

FTD-ID(RS)T-0674-78

FOREIGN TECHNOLOGY DIVISION

OPTIMIZATION OF SPACE TRAJECTORIES

By S. N. Kirpichnikov

Approved for public release; distribution unlimited.

78 12 26 489

FTD-ID(<u>RS)T-0674-78</u>

EDITED TRANSLATION

FTD-ID(RS)T-0674-78 17 May 1978 MICROFICHE NR: JAD - 78-C-000682 OPTIMIZATION OF SPACE TRAJECTORIES

By: S. N. Kirpichnikov

English pages: 25

Source: Mekhanika Upravlyayemogo Dvizheniya i Problemy Kosmicheskoy Dinamiki, Izd-vo Leningradskogo Universiteta, 1972, pp. 5-19

Country of origin: USSR Translated by: Robert Allen Potts Requester: FTD/SDSY Approved for public release; distribution unlimited.

ACCESSION for NTIS While Section M DOC Buil Section D URANNOUNCED D JUSTIFICATION D BY DISTRIBUTION/AVAILABILITY COJES Dist. AVAIL and for SPECIAL A

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

Sumple de rois

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD_ID(RS)T-0674-78

Date 17 May 19 78

Block	Italic	Transliteration	Block	Italic	Transliteration
Aa	A	A, a	Рр	Pp	R, r
Бб	56	B, b	Сс	с.	S, s
Вв	B •	V, v	Тт	Tm	T, t
[r	r .	G, g	Уу	Уу	U, u
Дд	Дд	D, d	Φφ	\$ \$	F, f
Ee	E 4	Ye, ye; E, e*	Х×	Xx	Kh, kh
жж	ж ж	Zh, zh	Цц	4 4	Ts, ts
Зэ	3 1	Z, z	Чч	4 4	Ch, ch
Ии	Ич	I, i	Шш	Ш ш	Sh, sh
Йй	A 1	Ү, у	Щщ	Щщ	Shch, shch
Нн	K *	K, k	Ъъ	ъ .	II
лл	ЛА	L, 1	88		Ү, у
in in	MM	M, m	Ьь		•
Нн	Ни	N, n	Ээ	9,	E, e
0 0	0 0	0, 0	Юю	10 10	Yu, yu
Пп	Пп	P, p	Яя	Я в	Ya, ya

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

*ye initially, after vowels, and after ъ, ь; <u>е</u> elsewhere. When written as ё in Russian, transliterate as yё or ё.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	English
sin	sin	sh	sinh	arc sh	sinh_1
COS	COS	ch	cosh	arc ch	cosh
tg	tan	th	tanh	arc th	tanh_1
ctg	cot	cth	coth	arc cth	coth_1
sec	sec	sch	sech	arc sch	sech_1
cosec	csc	csch	csch	arc csch	csch ⁻¹

Russian English

rot	curl
lg	log

at a state

0674

.

Section 1

OPTINIZATION OF SPACE TRAJECTORIES

S. M. Kirpichnikov.

The works of this section are dedicated to the development of methods of the mechanics of optimal controllable systems as applied to problems of space dynamics. The primary number of works is connected with the development of analytical methods of the optimum selection of transfer orbits in a central field and with the approximate solution of separate model problemss

1 :

1

The work of V. A. Antonov and A. S. Shmyrov, placed in the section of brief scientific reports, is djrectly adjacent to the articles of this section. OPTINIZATION OF DESCENT MANEUVERS OF SATELLITE MODULE FROM NEAR-PLANET ORBIT

2

PAGE

Let us examine a space vehicle, moving along an elliptical orbit in the gravitational field of a spherically symmetric planet. The space vehicle consists of two parts: module descendable to the planet (module I) and orbital module (module II). It is required to construct an optimum, with respect to fuel consumption, descent maneuver of module I to the planet. The maneuver is executed with the aid of a single initial pulse, applied to module I so that the orbital module continues to move along the initial orbit, and the descent module transfers to the approach trajectory to the planet. The landing maneuver of module I is terminated after entry into the dense layers of the atmosphere and their passage. The planet may not have an atmosphere, then the maneuver is terminated by the hard contact of module 1 with its surface. In the latter case it is necessary everywhere below to formally equate the altitude of the atmosphere to zero.

Let us agree by start to mean the moment of the initial pulse. By fimish for determinacy we will mean the landing of module I on the surface of the planet. However, all the discussed stops being valid PAGE 3

if as the moment of finish we select some other fixed moment between entry of module I into dense layers of the atmosphere and its landing.

