 5 555 57 57 11.1 556 57 11.1 5 556 57 11.1 5 556 21 11.1 5 556 21 11.1 5 556 21 11.1 5 556 21 11.1 5 568 20 11.1 5 568 5 111.1 5 568 5 111.1 5 568 5 111.1 5 568 5 111.1 5	Am Ho. Teno. Cond. Cl. Mater. 76-527 76 2 2 528 76 2 2 533 36 1.0 2 533 56 1.2 5 533 6 0.6 24 533 6 1.2 5 534 67 1.1 34 544 67 1.1 34 544 67 1.1 34 544 57 1.1 34 545 6 0.6 24 546 6 1.1 34 555 21 1.1 35 555 21 123 25 555 21 123 26 555 51 123 26 566 5 111 25 555 5 111 26 561 5 111 26	Run Ho. Taup. Cond. CJ Water Additive 76-527 76 - - 0.155 EGNE 533 76 - - 0.155 EGNE Jan. 533 76 - - 0.155 EGNE Jan. Jan. 533 76 - - 0.155 EGNE Jan. Jan.<	Nam Ho. Tearp., -7 Data 40 Name Addictive Condecer 78-327 76 - - 0.153 Econe 184+ 328 76 - - 0.153 Econe 184+ 328 76 - - 0.153 Econe 184+ 328 76 2.7 - 0.153 Econe 184+ 335 6 0.6 24 1 1 1 335 6 0.6 24 1 1 1 1 336 1.12 35 1 36 1 2 1 1 335 6 0.6 24 1 3 Echyl 733 + 2 1 1 1 344 1 1 3 Echyl 733 + 1 1 1 1 1 344 1 1 3 Echyl 733 + 1 1 1 1 344 1 1 1 2 1	Tar. Cond. CU 3 Wert bit Mddf.Cfw Condecer Mace Nvin bit 78-227 76 - - 0.153 EGene Veneal 331 36 1.0 2.3 - 0.153 EGene Veneal 332 36 1.0 48 1.0 48 1.0 332 6 0.6 2.3 - 0.153 EGene Veneal 333 6 0.0 48 1.0 1.0 1.0 1.0 344 67 1.1 34 Ethyl 733 + 10000 bbl 100+ 110+ 100+ 344 57 1.1 34 Ethyl 733 + 100 100+ 113+ 544 35 0.7 26 Abbi MM 100+ 113+ 544 11b 733 + 100 100+ 101+ 107- 544 35 0.7 26 27 214 27+ 205- 544 110 113	Tar. 7 Cond. Cl. Ware Additive Lar. 7 Pail Prant Plant Plant	Markets Material Material

SST

TABLE ALS

ADDITIVE STUDIES - EGHE/TOLAD 246/ETHYL 733/MDA/ASA-3/STADIS 450

(Fuel Flow Through Coalescer)

				Total		Charge Deni	sity, µC/m			50% Charge
Fuel	Run No.	Temp., 'F	Cond. CU D 3114	PPm	Additive	Coalescer	Receiving Vessel	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.
770 - 3317	78-571	11	2.6	52	0.15% ECHE	208+	229-	20	0.7	
	572	11	2.6	58		190+	190-			•••
	575	33	1.6	38		178+	175-	and and		1 1
	576	33	1.7	33		175+	170-	174		22
	579	•	•	•		107+	-115-	OFF	11.0	
	580	•	0.8	26		100+	104-	310	11.2	89
	592	75	2.4	58	Above + 8.4 lbs./1000 bbl	41+	-611	44	1.6	4
	593	75	2.1	62	Ethyl 733 + 8.0 lbs./1000	23+	87-	48	1.1	
	588	33	1.2	58	bbl Tolad 246 + 2.0 lbs./	63+	-111	156	5.6	
	589	¥	1.4	640	1000 bb1 MDA	484	-16	153		20
	583	5	0.6	18		105+	-011	044	15.8	3
	584	+	0.5	24		785	86-	004	14 4	8 2
	965	20	105	56	ECME/Ethvl 733/Tolad 246/	101	260-	41		5.
· · · · ·	597	20	105	20	MDA + 1.5 DOM ASA-3	102	-002			4 6
	600	24	100	32	EGME/Ethyl 733/Tolad 246/	107+	122-	12		4 6
	601	24	105	•	MDA + 2.25 ppm ASA-3	107+	275-			
	614	\$	123		EGME/Ethvl 733/Tolad 246/	164	201-		9.0	• •
	. 615	5	123		MDA + 2.75 ppm ASA-3	244	-961	81		• •
	604	. 24	110	98	EGME/Ethyl 733/Tolad 246/	194+	240-	¥		•••
	605	24	123	28	MDA + 0.75 ppm Stadis 450	1524	205-	12	4	
	809	e	96	25	EGME/Ethyl 733/Tolad 246/	234+	265-	10	9.1	. 4
	609	e	III	20	MDA + 1.0 ppm Stadis 450	229+	237-	19	1.4	

95T

ADDITIVE STUDIES - EGHE/DCI-4A/ASA-3/STADIS 450

(Fuel Flow Through Separator)

