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r sibility of higher order poles besides simple poles, but still

o and phases for the damped sinusoidal waveforms seen so commonly
‘ L. in EMP iasts using pulsed waveforms. There is some latitude in

A

.

Interaction Notes
Note 88

( 111 Deceminrsmid 71 1]

On the Singularity Expansion Method for the

- -~

i‘:nn Solution of Electromagnetic Inceraction Problems
2 Tz . A
JCJTarl E /Baumj I
m Al tce We “"'E"I."a'noratory o -
Gal1l/,
QC: \\ Abstract T et

This note develops a new method for the solution of EMP in-
eraction problems. Basically it involves expanding tiie solu-~
ion in terms of its singularities in the Laplace transform or

G complex frequency (or s) plane. In the time domain each term
«Xicomes from an inverse transform of the corresponding term in the
singularity expansion. Finite size objects with well behaved

media have only poles in the firite s plane for their delta
function response. These factor into terms involving the class-
ical natural frequencies and modes but in addition bring out
factors which we call coupling coefficients as well as the pos-

of finite order in the finite s plane. If the incident waveform
- has singularities in the finite s plane the response can be gen-
8 erally split into an object pa:t (containing object po. ==} and a

waveform part containing the waveform singularities. The object
L) poles directly give amplitudes, freguencies, damping constants,

the calculation of coupling coefficients and some difficulties
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Foreword

Approximately this last summer I started looking at this

J\ singularity expansion method, Basel on physical arguments the

: ; general form of the ex..:nsion and how the terms factored for

y ] finite objucts to exhibit dependence on separate variables of

! z the EMP interaction problem socn became apparent to me. In par-

' ; ticular some physical observations generaiized from many EMP
tests in time domain led to the pole expansion concept in fre-

gquency domain. This forms the starting point for what follows

E in this note.

Next chronologically I started some discussion going on
this subject, in particular with some of my colleagues at North-
rop Corporate Labs in Pasadena. I certainly wish to thank them,
in particular Dr. L. Marin, Dr. K. S. H. Lee, Dr. R. W. Latham,
and Dr. P. Tescr . (who is now with Dikewood) for many very stim-
ulating conversations about this technique. They certainly
helped me test and refine some of the concepts. They are also
presently working on reports to further refine the method and
calculate some example problems. In particular Drs. Marin and
Latham have rather far advanced some analytic solutions of the
magnetic~field integral equation for finite size perfectly con-
ducting objects in terms of the singularity expansion.

In September there was a meeting in Pasadena with some sig-
3 : nificant attention given to this subject. I would like to thank
: ' everyone whc came to that meeting for the stimulating discussion
on thieg subject. On various occasions both at this meeting and
on other occasions I have had occasion to discuss this matter
with various pezople. In particular I would like to thank Prof.
R. J. Garbacz of Chio State U., Prof. C. T. Tai of U. of Michi-~
gan, Pref. S. W. Lee of U, of Illirois, Prof., C. Taylor of U. of
Miss., and Dr. A. Poggio of Cornell Aeronautical Lab. Some of
these people are already beginning studies on various aspects
and gpecific problems concerned with the singularity expansion

method.
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...when guddenly a white rabbit with pink eyes ran close by
her. ‘ \

! There was nothing so remarkable in that; nor did Alice -
! - think so very mach out of the way to hear the Rabbit say to it- : '
: self, "Oh, dear: Oh, dear! I shall be too late!" (when she
thought it over aftarward it occurred to her that she ought to N
have wondered at this, but at the time it all seemed quite nat-
ural}: bnt when the Rabbit actually took a watch out of its {
wajistcoat pocket, and lo-ked at it, and then hurried on, Alice
started to her feet, for it flashed across her mind that she had
never before seen a rabbit with either a waistcoat pocket or a
watch to take out of it, and, burning with curiosity, she ran
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it across the field after it, and was just in time to see it pop
b down a large rabbit hole under <he hedge.
S In another moment down went Alice after it, never once con-
o sidering how in the world she was to get out again.
i (Lewis Carroll, Alice in Wonderland)
‘;}
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I, Introduction

This note takes off on a new course in the treatment of the
interacvtion of electromagnetic fields with bodies located in
free space or in other simple media, including the effects of
the proximity of one body with respect to znother (such as a
body in an EMP simulator).

By way of introduntion some physical observations atve in
order. Suppose one excites an object such as a missile, an air-
craft, a building with various conductor geometrics, etc. with a
fast 2lectromagnetic pulse. What are the general characteris-
tics of the resulting waveforms for the various electromagnetic
quantities (such as current, charge, etc.) associated with this
cbject? Someone with much experience in EMP testing of such ob-
jects in EMP simulators could observe that an extremely common
characteristic of such waveforms is the presence of one or more
exponentially damped sinusoidal oscillations. This is the case
not only in the excitation of the internal circuitry but also
for the body gecmetry as well. This electromagnetic resonance
phenomenon is particularly pronounced for long and comparatively
slender conductors such as the main body resonance of a missile
or the body and wing resonances of various aircraft. These
damped sinusoids in the response are observed not only in EMP
interaction studies (both experimental and theoretical) but also
in fast pulse time-domain-type radar scattering studies.

Not all aspects of the electromagnetic response of objects
look like damped sinusoids. Parts of the time domair response
may look like the incident wavefcrm, or perhaps its time deriva-
tive or time integral. It would also appear that in some cases
even more complex types of responses occur.

Looking at the forms of the observed responses one might
ask if there is some way that these ovservable features of the
waveform can be found directly when one calculates the object
electromagnetic response. Can the amplitude, frequency, damp-
ing constant, phase, etc. of each damped sinusoid be directly
calculated? How do they depend on the incident wave? Can other

+kinds of response which give waveforms related to the incident

waveform be directly calculated?

The purpcse of this note is to beqin to characterize elec-
tromagnetic interaction with objects in terms of quantities di-
rectly identifiable with various characteristics of resulting
interaction waveforms. Some characteristics are associated with
the object characteristics including the presence of neighboring
objects. Other characteristics are associated with the waveform
of the incident field. Yet others are associated with the spa-
tial distribution of the incident fields, such as specified by
direction of incidence and polarization. What is in effect ac-
complished here is a decomposition of the interaction problem
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into various quantities which depend on different variables of
the prnblem. The dependenze of the interaction on different
variables can then be separately ccnsidered resulting in a con-
siderable simplification in understanding how the resulting
electrcmagnetic interaction can vary over all possible varia-
tions of the parameters of a particular problem being considered.
This efiectively extends the complexity of the object geometriass
one may be willing to consider for detailed calculations.

Having identified what appear to be exponentially decaying

. sinusoids in typical interaction experimental data one might use

this as a clue toward finding a mathematical representation of
the electromagnetic interaction which has these terms as part of
the decomposition. Consider the Laplace transform of the var-
ious waveforms. (The two-sided Laplace transform is used
throughout the note.) The Laplace transform of an exponentially
damped sinusoid gives a pair of complex conjugate poles in the
complex 8 plane of the form 1/(s - Sa;) and 1/(s - say) where s
is the lLaplace transform variable, where 8q] = Sqy with the bar
above a quantity indicates complex ccnjugate, and where a] and
ay are sets of indices to label the pcles being considered. If
one could find these poles with their coefficients in {the com-~
plex s plane from an integral equation or other form of the so-
lution (such as from an eigenfunction expansion of the solution)
then not only would he have a representation of part of the fre-
guency or Laplace domain svulution, but also of a part of the
time domain waveform (damped sinusoids) as well. Such poles in
the complex s plane are termed natural frequencies of the object
since they are frequencies for which the cbject can have a re-
sponse (in Laplace or complex frequency domain) with no excita-
tion in the form of an incident wave. If the bodyv is excited at
a natural frequency then its response is infinite at that com-
plex frequency.

Suppose one were to take a solution for some interaction
problem expressed in the Laplace domain either explicitly or im~
plicitly (such as in the form of an integral equation). Fur~
thermore suppose one wishes to convert this into a time domein
solution. This can be done using the inverse Laplace transform
integral, a contour integral in the complex plane. This contour
can be deformed in the complex s plane, passing it through re-
gions where the response is an analytic function of s. On
reaching singularities such as poles and branch points the con-
tour can be deformed around the poles and oranch cuts to obtain
terms associated with each separate pole and branch cut and per-
haps a contribution from a portion of t:he contour for |s| + =,
Our basic approach then in expressing the solution to electxo-
magnetic interaction problems is to express it as a sum of such
terms in both Laplace (frequency) domain and time donain. Dif-
ferent types of terms will have different properties and we wish
to understand these properties in detail so as to take advantage
of the decomposition of the interaction problem into its various
parts.
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Not only are the natural frequencies of the object of con-
cern because there can be other singularities in the response.
Associated with certain kinds of object gesometries one may also
need to consider branch cuts in the complex s plane. An example
of such a body is an infinite length perfectly conducting cir-
cular cylinder for which the branch cuts can be associated with -
cylindrical Hankel functions. This note is mostly concerned
with cases that the object response does not have branch cut
contributions associated with the object characteristics. How-
ever the same approach as for the case of poles may be used by
including terms for the branch cut integrals in the general ex-
pansion for the inverse Laplace transform integral. Back in
Laplace domain the individual branch cut terms can be found by
first subtracting all the pole contributions and then treating
what is left. Since the only important contribution at the
branch cut is the change in the function across it, then in cal-
culating the branch cut integral one could use this change to
define an appropriate veim only associated with this change
(along the entire branch cut). Such problems are not considered
in this note but it is determined that for a class of objects of
interest there are no branch cut contributions associated with
thie object gecmetry.

The incident waveform will also typically have singulari-
ties in its Laplace transform and there are terms in the object
response which correspond to these. The object response can
then be split to some extent into terms assoclated with the
geometry and other electromagnetic characteristics of the object
on the one hand, and the incident waveform characteristics (in-
cluding how they couple to the object) on the cther hand. 1In
many cases the waveform contributions will be through rather
simple s_.ngularities suci as simple poles associated with expo-
nential waveforms.

Having decompcsed the object response into various terms in
this manner, one can then see how accurately the first so many
terms describe the complete object response in various of its
characteristics in both frequency and time domains. It is not
apparent that all interaction problems can be most conveniently
characterized using the natural frequencies and modes and other
singularities. However, for highly resovnant structures it ap-
pears to considerably simplify the comprehersion of the impor-
tant features of electromagnetic interaction with the structure.
Other techniques will continue to be valuable and waveform and
frequency-response detziled calculations will still be needed.
In some cases the waveforms, for example, will be useful in de-
termining how many natural modes etc. are needed for thLe olject
and over what range of the object parameters the incomplete sum
of modes is adeguate.

This note first considers the general form of these solu-
tions which separates out various aspects of the object response.
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‘Then based on finite matrix formulation of integral equations in

a form such as used for numerical solutions various properties
of the solution can be found bated on the analyticity properties
of the matrix elements and vector components. For instance, the
conclusion that only poles of finite order appear in the object
respo.se for finite sive objects applies not only to perfectly
condunting‘objects but ones of finite conductivity as well,
Numerous topics are then briefly discussed to point out many
areas for further investigation. Finally an appendix discusses
the special “"natural frequency" s = 0 and another appendix works
out the object response for a perfectly conducting sphere as an
illustration of natural frequency, mode, and coupling coeffici
ent calculation and indexing.

In addition to what is discussed in this note many refine-
ments of the singularity expansion method are possible and var
ious extensions of the results wvould seem possible. In solving
specific boundary value problems with this approach some other
general results may be suggested by the data, thereby focusing
attention on the proof or disproof of these conjectures and the
consideration of other boundary value problems which betier ex-
hibit the same general results or test their validity. :

While this note considers the solution of electromagnetic
boundary value problems in terms of natural frequencies and
other singularities the technique can be applied to experimental
data as well., From frequency or time domain data one should he
able to determine natural freqguencies a:l modes and other sin-
gularity characteristics by extending the data to the remainder
of the complex s plane using Laplace transform techniques or
even analytic continuation. Of course there are numerical error
problems as in other data. reducticn processes and this will also
require quantitative understanding.

Since this is a new approach to the solution of electromag-
netic boundary value problems there is clearly much work to be
done to fully understand its many ramifications.
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IY. The Form and Some General Characteristics of the Singular-
ity Expanslion for Some of Lhe Simpler Cases -t

: Let us pow look at some of the advantages associ. *~d with
the singularity expansicn methodd because of the form orf the ex-
pansion in simmple cases,

: First we write the complex Laplace transform variable in
E terms of its real and imaginary parts for notational purposes as

‘ 8 =0+ i | | (2.1)

;o ' An arbitrary function of time £(t) which could be in general a

t } scalar, vector, or tensor of arbitrary rank has a Laplace trans-
s form (bilateral or two sided) assuming the 1ntegra1 of lf(t)]

; over any finite interval exists defined byl

LIf(t)] = E(s).s J. f(t)e-Stdt (2;2)

b -

: »

. { vhere the integration is taken on the real t axis. This is the
] two sided Laplace transform (indicated by a tilde ~ over the
function) where f(t) is required to have a behavior such that
f(s) exists and is analytic in some strip Q. < Rels] < Q4 in the
L : s plane. The inverse transform (whecre f£(t) is of bounded varia-
r tion near t) is given by

7 ‘ 9°+1w
‘ L e(s)]) = £(t) = 21 [ £(s)e®tas (2.3) :
a_-ie ?

T

where the limits to +i» can be interpreted in a Cauchy principal
value sense and where Q- < ) < 4+ unless f(t) is discontinuous
at t in which case the inversion gives [f(t-) + £(t+)])/2. 1In
our cases of interest f(t) = 0 for t < ty in which case 4 = »
and the transform effectively reverts to a one sided Laplace i

ransform with the lower limit as to. Typlcally also fi- = 0 as 3
long as f(t) does not grow as fast as an increasing exponent1a1 '
for t + +»., Thus we normally have f£(s) an analytic function of
s for Rel[s] > 0, the right half of the s plane, and the inver-
sion integral is defined along Rels] = Qg > 0.

The essence of the singularity expansion method involves 8
evaluating £(s) (which may be surface current depsity or various
other electromagnetic quantities) by evaluating £(s) in terms of
the left half plane 51ngular1t1es (Re[s] < 0). Express the time
domain form f(t) in terms of these same singularities as would




S

Leaohed oov

be done by deforming the contour for the inversion integral
(equation 2.3) into the left half plane and splitting the inte-
gral int. parts associated with each singularity. Note auto-
matically that since we are only concerned with f(t) real for
real t then the Laplace transformed f(t) has some symmetry which
can be found by splitting the transform integral into real and
imaginary parts. Denoting the complex conjugate by a bar - over
the quantity we have

(s = £(8) (2.4)

Singularities are then automatically symmetrically placed with
regpect tu the 1 axis except that branch cuts can be moved
around as long as the branch points stay symmetrically placed
with respect to the Q@ axis. For convenience we constrain the
branch cuts to also be symmetrically placed with respect to tha
! axis 80 that equation 2.4 always holds except of course right
at the singularities. Having found the term associated with one
singularity we then automatically have the result for the conju-~
gate singularity. Of course this does not help us for those
singularities on the Q axis. When we index the terms associated
with each singularity with a set of integers we can also adopt
the convention of a sign reversal on one of the integer indices
corresponding to conjugate positioned singularities, For such
an index positive integers can be associated by convention with
w > 0 (upper half plane) a zero integer for w = 0 (the Q axis)
and a negative integer for w < 0 (the lower half plane). Alter-
nately another symbol can be introduced to indicate which of a
conjugate pair is meant.

While there are varinus forms of incident waves that one
might use we choose the commonly used plane wave for our exam-
ples. If one wishes, more complex field distributicn can be
found by superposition of many plane waves.2 For our present

urposes wc consider an incident plane wave propagating in the
e)] direction (independent of s) with electric field polarization
in some combination of the ez and e3 directions. Here e is used
for a unit vector. The three unit vectors for our plane wave
are all mutually orthogonal and form a right handed system of
unit vectors as

-> x-.- -+ (2.5)

As shown in figure 2.1 this plane wave jis incident on some ob-
ject of finjte linear dimensions. Let r denote the observer po-
sition and r' coordinates on the ohject. Then by ap object of
finite dimensions we can require {r'| < r, for all r' where r

is some finite radius. (Note that all dimensions are rationag-
iged MKSA throughout the note.) Typically the ccordinate origin
(r = 0) would be chosen near or even inside the object. If we

b s
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b gefine some refergnce axis (as shown in figure 2,1) then given
; ( e) we,can choose ey parallel to the plane which is parallel to
‘ ’ both e) and the reference axis; e3 will be perpendicular to this
plane. If the object has an axis of symmetry this would nor-
. mally be chosen as the reference axis. In spherical coocdinates
: as in one the appendices the z axis (or 6 = 0, %) would be
chosen as the reference axis for convenience.

\ Our incident plane wave is assumed to propagate in free
space with a propagation constant

E— = - 2.
E y & ik c (2.6)
: |
' where the speed of light in vacuum is
. ;
a ¢~ L (2.7) i
E "Mofo ]
A The wave impedance of free space is
! ]

] U ,

0
2_ = V— (2.8)
- ( o € ‘ i

The permeability of free space is ug and the permittivity of
free space is €5. It is not strictly necessary for the medium
to be free space; o and €5 can be regarded as paramcters of the
large volume (ideally infinite in size) of the medium in which
the object of interest is placed. However for some results it
may be necessary that this medium have zero conductivity (be
lossless) so zerc conductivity is specified for the infinite
medium for considerations in this note,.
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The general form of our incident plane wave can now be
written as3.4,

+

+ el'r)-r ( el.r)+ ] :

- C EjpelEit) = Eo[fz("’ o)t t 3\t - e, |
(2.9)

>
E e,- e,*'r

-+ ,3__9. _ 1 - - 1 ->

iy (Et) zo[fz(t c )93 fa(t" o )ez]

where Eg is a scale factor with dimensions volts/m. The two in-
cident fields are related by ;

H4
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+ > +
e1 X Einc(r't) {

(T,t) = )
° (2.10)

Nll—'

f

inc
+ + +

Einc(r't) = mlpey * ﬁinc(r't)

In Laplace form the incident plane wave is
e, T

+ - _ ~ -+ ~ > - 1

Eihc(¥/8) = Ej[f,(8)e, + £3(s)e,le

(2.11)

+ >
~ A -Ye.,°*r
> +> O,% + 0z -+ 1

-

1
1

Note that for each of the two independent polarizations we can
have separate wavefcrm finctions f,(t*) and f£3(t*) where the re-
tarded time is defined by

e.*r
1 (2.12)

* = - 3
t* = t S ‘

] : The waveform functions have subscripts which relate them to the i
polarization vector for the electric field. ¥For the magnetic : T
field 2 and 3 are interchanged with a sijn reversal in one cage. i
No evanescent waves are allowed for our present purposes, S0 e}
(even when associated with the Laplace form) is taken as a real
unit vector although for some purposes it need not be. This

plane wave can be expanded in terms of the vector wave function

; for various other coordinate systems such as spherical coordi-

= nates4 (which is used in apyendix B) and cylindrical cocrdinates.>

S e e i e e

For convenience one may introduce a unit dyadic plane wave
for Laplace domain purposes as .

> ~731-§ 10 0y —Ygl';
il = (Gb b le = (0 1 O,e (2.13)
1’72 001

(with by, bz indicating in this case a pair of indices each
ranging from 1 to 3) which in the time domain is a dyadic delta
“function pluan~ wave as

e, ¥ 100 31-5
b )5(a - ) = (c 1 o)s( - — ) (2.14)
2 4 01

- we
.
b et e b 3L 11,

>
T, = (s

bl’
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The subscript 1 indicates propagation in the 31 direction. Mul-
t’'nlying (in a dot product sense) this unit dyadic plane wave by
a wvaveform and polarization gives our incident plane wave as

3z
iinc(E,s) = E [E, (3, + E;(0)3,] - T,

#

(2.15)

E_ N 3
inc(Tr8) = E§[f2(5)23 - £5(8)8,) - 1,

irn the time domain convolution is also needed which we might in-
dicate by

&>
iinc(;,t) - zolfz(t)zz + 13(t)331* . fl

(2.16)

E *>
B, () = gglfz(t)33 - £5(008,)% - T,

Note that the dyadic plane wave "contains” both lgngitudjnal
waves in the e} part and transverse waves in the e2 and e3 parts.
Only the transverse waves satisfy Maxwell's equations in source
free media and so the 2 and 3 components giye the most general
uniform plane wave propagating parallel to ej.

The first problem in the solution of our electromagnetic
interaction problem is then to find the object response to two
incident waves

+
3 .
8,8, -1, G;:=3 -1, C(2.17)

ey

wher: these can be taken as either electric or magnetic fields
because of the way they interchange with one another (with a

sign reversal in one case). Knowing the response to thesse two
waves (taken as both electric or both magnetic) then the re-
spcnse to a general plane wave incident in direction ej can be
formed in Llplage domajin simply by reintroducticn of the wave-
form functions f; and £3 and other scale factors just as they
appear in thg incidgit plane wave as above. In time domain the
Lesponse to u2 and uj can be separately convoluted with £2 and

f3 and scale factors reintroduced to obtain the general solution.

What then is the object response to il and to iz taken for
convenience ar the electric field components to correspond di-
rectly tc polnrization? Here all the waveform characteristics
are factored out leaving two problems, each of which has an

13
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"incident field function" which has no singularities in the en-

tire s plane. These are termed entire functious; they are ana- {
i lytic for all finite s although in thirs case they each have an

; essential singularity at «, These are the simplest plane waves

for our purposes.

