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S.ct ipn 1

4

OPTI fl~ UTIO I OP SPACE T EAJICTORIES

S. I. Eirpicknikov .

the wor ks of this section are dedicated to the d.Te1opa.a t of

sethods of the schan ics of opti sal co~trollab1e syateas as applie d

to prpble.s of space dynsaics. The priaar y nua b.r of rocks is

connec ted with the dev.lopa .nt of analytic al aeth ods of the opt iaw.

seleciiou of transfer orbit s in a central field and with the

app ropi.at e solution of separate sodel pcobleas i

Ihe wor k of Y. A. Anto~ov and A. S. Sheyr ow, placed in the

section of brief scientific reports, is dj r ctly ad ja c.nt to the

articA.s of this section.
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OPTIRIZATI OI OP DE SCENT IAIIIJTERS OP SATELLITE NODULE PEON

UAN— PLAUT ORBIT

let us exanine a space vehicle. aovis g aloqg an elliptical orbit

i,
~ 

the gra vitational field of a spher ically syaretric planet. The

apace vehicle consists of two parts: nodule descendable t~ the pla net

(nod sAc I) and orbital nodule (nodule II)~ It ia required to

constsuct an optim a, wit h respect to fuel co~ sunption , descent

maneuver of nodule I to the planet. The maneuver is executed with the

aid of a singl, initial pulse, app lied to nodule I so that the

orbital nodule con t inues to move along the initial orbit , and the

d.scest nodule transfers to the approach trajectory to the planet.

The landin g maneuver of nod ule I is termiaated after entry into the

dense layers of the atmosphere and their passage. The planet n ay not

have an at mosphere, then the maneuver is terminated by the bard

contact of nodule I with its surface. In the latter case it is

necessar y everywhere below to formally eq uate the altitule of the

atmospher, to zero.

Let us agree by start to seas the molest of the initial pulse.

B7 fisisk for d.ternisacy we will mesa the landing of module I on the

surfa Ce of the planet. Novever, .11 the discussed stops be ing valid

— .,4 
~~~~~~~~~ ~~~~~~~
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if as the moment of finish we select som. othe r fixed moment between

entry of module I into dcase layers of the atmosphere and its

landing.

4

The initial orbi t of the space vehicle and the tra jectory of the

descent module rig ht up to its entry into the dense layer, of the

atmosphere are considered iceplerian, wher e there are considered only

elliptical orbits of descent with straight motion with respect to the

initial orbit. It is assumed that the angular range, change of

altitide and the time of motion on the segment of passage of dense

layers of the atmosphere to the finish point are know n beforehand,

and tkat t his segment is located in planetoce~ tric plane, passing

through the velocity vector of module I during its entry into the

denae layers of the atnospher~.
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

I
taking into account the Tsiolkovskiy formula, we will, minimize

the characteristic velocity of the initia l pulse, i.e., the modulus

of pulse cha nge of velocity of module I.

in this work th. for mu lated problem is i;v.stigat.d wit h

co.pljcated bounda ry conditions, lamely lj.mitatioas are im4troduced on

the amgl. of entry of th . descent modul e and on the dista qc. betw.em
• the mpdul.a at th. moment of finish. Pu rtherm ere, there is considered

the cçndition of direct visibility between tb. modules and more *

__________________________ ______________________________ • -- -•.

:, 
~~~~~~ . 

~. • ,- 
• .. 

• - - - -  -- - .
~~~~- -
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general limitation on the co—altit ude of nodule Ii at th. point of

finish, and ther. can be taken into account the limitation on the

velocjty of module I at the moment of e;bry.

Polio wing the method proposed by Ting Lu (1] it is easy to prove

that the opt imum descent orbits of the mameuvers examined here in all

cas.s~ being of practical interest, shoul d lie in the plane of the
initial orbit; therefore this investigation is limited to coplaner

formulation of the problem.

~I. Natbematical Formulation of the problem and General

Conclusions.

in the plane of motion let us intrcduce polar coordiaiates ‘

with *he origin at the center of the plaz~et so that the direction of
positjve reading of angle $ coincides with the direction of notion

alon g the initial orbit.

Aloag wit h K.pl.ri an elements of oxbjts: large se.iazis a,

eccs~~ricity e and angular distance w of pericent.r from th. pola r

asia will consider element s p. q. intrisduced by formulas

• 
a (1)j