•			Cond.	Total			Charge Dens	1ty. µC/m3			50% Charge
Fuel		- A	D 3114	ppm	Addi	tives	Separator	Receiving	Field Strength @ 90% Full, KV/m	e 90% Full, KV	Time, Sec.
JP-4 77D-3301	069	2	1.6	32	0.15% EGME		٩.	\$	10	0.4	s
	169	20	1.5	38	=	•	4	t	'n	0.4	9
	686	94	1.2	46		•	1.5-	ħ	5	0.2	5
	687	46	1.0	8	:	•	1.5-	5	80	0.3	5
	969	23	1.2	,1	:	•	-11	13	29	1.0	14
	569	23	•	•	:		12-	13+	õ	1.1	16
	669	23	1.3	8	ECME + 5	8 1bs/1000	+8 1990	40-	132	4.8	H
	200	25	1.2	20		-	t ø	40-	. 126	4.5	E
	101	25	1.2	32		:	++	32-	110	4	14
	705	44	1.4	29		:	12-	-11	12	0.4	~
	106	45	1.2		=	=	-51	4	12 .	0.4	2
	601	72	2.4	28	:	:	15-	μ	2	0.01	
	710	72	2.1	29	:	:	19-	t 8	•	0	0
	116	e			:	:	-н г	16-	18	0.6	
	117	•	•			:	-61	4	0	0	. 0
	718	e	•	•	:		19-	7	22	0.8	26
	119	e	•	•			-20-	Ϋ	9	0.2	0
	722	•	105	•	EGME +		-11	51-	9	0.2	-
	723	•	110	•	DCI-4A 2 ppm A	+ 5A-3	-11	46-	9	0.2	4
	726	9	105	36	EGME +		51-	364	£	0.1	2
	727	•	TOS	8	DCI-4A 0.9 ppm	+_{	-65	43+	2	0.1	-
					SLBGIS	450					

ADDITIVE STUDIES - EGME/UNICOR J/ASA-3/STADIS 450

(Fuel Flow Through Separator)

1

									Charg	e Density.	c/m		Surface	50% Charge
				Conduct:	ivity, CU	Water,	ppm				Receiving	Field Strength	Voltage	Relaxation
	Fuel	Run No.	Temp. 'F	p 3114	D 2624	Total	Free	Additive	Coalescer	Separator	Vessel	@ 90% Full, KV/m	90% Full. KV	Time, Sec.
1P-4.	770-3300	77-649	74	2.3	•	60	•	0.15% Vol.		27-	22+	14	0.5	1
		-650	75	2.3	•	62	•	EGME	•	28-	234	14	0.5	2
		-653	46	2.2	•	,	•		•	24-	28+	22	0.8	9
		-654	46	. 2.2		,	<1.0	=	•	24-	24+	23	0.8	9
		-658	26	1.2	•	55	•			-97	36+	32	1.2	EI
		-659	26	1.5	•	48	•			46-	16+	32	1.2	. 13
		-667	7	•	1	•	•	0.15% Vol.		63-	+07	27	1.0	4
		-668	11	•	•	•	<1.0	ECME +	•	54-	+0+	29	1.0	5
		-671	44	2.2	1	40	•	8 1bs/1000bb1	•	62-	51+	34	1.2	5
		-672	44	2.3	1	56	•	Unicor J	•	55-	444	33	1.2	•
		-663	27		•	•		=		20-	17+	26	0.9	12
		-664	27	•	•	•	<1.0		•	-22-	161	29	1.0	18
		-675	24	•	•	•	•		•	-61	87+	88	3.0	22
		-678	23	54	115	28,32	•	EGME + Unicor J		57-	74-	9	0.2	1
		-619-	23	100	SH	1	•	+ 1.9 ppm ASA-3	•	5-	-11	5	0.2	1
		-682	.20	105	110	38	•	EGME + Unicor J	•	38	12+	0	0	0
		-683	77	105	011	24	<1.0	+ 0.6 ppm Stadi	•	40-	+11	0	0	0

a state of the

Laffer Alling

ADDITIVE STUDIES - ECHE/TOLAD 246/ASA-3/STADIS 450

(Fuel Flow Through Separator)

Run No.	Temp.	Cond. CU	Total Water PPm	Additives	Charge Dens Separator	<u>tty, μC/m</u> Receiving Vessel	Field Strength @ 90% Full, KV/m	Surface Voltage @ 90% Full, KV	50% Charge Relaxation Time. Sec.	
	68	1.5	8	0.152 EGNE	d	a a	01	0.4	-	
	20	1.6	8	-	4	*	13	0.5		
	44	1.2	8		4	t	51	0.5	10	
	44	1.2	32		4	*	18	0.6	20	55
	\$	0.6	20		16-	101	0			τ
	•	•	•		16-	t	80	0.3	31	
	•	1	•		-11	104	13	0.5	16	
	22	2.1	28	Above +	-61	÷5	9	0.2		
	72	2.0	33	8 1bs/1000 bb1	17-	t	7	0.3	00	
	39	1.2	8	Tolad 246	16-	t 9	12	0.4	'n	
	39	1.3	32		18-	5	II	4.0	•	
	5	0.6	24	-	22-	t	1 •	0.0	44	
	9	0.6	26		4	+9	12	0.4	2	
	5	111	•	Above + 2 ppm	29-	37-				
	9	111	•	ASA-3	31-	47-	. v	2.0	0.1	
	s	•	•	ECME + Tolad 246	-52	t	14	1.0		
	9	105	27	+ 0.9 ppm	78-	*	4	0.1	2.0	
				Stadie 450						

ALL IN A LAND

Acres

ADDITIVE STUDIES - ECHE/HITEC E-515/ASA-3/STADIS 450

(Fuel Flow Through Separator)

				Total		Charge Den	sity uc/m3			SOT Charge
Fuel	Run No.	Tesp	D 3114	PPB	Additive	Separator	Receiving	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation Time, Sec.
77D 3305	78-7	74	2.6	•	0.15% EGAE	-611	55+	56	2.0	1
		74	2.4	*		-61	2+	23	0.8	4
	6	74	1.8	8		68-	μ	16	0.6	2
	9	74	1.8	22		-99	4	12	0.9	1
	13	35	1.3	20		40+	ŧ	23	0.8	20
	14	R	1.2	24		45-	ħ	26	0.9	23
	11	4	0.8	61		52-	22-	III	3.9	19
	18		0.9	•		63-	35-	126	4.5	60
	8	69	6.4	22	Above + 16 1bs/1000 bb1	147-	122+	96	3.5	80
	31	2	6.4	20	Hitec E-515	155-	1434	120	4.3	2
	25	33	1.4	24		109-	82+	110	3.9	8
	26	R	4.2			122-	406	123	4.4	80
	27	×	4.4	•	-	137-	95+	135	4.9	10
	21	5	3.6	17	-	213-	103+	96	3.5	1
	22	5	3.5	20		198-	+62	120	4.3	6
	*	9	SIL	20	EGNE + Hitec E-515 +	40-	16-	1	0.04	4
	35	9	•	•	1 ppm Stadis 450	35-	-11	1	0.04	41
	38	4	120	24	ECHE + Hitec E-515 +	24-	¥	S	0.2	1
	8	4	120	•	1 ppm ASA-3	27-	44	4	0.1	1

11 2

09T

11

.