I

i
- There are many kinds of objects which one might considc -.
5 ! They can be of finite size or infinite size ir various shapes.

n They can bs composed of various media arranged in various dis-

} tributions. In this note we concentrate our attention on a cer-

} tain kind of such objects and work out some general results for

i this class of objects. Other kinds of objects can also be con-
sidered in this way and some comments are made regarxding such 3
other classes of objects. Ag shown in figure 2.1 we consider '
finite bodies described by |r'| < ro for all points on the body.
Furthermore for some of the considerations and the example in
appendix B we take this object as perfectly conducting which re-
duces our considerations to the body surface which has surface
charge and current densities as quantities of primary interest 3
for describing the electromagnetic interaction. This body is
not necessarily continuous but may be composed of several sepa-
rate parts.

N ——
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In a later section of this note it is demonstrated that
curxent density (either surface or volume) for a finite object
has its delta function response corresponding to any singulari-~ »
ties in the finite s plane expressed in terms of poles of finite ( 3

- order. We identify these poles as sy where o is socme index set -
which indicates which pole is meant. This result is of funda-
mental importance for our general representation of the solution
to the interaction problem. We have a series with (s - sq)~D0
for ng =1, 2, 3, ... as a factor in each term. What we need
now is the rest of the expression at each cof these poles to com-
plete the expansion of the two delta function plane wave re- |

2 sponses in Laplace domain. If there is more than one order of

3 pole at s = sy the a index set can have a number to designate

each term in the expansion corresponding to each order pole;
clearly this number could be just ng.

o] e, e ikt

These poles sy are the natural frequencies of the object.

By a natural frequency is meant a value of s for which the ob-

ject has a response without an incident field exciting it. The

natural frequencies are generally in the left half of the s

plane (Re(s] < 0) because of energy loss (to radiation in the i

case of a perfectly conducting body) except that natural fre-

quencies can be on the iw axis (1 = 0) with first order poles i

for lossless situations such as for interior cavity modes. How=- ]

ever in the time domain such simple poles on the iw axis corres- Colon

pond to undamped sinusoids which, if they can be excited by the j

incident wave, must continue to radiate power to infinity indef- 1

initely by reciprocity. Since this would violate conservation

of energy the residues of such poles nust be zero and we drop , |

them from consideration. ' \ i
%,
¥
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If Lhe object responds at 8 = sq with no incident fjeld
then such response must be indepgndent of polarijzation (ez and
e3) and direction of incidence (e1) since they determine no in-
cident fields for this ideal case. This leads to the concept of
a natural mode. By a natural mode we mean a currernt, charge,
field, etc. distributiocn associated with a body self oscillation
at a cgmpgex natural frequency sq. _We desi?natg natural modes
by 35 (F) (r') for a vector guantity F and vo(F) (r') for a scalar
quantity F. A scalar quantity F could be a surface charge den-
sity gg and a vector quantity F could be a surface current den-
sity Jg parallel to the object surface.

There is of course the question of the uniqueness of the
natuxal modes. Clearly the natural modes can be modified by a
scale factor, but this is just a problam of an appropriate nor-
malization of the natural modes. Depending on the problem of
concarn there may be various appropriate normalizations. Ap~
pendix B conesiders the case of a perfectly condncting sphere for
which all the natural frequencies correspond to first order
poles (ng = 1 cualy). For the perfectly conducting sphere the
natural modes are types of spherical harmonics and here we use
definitions which fit naturally with common usage.

The perfectly conducting sphere is an interesting example
in that all the natural modes, coupling coefficients, and natu-
ral frequencies can be more readily calculated. Any general re-
sults for perfectly conducting finite sized objects must be true
for the perfectly conducting sphere.. Thus the sphere (and
other shapes such as prolate and oblate spheriods and disks) can
be used to test general results. Moreover they can be used to
form a basis for conjecture for new general results. For ex-
ample the perfectly conducting sphere has only simple poles (ng
= 1 only) which completely describe its response to a delta
function plane wave.

Aside from the scale factor there is another probiem in de-
fining the natural modes. This is the possible degeneracy of
the mndes. As can be seen for the sphere problem for example
(appendix B) the modes can be degenerate in vhich case associ-
ated with each natural frequency there may be several modes.
This problem can easily be handled by the ¢ index set to desig~
nate separate independent modes. There are varjous different
ways to define the different modes and what is nceded is a con-
venient set of modes with the minimum humber of modes necessary
to span the space of all pocusible distributions of the quantity
of interest associated with the particular natural frequency.

Of course the sphere has a high degree of symmnetry and one would
expect degeneracy of the natural modes associated with symmetry.
Bodies with a symmetry axis will also have z degeneracy of the
form cos(n¢) or sin(nd) as a factor in the anatural modes (:xcept
for n = ¥) giving at least two independent natural modes (foxr

n > 1) for each natural frequency. Note that it is also
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t i possible (a. least in the case of the sphere) to define ithe nat-
; ; ural modes so that more than one natural frequency can have the
E ! game natural mode or even set of modes. In man)y cases this de-

i

£

generacy problem may bhe unimportant, eepecially for irregularly
shaped oojects.

] ' %
Further on in this note some calculational techniques for
finding the natural freguencies and modes from general idtegral
equation formulations of electromagnetic interaction problems
are discussed. 1In performing such calculations one can observe
for each natural frequency being considered whether other than
first order poles are present and if more than one natural mode
: is needed for that natural frequency. Thus the form of the sin-
C gularity representation can be checked in a problem being worked
: ot and the results compared to more conventional numerical so-

lutions at other frequencies in the s plane and/or in the time }
domain. .

RS

SO,

Having the natural modes 3a(;‘) which depend only on the
object coordinates and the natural frequencies sq which are
fixed cgmplex numbers we next nced the coefficients which multi-
, ply va(r’) (s - sq)~N® to give the response to our incident plane
i ' waves. For the surface current density on the body we write

SB(F',s) = 382(§-,s) + 383(2-,3) (2.18) o

where p = 2, 3 as a subscript designates the part associated ]

with each polarization of the incident wave. Each part can now i
be written as |

3sp(r‘,s) - iﬁ fp(s)ﬁp 8 (%',s) (2.19) *

Y M TGt . i P <

ghere ﬁ is the response of the surface current density to the
plane wave (Laplac~ transformed delta_ function wave) taken as
the incident electric fieid. Note that Uy is dimensionless.

For cases with volume current densities ogher normalizations ;
would be appropriate. Our surface current density response . ;
functions (two of them, orne for each incident lectric polaxiza- " i
tion) are functions of the object coordinates r' and the complex

frequency s (or of time t when inverse transfcormed) and of

course depend on the direction of incidence ej.

Now we can write the surface current density response func- :
tions for finite sized perfectly conducting bodies as
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where ny has dimensions of (time)"R¢ and where the sum 1s taken
cover all the indices in the index set a except for p which is
one index for n. Were & written as say two or three indices
then a double or triple sum would be nsed in this expansion.
Note that the coupling to the incident piane wave depends on
frequency because there is at least a timz delay or advance in
when the mode is "turned on."

The coupling ccefficients na(gl,s) are entire functions of
8 (no singularities in the finite s plane) with values at sqy
which give the proper pole coefficients. bNote that for ny > 1
the derivatives of ng with respect to s at sy take a pole of
order nyg and give ccefficients to terms of order ng - 1, ng - 2,
etc. until a first order pole is reached. Then there is some
flexibility ip our definition of ng as long as at earch natural
frequency ng(e),sq) gives the proper coefficient to the highest
order pole there. The lower order poles at sy then can be par-
tially (if not entirely) included in the terms for the poles of
highexr crder depending on the choice of the form of nyg for such
higher order poles. This points out what might be termed the
non uniqueness of the form of the singularity expansion. Cer-
tain features of the singularity expansion are fixed, but others
have some flexibility. One might then ask what is the best def-
inrition of ny consistent with the pole requirements? This might
involve such criteria as simplicity of the resulting functions
in frequency and/or “ime domain, asymptotic behavior for |s| + =
so as to avoid poles at infinity as separate terms which compli-
cate the form of the time domain expansion, etc.

Also in equation 2.20 we include W (35)(31,;',8) as an en-
tire function of s containing none of the poles of the response
in the finite s plane. This entire function is connected with
the choice of the ng and has similar flexibility in its choice.
Only the resulting sum need be tha unique solution for the cur-
rent density etc. We have some flexibility in how we arrange
the terms. 1In what follows in this section we consider ng and a
special form for the coupling coefficient as cqe~8t0 in develop-
ing some of the consequencea for the singularity expansion. The
additional entire function Wp is only included in some of the
expressions; it is usually dropped; it is not needed for the
perfectly conducting cphere discussed in appendix B. This func-

iy ataribi i by o X N ™ - s i Ml e VIO T W TR T - TETIIIT CTTomm ST R Y T Tl N rrmeetoas s

tion is further considered in section 3.

For perfectly conduct-

ing finite Bized bodies the
guggest that a delay can be
efficient cy can ke written

perfectly conducting sphere results
factored out sco that a covpling co-
as
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N, (@,,8) =c ()= (2.21)

How general this result applies is not presently clear. My con-
jecture is that it applies tc perfecily conducting finite ob-
jects if not more general objects such as lossy objects, perhaps
with some nuances based on the order of the pole being considered.
Here tc is the time that a delta function plane wave first
touches the object and is given by

+*
e,*r' )
] (2.22)

-
to(el) = fin[
r'

which is illustrated in figure 2.2. For the perfectly conduct-
ing sphere this result is immediately apparent as in appendix R.

Let us call ng and cg coupling coefficients and to the turn
on time. 1In any event the object response for each and every
mode is zero for t < 0. Note that if (as is often the case) the
coordinate origin is inside the object of interest then to is a
negative time (an advance). The allowable forms for ng, the re-
sulting individual terms in the series (all forms giving the
same sum), is a very important question in the singularity ex-
pansion method. Any entire function of s times (s - sg)na for
example can be added to ng without introducing any new poles in
the finite s plane. This question is considered further in the
next section. :

Now that the surface current density response functions for
finite size objects ure expressed in terms of natural modes,
other quantities can be similarly expanded through their rela-
tionship to the surface current density. This includes scattered
fields. However, for electromagnetic interaction questions we
concentrate in this note on the surface current density and sur-
face charge density. From the continuity equation

v.3+3a.0, VeFespm=o (2.23)

we can find the charge density from the curr;nt density. Wwhen
we are dealing with surface current density Jg and surface
charge density pg the divergence has to be interpreted as a sur-
face divergence with the spatial derivatives being taken with
respect to two coordinates required to describe a position on
the surface. Thus we can still write without ambiguity

18
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e = e e ey e

Ve B () 4 gpoe Tt =0,
(2.24)

v oe 3 (3,s) + 854 (Z',5) =0

gl

where the prime on the V indicates derivatives with respect to
the object coordinates ¥'.

As before split the surface charge density as

~

B (T',8) = B, (E',s) + b, (T',8) (2.25)
3

82
to correspond to the two polarizations. Write each part as

- (e) '
(I',s) = e EF ()T ° (', s) (2.26)

p
Op

where the normalization using egEg is again chosen to make ﬁp
dimensionless. From the surface current density natural modes
construct a set of surface charge density natural modes as

(o) . L3
Vo E = ca v - 38 (") - (2.27)

where ag is a scale factor with dimension of length which we can
choose for convenience, such as to aliow some desired normaliza-
tion condition on the 4. If desired the ayg could b:> all the
same and perhaps chosen as some characteristic dimension of the
object. Note that some vgq for the surface charge density might
be identically zero for some index sets a. This is possible be-
cause current density can be split into two parts, one with zero
divergence but nonzero curl and one with zero curl but nonzerc
divergence if the current density is confined to a veclume of
finite dimensions.6

All the above definitions for surface current and charge
density modes can be directly extended to volume modes or com-
bined modes for volume and surface densities.

Taking qut common factors the continuity equation allows us

to write the surface charge density response functions (using
equation 2.20) as
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g ° (‘E‘.s»-«lza:nu(él,s)vu B @E () (s-sy “}«rwp ® (3,%"e)

(2.28)

where the splitting of ng can be done as before. All our pre-
vious results for the surface current density then carry over to
the surface charge density. The same set of natural frequencies
and coupling coefficients apply to both (and even to gcattered
fields if you like). Note that ﬁp(°3) comes from p( s) via
equations 2,23, :

However, there is what looks like a new pole at s = 0 in-
troduced into the surface charge density response function., Us-
ing a relation for separating poles at separate frequencies we

have

O S U |

-1 s ~ su)- - 8,

_1(

a

g8 “(s - su)"

(<.29)

-n

o -na+1

- -n - -—
8 l(s - su) ¢ = scl(s - sq) - saz(s - su)

n -1 -n -n
a ¢ -1 o =l
8, (s - sa) + (-sa) s

$+ oo & (-1)
By this expension we can turite the :vrface charge density re-
sponse function:- as

-m~ (pg) -n_+m-1
i BpsIv S (£ (s-s)

(p.)
G 8 (Fe) = P, § (-1y™1 & ¢
P a m=l %a

-n - P, (p,.)
+ -}‘é}(-sa) R S M R N T L

(2.30)

where th= second summation could also be included in «.

Consider for a moment the static response characteristics
(8 + 0) of a body of finite dimensions. For a plane wave of
unit amplitude as 8 + 0 the object response goes Lo the static
limit in which both current density and charge density are pro-
portional to the field strength. For small |s]| the response is
negligibly changed from the s = 0 case. Thus there is no
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vingularity at 8 = 0 in the s plane for either current density
et charge drnsity. As discusaed bafore for the curront density
there are no poles with nonzero residue on the iw axis for

|w| > 0 because of the restriction of conservation of energy to-
gether with reciprocity when considering the time dowain xe-
sponge. The static response characteristics rule out poles in
the response at 8 = 0 so that all pclas sg lie in the left half
plaie Re[s] < 0. Thus without loss of generality in our expan-
sions we can require

Re(sul <0 ' (2.31)

Cavity modes or any other modes which do not couple to the inci-
dent field are excluded from our consideration.

Note that there are static current density and/or charge
density distributions which can exist on finite sized objects in
the absence of any incident wave. However, such static distri-
butions do.not couple tc the incident wave and can be included
as an additive term in tha surface current density and surface
charge density response, but with no dependence on the incident
waveform. As the response tu the incident wave does not depend
on these modes we do not include them i our expansion. We can
call this case the natural frequency at+ s = 0 -and this is
briefly considered in appendix A. This case is like the inter-
nal cavity modes which have natural frequencies on the axis
8 = iw; these also do not couple to the incident wave and have
no dependence on the incident waveform; they can be added into
the results at the end if desired.

Referring back to equation 2.30 for the surface charge den~
sity response functions note that a pcle at 8 = 0 is not allowed.
Thus we have letting s + 0 in the limit

-n (pg) .(pg)
2 (s *E- R @),00v T E) + W% @LE,0) = 0(2.32)
a a .

For cases that n¢ can be made to factor (such as for the sphere)
as in equation 2.21 then we can write (also dropping Wp)

-n (pg)
Z(-—s“) o S By, B (EY) =0 (2.33)
a a

This constrains a relation among the natural modes and their
coupling coefficients.
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For the case that ng ~ 1 for all & (which is the case for
the perfectly conducting sphere, »>nd perhaps for all finite
size, perfectly conducting objects) and that the coupling fac-
tors as in equation 2.21, the response functions for surface
current density and surface charge density can be written asp

(dropping the W functions).

&) %% REA
{5 (¥',s) = Zc(el)vs(r)(s-s)l
(2.34)

(ps) tO C (p ) T,
Up (T',s) = e A 5;3; c (el)v " (x')

This is a rather simple looking result with each cerm quite fac-
tored. This also points out the importance of understanding
under what circumstances (as for the sphere) the delay factoring

of the coupling coefficient can be uged.

Now the waveform functions f,(s) can be reintroduced and
multiplied ¢a both sides of equatgons 2.34 or equations 2.20 and
2.30. Recombining the polarizations as in equations 2.18, 2.19,
2.25, and 2.26 ¢ives complete representations of the solutions
for surface current density and surface charge density. This
would give indlvidual terms with frequency dependence in the
form £p(s)Npg(€1,5) (8 - sq) “Na*M-1 yhich, for the case as before
that p factors. has the fregquency dependence in the form

e~8tof, (5) (8 - sq) Ne*™~l yhich for ng = 1 reduces to

-stofp(s)(s - sq)“l

However, why stop here? The behavior of f;(s) may allow us
to conveniently express {“ in terms of waveform singularities,
just as we have been considering the nbject delta function re-
sponse in terps of object singularities. The general idea then
is to expand f,(s) in terms of its singularities and separate
the waveform and object singularities into separate terms. We
might call the resulting separate terms as the waveform part and
object part of the response for convenience. Consider an ex-

ample by letting

s t°

£,(t) = e Y ult) (2.35)

y- 1
fpls) = == -

so that the waveform is a decaying exponential with a simple
pole at sy (a waveform pole). Note that the commonly used
double exponential waveform for EMP environments is nothing more

than the sum of two terms such as this.
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Taking the surface current density first we have (for s, »

s; for any a) - | {
&g, 3 REAIN -n
%; (z',8) = s)iﬁ (r',s) -En (el,sw (i'r')(s-aw)'l(s-a,,) ¢
(3 ) A(F) '
% (¥',8) + Vp 8 (T',s) (2.36)
w

where the object part is

(3 ) ) +”“"~~‘ -n_+m-1
V TP E( D™ (s~ )R (3,000 B (F')s-ay)

o m=l
(2.37)

where the second sum could also be included@ in o and where the
waveform part is

(3,) “n, . (3,)
3 (F',8) = =2 (s, - 8) A (8,97, & (X" (2.38)
v a

Note that here and for most of what follows the W functioans are
not included but can be included in a cocnvenient way in the ob-
ject-waveform split. For the special case of ng = i this re-
duces to

"(3 ) -+ -] (3 ) -1
vpos (r',s) = ;(sa-sw) na(gl,s)'sa 8 (") (9'50,) A
(2.39)
(3 . F
v, - o) g8y, m Y B (EN)
w

For more general waveforms (but still ng = 1) this suggests
a definition of the splitting as

- N ) L
3!’03 ('t".s) = ;fp(su)n (el.s)v (f')(s—sa) 1

(2.40)
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) 3. £ (8)-f (8)
g’ =+ - ~ +Vs’ > . "p p a
3pw (x',s) 2; nu(el,S)vcl (x') ey

a

As long as the waveform singu’arities are separate from all g,
then no ohject poles app:ar in the waveform part of the response.
If the sy do lie on waveform singularities then special treat-
ment is needed but the general idea of equations 2.40 would
still seem appropriate. For ng more than just 1 the object part
can be dafined through a Taylor expansion of p arcund each sqy

giving

) ¥ 2"“:(““1’(5 ) 3) -n_+m-1
‘Q‘Poa (;"8) : a m=m) im—-IH = “a(gl's)-\”a ® (;.)(8-30) * -
(2:‘1)
(5 ) 3 (F)
8" >, = 87 (3, - 8" ¥,
va (T*,8) = 5p (x',s) Vpo (¥',8)

As a special case consider the unit step waveform by letting
Then the waveform part of the response we write as

Sw = 0-
J) . SR
V8 @ e = 2200 @Y, 2 dEn sy (2.42)
w a

With n, factored as before and assuming ny = 1 the results r~-
duce to

&) "% (3
8’ », _ e s’ =+,
6Pw (x',s) s 69 (x',0)
) (2.43)

&) -st F))

38 F',8) me ©°Y.s7lc (313 8 (F)(s-s )"} )
Po : }5: a o 1" a [\

where the static surface current density response is

) (3,

8, % @0 = 3 s le @3 (@ (2.44)

a

The step function resporise of the object is readily constructed
from the delta function response. A factor of (-sy)-l is
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included with each object pole, and then a new term is added
which is nothing more than the static response time a step func-
tion with turn-on time of to. Thus beside tabulating the natu-
ral frequencies, modes, and coupling coefficients of finite size
objects we can tabulate the static response so as to readily
construct the step response of the object in both Laplace and
time domains.

Now the neat thing about the static response is that we
need not consider it in terms of direction of incidenc~ and pol-~
arization. For the static surface current density r=zponse we
can solve for the magnetic field using the Laplace equation with
a uniform magnetic field incident on the object. The exponen-
tial factor in the incident plane wave (equations 2.11) becomes
irrelevant, going to 1. Thus we need only consider three sepa-
rate cases of the incident magnetic field, corresponding to
three orthogonal direction such as the cartgsian axes (x, y, 2).
For a unit incident static H field we have Jg response functions

Usy etc. for each of the three axes giving a dyadic surface cur-

rent density response function as

+(3.) (35) , .
0.8 () =0 % (r)e. + U

8 (2.45)

Since the i field is in the d:irection 31 X Ep for p = 2, 3 we
can write '

5 (3,) +(F )
ESP (F',0) =T, % (2" - (&%) |

NEA I RN 75 SRR 78 SN
--=ux (F') [, (¢, epmﬁsy CRICRICILIND A MAC S CRITRNE

(2.46)

shoying a set of direction cosines for three static solutions.
The' static response dyadic for the surtace current density is
then A useful tool for directly extending the delta function re-
sporise to the step function response. Cne could go to other
types of "static" terms for s~2 (ramp) and higher order such
waveforms. The step function waveform is a useful tool because
of 1ts fast rise time to a finite amplitude making the static
rasponge corru.pondingly important.

The surface charge density has similar properties when the
waveform is reintroduced as
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(o)
B (2',8) (2.47)

P o w

As before the idea is to agsociate the object poles with the ob~
ject part of the response Vpo and the rest with the waveform
part Vp,. If ng takes on more values than one the double sum as
in equation 2.30 extends into a triple sum including coeffici-
ents £p(s) and the first ng - 1 derivatives all evaluated at sq.

