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0674
Section 1

OPTINJZATION OF SPACE TBAJECTORIES

S« ¥. Kirpichnikov.

the works of this section are dedicated to the development of
sethods of the mechanics of optimal controllable systems as applied
to probleas of space dynamics. The primary number of works is
connected with the development of analytical aethods of the optimuas
selecsion of transfer orbits in a central field and with the

approximate solution of separate model probleamsd

She work of V. A. Antopov and A. S. Shayrov, placed in the

section of brief scientific reports, is djrectly adjacent to the

articles of this section.
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OPTINRJZATION OF DESCENT NANEBUVERS OF SATELLITE .MODULE PFROM
WEAR-PLANET OBRBIT

fet us examine a space vehicle, moviag along am elliptical orbit
in the gravitational field of a spherically syssetric plamnet. The
space vehicle coasists of tvo parts: module descendable to the planet
(nodubke I) amd orbital module (module II)< It is regquired to
constsuct an optisum, vwith respect to fuel copsumption, descent
maneuver of module I to the planet. The maneuver is executed with the
aid of a single initjal pulse, applied to module I so that the
orbital module continues to move along the initial orbit, and the
desceat module transfers to the approach trajectory to the planet.
The landing maneuver of module I is terminated after entry into the
dense layers of the atmosphere and their passage. The planet may not
have an atmosphere, then the maneuver is terminated by the hard
contact of module 1 with its surface. In the latter case it is
necessary everyvhere belov to formally equate the altitude of the

atmosphere to zero.

Let us agree by start to sean the moment of the initial pulse.
BY fianish for determinacy ve vwill mean the landing of sodule I omn the
surface of the planet. However, all the discussed stops being valid

b e i LS S i



if as the moment of finish ve select some other fixed moment betvween

entry of module I into dense layers of the atmosphere and its

landimg.

The initial orbit of the space vehicle and the trajectory of the
desceat module right up to its entry into the dense layers of the
atmosphere are considered Keplerian, wvhere there are coasidered omly
elliptical orbits of descent with straight motion with respect to the
initial orbit. It is assumed that the angular range, change of
altitude and the timse of motion on the segment of passage of dense
layers of the atmosphere to the finish point are known beforehand,
and that this segment is located in planetocemtric plane, passing
through the velocity vector of module I during its entry into the

dense layers of the atamosphere.

Paking into account the Tsiolkovskiy formula, we vill minimize
the characteristic velocity of the initial pulse, i.e., the modulus

of pulse change of velocity of module I.

Jn this work the forsulated problem is ipvestigated with
complicated boundary conditions. Namely ljimitations are introduced on
the angle of entry of the descent module and om the distagce between

the mpdules at the moment of finish. Purthermore, there is coasidered

the cgndition of direct visibility betveea the smodules and more

. “i1'1|“
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geperal limitation on the co-altitude of module II at the point of
finish, and there can be taken into account the limitatiomn on the
velocity of module I at the moment of eatry.

¥ollowing the method proposed by Ting Lu [1] it is easy to prove
that the optimum descent orbits of the mameuvers examined here in all
cases, being of practical iaterest, should lie in the plame of the
initial orbit; therefore this investigation is limited to coplaner
forauldation of the probles.

§1. Bathematical Forsulation of the problem and General

Conclusioas.

En the plame of motion let us introduce polar coordinates 7. ©
vith she origin at the center of the planet so that the diirection of
positive reading of angle ® coincides with the direction of motion
along the initial orbit.

Aloag with Keplerian elements of orbjits: large semiaxis a,
ecceatricity e and angular distamce u of pericenter from the polar

azis mwe vill consider elements p, q. intreduced by formulas

P-V‘-n':. l-m. - )
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Set us assume pP,, 9,0 a3, ©3¢ ®; - parameters of imitial orbit,
and p¢ g, a2, ©, w - parameters of intersediate orbit of descent

module.