The Destrict of the

ADDITIVE STUDIES - ECME/APPOLO PRI-19/ASA-3/STADIS 450

(Fuel Flow Through Separator)

				TOTAL		Charge Den	sity, µC/m			SOT Change
Fuel	Run No.	Temp	Cond. CU D 3114	Ppm	Additive	Separator	Receiving	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full KV	Relaxation
77D 3306	78-43	п	2.4	•	0.157 RCME	ł	474	78	9.6	
	44	12	3.6	•		. 4	184			•••
		:	0.7			6	100	56	4.0	7
	£\$	12	2.2	•		12-	62+	85	3.1	2
	20	35	1.4	30		ų	14	11	2.6	16
	51	*		•		16-	18+	78	2.8	14
	54	4	1.2	20		28-	ţ	75	2.7	12
	55					32-	33+	87	3.1	11
	67	67	8.2	38	Above + 8 1bs/1000 bb1	4	12+	20	0.7	
	68	68	8.8	640	Appolo PRI-19	52-	24+	2	0.9	
1	63	*	5.5	28	-	35-	164	12	0.8	
16	64	R	5.6	•		41-	22+	26	6.0	4
1	58	\$	1.8	28		-67	21-	20	0.7	4
	59	\$	1.1	•		54-	17-	9	0.2	17
	99	\$	1.7			48-	-11	8	0.3	4
	11	21	100	21	Above + 2.1 ppm	65-	28-	e	0.1	1
	22	21	105	•	Stadis 450	76-	ě	9	0.1	4
	83	\$	105	•		-62	21-	4	0.1	I
	8	9	105			-18	26-	4	0.1	14
	75	19	110	28	ECME + Appolo	57-	- ' 1	2	0.1	1
	76	20	110	-	PRI-19 + 1.4 ppm	55-	17-	2	0.1	-
	62	•	105	18	ASA-3	13-	2+	9	0.1	1
	80	0	105	•		73-	5	3	0.1	2

11.0

A CANAL A

110. 2 1 2

1

1

ADDITIVE STUDIES - ECME/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Separator)

						Charge Densi	tv. uC/m3			SOZ Charge
Fuel	Run No.	i.	Cond. CU D 3114	Nater Ppm	Additive	Separator	Receiving	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full, KV	Relaxation Time, Sec.
770-3307	78-87	68	1.8	34	0.152 EGHE	9	584	45	1.6	14
					=		123	11		
	8	80	4.1	75		'n	100	44	1.0	0
	16	33	1.3	20	-	2	184	24	0.9	80
	92	33	1.2	18	-	4	184	24	0.9	1
	95	2	0.6	16		- 7	13+	22	0.8	16
	96	2	0.8	20		17-	14+	28	1.0	19
1	108	11	3.8	36	Above + 8.4 lbs./1000 bbl	\$	34+	17	0.6	4
62	109	11	3.9	90	Ethyl 733	15-	404	18	0.6	5
2	103	33	1.6	22	=	4	15t	12	0.4	4
	104	33	1.6			13-	18+	14	0.5	4
	66	•	0.6	•		20-	+1	9	0.2	п
	100	9	•	•	-	21-	+9	80	0.3	9
	112	22	94	32	EGME + Ethyl 733 +	123-	65+	33	1.2	1
	113	22	105	24	0.75 ppm ASA-3	107-	48+	30	1.1	1
	124	•	105		EGME + Ethyl 733 +	58-	22-	0	0.0	0
	125	•	105		1.5 ppm ASA-3	55-	21-	0	0.0	•
	126	20	175	•	-	36-	36-	0	0.0	0
	127	20	180	•	-	35-	31-	0	0.0	•
	116	22	110	32	EGME + Ethyl 733 +	-92	33-	1	0.04	1
	111	22	105	•	0.9 ppm Stadis 450	68-	32-	1	0.04	4
	120	•	110	20	EGME + Ethyl 733 +	67-	24-	8	0.1	4
	121	0	110	20	1.0 nnm Stadie 450	- 44-	-16	•		-
.

ADDITIVE STUDIES - EGNE/DUPONT A033/ASA-3/STADIS 450

(Fuel Flow Through Separator)

				Total		Charge Densi	ty, μC/m ³			50% Charge
2		ġ.	Cond. CU D 3114	Ppm	Additive	Separator	Receiving Vessel	Field Strength @ 90% Full KV/m	Surface Voltage @ 90% Full, KV	Relaxation Time, Sec.
179-3306	10-131	20	2.1	%	0.15% EGME	*	53+	50	1.8	1
	132	2	2.0	38	-	٩	62+	54	1.9	1
	137	32	1.2	42		21-	24+	44	1.6	п
	138	32	1.3	*	-	24-	28+	48	1.7	11
	141	4	0.6	20		33-	29+	99	2.4	32
	142	4	0.6	22	-	35-	32+	74	2.7	33
	154	69	3.0	25	Above + 8.4 lbs./1000 bb1	26-	33+	33	1.2	5
,	155	20	3.0	28	DuPont A033	28-	41+	41	1.5	9
16	150	33	1.8	18	-	26-	24+	27	1.0	1
3	151	33	1.8	18	-	32-	28+	29	1.0	1
	146		0.6	18		40-	20+	56	2.0	. 15
	147	1	0.6	22	-	28-	191	99	2.2	55
	158	24	105	18	EGME + DuPont A033 +	-96-	*	2	0.1	4
	651	24	105	20	1.4 ppm ASA-3	92-	4	1	0.04	4
	170	2	105	51	EGME + DuPont A033 +	115-	12+	0	0	0
	171	e	100	16	1.7 ppm ASA-3	101-	134	0	0	0
	162	24	III	18	EGME + DuPont A033 +	-11	4-	0	0	•
	163	24	105	1	0.75 ppm Stadis 450	-11	2-	0	0	0
	166	3	III	15	EGME + DuPont A033 +	62-	4	2	0.07	4
	167	•	III	16	1.0 ppm Stadis 450	51-	ę	2	0.07	4

and the second

a should be a light to be

٨

,

A. Bridger

ADDITIVE STUDIES - ECHE/MDA/ASA-3/STADIS 450

(Fuel Flow Through Separator)

