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I. Introduction

The main problem of astrophysics is the analysis of the emission
spectra of astrophysical objects. To a major extent, the early evolu-
tion of this discipline was connected with progress in atomic physics,
without which the interpretation of the optical spectra and, often, of
the radio spectra would have been impossible. More recently, the
opening of new observational "windows", involving radio waves, x-rays
and gamma rays has revolutionized the discipline by revealing the ex-
istence of a wide range of new and exciting phenomena. Due to the im-
portance of plasma physics in the understanding of many of these phe-
nomena, the discipline of plasma astrophysics has emerged. It is be-
coming increasingly clear that the development of modern astrophysics
relies to a large extent on our understanding of plasma physics.
Experience with _aboratory plasmas,which can be probed directly, pro-
vides valuable insight into general problems of plasma physics and
allows theories to be compared with observations. Without the con-
straints imposed by plasma physics, the theories of astrophysical phe-

nomena would be much more speculative. There is every reason to expect

that certain problems of plasma physics will find more ready application

in astrophysical plasmas than in the laboratory. A case in point is
the study of collective radiation mechanisms, which is the topic of
the present review.

Observations have shown that astrophysical objects contain very
intense radiation sources, which cannot always be interpreted in terms of
the well-known bremsstrahlung and synchrotron mechanisms. However, a

rather extensive list of collective radiation processes has been
Note: Manuscript submitted December 3, 1978.
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discussed in the plasma physics literature in the last decade or so,
many of which may be applicable to the study of astrophysical plasmas.

A problem arises because many astrophysicists are unfamiliar with
theoretical plasma physics, while many plasma physicists are unfamiliar
with the observations. In view of this, the present review is .ln attempt
to develop the physical principles of several relevant radiation mecha-
nisms and to present convenient simplified formulas for the description
of collective e-m radiation mechanisms, which is one of the most im-
portant topics of plasma physics for the astrophysicist. The emphasis
is on the physical description and the presentation of convenient formu-
lae, rather than in elaborate derivations. However, an extensive list
of references is provided of the source literature for the interested
reader. While most of the material has already been published, many
results appear for the first time.

In analyzing the emission spectra there are two important consider-
ations. First, the generation of the e-m radiation at the source and,
second, the propagation between the source and the observer. We empha-
size here the generation mechanisms, since the propagation effecta can
be treated by the well-known methods of geometric optics or numerical
ray tracing.

The plan of this work is as follows. In Chapter II, we providea brief
description of the properties of electromagnetic waves in plasmas.
Spontaneous emission, as well as radiation from non-thermal and turbu-

lent field-free plasmas, is discussed in Chapter III, including strongly
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turbulent emission mechanisms. In Chapter IV, we consider spontaneous
and turbulent emission processes in a uniformly magnetized plasma.
Stimulated scattering processes and the corresponding implications for
free electron and plasma lasers are treated in Chapter V. In Chapter VI,
we present a discussion of linear electromagnetic instabilitiea from
plasmas having an aniostropic distribution in velocity space. Thé
physics of type III solar bursts is discussed in Chapter VII for illus-
trative purposes. A summary and concluding remarks are given in

Chapter VIII., A summary of the emission mechanisms, cataloged according

to frequency, is given in the Appendix.




II. Linear characteristics of high frequency e.-m. Waves:

A summary of the linear characteristics of high frequency e-m
vaves propagating in a plasma can be seen from figs. 1-7. The simplest
situation corresponds to an isotropic plasma in the absence of a mag-
netic field. In this case the high frequency transverse and longitudi-
nal oscillations are completely decoupled and their respective disper-

sion relations are (fig. 1)

w® = wi + k3c2 (1) 1
1
2 2 2
w -we(1+3k%) (2) 1
The important aspect of the above dispersion relation is that the phase velocity ]

of the transverse waves is greater than the speed of light, thereby ex- ‘ /

cluding the possibility of Landau damping or Cerenkov excitation in the

absence of finite boundaries or of an ambient magnetic field. Notice

also a cut-off in propagation (i.e.,k # 0) when the e-m wave frequency 4

® becomes equal to the plasma frequency (w =~ we) indicating that the

wave energy will be reflected at that point. The group velocity of the ‘

transverse waves is given by !‘8 = g‘—:- = 3—2- and as expected is smaller ) ‘}’

than c. R b
The presence of a magnetic field modifies substantially the above J

simple picture and introduces new physical phenomena. Some representa-

tive results can be illustrated in the limiting case of propagation per- ’.j
pendicular to the ambient magnetic field (l_u.l_;o). In this case,the |
electrostatic and electromagnetic components are approximately decoupled,and

two situations can be distinguished (fig. 2a). In the first one,

4
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the wave electric field is parallel to the magnetic field (ordinary or

0 mode), while in the second it is perpendicular (extraordinary or Xmode).

For the O mode, since l_?.1| |1_3° there is no ]_51"’30 coupling, and the
dispersion relation is the same as in the absence of a magnetic field
(L.e. 0 = wi + k®c?), The presence of Ey x B, drifts in the X-mode pro-

duces a charge separation in the x direction (fig. 2b) so that the mode

becomes partly longitudinal, and its polarization elliptical rather than

linear. The dispersion relation for the X-mode is given by

2 2
PPON 5 W L i
o o5 & FoE

where Quz = wez + ﬂi is the upper hybrid frequency. The cutoffs of the

X-mode are given by
o=t [02rw@?ea], (4)

while an additional feature is the presence of a resonance (i.e.,k # ®)
for w Qu at which the wave energy is absorbed (note that at the
resonance frequency the transverse wave energy becomes longitudinal).
The modes of propagation for lg-no-o are shown in fig. 3. Thcre‘

are two branches of X-mode propagation corresponding to the two roots
of equ. (3), which are usually called the slow extraordinary mode

(8X) and the fast extraordinary mode (FX). An interesting property

of the SX-mode is 8 region where Vp<¢, so that Landau damping
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as well as Cerenkov excitation becomes possible for this mode, The im-
plications of this fact will be examined later.

An interesting diagram connected with the propagation of the O and
X modes is shown in fig. 4, where we nlot La vs. w. The interpretation
of this diagram, depends on whether the signal w is generated inside or
outside the relevant plasma region and on how it is changing with space.
For example if we take Qe = const. and consider a fixed frequency radi-
ated into the plasma from the outside, the wave encounters higher density
and Wy W, ’Qu and w. 1increase so that we move towards the right of the
diagran.. This is equivalent to keeping the density constant and in-
creasing the frequency. Taking this poiﬁt: of view we find that for
w >> w, (or low density) Vp-’c. At w = w we get a cutoff, so that the
wave is reflected. There is no propagation between we and Qu (forbidden

band) unless tunneling can occur, which typically requires the gradient

scale-length L to be smaller than the incoming wave-length A, At

=0, Vp + 0 and a window of propagation occurs between w and ﬂu within

which VP> ¢ for w<w,, V <c for w>w,,and V =c for W=w_ . There is no

P P
propagation for w<w , A similar diagram (fig. 4b) for the O-mode shows

L
one cutoff and no resonance.

Before closing the discussion of propagation for 6=1/2, we should
notice that for w_ > Q,s @ commonly encountered situation in space
plasmas, the propagation characteristics reduce to the O-mode since
wL,mR,Ou-ﬁne.

Another limiting case of e-m wave propagation in a plasma corres-

ponds to propagation parallel to l_!o(hllgo). For high frequencies the ion

motion can be neglected and one recovers the helicon or whistler mode,




>’ l-‘p-‘

which satisfies the dispersion equation

2
w
0? = k2c® + —=
1+%€ (5)

There are two different waves propagating along Eo (fig. 5) with circular

polarization: the right (R) and the left (L) hand polarized waves. The

cutoffs and resonances of these modes can be seen from fig. 6. As ex-

pected only the R-waves have resonance (k ® «) at = Qe, since the

electric field of the R-mode rotates in the same direction as the

electrons. (If we included ions the L-wave would show a resonance at

w =0 1)' The cutoffs are the same as for the X-mode. The L-wave has a J
stop-band for w<wL and behaves as an O-mode with ER replaced by w . The

R-wave has a stop band between we and Qe’ For propagation with w < Qe >

we note that Vp< c. This corresponds to the whistler mode. For this

mode Vp and V8 decreases with w for w > (2)_3 and increase for w < % . A

final remark on the whistler propagation concerns finite electron thermal

velocity effects, which produce a substantial electron cyclotron damping

effect in the vicinity of the resonance. Fig. 7 shows that cyclotron = it
damping produces a gap in propagation for lﬂel -kve<m< | Qel +kv_ . In
the same fashion as we will see later temperature aniostropies or loss

cone distributions can excite whistler instabilities.
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III. Bremsstrahlung radiation from non-thermal and turbulent plasmas

In this chapter we present first an elementary computation of the
collisional bremsstrahlung radiation in a field free plpsma. A more de-
tailed account of the spectral emission formulas including collective
bremsstrahlung follows for both non-thermal and weakly turbulent
plasmas. The chapter concludes with a discussion of the radiation from
strongly turbulent plasmas.

1. Elementary physical considerations:

The physical reason for bremsstrahlung in a magnetic field free
plasma, is the acceleration of free electrons by ions. An estimate of
the total emission can be computed on the basis of simple physical
arguments (Dawson,1968).

An electron with acceleration o radiates at a rate given by the

Larmor formula

2
P -3 (1)
2
The electron acceleration o by an ion of charge Z is given by
2
mr?
where r is the distance between electrons and ions.
Therefore the total power radiated can be found from eqs. (1)
ad (2) by multiplying by the electron and ion densities (ne =2n, = n)
and integrating over the volume. This gives
(-]
2.2 2 - 2,2 2
p, - B [ MR 4o G el (3)
3c°n? r 3 wfe r,
r
()
8




with T, defined as the distance of closest approach where the classical

P, - 6"222 [‘]’ ()

which is correct to within a few percent of the one calculated by

approximation breaks down. Taking r = 2 b
mV T,

we find

quantum mechanical theory.

It is important to note that the radiation due t‘c; e:léectron
encounters gives a contribution smaller than (4) by -c—e-) . The reason
is that the accelerations of interacting electrons are equal but oppo-
site so that to first order their radiation fields cancel each other,
and appear first to quadrupole order (:l..e.,zih) .

It is interesting to examine the cond:l.:iona under which a plasma
radiates as a blackbody. Neglecting reabsorption a sphere of plasma

with radius R, radiates a power

Weg§mP =6x 10°%7 zzn""ra"na =82 (5)

lec

where T is in °K. To find the minimum radius R of the plasma required
in order t> radiate like a blackbody, we equate equ. (5) with the black-

body rediation Wy from a plasma surface lm'Roz . This gives

vy = hno'r;aoa - W(R ) (6)

vhere o is the Stefan-Boltzmann constant. Using eqs. (6) and (7)

4 3 ve find that




3

1.2 x 1017'1-e
R = I (7)
Z3p2

Notice that for T = 10° °K, n = 10'° plasma, R =3 x 105 km . We
can thus conclude that practically most thermal plasmas will radiate

much ‘lower levels than a blackbody, i.e. they will be optically thin.

Whether an astrophysical plasma is optically thin or not should be

the first consideration in examining its total emission power.
However the fact that the plasma is,in general optically thin

as whole can often be deceptive, since it can be optically thick

for some frequencies and optically thin for others.

To determine this, we must find the absorption coefficient as a function

of the frequency. Knowing the absorption coefficient u(w) for a plasma

of temperature T, we can find the emissivity by requiring that the ab-

sorption of blackbody radiation with temperature T at frequency w be

balanced by the plasma emission. A calculation of the electromagnetic

fields from a stable plasma can be found by the application of the

fluctuation dissipation theorem. The formulae give the spectral

densities of the electromagnetic fields and are valid even for a non-

equilibrium plasma.

2. Radiation from sources imbedded in a stable plasma:

There are many ways one csn calculate the emission formulas from
a stable plasma. The simplest and physically most transparent is the
use of the dressed test particle method. The important physical con-
cept involved is that a stable plasma even not in thermal equilibrium

can be viewed as an ensemble of uncorrelated "dressed" test particles.

10 |
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The collisional effects appear for H.D> 1, vhile the collective shielding dominates
for k}\0< 1. The work of Dawson and Nakayama (1966) actually showed that the

concept of the dressed test particles can be generalized to all orders

in the plasma expansion parameter (g ~ 3 .
The radiation from a plasma to any order can be computed in two steps.

The first step is very general and gives the formula for the radiation emitt-

ed by arbitrary sources embedded in a plasma. The second is the détemi-

nation of the sources to the appropriate order (Birmingham et al., 1965,1966)
The energy emitted by a current source 18(1',1:) , can be found by

computing the work done by the current on its self-consistent electric

field E, i.e.