~~~

I-dI)

~~~~~~
‘—r—— -

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~
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set us assume p1. g~. a~, .~, u~ — parameters of initial orbit,

and p~ g, a, •, ~ — parameters of iater.s t Lat e orbit of de scent

module.

Let us designate moments of tip. and polar coordinates of the

• points of start and entry of mod ule I through t1. r1, $~ and t~, r1.
1~ respectively. Obviously

• r~—r.a+ hsi, ,. (2)

whore ~aa — radius of planet, h., bslgtt of dense layers of the

atmospher.. let u.s introduce parameter Pa bj form~;la

(3)

jt is assumed that chamge of ~r p tsr radius, angular rang.

~O end duration ~t1 of the segment of flight of nodule I in den..

layers of tk. atmosphere to the point of finish are known beforehand.

Tk•r.~ore tin. t1 of finish and polar coordinates E~~, $~ ~f the point

of fimish will be —

(4)

2h1t2+14.

if by finish we moan the landing of sodule I on the surface of

the planet, then
£r—k~~, r,—r,~, (5)

if the entry if t~i. module, then

—ir .i$—o, ~ —,, i-$ S,—4 (6)

•or polar radii r 1 and r5 we have

- 1
~~

- - •- -
~

-—- -
• • ~~_e-~ • * -
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r~—(A+p 1q1 cos (*1—..1)J ’~~(p ’+pq coe (~i— W ’ , (1)
(8)

Characteristic velocity LU of iaiti~~l puls. can be ~edu.ced to
the fgrm (2] -

- (9)
Av={q?+3p?+qI_p2 — -~~~~

- —2qq1 c°s (~ —i.)—

2 +• 
— 

(iP
~

A) ’ I co$ ($z_ .
i)} • (10)

where K — Gaussian constant, multiplied by the square root of the

planet mass. Pot vain. Al ’. dlatingsiahed only by constant multiplier
fr oa LU, let us retain the name characterjstic velocity.

Thr ust angle (2½ tsris~ the initial thrust we will read iu.
• 

• 

reverse motto; of the direction from positive transversal to the

direction of psi... then se will have
~~~~ 

- 

11
- 
(,~—,) tPi +qi coi(~_w1)] ’

The s4gns of the a unstator aM doaoniaator l.a the right ski, of (111
coincj.de respectively with signs S~fløT $4  cosø~.

let us determine an’jle 0 of entr y as the angle betisen the

v.loc4ty vector of the descent nod ule and the plane of local horizon

at mosent of time t,s

~~€ 
[~~~~

-- ) . (12)

*1st. U, ned U. — the r dial aM transversal components of velocity

I 
— 

I 

- — -- -

~ 

—U ~~~~~~~ — — —

-- _______-
- - -‘
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U of sodile I respectively at the moment if its entry. Values

U,, U., U , are determined by formulas

U,—Kq sin (t,—), U. _~!5L, • (13)
(14)

let us assume at moment of time the orbital modd , has polar

• radius ra and polar negi. I.. For the 1*  valu es so Lied
III—. •11~~•I
I 

_ _ _ _ _  _ dv
3 P (p+q cos ~~ + K A~ 3 P1 (Pl +ql cos i,)’ (15)

• 
SI . 1 .  • • 

•

r3—~,!+p1q1 cos ($~—.~)J ’. 
• 

(16)
bista nca I b t ~~ .oiui.s at the moment of finish is ~usl to

i~ L1+rl_2rfscos (6s_i,)JT, • (IT)
a*d ce—altitude z of modul. li st the point of finish .iLl be

• z—arccos (18)
• 2r,l

The relationships obtained above shov that as the bas is

parameters, determining the descent maneuver, there can be obtained

P1 ~~
, *1. ~1~ 

(19)

which are depe ndent and satisf y the follovtag ccna.ctiosss

~1— p 2+pq co s (I i —.)—p I—p 1q1 cos (b,_s,1) _ O, (20)
• ~2 =p 2 ±pq cos( ~2—iv) _p ~=0. • (21)