50% Charge	Time, Sec.	7	2	80	6	62	52	33	2	9	5	9	6	49	42	4	4	1	4	4	4	4	4
	@ 90% Full, KV	3.0	2.4	3.4	3.5	9.3	8.6	6.8	2.0	2.4	2.5	3.2	3.0	6.4	5.9	0	0	0.4	0.1	0.02	0.02	0.04	0
Transfer to the test	@ 90% Full KV/m	84	89	95	86	258	240	190	57	68	20	88	82	180	165	0	0	10	4	0.6	0.6	1.0	0
Υ, μC/m	Vessel	*88	+22	92+	86+	109+	100+	84+	65+	82+	162	+99	54+	81+	134	88+	+62	325+	324+	162	162	75+	81+
harge Densit	Separator	-92	-99	-69	92-	115-	107-	101-	-86	-66	-96-	85-	-92	108-	103-	205-	186-	461-	482-	173-	171-	178-	-061
	Additive	0.15% EGME	=					-	Above + 2 lbs./	1000 bb1 MDA						EGME + MDA +	1.0 ppm ASA-3	EGME + MDA +	1.3 ppm ASA-3	EGME + MDA +	0.6 ppm Stadis 450	EGME + MDA +	0.74 ppm Stadis 450
Total	Ppm	32	36	28	24	•	•	•	36		. 1	3	36	16		30			- 07	32	30	•	- 14
	D 3114	1.8	1.8	1.6	1.6	- 000-1			1.6	1.6	•	1.5	1.4	0.9		110	110	123	129	105	110	135	129
	F.	20	20	98	36	4	4	e	20	20	20	z	¥	e	4	25	25	4	4	24	25	4	4
	Run No.	78-209	210	213	214	217	218	220	234	235	236	230	231	226	227	239	240	251	252	243	244	247	248
	Fuel	77D-3310											1	16	4								

Ca.

1

1)(1)

,

Since and

in the state of

ADDITIVE STUDIES - EGME/DCI-4A/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Separator)

.

					Cond. CI	Total		Charge Deni	Receiving	Field Streneth	Surface Voltage	50% Charge
-	lei	Run No.	Temp	-	D 3114	- DDm	Additive	Separator	Vessel	e 90% Full KV/m	6 90% Full KV	Time, Sec.
170	3313	78-385	89		1.7	6.9	0 157 RGME	36	195	36		
			3		4.4	*		br	100	07		
		386	69		1.2	40		4	\$	27	1.0	3
		389	36		1.0	40		67-	57+	8	1.1	
		390	36		6.0	36		67-	584	9	1.1	9
		393	0		0.8	38		-98	#1	168	6.0	41
		394	-		0.7	40		-58	#1	111	6.4	04
		405	99		2.2	42	Above + 8.4 lbs./1000bbl	-011	65+	34	1.2	5
1		406	99		2.2	38	Ethyl 733 + 8.0 lbs./1000	108-	62+	8	1.3	5
65		401	34		1.5	29	bb1 DCI-4A	121-	134	24	0.9	9
		402	34		•			-611	±02	24	6.0	4
		397	1		1.1	28		149-	67+	80	2.9	18
		398	1		1.0	30		132-	634	78	2.8	24
		604	68		141	•	EGME + Ethyl 733 + DCI-	292-	42+	2	0.1	4
		410	68		141		4A + 0.8 ppm ASA-3	277-	24+	2	0.1	4
		413	24		117	30	EGME + Ethyl 733 + DCI-	245-	51+	•	0.1	4
		414	24		129	36	4A + 1.7 ppm ASA-3	237-	42+	2	0.1	4
		425	\$		117	18	EGME + Ethyl 733 + DCI-	280-	119+	41	4	4
		426	s		111	14	4A + 1.9 ppm ASA-3	277-	114+	•	0.1	4
		417	23		123	26	ECME + Ethyl 733 + DCI-	179-	14+	4	41	4
		418	23		129	24	4A + 0.5 ppm Stadis 450	186-	87+	41	4	4
		421	4		100	18	EGME + Ethyl 733 + DCI-	273-	116+	4	4	4
		422	4		110	20	4A + 0.6 ppm Stadis 450	210-	113	1	4	4