Let us designate moments of time and polar coordinates of the
points of start ard entry of module I through tg, r;, 8, and t,, ry,
3, respectively. Obviously

ry=raathare (2)
vhere ’mx - radius of planet, /.., - helght of dense layers of the
atmsosphere. let us introduce parameter p; Ly foraula
pr= = 3

It is assumed that chamge of Ar pelar radius, angular range
A9 amd duratioa A’ of the segment of flight of module I in dense
layers of the atmosphere to the point of finish are known beforehand.
Therefore time t, of finish and polar coordinates r,, 8, of the poiat
of fianish will be ;””_A"
Bymy A0, @
ty=1y+ At

Jf by finish ve mean the landing of module I on the surface of
the pldaaet, then %

AreRp T3=lan : (O
if the entry of this module, then
Mmbredd=0, ry=ry dy=by ety ©

@or polar radii r, and r; we have

PRI

s
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k ri=(pl+pq) cos (O —e)| ' =[p*+-pg cos (O —e)]~,  (7)
F ry=p;=( p*+pg cos (0,—w)]. ®
Characteristic velocity AU of iamitial pulse can be reduced to
the form (2 3
i A =KWV, ‘ ©
AV={qf+3p?+ @—p— -3;’1- —2¢4: cos (w;—w)—
4 1
_ﬂb%tﬂl.m(o,_.,)}", (10)

wvhere K - Gaussian constant, multiplied by the square root of the
Planet aass. Por valee AV, distinguished only by comstant multiplier

from AU, let as retain the mame characterjstic welocity.

Thrust angle ¢: darimg the initial thrust ve vwill read inm
reverse motion of the direction from positive transversal to the

direction of pulse, thea we will have

= 2 lg sin (3—-w)—¢; sin (3 —w))} .
’ ® O~ P intaicos Or—ay)] an

The sjgns of the suserator sad deacsisator in the right side of (V)

coincjde respectively with sigas sin®: agd cos®, - _

Bet us deteraine angle @ of eatry as the angle between the
velocjty vector of the descent module and the plane of local horizon
at soment of time tg:

,‘.,__‘_g;_-._.ui’?,::l, ocfog). @

shere U, aad U; - the radial and transversal components of velocity
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U. of modsle I respectively at the moment of its entry. Values
U, Uo.vU.. are determined by forsulas

U,=Kqsin(0,—v), Us=22, (3)
Uua=KV2R+E—P. e

Bet us assume at moment of time ?.', the orbital module has polar

radius r; and polar angle 85. Por the last values we find

..— L g

§,—e,
dv dv
S pP(p+q cosv)’+KM =o .S. A (pr+qicosvp s ua

1‘ ry=|pl+p1g) cos (9,—e))]~". - (16)
_ Pistance ! between modules at the mosent of finish is egual to

: - -~ RN |
l=|r}+r}—2ryr, cos (8, —8,)]7, Y4
and co-altitude z of msodaule II at the poiat of fiaish will be

-

Z=31CcCos -ﬁ:~—'l . (18)
2yl
fhe relationships obtained above show that as the basis

parameters, deteraining the descent maneuwer, there can be obtained

PP ———

Pq 8, 8 0 0 (19)
f z which are dependeat aad satisfy the following coanectioas:
? $1=P"+pq cos (h,—©)—pi—p,q, cos (), —w,) =0,  (20)

¢== 9%+ pg cos (},—w)—pi =0, : (1)
O—w L
e " R e e ——
s 'S. P+ cosy s .5. A0 (22

t By the sought optisws desceat seneuver wo will seaa the msaaewver, to

vhich corresponds the least value of characteristic velocity AV

Bet us turn to the calculation of additional limitations. lLet us
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examine first only the liaitatioms oa varjables ! and ©. aAmgle &
of enéry should lie in some preset interval: 4
onin(q'("’-u- (23)