I.—.,
dv dv

~~ 3 p (p+qco s vp +,~ Ls— 3 p~(p~+~ c.sw)’° ~~SI —. •

ly th. sought optimes descant men.rnr so will mess the munsuver, to
which corresponds the least value of characterist ic velocity LV.

let us turn to the calculation of additional limitations. Let us

—• —~~~ 
-• - 

~~~~ 
•1 —--——- - -. --—-•---— - --• — -- ---- •----••----••--

— -•—- •. - --•-~~~~~~~~ --- ---- . - —~~~—-  - •—•—
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examine first only the limitations on var~sblq. I aM ~ Angle 0

of entry should lie in some preset interval:

(23)

Distance I b*n.sn modules at the mome;t of finish should not exceed

the f~lzed maximum value of I:
1<L. - (24)

ly introducing additional real variables a, ~~, cosditioao (23) ,

(2*) let us rewrite so:
(25)
(26)

Thus, with conditions (23), (2*) the problem is mathematically

reduced to the minimization of function (10) in the total of real

varj~~les
F, g. •1’ ~~~ •, &, ~, (27)

which satisf y conditions (20) — (22) • (25) , (26) . As is known, the

derivatives with respect to all variables (27) from the La grange

funct ion should be equal to zero

L V+)~ ~~~ - (28)

where h 1, Aa. •.., X~ - ua~~owa coastamt sultipliers.

Ana lysis of the equation of extre m ua•, cooresponding to variable

~~, shpws that either this variable is equal to laro and condition

I —L is fulfille d, or the sought solution corresponds to the relati ve

minis,, of function LV La the auxiliary problem, in whick conditions

(2*) , (26) are dropped. Therefore it i. pqssibl . to recommend such a

~~~~~ -~~~~~~~~
-
~-•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •—--- - - ••-—-—-••-—•-•—• •—••——— --••— -—•— •--•—•—* — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~
—-•——--•—•-—•. --- •-- .•-~•
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sequence off investigation.

1. The problem is examined without taking into accomi t

limitations (23)—(26). Using the results of ( 2 ]  and the method,

similar to that developed in article (3), it is easy to show that

single steady—state solutions in this case are the solutions obtained

in (2.] durimg the investigation of energe*ically optiani single—pulse

flight between elliptical initial and circular final orbits. The

indicated solutions are characterized by apsis tangential connections

of intermediate trajectories with initial orbit and circle of radius

r5. The trajectory, exiting the apocenter of the initial orbit ,

always requires less fuel consumption iz~ comparison with the

trajectory exiting the pericenter. For both steady—state solutions

there is fulfilled equality
(1~—0. (29)

In general case point (29) lies outsid e the int erval (23) . and it is

necessary to change to the search for all relative minimums of

functjas ~V, having kept only conditions (20) — (22) and having fixed

angle 0
— ~~,u.h,• 

(30)

The analysis and solution of this problem wit h any fixed anglo 0 are

comt a~nod in (3].

jf among all the solutions obtained at this stage there are 

I ~~~~~~~~~~~~~~~~~~~~~ -
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those, for which inequality (24) is satisfied, then by com parison of

the characteristic velocities corresponding to them the sought

solution is found.- In the opposite case, w hen condition (3*) is

dist uzbed for all solutions, the sought optimu, maneuver is
4

characterized by equality

I —L, 
• 
(31)

and it is necessary to change to point 2.

2. A problem is examined ii which conditions (20)— (22), (23) are

• kept, and inequality (2*) is replaced by equality (31). For the

nunarj.cal investigation there can be used the mqthod developed in the

b Uoying paragraph for the det r;inatiqr~ of thq optiaiza descent

maneuver at prescribed values of I and 0. Interval (4)~~ OIIM I is

broken down with the sequence of points into a row of equal parts and

for each point there is calculated the optimum maneuver. Then by

comparison of functions LV there are fqui d the approximate values of

angle 0 and the parameters of the sought optimum maneuver. If the

• obtained accuracy is insufficient, there can be conducted local

refinement of these approximate values by one of the methods of

successive approximations.