11

~~~~~

and and

a she all

ADDITIVE STUDIES - EGME/HITEC E-515/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Separator)

~

|            |         |      |                    | TOCAL |                                       | Charge Den | sity, µC/m          |                                   |                                  | 50% Charge               |
|------------|---------|------|--------------------|-------|---------------------------------------|------------|---------------------|-----------------------------------|----------------------------------|--------------------------|
| Fuel       | Run No. | Temp | Cond. CU<br>D 3114 | PPE   | Additive                              | Separator  | Receiving<br>Vessel | Field Strength<br>@ 90% Full KV/m | Surface Voltage<br>@ 90% Full KV | Relaxation<br>Time, Sec. |
| 77D - 3312 | 78-339  | 73   | 1.2                |       | 0.15% EGNE                            | 4          | 29+                 | 24                                | 6.0                              | en                       |
|            | 340     | 73   | 1.4                | •     | -                                     | 4          | 27+                 | 22                                | 0.8                              |                          |
|            | 343     | 33   | 1.0                | 46    |                                       | 152-       | 143+                | 156                               | 5.6                              | 1                        |
|            | 344     | 33   | 1.1                |       |                                       | 172-       | 126+                | 144                               | 5.2                              | 1                        |
|            | 347     | 4    | 9.0                | •     | -                                     | 170-       | 155+                | 360                               | 13.0                             | 39                       |
|            | 348     | *    | 9.0                |       |                                       | 162-       | 1484                | 390                               | 14.0                             | 44                       |
|            | 360     | 99   | 1.0                | •     | Above + 8.4 lbs./1000 bbl             | 251-       | 213+                | 162                               | 5.8                              | \$                       |
| 1          | 361     | 99   | 1.6                |       | Ethyl 733 + 16 lbs./1000              | 239-       | 201+                | 156                               | 5.6                              | 5                        |
| .6         | 356     | R    | 4.7                | •     | bbl Hitec E-515                       | 229-       | 190+                | 138                               | 5.0                              |                          |
| 6          | 357     | 35   | 4.6                | •     | -                                     | 216-       | 178+                | 144                               | 5.2                              | 'n                       |
|            | 351     | 4    | 2.9                | 22    |                                       | 296-       | 228+                | 330                               | 11.9                             | •                        |
|            | 352     | 4    | 2.8                | •     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 252-       | 183+                | 280                               | 10.0                             | 5                        |
|            | 365     | 25   | 123                | 32    | EGME + Ethyl 733 + Hitec              | 156-       | 34+                 | 0                                 | 0.0                              | •                        |
|            | 366     | 26   | 123                | %     | E-515 + 0.5 ppm                       | -1/1       | 51+                 | 0                                 | 0.0                              | 0                        |
|            | 377     | •    | 100                | 36    | Stadis 450                            | 258-       | 135+                | 4                                 | 0.1                              | 1                        |
|            | 378     | 1    | 100                | 36    |                                       | 245-       | 121+                | 1                                 | 0.3                              | 1                        |
|            | 381     | 8    | 135                | 38    | EGME + Ethyl 733 + Hitec              | -96        | 4                   | 0                                 | 0.0                              | 1                        |
|            | 382     | 2    | 141                |       | E-515 + 0.6 ppm Stadis 450            | 100-       | \$                  | 0                                 | 0.0                              | 0                        |
|            | 369     | 26   | 114                | •     | ECME + Ethyl 733 + Hitec              | 212-       | 105+                | 8                                 | 0.3                              | 1                        |
|            | 370     | 26   | 129                | •     | K-515 + 0.6 ppm ASA-3                 | 198-       | +96                 | 10                                | 0.4                              | 1                        |
|            | 373     | •    | H                  |       |                                       | 300-       | 209+                | 14                                | 0.5                              | 1                        |
|            | 374     | 1    | III                | 34    |                                       | 300-       | 213+                | 14                                | 0.5                              | 1                        |

P

244-14-24

1

ADDITIVE STUDIES - EGME/TOLAD 246/ETHYL 733/ASA-3/STADIS 450

(Fuel Flow Through Separator)

|            |         |        |                    | Total | and the second s | Charge Den | sity, µC/m <sup>2</sup> |                                   |                                  | 502 Charge               |
|------------|---------|--------|--------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|-----------------------------------|----------------------------------|--------------------------|
| Fuel       | Run No. | Temp F | Cond. CU<br>D 3114 | Ppm   | Additive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Separator  | Receiving               | Field Strength<br>@ 90% Full KV/m | Surface Voltage<br>@ 90% Full KV | Relaxation<br>Time, Sec. |
| 770 - 3311 | 78-288  | 11     | 2.6                | 56    | 0.15% EGME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44-        | 63+                     | 38                                | 1.4                              | e                        |
|            | 289     | 11     | 2.6                | 60    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44-        | 594                     | 64                                | 1.4                              | 3                        |
|            | 293     | 35     | 1.8                | 35    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28-        | 24+                     | 99                                | 2.2                              | 21                       |
|            | 294     | 34     | 1.8                | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28-        | 20+                     | 56                                | 2.0                              | 20                       |
|            | 297     | 4      | 1.0                | 20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -611       | 107+                    | 258                               | 9.3                              | 46                       |
|            | 298     | 4      | 1.2                | 18    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -111       | 984                     | 264                               | 9.5                              | 39                       |
|            | 311     | 69     | 2.9                | 40    | Above + 8.4 1bs./1000 bb1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 182-       | 108+                    | 105                               | 3.8                              | 1                        |
|            | 312     | 69     | 3.1                | 42    | Ethyl 733 + 8.0 lbs./1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -661       | 114+                    | 129                               | 4.6                              | 6                        |
| 1          | 313     | 11     | •                  |       | bbl Tolad 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 229-       | 166+                    | 162                               | 5.8                              | 8                        |