Distamce ! between modules at the momept of finish should not exceed

the fixed maximum value of ki:
I<L. : (24)

By introducing additional real variables a, §, conditioms (23),
(24) let us revrite sos '

Fi=(Pain—1) (V-0 ) —a?=0, (25)
gs=I1—L+p*=0. (26)

Thus, with conditioms (23), (28) tbe problem is mathematically
reduced to the minimization of fuanction (10) in the total of real
variables

P' qo olv 02' ‘b o, a, p' ’ (27)
which satisfy conditioas (20)- (22), (25), (26) . As is known, the
derivatives with respect to all variables (27) froa the Lagrange
functjon should be equal to sero

ke
'AV+‘21N% : 28)
vhere A;, Az¢ ccec¢ As - unknowa coastant sultipliers.

Analysis of the eguation of extremum, cooresponding to variable

B T T—

pe shows 'that either this variable is equal to zero and condition

I=L 48 fulfilled, or the sought solution corresgonds to the relative
sinises of functiom AV 4ia the auxiliary probles, in which conditionms
(28), (26) are dropped. Therefore it is possible to recoamend such a

e o s R s
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seguence off investigation.

3. The problem is examined without taking into account
limitations (23)-(26). Using the results of [2] and the method,
similar to that developed in article [3], it is easy to show that
single steady-state solutions in this case are the solutions obtained
in [2] during the investigation of energegically optimuma single-pulse
flight between elliptical initial and circular final orbits. The
indicated solutions are characterized by apsis tangential connections
of insermediate trajectories with injtial orbit and circle of radius
rz. The trajectory, exiting the apocenter of the initial orbit,
always requires less fuel consumption ip comparison with the
trajectory exiting the pericenter. For both steady-state solutions
there is fulfilled equality

»=0. (29)
In gemeral case point (29) lies outside the interval (23), and it is
necessary to change to the search for all relative minimums of
functjom AV, baviag kept only conditions (20)~-(22) and having fixed

ugl. @:

- (30)

The amalysis and solution of this problem with any fixed angle ® are

contajned in [3].

JIf among all the solutions obtained at this stage there are
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those, for which ineguality (24) is satisfied, then by comparison of
the characteristic velocities correspondiag to thea the sought
solutjon is found. In the opposite case, when condition (24) is
distusbed for all solutions, the sought optimum maneuver is
characterized by equality

l=L, R )

and it is necqssdty to change to point 2.

2. A problem is examined in vwhich comaditioms (20)-(22), (23) are
kept, and inequality (24) is replaced by equality (31). Por the
muRerjcal investigation there can be used the method developed in the
following paragraph for the deterainatign of the optimua descent
maneuver at prescribed values of !/ and 0. Iaterval (Dun Duusl is
brokea dovn with the sequence of points iato a row of equal parts and
for each point there is calculated the optimsua saneuver. Then by
coaparison of functions AV there are found the approximate values of
angle ® and the parameters of the sougbt optimum maneuver. If the
obtained accuracy is insufficient, there can be conducted local
refinesent of these approxisate values by one of the methods of

successive approxisatioas.

Set us assume nov, besides conditions (20)-(24), limitations are
introduced on variables z and U, @2he geblea of optimization of
fuactjon AV, just as in point 2, does met lend itself to anmalytical
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investigation. Por its numerical solution there canm be used the
;f sethod developed in the following paragraph for the comastruction of
optiasua descent maneuver of sodule I with fixed parameters [ asd O,

whichk makes it possible to consider the indicated lisitations on

variables z and Um Detersination of the sought solution is

R TR TP e

performed similar to that discussed above in point 2. The distinction
. is oady that here iato & row of parts are broken dovn tvo intervals
[@min, Pmas). [a.(l—e.)-—r:. L), amd the calculation is performed for all
pairs of points, wvhere ome point is taken from the interval of change
of angle O, and the other - from the interval of allovable values of
distance [. The imdicated approach is especially suitable when high
accuracy is not required, and it is important to obtain a picture of

the change of parameters of optimum maneuvers depending om the

variations of valses ( apd O.