Let us assume now, besides conditiqts (20) - (24) , limi tations are

i*troduced on variables z and U.. Ibe FØblem of optimization of

function LV. j s t  as in point 2, doss met lead itself to analytical

_~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~ - ---- - -~~~ — - - -  -
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investigation. For its numerical soluti~~ there can he is.d the

method developed in the following paragraph for the construction of

optimum desce*t maneuver of module I with fixed paran.ters I aM 0,

4 vkich makes it possible to consider the indicated limitations on

variables z and U~ . stersiuation of the souØt solution is

performed similar to that discussed above in point 2. the distinction

is oMy that hare into a to. of parts are broken down two intervals

(4.~., 0.4 [a *(1—e2) —r,. L3, and the calculation is performed for all

pairs of points, where one point is taken fro. the interval of change

of angle 0, aM the other — from the interval of allowable values of

distance 1. th. indicated approach is especially suitable when high

accuracy is not required, and it is important to obtain a pict ure of

the change of parameters of optimu m aan.users depending oe the

variations of values I and 0.

•2. Eathematical Algorithm of Constrnction of Optimum Descent

Eaaesv.r Pith Fixed Ysl ss of I and II)

Below is presented a description of the method of soLution of

the eUmiaed pr oblem in the assumption that there are as$1~gned angle
0 ef metr y of descent module and distanos I ~~~vsme the modu les at