| .67        | 314     | 75     | 3.5                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 237-       | 169+                    | 144                               | 5.2                              | 1                        |
| ,          | 315     | 75     | 3.4                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 243-       | 172+                    | 147                               | 5.3                              | 1                        |
|            | 307     | 37     | 1.8                | 28    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 131-       | 84+                     | 59                                | 2.1                              | 4                        |
|            | 308     | 37     | 2.0                | 32    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126-       | 81+                     | 65                                | 2.3                              | 5                        |
|            | 302     | 4      | 1.2                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 138-       | 164                     | 213                               | 7.7                              | 58                       |
|            | 303     | 4      | 1.4                | •     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 133-       | 73+                     | 186                               | 6.7                              | 43                       |
|            | 304     | 4      | 1.2                | ม     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124-       | +02                     | 162                               | 5.8                              | 37                       |
|            | 318     | 26     | 176                | •     | ECME + Ethyl 733 + Tolad 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 120-    | -+                      | 0                                 | 0                                | •                        |
|            | 319     | 25     | 176                | •     | + 2.5 ppm ASA-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -511       | 13-                     | •                                 | 0                                | 0                        |
|            | 332     | e      | 130                | 18    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 269-       | 137+                    | 12                                | 0.4                              | 2                        |
|            | 333     | 3      | 130                | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 273-       | 126+                    | п                                 | 0.4                              | e                        |
|            | 322     | 24     | 135                | •     | EGME + Ethyl 733 + Tolad 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 143-    | 107+                    | 9                                 | 0.2                              | 1                        |
|            | 323     | 24     | 140                | •     | + 0.5 ppm Stadis 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142-       | 107+                    | 9                                 | 0.2                              | 1                        |
|            | 326     | 4      | 94                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 288-       | 237+                    | 23                                | 0.8                              | 1                        |
|            | 327     | 5      | 88                 | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 285-       | 233+                    | 22                                | 0.8                              | 2                        |
|            | 328     | 9      | 146                | •     | ECME + Ethyl 733 + Tolad 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 76-     | +0+                     |                                   | 0.1                              | 2                        |
|            | 329     | 9      | 164                | 24    | + 0.75 nnm Stadte 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11-       | 424                     |                                   | 1.0                              | •                        |

Y

1

,

" And a to be

ADDITIVE STUDIES - EGME/HITEC E-515/MDA/ASA-3/STADIS 450

(Fuel Flow Through Separator)

|          |         |      |                    | Total |                           | Charge Den | sity, µC/m          |                                   |                                  | 50% Charge               |
|----------|---------|------|--------------------|-------|---------------------------|------------|---------------------|-----------------------------------|----------------------------------|--------------------------|
| Fuel     | Run No. | Temp | Cond. CU<br>D 3114 | Ppm   | Additive                  | Separator  | Receiving<br>Vessel | Field Strength<br>@ 90% Full KV/m | Surface Voltage<br>@ 90% Full KV | Relaxation<br>Time, Sec. |
| 770-3315 | 78-477  | 75   | 2.1                |       | 0.15% EGME                | 24-        | 32+                 | 57                                | 2.1                              | •                        |
|          | 478     | 25   | 2.1                | 42    | -                         | 25-        | 3Gt                 | 26                                | 2.0                              | . 00                     |
|          | 482     | 35   | 1.0                | 36    | -                         | 27-        | 21+                 | 75                                | 2.7                              | 41                       |
|          | 483     | 35   | 1.0                | 38    |                           | 28-        | 21+                 | 82                                | 3.0                              | 41                       |
|          | 486     | 5    | 9.0                | 90    | -                         | 48-        | 404                 | 156                               | 5.6                              | 126                      |
|          | 487     | 9    | 0.6                | 28    | -                         | 51-        | 434                 | 204                               | 7.3                              | 149                      |
|          | 488     | 9    | 0.6                | 25    |                           | 51-        | 444                 | 219                               | 7.9                              | 162                      |
|          | 665     | 73   | 14.6               | 48    | Above + 16 lbs./1000 bb1  | 269-       | 269+                | 250                               | 0.6                              | 2                        |
|          | 200     | 72   | 0.6                | 52    | Hitec E-515 + 2 lbs./1000 | 286-       | 284+                | 258                               | 9.3                              | 4                        |
| 1        | 495     | 35   | 4.8                | 42    | Pb1 MDA                   | 171-       | 179+                | 290                               | 10.4                             | 9                        |
| 68       | 496     | 35   | 5.0                | 46    | -                         | 225-       | 204+                | 300                               | 10.8                             | 1                        |
| 3        | 165     | 4    | 1.9                | 28    |                           | 222-       | 190+                | 430                               | 15.5                             | 80                       |
|          | 492     | 4    | 1.8                | 26    |                           | 192-       | 160+                | 400                               | 14.4                             | 8                        |
|          | 503     | 75   | 164                | •     | ECME + Hitec E-515 + MDA  | 229-       | +111                | 2                                 | 0.1                              | 4                        |
|          | 504     | 75   | •                  | •     | + 0.4 ppm ASA-3           | 208-       | 87+                 | 2                                 | 0.1                              | 4                        |
|          | 507     | 23   | 135                | 30    | EGME + Hitec E-515 + MDA  | 150-       | 494                 | 2                                 | 0.1                              | 41                       |
|          | 508     | 23   | 135                | 36    | + 0.6 ppm ASA-3           | 151-       | 424                 | 2                                 | 0.1                              | 4                        |