s e e e

§2. Bathematical Algoritha of Construction of Optimum Descent

Baneuver Vith Pixed Valwes of [ apd

Belov is presented a description of the method of solution of
the eXxamiaed probles ia the assumption that there are assigned angle
® of eatry of descent module and distance ! Detweea the modules at
the mpaent of finish. Bathesatically it is required to fiad the
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ssallest value of function (10) inm the total of variables (19), which
satisfy conditions (12), (17), (20)-(22), where parameters ! apd @
are considered known. The given method sakes it possible to comsider

additjonally the lisitations on variables z and U,

We will consider that the initial orbit is not circular, where
there are fulfilled inegualities

0< e <P - (32)

rll|>r2' (33)
r]n<l+;2' (34)
r>i—ry 35)

vhere ra=ai(l—e) and ru=ai(l+e) - the distances of the pericenter
and apocenter respectively cf the initial orbits Conditionm (33)
signifies that the initial crbit is located entirely outside the

dense layers of the atamosphere.

3t "n<l-;z or ru>l+;:. thea obviousiy the descent maneauvers

with given distance ! are gemerally ispossible. Cases
¢:1=0,

ra=l—r, (36)
rll"“‘";a
will mot be examined here, siace for each of thea the problea in

questjon loses its extremal character and is transformed inmto

determinate.

Bet us change to discussion of the method. Proa egqualities (12),

p—— *‘L

i s b it i i tart 8 S kb el

el ol St b
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{21) me obtais
®
g=[H522 _optt )", @D ’
tg (03—-0) - %_ = ) (”) :
vhere the signs of the numerator and denosinator in the last foraula

coincide with the signs of sin(d,-e¢) and cos(8;-w) respectively. |

felationship (13) sakes it possible to fiad

°2-"—A°—1| &7rC COs .-’5:—'_:;-_2_ ’ 11- i 1' (39)

2y,
and from equality (20) we have =

sin (0, —w) = —tebeiub VIHIEH

= —.b. Vb3 —03
cos (8, —w;) = il 7)»”-;lo§'+b" % (40)

8 5 : Ta=x1,
vhere
b,=pg cos(e—w,)—p,q;, b,=pgsin(v—w), }

by=p*—pi.
Subsequently by sysbols g, ¥;, 83, @ ve vwill mean the fenctions

41)

of pasameters p, #;, determined by relatipnships (37)-(41) . With such |

[ ————————— S —

elimication of variables the remaining wnknowns p, ¥; showld satisfy
the following inequalities:

- 0<g<p, ' 42)
|B4+rA—B| <L 2rgrn - R ()]
b+ 61— b1 >0. (44)

Bue to dependence (82), i.¢., the ammuapticoa abost sllipticicy
of transfer orbit, we reduce condition (22) to she fora
, A=0, B A
vhere .
8=K bt+a¥ |E,—E\—e(sin E;—sin E))] —
e [EP-BV—e G EP s B (48)
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|

{ ,
! | vhere By, B; and £V Ef’- eccestric anosalies of modules I and II at 1
i |
s moments t;, t,; respectively. The ecceatric anosalies are easily |
i

: computed by kpown formulas of elliptic sotion. Time t,-t, of motion

before entry is coaputed se: F |

tr—l,-i;—lE,—E.—c(slaB,-dnE.)l. : (47)
Bet us derive nov sose inegualities and estisatiocas, which are
used duripg numerical solution. Pirst of all from condition (42) and
depeadence
£y > P (48)

vhere 7. - plamstocentric distance of apocenter of transfer orbit,

ve fiad
Ps<P " Pue: 49)
where
Pee=max { V&.;%;:{;@h{i!ﬁa ’ V’; +p¢: ] . (51)

Let us note that here the necessary and sufficient condition (48) of
intersection of intermediate and initial orbits is replaced by

necessary condition (48), therefore subsegueatly during the solution

it is necessary to comsider coaditioa (88).