the a~semt of fini sh. Iat h.matica lly it is requited to fin d the

Li

-t — - - -v
__ 

—- --— - -- —----•-- -.— - - —---- -
~~ 

— - -
~~~ 

— - —
~~ 

- — -~~ 

- - ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ 

• 

~ - • 
-
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smallest value of function (10) in the total -~f variables (19) , wh ich

satisfy conditions (12) • ( 17) , (20) — (22). where parameters I aM 0

are cpn.idered known. The given met)~od makes it possible to consider

additj onally the limitations on variables z a-z~* U.1.
4

We wi ll consider that the initial orbit is not circular, wher e

there are fu~.filled inMuslities

0<q1<p1. (3~)
1~~)

r~ <I +r 2, (34)

sI.>’—,, (35)

uh~~e r.—a1( 1—e,) and rs. ..a1(1+s1) — the £1stanc.s of the pericenter

and apocenter respectively of the initial orbitd Conditioq (33)

signifies that the initial crbit is located entirely outside the

dense layers of the atmosphere.

jf r1 (I—r 3 or r1 >I +,2, them obviously the descent maneuvers

with given distance I .ze piasrally impossible. Cases
q2 —‘0,

(36)

will not be examin ed kegs, since for ea~~ of tbqn the pr blem in

question loses its ext remal character and is transformed into

determinate.

Ut us change to discussion of the method. Pros equa L ities (12) ,

— —•••-— - — -,——— -—“ ~-
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(21) we obta*~
• q= [~~~~’!~_2p~+,2}~~, (37)

tg(82—.)~ , 
‘ (38)

where the signs of the numerator and denominator in the last formula

coincide with the signs of ain($2—~.) and cos($1—w) respectively.

lelationship (13) makes it pemsiblq to find

$2—I8I~~A$_-T~ STC COS 
r ?

.:~~ ‘ 7i ±1, (39)

and iron equaLity (20) us

• sin (ê~—s~) — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

cos (& ) = 
— b1b3_T~b~. lTbj + b~—b~! (40)

where
b1 —pq cos (.—.) —p 1q 1, b2=pqs ln (w—w1) , 1j (41)

subsequently by symbols q. •~. 0,. . we iMl ~~~u the functions

of parameters p, e~, determined by relatipnships (37)—(*1). With such

elimination of var iables the remaining um~knowns p, •~ sho~ild satisfy
the fpUo.ing ineqanlttisa*

O< q<p , (42)

Ir i±r 3—P IC2r 3r2, . 
- 

(43)
(44)

I.e to d.pssdense p 2) . L.a., tbs ~~~~.peies slant .tlipttctty
of tr insfer orbit , we reduce condition (22) to the form

• 6-0,

where
S

A—k £t+ ~r fE~—E~—a (sin E,—sin £~fl — -

I • -_~T Ll —E?~—.~ (sin E~ —sIn ~~% (41)

— —•- - _w e- - —- — - * 
_

*- -•--‘_• _ _
- ~— — —

- - - - -——~•—— __ ___
~•i__~—-—~— - ~~~~~ --~~~ •• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
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where E~, I~ and EI’~, El1~~ useatric amqmalies of modules I and II at

moments t2, t, respectively. The eccentric anomalies are easily
4

comput ed by k*own formulas of elliptic motion . yim. t 5—t 1 of motion

beforó entry is computed an:
-I

12 11 — ~g —f E2—Ei—-.(sla E,—sin E,)I . . 
- (47)

- : 
Let us døriv. now some inequalities and entiastiess, which are

used duti g  numerical solution. First of all from conditiGn (*2) and
depende nce

r1 > sIN, (48)

where ‘. — p&aastocentric distance of apocenter of transfer orbit,
we f Lad

- p•<p~~p .. (49)

where

~5fl)

p..—max J/~~~~~~’~1!!f , Vp l+p,q, }. (51)

Let us note that here the necessary and sufficient condition (4*) of

intersection of intermediate and initial orbits is replaced by

necessary condition (*8). therefore subasqusatly during tke solution

it is n cessary to consider cosditiom (4$).

Iep.ndemce (*3) and obvious inequality

_ _ _ _ _ _ _ _ _ _ _  i:::i T11i
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- (52)

- will qive

r s.l
~
:r3~~r...! (53)

where
.4 r•—max fr,,., I—r ,~, r,,—mln fr ~,. ~~~~ (54)

)
• Th. last inequality takan plea. Me to ssdmius hLps (3* • (3$).

Condition (53) d.termines two interv als, iq which lie the sought
values of an,le 0 3

‘t~~e.<.r, (56)
2— 6 ~<~.r2:—o~, - (57)where
b~
*)
~~.,+arccosp,,i

• 
~~‘—‘.~+arccos ~~~~~ I •

• (59)

where obviously

P,>Pa. p,<l, i~>—1. (00~

• the developed metho d p.ra its taki ng ~nto calculation the
• 

- limitations oa var iables z and U~. Let us sume there is introduced
requirement

($1)

where 1 — ~~~tqned maximum value of ce -altitud, of modmie II at
the ~~int of finish at moment ,. the; dx.. fereslas (1$), ($1) us
obtain

- r5>r,,  (62)
r..-.VP+~ +22ICOsz.N..

-
•  .- - - - •-• -  _ -_-_ - - - A
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Tke calculation of condition (62) is redu ced ~ow to computation of

r. in dependences (53) — (59) by formu la

r,—max~r,~, ‘~~
;2’ r5,}. (64)

In a particular case, whe n limitation (624 is a condition of direct

visibility b tween modules at the moment of finish. distam~cs r3
• becomes eq ua l to

r~.= J7P+ 3. (65)

Pinally, limitation on velocity Urnj we tabs in the Lou

(66)

where constant U is assigned. If it is ~o2sible to disrega rd the

speed of rotation of the atmos pher e in comparison wit h value U.,,,

then Conditioi (66) is equivalent to the requirement that the entry

velocity of nod ule I not exceed some fixed value of U.

From relationships (1*), (31) , (66) we find

~~~~~ 
~_ Kp~.ec., ;>,.. ($7)

and , con.sque;tly, cosdities (16) will he csssiMred if L~sipsslLty

(4~~ J s replaced by
(68)

5uhseque~tly. if we introduce one or both limitations (62),

(66) , us will consider that the corre.p~~din g cbanges in inequalities

449), (S3)—(59) are produced.