The initial orbit of the space vehicle and the trajectory of the descent module right up to its entry into the dense layers of the atmosphere are considered Keplerian, where there are considered only elliptical orbits of descent with straight motion with respect to the initial orbit. It is assumed that the angular range, change of altitude and the time of motion on the segment of passage of dense layers of the atmosphere to the finish point are known beforehand, and that this segment is located in planetocentric plane, passing through the velocity vector of module I during its entry into the dense layers of the atmosphere.

Taking into account the Tsiolkovskiy formula, we will minimize the characteristic velocity of the initial pulse, i.e., the modulus of pulse change of velocity of module I. A aber a stift the

In this work the formulated problem is investigated with complicated boundary conditions. Namely limitations are introduced on the angle of entry of the descent module and on the distance between the modules at the moment of finish. Furthermore, there is considered the condition of direct visibility between the modules and more

.

general limitation on the co-altitude of module II at the point of finish, and there can be taken into account the limitation on the velocity of module I at the moment of entry.

4

Following the method proposed by Ting Lu [1] it is easy to prove that the optimum descent orbits of the maneuvers examined here in all cases, being of practical interest, should lie in the plane of the initial orbit; therefore this investigation is limited to coplaner formulation of the problem.

§1. Hathematical Formulation of the Problem and General Conclusions.

In the plane of motion let us introduce polar coordinates r, Φ with the origin at the center of the planet so that the direction of positive reading of angle Φ coincides with the direction of motion along the initial orbit.

Along with Keplerian elements of orbits: large semiaris a, eccentricity e and angular distance u of pericenter from the polar axis we will consider elements p, q, introduced by formulas

 $p = \frac{1}{\sqrt{a(1-a)}}, \quad q = \frac{a}{\sqrt{a(1-a)}}.$ • (1)

Let us assume P_1 , q_1 , a_1 , e_1 , u_1 - parameters of initial orbit, and p_2 q, a, e, u - parameters of intermediate orbit of descent module.

5

Let us designate moments of time and polar coordinates of the points of start and entry of module I through t_1 , r_1 , ϑ_1 and t_2 , r_2 , ϑ_2 respectively. Obviously

where r_{mn} - radius of planet, h_{mn} - height of dense layers of the atmosphere. Let us introduce parameter p_2 by formula

1= 1== + harm.

 $p_2 = \frac{1}{\sqrt{r_1}}$

It is assumed that change of Δr pelar radius, angular range $\Delta \vartheta$ and duration Δt of the segment of flight of module I in dense layers of the atmosphere to the point of finish are known beforehand. Therefore time t₂ of finish and polar coordinates r₂, ϑ_2 of the point of finish will be \sim

 $\left. \begin{array}{c} \widetilde{r}_{2} = r_{2} - \Delta r, \\ \widetilde{\vartheta}_{2} = \vartheta_{2} + \Delta \vartheta, \\ \widetilde{t}_{2} = t_{2} + \Delta t. \end{array} \right\}$ (4)

(2)

(5)

(3)

If by finish we mean the landing of module I on the surface of the planet, then

 $\Delta r = h_{attar}, \quad r_2 = r_{aa},$

if the entry of this module, then

 $\Delta t - \Delta r = \Delta \vartheta = 0, \quad r_2 = r_3, \quad \vartheta_2 = \vartheta_3, \quad t_2 = t_2.$ (6)

for polar radii r: and r: we have

DOC = 0674

$$r_{1} = [p_{1}^{2} + p_{1}q_{1}\cos(\theta_{1} - \omega_{1})]^{-1} = [p^{2} + pq\cos(\theta_{1} - \omega)]^{-1}, \quad (7)$$

$$r_{2} = p_{3}^{-2} = [p^{2} + pq\cos(\theta_{2} - \omega)]^{-1}. \quad (8)$$

Characteristic velocity AU of initial pulse can be reduced to the form [2]

$$\Delta U = K \Delta V, , \qquad (9)$$

$$\Delta V = \left\{ q_1^2 + 3p_1^2 + q^2 - p^2 - \frac{2p_1^2}{p} - 2qq_1 \cos(\omega_1 - \omega) - \frac{2(p - p_1)^2 q_1}{p} \cos(\theta_1 - \omega_1) \right\}^{\frac{1}{2}}, \qquad (10)$$

where K - Gaussian constant, multiplied by the square root of the planet mass. For value ΔV , distinguished only by constant multiplier from ΔU , let us retain the mane characteristic velocity.