For simplicity just consider the case of ng = 1 with nq
factorable as above so that we have the simple surface charge
density response function as in equations 2.34. The object and
waveform parts of the response may then be written as

Lp) (p.) -
ARCURL °pr(sa)s 5 Sal)vy (£') (58,7}

) 2 (2.48)
L(Pg) o -st, c (pg) , £,(s8)-f (s,)
va (r',s) =e g;:a: c,le)v, = (') 55

The response to an exponential waveform as in equations 2.35
takes the forms :

- (pg) -st | - () -
VB e me 2 (s -s ) S c (), ° (E')(s-s )

Po a aa
(2.49)
S(pg) Fle o (pg) o,
AT Z(sw s moa Cap)vg © D)
For sy = 0 we have the step response as
(o) -8t (p,)
8 ' - (] 8’ ,», RS |
Vpo (r',s) =e ; -T- c (el)va ‘(r } (s sa)
(2.50)
Loy "o _(pg) ..
pr (r',s) = Up (x',0)

where the static surface charge density is given by
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(pg) -1 e . (o)
g, ¢ .0 = Za:(-sa) N €y (811 v,

(r") (2.51)

The step furiction surface charge density response is then also
constructed from the delta function response in the same way as
the surface charge density with the same form of the_results, at
least for ng = 1 and a common delay factorable from ng4.

For the static surface charge density response we need con-
sider only the response to three orthogonal incident static elec-
tric fields, directly analogous to the relationship of the
static incident magnetic field and surface current density. For
a unit incident static E field we have pg response functions
(scalars) as Usé etc. for each of the three axes giving a vector

e

surface charge density response function as

(p_) (p_) (p.) (p.)
8 1y, - 8’ > s’ > s’ +
ﬁs (z") st e, + uﬁy g, + usz g,

(2.52)

Since the E field is in the direction Ep for p = 2, 3 we can
write

~(pg) (pg) , .
G, % (x',0 = G, % (% R

(pg) . o pg) . (pg) o &
= st [ex-ep]+Usy [e -ep]+Usz [ez-ep] (2.53)

showing a set of direction cosines to weight the three static
solutions. Thus for step response purposes it is useful to tab-
ulate the vector surface charge density response and the dyadic
surface current density response which can be multiplied in a
dot or inner product sense with an appropriate scale factor

times the static field of interest to obtain the static response.
This applied in both frequency domain for small |s] and in time
domain for an important term in the step function response.

As discussed near the beginning of this section the fact
that we are dealing with real valued time functions makes the
Laplace transformed functions have certain symmetry properties
with respect to the 2 axis as expressed by equation 2.4. Bas-
ically £(Q + iw) has its real part symmetric with respect to a
sign reversal of w while its imaginary part is antisymmetric
with respect to a sign reversal of w. Also as discussed before
all object poles with nonzero coupling to the incident wave lie
in the left half plane 2 < 0. These two results tell something
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about the object pole pattern in the complex s plane. For con-
venience then let us split the o index set into three parts.
For w > 0 (the upper half plane) use a4, for w = 0 (the 2 axis)
use ag, and for w < 0 (the lower half plane) use a-. Since
poles come in conjugate pairs for those not on the Q axis then
we can relate a- to a4 as

8 =8 ' (2.54)

which specifies which a- goes with which a4+ except for the case
of multiple poles at 8y in which case we make the identification

of the a- set to the a4 set with the value of ng in each case
the same so that we require

Equatiocns 2.54 and 2.55 define a one to one correspondence be-
tween o~ and a4+ index sets, unless we have mode degeneracy in
which case we also require a- and a4+ correspond to conjugate
modes with conjugate coupling coefficients as well.

From the conjugate symmetry requirement the natural modes
and coupling coefficients can be made to have the same conjugate
relations. Thus we set

$:f°)(§') . 3:35)(2') , xmi§:z’)(§'k -3
v::‘) (£') = G:”) (') , 1Im [v::s) (Z')j =0

3, = ;a+ , Im[aao] = 0 (2.56)
Ry_(8ys8) = §a+(31,§) ' ﬁao(él,s) = ﬁao(él,S)

> - -+
ca_(el) = ca+(e1)

Imfc, (E,)] =0
o

With these relations we can now write the surface current den-
sity response functions as
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3 ) | (3 ) -n
s’ -~ > -+ g’ , 4+
(r',s) = n. (e,,8)Vv (r')(s-s_)
:42 ao 1l ao ao

~ (
-~ (+]
UP

y -n

Q
+ n (-é 03)-\” 8 (;')(s-s )
g[ o, 1 o, a,

+

pot > - g8’ » - —na-l-
+ "a+(°1’°)"u (r')(s-s )
+ +

)-n“
[+ ]

-8t (J_)
= @ Oan "51)% 8 (?')(s-s
a, © o (3

-st (J.)
o + >80 >, -
a +t e uz+ [ca.f‘el)\’a_’_ (r')s su+)

- -n,
+‘éu+(€1)3a+5 (f')(s-§u+) *] o (2.57)

*+shere the case where ro factors out a simple delay is also in-
cluded. Note now that each term in the sum has the conjugate
symmetry of equation 2.4, is real on the I axis, and corresponds
to real valued time function. Similar properties apply to the
surface charge density response functions. Taking the simpler
form with ng factored as in equations 2.34 with only ng = 1 we
san write .

- (ps)}.,. "Bto c > (ps) +, -1
Up {r*,8) = o ; E—;—-;;— cao(el)vuo (r )(s-sa)
o o ©o

(p.)
o C -+ a8’ +, -1
> [""—‘ “a, (S0 Ve, " (18R )

(p.)

c S (£ )(s-5, )‘1] (2.58)
+

- -
+ —=—— c_ (e,)V
a, 1l o,
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The same idea is readily applied to the more complex forms.

E If 1 factors as in equation 2,21 then the s depen encé of
E each term is a delay with a term of the form (s - 8¢)™P where
E : n' might be ng or other more complicated zxponents. Converting

this term to the time domain through the well known Laplace
transform pair gives

‘-1 \
© r -st . (t-t )" s (t-t_)
E ; , .ol [e °(s-sa) -n ] - o o o

7T © u(t-t )  (2.59)

For the extremely interesting case of n' = 1 this is

where a wour'ld be taken as a4 or oo for this frequency to make
. wg > 0. Since g < 0 for all poles of interest then each term

!
! -gt _ s (t-t )
: : L-l[; ©(s-s) l] = e © u(t-t) (2.60) 3
; ; o ()
; i .
E This is a darped sinusoidal waveform like that which suggested . ﬁ
i looking at the natural frequencies in the first place. The }
damping constant is just Qg = Re[sg)] (plus or minus as one ' i
wishes) and the radian oscillation frequency is just wg = Im[sg] 4
il

in the response function goes to zero for large time as we would

,',( expect. Writing out the real and imaginary parts gives %
g | n""l o ’
~1[-st, . R Q it-t,)
L7 ]e {s-s8 ) e ur b

[cos(ma(t-to))+isin(ma(t-t°))]u(t-to). (2.61)

If the ny terms do not factor as above then we need their in-
verse transforms to convolute with terms similar to these.

Consider then the surface cu.rent denslty delta function
response (for n factcred). From equation 2,57 we have

NEANY . LT, (et b 0ttt
U, 0= e, (el)v 5z on SN . “u(t-t)

a o

) O

n, -1
fwg (=t )y (o + e (tt)

L3, a, (t-t )
+ Ezae[ ., (el)v S (X Gy -1 e ult-t,)

(2.62)
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For the surface charge density for ng = 1 we have the delta
function response as

{ ' (pg) ., c .. (0g) By (&%)

t u, *(E, ) = ; oo Ca (B1)Va (' e u(t-t,)

f l o o o

: ! ' '

] i - - .

: l . . oy, iwu+(t t,) ﬂa+(t t,)

| | + ) 2Re|—S——c_(8,)v % (F')e e u(t-t_) (2.63)
: i a 52, %, %+ 1 & °

' ? + + +

; . | From the way that the terms are split up we have separated the -

damped exponential parts of the response from the damped oscil-

latoxy parts. Depending on the real and imaginary parts of the
natural modes, natural frequencies, and coupling coefficients
the initial "phase angle" of_ the sinusoidal oscillation may vary

ith direction of incidence e1, polarization P, and/or position
r' on the object. If one wished he might consider the real and
imaginary parts of a natural mode as separate modes and consider
the coupling to each part with different cistributions perhaps
over the object.

e e

With the incident waveforms reintroduced we can_also di- {

: rectly write down response waveforms for cases that n, factors C

' as before. Consider the case that no waveform singularities are K

at any of the sg. In particular consider the step function re-

! sponse for all ng = 1. For the surface current density the ob-
ject and waveform parts from equations 2.43 and 2.46 are

N ) Qa (t-to)

V s(r'.t)- Es S, (el)v (;')e ° u(t-to)
a O O (o]

iw_ (t-t )7 Q. (t-t )
N o o a o
+ 22Re[suic +(el)v o, (e ]e Yo uttet)  (2.64)
+ ;
) +(3 ) f
Gpw (T',t) = 63 s (?')-télxéplu(t-to)

For the surface charge density the object and waveform parts of
the step response functions from equations 2.50 and 2.53 are
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(o
+ Ezne[-—,‘-’——- ca+('51)vu+° (F)e
G+ su+au+

| 0 (t-t_)
(pg) +, c +  (pg) s, 8, ©
v, S @, = ; el SEOUMANCSL u(t-t)

iw,_ (t-t)) Q. (t-t))
o o a (3
+ ] e + u(t-to)

(2.65)

(pg) .. (g 4w
va (F',t) = b’s (£') e ult-t,)

In the time domain only one term is added to the delta function
response, namely a step function. The coefficients of the
damped sinusoidal (and simple exponential) terms are rather
simply altered.

The response functions for other kinds of incident wave-
forms can be readily found for the object part by introducing
coefficients fp(sq) in the time domain waveforms in the same
forms as introguced iii the Laplace versions such as in equations
2,41 and 2.48. The waveform part can be more difficult if only
because of the many possibilities one might choose for incident
waveforms. Different incident waveforms give different types of
time domain waveforms when combined with the terms arising from
the object poles. Note that the response to aun incident wave-
form cannot always be simply split into object and waveform
parts. As a trivial example suppose fp(s) itself has a pole at
some Sy. In such a case the contribution from sg to the re--
sponse has a higher order pole than the delta function response.
However the response associated with sy is then easily treated

separately and the same type of time domain function as in equa-
tion 2.59 results.

In this section we have tried to give some insight into the
power of the singularity expansion method for representing solu-
tions in both frequency and time domains, at least for finite
sized objects. While many variations of this problem have been
considered, complicating the notation somewhat, the solution of
specific problems may be expressed somewhat simpler with the no-
tation adapted to the results of the problem at hand. Specific
convenient choices of the a index set are needed for each prob-
lem and the possibilities for nyg can be limited. The natural
modes and/or coefficients may be expressible as purely real
quantities in some cases, even for natural frequencies off the Q
axis. A basic question concern; the coupling coefficients nq
and the other entire functions p- These need to be optimally
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chosen for the different pioblems at hand depending on early
times, late times, etc.

There are still types of problems which have singularity
expansions with terms such as branches which have not been con-
sidered here. 1Infinite sized objects have object responses with
such terms. However the reader should have a general idea by
now of what the singularity expansion method is all about. What
has been done for expanding in terms of natural frequencies for
object response plus another term for waveform response can be
carried over to natural frequencies and branches for the object
response with perhaps increased complexity asscciated with the
branches.
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III. Properties of the Singqularity Expansion of the Object
Response for Finite S?ze Obiects Viewed Irom the Finlite
- Mafrgx Formulation of Intagra Equationg

. There are two somewhat complementary ways to view some of
the questions regarding the form of the singularity expansion
for objects of finite size. One approach involves consideration
of the properties of an integral eguation formulation for the
continuous object geometry. Various types of integral equations
such as those classed as electric field formulation, magnetic
field formulation, extended boundary condition formulation, etc.
can be investigated to obtain mathematical theorems concerning
the properties of the singularity expansion for various kinds of
object classes. This might be termed the continuous integral
operator approach. Drs. Marin and Latham are presently using
the magnetic field integral equation to consider the question of
there being only poles in the finite s plane in the object re-
sponse for finite size perfectly conducting object from this
viewpoint. Clearly this kind of approach is needed for consid-
ering many such guestions so as to establish general theorems
applying for all frequencies and time and stated exactly in an
analytical form. This could be corsidered a viewpoint which is
based on the continuous nature of the object geometries. Eigen-
function expansions can also be used for such considerations but
the tabulated cases of such expansions are limited. Eigenfunc-
tion expansions are possible for general kinds of object geom-
etries but they must be numerically calculated.’ However the
analytic properties of such eigenfunction expansions can still
be used to investigate the singularity expansion. Viewed an-
other way such eigenfunction expansions are representations of
the integral operators defined over the object characteristics.

The second and complementary approach might be termed the
discrete approach. This refers tc zoning the object into many
discrete zones and treating each zone as a position with a par-
ticular current density etc. associated with it. The integral
equation then takes the form of a vector-matrix equation which
has the general form

(gn'm(S)) .' (Em(S)) = (in(s)) nm=1, 2, ++¢+, N (3.1)

where N is some typically large integer. Here the vectors (Jp)
and (Ip) each have N components and are not the same as th

three component space vectors. The index n referc to the r co-
ordinates for the "incident" quantities shown here in general as
(In) which might come from an electric or magnetic field that is
incident and therefore specified. Note that in forming the lin-
ear equations summarized as equation 3.1 each spatial zone can
have one, two, or three nonzero current density components_and
this influences how the indices n and m are set up. The (Jp)
refers to the unknown current (r' coordinates) with one, two, or
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three components in each zone. The matrix (gnp,m) has elements
which couple the n zone-component with the m zone-component, it
is basically a spatially discrete form of the integral operator.
While equation 3.1 is shown in a form suggesting that it is in-
tended for solving for the current density this is not necessar-
ily the case; it could be solving for another quantity from
which the current density would be obtained by a subsequent cal-
culation. For our present discussiocon, however, consider it the
current density.

Considering the current density components in each zone as
our unknowns is not the only way to obtain a set of linear equa-
tions from a given integral equation. The current density can
be expanded in a more general set of expansion functions and a
matrix-vector equation formed tc obtain the coefficients in this
expansion. Of course, only a finite set is used to obtain a fi-
nite N x N matrix and the sets of funciions involved should be
in some sense complete in the .imit of large N. This general
approach is often termed the method of moments.8 Both the zon-
ing approach and more general function expansions are valuable
from the viewpoint of numerical calculations. In terms of the
singularity expansion method there is clearly much work to be
done in refining the numerical techniques to find natural fre-~
quencies, modes, etc. most eificiently and most accurately.

Much that has bheen done for other numerical problems can likely
be applied here.

Besides the practical aspect of numerical computations the
matrix-vector formulation can be used as a theoretical technigue
for establishing some of the general characteristics of singular=~
ity expansions. If in the limit of large N the solution for the
current density

~ -1 . ~
(Fp(8)) = (g, ) (i) | SR

converges O the exact olution of the integral equation then by
understanding general properties of (Jm) ge can find general
properties for the continuous case, , 8). Only where
th: matrix elements are not uniquely defined or the inverse ma-
trix

y=i - | (3.3)

o
"m
o
]

)

m,n (gn,m

does not exist is (3m) not uniquely defined or non existent.

Let us then look at the singularity expansion characteris-
tics of the approximate numerical solution (Jm). In the limit
of large N for convergent matrix-vector formulations the
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f ! singularity expansion of (Jy) will be that of 3(?', s). Con-
: ( sider the case that some zoning technique is used to convert the
i ‘ integral eguation to a matrix-vector equation by dividing the
: | body surface or volume as appropriate into discrete zones of fi-
: * - nite linear dimensions. The number of zones is then less than
W or equal to N. Clearly then we are only considering finite
' sized objects here because an infinite surface area or infinite
. volume cannot be divided up into a finite number of areas and/or
\ volumes with finite linear dimensions unless some very strange
extensions to infinity with finite volume and/or surface area
are included. Let ug congider only finite sized objects here so
that all d;atancgs Ygw— rp| begweer. zgnes are finitea. The co-
ordinates r and r' go overaihe Ygnand rp.and are centered on
each 20ne in some sense. The incident quantities and rasulting
current density are evaluated in an appropriate average sense at ]
each zone center. ]

Let i(?, 8) be basad oa an incident delta functicn plane
wave, It might come from the electric and/or magnetic field or
some spatial projection of these on the object. Since this is
an entire function of s (analytic in the entire finite s plane
for all r con the finite size _object) then the discrete formula-
tion (In) has each element (In(s)) as an entire function of s.
In this formulation let the current density bg the sum of all
terms representing charge motion, including o (conduction cur-
. rent density), s(e - €o)B (displacement current density), and
vVx [(u~ uo)ﬁl (magnetization current density). Split electric
"~(. and magnetic fields each into the sum of incident plus scattered
. parts. The incident parts are given in the problem definition.
3 ; The scattered parts can then be represented as integrals over
s i the current density with kernels involving the free space
] ¢ A Green's function which uses y = s/c instead of some propagation

g constant involving local medium parameters which may vary with
; position.

s e a s e

Thus we have a pair of volume integral equations (which may
reduce to surface integral equations say for perfectly conduct- :
ing bodies) which equate scattered electric and magnetic fields .
(which could be thought of as a six component vector or aven a
four tensor in relativistic formulation) to integrals involving
incident plus scattered fields. Move the terms involving inci- AP
dent fields to one side of the equations and use these to form ~ \ ]
the N component vector (In). Note that o, €, and u are assumed '|
to be single valued analytic functions. of s except possibly for
poles which can be removed by nultiplying through the equations
by an appropriate zero to make each In(s) an entire function. :
The scattered parts are used to form (gn,m) and (Jm) which anis an e
. appropriate scattered field vector or the current density vector
. less that part directly proportional to the incident fields.
Note that o, €, and u enter the coefficients on the scattered
side and are analytic single valued here then as well while the
exponential terms use y = g/c which is an entire function.

K
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Through this procedure we can construct an integral eyuation re-~

i § lating current density and/or surface current density as appro- (
i i priate to the incident fields involving orly analytic single

r i valued functions as long as the media are suitalbly well behaved.

By various manipulations such a pair of integral equations can

be converted into various more desirable forms. Then the in-

tegral equations can be cor.verted into a single matrix-vector

equation which can have various forms.

One advantage of a zoning formulation for these considera-
tions is the somewhat physical picture one can associate with
5 the discrete zones. Infinitesimal differential line, surface,
and volume elements become discrete ones of small size. .As long
S as complex radian wavelengths have magnitude large compared to
| ' zone size then the interaction between adjacent zones and one
' zone on itself are described by statics. We can start thinking
of the zoned object as a big circuit with simple elements con-
necting adjacent zones but more complex ones connecting distant
zones. In each zone there are a few equivalent sources associ-
ated with the discrete source elements Ip.

| The kernels of the various integral equations are based on
' the scalar Green's function (for free space) as

? -y|Z-¥'|
G(s, |[E-2']) = Seoe— (3.4)
an|r-r'| {0
. 3
with ' i
; (3.5)

<
[}
Ol

; This scalar Green's function is an analytic function of s for b
3 i finite |r-r'| with |r-r'| ¥ 0. This function forms the basis ‘
for the various kernels used in the various types of integral ‘ <
equation formulations of general interaction or scattering prob- ;
lems. The dyadic Green's function can be written in the form9,10 i

o + -+ 1 +> & 3 3 1l + > )

: &(s, |E-2')) -[1-—2- VV-] (G(s,lr-r‘|)’f]-[f—7 VV]G(s,|r-r'|) }
| Y Y -

(3.6) .

with the identity dyadic :

3 100 - ‘
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L Note that the dyadic Green's function is_formed from the scalar
5 | Green's function by multiplication by y~2 (which congains s-2)
f ;o and spatial derivatives as in V9, fThus for finite |r-r'| (but
; not zero) the dyadic Green's function is also an analytic func-
! tion of s, except at s = 0. However in going to static limits
v the s~2 term combines with other terms in s to avoid an object
L pole at 8 = 0 as discussed before. Similarly terms like VG etc.
_ ) appear in the kernels and the same analyticity properties with
2 respect to s apply.

Now in forming the elements of the matrix (gn,m) for fn o
rm the coordinates rp and ry are used in the various Green's
function type terms. 1In such cases then the matrix clement must
be an analytic function of s except possibly for poles which
don't bother us. The spatial derivatives can be replaced by fi-
nite difference operators based on the spacing between nearby
zones_in the zoning system defined to segment the body. For
Yg = rh (including the case g = h) the problem is basically a
static one. The scalar Green's function can be written as

T e e —r
N

2

o 1 > o+, 3

s G(s, |E-F'|) = ——— - X+ X |2-27] + o(sD) (3.8)
? ' an|E-gr) 4T BT

Taking thg firgt few terms as needed then the matrix elements
: gn,m for rp = rp (including gn,n) can be defined and they too
* ( are analytic functions of s. Thus the matrix (gn,m) can be de-
] : fined as an analytic function of s except for possible poles of
f ' finite oxder. Note that finite zone size is important here be-
, cause zone size contributes to the matrix elements and vector.
. ; components and we want to avoid infinite values for these.

i % One should be careful of various approximate formulations i
so that the resulting matrix elements are analytic in s without
branch cuts, For example it is common in various thin wire type
formulations to obtain terms containing functions like ln(yw)
where here w is the wire radius. Such terms result from inte-
grating the Green's function to remove a coordinate such as the
azimuthal angle around the wire, perhaps approximating the re-
sult and then intearating say along the wire in the process of
finding an asymptotic form for small wire radius. Such thin

; wire formulations are important and perhaps even useful in de-

i - veloping singularity expansions but for finite size bodies they

» do have this limitation which needs to be recognized. For our

present purposes we do not use such types of formulations.

labl e ot ki Rt e daae e ot dema

The cofactor matrix D for (gp,m) is

= n+m
D= (d )= ((-1)"Maet Gn,m] (3.9)
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where Gp,m is the N - 1 by N - 1 matrix formed by deleting the
nth row and mth column from (gn,m). The determinant of (gn,m)
we indicate by ,

A= det(gn'm) | (3.10)

Note that the transpose is

D* = (dm,n) - , (3.11)

The solution of our matrix equation can then be written

(Jm\s)) = (fm'n(sn . (In(s)) (3.12)

where

(3.13)

n+m
dm,n = (-1) det Gn,m

Now since the gnh,m are analytic functions of s except pos-
sibly for poles, then’the same is true of both the dm,n and A
since the determinant is a polynomiel function of the matrix
elements. Therefore since the In(s) are entire functions of s
and the fy n(s) are analytic except for poles, then the Jn(s)
must also ﬁe analytic functions of s except for poles. Further-
more any poles of the gn,m elements are associated with poles in
the medium parameters or ‘with the Green's function with various

operators on it. Poles associated with the Green's function are

at 8 = 0 and 4o not concern us because they give no resulting
poles with non zexo coefficients based on physical grounds if
the media are passive. Poles in the medium parameters ¢, €, U
can be troublesome s0 for our present discusaion we restrict

. ourselves to the case of no such medium poles. Such poles in
passive medium parameters could, however, be included in the ex~
pansicn technique if desired. With this restriction then the
poles in (Jn(s)) are the zeros of A and the order of each pole

. 18 less than or equal to the order of the corresponding zero of

A,

The order of the zero at sy must be finite since if A and
all its Gerivatives are zero at sg then as an analytic function
A must be identically zero implying no unigue solution for (Jm)
violating the uniqueness theorem for the solution of Maxwell's
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equations. Furthermore the zeros of A in the finite = plane
must be isolated, i.e. only a finite number are allowed in a fi-
nite region of the s plane. This again is a property of ana-
lytic functions. As an example suppose that there were a line
of zeros for A. Then by analytic continuation A would be zero
in the entire s plane, again not allowed.