— - -

— — -- —— - — • —•— -•— —___•___•_•_ __•_.••••____•_•;.• ~~ i_ — — _ 
* ____~4 •,_g j4~~ • . ~~~ • -~~ -
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Let us formul ate the obtained results. The problem oL

optimjzation was reduced to the search for parameter p from interval

(*9) and aagl . *3 im one of regions (56), L57è so that conditions

(*4) • (*5~ would be fulfilled, and functi ten Al’ vesid have the

saaliist value. It is convenient as the variabl, during optimization

to select parameter p. and to consider correspo$ing angle’ •a as the

radical of equation (45) lying in region (56), (57) • for w hich

condition (*4) is fulfilled.

lepeading on the concrete selection of parameters y~~ -~~ four

types of manesvecs boeld be iavsst.tqa tM. Let es imtrolea• eslan
5—271—-•T-

2 
- -

‘ Ti~~±I, 1s ”±l, t69)

which takes valess j ~ 1, 2, 3. 4 toe t e  typ . The descent

trajsátories for j  = 1, 3 (y,=1) differ from the trajectories for j a

2, 4 (*~~a -i) by concrete selection of the point of start in one of

the two points of intersection of initial and intermediate orbits.

Tbere~ore in one case the flight path of module I viii emerge on the

initial asg.e;t from the regio n limited b.y the init ia l orbit , and in

the other case will entirely lie inside the indicated region.

Further, m aneuvers 3 — 1, 2 (4~ — 1) difiqr from maneuvers j a 3 , *
(S~ ~ 1) by the fact t hat at the monent of ti;iah in the first case

the orbital module leads the descent, i.e., has large polar angle. I.

-~~ .- — — - -
~~~~~ -1 

-•• - •-~~.•- -—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the second case, conversely, the polar angle of the descent module is

larg tha i the polar aegis nd the s~bital. Let us note tkat with

snob ~~rXi5 engles ~, •, abes id be brought to interval

tOr 4aI~~~

let us pr esent a brief description of a computer pro g ram, using

the algorith m indicated abo ve.

I. A search is conducted for the appr oximate desired value of

parameter p b~ mea ns of the total survey of interval (*9),. which is

broken dow n i;to n equal parts . For eacb point of division there are

found all the radicals of equation (45) • which lie in regions (56).

(57) and for which is fulfilled condition (4*). During the computing

of radicals there are taken rough constants of accuracy, which

provides the quickness of operation of this program unit. Prom the

multitude of all the soçted out values of parameter p and the

radictls correspon~ing to them there is selected pair p. 6’,, which

corresponds to the smallest value of function AE. These qeantities

are taken as approximate optimum values.

XX. The re is found the exact optim value of var iab 1~e p and

other parameters of the sought maneuve r . Let us note that quantity £~

as a t unction of parameter p with optim s~lSctio* of radical $~ can

have diacomti~uiti•s of the first type and regiens of *aimportancs,

___________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where equation (*5) does not hav, radicals of the required type at

all. Bue to the indicated special character of the problem it is

expedient to refin, the optimum values of parameters until the

obtaining of certain accuracy by the method of successive

approximations. In this cas. in each approximation the ineerva l

between two values of paramete r p. adjac ent to the optimu m value of

the preceding appr oximation , is broken down into some prese t number

of pasts and calcu lation is perf ormed for  all the points of division.

By co.pariaon of the corresponding characterist ic velocities the

optimum value of parameters of the given approximation is determined.

During computation of the radicals of functioq A there are taken

constants, providi ng the assigned accuracy of Computations.

in conclusion let us elaborate on the procedure of computation
of radicals of function (*6) for any fixed value of parameter p. For I -

det.r.inacy us are limited by descent maneuvers, for vkicir the

overall time ~—t. of the maneuver is exactly less than the period of

motion along the initial orbit. In accordance with this we will

compute t~. eccentric anomalies , entering the equalities (*5)— (*7),

taking into accoast ce~ditieas
E~ +2~>E,>E,

(70)
where 6 - any assigned .. .ll genstity.

legions (56), (57) are divided into I equal parts and function a

- -~~~~~~~-~ S - 
-

-—•-

~

--—- —----~~~ - —-- -~~-— -~~~~ - ~~~—-•- ‘- ~~~~~~~~~~ --~~~~~—-—~~~-S -- -~~~~~~~~ -~~~~~~~~~~~~~~ —-- —-—~~--— — - - ---~~- -•~~~~ -- S —rn
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is compute d successively f or all the poin ts of division.

Let as indicate one special feature of the given method . For any

va lue of angle 1~ first there is determ ined the geometric picture of

the maneuver, i.e., mutual location of orbits, and then tkere are

selected the specific legs of flight of the nodules along orbits from

the cpndition of fulfillment of inequalities (Q). Therefore critical

values of angle •~ can exist, which correspond to discontinuity of

functjon ~~~~~ if switching of the leg •f flight occurted~ on the

descent orbit, and functions E~ — Et”. if switching occurred on the

traj ectory of notion of mod ule II. At the poi*ts of intersection one

of the limiting values of the corresponding functions is equal to

zero, and the amount of discontinuity is equal to 2w. It is easy to

see that the r adicals of function a can lie only at finite distance

from the critical points. Let ss select member I so that the

variation of functions E3—E,. 4 ’) —E~’ o~ each segment of subdivision

of intervals (56) • (57) does sot emceed some cozstant A. ~he

variation of function on the segments containing critical points will

than be not less than 2,1. By increasing U a;d selecting constant A.

it is alwa ys possible to achieve f0lfillment of condition 1<2.—A an4

thereb y obtain criteriom, which makes it possible by the magnitude of

fluctuat ion of function a to jud ge whethe r switching was inside the

considered segment or not.

- 
-