Thrust angle Φ_{τ} during the initial thrust we will read in reverse notion of the direction from positive transversal to the direction of pulse, then we will have

$$\operatorname{tg} \Phi_{\tau} = \frac{P\left[q\sin\left(\vartheta_{1}-\omega\right)-q_{1}\sin\left(\vartheta_{1}-\omega_{1}\right)\right]}{\left(p_{1}-p\right)\left[p_{1}+q_{1}\cos\left(\vartheta_{1}-\omega_{1}\right)\right]}.$$
 (11)

The signs of the numerator and denominator in the right side of (11) coincide respectively with signs $\sin \Phi_{\rm T}$ and $\cos \Phi_{\rm T}$.

Bet us determine angle Φ of entry as the angle between the velocity vector of the descent module and the plane of local horizon at moment of time ta:

$$\operatorname{tg} \Phi = -\frac{U_r}{U_0} = -\frac{pq\sin\left(\theta_2 - \omega\right)}{p_2^*}, \quad \Phi \in \left[0, \frac{\pi}{2}\right), \quad (12)$$

where U_i , and U_i - the radial and transversal components of velocity

 \bar{U}_{m} of module I respectively at the moment of its entry. Values $U_{\mu}U_{\mu}U_{\mu}$ are determined by formulas

$$U_{p} = Kq \sin(\theta_{2} - \omega), \quad U_{0} = \frac{Kp_{1}^{2}}{p}, \quad (13)$$

$$U_{px} = K\sqrt{2p_{1}^{2} + q^{2} - p^{2}}. \quad (14)$$

Let us assume at moment of time \tilde{t}_2 the orbital module has polar

radius r, and polar angle \$. For the last values we find

$$\int_{\Phi_{1}-\Phi_{2}}^{\Phi_{2}} \frac{dv}{p(p+q\cos v)^{2}} + K \Delta t = \int_{\Phi_{1}-\Phi_{1}}^{\Phi_{2}} \frac{dv}{p_{1}(p_{1}+q_{1}\cos v)^{2}}.$$
 (15)
$$r_{3} = [p_{1}^{2}+p_{1}q_{1}\cos(\theta_{3}-\omega_{1})]^{-1}.$$
 (16)

Distance I between modules at the moment of finish is equal to

$$l = [r_{3}^{2} + \bar{r}_{2}^{2} - 2\bar{r}_{2}r_{3}\cos(\theta_{3} - \bar{\theta}_{2})]^{\frac{1}{2}}, \qquad (17)$$

and co-altitude z of module II at the point of finish will be

$$z = \arccos \frac{r_3^2 - l^2 - r_1^2}{2r_2 l}$$
 (18)

The relationships obtained above show that as the basis parameters, determining the descent maneuwer, there can be obtained

$$p, q, \vartheta_1, \vartheta_2, \vartheta_3, \omega, \tag{19}$$

which are dependent and satisfy the following connections:

$$\varphi_1 = p^2 + pq \cos(\vartheta_1 - \omega) - p_1^2 - p_1q_1\cos(\vartheta_1 - \omega_1) = 0,$$
 (20)

$$\varphi_2 = p^2 + pq \cos(\vartheta_2 - \omega) - p_2^2 = 0, \qquad (21)$$

$$\varphi_3 = \int_{0}^{0} \frac{dv}{p(p+q\cos v)^2} + K\,\Delta t - \int_{0}^{0} \frac{dv}{p_1(p_1+q_1\cos v)^2} = 0. \quad (22)$$

By the sought optimum descent maneuver we will mean the maneuver, to which corresponds the least value of characteristic velocity ΔV .

Bet us turn to the calculation of additional limitations. Let us

examine first only the limitations on variables l and Φ . Angle Φ of entry should lie in some preset interval:

(23)

Distance ! between modules at the moment of finish should not exceed the fixed maximum value of L:

$$l \leq L.$$
 (24)

By introducing additional real variables α , β , conditions (23), (24) let us rewrite so:

$$\varphi_4 = (\Phi_{\min} - \Phi) (\Phi - \Phi_{\max}) - \alpha^2 = 0,$$
 (25)
 $\varphi_5 = l - L + \beta^2 = 0.$ (26)

Thus, with conditions (23), (24) the problem is mathematically reduced to the minimization of function (10) in the total of real Variables

$$p, q, \vartheta_1, \vartheta_2, \vartheta_3, \omega, \alpha, \beta,$$
 (27)

which satisfy conditions (20) - (22), (25), (26). As is known, the derivatives with respect to all variables (27) from the Lagrange function should be equal to zero

$$\Delta V + \sum_{i=1}^{5} \lambda_i \varphi_i. \tag{28}$$

where λ_1 , λ_2 , ..., λ_5 - unknown constant multipliers.