This result is of course of fundamental importance to the
singularity expansion for £inite objects. It relies on restric-
tions on the form of the medium parameters and the convergence
of the particular matrix-vector formulation of various possible
integral equations. The response has only pole singularities of
finite order and isolated in the finite s plane. Since we also
restrict the object to be passive then these poles cannot be in
the right half plane. Furthermore as discussed previously (and
in appendix A) any poles on the iw axis must have zero coupling
coefficients and so we can state for our purposes for passive
objects that all poles in the finite s plane have negative real
part (Qq < 0). Stated another way how cai. the (Jn) have branches
(removing multiple values) when the elements gp,m are chosen to
have no branches because they are single valued?

Anothar way to view this question of only poles for the
singularities in the finite s plane conctrns the numerical re-
sults per se. Matrix-vector formulation of various integral
equations has been common for a long time and has been ur2d to
obtain many accurate solutions for finite size objects. For
formulations which have used analytic matrix elements and inci-
dent vector components (except for poles in the firite s plane)
the numerical results obtained (usually on the iw axis and some-~
times converted to time domain) must be representable by a sin-
gularity expansion which has only poles in the finite s plane by
our previous discussion. Thus in cases where accurate results
have been obtained such results are accurately representable by
such a singularity expansion. The accuracy of such a singular-
ity expansion for firite size objects is t.us related to the ac-
curacy of the corresponding matrix-vector representation of the
integral equation from which it is derived. :

Knowing that the inverse matrix (fjs,n) has only poles in
the finite s plane this still leaves open the question of sin-
gularities at infinity associated with an entire function such
as e-S8to, One might argue that this matrix is like an admit-
tance matrix for a large circuit composed of inductors, resis-
tors, and capacitors and like such cases might have only ratios
of polynomials in s for matrix elcments. However for large N
the degree of such polynomials could get arbitrarily large.
Thus for completeness at the moment let us write

-n

o .
(£ o (8)) =g; (s=8y) fq ) [+ (g nl8)) (3.14)
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where the (m,n)q are constant matrices which are the coeffici-
ents of each pole of order nyg > 1 and (fy,n(s))e is an entire
matrix function of s. An interesting question for further in- "
vestigation cencerns the properties of (fm,n(s))e for some ma-
trix size N by N and in the limit of large N; perhaps it is zero
for many cases of interest.

Written in matrix-vector form the current density expansion
as in equation 2.20 for the delta function response with polar-
ization p is then

n

a

+ (ﬁm(:l,s)) (3.15)

(F (s))
m p

= Y fi_(e,,8)(v.) (s~8 )
P jz; a1 m o
At each sy we can expand each fig in a power series since each fiy
is an entire function. The successive terms in such an expan-
sion produce poles of order ng - 1, ng - 2, ets. associated with
each nyg > 2. Note that for each sy there may be several ng
while each ng can have several v, (degeneracy) each of which has
an fig. Expanding the inverse matrix (fm,n(s)) as ir equation
3.14, substituting this in equation 3.12, and multiplying by
(s-sq) N we then obtain for each polarization

~ P ~ >
2, iy s (v = (g, )  ( (3,,8,))  (3.16)
n,=N, o %In =N P
(all modes) e

where Ng is the maximum pole order ny at the sy of interest.
Note that the number of independent v for this case need not be
infinite because the coefficient matrices (fm,n)q come from the
inversion of (gn,m(s)) near the sy where 4 = 0. Similarly we
can expand (I,) near sg to obtain the coefficients of the next
higher order pole contribution (order Ny - 1) as

2 Aa@Es vy + X [ agte ]

nauNa-l a narNa s=sa a
~. -’
= (fm,n)a . (In(elnsa))p + (fm'“)u
na=Na-l nu'“a
- LI (e.,s)) (3.17)
ds[ n 1’ p] *
8380 .
{
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Knowing the 33 and the choice for ﬁu(él,s) then the terms for

ng = Ng can be calculated to leave this last equation as one for
the ng = Ng -~ 1 terms. This can be repeated to obtain all the
terms for the poles of all ordexs at sq. If the vy are degener-
ate for a given ng and are constructed to give an orthogonal set

for this case in the sense

(V) =« (v.) =0 for a # a° (3.18)

then the coupling coefficients have the relation for ny = Ny as

-~ -+ | - -k~ - -
o Bresa) =[G+ () ] ) = )+ (F@p8p)) (3.19)

For purposes of calcrlation with the inverse matrix suppose
A has a zero at sy of oxd - J,, the maximum pole orxder of
(fm,n(s)) at sg. Say that near sqy

N, N+l
A(S) = (s-sa) ANG + (s-sa) ANG-‘-]_ 4 seoe

(3.20)
-N -N_+1
a 'a L BN BN )
6 N * (s-sa) G—Na+l +

1
= (s-s_) -

A(s) o a

with the coefficients related as

A
Nu+1

s a...l_.. é = -
~N A ’ -N_+1 2 ’
a A
a

(3.21)
a NG N

and so on by inverting the series for A(s) to one for A-1l(s).
Then the (fm,n)y can be calculated from

(£, n(8)) = z1a7(d, [ (8)) (3.22)
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(3.23)

and so on by collecting terms in expanding ths series for A(s) 5
around sy intc a series for 1/A(s). i

Note that there is a dif-
ferent set of (dm,n) g coefficient matrices at each sy so they
can also use the general a subscript set.

Instead of using the inverse matrix approach we can set up
an eigenvector equation, factoring out ths coupling coefficient,
by first axpanding (gn,m(s)) in a Taylor series around sq as

(9 mts)) = 2 (sms )t (g,

=0

L
1 {d
(gn'm)z = IT [—-ds"(g“"“(s”]
: s=

m)z

™

(3.24)

Note again that there is a separate set of coefficient matrices

for each sq so the (gn m)g can also use the a set.

Substitute

this series together with eguation 3.15 into eqaation 3.1 to ob~-

tain

£=0

= (In(s))

lad -n
{Z(s-sa)z (gn'm)E} °{Zu:ﬁu('e'l.s) (V) (8-55) %+ (W (8,,8))

(3.25)

Since the right side has no poles at s, then collect the coef-
ficients of each pole on the left side and eguate them to zero
beginning with the highest order pole at 8y for ng = Ny as

) - (vm)

(g
n,m o a

n,=N,

= (0) = (g
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where the coupling coefficient is assumed non zero and factored
out and (0) is an N component vector with all gzero elements.
There may be several natural modes for ng = Ng perhaps associ-
ated with symmetry. If there is mode degeneracy for ng = Ny
then construct an orthogonal set which spans the space of such

modes so that the property in equation 3.18 applies. Going to
the ng = Ng - 1 term we have (for Ny > 2)
~ d . ,»
z:n(e 8. )0g ) o (v) + 2: [« i, (e ,8)] (g. .)
a1 %a’ *on,m m L lds 'a'T1 - n,m
n,=N, 1 a n, N, 1 s=8 "o
(3.27)

* (v) = (0)
mu

At this point let us consider the form of 7y to simplify some of
these terms.

Suppose that we restrict fi; to have the form

(3.28)

fig(€,,8) = —=— c_(&))

T(s)

where we have factored out the complex frequency dependence as a
common factor for all a. This common factor Ti{s) _is specified
to be an entire function in the complex s plane; T(s) may even
have zeros in the finite s plane if we wish to remove some poles
before making a singularity expansion. The new or modified set
of coupling coefficients cg(el) are specified to be constants
and are the same type of constant coupling coefficients as used
in section 2 as for example in equation 2.21. One choice cf
T(s) is clearly eS5to as used in section 2. .

Now multiply the matrix-vector equation 3.1 by T(s) tc ob-
tain .

(9, m(8)) * [Fle) (G ()] = Fls) (T, (a)) (3%29)

The right hand side is still an entire function. Then restrict
for our presen: analysis the coupling coefficients to have the .
form in equation 3.28. Solve for the cy and divide the results

by T(s).

Egquation 3.25 can now be rewritten as
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| - | on.
{E(s—s ) (qn m’ : '{ch(gl) (vy) (8-8,) %+ T(s) (ﬁm('e'l,s))} _ : .
2=0 o a

- i(s)(in(s)) ' (3.30)

The s derivatives of the coupling coefficients as in equation
3.27 now do not appear. Equation 3.26 can then be generalized
for Du - A].' 2' ...' Na aB

b (9, o) * (V) = (0) (3.31)
3 . a :
¢ nu=Nu-£

from which natural modes can be calculated in the form of orth-
ogonal natural modes constructed for each ng for which there is
modal degeneracy.

Fo Similarly using the expansion of the inverse matrix we can
[ write

-n

F(s) (T (s)) = ~sg)  C(Ep ) +(E (8)) ¢ - [T(s)(F (s))]
Ta ! e ,
{ i
‘ pILAC ) L F (e (W (3 3.3
; = 4 c:m(el)(vmm (s-s,) +T(s) (W (e;,s)) (3.32)

Around s, make the Taylor expansion

e e i om ¥ M i tin e

(s) (T_(s)) = E(s-s) (7).
=0

(3.33) :

L 1

(r) = %—,—[i—-,(i(s) (i_(s)) 1]
8 :

L
3-8“

where the coefficient vectors (Tph)j can also use the a index
set. Then for the pole at sy of order M we have i

o
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N,-M .
->
E: c (e)(v) = E: (£, ) e (T.) (3.34)
ng=M * PoMa a0 ™M ny=M+2 Ta |

from which we can obtain both the natural modes (constructed as
orthogonal set) and the coupling coefficients. Note that the
dependence on e] is contained in the vectors (Tph)y. If we let
M > Ny then we can relate the entirg functions #s well. Alter-
nately having found all the cg and Va these can be subtracted
from equation 3.32 to leave_the entire function T(s)(wm(el,s))
expressed in terms of T(s) (In(s)) together with the inverse ma-
trix coefficients.

With the natural modes known equation 3.34 gives an expres-
sion for the coupling coefficients for a = a' as

-+ - -3 -
Cer ) =[G+ vy 177X G - gy 0 . (T,)
[ a a ] =0 a o na=M+l L
(3.35)

The coefficient matrices for the inverse matrix can be related
to the Taylor expansion of (gp,m(s)) through

(G pelS) « (Ep0 (s = (5, )= (£ (s . (g, (s)

n,m
(3.36)
(5 )= 2(3 -5 (9 ) f-{i(s-s I ¢ '."(fm',n(s»}
2=0 g=1 q e
where now the coefficient matrices (fn apply for the par-
ticular sy of interest; the remaining termg at other sy can be

included with the remainder function for present purposes.
Equating t*- resulting singular terms to zero gives for the
krivhert o7i. pole

(g ) (£, '} =(0 )= (E -,) (g, ) (3.37)
n,m m',m n,m n,m m',m
(4 o ’ Na | ’ Na ’ o '
n (TJ\
where (On,n. 8 an N X N matrix with zero elements. From this s
result the columns (fixed m) of (fm' m)Ng must be eigenvectors
of (9n,m')o and the rows (fixed n) of (gn,m') o must be eigenvec-

tors of the transpose of (dn,m')o. Also the rows of (fn,m')Ng
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are eigenvectors of the transpose of (gm',m)o and the columns of

(9m' ,m)o are eigenvectors of (fn,m')N,. For poles of order n'
in equation 3.36 we have the general result

q_&n‘(qn'm.)z ) = (O ) q_Xz;n.(fmm.)n._z 9 ),

(3.38)
where 1 < n' < Ng.
Consider the special but practically important case that

the pole at sg is simple (Ng = 1). Then the natural modes are
the eigenvectors from

(qn’m(su)) . (vm)a = (0) ' (3.39)

The coupling coefficients are

s - -
catdy) = [Gg) - (vm)u]‘l(vm)a- (Fg, ) * (Tp)

- 1 - -~ -~
= [(vm)a . (vm)J (V) = (fy,n) * [T(sg) (Tlsy))] (3.40)
where
(€ ) = 1lim (s-s_)(f_ (s))
m,n 1 s+sa a m,n
578« 1
- [:i!:a mr]‘dm,n‘sa” - bt G

with the relaiion

(95,me (5. ° (£, 'm)l =0, = (fn,m')l * (g, m(8y)) (3.42)

In another form the natural modes and coupling coefficients are
found from :
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nz-lcu(el) (V) = () - ()
a

.- | - (fm'“)1 * (T(s,) (I _(s.))] (3.43)
which for the case of no modal degeneracy reduces to

+ [T(s,) (I (s,))] (3.44)

>
ca(eJ.) (vm)c = (fm,n)l

There is an alternate way of calculating the coupling co-
efficients. Again let Ng = 1 at the sy pule. From equation
3.42 the columns of (fn,n))] are eigenvectore of (gn,m(sa)). As-
sume no degensracy of the natural modes at sg. Then the columns
of (fm,n)) are all the same except for a scalar factor since
(vm) is unique except for a scalar factor. Call these constants

Um SO we can write

, (fm'n)la- (ul(vm)a, uz(vm)a, ceee, un(\,m)a' soes, uN(\)m)“) (3.45)

T e o

PRV

Then we have
(3.46)

O+ ) = () * (v )1 u)

a G

T T,
T TV T T gt e

defining a new N component vector so that (fm,n)] can be written
in dyadic form as

At el b

(F,n) = (o) (a) (3.47)

where the outer vector product or dyadic product is used here.
Thus we also have

(£ ) (5D = [y « ) v ~ (3.48)
mnl na [ o nu] mu

Now from equation 3.42 the rows of (fpy,n)) are eigénvectors of
the transpose of (gn,m(sqy)) so that we have :

(3.49)

e i B kb

() + (g (8)) = (V)
o 4
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From equation 3.40 we can then write the coupling coefficient as

ce(8)) = (u)  (Fs) (E (s,))] (3.50)
a

giving a simpler form of the result in terms of the eigenvector
of the transpose of (gn,m(sg)). Note that since we have assumed
only one independent (vn)y there is only one independent (up)gy.

Now similar statements can be made about the eigenvectors
of (fm,n))1 from equation 3.42. Specifically the columns of
(gn,m) must be eigenvectors of (fy,n)) and the rows of (gn,m)
must be eigenvectors of the transpose of (fp,n)3. From equation
3.47 the eigenvectors of (fm,n)) are orthogonal to (up)y and the
eigenvectors of the transpose o% (fm,n)] are orthogeral to (vmjqn.

We can calculate the transpose eigenvector (up)g from equa-
tion 3.49 except for a scale factor. To find this scale factor
we can use equation 3.46 to give

[(Gm)a . (\’m)u] [(ﬁn)a . (un)a]= (V) (e, ) (ﬁn)ul
=es_1(6m)OE (d, n(5g)) (an)., (3.51)
4\
If we have found a (up)y from egnation 3;49 then E
() = Blug)
) L o Qs 5
B = %q[(vm)a- ) ] 1[(“;‘)a ) ]I - (g e - i)

Another powerful result comes from taking the constant term
in equation 3.36 as

(Spm) = Gn,med * o) + (9 00) © (g (8))

= (f (gm',m)l + (fm.’n(sa) )e . (gm.,m) (3.53)

)
n,m' 1 o

Dot multiply on the right by the eigenvector (vm), of (9m* ,m) o
to make the second term vanish giving
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(Vn\u = (fn'mc)l * (gmo 'm)l * (vm)a ' (3.54)

This degines a matrix which maps (vym)g back into itself. Having
some (Mp) o solving equation 3.49 we also have from dot multiply-
ing on the left of equation 3.53 the result

() = )+ G )t ) (3.55)

Thus multiplying equation 3.44 on the left by (uilg * (gn,m)1 °
we have after rearranging terms

c,(e)) = [(u;,)u- CA (v'")a] (up) + [Resy) (Gl g] (3.56)

so that we can construct (up), as

(v ) = [(u') - ( ) o (v ) [ (n!) (3.57)
Na [ "o gn'ml ma] Ny

giving the additional result

(un)a- (gn,m)l' (\)m)m =1 , - (3.58) ?

Thus (up), can be explicitly constructed from (gn,mlo
through its eigenvector and the eigenvector of its transpose
plus another matrix (gn,m)3 which also comes directly from
(gn,m(8)). Thus after one finds sq as a zero of A(s) then if 4
this zero of A(s) is simple and the natural mode nondegenerate, :
both the natural mode and the coupling coefficient can be found
from (gn,m(s)) through the special formulas above without having
to calculate the coefficients in the expansion of the inverse
matrix. If the zero of A(s) is not simple but of second order,
third order, etc. then the formulas are somewhat more complex. [
Thus given an integra) egquation for the currents on the object {
and some matrix-vector representation of this which uses ana- '
lytic elements with at moat poles and assuming the approximate
solution converges in the limit of large N, then there are var-
ious technigues to calculate the natural frequencies, naturxal
modes, and coupling coefficients. Furthermore the coupling co-
efficients can have many forms, all of which give the correct
contributions at the poles but can have various behavior as
|s| + »; this also affects the form of the enlire function which
is an additional term in the solution.

P PR
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Let us now list some of the alternate forms.that the cou-
pling coefficients can take. While all forms give the correct (
- damped sinusoid parts of the waveform at late times there is )
: still the question of convergence, particularly at early times.
We need to know more general results for the behavior of the en-
tire functions (or behavior at :infinity) for various types of
objects as they enter into the singularity expansion. Of course
convergence to the correct result can be determined in part by
calculating the entire functions. One can observe the result
for the matriy inversion times the incident vector for particu-
lar cases of ej and p in frequency and/or time domains and com-
: pare to the sum of the first several poles to see where there is
i or is nct convergence and what it takes to remedy the situation.

< g B 1 At o

Consider then several types of coupling coefficients.
L Type l: Factor out the turn on time of the object.
|

This type of coupling coefficient is defined by

st .
e ° (3.59)

T(s)

so that the coupling coefficients factor as restricted by equa-
. tion 3.28 in the form i

—st .
e occ('él) (3.60)

ﬁa (;1 +8)

This form is used in many cases in section 2. 1In appendix B the
perfectly conducting sphere is shown to have this form of result
with no entire function in addition to the pole expansion.
There 1s an entire function e-s8to which is common to all cou-
pling coefficients. However whether we need an entire function
as a separate term in the sum is not at all clear for more gen-
eral objectas. In time domain ac discussed in section 2 the re-
sulting pole terms go over to damped sinusoids (including cases
of no oscillation) for simple poles with powers of t appearing
for higher order poles. For t < tpo there are no currents on the
objects which is physically correct. At t = tg all modes turn
on all over the object. Before any fields can reach a particu-
lar position on the object (associated with propagation by the
shortest possible path which is not always a straight line) the
modes with the transformed entire function must all add to zero
(if the sum converges) at that position, so this is a test for
this type of coupling coefficient representation.
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Type 2: Factor out the time the incident wave function first
turns on at the observer position.

This type of coupling coefficient is defined by

T(s) = est' 9 _
(3.61)
]
where
>
e.°'r
t!' = (3.62)

with ¥' as the particular observer position on the object where
the current, charge, etc. is to be calculated. For this type of
definition then ca(él) is not the same for the whole object be-
cause the definition is changed to apply to each observer posi-
tion separately. However the natural frequencies and natural
modes are still the same for the whole object. For t < t' at
the observation position the fields, etc. must be zero and for
most positions t' > to for general objects. This form of cou-
pling coefficient then may have some advantages for early time
calculations. For the numerical problem the observaticn posi-
tion is discrete, say rp. Thus we would use

+> >
e, r'

t! = lc n (3.63)

Note the tp is the first time that the vector component Ip in
the incident vector (In) turns on. This ¢y is as easy to calecu-
late as the one in equation 3.60 but it is calculated as many
times as there are observer positions. 1In fact for t > t' the
two forms give exactly the same time domain waveform for simple
poles. For to < t < tph type 1 gives a non zero waveform for the
pacticular pole contribution. Thus we can calculate the type 1
coefficient but just wait until time tp to turn it on.