|          | 519     | 9    | 123                | 20    | -                         | 180-       | 424                 | 41                                | 41                               | 41                       |
|          | 520     | 9    | 123                | 18    | -                         | 186-       | ++9                 | 8                                 | 0.1                              | 4                        |
|          | SLL     | 22   | 135                | 33    | ECME + Hitec E-515 + MDA  | 148-       | 32+                 | 4                                 | 41                               | 4                        |
|          | 512     | 22   | 135                | •     | + 0.4 ppm Stadis 450      | 149-       | 34+                 | 4                                 | 4                                | 4                        |
|          | 515     | 9    | 111                | •     |                           | 185-       | 57+                 | e                                 | 0.1                              | 4                        |
|          | 516     | 9    | 123                | •     |                           | -061       | 62+                 | 2                                 | 0.1                              | 4                        |
|          |         |      |                    |       |                           |            |                     |                                   |                                  |                          |

Sec. 19 11 5

1.1

ADDITIVE STUDIES - ECME/TOLAD 246/MDA/ASA-3/STADIS 450

(Fuel Flow Through Separator)

|          |         |      |        | Total |                         | Charge Den | Ity, pc/m           |                                   |                                  | 50% Charge               |
|----------|---------|------|--------|-------|-------------------------|------------|---------------------|-----------------------------------|----------------------------------|--------------------------|
| Puel     | Run No. | Temp | D 3114 | Ppm   | Additive                | Separator  | Receiving<br>Vessel | Field Strength<br>@ 90% Full KV/m | Surface Voltage<br>@ 90% Full KV | Relaxation<br>Time, Sec. |
| 770 3314 | 78-431  | 65   | 1.2    | 8     | 0.15% ROME              | 4          | 36+                 | 07                                | 1.4                              | 1                        |
|          | 432     | 65   | 1.3    | •     |                         | 40-        | đ                   | 07                                | 1.4                              | 1                        |
|          | 435     | 35   | 1.0    | 26    |                         | 32-        | 27+                 | 09                                | 2.2                              | 27                       |
|          | 436     | 35   | 1.0    | 26    | =                       | 32-        | 27+                 | 64                                | 2.3                              | 24                       |
|          | 439     | •    | 0.8    | 14    |                         | -59-       | 22+                 | 62                                | 2.2                              | *                        |
|          | 440     | •    | 0.8    | 16    | -                       | 29-        | 24+                 | 105                               | 3.8                              | 110                      |
| 1        | 441     | •    | •      | •     |                         | 33-        | 25+                 | 96                                | 1.2                              | 120                      |
| .69      | 453     | 99   | 1.8    | æ     | Above + 8 lbs./1000bbl  | -69        | 14                  | 22                                | 0.8                              | 10                       |
| 9        | 454     | 99   | •      |       | Tolad 246 + 2 lbs./1000 | -92        | 181                 | 23                                | 0.8                              | н                        |
|          | 449     | 33   | 6.0    | 28    | Pb1 MDA                 | 58         | 204                 | 41                                | 1.5                              | 39                       |
|          | 450     | 34   | 6.0    | 32    |                         | 57-        | 184                 | 42                                | 1.5                              | 44                       |
|          | 444     | 1    | 6.0    | 17    | -                       | 65-        | 174                 | 24                                | 6.0                              | 58                       |
|          | 445     | 1    | 1.0    | •     | -                       | 64-        | 16+                 | 58                                | 2.1                              | 92                       |
|          | 446     | 1    | •      | •     |                         | 65-        | 14+                 | 62                                | 2.2                              | 147                      |
|          | 457     | 2    | 164    | 52    | ECME + Tolad 246 + MDA  | 135-       | 102                 | 1                                 | 4                                | 4                        |
|          | 458     | 20   | 164    | 32    | + 0.5 ppm Stadis 450    | 134-       | ţ                   | 1                                 | 41                               | 4                        |
|          | 461     | 23   | 111    | 32    | EGME + Tolad 246 + MDA  | 105-       | 24+                 | 2                                 | 0.1                              | 4                        |
|          | 462     | 23   | 111    |       | + 0.8 ppm Stadis 450    | 125-       | 284                 | 2                                 | 0.1                              | 4                        |
|          | 473     | e    | 123    | •     | ECME + Tolad 246 + MDA  | 126-       | 12+                 | 80                                | 0.3                              | 1                        |
|          | 474     | e    | 123    | •     | + 0.9 ppm Stadis 450    | 130-       | 17+                 | 9                                 | 0.2                              | 1                        |
|          | 465     | 25   | 129    | 28    | EGME + Tolad 246 + MDA  | 150-       | 12+                 | 4                                 | 0.1                              | 1                        |
|          | 466     | 25   | 129    | •     | + 2.0 ppm ASA-3         | 158-       | 184                 | 4                                 | 0.1                              | 1                        |
|          | 469     | 2    | 100    | 19    | ECME + Tolad 246 + MDA  | 230-       | +26                 | <1                                | 4                                | 4                        |
|          | 470     | 2    | 105    |       | + 2.25 ppm ASA-3        | 242-       | 107+                | 2                                 | 0.1                              | 41                       |

11 -

a subscription of the second se

Seattle - a well

ADDITIVE SIUDIES - EGME/ETHYL 733/MDA/ASA-3/STADIS 450 (Fuel Flow Through Separator)

| 50% Charge<br>Relaxation<br>Time, Sec.         | 7          | 2   | 21  | 20  | 75  | 79  | 9                        | 9                       |         | 33  | 32  | 11  | 79  | •1                 | • 1                 | •1                 | <1 ×                 | 1                  | 1                   | 1                  | •1             | <1                 | •1             |
|------------------------------------------------|------------|-----|-----|-----|-----|-----|--------------------------|-------------------------|---------|-----|-----|-----|-----|--------------------|---------------------|--------------------|----------------------|--------------------|---------------------|--------------------|----------------|--------------------|----------------|
| Surface Voltage<br>@ 90% Full KV               | 1.1        | 1.1 | 3.0 | 2.9 | 2.9 | 3.9 | 1.4                      | 1.5                     |         | 3.2 | 3.2 | 3.7 | 4.2 | 0.1                | ٤1                  | 1,                 | •1                   | 0.1                | 0.1                 | 0.1                | 0.1            | 0.1                | 0.1            |
| Field Strength<br>@ 90% Full KV/m              | 30         | 30  | 82  | 80  | 80  | 108 | 40                       | 42                      |         | 90  | 90  | 102 | 117 | 2                  | < 1                 | < 1<br>            | < 1                  | 3                  | 3                   | 4                  | 2              | 2                  | 2              |