Analysis of the equation of extremum, cooresponding to variable β , shows that either this variable is equal to zero and condition I-L is fulfilled, or the sought solution corresponds to the relative minimum of function ΔV in the auxiliary problem, in which conditions (24), (26) are dropped. Therefore it is possible to recommend such a

sequence off investigation.

1. The problem is examined without taking into account limitations (23)-(26). Using the results of [2] and the method, similar to that developed in article [3], it is easy to show that single steady-state solutions in this case are the solutions obtained in [2] during the investigation of emergetically optimum single-pulse flight between elliptical initial and circular final orbits. The indicated solutions are characterized by apsis tangential connections of intermediate trajectories with initial orbit and circle of radius r₂. The trajectory, exiting the apocenter of the initial orbit, always requires less fuel consumption in comparison with the trajectory exiting the pericenter. For both steady-state solutions there is fulfilled equality

9

In general case point (29) lies outside the interval (23), and it is necessary to change to the search for all relative minimums of function ΔV , having kept only conditions (20) - (22) and having fixed angle Φ : $\Phi = \Phi_{\min}$. (30)

(29)

 $\Phi = 0.$

The analysis and solution of this problem with any fixed angle Φ are contained in [3].

If among all the solutions obtained at this stage there are

.

those, for which inequality (24) is satisfied, then by comparison of the characteristic velocities corresponding to them the sought solution is found. In the opposite case, when condition (24) is disturbed for all solutions, the sought optimum maneuver is characterized by equality

l=*L*, (31)

and it is necessary to change to point 2.

2. A problem is examined in which conditions (20)-(22), (23) are kept, and inequality (24) is replaced by equality (31). For the mumerical investigation there can be used the method developed in the following paragraph for the determination of the optimum descent maneuwer at prescribed values of l and Φ . Interval $[\Phi_{muin}, \Phi_{max}]$ is broken down with the sequence of points into a row of equal parts and for each point there is calculated the optimum maneuver. Then by comparison of functions ΔV there are found the approximate values of angle Φ and the parameters of the sought optimum maneuver. If the obtained accuracy is insufficient, there can be conducted local refinement of these approximate values by one of the methods of successive approximations.

Let us assume now, besides conditions (20) - (24), limitations are introduced on variables z and U_{nx} . The problem of optimization of function ΔV , just as in point 2, does not lend itself to analytical

PAGE 11

investigation. For its numerical solution there can be used the method developed in the following paragraph for the construction of optimum descent maneuver of module I with fixed parameters l and Φ , which makes it possible to consider the indicated limitations on variables z and $U_{\rm ME}$. Determination of the sought solution is performed similar to that discussed above in point 2. The distinction is only that here into a row of parts are broken down two intervals $[\Phi_{\rm min}, \Phi_{\rm max}]_{a_1}(1-e_1)-\tilde{r_2}_{a_2}]_{a_1}$ and the calculation is performed for all pairs of points, where one point is taken from the interval of change of angle Φ , and the other - from the interval of allowable values of distance l_{a_1} The indicated approach is especially suitable when high accuracy is not required, and it is important to obtain a picture of the change of parameters of optimum maneuwers depending on the variations of values $l_{a_1} = 0$.

§2. Hathematical Algorithm of Construction of Optimum Descent Haneuver With Fixed Values of l and Φ

Below is presented a description of the method of solution of the examined problem in the assumption that there are assigned angle Φ of entry of descent module and distance ! between the modules at the memory of finish. Mathematically it is required to find the smallest value of function (10) in the total of variables (19), which satisfy conditions (12), (17), (20)-(22), where parameters l and ψ are considered known. The given method makes it possible to consider additionally the limitations on variables z and $U_{\rm sx}$.

We will consider that the initial orbit is not circular, where there are fulfilled in**equalities**

0<91 <p1.< th=""><th>. (32)</th></p1.<>	. (32)
$r_{1n} > r_{2}$	(33)
$r_{1n} < l + r_2$	(34)
$r_{10} > l - r_{20}$	(35)

where $r_{in} = a_i(1-e_i)$ and $r_{in} = a_i(1+e_i)$ - the distances of the pericenter and agocenter respectively of the initial orbits Condition (33) signifies that the initial crbit is located entirely outside the dense layers of the atmosphere.

If $r_{1a} < l - \tilde{r}_2$ or $r_{1a} > l + \tilde{r}_2$, then obviously the descent maneuvers with given distance l are generally impossible. Cases

> $q_1 = 0,$ $r_{1a} = l - r_2,$ $r_{1a} = l + r_2$

will not be examined here, since for each of them the problem in question loses its extremal character and is transformed into determinate.