To see this in general form take an arbitragy time tz and
make

. st
T(s) =me 2 ' ' (3.64)

Then
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- -st - -(s-s_)t
Ay(est=e e (@) =e % Fu) « (I (5)) (3.65)
- a

which when combined w1th the simple pole (s - s8g)-~ -1 gives a time
domain form as

- -+ -n s t s,(t-t.)
L l[ﬁa(el,S) (s-s,) a] =e ® a(un)a (I (s e ®  Zult-t,)
. Sq t
= (un)a " (I, (s ))e u(t-t ) (3.66)

Thus for a simple pole the chosen starting time only shifts the
turn on in the unit step. The waveform it multiplies stays the
same. Therefore for t > tz all simple pole waveforms are the
same independent of t. For higher order poles a term :
(t - ta)No-1 enters in but this can be expanded to leave tha-1
as the lead’ng power invariant. Furthermore considaring all the
pole contributions at s, for ng = 2, 3, -+« the results can be
manipulated to cancel some terms but we do not go into this here.

Type 3: Factor out the time that resultant fields can first
exist at the observer position.

One can choose ty as in equatxon 3.64 such that Lt is the
first time that any field can reach the observer at rn. This
can be longer than the time tj. It can be calculated from geo-
metrical optics. For example if the gbserver is on the surface
of a perfectly conducting object arnd e1 is such that it must
point through the object to reach the observer then the wave
must come around the object and arrive at a time greater than tp.

As another example a dielectric object with propagation velocity

less than c may still) bave the wave propagating thrcugh the ob-
jecc reach an obser\er on a "shadowed" side first; this time is
still greater than t;. Also for example the expansion of the
response of the perfectly conducting sphere need not be started
2t time t = tg but to can be replaced by a more appropriate ta
in all the step functions.

Clearly if one chooser tg to be greater than the time a
signal first begins at an cubscrver then there must be an entire
functlion contribution fo1 + < {3 because the pole contributions
would all Le zero Such a choice would not seem very useful.
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Type 4: Exp&and the inverse matrix in poles but leave the entire
function for the incident wave as a coefficient.

This approach is attractive for tlie case that the expansion
of the inverse matrix (fm n(s)) as in eguation 31.14 needs no ad-
ditional entire function (fm n(s))e in the expansion or at least
that this entire function is known and preferably has a simple
form. Define a time

- 1'].‘
tl(el) = Tax[ S ] : (3.67)
r'

While the time to is the turn on time this new time t; is the
time when the incident wave has reached every position on the
object neglecting any scattered fields from the obiect. As such
t] might be called the turn off time. Suppose we write the in-
cident vector as

-st!
(i (e;,8)) = (bn('él)e “) (3.68)

so that the time delay in each component is explicitly displayed.
Consider a special excitation function consisting of the nth
conponent of this vector being as aboveg but all other components
zero. Then we would calculate an figp(€1,s8! with e 8%n as a fac-
tor. Repeat this for all n and add up the results on the basis
that the equations are linear and superposition can thus be ap-
plied. We would then calculate our coupling coefficients for

the case of simple poles as

-gt'!
) (3.69)

fig Bpo8) = ) - (3,Gy0) = G (bn(zl)e n

For hicher order poles derivatives of the incident vector with .
respect to s also come in. Now in the time domain we have for a !
simple pole ‘ E&‘

7

e
-+ -+ : - .
ﬁ;(el.e)-(un)a° (1,3),00) = (wy) - (b (8 8Le-t]))  (3.70)

The pole_gives a damped sinusoid esat for a simple pocle and
a factor tPa~l for higher order poles. This is convoluted with
ng where each element of the incident vector makes its contribu.-
tion at a time t;. As discussed before for t < ta where ty can
be arbitrary the time domain waveform, at least for simple poles,
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is the same vregardless of ta. This applies to our casze of con-
sidering each component of the incident vector as separately non
zero and adding up the results at the end. Thus for t < tg the
pole contributions are zero. For tg < t < t] the convolution as
above is required whi:-h consists of turning on the contribution
of each component of the incident vector at time tp and in time
domain we have

-~

a

_ . _ s (t-t')
L 1[ﬁm(el.s) (s-sa) 1] = (un) . (bn(’él)u(t-tr'l)e n )
a

} |
-s_t! B, t |
P = “Hga. (bn(gl)e o nu(t-t&))e o (3.71)

For t) < t this result goes to the form as in equation 3.66 giv-
ing the same late time behavior as the other types of coupling
coefficient definition. This type 4 coupling coefficient gives
a type of early time behavior which is different from the three
previous types ind thus gives another form of pole contribution
from a convergence viewpoint.

= ————————— ———

We have shown several possible ways to define coupling co-
efficients. Any of these or combinations of them can be used to 3
obtain the best representation in the sense of the fewest number L 3
of terms required in some region of frequency or time of inter- '
» est. There are cleariy many other cases one might consider.

b The ones discussed here are some that rather directly follow

from physical considerations and/or give simpler results consis-

tent with the requirement of having the correct coefficients at g
the poles. Note that types 1 through 3 for the coupling coeffi- '
{ cients can all be calculated on a ccmmon basis. A cy can be
found for any choice of T(s) in the form of a time advance. 1In
{ particular T(s) can be 1. The resulting cq then applies to
every position on the object. It is just the turn on time in ;
th=2 unit step which is shifted in types 1 through 3 based on a
physical time of interest either for the whole object or for a
local observation pnsition on the object. Type 4 gives more
complicated wavefornas.

The considerations about the expansions in this section
have been based on incident delta function plane waves. They
can be carried over to other incident waveforms directly by the
techniques outlined in section 2. The type of the incident wave
may influence what one considers as the b2st form for the cou-
pling coefficients. Thig is because the early time convergence
of the expansion will be affected by the high frequency content
of the incident waveform. As an exampie suppose we have an in-
cident step function waveform. ‘hen we cen invert a term of the
form fig(e1,8)/[sq{s~-84)] into the time domain and add a static
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term or we can invert a term oI the form ﬁa(zl,s)/[s(s-sa)] into
the time domain which has a form like the time integral of the )
first form. This should give different convergence characteris-
tics for early times and thus another form to be looked at in
combination with types 1 through 4 coupling coefficients.

The remaining entire function in the general expansion is
clearly a subject of much interest. Depending on which form of
coupling coefficient is used this entire function clearly has a
form which is different for different forms of coupling coeffi-
cients. If t; is chosen as in type 3 but made later than the
time a signal first begins (resultant field signal) at the ob-
server then such an additional functior must be non zero to give
the only possible fields at early times before tp. If t, is
chosen less than the first time resultant fields reach the ob-
server then the pole terms must either sum to zero (if conver-
gent) or have their sum cancelled by such a function. If, in
specific problems being calculated, the sum does not go to zero
for such early times then this other function must be non zero
for such a case. An optimum choice of coupling coefficients
might be one in which the remaining function is identically zero.
This would have the beginning time for each mode nc later than
the first time resultant fields reach the observer, perhaps even
at exactly this time. The "best" coupling coefficients may have
more complicated forms for fig than those used here. Perhaps us-
ing geometrical diffraction theory to consider asymptotic forms
for |s| + » one can investigate the properties of the remaining
entire function and/or impose tighter restrictions on the "best"
form for the coupling coefficients.

57




= -

IV. Some Pussible Extensiors of the Sinqularity Expansion
Method and Some Areas for Further Investigation

Let us now consider some of the implications of the singu-
larity expansion method for some genercal classes of okjects.
Most of the attention in this note has been given to objects
with finite linear dimensions. This is clearly an important
class of objects for electromagnetic interaction and scattering.
The pecfectly conducting sphere in appendix B is an example of
this ciass of objects and can be used to suggest various genersl
results for this class of objects. In fact some of the results
and conjectures discussed in other sections were originally sug-
gested to me from this example. The possible factorization of
the coupling coefficients fig(e1,s) into cglej)e~Sto for per-
fectly conducting objects of finite linear dimensicns is a good
example of such a conjecture. The fact that the perfectly con-
ducting sphere has only poles in the singularity expansion while
the perfectly conducting infinite length circular cylinder has
branch cuts in its singularity expansion (associated with the
cylindrical Hankel functions in its eigenfunction expansion)
suggested that the expansion only in poles is assocliated with
the finite dimensions of the object.

Tuere 2re other finite sized perfectly conducting cbjects
which can be studied analytically for their singularity expan-
sions. Some examples might be the prolate spheroid, oblate
spheroid, circular disk, etc. Such examples have less symuetry
than the sphere and one would then expect less degeneracy of the
natural modes. W¥With the circular disk an edge wsuld be intro-
duced and one could see how this affected the natural modes.

For finite sized perfectly conductinj objects with an axis
of symmetry (objects of rotation) one can base a cylindrical (¥,
¢, z) coordinate system ou this axis and decompose the natural
modes based on cos(mé¢®) and sin(m¢') for integer m while the
coupling coefficients have factors cos(m¢i) and sini(m¢)) based
on one cf the angles of incidence. The integral eguation over
the surface reduces to a one dimensional integrel e:uation for
each m making the numerical solution simpler and the indexing of
the natural modes also simpler. Drs. L. Marin and R. W. Latham
(private communication) are already putting vogether nunerical
techniques to handle this case.

As suggested by Prof. ¢. Taylor (private communication) one
can also look at thin wire approximations to sinpiify the singu-
larity expansion analysis for such cases ard perhaps obtain ap-
proximate analytic expressions for the mnatural freguencies, nat-
ural madas, and coupling voefficients. This would have the ad-
vaatage of dAeotermining the approximate values of these guanti-
ties and suggesting an apprnpriate indexing system for the fre-
quencies, modex, und coefficienis for some rather cumplex object
shapes, such as thin wire models of aircraft atrvctures. Then
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in more 3etailed calculations of "fatter" structures one can use
( the thin wire results to help locate all the natural frequencies
‘ etc. l'ecause one expects the singularity expansion quantitiés to
i vary somewliat continucusly as the object shape and dimensions

E are changed. Furthermore one could develop numerical t=chniques
f“ in which the approximate thin wire results are used as first

. terms in an iterative solution for the corresponding fat objects.

T I T gy T
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While we have been viewing the singuliévrity expansion method
{ from the viewpoint of the interaction or scattering problem
3 there is no reason to expect this method to be limited to such
' problems. This method is fundamerntally based on the expansion
' of analytic functions of the complex frequency s in terms of
.E their singularities in the complex s plane. For example antenna
problems in transmission and recertion can be considered from
\ g this viewpcint. Prof. §. W. Lee (private communication) has
R ; lovked at sume features of the cylindrical antenna and this
| ; methnd appears to give sone insight here and can even be used to
relate this antenna prohiem to the interaction problem for a fi-
nite length perfectly conducting cylinder.

The resul:s for finite sized perfectly conducting objects
can be applied to other types of objects as well. Considar an
aperture in a perfectly conduzting plane as shown in figure 4.1A.
By the Babinet princinle this can be related to a complementary
perfectly conduccing disk.1l1l,%2 Essentially by interchanging
the: roles of the electric and magnetic fields (rotating the po- :
larizatior) and including a plane wave term for the reflection i
from the infinite plane the solution for the aperture scattering
: can be found from that for the disk scatterinrg. Thus one can
! describe the deviation of the currents, fields, etc. from the
l continuous plane case by means cf the natural freguencies, modes,
b and coupling coefficients of the complementary disk. Then these
‘ results can be applied to aefine natural frecuencies, modes, and
coupling coefficients; the modzs cen be formulated for change in
fields in the aperture and/cr changes in surface current and
surface charge densities on the remainder of the perfectly con-

9 ducting plane. Thus it is quite possible to define the singular-

] ity expansion for the lack of an object, i.e. a hole, at least

in the case cf a perfectly conducting plane.

i
i

Vadiadl

Similar conclusions apply to a protrusion Hn a perfectly , ;
conducting plane as shown in figure 4.1B. This follows from I
image considasrations. With the image of the protrusion included
then the incident field can be split into symmetric arnd antigym-
metric parts with respect to the perfectly conducting plane.

The interaction of each part with the equivalent object with &
symmetry plane in place of the perfectly coaducting plane can
then be studied separately. However, due to the reflection of
the incident wave at the pevfectly coanducting plane only an
rntisymmetric field distributiun can exist and thus contribute
to the result. Thus the change in the fields, currents, etc.
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FIGURE 4.1 SOME "OBJECTS" WITH A PLANE OF SYMMETRY
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can-be described by the natural frequencies etc. of the protru-
sion with its image but only the antisymmetric natural modes are
needed. This is in contrast to the aperture problem in a per-
fectly conducting plane where only the symmetric part of the in-
cident wave interacts with the aperture making the aperture nat-

ural modes also symmetric.

This reasoning can be carried a little further in consider-
ing two finite size objects which are mirror images of each
cther with respect to a symmetry plane as shown in figure 4.1C.
Such a pair of objects can be considered as one object for an

expansion in natural ‘. +«-usaacies, natural modes, and coupling
coefficients. If thc¢ obiects are far apart then the scattering
from one will not be vy large at *ne second when compared to

the incident fielc. For large separation there is not very much
intexaction oetween the two and we can treat them as two sepa-
rate objects with the same natural frequencies and the same nat-
ural modes except that the modes on the two bodies would be mir-
ror images of one another. XNow natural modes can be multiplied
by any scalar merely in changing thezir normalizatlion. Thus for
the two objects considered as one we can define natural modes as
symmetric and antisymmetric modes by taking sums and differences
of the mirror modes. Now the symmetric and antisymmetric parts
give an exact division of the natural modes on an object with a
symmetry plane; there is no interaction between the two. Even
for the two objects close together this is the case. As the ob-
jects are brovght together one may typically expect a splitting
of the natural frequencies in two, one with the symmetric and
the other with the antisymmetric modes. This is analogous to
the energy level splitting in quantum mechanics, say as two
identical atoms are brought together. For a single finite size
nsbject near a perfectly conducting plane only antisymmetric
modes contribute and so only natural frequencies associated with
the antisymmetric modes are present. As the object nears the
perfectly conducting plane one might typically expect a shift of
the natural frequencies and not a splitting unless some symmetry
in the object is destroyed in the process or there is some other
degeneracy in the natural frequencies.

These resu.ts with perfectly ronducting infinite planes
suggest yet furither results might ppe obtained for various per-
turbations on infinitely large perfectly conducting objects.

The perturbation is regarded as the "object" and what is calcu-
lated is the change in the electromagnetic quantities associated
with the introduction of this "object." If the perturbation is
of finite size then we might expect its singularity expansion to
comprise of natural frequencies, natural modes, and coupling co-
efficients. However more developmenz is needed to understand
this thoroughly. One might even extend this perturbation con-
cept to perturbations on finite sized objects. Particularly if
the perturbation is small compared to the object dimensions then
one could make a singularity expansion for the object and use
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the results to define the incident fields for the perturbation
which might in turn be approximately solved by another singular-
ity expansion.

Of course there is the question of the singularity expan-
sion for infinite or semi infinite objects. We know that the
perfectly conducting circular cylinder has branch cut contribu-
tions in its singularity expansion. There are many other shapes
besides spheres and cylinders which can be treated from the
viewpoint of eigenfunction expansions.l3 This can be used to
help divide up the terms in the singularity expansion by treat-~
ing each term in the eigenfunction expansion separately for its
singularity characteristics. Prof. Garbacz has developed a
method for calculating eigenfunctions associated with general
geometries for lossless objects.’ Perhaps these expansions can
be used by studying each term to determine its singularity ex-
pansion and thereby aid in developing or even indexing the terms
in a singularity expansion for such objects. In studying infi-
ni’.e objects such as general cylinders (say irregular but of
some maximum "radius") or semi infinite objects such as general
cones (say contained within some maximum "half cone angle") one
may find some general properties of the singularity expansion
associated with certain features of the ge..eral geometries.
This in turn may give some guidance on how to approach the sin-
gularity expansions (and index them) for specific cases of such
objects,

Note that some objects which are finite in size may have
properties of infinite bodies such as branch cuts in the singu-
larity expansion. For example take a perfectly conducting ob-
ject of finite size located between two infinite parallel per-
fectly conducting plates. This can be replacea by an egquivalent
problem involving an infinite humber of images extending infi-
nitely far away. This is basically a segmented infinite object.
For the case of a thin wire of finite length between parallel
plates some frequercy domain results (on the iw axis of_the s
plane) exhibit peculiar step and slope discontinuities.l4 This
may be associated with new terms such as branch contributions in
the singuliarity expansion. Perhaps the case of infinitely re-
peated objects (and/or images) in one, two, and three directions
can be cpecially treated so as to obtain some general results
for the singularity expansions for such problems. Since trans-
lational symmetry is present for such repeated objects perhapsa
group theory considerations can be applied to obtain general re-
sults for thies type of prcblem.

Other important classes of objectsa involve losiy media of
infinite 3size, sach as half spaces with finite non zero conduc~
tivity. Objects of finite size may be clcse enough o such
media to affect their response characteris.ics, thereby altering
their singularity expansions. Furthermore, infinite objects
such as wires may be in proximity to semi infirnito loasy half
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o spaces; this could introduce yet additional features in the sin-
P ( gularity expansion.

o rmp ot A

Another whole class of problems concerns the analysis of
experimental data, say from tests using EMP simulators. Using
numerical Laplace transforms, numerical Hilbert transforms, etc.
features of the singularity expansion of the experimental data
can be found within the limits of accuracy of the experimental
data and the numerical techniques.. It would seem that various
approaches to this problem are possible depending on the kind of
experimental data and type of object being considered.

CTUE e it a1 vaees 4 m
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Clearly there are numercus topics in the singularity expan-
sion method involving classes of objects, numerical techniques,
! etc. which need extensive development. In this note we have for
' the most part considered finite size objects. Even for this im-

portant though limited class of objects much needs to be done.

L For example the natural modes come from the coefficients of the
P poles in the expansion. The ratural modes may be orthogonal
over the volume or surface of the object. Such is the case for
the sphere but what about in general? Perhaps the topology of
the object can be used to help index the singularity expansion
quantities and can be used to ident:ify whether or not certain
kinds of terms are present. The object symmetries have much in-
fluence on the degeneracy of natural frequencies and modes.
Group theory should then pe useful in understanding the degener-
acy and splitting up the resulting modes as well as indexing the
natural frequencies, naturai modes, and coupling coefficients.
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: A finite size object need not be perfectly conducting.
{ Svppose that it is composed of linear passive media. Prof.
C. T. Tai has sugeested (private communication) that the types
of theouretical considerations applied in circuit theory can be
applied to the singularity expansion to obtain new general re-
sults. Considerations like conservation of energy are important ]
here in constraining the allowable forms of the solutions. Per- :
haps some properties of the pole expansion can be deduced such ‘5
as the permissable order of the poles. The perfectly conducting j
sphere has only simple poles. It seems safe to conjecture that “
this is true of all finite e£ize perfectly conducting objects; as
of yet I huve not found any case to the centrary. The case of
: lossy objects may admit more general pole types. The properties
} of the coupling coefficients also need investigation for these ,
A more general finite size objects. Whether or not the linear h
passive mediaz are alsoc reciprccal should also have important im- i
ks pact on the properties of the singularity expansion.

Numerical calculations for objects such as finite length
perfectly conducting cylinders can be used to test various nu-
merical techniques for calculating the sinqularity expansion
quantities and suggest improvement on them. Dr, F. Tesche is
already doing such calculations showing some cases of very rapid
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b convergence for the step function response. Furthermore such
L calculations can test conjectures of a general nature and if ;7
L calculations are performed for various different objects in the

; class of interest and the conjecture proves correct in all cases

} then cne has high confidence in the general validity of the con-

{ jecture. Consideration of various example objects has been very

useful to me in suggesting new results and testing old conjec-

tures. It would seem that one important driving force in the

future development of this technique will be the calculation of

the object response of various important objects of practical

interest.

An interesting and important question for finite objects
concerns the uniqueness of the form of the singularity expansion.
Clearly the natural frequencies and modes for finite ¥3a| are
well defined, but there are rume possible alternatives in defin-
' ing fig(e1,s8) and cg(ej), the forms of the coupling coefficients.
' Specifically fiq can be an entire function of s (no singularities o
: in the finite 8 plane). This gives some flexibility in choosing
| the form of the coupling coefficients. Of course the choice is
P not completely arbitrary. The final resulting current density, :
; charge density, etc. are unique quantities and all exact repre-
sentations of them must amount to the same thing. The individ- |
ual terms in a series expansion can be altered as long as the |
|- > sum remains the same. This then raises the question of what is ’
S the "best" forngn which to express the coupling coefficients.

' A form like ¢ (€3)e~8t0 clearly has much to recommend it for its

! simplicity. However there may be other terms needed if such a

; form is used. This problem is associated with the time during ]

: which the incident delta function wave is sweeping over the

S body. Since the object response must be zero before a field can

L reach any particular point on the object (with this time calcul- .

b able from geometrical diffraction theory considerations) and : Do

since to is the time the first point on the object is excited,

j then all the terms in the expansion must sum to zero (if the sum

[ converges) for times between to and the time that an excitation j
can reach a point of interest on the object. In order to best :

define the expansion for early times so as to obtain the most

rapid convergence then some other definition of the coupling co-

efficients may be appropriate. The possible alternative forms

of the coupiing coefficients seems to me to be an issue of

fundamental importance in the whole theory and practical utility

of the singularity expansion for finite size objects, especially

for early times. PFor infinite bodies the .terms analogous to

these coupling coefficients may also have similar questions asg-

sociated with them. Much research is needed then on coupling

. coefficient repraesentation both in terms of general considera-

! tions and specific examples.