Dependence (43) and obvious imegquality
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Nne<r<r, © (52)
will give
re<rree (53)
vhere o s
Fo=maX (fy, I=1y), Toq=minry, I+, (34)
TeeD7s. (55)

.

The last inequality takes place due to redatiocaships (3%), (35).

Condition (53) detersines tvo intervals, in vhich lie the sought
Values of aagle ¥3:

WP, (56) .
© 2n—BD By 22— O, ‘ (57)
where
¥=w, +arccos B
8@ =w, + arccos p,, } (58)
——r st
b= ‘# . g B, %9)
vhere obviously
nOR m<l m>—l. (60)

the developed method peraits takiamg into calculation the
limitations on variables z aad U,. Let us assuse there is introduced
regquicesent
2< 200 61)

vhere 2., - assigned maximua value of co-ajtitude of modwle II at

the point of fimish at soment ¢ They from forsulas (18), (61) we
obtaia

'l>rlo' M
rra=V P4risordcosze,. '(63)
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The calculation of condition (62) is reduced now to coaputation of
r. ia dependences (53)- (59) by forasula

Fe=max (r,, l—-;,. I3e)- (64)
In a particular case, when limitation (61) is a condition of direct
visibility betwveen modules at the moment of finish, distance 7
becomes equal to

T30 = ‘/H (65)

rinnly. limitation on velocity Us: we tabe ia the fora
Sl (66)

vhere constant U is assigned. If it is possible to disregard the
speed of rotation of the atmosphere in comparison with value Use
then ¢ondition (66) is equivalent to the requirement that the oltty

velocity of module I not exceed some fixed value of U.

froa relationships (ll‘. (3% ¢ (66) we £iad
p>p. p=XBE2 sy, @
and, conseguently, coaditioa (66) will be coasideced if igegmality
(89) is replaced by
;<'<’o.- (68)
Subsequently, if ve introduce ome er both limitatioas (62),

(66), we will consider that the corresponding changes in inegqualities

(V9), (53)-(59) are produced.
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Let us formulate the oktained results. The problea of

! optimjzation vas reduced to the search for paraseter p fros interval

8 E (49) and angle ¥; in one of regions (56), (57) so that comditions
(88), (85) would be fulfilled, and functios AV would have the ;
saallest value. It is comvenient as the vatiablq'dnting optimization
to select paraseter p, and to comsider corresponding angle 8; as the
radical of egquation (#5) l1lying in region ,(56) , (57), for which
condition (44) is fulfilled. :

Pepending on the concrete selection of parameters y;, 7p four
types of maneuvers should be iavestigated. lLet s iatrodece walee
s e e 1 a1 (69)
vhich takes valewes j = 1, 2, 3, § for thase types. The desceat
trajectories for j = 1, 3 (yp,=1) differ from the trajectories for j =

DU

2, & (8= ~1) by concrete selection of the point of start in one of
the two points of intersection of initial and intersediate orbits.

Therefore in one case the flight path of module I will emerge on the
initial segment from the region limited by the initial orbit, and in

the other case vill entirely lie inside the indicated region.
Purther, saneuvers j = 1, 2 (9,=1) differ fros saneuvers j = 3, &

(8= =1) by the fact that at the momeant of finish in the first case
the ozhital msodule leads the descent, i.e<, has large polar aagle. Ia
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the second case, conversely, the polar amgle of the descemt module is
larges than the polar angle of the ovbital. Let us note tkat with
sech ¢ospaciscs apgles 0. 0. should be brought to interval

| 6:—0:! E< 2

Bet us preseat a brief description of a cosputer program, using

the algoritha indicated above.