Let us change to discussion of the method. From equalities (12),

(36)

PAGE 13

(21) we obtain

$$q = \left[\frac{p_{2}^{2} \sec^{2} \Phi}{p^{2}} - 2p_{2}^{2} + p^{2}\right]^{1/2}, \qquad (37)$$
$$\operatorname{tg}\left(\theta_{2} - \omega\right) = \frac{-p_{2}^{2} \operatorname{tg} \Phi}{p_{2}^{2} - p^{2}}, \qquad (38)$$

where the signs of the numerator and denominator in the last formula coincide with the signs of $\sin(\theta_2 - \omega)$ and $\cos(\theta_2 - \omega)$ respectively.

Relationship (13) makes it possible to find

$$\vartheta_2 = \vartheta_3 - \Delta \vartheta - \gamma_1 \arccos \frac{r_3^2 + r_3^2 - t^2}{2r_3 r_3}, \quad \gamma_1 = \pm 1,$$
 (39)

and from equality (20) we have

$$\frac{\sin(\theta_{1}-\omega_{1}) = \frac{-b_{2}b_{3}+\gamma_{2}b_{1}}{b_{1}^{2}+b_{2}^{2}-b_{3}^{2}}}{b_{1}^{2}+b_{2}^{2}}, \\
\cos(\theta_{1}-\omega_{1}) = \frac{-b_{1}b_{3}-\gamma_{2}b_{2}}{b_{1}^{2}+b_{2}^{2}-b_{3}^{2}}}{b_{1}^{2}+b_{2}^{2}-b_{3}^{2}}, \\
\gamma_{2} = \pm 1, \qquad (40)$$

where

4

$$b_1 = pq \cos(\omega - \omega_1) - p_1 q_1, \quad b_2 = pq \sin(\omega - \omega_1), \\ b_3 = p^2 - p_1^2.$$
(41)

Subsequently by symbols q, ϑ_1 , ϑ_2 , u we will mean the functions of pasameters p, ϑ_3 , determined by relationships (37)-(41). With such elimination of variables the remaining unknowns p, ϑ_3 should satisfy the following inequalities:

$$0 < q < p,$$
(42)
$$|\bar{r_2^2} + \bar{r_3^2} - l^2| \le 2r_3 r_2,$$
(43)
$$b_1^2 + b_2^2 - b_3^2 > 0.$$
(44)

. (45)

(46)

Due to dependence (42). i.e., the assumption about ellipticity of transfer orbit, we reduce condition (22) to the form

4-0,

where

 $\Delta = K \Delta t + a^{\frac{3}{4}} [E_2 - E_1 - e (\sin E_2 - \sin E_1)] - a_1^{\frac{3}{4}} [E_1^{(1)} - E_1^{(1)} - e_1 (\sin E_1^{(1)} - \sin E_1^{(1)})],$

DOC = 0674

DOC = 0674

where E_1 , E_2 and $E_1^{(0)}$, $E_2^{(0)}$ - eccentric anomalies of modules I and II at moments t_1 , t_2 respectively. The eccentric anomalies are easily computed by known formulas of elliptic motion. Time t_2 - t_3 of motion before entry is computed so:

$$t_2 - t_1 = \frac{a^3}{K} [E_2 - E_1 - e(\sin E_2 - \sin E_1)]. \qquad (47)$$

Let us derive now some inequalities and estimations, which are used during numerical solution. First of all from condition (42) and dependence

(48) r. > r.

where ". - planetocentric distance of apocenter of transfer orbit, we find

 $p_* (49)$

where

$$p_{**} = \frac{p_{*} \sec \Phi}{V^{2}}, \qquad (50)$$

$$p_{**} = \max\left\{ \sqrt{\frac{p_{*}^{1} \sec^{2}\Phi - (p_{1}^{2} + p_{1}q_{1})^{2}}{2(p_{*}^{2} - p_{1}^{2} - p_{1}q_{1})^{2}}, \sqrt{p_{1}^{2} + p_{1}q_{1}} \right\}. \qquad (51)$$

Let us note that here the necessary and sufficient condition (44) of intersection of intermediate and initial orbits is replaced by necessary condition (48), therefore subsequently during the solution it is necessary to consider condition (48).

Dependence (43) and obvious inequality

DOC = 0674

PAGE 15

r14 + r3 + r14

will give

r. < r. < r.

where

where

$$r_{\bullet} = \max \{r_{1n}, l - r_2\}, r_{\bullet \bullet} = \min \{r_{1n}, l + r_2\},$$
(54)
$$r_{\bullet \bullet} > r_{\bullet}.$$
(55)

. (52)

(53)

The last inequality takes place due to relationships (34) . (35) .