—

In past years there has been some consideration of the nat-
ural frequencies of some simple objects and to some extent the
natural modes have also been investigated for such objects. Let
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us mention some examples. Thin wire natural frequencies have
received some attention.l5 Natural frequencies lLave been dis-
cussed in the context of antenra resonances.l6 Natural frequen-
cies and modes of a sphere have bazen discussed;l7 this forms a
starting point for our discussion of the singularity expansion
of the perfectly conducting sphere in appendix B. Prolate
spheroidal geometry has alsc been considered for natural fre-
guencies and modes,.l8 Since the perfectly conducting sphere has
shown 80 many interesting results it would seem a good idea to
look at the prolate and oblate spheroids to see to what extent
the general form of the results carries over to these geometries.
For exaunple spheroidal ge¢ometries can allow one to look at some
analytic results for forms of the coupling coefficients. These
and other investigations, even though limited in some respects,
at least solve some portions of terms in the singularity expan-
sion for some cbjects. As such they can shed some light on some
details of the singularity expansion for such objects and give a
start for obktaining the full singularity expansions. They also
give some guidance about what problems can be profitably consid-
ered for -2xamples to develop general results for the solution
repreaensatio;s in the singularity expansion method.
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V. Summary

This note is intended to introduce a new way of looking at
many kinds of EMP interaction problems, although it has bearing
on scattering problems as well. PFrom &n EMP time domain inter-
action viewpoint this approach has the potential for directly
calculating t = amplitudes, frequencies, damping constants, and
pruses of the damped sinusoidal oscillations that are commonly
seen as major portions of interaction waveforms on systems under
test. The idea is to then construct a large portion or even all
of such waveforms as a sum of such damped sinusoids.

The general technique can aptly be called the singularity
expansion method because it is based on representirg the func-
tions of the complex frequency s in terms of their singularities
in the complex s plane. In the time domain the individual terms
are the inverse Laplace transforms of the singularity terms.
While for general objects we can expect branch cut contributions
the results for finite size objects using well behaved media in-
clude only poles for the singularities in the finite s plane.
This simplifies the form of the terms considerably and allows
one to factor the terms into natural frequencies, natural modes,
and coupling coefficients. The naturai frequencies and modes
are independent of the incident wave parameters while the inci-
dent wave parameters enter into the coupling coefficients for
the delta function response. The incident wave can also have
singularities in the finite s plane but these can be separated
out so that the response can be generally written as the sum of
an object part and a waveform part.

There are various matrix techniques for solving integral
equations nume:xically. In this note we have considered these
from a general viewpoint, not specifying which integral equation
is being approximated. This shows some general ways to calcu-
late natural frequencies, natural modes, and coupling coeffici-
ents. The actual numerical procedures that cne could use are
nurmerous and need to be considered for various problems to de-
termine the most efficient and accurate techniques.

There are various theoretical problems associated with the
convergence of the matrix representations which need to be con-
sidered for the integral equations for finite objects. Prefer-
ably continuous operators over the body geometry can be developed
to analytically represent the terms in the singularity expansion.
The question of the singularities at infinity or additional en-~
tire functions for finite objects needs treatment. Of course
the completeness of the singularity expansion with some allow-
able chosen form for the coupling ccefficients can be readily
checked for any given boundary value problem by comparison to
the solution by standard numerical techniques. This method can
be used to determine better forms of coupling coefficients.
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. The.e has been some work done in the past on the natural
( frequencies of objects and less work done on natural modes.
This work can serve as useful starting points for the singular-
ity expansions of some classical geometries which can be used
, for test problems. There are the essentially new questions of
e the pole crder and coupling coefficients for finite size bodies.
: This note has included a common object of past investigations,
[, the perfectly conducting sphere. There are analytic forms for
P coupling coefficients and thece are only simple poles in the fi-
é nite s plane with no additional entire function required for the
' delta function response. Investigation of other common objects
P considered previously should alsc give some valuable insight
P into appropriate forms for coupling coefficients and questions
! such as pole order.

I hope that this note has given the reader some insight into
what the singularity expansion method is all about, particularly
with regard to finite size objects. It appears to be quite ‘
powerful for some kinds of EMP interaction problems. Several 3
investigators are already performing sor 2 studies of both gen-
eral problems and specific examples using this type of expansion. :
I would hope then that the near future will see some siynificant :
-additions both to the theory of the method and problems solved
using the method.

"Off with her headl" the Queen shouted at the top of her
voice. Nobody moved.

"Who cares for you?" said Alice (she had grown to her full i
size by this time). "You're nothing but a pack of cards!" 1

At this the whole pack rose up into the air, and came fly-
ing down upon her; ...

"Wake up, Alice dear!" said her sister. "Why, what a long
sleep you've had!"”

"Oh, I've had such a curious dream!" said Alice, and she
told hec Bister, as well as she could remember them, all these
strange Adventures of hers that you have just been reading ;
about; ..n ]

({Lewis Carroll, Alice in Wonderland)

o
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Appendix A: The Natural Freguency s = 0

Az mentioned in secticn 2 it is possible for finite sized -
bodies to have static current and/or charge distribntions. How-
ever these dc not couple to the incident wave and tims do not
start or stop at a time such as tg. These Yind of static snlu-
tions can be added as separate terms to any response of the ob-
ject to the incident wave. This is not the same term as the
static response of the object as in equations 2.46 and 2.52.

The natural modes for s = 0 are similar to others on the iw
axis in that they correspond to no power going to infinite
radius. Por static current and charge distributions the fields
at large r for dipole and higher terms decay like r~3 (no radi-
ated power); the r-1 electric monopole term is a radial electric
field (no radiated power). For other poles on the iw axis not
at s = 0 any radiation field like r-1 at infinity would consti-
tute radiated power and thus damping the mode (i.e. making
2 < 0). Thus such modes when expanded over some sphere contain-
ing the object in termes of divergenceless spherical wave func-
tions must give no terms behaving like r-l at infinity, whereas
all such fur. tions dv for s ¥ 0 on the iw axi-~ Thus the fields
for svch modes are contained in some voluwe of .inite dimensions
and night logically be called the cavity modes.

What are some ol the characteristics of these static natu-
ral modes? Since we are dealing with the case of s = 0 the wave
eguation reduces to the Laplace eguation and the electric and
magnetic {ields are decoupled. Thus we first distinguish be-
tween electrostatic natural modes and magnetostatic natural
modes. As shown in fignrc A1A there are various rypes of ex-
amples as in 1 a perfectly conducting object with net charge Qy:;
thie gives rise to an electrostztic natural mcde surface charge
density vPg)}. As in 2 an insulating dielectric can have a net
charge Q2 giving rise to the same kind of fieié at large r 2s in
1; the charge distribution throughout the2 body is not coastrained
by the surface shape as in 1 and static electric fields in the
body are possible so that the distribution is arbitrary to some
axtent. As in 3 conductors (perfect or imperfect) can be com~
bined with jinsulating dielectrics to allow not orly a net charge
but allow & volume charge distribution in some parts but not in
others. Of course all the above mentioned cases can be combined
togaether, say as laid our in figure AlA as multiple objects in a
volume of finite dimensions so that the whole ensemhlz has a net
charge Q1 + Q2 + --- and an associated volume and surface charge
distribution. It is not necessary. for there to be a net charge,
or even for there to be any fields for large r. The charged ob-
jects could be contained in a closed conducting shell and the
net charge of all (including the shell) made zero; the natural
electrostatic mode would still have a non trivial charge distri-
bution.
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In figuvre AlB we illustrate some magnetostatic natural
modes. Excluding magnetic charge from Maxwell's equations we {
have no magnetic monopole term to give an r—1 magnetic field at
; large r. However, we can do next best and get a magnetic dipole
term from a closed perfectly conducting loop as in l. If the
ioop is perfectly conducting then the total magretic flux
through the loop cannot change because this wonld imply an elec-
tric rield tangential to the perfect conductors which is impos-
sible by hypothesis. A perfectly conducting object as in 2 can
have a surface current density Js2 when immersed in a magnetic
field such as from the loop 1. A permeable object as in 3 can
have a magnetization (with an eguivalent volume current density
distribution) induced by a magnetic field from the loop 1. One
might also consider permanent magnets but since we wish to remain
with linear Maxwell's equations we may wish to exclude such
things.
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Practically speaking we do not normally deal with perfect
conductors but they still make a useful idealization for many
problems. Thus the magnetostatic natural modes still are useful
concepts. In a practical case these would not be exactly at ,
s = 0 but have  slightly negative. Of course for the case of P
superconductors such magnetostatic modes do exist and have been '
observed; they are even quantized. This leads to another phe-
nomenon in which the magnetostatic fields are excluded from
superconductors except. for a thin surface layer. This is analn-
gous to the case of magnetostatic fields excluded from perfectly
conducting objects as discussed above. However, there may be ' 4
cases of highly conducting objects for which it is useful to
think of a magnetostatic mode with magnetic field penetrating
wvhat is thought of as a perfect conductor Yor purposes at hand.
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Having considered the electrcstatic and magnetostatic natu-
ral modes there is no reasnn why one cannot combine them and
have both associated with some object or collection of objects
contained in some volume of finite dimensions. Note that the
static natural modes can easily be degenerate. For example one
can change total charge (Q1, Q2, etc.) on each of several dis-
crete conductors as well as change the currents (Iy, I2, etc.) ‘
circulating around perfectly conducting loops (or equivalently .
separate holes through perfectly conducting objects). i1l of 1!
these apply at the natural frequency ¢ = 0. Stated hriefly the
natural modes for s = 0 are any eiectrostatic and/or magreto-
static modes which are not associated with any incident field. :
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Appendix B: Example to Illustrate the Singularity Expansion:
TEQ Periectly Conducting Sphere

As an aid to understanding the form of the actual singular-
ity expansions we consider an exawple chosen so that the various
texrms in the expansion may be more readily expressed in terms of
comaon functions. Por this purpose we choose the perfectly con-
ducting sphere. This example shows all simple poles in the ex-
pansicn and poles on both the negative Q axis and in conjugate
pairs with @ < 0; the internal cavity modes and an electrostatic
mode with poles on the iw axie which have zero coupling coeffi-
cients are not included. The natural modes are degenerate and
we choose thogse for the surface current and charge densities to
correspond to an appropriate set of spherical harmonics. The
coupling coefficientg have a time advance which factors out
leaving dependance only on direction of incidence and polariza-
tion. Again this example is directed toward explicitly exhibit-
ing the form of the singularity expansion and the kinds of gen-
eral results that ensue. For numerical purpuses the singularity
e>pansion may not be the mose uvseful in the case of the sphere.
However it can be used to more readily suggest general results
which also apply to more complex shapes. Other interesting re-
svlts can be found from considering other spherical problems in-
volving surface resistance and f£inite volume conductivity, per-
mittivity, and permeability but we do not go into these varia-
tions in this note.

Consider then the problem cf a plane wave incident on a
perfectly conducting sphere as illustrated in figure Bl. We
have_a sgherical (r, 8, ¢) coordinate system and unit vectors
er, eg, e¢ which can also be listed with a prime to indicate the
objcct coordinates. Let the sphere have radius a and let the
incident plane wave be described as in section 2. The unit vec-
tors for the incident plane wave are illustrated in figure 1.
As in an earlier note4 the unit vectors for the plane wave are
expandad as

31 = sin(ellcos(¢1)§x + sin(el) s.’n.n(@l)gy + cos(el) Ez
'52 = ~cos(6,)ccs(9,)8, - cos(8,)sin(e)) Sy + smel)zz (21)
;3 ™~ sin(’l)gx - cos(¢1)'e",y

where 6) is the angle of 31 with respect to the referxence z axis
(arbitrarily chosen) and ¢1 is the orientation of the projection
of ej on the x, y plane with respgct to the x axis (arbitrarily
chosen), The second unit vectogy e2 is chosen in a plane paral-

\

o

¢
»
v V

ilel to e} and the z axis while ez,is then parallel to the x, y A\ P

plane.
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FIGURE BI. FLANE WAVE INCIDENT ON PERFECTLY
CONDUCTING SPH:RE
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The cartesian (x, y, z) and spherical (r, 0, ¢) coordinate
{ systemc ave related as

x = r 8in(0) cos(¢)

S y = r sin(6) sin(4) © (B2)
¢ z = r cos(6)

E B and similarly for primed coordinates. Expanding the plane wave
f ' unit vectors in spherical coordinates gives

e‘

f

€, = lcos(6,)cos(8) +sin(0,)sin(B)cos(-¢,) 1o :
; , + [-cos(f,)sin(6) + sin(el)ccs(e)cos(¢—¢1)139 J

- gin (61) sin(¢-¢l) 3¢

e e
i

62 = [sin(el)cos(e) - cos(el)sin(e)cos(¢—¢1) ]'ér ,

et AL

( - [sin(8,)sin(6) +cos(el)co§(9)cos(¢-¢i)139 (B3)
+cos(6,)sin(¢-0,)8,
:3 = -sin(e)sin(¢-¢l)3r . ' .

. >
-cos (0) sin (4’--<b1)ee

-cos(¢-¢,) 8,
where we can expand some of the terms in the forms

cos(¢-¢1) = cos(#l)coa(o) + sin(dl) sin(¢)

(B4)

sin(¢-¢1) - cos(¢1)sin(¢) - sin(ol)cos(ﬂ

T

Having the direction of incidence and two polarizations ex-
pressed in spherical coordinates we can go on to express the
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response of the perfectly conducting sphere to the two delta

function plane waves 39 as in equations 2.17. This can be fol- (
lowed by finding the delta function responses for the surface

current density and surface charge density.

RS DRt M A

For the incident delta function plane wave we first need
spherical harmonics and vector wave functions in which to ex-
press the expansion in spherical coordinates. 1In spherical co-’
ordinates we have the common diiferential operators as

e nm—

+ 9 + 123 -+ 1l 9
VF=e 3 Fteg ?FFF+°¢ r sin(0) BTF
’ 1l o 2 1 9 1 )
‘ V-?-—:r rr(r Fr) +——r—mr sin ﬁ(sin(e)f"e) +—{_(FTI' sin % P"

(BS)

> 1 2 . 1 3
v =3 [starey Setein©ry - rkerer 5 7o)

| + 1 3 13
: teg [r 8in(d) 3¢ 'r T ﬁ'(chp)]
r]

+ 1 23 1l 9
*%[‘f 3z(*Fg) -7 35

wher: F is a general vector and F_a general scalar. Other oper-
ator such as Laplacian (V2F and V2F) can be constructed using
the three in equations B5. These operators are suggestive of
ones that could be defined to operate with respect to the sur-
face coordinates 6, ¢ on a unit sphere. Of course these operate
on scalar and vector quantities which are functions of these
surface coordinates (or considered as only functions of such co-
ordinates). Using a subscript s to denote these operators we

have

VFze, 2 F+e, —ripgr o F

s - -6 99 ¢ sin(0) 9¢
- 1 9 . 1 L]

vs'i‘t = m ﬂ(Sln(s)Fe) +m w F¢

1

- 1 '] 1 ) ]

VoF = & [oriey Fotein %y ~sricar 55 o) 4

(B6)

+ 1 )
+ € 3In(dY 3¢ 'r
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Note that in the process of removing all r factors and deriva-
tives with respect to r the Vg operator leaves the units un-
changed instead of multiplying the units of F or F by meter-1l,

Let us now consider the spherical harmonics. The scalar
spherical harmonics can be written as

cos (mé¢)

sin(m)f ™= 01,2777, n (B])

Y _(8,8) = p’,‘;(cos(onf

n:mro

The subscript § meaning even or odd, indicating that one is to
be chosen corresponding to whether cos(m¢) or sin(m¢) respec-
tively is intended. The Legendre functions are given their
standard definition such that for -1 < £ < 1 the PR({) have the
definitionl?

ey - m,, 2,2 gm
Pn(E) = (-1) (1-E7) ;—mPn(E)
3
(B8)
= 0 = 1 a" 2 n
p (&) = 22(p) = 1 d_(c2

2"n1 at

For convenience a subscript o (for symmetry) can be used to in-
dicate e or o0 or as an index for sums over both. Using tae
Kronecker delta notation defined by

l for ol = 02

8 = (B9)
9309, 0 for o) # o,

we can write the spherical harmonics as

m
Yn,m,o(e’“ =P (cos(0)) lée'acos(mq') + 50'0313(1110)] (B10)

where we use letters e, o for the arguments with obvious meaning.
If desired + and - or +1 and -i could be used to denote even and
odd respectively being some kind of parity value.
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Having considered the scalar spherical harwonics we now
need the vector spherical harmonics, three kinds of them. 1In a (
manner similar to previous usage?? we define three types of vec-
: tor spherical harmonics. This definition differs slightly from
é one of our previous notesf but our present definitions seem more
natural. The first kind have only an r component and are simply
defined as

- -+
B, ol®® Y, (6,008, (B11)

"The second kind has only 6 and ¢ comporents and is defined as

3 (6,8) = V.Y (6,9)

n,m,c sY n,m,c

R T T —

= ;0 %6' Yn'm'o(e.ﬁ +;¢ fa-{-!];—z-é-r -g-“-’ Yn'NIO(Q,O) (B12)

b which can be written out as L

m, m
dPn{cos(B))$cos(m¢) » Pplcos(0)) P—sin(mQ)! §

5:1 m e(8:0) =€y a0 Isin(mé)| T ¢ —sInr(oy cos (m¢) o
.S |

- m

| _ ataemel) PRer(S0SO)) s nam) Pn—1‘°°s‘°”hcos(m¢)

' <. 2n+1 sin(9) ~ 2n+1 8in(0) sin(m¢) i
. - Fn (cos(6)) -sin (“‘“l (B13) vl

etm sin(0) cos (m¢) )

The third kind also has only 6 and ¢ components and is defined
as

e
<

R, m,ol00®) x (e (8,4)]

rnma

- 8 sTrrOT %; Y, ;o) - & Iy Yi.m,ol8r®)  (BLA)

whic¢h can be written out as
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m‘,, Mo

. P (cos(®)) (_.in(mé) _32 dp:(°°'(°’) cos (mé)
R (6,0 = & ST ’cos(m¢) "% a8 t'iﬂ(mO)

n'm,o

AR

-

' eI pm(cos(e)) ~8in (mg)
‘ ) sIn(ﬁi cos (mé)

fcos(mé)
|sin(m¢)

(B15)

m
+z [- n(n-m"'ll n+1(COs(9)) + Q‘H‘l) (n"’“‘) Pn_l(cos(e)) ]
¢ 2n+T *In (9) —2n+] sTn (9)

Some useful relations hold among the three kinds of vector
sphexrical harmonics as

) (6,0) = &, xR (0,

n,m,c r n,m

"
)
o4+

R {9,¢)

n,m,o x

% Qo008

W
<
™.

6n,m,a(6'¢) s'¢r ° §n,m,a(e'¢)] (Blé)

&, x (Vg x B | o 8,0)]

iin,m,a(e'“ = Vg X ﬁn,m,c(°'°)

L O AP

F These also have various relations to the scalar spherical har-
monics as

B (0,4) = e ¥ (6,9)

n,m,o r n,m,o

6n.m,o(e") = Va¥n,m,olf®)

n: X[v X[

r ‘t n,m, ¢:r(e 11 (317)

R {0,) = V_ x [& Y (6,01

n,m,o s ¥ n,m,c

- |
= -e, x VY n,m, a(8:®) ‘ ;

n




§ Note that the three types of vector spherical harmonics are mu-
- tually orthogonal at each point on a unit sphere for the same

; set of indices. They also are mutually orthogonal in an inte-
gral sense on the unit sphere for any combination of index sets
3 as

L 27
j; "; 3n,m,(;(a"” * 5no'm-'0.(9p¢)sin(6)d0de = 0

] 2n
j; j; $mm'a(e,¢> . B g1 (0,4)8in(0)d¢a0 = 0 (B18)

nl 'm'

A Rt Eanl Ji A

mCope2n 2
j; j; G m,of®e®) * Ry i (8,6)8in(8)dsd0 =

For the same kinds of vector spherical harmonics we have orth-
ogonality relationships on tie unit sphere as

" 27 3 i
[ L B nol88) = B, L (8,6)s1a(0)d0as

] 27 (n+m)!

= [1'+[6e -9 16, 2n+l (n-m)1! Gn,n'sm,m'sa,c'

'O 0,0° o,m

T 2
f f 6n,m,0(9'¢) . an. m' O.(6.¢)sin(e)d¢de (B19)
o (o] ’ ’

" Z"ii &
.]; L n,m,o(e'w . n.'m.:g/.“_;(ﬁ..tb)sm(e)dcpae

o
e

.-"’

//
- - — n(n+l) (n+m)!
{l"*lée,o 60,015 32T —2n+] {n-m)1 Gn,n'cm,m'co,o'
-~

As a next st we need vector wave functions for spherical
coordirates. Op& part of these functions comes from spherical
Bessel functiefis which are functions of yy = ikr = sr/c. It is
from these at the radial and complex frequency dependences are
formed;,wfgese are commonly expressed as
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3 (kx) , ¥y (xO)

(1) -
by, (kr) jn(kr) + iyn(kr) (B29)

(2) - ;
b{2 (key = 3, r) - Ay (ko)

where the jn are used for cases of no singularity at r = 0, hntl)
are used for incoming waves, and hp(2) are used €or outgoing
waves satisfying the radiation condition at {infinity. For & + 0

we have

n
3_(8) = prapyriro )
{(B21)
{2 (g) = L6y~ (2n~1) 11 1240LE2N)

where the double factorial is defined by

m{m=2) ** -~ (4) (2) for m even
mid 1

mim=2) "+ (3) (1) for m odd (B22)

114 = 014 = (<L) =1

we define spherical Besssl func-

Now for present purposes
we define two kinds

tions with argument [ = if and

1113

(1)
fn (%) in(C)

(823)

111

(2)
12 (0 = x (@)

The first kind is used to expand the incident wave (and is like
jnikr)) and the second to expand the scattared fields (and is
1ike hn(2) (kr)); the functiona like yp and hn{l) can be £

as a linear combination of the £,(2) for L =1, 2. We wish
these functions to be real for real yr so that the complex con-

jugate relationship of equation 2.4 will apply and 36ros of the
functions will have complex conjugate symmetry. Let us then

constrain ¢ + 0 the asymptotic forms
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in(?.) - '(T#TH'T“”“ )]

, (B24)
kn(c) - c'"‘l(Zn-l)ll[1+0(c’;l
from which we can make the identification
1080 = 175 (8) = 47y (~d¢)
-n-2, (2) - {-n-2,(2) .
kn(c) = i hn (E) 1 hn ( 1‘) (B25}

-n, (2)
= -i hn (€)

For these functions we need a Wronskian relaticn with re-
spect to the argument [ as

2

WL (2), Kk (©)} 21 (R)K}(E) = i) (E)k (&) = =¢ (826)

where the prime with the Bessel function indicates differentia-
tion with respect to the argument. Another related expression
is

e

v o U |
i tz) (R (D)) ko (2) [2i (%)) 4 (B27)

which in Wronskian form is

wigi (0),gk (2)) = -1 (B28)

These are useful for simplifying coefficients in the field,
current, and charge expansions.