~~~~
- -

L — -~~~~~ —- - ~~~~~~~~~~ ________
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Let us return to the description of the precedere of computation

of radicals. If on the boundaries of some segment Of division of the

intervals (56), (5 7) fupcticn £ has diffsrent signs, and its

fluctuation is lens than constant A, tb~n vjtbi~ this segment is4
found the radical of f unction A, which is compuLted with the aid of a

series of interpolations.

let us elaborate more on one specific feature of the algorithm.

If for some value of •~ condition (411) is disturbed, then we will say

that this value is found in the region of nonexistence of funct ion a.
When dur in g sortin g out of points from intervals (56) • (57 ) we fall

in the region of nonezistance of function A, then by successive

divisjon of the given segment in half we find the bonndarj of the

regio. of nonexistence. Then we investigate the region, one of the
boundaries of which is the last point during sorting out of points of

subdivisio n of intervals (56) , (57) ,  and the other — the boundary of
the region of none xistence. With the fulfillment of conditions of the

presence of radica l in the indicated regi n the radical is cômputed

by a series of interpolatiops. An analogous procedure is per ormed

when from the region of nonexistence functions a transfer to the

values of angle $~, for which condition ~**) is fulfilled.-

After all the radicals of function £ are found for the parame ter

p in question, fro , the. is selected a radical, which the smallest

-y

- - - -
~~~~~ 
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value of function AT corresponds to. With this the determination of

the radicals of fnnctioe A is finished.

4
§3. Isaerica l Exam ple

S.

As an exampl. of the use of the algorithm developed in §2 let us

examine the problem of sending from a space vehicle, moviqg along

ellipt ical orbit of a Venus satellite, probe (.odule I) for

investigation of the upper layers of the Venus -at mosphere. We will

•inimize the fuel consumption.

let us select the following eleneats of the initial orbit .1 the

space vehicle:
.~—~oc~o ic* e1—0,28, .~—0°. (71)

The height of peri center of the orbit abose the surface of Venus will

be 1000 km , an d the height of apocenter — 6600 km.

For numerical values of constant I and r, let tak

K”-3.2423 10’ ,c.wI/c u?
r~-’6200 ..~~. (72)

Let us ass ume f urt hen t h t  the ~~_ t  of f inish cetnciles with the

moment of entry, the.
(73)

S

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
- _ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Bet us request that at the moment of finish vales. aal~ (V bed
assigned values and the condition of direct visibility ~~~~~~
modulas was fulfilled.

4

Calculations were conducted on an 1-20 compu ter. Two values of
distanc , were selected

1— 1200 x.~, 1—l&X) x~ (74)

and the interval of obang e of angle • usa examined with pulse doty

fa~~~~ 50 from zero to 300. The results o~ calculations are presented

in Tables 1 and ~~,

___ ______ ______ ______ ______ ______ ______ ________ ______ ______ 
b
’)

___ - -- I U)  
~~~~

~~~~~~~~ .LA ~~~~~ ‘ - .....~.J ~ . —~ . 
~~~~

‘. 

