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On the Singularity Expansion Method for the
' e freqSolution of Electromagnetic Inheraction Problems t

0m Thi ote developols an w meinithod ane fo r the souion of t el i
unaction prbemspo. Baesicay fto involverms expanding the solas-

\'Thi n otura frevuenloes anew metode forth snoadd tion bngof t ZP in-
footrctionroblh ems Bscally coping inolvcens swexp andn the pos-

s"ion in terms of its singularities in the Laplace transform or
"J--complex frequency (or s) plane. In the time domain each term
-hcoaes from an inverse transform of the corresponding term in the

singularity expansion. Finite size objects with well behaved
media have only poles in the finite s plane for their deltan
function response. These factor into terms involving the class-
ical natural frequencies and modes but in addition bring out
factor3 which we call coupling coefficients as well as the pos-
sibility of higher order po'es besides simple poles, but still

>-of finite order in the finiAte s plane. If the incident waveform
0..L has singularities in the finite s plane the response can. be gen-
C)erally split into an object part (containing object po. ')and a
waveform part containing the waveform singularities. The object

L~j poles directly give amplitudes, frequencies, damaping constants,
.,J and pha@c.a for the damped sinusoidal waveforms seen so commonly
~ in EMP tests using pulsed waveforms. There is some latitude in

the calculation of coupling coefficients and some difficulties
are discussed..... - ,[I<.-*----
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Foreword

Approximately this last sumiaer I started looking at this
singularity expansion method. Based on physical arguments the
general form of the ex,-nsion and how the terms factored for
finite objects to exhibit dependence on separate variables of
the EMP interaction problem soon became appaxent to me. In par-
t~icular some physical observations generaiized from many EMP
tests in time domain led to the pole expansion concept in fre-
equency domain. This forms the starting point tor what followsin this note.

Next chronologically I started some discussion going on
j this subject, in particular with some of my colleagues at North-

rop Corporate Labs in Pasadena. I certainly wish to thank them,
in particular Dr, L. Marin, Dr. K. S. H. Lee, Dr. R. W. Latham,
and Dr. F. Tesc)-. (who is now with Dikewood) for many very stim-
ulating conversations about this technique. They certainly
helped me test and refine some of the concepts. They are also
presently working on reports to further refine the method and4 calculate some example problems. In particular Drs. Marin and
Latham have rather far advanced some analytic solutions of the
magnetic-field integral equation for finite size perfectly con-
ducting objects in terms of the singularity expansion.

In September there was a meeting in Pasadena with some sig-
Ik nificant attention given to this subject. I would like to thank

everyone who came to that meeting for the stimulating discussion
on this subject. On various occasions both at this meeting and
on other occasions I have had occasion to discuss this matter
with various people. In particular I would like to thank Prof.
R. J. Garbacz of Ohio State U., Prof. C. T. Tai of U. of Michi-
gan, Prof. S. W. Lee of U. of Illinois, Prof. C. Taylor of U. of
Miss., and Dr. A. Poggio of Cornell Aeronautical Lab. Some of
these people are already beginning studies on various aspects
and specific problems concerned with the singularity expansion
"method.

... when suddenly a white rabbit with pink eyes ran close by
her.

There was nothing so remarkable in thatl nor did Alice

think so very much out of the way to hear the Rabbit say to it-
self, "Oh, dear! Oh, dear! I shall be too late!" (when she
thought it over afterward it occurred to her that she ought to
have wondered at this, but at the time it all seemed quite nat-
ural)s but when the Rabbit actually took a watch out of its
twaistcoat pocket, and lo-ked at it, and then hurried on, Alice
started to her feet, for it flashed aoroes her mind that she had
never before seen a rabbit with either a waistcoat pockut or a
watch to take out of it, and, burninq with onriosity, she ran
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across the field after it, and was just in time to see it pop
down a large rabbit hole under the hedge.

In another moment down went Alice after it, never once con-
sidering how in the world she was to get out again.

(Lewis Carroll, Alice in Wonderland)
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SI1. Introduztion

This note takes off on a new course in the treatment of the
interaution of electromagnetic fields with bodies located in
free space or in other simple media, including the effects of
the proximity of one body with respect to crother (such as a
body in an EMP simulator).