L (IR
P, o i BBt (5K
-1/2

or by Parseval's theorem

P - --(—2;- lli:q/]ﬁ(k ®) + 1% (k,0) dicdw .

The emission per unit frequency will be

P (0) =% -(-2—15;1&]45 E(k,0) « 3% (k,0). (8)

On the basis of the test particle theory,and for an isotropic plasma,

k- 1,(k,0)
9)

Ay R

11




| —
= J S SAI—

Lk (k,w)
k x E(k,0) = - ;ez(ifwg’ (10)

From eqs. (8-10) we find

2
P (0) = —1- mfg i - 4, (,0)]
. kS k® € (k,0)

toxg g (k)| } : e
€, (k,0)

An additional quantity which can be computed on the basis of super-
position of uncorrelated test currents as given by eqs. (9) and (10),

is the spectral density tensor of the electric field, i.e.

kei (k,w)|2
< x*ll_c,u> o M [" do(ts2)
5 w?k?® leL(E:“’)lz

2
+ |kx 3 (o) ; (12)
l€p(k,0)| 2 '

3. Cerenkov emission from stable non-thermal plasmas:

The longitudinal and transverse power emission spectra can be
computed from eq. (11) by first specifying 18(5,(0) and then summing

S A AR e =

over all available test charges. To first order the current sources

are due to bare particles moving in their unperturbed trajectories

1]

A
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(1.e. x(t) = x, + xot). Therefore
1, (k,0) = 2mqy 5(w-k.v ). (13)

From eqs. (12) and (13) and integrating

kk
E B k -m‘f/d £ (v)8(0 - kov) 1
<——|_)u’>s K2 N ENEIEW = e K2 le (l_c w)|2

E’ﬁ!f! ke 1
+ & I-—)—m—m—]. (14a)
= (‘ ka) leT(ywlz]

This result is correct for stable plasmas in an equilibrium or non-equili-
brium state. For an equilibrium plasma (i.e.,fe Maxwellian), we recover
the result usually derived on the basis of the fluctuation dissipation

theorem (Rostoker, 1961; Montgomery and Tidman,196L)

(e ko= ol {ﬁ- e .Sl
8

w K2 leL(waz ‘ }
}

5 1"_.“) Iif_(_'"_“’)} (14b) i
- K2 '6-[(‘.‘:‘”'2 l

At this stage,we should stop and examine the physics involved in the

B B

above radiation formulas. In computing the bremsstrahlung radiation in

section 1, we considered the acceleration due to the electron-ion en-

counters, Since, in the present source model, the test charges were

18
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moving in straight trajectories, no radiation will be exptected

in a vacuum. However,the presence of the plasma can modify this, as
seen from eq. (14). In the absence of collisions 1Im G.l.(l_c,w)

vanishes (to the order of validity of the Vlasov equation), and no

e-m radiation will be emitted from particles moving in straight orbits.
Since ImeL(E,w) is different from zero, electrostatic radiation

can be emitted. The electrostatic radiation emitted is Cerenkov radia-
tion, i.e. radiation due to particles moving with velocities larger than
the phase velocity of the waves. In a plasma with Eo = 0 only the
electrostatic modes have Vp< ¢ and can therefore produce Cerenkov
radiation. As we will see later,the situation is different for the S-X
mode if B #0.

In fig. 8 we plot the function S(k,») = Tr <E E*|k,w >, as a
function of w for a fixed wave number k < kD and for a thermal equili-
brium plasma. The spectral demnsity has two plateaus st 0< w<0 (kVi) and
ws O(kVe) corresponding to waves with phase velocities of the order of
Vi, V_. In addition there is a sharp resonance at w =~ ®g with width
7L(_';_e (i.e.,the Landau decrement for e-s waves with Vp~ c:_._). it is
important to notice that this resonance becomes broader and has more
area under it for a non equilibrium plasma having non-Maxwellian tails
(fig. 8). This effect is due to the fact that the suprathermal electrons
emit enhanced Cerenkov radiation. The steady state level can be found
by balancing the Cerenkov emission of the waves with their reabsorption
due to Landau demping (Tidman and Dupree,1965).

The energy density of the e-s waves near ®g, can be computed by

14
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integrating eq. (]fha) over the resonance we and is given by

w
2 2 F_(—
<E2> _ 8ne fdkk ek (is)

on W, lFe'('fm )|

where Fe(u) is the usual reduced distribution function

Eu) = fav 6(11 - 'ls—;l-’)fe(g).

Eq. (15) is basically a statement of Kirchoff's law; specifically, that
emission is balanced by absorption in equilibrium (notice that the linear
damping decrement ')'L(k) ~ Fe' (we/k)).

An estimate of the value of the enhanced wave level over the one ex-

pected in thermal equilibrium (< EZ> can be found for the model distri-

TE)
bution (fig. 8)

V 3
fe(v)-+ [exp(- L )+ (1-8) == exp (- o )] (16)
v 3

(em)2 v 2

with 1> |1-8|>> 0, VEZ. The case f = 1 reproduces the results

for thermal equilibrium. From eqs. (15) and (16) we find

2 2
<E2> % Ve Ne

‘ (17)
! < Wl (1-8)]

16




For example, if VE = 20 Ve, and B = .9 we find an enhancement of 102. 1In

order of magnitude the presence of suprathermal electrons of temperature

IE » enhances the steady state level of the electrostatic plasma waves at

W, by a factor -,i.: .

The emission of electromagnetic waves in this case involves higher
order interactions. Ome can obviously see that the presence of the en-
hanced level of electrostatic waves as given by eq. (17) will affect
both the electron-ion (e-i)and the electron-electron (e-e) interactions.

A detailed derivation of the emission can be found in Dawson (1968). However,
some simplified formulae and their physical interpretation will be given
in the next section.

k. E-m radiation from non-thermal and weakly turbulent plasmas:

In the above section we found that a non-thermal plasma has an en-
hanced level of e-s waves near W, Another very common situation is the
case of a plasma with an established electrostatic spectrum of turbulence.
Such a spectrum can be, for example the result of an instability. We
proceed below to determine the e-m radiation from such a plasma. We
shall assume that,as a result of certain causes, (1) turbulence develops in
the given plasma at different types of plasma waves and (2) the energy densi-
ty and its distribution over the spectrum are specified. For the case
we»ﬂe, we consider only electron plasma waves (w =~ we) and ion waves
(w< wi). In addition we assume that the turbulence is weak, in the
sense that it is homogeneously distributed, rather than localized as in
the case of plasma solitons and collapse (see section 5 below)

There are in general two types of conversion of e-s to e-m waves;

16
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regular conversion in a weakly inhomogeneous medium and non-linear con-
version due to the interaction of the turbulent fluctuations with each
other or with free and shielded plasma particles. In the case of propa-
gation in a weakly inhomogeneous plasma, the conversion coefficient is
in general proportional to the ratio of the wave-length A to the
characteristic dimension L of the inhomogeneity. If the geometrical
optics condition is violated it becomes of the order (%)%. However
under most conditions in space plasmas % is very small and the regular
conversion negligible (Kaplan and Tsytovich, 1969; 1973).

The non-linear conversion mechanisms correspond to the interaction
of at least one high frequency wave (we) with the polarization
clouds of thermal ions (Rayleigh-1like scattering), ion acoustic turbu-
lence, other thermal or non-thermal high frequency (we) waves (Raman-
like scattering) or suprathermal particles (Compton-like scattering).
The frequency of the resulting e-m wave is near we in the first two
cases, 2 w, in the second and can be much larger than LR in the
third case. The processes are illustrated in fig. 9. The detailed
theory of the conversion processes has been considered in various
papers and can be found on the basis of eq. (11) by computing the
appropriate shielded currents at the appropriate frequency. We confine
the discussions, therefore, only to a brief summary of the physics and the
simplified approximate formulae. We present first, for comparison, the

radiation formulas for a thermal plasma (Bornatici and Engelmann,1968).

For an optically thin slab of a Maxwellian plasma, the emission
spectrum P(w) is composed of a continuum due to binary encounters

(k < kD) given by (Bekefi,1966)
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«ag B nizz T3/2
T cm°-Hz-sec

and two peaks superimposed at w, and 2we , with negligible area

under them,due to collective effects given by

v.\2
Pth(we) =6x 10735 nosk T i (f) _eg_g_ (19a)
cm"sec
-24 S/2 -3 /ve * er
Pth(aﬂe) = 10 n T /2\c— _SL (19b)
: cm” sec

The factors (‘i—e)z and (%)4 indicate the dipole and quadrupole nature
of the collect'ive w, and 2we radiation respectively.

We proceed next to discuss the e-s to e-m conversion processes in
order of increasing frequency. We assume below that a spectrum of turbu-

of the form

whig,0) = Wh(k) ()

(20)
w8 (k,0) = W(k) a(w-w‘(k))
has been established with ws(g) the ion sound frequency.

a. Emission near w, (Sturrock,1961; Sturrock et al.,1965)

The interaction of electron plasma waves (£) with ion sound wave
(s) produces e-m radiation near 0, since it requires that both energzy
and momentum be conserved (mem =0+ ws(k)’ 5‘ +k = l_:em). This
process,usually represented by £ + 8 # t, generates waves in the fre-

quency range
. v 2 3
3 e m
{ (De‘ws(l)e [1+-z -‘-i? +(ﬁ)] (21)

1 where Vp is the average phase velocity of the e.p.o.'s. The power

emitted by this process is given by (Tsytovich,1977)
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v
—2) (22)

In the absence of ian sound waves the e.p.o's can be converted to
e-m waves by scattering off the polarization clouds of thermal ions.
It is essentially equivalent to scattering by the low frequency
thermal noise. This process is usually represented by £ + 1 = t + i'
and its frequency bandwidth is determined by the inequality

v 2
wesmswe<1+£ L). (23)

2v2

The power emitted by this process will be given by (Smith »19Tk4; Melrose,.

1970) 2

et @ (' . w

Finally in the case of a nm-thermal stable plasma, in which W‘(k) will

be given in terms of the electron distribution function as in eqs.

(15-17), we find (Tidman and Dupree, 1965; Papadopoulos, 1970)

% 3V Fe (2

P(w,) = -e—‘-%-‘if dk k2 Ak (25)
In2c |p'(‘”e)
(o] e r

which for the distribution of eq. (16) gives

VE 2
P(w,) = 6 x 10725572 1%/2 (?) S -

g cm sec

*  (26)
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The thermal equilibrium result is recovered by replacing o = 1 and

VE - Ve. This process corresponds to conversion of the enhanced e.p.o's
by scattering off thermal ions. Notice that in all of the above processes
the emission bandwidth is very narrow, typically g—” < -13 . 1In addition
care should be exercised in computing the W, radiaiion to verify that
reabsorption is neglible.

b. Emission near 2w : (Aamodt and Drummond, 1964 )

Coupling of two electron plasma oscillations (we) can give a
transverse wave at Qwe in a similar fashion as in the previous section
(£ + £ # t). The momentum conservation imposes some limitations on the
wave number of the interacting waves. The wave number of the transverse
waves at 2me is given by ko =/3 g:-?— . If the wave-number of one of the
interacting waves k, has \l&l >> ko, then the wave-number of the
other wave must be almost antiparallel so that their sum can give a

In this case the e-m wave propagates in

small wave-number (EL ~- k)

the direction perpendicular to the interacting waves. If however
w
/ e
\Ell << ko s then k, ™~ ko ~/3 < in which case the e-m wave propagates

in the direction of 52 The power emitted near Ewe will be given by

2 k . k‘D 2 / :

% R W 12 2le F

P(2w,) =5 penr” [Vr‘(ko){ (k) dk, + = [ ) s dkl] ‘ |
Y% (27) %

, The maximum emission occurs for Ky "~ k, ™ ko. For the case that k, >> ko ,J

eq. (27) gives an approximate value

¥ P(2w,) = 10W'_ ! (‘-'2)3 (Y£>2 A (28) ‘

: . ; ;
[; 20 l
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Notice that the validity of the weak turbulence approximation restricts

the value of

v2
(15) » 8o that typically the maximum conversion
4

nmV 2
efficiency is prgportional to ;? (i.e.,quadrupole). The bandwidth

of the emission is

k§v2 v2
Aw
B i % i

The case of a stable non-thermal plasma can be treated in a similar
fashion as above if we replace W‘ in eq. (28) by the values given by
eqs. (15-17). Namely,for an isotropic plasma the oppositely directed
enhanced e.p.o's collide to produce e-m radiation at awe. The emission

formula is given by (Tidman and Dupree, 1965 ; Papadopoulos, 1970)