Condition (53) determines two intervals, in which lie the sought values of angle θ_n :

θ ⁽¹⁾ < θ ₃ < θ ⁽²⁾ , 2π− θ ⁽²⁾ < θ ₃ <2π− θ ⁽¹⁾ ,	(56) (57)
$ \begin{array}{l} \vartheta_{3}^{(1)} = \omega_{1} + \arccos \mu_{1}, \\ \vartheta_{3}^{(2)} = \omega_{1} + \arccos \mu_{2}, \end{array} $	(58)
$h_1 = \frac{\frac{1}{r_0} - p_1^2}{p_1 q_1}, \mu_2 = \frac{\frac{1}{r_{00}} - p_1^2}{p_1 q_1},$	(59)

where obviously

 $\mu_1 > \mu_2 \quad \mu_1 < 1, \quad \mu_2 > -1.$ (60)

The developed method permits taking into calculation the limitations on variables z and U_{ss} . Let us assume there is introduced requirement

2≪Z_{max}, (61)

where z_{nn} - assigned maximum value of co-altitude of module II at the point of finish at moment $\tilde{t_p}$. They from formulas (18), (61) we obtain

$$r_{3*} = \sqrt{\frac{r_3 > r_{3*}}{r_2 + r_2^2 + 2r_2^2 \cos z_{max}}}$$
 (62)

The calculation of condition (62) is reduced now to computation of r. in dependences (53) - (59) by formula

$$r_* = \max\{r_{1*}, l-r_2, r_{3*}\}.$$
 (64)

In a particular case, when limitation (61) is a condition of direct visibility between modules at the moment of finish, distance 73. becomes equal to

$$r_{3*} = \sqrt{F + r_2^2}.$$
 (65)

Finally, limitation on velocity $U_{\rm bx}$ we take in the form

$$U_{aa} \leqslant U,$$

where constant U is assigned. If it is possible to disregard the speed of rotation of the atmosphere in comparison with value U_{me} then condition (66) is equivalent to the requirement that the entry velocity of module I not exceed some fixed value of U.

From relationships (14), (37), (66) we find $p > \tilde{p}, \quad \tilde{p} = \frac{Kp_1^2 \sec \Phi}{U}, \quad \tilde{p} > p_0,$ (67) and, consequently, condition (66) will be considered if inequality

(49) is replaced by

DKDKD

(68)

(66)

Subsequently, if we introduce one or both limitations (62), (66), we will consider that the corresponding changes in inequalities (49), (53)-(59) are produced. Let us formulate the obtained results. The problem of optimization was reduced to the search for parameter p from interval (49) and angle ϑ_3 in one of regions (56), (57) so that conditions (44), (45) would be fulfilled, and function ΔV would have the smallest value. It is convenient as the variable during optimization to select parameter p, and to consider corresponding angle ϑ_3 as the radical of equation (45) lying in region (56), (57), for which condition (44) is fulfilled.

Bepending on the concrete selection of parameters γ_1 , γ_2 four types of maneuvers should be investigated. Let us introduce value

 $j = \frac{5-2\gamma_1-\gamma_2}{2}, \quad \gamma_1 = \pm 1, \quad \gamma_2 = \pm 1,$

(69)

which takes values j = 1, 2, 3, 4 for these types. The descent trajectories for j = 1, 3 ($\gamma_2 = 1$) differ from the trajectories for j = 2, 4 ($\theta_2 = -1$) by concrete selection of the point of start in one of the two points of intersection of initial and intermediate orbits. Therefore in one case the flight path of module I will emerge on the initial megnent from the region limited by the initial orbit, and in the other case will entirely lie inside the indicated region. Further, maneuvers j = 1, 2 ($\theta_1 = 1$) differ from maneuvers j = 3, 4($\theta_3 = -1$) by the fact that at the moment of finish in the first case the orbital module leads the descent, i.e., has large polar angle. In the second case, conversely, the polar angle of the descent module is larger than the polar angle of the orbital. Let us note that with such comparison angles $\tilde{\phi}_2$, ϕ_3 should be brought to interval $|\tilde{\theta}_2-\theta_3| \leq \pi$.

Bet us present a brief description of a computer program, using the algorithm indicated above.

I. A search is conducted for the approximate desired value of parameter p by means of the total survey of interval (49), which is broken down into n equal parts. For each point of division there are found all the radicals of equation (45), which lie in regions (56), (57) and for which is fulfilled condition (44). During the computing of radicals there are taken rough constants of accuracy, which provides the quickness of operation of this program unit. From the multitude of all the sorted out values of parameter p and the radicals corresponding to them there is selected pair p, ϕ_3 , which corresponds to the smallest value of function AV. These quantities are taken as approximate optimum values.