I. A search is conducted for the approximate desired value of
paraaeter p bY seans of the total survey of interval (849), which is
brokea down iato n equal parts. Por each point of divisioa there are
found all the radicals of equation (4S), which lie in regions (56),
(57) and for wvhich is fulfilled condition (48). Durimg the computing
cf radicals there are takem rough coastaants of accuracy, which
provides the quickness of operatiom of thjis program uait. Proa the
aultitude of all the sorted out values of parameter p aad the
radicals corresponding to thea there is selected pair p, &3, vhich
corresponds to the smallest value of fumction AV. These guantities

are taken as approximate optisua values.

JI. There is found the exact optiamm value of variable p and
other parameters of the sought maneuver. lLet us note that guaatity AV
as a function of paramseter p with optiswm selection of radical &; can

have discoatiguities of the first type and regions of uaimportance,

i ”




DOC = 0674 PAGE 19

vhere eguation (45) does not have radicals of the required type at
all. Bue to the imdicated special character of the problea it is
expedient to refine the optimums values of paraseters until the
obtaiaing of certain accuracy by the method of successive
approximations. In this case in each approximation the interval
betwveen tvo values of paraseter p, adjaceat to the optimum value of
the preceding approximation, is brokem down intc some preset nuaber
of pasts and calculation is performed for all the points of division.
By coaparison of the corresponding charscteristic velocities the
optisws value of parameters of the given approximation is deteramined.
During computation of the radicals of function 4 there are taken

constantse providing the assigned accuracy of computations.

In conclusion let us elaborate on the procedure of computation
of radicals of fuactiom (46) for any fixed value of parameter p. Por
deterainacy we are lisited by descent maneuvers, for which the
overall time f#—!; of the maneuver is exactly less than thke period of
sotioa along the iaitial orbit. In accordance with this we will
compute the eccentric anosalies, entering the egualities (A85)- (47),
taking into accoant coaditioas

E\+2=>E,5E,, }
EP 4225 EM4+- 2235 EMSED, (70)

vhere § - any assigned ssall geaatity.

fegions (56), (57) are divided into ¥ egual parts and fuactioa A
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is coaputed successively for all the points of division.

Let us indicate one special feature of the given method. Por any
value of angle ¥; first there is determined the geometric picture of
the maneuver, i.e., mutual location of orbits, and then there are
selected the specific legs of flight of the modules along orbits froa
the condition of fulfillment of inequalities (’Q). Therefore critical
values of angle ¥; can exist, which correspond to discontinmuity of
function B,-By, if switching of the leg of flight occurred on the
desceat orbit, and functions E—E{". if switching occurred on the
trajectory of motion of module IXI. At the points of intersection one
of the limiting values of the correspondiag fumctions is equal to
gzero, and the amount of discontinuity is equal so 2». It is easy to
see that the radicals of function A cam lie only at finite distance
from the critical poiats. Let us select aember ) so that the
variation of functions E,—E, EV—E" op each segment of subdivision
of intervals (56), (57) does aot esceed seme constant A. The
variation of function on the segments containing critical points will
then be not less than 2s~A. By increasinsg N and selecting coastant A,
it is alvays possjible to achieve fylfillment of condition A<2¢-A ang
thereby obtain criterion, which makes it possible by the magnitude of
fluctuation of fuaction A to judge whether switching was inside the
considered segaent or not.
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Let us return to the description of the procedure of computation
of radicals. If on the boundaries of some segment of division of the
intervals (56), (57) fupcticn A bas different signs, and its
fluctuation is less than constant A, then withipn this segment is
found the radical of function 4, which is computed with the aid of a

series of interpolations.