These spherical Bessel functions can be written as combina-
tions of polynomials and exponentials giving them a simpler form
for their exact representation. This is important for €finding
the goles for our singularity expansion. From a standard refer-
enceld the spherical Hankel functions can be written for n = 0,
l, 2, ++- as
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i
|

n
'(.- ..\‘:‘1) (E) . 1-n-1£-1e15 Z !sn:E) ! l.(_iza)-e
(B29)

) n
L . (2) n+l -1 -ig n+g)! . -8
n ) (@) = AR ity T ez

From these we can construct the other spherical Bessel functions
as

38 = 3@ + nl2 o)

(B30)
; il (1) _ w(2) ]
g e = - e - nf? @
Eg With ¢ = if we then can write our k functions as
b
-z
= 3i-h=2 (2) - & g (n+B) ! -8
kn(c) 1 h, (%) T e Bl(n-B)!(zc) (B31)
C( with the resulting simplification of the expression this last

form for the spherical Bessel functions for outgoing waves has
some useful advantages. Next consider the spherical Bessel

- functions which are analytic at ¢ = 0; these can now be written
as

- n iMoo (1) (2)
i) = 1% ) = [0 @ + nlP (0]

3 tn -z n
e (n+8)! . =B _qyh*l e (n+8)! .. -8B
: " Ty Tm-m T T (D) TE‘BE=0 o= T 28)

! (n-

n v -Re=
= cosh(c)z%Z[(-l)B + (-1)" 11%(2;) B-1

N

n s .'\ |
* sinh(c)RZI(-l)B + 0B 20 7Pt (m32)

8l

[ N S U NP R C S - iredrae oo s ks aknaba. adabiaetk

i pi S o i

4 in | me ae




A amm e e O ke e

L
3
{
q{
El
9

The finite sums in equations B3l and B32 can be expressed as
ratios of polynomials in r For the kp functions the numerator (
and denominator both have zeros (in conjugate complex pairs ex-~"
. cept on the Re(t] axis). For the in functions we only have
o zeros in the complex { plane; the i, are then entire functions.
Cl All the inverse powers of [ cancel when the exponentials are ex- .

! panded as power series in [.

P ey i g
.

Having the Bessel functions in the forms we desire we now
consider the spherical vector wave functicns. These are closely
related to the spherical haimonics. . As a building block we have
the spherical scalar wave functions as

Y R - i -
T

t
4

(2) + . -{%) - (2) ;
n'm'o( r) = "n'm'o(vr.6,¢) = £ (Yr)Yn'm'o(9,¢) (B33)

which car. be written out as

= (%) + _ (L) m fcos(md)| _ _ L
_“'mlg(Yr) = fl’l (Yr)Pn(ONP) ‘Siﬂ(m¢) m=0,21, 2, , n (B34)

where £ = 1, 2 refer to ip and kp resnectively. Coefficients
times this when summed over all possible indices satisfy the
scalar wave equation wvhich fcr each function we can write in op-

eratnr form as

2 2,.12) o :
(v - vy )“n,m,o(Y‘) 0 (B35) §

From the sclution of the scalar vave equation one con-
strucis as usual the solutions of the vector wave equation, and i
these are of three kinds. The first kind have zero curl but i

non zerxro divargence and are defined by

7 (L) % = 1 yz
L (yr) = Y V=

(yr) :
n,m,J oY ;

(2)
n,m,

fqz)(yr) : g

o(8:00) + DG (6,6)  (B36) iR

(2 .12

vhich can be written out in components as
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[P —

o (L) - g2’ cos (mé)
% ( Lrn . (vr) f (Yr)Pm(°°'(°))tsin(m¢)
i I c o

cos(m¢)
sin(m¢) (B37)

. . £ (yr) ar?(cos(0))
Len n oY) = Yr dé t
’ 'o

(2)
£, (yr) Pl(cos(6)) afsintm)

oY1) = YT 81in(0) cos (m¢)
n'm'a

(2)
Le

The prime is used to indicate derivatives of the functions with
respect to the argument (yr here). The second kind have zero
divergence but non zero curl and are defined by

Vv x [r=( ) (7;)]

n,m,o

- >(2)
I nn,m,c

(YX)

= % x vs; ; (v2) |

- = (L) -> !
Q = -e, X V.2 n,m, o (¥¥)

-

(2)
= -3, x vy, o aenelMom 1

£ (yry (-2, x &, | (0.0))

n,m,o ’ j

() |
= e, (0,0 (838) |
) J
i The components are 3
b M (vE =0

r e
n,h\,o ?
]

P (cos(e)) m;~81n(m¢) -

u{t (Yr) = f(z’(vr) cos (mé)

0
n,m
o (B39)
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arT (cos (6))
(%) s _ (8 n {cos (mé)
M‘n _ e(¥YE) = =£ " (yr)——3p |sin(m¢)

(o]

The third kind also have non zero curl but zero divergence and
are defined by

ﬁéf;'o(y;) =1y x ﬁ‘”)' (v2)

= D y2:(8)  (g.4) + (r-V)v-“’ (e,6)

Y ' “n,m,o n,m,c
2 o-(L)
+ 7 V-n’m’o(er¢)
= - = (R) 3 =(2) = (%)
= eYr_nm°(9,¢)+a—ﬁ—TV nmo(e ¢)+ Vnmo(91¢)

(6,9)

(%) (2" (L) -4
‘-yrfn (yr)-+yrfn (yr)-+2fn (Yr)}Pn,m,o

(2) v )
£ (Yr)] £ (yr)
n n
+ {Yr[__._Y._r__ + 2 .__Yr__..}an,m,o_(e,¢)

£4%) (yr) [yeef® (o]’
= n(ntl) e B (0,0) 4 T O m,o(009) (B4O)

where we have used the differential equation for the spherical
Bessel functions and some vector calculus identities.l The
components are

m cos (m
Nrn n (Yr) = n(n+1)———7;——- Pn(c°5(e))[sin(m¢)
’ lo
(2) 't
TR [ern (Yr)] dpn(°°3(°)){cos(m¢)
o e Y yr dg sin(m¢)
1 *Io (341) \
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[

[eré“)(yrlli P:‘°°s‘°”t—sin(m¢)

(2) +
N (yr) =
n,m,g Yr sin cos(m¢)

Note that all three kinds of vector wave functions satisfy
the vector wave equation in Laplacian form which we can surmar-

ize as

L
(v2 - 3 ﬁ} =3 (B42)
N

However from the operator identity

vye -~ vé ' (B43)

Ux¥x

and noting from their definitions that

M
IV {*} =0
N
(B44)

Wt = % V(v

we can write a curl curl wave equation for only the second and
third kinds of vector wave functions as

->
M
=0 (B45)

-

[VxVx -+721[
N

The three kinds of vector wave functions have some interrelations
as

*(2) > -+ (2) -+
Mn,m:U(Yr) =y x fn'm'c(yr)

a(8) w1 (L) 2
Mn,m,o(YL) Y v ﬁn,m,o(Yr)

(L) + 1l (L) +
ﬁn'm'O(Yr) =SV x Mo ()
(B46)
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§(l)

* - (L) 2 ]
n,m,o'¥8) = =V x [r * Ln,m, o)

Since the vector spherical wave func:tions have their 6, ¢ de-
pendence expressed in terms of the vector spherical. harmcnics
then these vector wave functions have certain orthogonal:ity

4
properties on the unit sphere based on those for the spherical
harmonics (equations Bl8 and Bl9). eﬁer since two spaerical
vector harmonics are used for the I and

functions the orth-
ogonality relations for the vector wave functions on the unit

sphere are not as simple and convenient.

Returning to our dyadir

nlane wave from eguation 2.13 in
Laplace form for propagation ir the direction &) as
3 -> -yg o; ;
fl z%e 1 (B47) 1
where } is the unit dyadic which can be expressed many ways such
as
e 1 00, !
I=(6bb)=(010)
1’72 001
o + L + -+ > ‘
= ege, tee 22 g
_ > > + > -+ > -+
|
+ &> E I -+ -+ \ :
E = e.e + ejeq + e¢e¢ (B48) ‘
j
; This dyadlc glane wave is expanded in our spherical vector wave 1
functioan |
3 ~ n (n-m) ! (1) s ‘
D> (2-8, 1 (-1 (2nel) BB g0, 0280 () N
n=0 m=0 o=e,o0 ' a
n > (1) 2y L (1 i g {
* Alnt [Rn,m,o(el'q’l)Mn m, U(Yr) 6n,m,t:t(el"{"l)nn m o.(yr)] (B49) !
where 63 and ¢] are angles giving the direction of 31 as used ;
previousl§ Note that for n = 0 the summation is not extended
over the and functions which are identically zero.
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This dyadic plane wave expansion is related to integral
represengstions for the spherical vector wave functions for
L =1 as

an -Yz -3
+(1) - (_l)n+1 n 1
Ln,m,o(Yr)': in b Jo e in'm'o(ﬂl.tl)sin(el)doldel

1 T p2W 73 -?$
'Ti_/;,l; e n.m,o(81,8;)81n(8))de do,

2n -73 T
(1) + _(-1n" "f 1 :
Mn,m.o(Yr) ==qr j; A e ﬁn,m,a(el"’l) 81n(91)d¢1d01

(B50)
=1 “fzﬂeyel 2 t9.,6.)sin(6,)d¢.ae
I o Yo n.m, ¢ 1771 1 171
+(1) 2 _ (-1t "f -731-?6 (6 in(6,)dé.do
Nn,m,c(Yr)" iw JE o n,m,g 10$,)8in(0,)d¢,d06,

> >

1 L 2% yel-r‘
=Z",f;_/; e an'm’o(el,ol)sin(el)doldel

Thus the spherical vector wave functions for £ = 1 can be con-
sidered as weighted integrals cver plane waves travelling all
possible directions of propagation €).

Having an expansion for the dyadic plane wave we can find
the two delta function plane waves for p = 2, 3 as

-

=+ of
p- % "N

-3 U

. (B51)

-+ -+ -+ <+
For these we need ep expressed in terms of erj;, ep1, e£¢] unit
vectors which we can see by referring to figure Bl are

(B52)
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Then considering the terms in the expansion coefficients we have

- -
o, 0B o(8;087) =0
n,m,o

dP:‘: (cos (@ 1) ) {cos (mé 1)}

+ ?
e, 0 (0.,0.) =-=5—Y (d,,04) == .
E 2 n,m,g 1l ‘1 551 n,m'eo 1l 351 s:m(uwl)
? SR ol84) " - sTarey ses ¥, ef1e%)

n,m, ni¥y 1l n,m,g

' _ -P':‘(r:'os(el)) mt-sin(maﬁl))
E‘ sxn(el) cos(m¢l) i
(B53)
->
e P (0.,0,) =0
3 n'm'z 1’71 .
*> 1l ) .
e, 0 (8,,0,) =~ Y (9,,9;)
3 n'm'i 1’71 sin!eli W; n,m,g 1’¥1
‘_Pﬁ(cos(el)) . -s:’.n(m¢1)l
sInwlS cos(m¢1) )
ar™(cos(9,)) (coe (md,)
-+ »> ') n 1 1
e, *R (6,¢)= Y (o i¢)= { }
3 n,m,z 1’71 '5'5’; n’mlz 1’71 ds, sin (n¢,)
and for completenéss
- m cos(md»l)}
. o B (0,,0,) =Y (6,,0,) =P (cos(e)){
] n,m,g 1’71 n,m,z 1’71 n 1 sin(mcpl)
(B54) L
\
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-+
el'a e(el'Ql\ =0 i
n,m,o

. el ﬁ e(911¢l) 0
N M n'm'o

For p = 2, 3 the delta function plane waves (transformed) can be
written as

->
3 4 YT B T 1 T Y (L >
E u; = eye ‘n= r&) agoLan,m,oMn,m,o(Yr) +bn,m,o§r.,m,a(7r)]
t 2.t e a (B55)
; 3 2 17 " (1) >, (1) -
| { U3 = €3¢ et n?;ﬁ cze:oLbn,m,o"n,m,o”r) °n,m,cﬁn,m,c(")]
where J ;
m .
2t = (2-6 1(-p™*L 20t]) (nem)yr  Pp(€0S(9,)) sin(néy)
“ To,nm n(n+l) (n+m)! sin(9,) cos (mé,)
n,m, 1 1l
' ( , A . (B56) ]
m 3
b =p2-§  ](-yP 2ntl) (n-my 3Fp(c0s(6,)) jcosnéy) ;
e o,m n(n+l) (n+m)! dao sin(m¢,)
n,m, A 1 1

The prime is used with these coefficients to differentiate these i
from the ay. Note that we have

> > +> -+
v [+ -Ye1°r] » ~Yep°r
X

1 =
= eje eje
I 2.3 (857)
1 [* 1= ] _ 2 T8
? vV x e3e = -e,e

which is associated with the curl relations between the M and N
functigns. Fuv=thermore any divergenceless electric field expan-
sion (E) can be converted to a magnetic field expansion (ﬁ) by

gividing by the wyave impedance 5 of the medium and changing
M+ -N and N + +M. To go from to E multiply by 2 and change
M+ +N and N + -M.
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Now define two sets of coefficients for g = 1, 2 as

{aﬁ,m,o for p = 2
p - =
l,n,m,0,p -
e bﬂ,m,o for p 3
(B58)
' =
{bn M, 0 for p = 2
A =
2,n,m,c,p - -
P a; m,c for p 3

Then for p = 2, 3 we can write our unit incident plane wave as

-+ >
-Ye .r o0 n
ee ! > 3 [ (e
= e e = A M (Yr)
P P n=1 m=0 o=e,o0 l,n,m,0,p n,m,0

&t

{1) >
* A2,n,m.c,pun,m,o(7r)] (B5Y)

Our incident plane wave electric field is written as
3 -+ ~ 3 -~ 3
i o(Fes) = EIE,(s)0, + £5(s)u,] (B60)

In the presence of our perfectly conducting sphere of radius a
we have a scattered electric field as

isc(§.s) = Eo[izts)ﬁésc’ + E3§§5°’] (B61)

where for p = 2,3 the scattered electric field response func-
tions are

*(sc) (sc) >(2) + (sc) (2} +
z Z E [ 1 n,m,o,pMn,m,o(Yr) +A2,n,m,o,pﬁn,m,c“r)]
n=]l m=90 o=e,0

(B62)

Constraining the tangential electric field to be zero on r = a
requires for the tangential components
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+(1) + (sc) (2) > o
« [Rl,n,m,o,pﬂn'm'ohaer) +Al,n,m,a,pﬁn,m,a(“°r)] )
(1) (sc) (2) (B63}
P4 * sc
e X [Azlnlmla'pinpmoc(yaer) +A2,n,m,o,pﬁn'm'o Yue \] .3
|
This gives equations for the coefficients as
A(sc) - _i (ra) A
l,n,m,0,p En(Y ’ l,n,m,0,p
(B64)
[Ya1 (va)]'

(sc)

A2,n,m,o,p Ty E (va) 1" 2 n,m,o,p

The surface current and charge densities (equations 2.18,
2.19, 2.25, and 2.26) are written as

E (3.) (3
- F 2, o) X'"s’ ,+, -~ F'Ug’ >, .
3s(r +S) =-z:[f'2(8)32 (r',s) +E5(s)0, ° (¥ .S)]

(B65)

. - (pg) -, . =(pg)
Bg(r',s) =e°Eo[f2(s)Uz S E,8) +E,(8)05 ° (?:-,s)]

To £ind the surface current and charge densities we need to
evaluate just outside r = a the expressions '

{B66)

The surface current density response functions are then

(F) ' ‘ |
p s (r',s) =e' % z Z Z [Al n,m o,pﬁr(l:,ll)n O(Yag;:')

n=1 m=0 o=e,0

(1)

_al(sc) (2)
A ﬁ 2,n,m,c,p n,m,o

l,n,m,0,p n,m o

(sc) +(2) . +.]
+A2,n,m,o,pMn m, o({aer)

> >
(Yae;:_) +2 (Yae;:.)
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oA L [Yain(va)]'

g-Al,n,m,o,p[ Ya (

S
=@’ x
xr
n=) m=0 o=e,o0

i (va) [Yak (vya)l®
k (ya) Ya

Jop 0707

(Yai (va))* p e
2,n,m, oup[l (va) - Ivalf ayTT X (“)] n,m,o(8" 8"

{(B67)

+A

; From the Wronskian relations for the spherical Bessel functions i
' this reduces to

e i

| 3 = n |

- 1 !

) (r',s) = " )a R (6',6") !

P 1§1 é: ogo‘ Lonemi G PR M, (va) 2k_(va) |
! 3

A 3 (8',4") 1 (B68)
2,n,m,0,p"n,m,c ’ ya[yakn(Ya)]T i

The surface charge density response functions are then !
IS INES 3 3D o B o e :
1 [ .
s p n“r =0 oo l,n,m, o,p r n,m,c o 3
g |
'(SC) . e(2) > :
Ay ,n,m,0, pe; Mn m, PLALIAY : i
1Y) >,

+A 2,n,m,0,p ; Nn m, O(yaer) ‘
: (sc) % (2) +
| ! *A),n,m, o,pe; isn m, o(Yaeé)z ?
3P9> [rmen-2 |
= A n(n+l)-2e—onu j
// n=1 m=0 o0=e,o0 2,n,m,0,p ya 1
]
i
[vai (va)}® k (Ya)] '
- [yaﬂ: ayT™ Rl ——— Y o o (0'h0") (B69) |
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Note thet only the g = 2 terms contribute to the surface charge
density. Using a Wronskian relation we have

o) o I
g ® (r"')'z Z E -n(n+l)Ady | omo P
P n=1 m=0 o=e,o0 e

Y (0,6 ——t (870)

n,m,g (ya) [Yakn(ya)]'

Note that since n =1, 2, 3, *++ there is no pole at ya = 0 in
either the surface current density or surface charge density re-

sponse functions.

Now that we have explicit representations of the response
functions for surface current and charge densities in terms of
known functions we can identify various terms with the terms in
the singularity expansion. Let us start with the natural fre-
quencies. These are the zeros defined by

k(34 % =0, [sa g- k, (s, -2-] = 0 (B71)
There are then two classes of natural frequencies which can be
labelled by g = 1, 2 depending on which of equations BVl they
satisfy. Clearly n is another index and for each n there are
some number of natural frequencies which we index by n'. Thus
the index set o as applied to labelling the natural frequencies
can be written as q, n, n' and we have

2) = a LA
kn(sl,n,n‘ Eﬂ 0. [sz,n,n' c kn(sz,n,n' c)] =0

(B72)
Ba = sq,n,n'
Since from equation B3l we have
- n
o & (n+B) ! -8 : _
kn(C) z 2 B (n_m(2§) (B73)

g=0

Then let us write the spherical Bessel function terms in eqgua-
tions B68 and B6&S as
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1 -8t
Bl'n(va) = e

(Ya;ikn(va)

Ya

Bl,n(ya)

-8t

1 = Y2 o
yalyaﬁﬁ(iail' = e B2,n(7a) e B, n(Ya) (B74)

“sto B3 n(Ya)

1l -~ _Ya
= ya

T e B3'n(ya) = @

5—

(va) lvakn(va)l'

where

a
t = “c (B75)

Since the B functions are all ratios of polynomials in ya then

we can make a pole expansion of them. Note that tg is just the
turn on time when the incident wave first touches the sphere so
that the coupling coefficients are factored as in equation 2.21;
the perfectly conducting sphere is then an example of this fac-

toring.

The ratios of polynomials are written as

-1
2 (n+B) -8
1 N (n+8) ! . =B . N~ (n+B)! g-1]
Bz'n(C) Ew’: }-CBE,O: 81 (n-B 7(2%) -ZCBE_I:BB_!G;.‘B')‘T(ZC)
( (B76)
B g)
- 1 2,n 1l
B (c) g = (4 =
3,n C3'n(C) 4 Ccz'n(ET

In terms of the spherical Bessel functions these rational func-
tions (i.e. polynomial ratios) can be written as
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(%) = —=
" o2k (2)

-z
e
n(t;) = ET?I\:TE)T" (B77)

-3
[Ek, (2)]"

By n(8) =

Let us make a pole expansion of these rational functions where
B),n has the poles for g = 1 and B2 n and B3 n both have poles
for q = 2. Note that B]l,n has the form tn-Y divided by a poly-
nomial of degree n. B2, n has the form fn divided by a polynom-
ial of degree n + 1, B3 has the form zn-1l divided by a poly-
nomial of degree n + 1, Slnce n > 1 then By n and B2, n are zero
for ¢ -~ 0 while B3 , is a constant (for n = i) or zero (for
n > 2) for g + 0. Thus there are no poles at s = 0 (consistent
with physical requirements). For s + « all three rational func-
tions go to zero; thus there are no poles at s = » and no con-
stant terms in the expansions.

Using the rational functions Cj,n, C2,n, and C3,n we can
then write our pole expansions around the sa = Sq,n,n' eimple
zeros of the C functions. Since the number of zeros of a poly-

nomial is equal to the degree of the polynomial then for g = 1
we have n values for sy and for g = 2 we have n + 1 values of s,.