2e%w 4/3 o { (%‘3
P(2v,) = g /dk L
F'
O‘ e

(30)
5‘nac3 £
k
or for the distribution of equ. (16),
s/ Ve)*
P(ane) = 10724 2 p-3/2 <—c-) oD A, (31)
cmsec

The relativistic generalizations of the above can be found in Papa-
dopoulos (1969). Notice that for g; # 1, the v and 2w emissions become
comparable. Finally we should note that reabsorption for the Ewe
emission is usually negligible (i.e.,collisional).

c. Emission at frequencies much higher than w,:

1f the conversion occurs by scattering of waves from non-thermal

particles, whose velocity v exceeds the phase velocity of the plasma
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waves, the radiation generated has a frequency close to

w=%+5~z<we0+$). (32)
P

Therefore,high frequencies can be emitted by this process if v>Vp .
This process becomes even more interesting in the case of relativistic

particles, for which the frequency upshifting becomes

w = <2w (1+—-—) (—-)2 (33)
1l - E- cosb

The emitted frequency in this case can be extremely high. A typical
distribution function that can produce important results is one with
a long energetic tail. For the case of relativistic electrons this is
nothing more than Compton scattering. A calculation of the emission
is mathematically complicated and we refer the reader to Kaplan and
Tsytovich (1973). However, in order to find some estimate we consider

for the relativistic electrons a distribution of the form

a(e®-1) n e ¥le2
f(e) - 0 0 ,
‘ 2(e:o + e)a+2 (34)

This function behaves like f(e )'ae'afore >> e, while for e << e, Wwe

havef*e¢2, 1In this case
n 8 2\ 2 2¢€
ool 2 e () o) <o) o

The total emission can be found by multiplying (35) by the bandwidth of

eq. (32) so that
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mc2

N 2‘12'2%1_2 (1 + Vi.) o -L(YCE)S x[m(i) -1] o (36)

5. Radiation from strongly turbulent plasmas

One of the most exciting developments of the recent years, was the
realization that our concept of electrostatic turbulence uniformly dis-
tributed in space is invalidated even for rather low wave energy levels,
(1'3"§ < (k}\D)2 where k is the typical wave-number of the e.p.o.
spectrum). The physical reason for this can be seen by noting that
the presence of high frequency (me) waves exerts a low frequency pon-
deromotive force (i.e. radiation pressure) on the plasma, which results
in a modification of the local density n, in which the change in
pressure p = nT + % gf—r =nT + % W 18 zero (6p = 0). Therefore gﬂw - %;wi.

The dispersion relation for e.p.o.'s thus becomes (Abdulloev et al., 1975)

o = o1+ 8 )7+ 32) mo, (14200 P E) . on)

Eq. (37) has a simple physical interpretation if the e.p.o.'s are 3 E
viewed are quasi-particles subject to attractive and repulsive forces
and capable of emitting sound waves. For non-relativistic velocities,
eq. (37) can be viewed as the definition of energy of the quasiparticle

w .
(withh = 1) with an effective mass of m -2 a momentum ;

S eff 3v,2 ’

e
of k,and the quantity corresponding to the velocity of light is
c2 = 3v o+ The last term corresponds to the potential emergy of the

quasiparticle in the field of others. Since ite sign is negative it

k%
implies attraction. As long as the kinetic energy (1.:.,2 . £ )1:
@
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L

- %T) , the plasma waves

behave in the u:ual sense described by the weak turbulence theory.

larger than the attractive potential (}.e., % w

However, when gT > 6(le)2 they start collapsing to smaller and smaller
sizes, and form localized clumps of wave energy which have been given
the name qf solitons, spikons, or cavitons. As shownby Manheimer and
Papadopoulos (1975) this process is equivalent to the oscillating two
stream instability (0.T.S.) known from parametric interactions. The

inequality

ﬂ‘—T > (i))? (38)
is usually considered as the condition for invalidation of weak turbu-
lent theory, and has two consequences. The first is that the dispersive
term in eq. (27) becomes negligible, thereby radically modifying the
real part of eL(E,w). The second is that instead of uniformly disf
tributed turbulence we end up with a series of highly intense and
localized wave packet-like structures (fig. ¥ ).

It was noted for the first time by Papadopoulos ( 1973) that since beam

v2
plasma instabilities have very small (le)2 Rs(—g) , where V. is the

\'} b
beam velocity, these effects can play a controllgng role in beam plasma
interactions and an analysis of the type III bursts, auroral beams and
of relativistic beam heating was presented (Papadopoulos,1972, 1975;
Papadopoulos and Coffey,19Tha, b; Papadopoulos et al.,1974). It was
shown that the presence of the localized clumps decouples the beam from
the plasma and allows it to propagate over substantially larger distances f
than expected on the basis of quansilinear-theory. Literally hundreds
of papers followed on the subject which resulted in the resolution of

many experimental mysteries both in space and laboratory plasmas. Since
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most space plasmas are penetrated by beams we expect that often their
radiation properties will be a reflection of the strong turbulence theory.
While the complete theory of the radiation in the strong turbulence regime
is still under development, some results have recently appeared in the

literature. The only complete analysis has been the radiation at 2we from

a cylindrically symmetric soliton. Assuming the electric field is of

the form

r/

E(r,z) = E o Tk sech(kz) (39)

E 2
with EOFET = 12(10\D )2, Papadopoulos and Freund (1978) found that the pover

emitted per soliton is given by

Eoz J Ve 3
P (an,) = v, g FT = A3

: (b0)
per soliton if % koL >>1 (note that ko = /B(ne/c),and
E: Loy .
P8(2we) -w B ( e ) L (k1)

per soliton if % koL << 1.

The most common situation is expected to be koL << 1, because the
presence of the magnetic field and the beam direction force them to
behave in a one dimensional manm;.r (L.ee oL, >> L"). In this inter-
esting case we notice from eq. (40) that P_ is independent of L, and
is proportional to w!. This is in contrast to the (W‘)2 depedence found in the
case of weak turbulence. This important fact has helped explain a
major scaling puzzle associated with type III bursts. The total emission

per unit volume can be found by multiplying by the number N of solitons
26




per unit volume which will depend on the problem under consideration.
For case of very energetic beams an upper bound on 2wh radiation

can be found by making the rather unrealistic assumption that N is given
: by closely packing the solitons. Some frontier work connected with
strong turbulence theory and soliton radiation has been performed for
the type III radio busts. We refer the interested reader to Smith et al.
(1976, 1978), Nicholson et al.(1978), Nicholson and Smith (1978),

Goldstein et al.(1978a, b ), and Papadopoulos (1978).
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Iv. Radiation in the presence of a magnetic field:

The ﬁresence of a magnetic field has important consequences for
radiation processes in plasmas. In addition to the bremsstrahlung
mechanism, radiation can also result from the gyration of electrons
about the magnetic field and is referred to as either cyclotron or syn-
chrotron radiation. While the terminology varies, cyclotron radiation
typically refers to induced radiation processes and synchrotron radia-
tion is used, more often, to denote spontaneous emission. Alternately,
cyclotron radiation may be used to denote radiation (either induced or
spontaneous) with frequencies in the vicinity of the electron gyrofre-
quency, Qe, while synchrotron is applied to emission at the higher
harmonics of Qe. In this work, we adopt the former usage and treat the
case of the spontaneous synchrotron mechanism in the next section. In-
duces cyclotron emission will be considered in Chapter VI. The magnetic
field also couples longitudinal and transverse oscillations in the
plasma. Thus, as discussed in Chapter II, wave modes occur with mixed
polarization and phase velocities less than the speed of light; speci-
fically, the electron whistler and slow extraordinary modes. This
property, in contrast to the case of a field-free plasma, permits
Cerenkov emission of predominantly transverse modes via resonance with
energetic electrons. Finally, bremsstrahlung processes are also affected
by the magnetic field due to (1) the change in the dielectric properties
of the propagating electromagnetic modes, (2) the introduction of new
low and high frequency electrostatic modes, and (3) the gyro-motion of
the particles which introduces wave-particle resonances of the form

w == tﬂ. + kv (n 1s an integer). The entire subject of the bremsstrahlung
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spectrum from a magnetized plasma has not been treated in the litera-
ture; however, we present in this chapter several order of magnitude
estimates which follow from analogies with the field-free limit

(III 2-4).

1. Synchrotron emission:

Great advances have been made in the understanding of the syn-
chrotron radiation spectrum in the last decade. On the one hand, the
synchrotron spectrum from ultrarelativistic electrons has been studied
in the limit in which plasma collective effects are unimportant
(Ginsburg and Syrovatskii 1965, 1967). On the other hand, the in-
fluence of the dielectric properties of the plasma on the synchrotron
spectrum of weakly relativistic electrons has also received a great
deal of attention in the literature (Hirshfield et al.,1961; Pakhomov
et al.,1962; Liemohn,1965; Birmingham,1966 ; Melrose, 1968; Audenaerde, 1977;
Freund and Wu,1977; Freund et al.,1978a, b, ¢). It is beyond the scope
of this review to discuss all aspects‘of these phenomena, and we chose
to focus on the modifications in the synchrotron spectrum from individual

electrons due to the collective interactions between electrons. =i

[-

As in Chapter III, the average power radiated per unit frequency ,é

is determined by averaging over the microcopic ihstantaneoua power to r
obtain : L
P (0) = - —2— lim 1Refak E(k,0):3 . (kw). (1) 3"

(2n)* Tow T 4 .

!
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In a magnetized plasma, the source current is of the form

N
iz 8 1(wt-k.x,(t))
Jglow) = - e Um fde I v, (t)e Sh e (2)
T’.j“ -T/2 L-]_

where Ne denotes the number of electrons, and the trajectories are of

the form
Yi(t) Y [cos((pt-net)é‘x i ““(“’z‘“et)§y7 (3)
kex (t) = kex,(t=0) + bz[Bin(‘Pz-Qet)-31n¢£]+kuxuzt, (%)

9, denotes the aximuthal angle, k = ke + k”gz, and b, = k’J_v_LL/Qe.

The self-consistent radiation field is given by
Alke,0)+ Elgw)= - 2L 4 (i,0), (5)
where L\(l_g,w) denotes the dispersion tensor and is given by

AMk,w) = o (k k - k% I) + g(k,w), (6)
= wa - - = -

where I is the unit dyadic, and g(g,w) is the plasma dielectric tensor.
It should be noted that eqs. (1)-(6) describe, in principle, the
emission of self-consistent waves in the plasma (1;e., electrostatic,
electromagnetic, and mixed polarization modes).

As a consequence, the power emitted per unit volume per unit
frequency per unit per unit solid angle subtended by k can be shown to

be (Melrose,1968; Freund and Wu,1977b )




e®n_w 2 i i
Ps(t)(“”e) . ot j“t pispin g Jau F (@)X VI, (b)+ = 1)(b)]

nsE=-%

v
x §[w(l - -g- T, cosd )-nQe 7, (7)

where the plus (minus) sign refers to the ordinary (extraordinary) mode,
u(= p/m) is the relativistic velocity, ¥ = (1 - vzlcayz" = (1+ uzlcz)é,
n, is the electron density, Fe(l_.l.) is the electron distribution function,
and Jn and Jn' are the usual Bessel function and its first derivative

of order n. In addition, pZ = gin%o + h(mzlﬂez)(l-wezlwz)a cos®0,

[(]awezlu)z)(l- ic!l TMycosd )-Msin6]

w
V, =2 =~ (8)
s o TNy8in6 8inZ6¥Fp)
and n‘nisine v
o . cosd

It should be noted that the random phase approximation has been
implicitly imposed in the derivation of (7). It can be formally shown
(Freund and Wu 1977b) that this is valid only when the electron pair
‘ correlation function is independent of ¢ (i.e., the azimuthal coordinate).
This corresponds, physically, to the requirement that no phase bunching
of electrons occurs and, as a consequence, (7) is not strictly applicable
{ in the presence of strong cyclotron instabilities (see Chapter VI).
In addition, Eq. (7) reduces to the classical Schott-Trubnikov formula

+ (Bekefi, 1966) in the limit in which we« w~ﬂe, and plasma effects on the
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emission can be neglected . Examination of the effect of the dielectric polari-

zation of the plasma on the strength of the emission indicates that the
radiated power tends to decrease as the plasma density increases,
(Freund and Wu ,1977b) and is attributable to collective current shield-
ing by electrons in the plasma. Finally, we remark that the plasma
dielectric properties have been described in terms of the cold plasma
approximation, and eq. (7) breaks down for frequencies in the vicinity
of the fundamental gyroharmonic.