II. There is found the exact optimum value of variable p and other parameters of the sought maneuver. Let us note that quantity AV as a function of parameter p with optimum selection of radical 0, can have discontinuities of the first type and regions of unimportance, where equation (45) does not have radicals of the required type at all. Bue to the indicated special character of the problem it is expedient to refine the optimum values of parameters until the obtaining of certain accuracy by the method of successive approximations. In this case in each approximation the interval between two values of parameter p, adjacent to the optimum value of the preceding approximation, is broken down into some preset number of pasts and calculation is performed for all the points of division. By comparison of the corresponding characteristic velocities the optimum value of parameters of the given approximation is determined. During computation of the radicals of function A there are taken constants, providing the assigned accuracy of computations.

PAGE 19

In conclusion let us elaborate on the procedure of computation of radicals of function (46) for any fixed value of parameter p. For determinacy we are limited by descent maneuvers, for which the overall time \tilde{t}_1-t_1 of the maneuver is exactly less than the period of motion along the initial orbit. In accordance with this we will compute the eccentric anomalies, entering the equalities (45)-(47), taking into account conditions

 $E_{1}+2\pi > E_{2} > E_{1}, \\E_{1}^{(1)}+2\pi > E_{1}^{(1)}+2\pi - \delta > E_{2}^{(1)} > E_{1}^{(1)}, \\$

(70)

where 6 - any assigned small quantity.

Regions (56), (57) are divided into H equal parts and function A

4

is computed successively for all the points of division.

Let us indicate one special feature of the given method. For any value of angle 2, first there is determined the geometric picture of the maneuver, i.e., mutual location of orbits, and then there are selected the specific legs of flight of the modules along orbits from the condition of fulfillment of inequalities (70). Therefore critical values of angle a, can exist, which correspond to discontinuity of function B2-B1, if switching of the leg of flight occurred on the descent orbit, and functions $E_{i}^{(1)} - E_{i}^{(1)}$. if switching occurred on the trajectory of motion of modele II. At the points of intersection one of the limiting values of the corresponding functions is equal to zero, and the amount of discontinuity is equal to 2r. It is easy to see that the radicals of function & can lie only at finite distance from the critical points. Let us select number I so that the variation of functions $E_2 - E_1, E_1^{(1)} - E_2^{(1)}$ on each segment of subdivision of intervals (56), (57) does not exceed some constant A. The variation of function on the segments containing critical points will then be not less than 2 - A. By increasing N and selecting constant A. it is always possible to achieve fulfillment of condition A<2v-A and thereby obtain criterion, which makes it possible by the magnitude of fluctuation of function A to judge whether switching was inside the considered segnent or not.

.

PAGE 21

Let us return to the description of the procedure of computation of radicals. If on the boundaries of some segment of division of the intervals (56), (57) function Δ has different signs, and its fluctuation is less than constant λ , then within this segment is found the radical of function Δ , which is computed with the aid of a series of interpolations.

Bet us elaborate more on one specific feature of the algorithm. If for some value of ϑ_3 condition (44) is disturbed, then we will say that this value is found in the region of nonexistence of function A. When during sorting out of points from intervals (56), (57) we fall in the region of nonexistance of function A, then by successive division of the given segment in half we find the boundary of the region of nonexistence. Then we investigate the region, one of the boundaries of which is the last point during sorting out of points of subdivision of intervals (56), (57), and the other - the boundary of the region of nonexistence. With the fulfillment of conditions of the presence of radical in the indicated region the radical is computed by a series of interpolations. An analogous procedure is performed when from the region of nonexistence functions A transfer to the values of angle ϑ_3 , for which condition (A4) is fulfilled.

After all the radicals of function & are found for the parameter p in question, from them is selected a radical, which the smallest 4

PAGE 22

value of function ΔV corresponds to. With this the determination of the radicals of function Δ is finished.

§3. Numerical Example

As an example of the use of the algorithm developed in §2 let us examine the problem of sending from a space vehicle, moving along elliptical orbit of a Venus satellite, probe (module I) for investigation of the upper layers of the Venus atmosphere. We will minimize the fuel consumption.

Bet us select the following elements of the initial orbit of the space vehicle:

$$a_1 = 10\,000 \ \kappa.\kappa, \ e_1 = 0.28, \ \omega_1 = 0^\circ.$$
 (71)

(73)

The height of pericenter of the orbit above the surface of Venus will be 1000 km, and the height of apocenter - 6600 km.