Define
A(b) = largest integer < b (B78)
Then we have a range for our index n' as

for = ]

-A(%) <n' < x(%) with n' # 0 if n is even
(B79)
for q = 2

A(Z2) <0t < A(BF) with o' # 0 if n is odd

For the sy we then automatically have the convenient relation
possible between n' and ~-n' indices as
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(B77)
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Let us make a pole expansion of these rational functions where
Bl,n has the poles for q = 1 and B2,n and B3 p both have poles
for g = 2. Note that B}l,n has the form gn-1 divided by a poly-
nomial of degree n. B2,n has the form {Nh divided by a polynom-
ial of degree n + 1. B3 p has the form gn-1 divided by a poly-
nomial of degree n + 1. Since n > 1 then Bj p and B2,n are zero
for ¢ + 0 while B3 , is a constant (for n = 1) or zero (for

n > 2) for §{ -+ 0. Thus there are no poles at s = 0 (consistent
with physical requirements). For s + o all three ratiocnal func-
tions go to zero; thus there are no poles at s = » and no con-
stant terms in the expansions.

Using the rational functions C],n, C2.n, and C3,n we can
then write our pole expansions around the Sa = Sq,n,n' simple
zeros of the C functions. Since the number of zeros of a poly-
nomial is equal to the degree of the polynomial then for g = 1

we have n values for sy and for g = 2 we have n + 1 values of sy.
Define

A(b) = largest integer < b (B78)
Then we have z range for our index n' as

for g = 1

_1(%) <n'< x(%) with n' # 0 if n is even
(B75)
for q = 2

-x(ﬂ%l) <n' < A(E;l) with n' ¥ 0 if n is cdd

For the s, we then automatically have the convenient relation
possible between n' and -n' indices as
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N.W,.,_,.-.
N .

sqrnr"n' - s‘!rnrn'

Im[sl,n,ol =0 for n odd (B80)
I“‘[sz,n,o’ = 0 for n even

It is knownl9 that the zeros of kp lie approximately on an arc
in the left half of the s plane joining sa/c = -in to sa/c = +in
and passing through sa/c = ~66n. The zeros of [Zkp(g)]' behave
similarly. Then a convenient way to identify the sy with spe-
cific n' is to start with the most negative value of n' from
equations B79 and assign it to the sy with the most negative
Imn[sg] and progressively work up to the most positive Im(sgy].

Thus our pcle expansions may be written as

(3)

[_s._a_)= Z —D—l——q-Ln—-w:Lthn # 0 if n is even
I,n S~s

l,n,n’
n'=-1(3)
r+l
A (5=55)
NESE Z g--?—-“-d‘-—wlthn #Olfnis 0dd
' -—A[ 2 n,n’ (B81)
n+l
A (=)
B (ﬂ) = Z ———3-!-11-'-5‘-— with n® # 0 if n is old
3,n n+l,57%2 n,n"
n =—A[ )
where
-1
- cld =n
Dl,n,n' ~a[EE c.n,l(;)] a D,n,-n’
1o ¢=%1,n,a'c
-1
cid - b
Dzvnrn' gz[af Lf?'v'z'(:)] a Dz,n,-n'
“ t=¢5,n,n'c
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N -1 -1 (B82)
_cid = C d
P3,n,n’ ‘E‘,‘a'f C,n-,s""} . a [‘ ac Cn,z’] .
- = e Y fal o~
s %=%5,a,n'c e & Sz2,n,0'C
=N = c

To see that the poles must be simple poles note that tke zeros
of the C functions are all simple zeros because they are the
zeros of kp(Z) and (Zkp(Z)]}'. Observe the differential equation

for the spherical Bessel functions isl9

el 0 20t ) - PP @ =0 (B83)

Suppose [ has a zero at Lo # 0. Then since fn is analytic at
this zero we can write a convergent power series expansion in a
nelghborhood cf [ = [o. If the zero is higher than first order,
say (L - Zo)2, then both f; and fp are zero at Zg, but this
forces fp to also be zero at Lo so the zero had to bhe at least
(¢ - Zo)3 as the leading term 1n the power series. Then divide
through by ¢ ~ go, but fpn and fj are still zerxo maklnq fn still
zero. This process continues to make all terms in the power
series zero and the function then identically zero. Thus the
zeros are all simple for [ # 0. Similarly Zkp{g) satisfies the

Riccati-Bessel equationl9

2 "
[t @]" - M@ =0 (B84)
z°+n(n+l) - °

Differentiating gives a differential equation for ([Ckp(Z)]' a

2

¢ +n(n+l) [2%+n(n+1)]

(B85)

Clearing the denominators this equation has the same form as
eguation B83 and sc for ¢ ¥ 0 all zeros must be simple. There~-
fore the perfectly conducting sphere has only simple poles in
its surface current density and surface charge density response

functions.

To 3ee some of the numbers we can write out the first few
terms, say for n = 1, from
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Cl,.l=C+1

€31 1,2
C, ,=—t%=_2[r%+C+1)
2,1°7¢ Z (B86)
d 2 g— = - -2 d 2 em -
acC,1t Fggl,a=7i*e T F6y, 70

From these results we can construct a table allowing q = 3 for
the surface charge density as

' a a

q n Sq,1,n'c c Pq,1,n’

1l 0 -1 1
v
ps 1 3 1 —-. /3
> 2 1l -3 + i ~ -3 + 1 <

3 1 -3+ ”—g -i "%’-

(like g=2) . _
(like g=2)

Table Bl. Pole expansion terms for n =1

If one wishes these natural frequencies and D coefficients can
be generated to obtain any number of terms in the expansions.

For n = 1, 2, 3 the zeros of the Cq,n polynomials can be
found from formulas for the zeros of up to quartic polynomials.l?
There is disagreement in a few_cases of the natural frequencies
with the numbers in Stratton.l7 However, the present results
appear to be more accurate and are confirmed by Dr. Marin (pri-
vate communication). The zeros have been substituted in the
polynomials to check that in fact the results are closest to the
true zeros to the number of places listed. Figure B2 shows the
positions in the complex sa/c plane (normalized s plane). The
division of the natural frequencies into g = 1 and q = 2 varie-
ties has a physical basis in that only the g = 2 poles contrib-
ute to the surface charge density. Another way to view this is
from a property of the vector spherical harmonics as

vs * 6n,m,o(e’¢) = vs X [VsYn,m,o(e'O)] =8

(B87)

e
Ve ﬁn,m,o‘e'¢) = Vg o Vg x le ¥ oo

(6,4)11 = 0
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‘ ( COMPLEX PLANE - i
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' c ¢ "¢
' 2,3,2 1 i3
X
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M
é 1,3,1 2,2, T2 : !
% ® X -
P P
| a, molcssl - S 2ot T
! o1
1,30 220 1,0 ¢ |
"y (L) by ——
ag INDICES D —+
-3 -2 -1 |
2,3, 1,2, 2,0,-1
a_ INDICES X © x 1
® NA;URAL FREQUENCIES P 22,1
FOR q = | .
— NO SURFACE CHARGE DENSITY T -i2
x NATURAL FREQUENCIES
FOR q = 2 2,3,-2
X
+-i3
q,n,n’ IS THE INDEX SET
;. FOR THE NATURAL FREQUENCIES.
: NATURAL FREQUENCIES ARE
SHOWN FOR n= 1,2,3. ‘
- ALL POLES ARE SIMPLE. ;
' |
L]
FIGURE B2. NATURAL FREQUENCIES OF THE PERFECTLY
CONDUCTING SPHERE FOR USE WITH EXTERIOR
( INCIDENT WAVE
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' a

q n n sq,n,n'c

1 1 0 -1

2 1l 1l -,.500 + i.866

1l 2 1 ~1,500 + i.866

2 2 1 -.792 + il1.807
0 -1.596

1 3 1 -1.839 + il1.754
0 -2,322

2 3 2 ~.843 + 12,758
1 -2.,157 + i.871

Table B2. Natural frequencies for n =1, 2, 3

from which we can divide the surface current density into solen-
oidal terms (precisely g = 1) and irrotational terms (precisely
q =2). (See ref. 6 for more elaboration of this point in the
general case.) However, the n, n' division may not give the
best indexing. Referring to figure B2 there a—ze various possi-
ble paths through the complex s plane which one might trace to
connect poles with the same q index. For a given n (and q)
vhere are many modal distributions generated by varying m and o,
all applying to the entire set of natural frequencies generated
by varying n'. This is a very deg¢=nerate situation in both nat-
ural frequencies and modes. Perhaps more insight into the divi-
sion of the indices for the natural frequencies and modes can be
gained from a group theory investigation of the symmetry proper-
ties. Symmetry planes and axes can be used to divide up natural
modes, and thereby natural frequencies as well. A diagram as in
figure B2 is useful in that it can suggest ways of grouping nat-
ural frequencies, even for objects more complex than a perfectly
conducting sphere. Note that the pattern of the natural fre-
quencies tends to fill up the left half of the s plane. This
two dimensional pole distribution may be associated with the
distributed nature of the body:; we are dealing with surface cur-
rent and charge densities. For cases that the currents are
idealized as on one dimensional paths then the pole distribution
should be much less dense and localized to "discrete paths" in
the complex s plane; in any event there would be one less index
needed and not say n and m both for the modes or perhaps not n
and n' both for the frequencies. .

Next we consider the natural modes of the sphere. This is
the part of the singularity expansion where the object coordi-
nates are expressed. For the surface current density the natu-
ral modes are readily identified in equation B68 as
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(J_) (J.)
+ et =+ g +,
Vo (r') “q,n,m,c( )
ﬁn,mlq(e',¢') for q = 1
= ' (B88)
6n,m.o(e"¢') for q = 2

Furthermore the surface charge density natural modes are readily
idenified in equation B69 as

(og) o)
M (x') = vq'n'm’o(r )
0 for g =1
= (389)

"
| \]

n.m,o(e"¢') for q

Thus for the surface charge density we can drop the g index in
the summation understanding that only q = 2 is used fcr the nat-
ural frequencies and modes. Back in equation 2.27 we observed a
relation between the natural modes for the surface current den-
sity and surface charge density as

(p,) g, .
v, s’ _ -a V' 30‘ ST (") (B90)

where ay is an arbitrary constant depending on how one has de-
fined the natural modes since the modes can be multiplied by any
non zero complex constant. For the sphere problem we can write
this in terms of the divergence on the unit spheve as

(o) a L3
Vu 8 _ _._ag Vé . vu s (;v) 5391)
Now we have
LI = ° »> ’ ' N -
v in'm'o(e-m) =L [T x By - (87,6")]1 =0
2 (B92)
Vo Q0 ol0n00) =y (60,4

101

et




so that only q = 2 natural modes have non zero surface charge
density. From the fact that the £ functions defined in equation o 3
B34 satisfy the scalar wave equation as in equation B35, then (
noting that from the separation equation for the radial functions

in spherical coordinates as

i-i g-f(rz g? fxgz) (o)) - [YZ * E(—:?)_]fr(x“ (yr) = 0 (B93) Sl

equation B35 can then be written as f

JR s S O

= [92_y2y=(2) :
0 = [77°-y"1E Th,o(¥F)

vy M ey L c0,0)

: _ n(n+l) (%) (2) .

| = 2 P myy o @0 e am vy, e eea) |
? from which we find ;
b Aty = U Y ' -
) Ve o B g0 = VLS (6Y,00) (0
Do ' !
. = sn(n+DY, L (67,00) (895) |
i { Thus we have f
| |
‘ a, =a =n(n+tl)a (B9€) i

where only q 2 is relevant.
Having the modes we now only need the coupling coefficients,
these are everything that remains in eguations B68 and B69.
Since the poles are all simple the basic equations we are match-
ing come from equations 2.34 giving the plane wave response ¢
functions as

L o "t et e e ALt am
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(22

. +* ) - had n .
G(Js (;.OS) =e Btoz: Z 2 Z Ecq,n,n',m,o,p(el'¢l)

P
=] n=1 m=0 o=e,o0 -
q ! n'=—A (D:—.;L}-
n'y¥0 for n+q odd

L3
5. S (e',¢')~———3——-—]

q,n,m,c $=S4 n,n’
L (B97)
n+
A (5)
. (pg) +, -Stoi = 2: c
Up (x rS) = Z [.S-———_,?-
n=1l m=0 o=¢,0 n+ly deRen M
n'e-A (5=
n'#0 for n odd
0 ) (pg) ( 1
c ] I¢ v e.'¢')-—]
2,n,n',m,0,p 1’1" 2,n,m,o s sZ,n,n'
The coupling coefficients are then for g = 1, 2
4 q-1
8 = (- )
°q,n,n',m,0,p %1% = 1T A o, pPq,n,n
'a;hm'qu'n’n. for q = 1, p = 2
M = =
- n,m,UDq,n,n' for q l, p=3 (898)
-b! = =
bnrmoODq;n'n' for q 2, p 2
a' D for q=2, p=3

n,m,0 gq,n,n'

The D coefficients are evaluated from equations B82 and a few

are listed in table Bl. The ay and by coefficients are found

explicitly in equations B56. Note that the surface charge den-
sity expansion uses orly q = 2 for the ¢g and the Dy. While we
can calculate D3, pn,n' as well it is simply D2,n,n' ©/(82,n,n'a);
using the results for ag with this and the n(n + 1) coefficient
in eguation B70 for the surface charge density one can see that

the same answer for the surface charge density expansion results,

thereby giving a check.

Equations B97 then explicitly give the singularity expan-
sion for the surface current and charge densities. The natural
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frequencies are the zeros of the Cy in equation B76; the natural
modes are ir equations B88 and B892; the ayg are given by equation [
B96; the turn-on time t5 is given in equation B75; the coupling. '
coefficients are given hy equation B98 together with equations

B82 and B56.

Now that we have the singularity expansions for the delta .
function respcnse functions we can consider arbitrary waveforms '
by taking their Laplace transforms and splitting the response
into a part associated with the singularities of the perfectly
conducting sphere and a part associated with the waveform singu-
larities as developed in section II. For convenience let the
incident wave be a step function. Then from equations 2.43 the
surface current density expansion is

VL e o L, L

T o ket

‘ £ () (3.) 2 (F)

V.S (Ee) avas (Z',s) +i7pos (£',s) |

; |

;30 Tt 23

% prs (r',s) =— ﬁp 5 (xr,0)

|

1 n+g-1

i A ———g— (B99) ‘

! (3 st o & & ( ) [ .

; ] -

E AT O B >iD DD D e S '
: o g=1l n=1 m=0 o= dq.,n,n

e,o -
: ! n'=—x (P—‘%—];
! ; n'#0 for n+gqg odd

-
| c , e v e. ]
; ‘ q'n'n 'm"\”p( 1!¢1) q'n,m’o( '¢ )s—sq'n'n|

(3, 2 ]

% and from eguations 2.50 the surface charge density step response
ig written as

; (p.) (p_) (p.) i ’
i > 8 = S > b 8 + :
§ vp (r',s)_vpw (r',s)+vpo (x',s) | ) j
st i
{p) ““Fo _(p.) |
(B1G0)
N
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i The static surface current density response is

o i
1
A(n+1)
( _og) “sto & & A o ,
vy (x',s) =e Z Z Z —_ _

i P (o] n=]l m=0 0=e,0 n'=~k(n+1) 2,n,n'an ]
L n'#0 for n odd {
3 i
; . (o ) 1 ] ;
(8,,6,)V (6°,6") gmg——— !
oL 2 n,n',m,o,p 1 2, n m,o s, ,n,n' i 1
B 3 3 |

;o <(3.) +(J_) .
E 6p 8" (%',0) =68 8" (2') - ['élxepl j
‘ = Z 2 A 1,1,m,0, oﬁl m,o(8' @) (8101) !
m=0 o=e,0

| where for m = 0, 1 we have

for p = 2

e
1,1, 5eP for p = 3

Ml e e R o de A Ak s s Al K n - o

; from which the dyadic surface current density static response
‘ function can be written as

+(3) 1 3 3
6,5 Ea=Y, 3 -3k 00,08 (8000
m=0 co=e,o : é
= 3Ry 0,000 408 4,5(0108)) f
g=e, 0 ]
-3 Ry y, g0t el g0g.0] \B103) .
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With the divection of the static magnetic field (which is ey x
g for our plane wave problem) dot multiplied on the right we
obt

ain the static surface current density response. The static
surface charge density is

Up (r ,0) US (r!) ep
1l
= 2 Y o' ' Bl
22% 02220 Az'l'mropp l,m,o( %) | (B1.04)

where for m = 0, 1 we have

-+
3, -61'm’0(91,¢1) for p = 2
2A =
2,1,m,0,p > _
' 32, 61'm'0(91,¢1) for p = 3
.* 4
=3¢, Q) o (010 (B1L5)

from which the vector surface charge density response function
can be written as

(ps) - 1 N .
O, 5 (E =20 20 3% 1 (87,810 [ (8,,0))
=0 0=¢,0
= 33wy o (65,008, o (0;.80) +3¥) 1 (65608 4 (0,4)) (B106)
o=e,0

Dot multiplying this by Ep (the direction of the static electric
field in our plane wave problem) gives the static charge density
response. Thus for the perfectly conducting sphere the plane
wave delta function response can be converted to the plane wave
step function response of bcth surface current and charge densi-
ties by multiplying each term by 1/sq n' and adding a static

term (consisting of a few simple known functions) with a unit
step function turning on at time to.

This basically completes the singularity expansion of the
response of a perfectly conducting sphere to an incident plane
wave for simple waveforms. As long as the incident waveform can
be expressed only in terms of poles the delta function response
as in equations B97 can be combined with the waveform poles and
through partial fraction expansion as discussed in section 2
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the response can be split into a waveform part and an object
part. Also as discussed in section II the time domain response
is easily and directly obtained from the pole expansion since
the frequency dependence of the coupling coefficients factors
out as a common delay term e~Sto, For the case of the step
function response the Laplace form as in equations B99 and B100
can be immediately converted to time domain using equations 2,64
and 2.65 respectively since the poles are all simple poles.

Note also that the natural mode functions are reual and the ag
are also real; beth of these can then be moved out (together
with c) from the Re function in equations 2.64 and 2.65 leaving
only the natural frequencies, coupling ccefficients and oscilla-
tory exponentials for n' > 0 as the onlv complex terms inside
the Re function. Of course the cq coupling coefficients can be
written in the form an,m,oDa or bn,m,oDa and only the Dg coef-
ficients are complex.

As an example of the time domain response consider just a
few terms in the step function response, say for p =2, n=1,
¢1 = 0, and 61 = 7/2 so that we have a vertically polarized wave
propagating parallel tc the x axis. Then we have

LT +(3,) .y
5>
- - (Jg) Q (t-t )
1 T o)y, S 1,1,0 o
i Sl 1,0 CI'l"o’l'OIZ(i'O)vlrlrlro(e.'¢‘)e Pt u(t-to)
t L

1“2,1,1 (t—to):lf (Js)

1 m
+ ZRe[s ,1,1,0,e,2(30)e V2,1,0,e(®' /")

2,1,1

Q (t-t )
e 2r1.l © u(t-toﬂ+ 2:
n>1
(B107)

(p.) (p.)
5 (;'lt)=6s S

Va

*' .-’ )
(x') ezu(t to)

W, 4 4 (t=t ) (p_)
2'1’1 (o] S L] L
][\’2'1'0'9(6 $')

i

C ™

Re[_“_sz ) €,1,1,0,e,2(z70)e
2,1,1

Q (t-t )
e 29111 o U(t"to)] + 2
n>1
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where the last terms indicate the remainder terms. Writing v '
these out we have (

&>
(J._)
v2 s (;'rt) =—%§1,1,0‘e"¢')u(t+%)

3 5
+%Rl,1,c(e"¢')e a u(t+%)

F
. /3cct 1cct
| 1 (e -}ty
-3Re[—i-’%e 2la ]61'°’e(6',¢')e Zta u(t+%)

E
i + 2

n>1

(B108)
: (p.) |
'i v, S (z',t) -3Y (a' %' )u(t+—) ;
T /3 . /3.ct
3 -1—3- 1—5(%-4'1) . ' ‘
_-2-Re ———/3_-e Yl,O e(e 0') . '
i
-3(£n)
| a (t-&%)+-2: !
: n>l
: These can be summarized as ;
’ i
* :
-r(J ) ( +1] :
V2 s (r ' t) --IRI,I,O "9 )[ ] (t+%)
P
lcct i
v as '7(;;*3 o
+/§61'0’e(e '¢ e Si ('—2‘ +1))\I(t+—)+z ‘1
.
(B109) "
\
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(p.) [ /3 ‘% ct
8 ¥, Y ys a
( v, % (x,t) =y1'°'e(e 4') |3+5e

+1) cos(%g(%t‘ +1) - %)]!1(“- +3)

+ 2,
n>1l
For reference we have

R,1,000' /") = ~cos(¢')&} + cos(d')=in($')&;

G, 0.o(8",9") = -sin(8")cos (")}

(B110)

Yl'o'e(e'l¢') cos(e.)

‘ For comparison to these results for thes step response of a
é sphere one can consider the numerical results for thz step re-
sponse graphed in another note.2l Consider the case in that
note that the perfectly conducting plane is infinitely far away
; from the perfectiy conducting sphere. Note that the basic ring-
L ing period agrees closely with 47//3 (in units of ct/a) and that
( in one period_the amplitude of the ringing decays by aApproxi-
N mately e-21/Y3 and that even the coefficients of the yinging
terms in equations B109 and Bl110 give about the correct ampli-
tudes for the oscillations. In the referenced note only the
total current crossing the equator 6' = w/2 is considered, and
so the comparison has to neglect the first term in equation B109
which gives no contribution in this case. Note that for times
-a/c < t < a/c we do not expect the first terms only to accu-
rately describe the surface current and charge densities because
the terms for n > 1 have not had a chance to decay to zero ampli-
tude. Even so, the first few terms give a simple description
with some features of the surface current and charge densities
even at such early times. As time goes on the first few terms
asymptotically give the exact results.
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