The synchrotron spectrum from a thermal plasma has been studied
in detail by numerous authors, (Hirshfield et al.,1961; Pakhomav et al.,
1962; Liemohn,1965; Birmingham,1966; Melrose,1968 ; Audenaerde,1977;
Fruend and Wu,1977) and will not be repeated here. Instead, we consider
the synchrotron spectrum produced by a small population of suprathermal
electrons streaming parallel to 1_30 in an otherwise thermal plasma. We
assume that, since the energy of the suprathermal electrons is directed
along B , Y= 1+ uﬁ/cz, and that the electron distribution function is
of the form

o uled
F (u‘_,u") - ('rl’up )""e P F“(u”), (10)

where the subscript "s" is used to describe the suprathermal electronms,
up characterizes the perpendicular thermal spread, and F"(u”) is used
to describe the streaming of the suprathermal species. As a result,

the suprathermal emissivity is of the form (Freund et al.,1978a, b)

(t)(w,o) M\IE i e e “a) Bn? 2 ~0?(1-1,2c08% )]
s =0 !u -cY Tltcotﬂ
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2 n-1 70 2\ n (*3 0)
L (ﬁ nfsinze) (-P-—) - (11)

n
2 n! #

(4
e

for ® < mn/2 and up‘?/c2 << 1. In (11), H is the Heaviside function,

E % 2 Tycose + [naﬁe2 + wa('ﬂtacosae-l)]i
c

3 (12)
w]ﬂiacosae -1 I

is the resonant momentum parallel to l_io, ng is the suprathermal density,

‘yn = (1 + unalca)t,

2

(£ X X 2
¥, —%‘”; 9)"}(“24' L ) p ¥ % [0 o sin®e
( l-wezlwz Y2cos30 ( l-wea/w2 Y2cos38
Fon o 1 (13)

and X_ = n(l-wealwa) - 'yn(wlﬂe)ﬂi 8in®0. We observe that eq. (11)
breaks down for frequencies and angles of propagation in which un‘“p’
because in this limit, the relativistic y-factor cannot be considered

to be independent of u,

It is evident from (11) that the pover level for frequencies
w ~ nf falls off as (uvalca)n, and that substatital emission at the
higher gyroharmonics is expected only when the perpendicular energy
is large. Further, since P.(t')*' (M42s1n3e )n-l’ the power spectrum is

expected to become increasingly peaked in the direction perpendicular
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to l_!o at the higher harmonics of Qe'

2.Enhanced Cerenkov emission:

The principle difference in the Cerenkov radiation spectrum
between a magnetized and a field-free plasma arises due to the mode
structure found in the magnetized case. Since the Cerenkov resonance
condition (1.e.,w-k“v“) rejuires the resonance velocity Yok ™ c/Tcosd ,
the only modes which can be excited by this process are those for which
Ticosd > 1. In an unmagnetized plasma, this condition is satisfied
only by purely longitudinal Langmuir oscillations for which w = Wy e
In a magnetized plasma, however, the resonance condition can be satis-
fied by waves in either the electron whistler or slow extraordinary
modes, and a greatly expanded wave spectrum can result.

In most astrophysical or laboratory plasmas, Cerenkov emission
from thermal electrons (’l.‘e ~ keV) can occur only for frequencies in
the vicinity of the cold plasma resonances (see Chapter II), where
v ~ \Ie and the wave polarization is predominantly electrostatic.

res
In such cases, the excited frequencies are w ~ w, cos® when wg < Qe

(or w ~ Qecose, for Qe < we) for waves in the electron whistler mode,

and w ~ & Q, + iﬁ:é + bo eain26 for waves in the slow extraordinary
mode. Excitation of predominantly transverse waves can occur only if
a population of suprathermal electrons streaming parallel to the
ambient magnetic field is present. In such a case, the power spectrum
of the emission 1is given by eq. (11) for n = 0, and we write (Freund

et al.,1976b, c)
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Ps(i)(w,e) = E}'s_ (:_o) wﬂismae(pisinae) F“(u"-uo)ll('ﬂicosae- 1),
p(l-w 2/0?)?

€ (14)

where u = c(ﬂicoaze - 1)%, and the plus (minus) sign refers to the

electron whistler (slow extraordinary) mode.

It is evident that (14) vanishes in the limit of pa.rallel propaga-
tion. This corresponds, physically, to the fact (1) that for parallel
propagation these modes are purely transverse (with right and left hand
circular polarizations) with E,+ B) = 0, and ( 2) that the Cerenkov
process couples the parallel electron energy with the component of the
wave electric field which is also parallel to 1_30. In addition, it
should be remarked that the index of refraction approaches unity as
w - w0y for oblique angles of propagation. For this reason, Ticosd < 1
at the plasma frequency, and the apparent singularity contained in (1%)
is excluded.

While the power radiated at frequencies in the vicinity of the n':h
gyroharmonic (11) varies approximately as (upalca)n, the power emitted
via the Cerenkov interaction is of order unity in this parameter. Thus,
it is expected that spontaneous Cerenkov emission from streaming supra-
thermal electrons dominates over the synchrotron radiation. In particu-
lar, if the streaming energy is of the order of several hundred keV,
then strong emission of predominantly transverse, slow extraordinary
mode waves with w ~ w, can result (Freund et al., 1978a, b, c). However,

it must be borne in mind that neither the electron whistler or the slow

extraordinary can freely escape from a typical plasma. This results
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because, as these waves propagate out of the plasma, they traverse
regions of decreasing plasma density and magnetic field strength. As
a result, the cold plasma-resonances decrease along the ray path of

the radiation, and strong absorption occurs when the wave frequency
coincides with the resonance frequency. Thus, in order to escape the
plasma, the excited waves must either (1) "tunnel" through the stop
bands (see Chapter II), or (2) scatter off low frequency fluctuations
in the plasma (i.e., ion acoustic oscillations, ion cyclotron waves,

or magnetosonic waves). Since both of these processes have, typically,
low conversion efficiencies, such radiation mechanisms are not expected
to be of importance in the study of the spectra from astrophysical

plasmas.

3. E-m radiation from weakly turbulent plasmas

In a plasma immersed in a strong magnetic field, e-s plasma waves
can be excited either spontaneously as discussed in Section 2 or by e-s
instabilities which result in wave spectra with frequencies w~47ecose
when Qe< W 50T wNwecose if Qe> W The mechanisms of conversion of
these waves to e-m modes are similar to the ones discussed in III-k4,
However, the emitted frequencies can now be near Qe, zne and Qe + Wy
Detailed theories of these processes have yet to appear in the litera-
ture. However, some general estimates can be found on the basis of
the results of III-4.

a. Emission near Qe:

Conversion of e-s to e-m waves near Qe can be either due to

scattering off enhanced low frequency wave (i.e.,ion acoustic, ion
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cyclotron, magnetosonic,etc.) or off thermal ions. In general, the
emitted radiation can be computed from eqs. (III-22, 24, 25) by re-
placing ®, by Q e? substituting W¢ by the wave energy level of the
cyclotron waves w® and using instead of w® the appropriate wave energy
level of the low frequency turbulence. These results are correct to
within a factor w_e . It should be noted however that the expressions

e
vwhich describe the scattering off thermal ions have been derived under

the assumption of straight-line orbits and, as a result, are valid
only if Vp << (M/m)iv,e. Otherwise, the gyro-motion of the ions must

-be included the analysis.

e PR Py ea— e

It is worth noting that the bandwidth of the spectra excited in
this manner can be rather large. In particular, since Wy = Qe X
[1+ (uflzo';‘) 8in®0] one may have that Aw~Qe for _ < ‘w;. In addition,
there are no difficulties involved in the escape of the resulting
electromagnetic radiation from the plasma since the index of refraction

is of the order unity. Finally, when Wy ~ Qe, the radiation can be

continuous over a frequency range comparable to both wg and Qe.

b. Emission at frequencies near 20e and w, * Qez by
Coupling of electrostatic waves with frequencies w ~ Qe with

- each other or with electrostatic waves of frequency w = w, can lead to

emission of electromagnetic radiation having frequencies 20e or meﬂ)e .
The mechanism, and all relevant conversation laws, 1is similar to the :
" 4
2(»e case considered earlier. The emission formula for the case of
) ; »
interaction between two electrostatic cyclotron waves is ,
5 . :
w v \') c
- e (<) () ¥ ¢
P(20‘). 1000 (e) (V) n T wew ’ (15)
e e ee
36
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where W¢ is the spectral energy density of the cyclotron waves, and
V. se¢.
P

c. Emission at frequencies exceeding Q :

The situation in this case is identical with the Compton
scattering results discussed in III, 4c. The only changes necessary

are replacement of , by Qe and wt by W€ in eqs. (32)-(36).
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V. Stimulated scattering processes:

1. General considerations:

There are two underlying notions involved in the amplification
processes that will be described below. The first is the role of a rela-
tivistic scatterer,and the second the role of the ponderomotive force.
These type of mechanisms represent a class which is in the fore-
front of microwave production in laboratory plasmas. The basic re-
quirement is the existence of an electromagnetic signal or a large am-
plitude e-s or magneto static disturbance, and a fast moving mirror-like
medium. Such a medium is most often a relativistic beam, but can also
be any other reflecting interface such as a moving ionization fronmt.

(a) In order to appreciate the role of a ;elativistic scatterer

in converting microwaves to submillimeter radiation let us first con-

* sider the simple gedanken experiment sketched in Fig. 11. A plane
wave with frequency w, and wavenumber ko is normally incident on a per-
fectly reflecting mirror moving with velocity Vo The wave scattered
off the moving mirror is denoted by frequency w, and wavenumber ks.

If we make Lorentz transformations from the laboratory frame to the
frame in which the mirror is at rest,then the frequency of the incident
and scattered waves are respectively (Sprangle and Granatstein,19Th)
w) = y(ay + kv ) = ¥(1+8) : (1)
! J w; = ‘Y(ws + kovo) =y(1 - B)ws 5 (2)
! where B = To and ¥ = (1-82)‘%. Now, in the mirror rest frame, the fre-

quency of the two waves must be equal if the boundary conditions are to

be satisfied at all times, i.e. w) = w'. Thus, from eqs. (1) and (2)
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Furthermore, the energy of the scattered wave Ws, may be related to

the energy of the incident wave by invoking conservation of action;

wo g
viz., ;; - = Thus
s

W= (14834 (%)

The implications of eq. (3) and eq. (4) are intriguing. If one had a
perfect mirror moving relativistically with B = .99 (¥ = 6), then
o - 143 w0, and the power of the scattered signal will exceed the
energy of the incident by a factor of 143. The trick is to find suit-
able relativistic mirrors. Two possible candidates (i.e.,a relativis-
tic e-beam and an ionizing front or shock) will be discussed later.

(b) While the above notions were completely linear, nonlinear
processes are also of extreme importance. The character of the non-

linear forces can be clearly illustrated by using the concept of the

ponderomotive force, i.e. the averaged high frequency force acting on a
charged particle in an altérnating e-m field. It is well known that

in a field of two travelling waves (Litvak and Trakhtengerts,1971)

E=E ei(wlt'kl' r) +Eo ei(wzt'ka' t) with close frequencies

lml-w2\<< ®, or w, the force averaged over the periods c¢f the partial
J

oscillations acting on a single charged particle, is given by

F=vi, (5a)
where
2(E3E."
- 2! 1w: )e 1(wt-k - 1) (5b)
and
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This force produces, stimulated longitudinal wave motions in the plasma.
If w and k satisfy the dispersion equation of the natural plasma oscilla-
tions (i.e.,if the condition of synchronization is satisfied between the
driving force and one of the eigenfrequencies of the plasma) then reso-
nant excitation of the oscillations occurs at the frequency difference,
If the phase velocity Vp = TgT falls outside the velocity range of

the electrons (1.e.,Vp>> Ve), then a hydro-dynamic interaction can occur
between the three waves. If Vp< Ve, than a kinetic interaction (Landau
type) can occur between the waves and the particles (wl-wb = (kl'ka)'!)°

2. Stimulated scattering from electron beams:

A typical situation where both of the above notions combine to
amplify a signal is coherent scattering of an electromagnetic wave from
a counterstreaming relativistic electron beam. In this case the inter-
action of the electrons with an e-m wave (wo,go) and the scattered wave
(ws,gs) is unstable, leading to exponential growth of both the scattered
wave and the electron density modulation (Granatstein and Sprangle,1977).