| sity, μC/m <sup>3</sup><br>Receiving<br>Vessel | 584        | 62+ | 454 | 434 | 42+ | 404 | 434                      | 454                     |         | 434 | 404 | 434 | 404 | 24+                | 28+                 | 51+                | 554                  | +11                | 12+                 | 51+                | 51+            | 464                | 554            |
| Charge Den.<br>Separator                       | -99        | 62- | -11 | -11 | 55- | 52- | 65-                      | 63-                     |         | -09 | 58- | 69  | 58- | 221-               | 217-                | 237-               | 238-                 | 193-               | 200-                | 273-               | 260-           | 217-               | 216-           |
| Additive                                       | 0.15% EGME | • = |     |     |     |     | Above + 8.4 1bs/1000 bb1 | Ethyl 733 + 2 1bs./1000 | PD1 MDA |     |     | =   |     | EGME/Ethyl 733/MDA | +0.5 ppm Stadis 450 | EGME/Ethyl 733/MDA | +0.75 ppm Stadis 450 | ECME/Ethyl 733/MDA | +0.9 ppm Stadis 450 | EGME/Ethyl 733/MDA | +1.5 ppm ASA-3 | EGME/Ethyl 733/MDA | +1.6 ppm ASA-3 |
| Total<br>Mater<br>PPm                          |            |     | 32  | 35  | 20  | 16  | 35                       | 38                      |         | 32  | 30  | 28  | 22  | 39                 | 50                  | 30                 | 28                   |                    | -101                | 24                 | 27             | 20                 |                |
| Cond. CU<br>D 3114                             | 2.3        | 2.4 | 1.1 | 0.9 | 0.6 | 0.6 | 1.0                      | 1.0                     |         | 0.7 | 0.7 | 0.6 | 0.6 | 123                | 129                 | 123                | 129                  | 117                | 123                 | 117                | 123            | 123                | 123            |
| Temp P                                         | 76         | 76  | 36  | 36  | 9   | 9   | 67                       | . 67                    |         | 36  | 36  | 9   | 1   | 70                 | r                   | 21                 | 22                   | 5                  | 5                   | 20                 | 20             | 5                  | 9              |
| Run No.                                        | 78-529     | 530 | 533 | 534 | 537 | 538 | 549                      | 550                     |         | 545 | 546 | 541 | 542 | 553                | 554                 | 557                | 558                  | 569                | 570                 | 561                | 562            | 565                | 566            |
| Fuel                                           | 77D 3316   |     |     |     |     | 1   | 70                       | 0                       |         |     |     |     |     |                    |                     |                    |                      |                    |                     |                    |                |                    |                |

ŀ

.....

1

,

- -----

Sugar Latta

## ADDITIVE STUDIES - EGME/TOLAD 246/ETHYL 733/MDA/ASA-3/STADIS 450

(Fuel Flow Through Separator)

| 50% Charge              | Relaxation<br>Time, Sec.          | 2          | 2   | ц   | 10  | 45  | 65  | 5                         | 9                         | 25                        | 24           | 40  | 56   | 55    | 41                        | 41                  | 2                         | ٦                    | ٦                         | 1                    | 41                        | <1>                       | ٦                         | 2                        |
|-------------------------|-----------------------------------|------------|-----|-----|-----|-----|-----|---------------------------|---------------------------|---------------------------|--------------|-----|------|-------|---------------------------|---------------------|---------------------------|----------------------|---------------------------|----------------------|---------------------------|---------------------------|---------------------------|--------------------------|
|                         | Surface Voltage<br>@ 90% Full KV  | 0.4        | 0.5 | 2.1 | 2.2 | 2.4 | 2.4 | 6.0                       | 0.9                       | 1.9                       | 1.7          | 1.1 | 1.1  | 1.1   | 0.1                       | 0.1                 | 0.3                       | 0.2                  | 0.1                       | 0.2                  | ¢1                        | ¢1                        | 0.2                       | 0.2                      |
|                         | Field Strength<br>@ 90% Full KV/m | P          | 14  | 57  | 60  | 67  | 99  | 25                        | 26                        | 52                        | 46           | 30  | 30   | 30    | 2                         | 2                   | 6                         | 9                    | 2                         | 9                    | ć1                        | 4                         | 9                         | 9                        |
| sity, µC/m <sup>3</sup> | Receiving<br>Vessel               | 42+        | 484 | +0+ | 45+ | 24+ | 24+ | 43+                       | 55+                       | 36+                       | ţ            | æ   | 24+  | 404   | 95+                       | <b>t</b>            | 35+                       | 32+                  | <b>29</b> +               | +69                  | +6+                       | 58+                       | 33+                       | 45+                      |
| Charge Den              | Separator                         | 45-        | 51- | 45- | 52- | 35- | 34- | 122-                      | 121-                      | 87-                       | 75           | 85- | -87- | - 94- | 284-                      | 280-                | 237-                      | 239-                 | 243-                      | 260-                 | 164-                      | 162-                      | 160-                      | 160-                     |
|                         | Additive                          | 0.15% EGME |     |     |     | -   |     | Above + 8.4 lbs./1000 bb1 | Ethyl 733 + 8.0 lbs./1000 | bbl Tolad 246 + 2.0 lbs./ | 1000 bb1 MDA | -   | -    | =     | EGME/Ethyl 733/Tolad 246/ | MDA + 1.5 ppm ASA-3 | EGME/Ethyl 733/Tolad 246/ | MDA + 2.25 ppm ASA-3 | EGME/Ethyl 733/Tolad 246/ | MDA + 2.75 ppm ASA-3 | EGME/Ethyl 733/Tolad 246/ | MDA + 0.75 ppm Stadis 450 | EGME/Ethyl 733/Tolad 246/ | MDA + 1.0 ppm Stadis 450 |
| Total                   | Water<br>PPm                      | 20         | •   | 39  | •   | 20  | 22  | 52                        | 55                        | 42                        | 38           | 28  | 23   | •     | •                         | 65                  | •                         | 27                   | •                         | •                    | •                         | 24                        | 1                         | •                        |
|                         | Cond. CU<br>D 3114                | 2.6        | 2.6 | 1.6 | 2.0 | 1.0 | 6.0 | 2.2                       | 2.0                       | 1.2                       | 1.5          | 0.5 | 0.6  | 0.6   | 123                       | 117                 | 123                       | 129                  | 117                       | 117                  | 123                       | 129                       | 117                       | 123                      |
|                         | Temp., "F                         | 11         | 11  | 33  | 33  | e   | e   | 75                        | 76                        | 35                        | 35           | \$  | 5    | \$    | 20                        | 11                  | . 24                      | 25                   | .4                        | 4                    | 25                        | 25                        | 4                         | 4                        |
|                         | Run No.                           | 78-573     | 574 | 577 | 578 | 581 | 582 | 594                       | 595                       | 590                       | 201          | 585 | 586  | 587   | 598                       | 599                 | 602                       | 603                  | 612                       | 613                  | 909                       | 607                       | 610                       | 119                      |
|                         | Fuel                              | 770-3317   |     |     |     |     |     |                           | 1                         | .7:                       | ·            |     |      |       |                           |                     |                           |                      |                           |                      |                           |                           |                           |                          |

\*U.S.Government Printing Office: 1979 - 657-002/425

;

1