Bet us elaborate more om one specific feature of the algoritha.
If for some value of 83 condition (44) is disturbed, then we will say
that this value is found in the region of nomexistence of functiom A.
When duriag sortiang out of points from intervals (56), (57) we fall
in the region of nonexistance of function A, then by successive
divisjon of the given segment in half we find the boundary of the
region of nonexistence. Then ve investigate the region, one of the
boundaries of which is the last point during sorting out of points of
subdivision of intervals (56), (57), and the other - the boundary of
the region of nonexistence. Hith.the fulfillment of conditions of the
Preseace of radical im the indicated region the radical is cémputed
by a series of interpolations. An analogous procedure is perdormed
vhen froa the region of monexistemce fumctions A transfer to the

values of angle 33, for which condition (84) is fulfilled.

After all the radicals of function A are found for the parameter
F in guestion, from thes is selected a radical, which the smallest
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value of function AV corresponds to. With this the determimation of

the radicals of function A is finished.

§3. Numerical Example

As an example of the use of the algoritha developed in §2 let us
exanise the problea of sending from a space vehicle, movimg along
elliptical orbit of a Venus satellite, probe (module I) for
investigation of the upper layers of the Venus atmosphere. We will

minimjze the fuel consumpticn,

Bet us select the following elemeats of the iaitial orbit of the
space vehicle: ' :
a,=10000 xx, ,=028, w,=0° )
The height of periceater of the orbit abowe the surface of Venus will
be 1000 km, and the height of apocenter - 6600 ka.

Por numerical values of coastast &k aand r, let us take
K?~3.2423-10° xa¥/ca’, ‘
r,=6200 KA. ' (72)
Let us assume further that the scseat of £iaish coiacides vwith the
soment of entry, thea

Ary==Af =Ad =0, . (73)
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Bet us reqguest that at the moment of finish values ! amé @ had
assigaed values and the condition of direct visibility betweea
modules was fulfilled.

Calcelations were conducted on an N-20 computer. Two values of

distance vere selected ;
{=1200 xx, {=1600 xx (74)

and the interval ¢f change of angle ¢ was examined vith pulse dsty
factor 5° from zero to 30°. The results of calculations are presented
ia Tables 1 and (.,

%)
AU, nujeex| &, 5 "i;:h z | Usy, ¥Ncex
{ C
0,348 126,04 | 5305 |3603| 8,39
0,329 149,09 | 3250 (3432 8321
0,403 156,54 | 2787 |2080 | 5268
0,601 16391 | 20s5 | 2.2i 8,122
i i 1045 |1473 | 7.828
1,773 214,39 645 (1983 | 763¢
28 468 (2296 | 75%
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® | /| axn ¢ U & & o |&U, }x”ux ®, ";:" . U..j.gu,;m
92089 | 03333 | 219064 | 372146 | 36174 | 1246 0,268 15668 | 3580 |56,84 | 8,350

§° g '9%.2 03448 | 21401 | 350,65 | 34066 | 1029 %1 16725 | 3491 |5226 | . 8255

10 | 3 | 9172¢ | 03633 | 21290 | 33336 | 32539 | 1192 1398 16740 | 3276 40,44 | ~ 8321

15 | 3 | 88883 | 03903 | 21658 | 31984 | 31504 | 1638 0,453 166,52 | 2018 [2371| 8253

20 | 1 | 84592 | 04242 | 22285 | 31042 | 31042 | 24,15 0,655 162,30 | 2553 | 1.02]| 8140

25 | 2 | 76086 2041 | 30920 | 31242 | 4154 1,003 18046 | 1580 |1580 | 7904

2 | 2 | 7029 | 05108 | 27074 | 31084 | 31550 | 50,02 1,552 19720 | 909 |2499 | 7645

Table 2. Paraseters of optisee smmeuvers for ' = 1600 ka.

Key: same as Table 1.

let us note that for both values of distance ! the minimum of
characteristic velocity as a fusction of aagle @ 4is reached for
sose valees of angle ®C(0°5), where this velocity rapidly rises for
®>10°,. It is intersstiag to aote also that velocity U. for angles
®, apt eiceeding 10-15° for optimum maneuvers, barely depeads on
angle @ and is egual to approximately 8.3 kam/s.
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