The details of the process can be better understood by refering to
the beam frame (fig. 12). The incident wave (w;,gg) has a transverse
electric field E;y which excites a zero order transverse oscillation

of the electrons with velocity

El
v" = ay J—e-l- __LO (6)
=0 =y m _4q
Y'w
(<]
, 2 -}
with ‘y'- [1- (?o ) ] (Note that primed quantities refer to the beam
frame).
40
. - et




In the presence of an incipient backscattered wave (w;,l_:;) with mag-
netic field B:‘éz’m axial force is exerted on the electrons. The

coupling between the two waves produces a ponderomotive force as des-
cribed above, which leads to a low frequency modulation of the elec-
trons (w’,l_c') and a grouping of the electroms into bunches along the

z axis (I_~‘p = -e(y) x Bl +y, X I_ic")). The e-beam modulation occurs at

e ' - w? Ve L! '
W e s 0o k _l_<°+l_cs (7)

(typically,w'<< w, and k'=~2 k'), The growth of the density modulation
increases the coherence of the scattering process, resulting in further
growth. We have,therefore,a feedback mechanism that can result in

an instability and exponential growth,

The growth rate as well as the nonlinear saturation depend on a
number of factors, viz. the strength of the incoming vave, the wave-
lengths of the incident and scattered waves, the electron density and
the electron temperature. Two physical regions can be distinguished
in analogy with the hydrodynamic and kinetic beam plasma instability.
Fig. 15 shows the pﬁyaical difference between the two regimes. In

the first regime (Fig. 13a), usually called stimulated Raman scattering,

%:- > v

entire beam participates in the density wave which takes the form of
; W

a collective plasma oscillation, i.e. w's wee In this case,if kD = v_e_’

t

e This is like a hydrodynamic instability, in which case the

we find
] ] ¥ \
kD»ko+k. ;
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and )‘D = i‘; must be much smaller than either wave-length. The

growth rate,in this case,is given by

I"R = c_o (w} we)% (8)

with v} given by eq. (6). The conditions of applicability are

w << w' and [
e 8

R << k'v e Notice that the growth rate is proportional

to the amplitude of the incoming wave.

The second regime corresponds to the kinetic (warm) beam plasma
instability (fig. 13b). For a warm beam,the phase velocity of the
beam distrubance falls inside the electron velocity and only resonant
electrons can participate in the scattering. This process is called

stimulated Compton scattering and requires )‘D >> A. The growth rate

is given by
2 12
w v,
r, = SR e (9)
w' v 2
s

[Note that I'c ~ T‘Rz/k'vt if k'~ kD'_]. Unlike the Raman growth rate,
the Compton growth depends strongly on T

The efficiency of the above depends on the non-linear effects or
the available convective growth lengths. These topics are presently
under study by use of computer simulations. Some general guidelines
suggest that stimulated Raman scattering can feault in thermalization of
the beam by trapping the electrops; thus, it places an upper limit on the
efficiency. Resonance broadening or quasi-linear flattening will
affect the Compton scattering. Finally,pump depletion will also

place an upper limit on the amplitude of the scattered wave. It
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chould be noted that stimulated scattering has been successful in producing
large amounts of microwaves in laboratory experiments (Eliss etal.,1976).

3. Magnetoresonant stimulated scattering:

The situation is similar to the one examined in section 2 above,
with the addition of a constant external magnetic field B = Boéz.
In this case the transverse electron velocity in the beam frame and for

an incoming wave (mo,l_co),will be given by

E' w!
~ e oY. [¢)
Y; " 2y JTEL 7%: mo' i Zie (9)

B
where Q, = lg_\_o

- Notice that if wc', approaches Qo rather large trans-

verse velocities can be induced. However w(', cannot be arbitrary but

must satisfy the dispersion relation in the beam frame, i.e.

2 12,2 wea w:) ( )
m' - k'<c - ——— wm () 10
o o w, - Qe y

so that m") - Qo cannot be made arbitrarily small. The temporal growth

rate in the beam frame will be given by

| i

v! : w %

This can easily be transformed back in the laboratory frame. Such

e

processes can be important in low density, high magnetic field plasmas

w5

] penetrated by e-beams (Granatstein and Sprangle,l977 ; Sprangle et al.,
’ .
' 1975 ).
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4, Free electron lasers

The principle of such devices i; similar to the stimulated
scattering processes discussed above. The major difference is that
instead of amplifying an incoming wave, we pass a relativistic electron
beam through a magnetic field which is periodically rippled along the
flow axis. Such a field can be considered as a quasi-wave

represented in the form E, =0, B,

=B cos kz, o =0,k = 2n/k°.
The magnetic field parallel to the beam direction does not enter
the problem, and can be chosen arbitrarily to satisfy the divergence

conditions. In the beam frame, the quasi-wave will have an electric

field 7VbB°

]
Eoy o = P (12)

and a frequency

w;-vxz':'vb, (13)
where Vb is the par‘llel beam velocity. Now the problem reduces ex-
actly to the one considered before for stimulated scattering. The
mechanism is similar to either the Raman or Compton scattering but
with the rippled field playing the role of the incoming plasma. For

a relativistic beam the amplified wavelength will be

l-XO;. (1)4»)

Extensive computer simulations performed for this case indicated that
the saturation mechanism was trapping of the beam electrons by the

unstable wave with a conversion efficiency of 30% (Kwan et al., 1977).

An excellent review of the subject can be found in Sprangle et al.(1978)
il and Sprangle and Drobot (1978).
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An interesting extension of the above work with application to

space plasmas will be to reexamine the above process in the presence

of magnetic turbulence. A simple way to do that will be by considering,

instead of a single wave ko, a spectrum of waves k° t Ak, with a
Gaussian amplitude distribution. There has not yet been any such
calculation in the literature.

5. Plasma lasers:

An interesting variation on the above scheme, which is far from
being well known or explored, is the case of a plasma containing large
amplitude density fluctuations and electrons drifting through them.
Again, by going to the reference frame of the drifting electrons, the
ion wave can be viewed as the incoming wave coupled with a scattered
wave to produce amplification in a similar fashion as above. The
role of the rippled magnetic field, will be played by the density
fluctuations. The process can also be viewed as a negative a.c. re-

sistivity similar to the one discussed by Dawson and Oberman (1962)

due to the presence of enhanced ion waves. The energy is supplied by the

drifting electrons. Since the analysis of such processes has not
appeared in any journal, we present below a brief derivation.

The process can be seen from fig. 14. Consider a plasma with

‘ finite-amplitude short-wavelength ion density fluctuations with wave

number ki and frequency - 0. These fluctuations lead to a strong
coupling of high-phase velocity waves (either electrostatic or electro-
magnetic) of wave number ko and frequency w = o, x W, =W, Suppose,

now, that the plasma electrons are streaming with respect to the ions.
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Then, the interaction can be such as to couple a high-phase velocity
positive energy wave to a slow negative energy plasma oscillation
(wave moving slower than the streaming of the electrons). In this
case both disturbances can grow while conserving energy. A second
possibility is for the phase velocity of the beat disturbances to fall
at such a place that it absorbs energy from them. The last process is
essentially nonlinear Landau damping.

It is well known that in the limit of long wavelengths (kb ~0,

i.e., the so-called dipole approximation), the electrostatic and electro-

magnetic wave fields are indistinguishable. We, therefore, present the
theory for long-wavelength electrostatic waves; the results should be
directly applicable to long-wavelength electromagnetic waves. We shall
use a fluid model with a phenomenological damping, this could be Landau
damping for the electrons. We treat the ions as fixed; their dynamics
is not important proviaed the amplitude of the ion fluctuations is
large enough.

A The analysis is most simply handled in a reference frame moving
with the electrons. However, we shall use both the rest frame of the
electrons and ions in the discussion. The reader is cautioned that
such things as wave energy are frame dependent (Lin et al., 1976).

We take the ion density to be given by

n, = no[l + e cos ki(x + voﬁ)W, (15)

i
where s is the mean velocity of the electrons relative to the ionms.

We employ Lagrangian coordinates for the electrono; and let X (xo) be
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the displacement of an electron from its equilibrium position X, (x

is to be the equilibrium position if the ions stream by with a uniform
density and velocity, and we assume that the current leads to no charge
accumulation at ¥ =, the system is a torus or the circuit is closed at

®»). The equation of motion for an electron is

K(x)) = - 2 E(x) (16)

By Gauss' law, E(xo) is 4w times the excess charge (excess over that
due to the mean ion current) which passes from the right of electron

x, to its left. Thus,

E.(‘xo) = lme no[l + e coski(xo + voc)] +

(17)
lm’enoe
+ T sin ki(xo + vot)
The equation of motion thus becomes
(1] ewez
x(xo) = -wel:l + e cos ki(xo + vot)'] X(xo) + ) sin ki(xo + vot:)
(18)

The last term gives the steady driving of the electrons due to the
passing im fluctuations, but does not give rise to instability and so
it may be ignored in the linear theory. Introducing the variable y as

2y = ki(xo + vot)

2
azx-'- S (1 -€cos2y) X=0 (1
2 5001 - = 9)
g ki‘vﬁ

This is the standard Mathieu equation which describes parametrically
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driven oscillations. For e << 1, it exhibits instabilities when the
2w

e
kivo
p = 1, and in that region the growth rate is given by

coefficient = p is an integer. The instability is strongest for

% = .%‘ ["31;3 - (p - 1)2]% (20)

For large ¢, one can obviously have strong off-resonant growth also.
For p = 2,5 etc., the growth rates are smaller.

Physically, the above analysis shows that for a cold plasma
(where plasma oscillations of all wavelengths have the same frequency)
all modes are unstable. Equation (19) does not involve the wavelength
of the plasma oscillation if pkiv° = 2we. The ion density oscillates
at frequency kivD in the rest frame for the electrons. Waves of wave
number ko and k° + pki are coupled by p successive interactions with

the ion wave, the condition for frequency matching being
o +w, =20 =pkv . (21)

The driving energy comes from the ion oscillations. As mentioned, the
energy is a frame dependent quantity. In the rest frame of the ionms,
the short wavelength mode with wave number ko + pk1 has phase velocity
slower than the electrons and is a negative energy wave,while the long
wavelength mode, wave number ko,has phase velocity faster than the
electrons and has positive energy. The pair can grow while conserving

energy. In both cases,momentum is transferred to the ions.
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The above analysis can be extended to the case of warm electrons.
The instability criterion in this case is that the frequency mismatch

does not exceed the variation in the plasma frequency associated with

the ions, i.e.

|kivo - - wll< % e W (22)

with wna = mea + 5(ko + nki)a'Vea. The growth rate is % ew, .

Even when an exact frequency matching is not possible, an in-
stability can be excited for the high-phase velocity disturbance 1if
the slow side-band falls in a region of negative absorption.
(Note that this does not mean that plasma waves in this region are
unstable since these are negative energy waves; this discussion applies
to the rest frame of the ions). To investigate this we introduce a
phenomenological damping term -v4 X for the side band ko x ki
into the righthand side of eq. (11). In general, Vil is associated with

Landau damping and is given by

Vi 2nw, uafé)
e (Bu ’ (23)
u= (v ¢ molki)

vhere Fo is the electron distribution function. Proceeding as above,

in the limit ¢ << l,assuming the Va term dominates over the v Jove find

4
Sl %; 0, vl(wo'kivo)
% [ﬂﬁa-(wo-kivo)z]a + vla(wo-kivo)2

(2b)
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For v; >0 and :_°<v°dus leads to growth. One may use the formula of
the a.c.Dawson-ébermn resistivity to derive virtually the same result.

Finally, one might ask how a spectrum of ion waves (in place of a
monochromatic ion wave) affects our results. Clearly, the resonant case
will be strongly affected, since it will be like driving a parametric
oscillator with a band of frequencies. The phase relations essential for
parametric resonance will be destroyed and the resonant effects will be
vitiated. In actual fact,a substantial reduction of growth rate occurs
for a spectrum of ion waves. On the other hand, the non-resonant laser
action discussed above will be relatively unaffected and the effects
due to various ion waves will be merely additive.

An extension of the above notions has been applied to the auroral
kilometric radiation problem. The driving source is an electron
beam streaming through a plasma with enhanced density waves in the
presence of a magnetic field. A complete analysis of this situation can
be found in Palmadesso et al. (1976).

6. Scattering from ionization fronts and density discontinuities:

In all previous situations the scattering medium was a moving
electron beam. However an upshift in the frequency and an accompanying
increase in energy in accordance with eqs. (1l-4) can also be achieved

even when the plasma itself is not moving by scattering of radiation from a

moving ionization front, a moving discontimity ,or a relativistic shock (Fig. 14).