- 

~ u.1, ~

O~ 3 IQT.4 0,387’ i.ÔO 368’81 2’95 8~ 1 0,348 3 2614 5305 36 03 8,394
5 3 9170,7 03343 222,83 355,63 350.25 15,74 0,329 149,09 3259 34,32 8,321

10 3 5949,2 0,3185 2*52 331)73 336,40 19,59 0,403 156.54 2787 20,80 8,268
-
~~~ IS I 8304,2 0,3616 21154 330,01 331,27 31,62 0,601 163,91 2055 2,21 8,1227 4 1,72 331,32 333,49 55,03 1,Q80 195.98 1045 14,73 1.828

- 301,70 301,88 73,88 1,773 214:10 685 19,83 1,634- 1,70 304,88 337~~ 81,54 Z410 222,28 468 22,96 7,528

--I $.~~~~~~~~~. ~~ .ptt.M n wusa fec ~ - 1200 km.

~~y: ~(a) be. (b) km ’*. (C) a.

_ _ _ _ _  

~~~~~~~~~~~~~~

~ ~~~~~~~~~~~~ 
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era —

~~L~J~~’ 
• 1  .~ 

_ _ _  

8$ . Jw.1ELI c

4 0° 3 9298,9 0,3333 2I964 372~46 36I~74 I2~46 0,268 I56 68 3589 56~’84 8,350
5 3 9321,2 0.3448 214,01 350,65 340,66 10,29 ~,26I 167,25 3491 52,26 8,355

JO 3 9172,4 0,3633 212,90 333,36 325,39 11,92 0,328 167,40 3216 40,44 8,321
15 3 8888 3 0,3903 216,58 319,84 315,04 16,38 0,453 166,52 2918 23,71 8,253
20 I 8459 2 0,4242 222,85 310,42 310,42 24,15 0,655 162,30 2553 1,02 8,140
35 2 YOIS,1 0,4580 31041 381.18 313,42 41,54 1,080 110,46 1580 15,80 1,804
30 2 7806,9 0510$ 210,74 310,54 315,88 ~S,02 552 $97.20 990 24,99 7 64$

Table 3. Paxaustsrs of .pti ... . e n v s Soc I - 1~00 km.~ -.

- Key: sane as Table 1.

Let us note that for both values of distance I the minimum of

characterist ic velocity as a function of anglo 0 is retoked for

some valets of an gle •€(0~’,S), wh~~e th is velocity rapidly rises for

• )1~~ . It is int eresting to note also that velocity U for angles

0, m t  ~~o.Minq 10-15° for optimum mane u vers , barely depends on

-
~ aaqle • and is egmel to approximately 8.3 km/s. 

-

b -  ‘~~~~~~ 

_______________ 
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DISTRIB1J~ION LIST -

DISTRIBIIIICN DIRECT TO RECIPIENT

ORGANIZATION MICROFIQIE ORGANIZATION MIC&OFICRE
4

A205 ~4ATC 1 E053 AF/INAKA 1
*210 iM**~ 2 EOJ. 7 £71 RDXTR’...W 1B3IeIe DIA/RDS—3C 8 E404 £EDC 1cole3 ~~AMIIA I £408 AFWL 1
C509 BAlLISTIC R~~ LABS 1 E4 10 ADTC 1C510 AIR MOBILITY R&D 1 £413 ESD 2LAB/PlO FTD
C513 PICATINNY A1~ENAL 1 CCN 1C535 AVIATION SYS COMD 1 ASD/FTD/NICD 3

NIA /PUS 1C59]. ThTC 5 N ICD 2
C619 IsfiA REDSTONE 1
0008 NISC 1 -

H 300 1.~ AI CE ( USAREUR ) 1
P005 ERDA 1
P055 CIA/C1~/ADD/SD 1

- - NAVORDSTA (5oL) 1

NASA/KSI 1

AFIT/LD 1 
-

- -
-
,, FTD-.ID(RS)T—0674-78
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