For numerical values of constant K and r, let us take $K^2 = 3.2423 \cdot 10^5 \ \kappa M^3/cM^2$, $r_2 = 6200 \ \kappa M$. (72) Let us assume further that the poment of finish coincides with the moment of entry, then

 $\Delta r_2 = \Delta t = \Delta i = 0.$

Bet us request that at the moment of finish values l and ψ had assigned values and the condition of direct visibility between modules was fulfilled.

Calculations were conducted on an M-20 computer. Two values of distance were selected

l=1200 KM, l=1600 KM (74)

and the interval of change of angle Φ was examined with pulse duty factor 5° from zero to 30°. The results of calculations are presented in Tables 1 and 2.

•	1	a, 8.8	• .	4	4,	•	•	AU. N.M.Cen	•,	tз-t1.	2	Usz, K.M/Ce
05050 50	333-22	9497,4 9170,7 8949,2 8394,2 7486,4 7006,1 6700,9	0,3472 0,3343 0,3488 0,2616 0,3782 0,3782	194,99 222,83 228,52 245,54 281,72 301,31 311,79	368,61 355,63 339,73 330,91 331,32 332,70 334,62	2,95 350,25 336,40 331,27 333,69 335,88 337,69	8,61 15,74 19,59 31,62 56,05 73,93 85,84	0,348 0,329 0,403 0,601 1,080 1,773 2,490	126,14 149,09 156,54 163,91 195,98 214,39 222,28	5305 3259 2787 2055 1045 645 468	36,03 34,32 20,80 2,21 14,73 19,83 22,96	8,394 8,321 8,268 8,122 7,828 7,634 7,526

toy:)(a) ks. (b) ks/s. (c) s.

DOC = 0674

PAGE 24

•	1	a. K.M	•	•	4	•	•	аU, км/сек	•,	tz-tz, cen		Unz, KM/cen
0° 5 10 15 20 25 30	3 3 3 3 1 2 2	9298,9 9321,2 9172,4 8888,3 8459,2 7696,6 7026,9	0,3333 0,3448 0,3633 0,3903 0,4242 0,4560 0,5103	219,64 214,01 212,90 216,58 222,85 249,41 270,74	372,46 350,65 333,36 319,84 310,42 309,20 310,54	361,74 340,66 325,39 315,04 310,42 312,42 315,59	12,46 10,29 11,92 16,38 24,15 41,54 59,02	0,268 0,261 0,328 0,453 0,655 1,003 1,552	156,68 167,25 167,40 166,52 162,30 180,46 197,20	3589 3491 3276 2918 2553 1580 999	56,84 52,26 40,44 23,71 1,02 15,80 24,99	8,350 8,305 8,321 8,253 8,140 7,904 7,645

Table 2. Parameters of optious seneavers for 1 = 1600 km.

Key: same as Table 1.

Let us note that for both values of distance 1 the minimum of characteristic velocity as a function of angle Φ is reached for some values of angle $\Phi \in (0^\circ, 5)$, where this velocity rapidly rises for $\Phi > 10^\circ$. It is interesting to note also that velocity U_{xx} for angles Φ , apt exceeding 10-15° for optimum maneuvers, barely depends on angle Φ and is equal to approximately 8.3 km/s.

BEFRESSCES

DOC = 0674

PAGE 25

. .

1

and server and the many h

References

Ting Lu. Optimum orbital transfer by impulses. ARS Journal,
 30, 13, 1960.
 S. N. Kirpichnikov. Buldetin of Leningrad State
 University, No. 7, 1964.

3. S. N. Kirpichnikov. Bulletin of Leningrad State University, No. 13, 1969.

end 0574

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

1

4 Comment Corpora

ORGAN	IZATION	MICROFICHE
A205	DMATC	1
A210	DMAAC	2
B344	DIA/RDS-3C	8
CO43	USAMĪIA	1
C509	BALLISTIC RES LABS	1
C510	AIR MOBILITY R&D LAB/FIO	1
C513	PICATINNY ARSENAL	1
C535	AVIATION SYS COMD	1
C591	FSTC	- 5
C619	MIA REDSTONE	1
	NISC	1
H300	USAICE (USAREUR)	1
P005	ERDA	1
P055	CIA/CRS/ADD/SD	. 1
NAVOR	DSTA (50L)	1.
NASA/	KSI	1

E053	AF/INAKA	1
E017	AF/ RDXTR-W	1
E404	AEDC	1
E408	AFWL	1
E410	ADTC	ī
E413	ESD	2
	FTD	
	CCN	1
1	ASD/FTD/NICD	3
	NIA/PHS	12
	NICD	2

MICROFICHE

ORGANIZATION

AFIT/LD

FTD-ID(RS)T-0674-78