While the frequency of the reflected wave-packet is always found to satis-

fy the double Doppler shift relation given by equ. (5), care should be

exercised in using eq. (4). As pointed out by Lampe et al. (1977)
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equ. (4) is valid only for a sharply discontinuous front, in the sense
that its width L >> (-‘"-'- , 80 that the change in the dielectric coefficient
is adiabatic. Otherw:u the reflection coefficients and the physics can ‘
be substantially different. For the unmagnetized case,instead of equ. (4),

it ie found that

ﬂ|.£
€ Ioe

(25)

o

for an oncoming,overdense ionization front when w0, < W - In the
presence of a magnetic field however the ratio ;3 can considerably exceed
the value of :i’» « We refer the interested reord:r to Lampe et al. (1977)
for a detaﬂe: analysis.

The physical reason for the radically different results given by
eqs. (4) and (25) is the following. When the oscillator frequencies of
the dielectric are changing adiabatically,work is done on the oscillator
by a' mechanism that changes the ffequency. This energy is available to
enhance the reflected wave. However, if the oscillator frequency changes
suddenly no work is done. A physical equivalent of the two limits above
is the case of an electron attached by a spring to an atom, in the presence
of an electric field. In the spring is released slowly, work is done
against the electric field; but,if the electron is initially tie down by
a string, no work is done in cutting the string (i.e., instantaneously

increasing the susceptibility).
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VI. Linear electromagnetic instabilities

1. General considerations

In this section, we treat several linear instability mechanisms
which result in the direct excitation of electromagnetic radiation from
magnetized plasmas. The physical configuration is one in which the
plasma is composed of both thermal and suprathermal electrons. It is
assumed that the wavelengths of interest are much less than the scale
lengths for variation of the plasma density and magnetic field, so we
may treat the case of a homogeneous plasma immersed in a uniform magnetic
field §o = §o§z° The frequencies under consideration are high (of the
order of the electron plasma and cyclotron frequencies), so ion dynamics
may be ignored. Finally, the density of the suprathermal electrons is
assumed to be much less than that of the thermal plasma; thus, the
dielectric properties of the plasma are determined primarily by the
thermal plasma:. The role of the suprathermal electrons is to provide
a small imaginary component of the frequency, which results in amplifi-
cation of thermal fluctuations in the plasma. Propagation of the radia-
tion may be treated within the context of the geometrical optics approxi-
mation.

The source of free energy for the instability mechanisms is a velocity
space anisotropy of the electron distribution function which stems from
the presence of the suprathermal species. We confine the discussion,
here, to cases in which anisotropy results either from suprathermal
electrons streaming along or trapped by the magnetic field (i.e., either
beam or loss cone type distributions). Such processes are sometimes

referred to as "maser ampiification” in the astrophysical literature,
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and involves the convective amplification of thermal fluctuations in
the plasma. Therefore, in traversing the ray path between points 8,
and sp, an electromagnetic wave undergoes an amplification given

by

85

2f ds y(s)N_(s)
w(sz) = W(Bl)e 1;1 vhides & : ) (1)

where W denotes the spectral energy density of the wave, and ¥(s) and
Vg(s) are the growth rate and group velocity of the wave mode as a
function of position. As a consequence, the overall amplification of

the radiated mode from a system of scale size L is approximately

PR i
Weaa ™ %y : | (2)

where wth is the thermal fluctuation level, and significant radiation
results only if 2YL /V8 > 1.

2. The physical mechanism

The physical mechanism for instability is electron bunching either
in the axial or azimuthal direction, depending on whether the Doppler
or cyclotron resonance is dominant. The former case is sometimes re-
ferred to as a Weibel instability (Weibel,1959; Fried, 1959; Harria,1961;
Sagdeev and Shafranov,1961) and the latter as an electron cyclotron maser
instability (Twiss,1958; Schneider,1959; Gapanov,1959; Hirschfield et al.,
1965; Gapanov et al.,1967; Friedman et al.,1973; Sprangle and Manheimer,
1975; Granatstéin et al.,1975; Sprangle et al.,1977; Chu and Hirshfield,
1978). 1In order to clearly illustrate the process, we consider the case
of an electron moving in the field of a parallel propagating, plane
electromagnetic wave of frequency w and wavevector k = kziz. The
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geometrical relationships of the particle trajectory and the wave
fields, in the plane perpendicular to §° are shown in Fig. 15.

The appropriate resonant frequency is Q e T nﬂe ly + kzvz, where

es
n is an integer and ¥ = (1 - valca)'%, and we consider the evolution
of Qres under the action of the induced fields. In a short time

At(= t -to) , the resonant frequency changes by an amount

AQ, = 1, ——(—‘i'x-—-)-yo s 7o +k, v, , (%)

where A indicates the change in a given quantity in time At, and the

subscript "o" refers to an initial value. Under the assumptions that

by<y, and v2 < ¢, it can be shown that (Chu and Hirshfield,1978)

" ek,
IV ‘08 e 5
o ‘)’omw(‘-’; b Jat, (5)
and
Ay= - -2- (v.. E.)At (6)
me2 % ’

vwhere SE is the induced electric field. It can be shown, after com-

bination of eqs. (4)-(6), that

ek;a tﬂ‘w
Kes P - ( 7 'yokfca) (x, « B, Jee. (1)

. Several conclusions are now apparent. First, both sz and AY vary
with the aximuthal position of the electrons, and have opposite sign for

| the electrons shown in Fig. 15. Thus, bunching occurs because while one
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electron experiences a gain in axial and/or azimuthal velocity, the
other electron suffers a decrease. Second, both electron bunching mecha-
nisms are operable unless: (1) the magnetic field vanishes, (2) k, =0
(i.e., perpendicular propagation), or (3) n = O (i.e., the Cerenkov
resonance is dominant). Third, the azimuthal bunching mechanism is
dominant if uﬂewlybkiga > 1, and the axial bunching mechanism dominates
if the reverse holds. A more comprehensive description of the physic?
of the interaction can be found in Sprangle et al. (1977) and Chu and
Hirshfield (1978).

3. The electron beam instability (cyclotron maser)

Basic research into the electron cyclotron maser instability has
been motivated by attempts to develop intense sources of microwave
radiation through the use of relativistic electron beams. Such sources
are called either gyrotrons or electron cyclotron masers, and the power
generated has ranged from 1.5 kW at 0.9 mm (Zaitsav et al., 19T4) wave-
lengths to 1 GW at 4 cm (Granatstein et al.,1976). Applications of
such research has been to electron cyclotron heating in tokamaks; how-
ever, numerous applications also occur in astrophysical plasmas.

The laboratory experiments have been conducted by injecting a rela-
tivistic beam into a tube with a uniform guide field Eo‘ Agsuming a

distribution of the form
1
Folupu) = g 8(u,mup)6(y), (8)

and plane wave solutions, exp(-iwt + 1kzz), the dispersion equation is

(Chu and Hirshfield,1978; Sprangle and Drobot, 1977; Ott and Manheimer,1975)
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Pk 262 wez W Bj(wa'kzzca) (9)
=k ¢ = —— - . 9
s Yo 2277, 2(w2 /7 )

" 2,.2\% .
where : (1 + uy /c ) , and BLO up/‘yoc.~ Solution of (9) may be
obtained under the assumptions that w = w + 8w, where v = Oe/')‘o and

|6w| << w . In such a case, we find the approximate equation

2
2 0)2

w w
2.1 2,2 _ .8 (1.3a 2 ek e 8 2 e 20y 2.1262)=
(u)o -k, c* - 7. (1 hm))s,w 7 (1 BJ-o)wo&” + 3% 7 on(‘”o ke )=0
& (10)

which has the solutions

92 3 (wezl'ro)(l-Bj) S
u)o 2 2.2 w? :
2lw 2-k Zc2- v (1 - 26,2)]

o

ey, B.° ¥ 1
+ Jl - 2 2 (w 2-kzac"’)(wo"’-kzacz_- K (l-iﬁj))]. (11)

2 2 2y2 "o Y
Ye % (l'alo)

As a result, instability occurs when

[ Fo w2 w 2w 2
io 24 2,2 By 2.2 o6 38 2 s .9
e B8 (w, =~k 3 )(wo k, ¢ 7, (1 %ﬂLO) > 5, (12)

.

In the limit in which ® oa > k,%c?, wf (in which the azimuthal

bunching mechanism dominates) the instability criterion becomes

TR
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2 2
= a___-‘-o > 7_0 33_ (13)
(1_5 2)2 2 Q 2 4
Lo e

If (13) is satisfied, the solution assumes the comparatively simple

form

o = ne/‘yo + mee(z'yo)’i . (14)

In the opposite limit (i.e., k, # @), in which the axial bunching
mechanism dominates, the solution is identical, but the threshold
required for instability is

2 w2 2
w
a;o 1 e o

2
( I'B‘Li )2 270 c2k22 cakz

’ 1)

The case of hollow beams has been diécussed by Uhm et al. (1978).

L. Electromagnetic anigotropy and beam-plasma instabilities

In the remainder of this section, the physical configuration that
we adopt is one in which instability arises from the presence of a
relatively small population of suprathermal electrons in an otherwise
thermal plasma. In such cases, the real frequency and polarization
of the excited modes are determined, primarily, by the thermal plasma,
and the effect of the suprathermal electrons is to pr;vide a small
imaginary contribution to the frequency. As a consequence, the wave
frequency is of the form w(k) = mr(§)+i.wi(§), where ]wi/w&|<< 1. The
dispersion equation, typically, is written as the sum of contributions
from the thermal and suprathermal electrons (which we denote by sub-

scripts "t" and "s" respectively)
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Ak, 0) = A (k, 0) + DA, (k, 0) =0 (16)
L=t,s

The contribution to the imaginary part of A(k,w) from the thermal
electrons is responsible fof (Landau or cyclotron) damping, However,
since we employ the cold plasma approximation for simplicity, thermal
damping is unimportant and will be ignored. It should be noted, before

we proceed, that the cold plasma approximation is valid as long as

kLVe w-xﬂe
& <<1ad |—V—k“ - [>> 1, (17)
e

where V, denotes the thermal speed. If eq. (16) is expanded in powers
of w, , it can be shown that the frequency and growth rate are given by’

the equations

A(i0.) = 0, (18)
and
A (k ;
o oo gt (19)
£ A, (k,w)

The characteristics of the wave msdes (i.e., frequency and polarization
as functions of wavelength and angle of propagation) in the cold plasma
approximation have been discussed in Chapter 1I, and will not be re-
peated here. Instead, in the remainder of this section,we discuss the
characteristics of the instabilities and, hence, the radiation, which

arises from populations of either trapped or streaming suprathermal




electrons.

a. Loss cone instabilities:

Populations of trapped particles which are found in astrophysical
plasmas occur, most often, in the presence of dipole magnetic fields
(i.e., planetary magnetospheres), and provide a tool for the mapping of
such fields as well as for determining the relevant physical processes
in the plasma. Loss cone distributions are characterized by a depletion
of particles having small pitch angles, o = tan'l(vzlvx), relative to
the ambient magnetic field, thereby, constituting a population inversion
in the perpendicular energies of the trapped species. No net parallel
current arises from such a population, and the distribution function is
symmetric in parallel velocity. In addition, average particle energies
in the direction perpendicular to the ambient magnetic field exceed
those directed parallel to the field, and the source of free energy
which drives the instability is the anisotropy which exists in the per-
pendicular velocity distribution.

The most efficient coupling to the excited modes occurs for per-
pendicular propagation (i.e., k, = 0), and we consider this case first.
Further, the electric field vector is directed parallel to the ambient
magnetic field for the ordinary mode, and primary coupling is to the
parallel motion of the suprathermal electrons. As a consequence, the
growth rate of the O mode can be shown to depend linearly on the paral-
lel energy of the trapped species (Freund and Wu,1976). However, since
this is, typically, small for trapped particles, it is the extraordinary
mode which is more strongly radiated, and we limit discussion to the
X mode here. Relativistic effects are included throughout.




The suprathermal distribution function we consider is of the form
Sliay L 2 2 2
Fs(u* Y| ) F"(u” )Fl(ul ), where F”(u“ ) is an arbitrary, even

function of Y

o 2 = 2/0’ 2 5 2/0’ 2
F,(u,%) = (@,3)™ (1 + —"-Z—)e W (1 e *2) : (20)

Q'-Ll

and u (= p/m) is a relativistic velocity. The resonant condition in
this limit is o, = :ﬂe/‘y where , under the assumption that the average
perpendicular energy of the suprathermals is much greater than the

average parallel energy, we have that ¥y = (1 + uf/ca)%. Thus, the

2 2
2, el 2 (21)
“a (n“)rz ) b

and the growth rate becomes (Freund and Wu,197Ta)

resonant u, is given by

2 :
w . W ® m k.u

1,28 P z 2y_e 1 i n 4 9 2 2
oniny O _’(k w ) H(u ) ( ) C 7 (u =q )
® wra LR 4 o 0w, (n-1)% a 3, Bluy =y

(22)

In (22), wg is the plasma frequency of the suprathermal electrons, H is

the heaviside function,

w2 fu?2 (w2.02) %2 w2 Q w?2 i
mp—te (E )8 - —= [1-E)-222 !
e & 2 \n?2 ne w 2 - a2 ;
A e e r e e !
. i
224 202\ w_* 02c2k2+w 4 w_2\q-2
x[( o )__ ' (____._u A7% )(1-2 -s-)] @
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includes the effect of the dielectric polarization of the plasma, and
W, satisfies the X mode dispersion relation

wl =% { (%2 + 02 + 20.2) + [(c®k3-0,%)% + uweaoj]% } A
where the plus (minus) sign refers to the fast (slow) extraordinary
mode. We note that in the limit of wezlﬂez << 1, in which plasma
dielectric effects are expected to be negligible, W(kx,wr) approaches
unity.

Several conclusions follow readily from analysis of eq. (22)
First, the growth rate vanishes at the cyclotron harmonics themselves,
and excitation occurs for frequencies wr< rﬂe in accord with the in-
clusion of relativistic effects in the gyroresonance. Second, for
suprathermal energies as high as several hundred keV, k‘Laut_l"’:'/Qe2 <1
and the growth rate falls off rapidly with an increase in the gyro-
harmonic under consideration. Third, growth is possible only when

al"'l_(u‘l_2 = una)/auf > 0, so the range of frequencies in the vicinity

of each harmonic which leads to instability varies as

- A1 a 2
0 2 o e i {1+ <22 €w2<an?2 . (25)
e c2 ag r e
L

Finally, it should be noted that a stop band (see Chapter II) exists

for Qu < w, <w Thus, while maximum excitation is expected to

R.
occur in the vicinity of the fundamental gyroharmonic (.e., on the slow

X mode ), these waves cannot readily escape from the plasma.
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In order to excite fast extraordinary mode waves (i.e., w, > “R)
directly via the fundamental gyroresonance, a Doppler shift of the
wave frequency above the stop band is required. Consider, for sim-

plicity, a parallel distribution function of the form

F"(U“) = HS(UH-U) + 5(U” +U)], (26)

and finite kza << k_‘_a. We agsume that UZ «fdsu u_La Fs(ul_a,u”),

that k, is sufficiently small that the dielectric properties of the
plasma can be adequately described in terms of the limit of perpendicu-
lar propagation, and w,. is given by eq. (24). Under such conditioms,
the sole effect of finite kz is on the resonance condition, which now
becomes ¥ _ - rﬂe/'}' ikz U = 0. As a result, instead of (23), the

resonant u_ takes the form (7“2 = 1 +U2/c®)(Freund and Wu, 1977a), for

4
(2 tx U)2
un2 = [ L : - “2 02 ’ (27)

Pp

2
N=1+ u3/c2,

in which the Doppler contribution may be viewed as providing an
effective shift of the gyrofrequency. It is clear from (27) that (1)
waves can be excited by means of the fundamental gyroresonance as
long as wrz < ‘)‘“"2(0e + |sz| )2, and (2) that such waves can be ex-
cited for kz directed both parallel and antiparallel to the ambient
magnetic field. In order for waves on the fast X mode to be excited
in this fashion, we require that ‘y”"a(ﬂe + |sz| ) “’Ra < wra which

implies that U_ < U < U, vhere
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, It is clear, therefore, that we2 < k"%c2/2 is required. Since ck, ~Q,

for the electromagnetic waves which are excited, an extremely narrow
stop band (i.e., wez < Qez) is necessary for excitation of waves which
can escape from the plasma.

While conditions in which w, < Qe are not uncommon in the labora-
tory, they are relatively rare among astrophysical plasmas. Within
the solar system, such conditions hold only at low altitudes (< 1 Rj)
in the Jovian magnetosphere and in the auroral zone within the terres-
trial magnetosphere. However, since these regions have been identified
as the source regions of the Jovian decametric radiation and the

terrestrial kilometric radiation, such a mechanism has been pro-

posed as an explanation of the source mechanism in each case (Wu and
Freund ,1977; Wu and Lee,1978; Melrose,1975; Smith, 1976).

Finally, we remark that while a small Doppler shift is required
in order to obtain excitation of the escape mode via the fundamental
gyroresonance, the primary mechanism of this instability is the phase
(L.e., azimuthal) bunching of the suprathermal electrons.

b. Streaming instabilities:

In the case in which a population of suprathermal electrons is
streaming along the ambient magnetic field, a restriction of the f
analysis to predominantly perpendicular propagation is not possible. ;

This occurs because particle energy is predominantly directed parallel
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to 1_30, and the particle energy couples strongly to the parallel com-
ponent of the induced electric field. Thus, radiation occurs over a
relatively broad angular range. In addition, substantial emission

of the ordinary mode is possible, and the analysis cannot be restricted
solely to the X mode. Relativistic effects can be neglected when

tﬂem

Ncosd > % R (29)

c J
for which the relativistic contribution to the resonance conditioncan be neglected
in comparison with the Doppler effect. For w ~ nﬂe, N~1, and a

10 keV streaming energy, the Doppler effect dominates for angles of
propagation 0°< 6 € 80° and it is this regime which will be discussed
here. In this limit, the resonance condition is of the form

e, - rﬂe- k”v” =0, and it is evident, in contrast to the loss cone
instability discussed previously, that instability is due to the axial
bunching of the suprathermal electrons. As before, we employ the cold
plasma approximation for the thermal plasma which yields the well-
known Appleton-Hortree dispersion relation (Stix,1962) for the ordinary
and extz;aordinary modes (which we denote with "+" and "-" signs

respectively)

N 2 (1-07)

(30)
2(1-02)-p2(8in%6¥Fp )

where o2= wezlwtz, g2 = Qezlwra, and p2 = 8in?0 + 4(1-02)cos®0/p2.
The suprathermal distribution is, again, assumed to be a separable
function of parallel and perpendicular velocity, and we write

F'(V‘.a,vll) - P“(V”)F‘L(Vlz) where

“R"""" eI

.
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F (v,2) = (w,®)™e * ¢ (51)

" - () )2
F)(v)) = (mx;®)™% e (32)
[t I

In (31) and (32), ) and o, characterize the random velocities in the

parallel and perpendicular directions, and oy is the streaming

velocity. The resonant parallel velocity, in this case, is given by

e
vn B cos@l s (33)
r

2 - 2 3 2
L =2 w2 c A& ;*__(f_vn_) Tycoss- =2
T wrz Tlizlcosela(wr'ﬂi)/awr n=0 o)
X F“(V“ = Vn). (31")
Under the assumption that k “o Lzlﬁea <1
ko, \ |n|-1 m _ 12
t s 1
Ax(l X 2—an (';;T‘) e [5‘-' (K cose-'risine)mne+nrisece+|n|] ;
5 e 1+ Ti e
(35)
where
1155 w 2 2
A ! T, = 20_1: (1= )cos® , and K, = 2 Ba=gind (36)
! e s8in®0Fp 2(1-02)-p2(ind¥p)

o Examination of eqs. (34)-(36) shows that growth is possible (i.e.,
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+
wi(—)> 0) only if

ula as-vn tﬂe
— (—c—)nicoﬁ -¢> 0. (37)

all

The additional requirement that the growth rate not be exponentially
small (i.e., that |V£°"|< a“), then, implies (1) that for instability
a2 m

i e 1
ca| " 'GT cosd ~ b (38)

and (2) that the bandwidth in the vicinity of each gyroharmonic is
2
o, - W o o
8 Il b3 il s
1+ (—_c )111 cosd € m—( (-—2- 1+ < Ticose) .
e @,

It should be noted, however, that relativistic electrons play an in-

(39)

creasingly important role at the higher gyroharmonics, and modifica-
tions to the results given,herein, may be required.

A detailed analysis of (34) is beyond the scope of this review,
and we shall only present a summary of. the principle conclusions with
regard to the radiation properties of the medium. The interested
reader is referred to Melrose (1973) for more details. First, Cerenkov
emigsion (i:e., n = 0)is not possible on either the O mode or the
fast X mode (i.e., the escape mode). This follows because ﬂt <1
for these waves and the resonance velocity i T c/’ﬂtcoae exceeds the
speed of light., Second, emission of the X mode is favored over that

of the O mode at each gyroharmonic for this case, as well as, for
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the loss cone instability. Third, emission of fast extraordinary
waves via the fundamental gyroresonance is possible only when the

extraordinary mode stop band is sufficiently narrow that

2 2
w o o
=< -2 Ncoso +--JL- (ko)
02 c 0'2

e i

We note that the physical mechanism for such excitation of the fast

extraordinary mode is the same as that in the case of the loss cone

instability discussed previously; specifically, a Doppler shift of

the wave frequency between the electron rest frame and the observer.
Finally, it should be noted that substantial reabsorption of this

obliquely propagating radiation is possible when the wave frequency

is sufficiently close to the local values of the various gyroharmonics.

At these frequencies the cold plasma approximation breaks down, and

cyclotron damping by the thermal plasma is possible.
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VII. An example-type 111 solar radio bursts:

In the previous chapters we reviewed the various isolated mecha-
nisms that produce coherent emission in plasmas. Our aim here is to
present an example of an entire problem that includes not only the prop-
erties of the observed radioemission, but also the details of the particle
distribution functions and of the electrostatic turbulence.

For reasons that will become obvious we have chosen the problem
of the type III solar radio bursts. Observationally by type-II, bursts
we mean solar, radio-emission having a drift frequency with t. from
high to low frequencies. The starting frequency is in the ran
50-300 MHZ which corresponds to plasma frequencies in the lower corona,
while ending frequencies could be measured down to 10 MHz at the earth's
surface due to the ionospheric cut-off with advent of satellites. Fre-
quencies down to several tens of kHz ﬁere measured and it was confirmed
that the excitor is an energetic electron beam (10-100 keV) streaming
from the sun down to 1AU.

The persistent interest in this phenomenon has been due to the
theoretical difficulties encountered in constructing a convincing inter-
pretation of many of the most striking properties of the bursts. Se-
veral basic questions were posed by Sturrock fifteen years ago, and
are only now beginning to be answered. Among the issues raised by
Sturrock (1964) are the following three. First, why is the electron
beam that excited the bursts not significantly decelerated. Second,
why is the radiation predominately emitted at the second harmonic of
the local plasma frequency, Wy Finally, why does the beam have spch

a well defined velocity, typically between 0.2 and 0.3c.
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In 1976 yet another curious observation was reported by Fitzenreiter,
et al. (1976). In looking at simultaneous observations of both the
eiectron and radio fluxes of type III bursts that had traveled out to .
1 AU, they found that for electron fluxes less than about 100
(cm?secster)'l,the radio intensity, 1, and the electron flux, JE’ vere
approximately linearly proportiocnal. For larger electron fluxes
B g Fet,
It was first shown (Papadopoulos et al., 1974) that effects of
strong plasma turbulence (see III-5) can readily account for thé ob-
served fact that the electron streams associated with the bursts .are
able to travel large distances without significant deceleration. In
contrast, conventional weak turbulence plasma theory predicts that all
the streaming energy shoﬁld be dissipated within a few kilometers of
the injection site.
The strong turbulence theory aiso suggested an explanation for the
dominance of second harmonic radiation. During the last several years,
that theory has been expanded in a series of papers (Smith et al.,
1976, 1978;'G01dstein et al., 1978; Nicholson et al., 1978). 1In its : %
present version, the theory not only accounts for the minimal energy |
losses suffered by the electrons, but also is able to account for the

observed intensities of electromagnetic radiation (at 2we), the corre-

lation between the radio and electron fluxes,and for the observed decay

—

times of the radiation. The full impact of the theory, was however,

-

due to the results of the numerical modeling. Rate equations including

strong turbulence mode coupling effects, reabsorption and collisionless




-

damping were utilized to model actual observations. The complete set
of equations can be found in Smith et al. (1976, 1978) and will not be
repeated here. The input to the code was a beam distribution based on
in situ particle observations at 1AU. The numerical computations can
be performed at any point in space at which the density and temperature
of the ambient solar wind can be estimated. Typically, distances be-
tween 0.1 and 1.0 AU were chosen, and it was assumed that the ambient density
varied as r =. At a given location the calculation began (t = 0) with
the arrival of energetic electrons with velocities of about 0.7c. The
exact velocity distribution being given by the beam evolution model.

As an example, consider the burst on May 16, 1971l. The local plasma
frequency at 1 AU on that date was about 30 kHz and electrons with
energies above 100 keV were first observed at 1305 UT when the radio-
meter on IMP-6 first detected radio noise at 55 kHz (°"2we/2n). The
radio noise increased in intensity until 1335 UT, and Alit:t:le further
evolution was observed in the electron spectrum after that time. From
Fig. 16 we can see that the distribution function had a positive slope
below the peak energy. The other parameters needed for the numerical
model were the path length traversed by the electron beam, taken to be
1.5 AU; the ratio of the beam to solar wind density, T|, estimated to be
5% 10°°, The result of the modeling are shown in Fig. 17 as a function
of time, where the logarithm of the electron distribution function f.(v),
the electron plasma wave energy level W“ (normalized to nT) and the am-
pli:uie-of the density fluctuations (:_n) are plotted as a function of

\' -'—e'c

p k
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Initially, the linearly unstable beam produces resonant plasma waves
(indicated by cross hatching in (Fig. 16a) that grow until the the modu-
lational threshold is reached (Fig. 17a). Axperiodic ion waves are then
excited (gray shading) as are shorter wavelength '"daughter" Langmuir
waves (Fig. 1Tb-d). The cémbined effects of nonlinear changes in the
Bohm-Gross disperion relation and anomsious resistivity then cqmplete
the decoupling of the electron beam from the Langmuir turbulence
(Fig. 17d-f). 1In the calculations the collapse to short wavelengths
ceases when Landau damping by the thermal solar wind electrons balances
the spectral transfer. No further energy exchange will then take place.
Gradually the ion fluctuations and Langmuir waves will simultaneously
decay back to thermal levels whereupon the linear instability will again
be excited, and the process will cyclically repeat until the electron
beam has merged with the ambient solar wind distribution and no positive
slope exists to fT(!).

It is important to'ﬁote that the total elapsed time between the on-
set of the OTSI and its final stabilization was little more than O.lsec,
during which the electron distribution is essentially constant. There-
fore, neither reabsorption nor quasilinear relaxation can be important.

Similar calculations were performed at 0.5 and O.1 AU and for the
type III bursts observed on May 25, 1972 and February 28, 1972; the
results are similar to those described here and are reported in Goldstein
et al.(1978). In all cases stabilization and decoupling of the electron
beam from the'Langmuir turbulence is due to excitation of the periodic

modulational instability (i.e., oscillating two stream).
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set of the OTSI and its final stabilization was little more than O.lsec,
during which the electron distribution is essentially constant. There-
fore, neither reabsorption nor quasilinear relaxation can be important.
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et al.(1978). In all cases stabilization and decoupling of the electron
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modulational instability (i.e., oscillating two stream).
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We now turn to the question of why type III bursts are preferen-
tially observed at the second harmonic of the local plasma frequency.
Much of this discussion is based on a recent paper by Papadopoulos and
Freund (1978).

From a comparison of Fig. 1T7a and f, one sees that the long wave-
length pump waves have collapsed into shorter wavelength daughter waves.
In configuration space these short wavelength structures are solitons
(Papadopoulos and Manheimer, 1975), whose spatial extent in the direc-
tion parallel to the magnetic field can be estimated to be- about SOAD,

with an energy density, ¥ , of nearly 10"2, Such structures are very

nT
difficult to observe with present spacecraft instrumentation. In a

40O km/s solar wind, a 350 m (SOAD) soliton is convected past a 30m
dipole antenna in little more than a millisecond. This must be compared
to the electronic response times of plasma wave experiments typically
no faster than 20 ms (Gurnett, private communication).

Papadopoulos and Freund (1978) found that the total volume emis-

sivity of a soliton, integrated over solid angle is

» 4cE°2 1 2
J Ayt = 262("7) 27V (i:i‘) (1)

where Az is the parallel dimension of the linearly unstable wave-packet,
ko -,/Bwe/c is the wavelength of the electromagnetic wave at Ewe,

Eo is the electric field in the soliton, and L is the dimension of the
soliton transverse to the magnetic field. Eq. (1) is valid for

koaL? >> L, a good approximation throughout the interplanetary medium.

The intensity of emission outside a spherical shell of radius R and
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thickness AR centered on the sun is (Gurnett and Frank, 1976)

I= JR(Ewe/2n). For the May 16 burst at the timevﬁfisoliton formation
(Fig. 17£), 1(2we) =1 x 10727 Wmn Zgec’},close to the peak intensity

observed at 55 kHz. Finally we should note that using the results of

computations such as shown in Fig. 17 and eq. (1), excellent detailed

‘agreement was found concerning the exponent o of the I ~ J: dependence
between the radio intensity and electron flux (Fig. 18).

Thus far it was tacitly assumed that because the electron beam
becomes decoupled from the radiation field, no significant energy loss
will occur. Smith et al. (1978) have investigated this in some detail;
we only summarize that discussion here.

If the beam is injected near ﬁhe solar surface, the total energy

lost by the beam in propagating to the point R is given by

R ty(r) -
AE -f drA(r)f ae Lot (2)
R tl(r)

where A(r) is the source area at r, and tl(r), and t2(t) are the times

at which the instabilities at r begin and end. Because all the beam
energy loss occurs in the resonant region until the onset of the
gollapue one can assume that it takes place at the steady rate
dw/dt = "r/*b’ where WT is taken to be Wo exp(yifo).

When eq. (2) was evaluated, Smith et al. (1978) found that ~ 90%
of the energy loss occured in the inner corona, and that AE = 103°
W(ergs). With W= 10'4, the exciter loses some 102© ergs in leaving

the corona. The total energy in the type III exciter will typically
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becomes decoupled from the radiation field, no significant energy loss
will occur. Smith et al. (1978) have investigated this in some detail;
we only summarize that discussion here.

If the beam is injected near the solar surface, the total energy

lost by the beam in propagating to the point R is given by

R e le)
AE -f drA(r)/ ae it (2)

dt
R tl(t)

where A(r) is the source area at r, and tl(r), and tz(r) are the times

at which the instabilities at r begin and end. Because all the beam
energy loss occurs in the resonant region until the onset of the
collapse one can assume that it takes place at the steady rate
dw/dt = W.r/'ro, where W,, is taken to be W exp('yL'ro).
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lose only a few percent of its energy.

One additional consequence of this energy-loss calculation was
that it provided an explanation for why the electron streams appear to
have such well-defined velocities, of order c/3 at high frequencies,
decreasing to c/2 or less at low frequencies.

The peask intensity at any frequency is reached just before the
linear beam-plasma instability stops at that frequency, for at that
time the density in the energetic electron beam is maximum. It is this
peak velocity which is directly deduced from the observed frequency drift
rates as being the nominal velocity of the beam.

Smith et al. (1978) found that in the inner corona the peak velocity
vhen the linear instability stopped was vp = 0.35c, while near 1 AU,
because the ambient solar wind is cooler, vp was about 0.2c. This
suggests that the nominal velocity (c¢/3) is not characteristic of
electron acceleration, but rather reflects the evolution of the particle
spectrum. In addition, the observations do not necessarily imply that
the exciter ies decelerated between 0.005 AU - 1 AU, bur rather reflects
the decrease in the temperature of the solar wind with increasing
heliocentric distance.

In concluding this section we should note that the most important
lesson from the above, is the fact that plasma theory supported by
computation has reached the level of sophistication where detailed

predictions can be derived even in complex systems.
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VIII. Summary and conclusions:

The present review dealt with radiation processes occurring in
plasmas, with an emphasis on astrophysical applications. Enhanced
radiation from stable non-equilibrium plasmas, having suprathermal
particles, occurs mainly near the eigenfrequencies of the plasma
(me, Qe, Qu) or their multiples (2me, ZQe, 2Qu, w, + Qe, nﬁe) and is
due to synchrotron, Cerenkov, or the Cerenkov emission of e-s waves
followed by the conversion to e-m waves by means of scattering on low
frequency fluctuations. Typical enhancements over the thermal level
vary between a factor of 10—104. Plasmas with enhanced levels of e-s
turbulence in high frequency modes (we, Qe' Qu) can also radiate in the
above frequency ranges, but the emitted radiation can be much stronger
than in stable plasmas. In the absence of relativistic particles,
amplification processes such as e-m instabilities also produce
radiation in the above frequency range of a few times the plasma eigen-
frequencies. The presence of relativistic particles, however offers
the possibility of emission at frequencies much larger than the plasma
frequencies, either by spontaneous or stimulated Compton scattering or
by e-m instabilities. The upper limit on the emitted frequency is
given by the usual double Doppler shift, i.e., w< (L+82),ﬁTh. A summary
table of the radiation processes by frequency and of the section or
formula that applies to them can be found in our appendix.

It should be emphasized that our discussion of the radiation
processes, their efficiency and constraints represents only one block

of the ones necessary to build our understanding of astrophysical

'
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plasmas. This can be understood from our type III burst example of the
last chapter. The energy flows from the electron stream to e-s waves
to the observed e-m radiation. In order to build comprehensive models
it was necessary to examine and understand (using computer simulations,
theory and laboratory experiments) the individual processes controlling
the interplay of the energy flow. Only after this was achieved was it
possible to reach the almost complete and highly sophisticated under-
standing of the type III bursts. A similar linkage of the processes
controlling astrophysical plasmas will be required, whose ultimate test
will be the prediction of the levels and scalings of the observed
radioemissions. We believe that such an effort will be extremely

beneficial both for astrophysics and plasma physics.
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Frequently used symbols:

Latin symbols:

B
-0

5

ambient magnetic field
perturbed magnetic field

speed of light

perturbed electric

Heaviside function

unit dyadic

wavevector of radiation fields
inverse Debye length

electron and ion mass

electron and ion temperature
relativistic velocity

electron and ion thermal speeds
wave phase and group velocities

wave spectral energy deunsity

Greek symbols;:

=

g > @

relativistic factor (=1A/1-v=/c® =,/14u>/c?)
plasma dielectric tensor
longitudinal and transverse components of § in isotropic
media (i.e., € =k k € /k% + (I - kk/k?)€,)
index of refraction
angle between k and go
2
plasma dispersion tensor (i.e. A = & (kk - ¥°I) + €)
= wa == C =
determinant of A

Debye length

(i

|
A
R
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R

electron cyclotron frequency

upper hybrid frequency
wave frequency

electron plasma frequency 5
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Equation
19a
25,26
14
22,23

196
30,31

27,28
41

11,22,34

35 el
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Aggendix: + " >
Radiation near O Section
? Thermal II1
Stable (non-thermal) III (field-free)
5 o * IV (magnetized)
Weakly turbulent plasma II1
Radiation near 2ge
Thermal I11
Stable (non-thermal) 1II
+ Weakly turbulent plasma III
Strongly turbulent plasma III
Stimulated scattering v
Radiation near m 13
Thermal v
Electromagnetic instabilities VI
Radiation at w>> w , Qe:
Compton scattering II1
Stimulated emission by laser v
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Fig. 1 - Plot of the dispersion equations of the electrostatic
and electromagnetic modes in a field-free plasma.
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Fig. 2a - Schematic representations of the polarizations
of the perpendicularly propagating ordinary modes.
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Fig. 2b - Schematic representations of the polarizations
of the perpendicularly propagating extraordinary modes.
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Fig. 3 - Plot of the dispersion equations for the ordinary and
extraordinary modes in the limit in which k . B g s
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Fig. 4a - Schematic plot of 1/MPversus w for the ordinary
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Fig., 5 - The dispersion equations for the parallel propagating
left and right circularly polarized electromagnetic modes.
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Fig. 6 - Representation of T2 versus w for transverse modes in
the 1imit of parallel propagation.
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Fig. 7 = Schematic representation of the frequency and wavelength
dependence of cyclotron damping by thermal electrons.
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Fig. 9 - List of electrostatic to electromagnetic conversion
processes. (- indicates electrostatic waves, and AWy indi-
cates electromagnetic waves).
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Fig. 11 = Schematic of mirror-scattering gedanken experiment
(Sprangle and Granatstein, 1974).
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Fig. 12 - Schematic zcpresentation of the mechanism of stimulated
scattering from electron beams (Granatstein and Sprangle, 1977).
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Fig. 13 - Representation showing (a) hydrodynamic (i.e., stimulated
Raman scattering) and (b) kinetic (i.e., stimulated Compton scatter-
ing) regimes in beam-plasma instability.
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Fig. 15 - Instantaneous relationship of wave fields and perpendicular
electron motion in uniform magnetic field (Chu and Hirshfield, 1978).
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ELECTRON FLUX > 18 KeV (cm2sec ster)”!
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POWER LAW EXPONENT a,Jg = AJg”

Fig. 18 - After Fitzenreiter et al. (1976). The electron
flux and power law exponent, @ from the relationship I = Jg@
are shown for the three events for which numerical calcula-
tions could be performed. Observed and computed values of @
are plotted.
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