By way of introduction some physical observations are in
order. Suppose one excites an object such as a missile, an air-
craft, a building with various conductor geometries, etc. with a
fast electromagnetic pulse. What are the general characteris-ties of the resulting waveforms for the various electromagnetic
quantities (such as current, charge, etc.) associated with this
object? Someone with much experience in EMP testing of such ob-
jects in EMP simulators could observe that an extremely common
characteristic of such waveforms is the presence of one or more
exponentially damped sinusoidal oscillations. This is the case
not only in the excitation of the internal circuitry but alsofor the body geometry as well. This electromagnetic resonancephenomenon is particularly pronounced for long and comparatively

slender conductors such as the main body resonance of a missile
or the body and wing resonances of various aircraft. These
damped sinusoids in the response are observed not only in EMP
interaction studies (both experimental and theoretical) but also
in fast pulse time-domain-type radar scattering studies.

Not all aspects of the electromagnetic response of objects V

look like damped sinusoids. Parts of the time domain response
may look like the incident wavefrrm, or perhaps its time deriva-
tive or time integral.. It would also appear that in some cases
even more complex types of responses occur.

Looking at the forms of the observed responses one might
ask if there is some way that these observable features of the
waveform can be found directly when one calculates the object
electromagnetic response. Can the amplitude, frequency, damp-
ing constant, phase, etc. of each damped sinusoid be directly
calculated? How do they depend on the incident wave? Can other
kinds of response which give waveforms related to the incident
waveform be directly calculated?

The purpose of this note is to begin to characterize elec-
tromagnetic interaction with objects in terms of quantities di-
rectly identifiable with various characteristics of resulting
interaction waveforms. Some characteristics are associated with
the object characteristics including the presence of neighboring
objects. Other characteristics are associated with the waveform
of the incident field. Yet others are associated with the spa-
tial distribution of the incident fields, such as specified by
direction of incidence and polarization. What is in effect ac-
complished here is a decomposition of the interaction 1roblem (+
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Pk
into var4.ous quantities which depend on different variables of
the prnrblem. The dependen,,e of the interaction on different
variables can then be separ~ately considered resulting in a dcon-
siderable simplification in understanding how the resulting
electromagnetic interaction can vary over all possible varia-
tions of the parameters of a particular problem being considered.
This effectively extends the complexity of the object geometries
one may be willing to consider for detailed calculations.

Having identified what appear to be exponentially decaying
sinusoido in typical interaction experimental data one might use
this as a-clue toward finding a mathematical representation of
the electromagnetic interaction which has these terms as part of
the decomposition. Consider the Laplace transform of the var-

throughout the note.) The Laplace transform of an exponentially

damped sinusoid gives a pair of complex conjugate poles in the
complex a plane of the form 1/Cs sal) and 1/(s -sc~ where s
is the Laplace transform variable, where sal = sct wi h the bar
above a quantity indicates complex conjugate, and where al and
a2 are sets of indices to label the poles being considered. If
one could find these poles with their coefficients in t:he corn-
plex s plane from an integral equation or other form of the so-
lution (such as from an eigenfunction expansion of the solution)
then not only would he have a representation of part of the fre-
quency or Laplace domain sol1ution, but also of a part of the
time domain waveform (damped sinusoids) as well. Suchi poles in
the complex s plane are termed natural frequencies of the object

since they are frequencie3 for which' the object can have a re-
tion in the form of an incident wave. If the body' is excited at
a natural frequency then 'Its response is infinite at that com-
plex frequency.

Suppose one were to take a solution for some interaction
problem expressed in the Laplace domain either explicitly or im-
plicitly (such as in the form of an integral equation). Fur'-
thermore suppose one wishes to convert this into a time domain
solution. This can be done using the inverse Laplace transform
integral, a contour integral in the complex plane. This contour
can be d~eformed in the complex s plane, passing it through re-
gions where the response is an analytic function of a. On
reaching singularities such as poles and branch points the con-
tour can be deformed around the poles and branch cuts to obtain
terms associated with each separate pole and branch cut and per-
haps a contribution from a portion of the contour for 181 ~
Our basic approach then in expressing the solution to electro-
magnetic interaction problems is to express it as a awm of such

bterms in both Laplace (frequency) domain a *nd time domtain. Dif-
ferent types of terms will have different properties and we wish
to understand these properties in detail so as to take advantage
of the decomposition of the interaction problem into its various
parts..



Not only are the natural frequencies of the object of con-
cern because there can be other singularities in the response.
Associated with certain kinds of object geometries one may also
need to consider branch cuts in the complex s plane. An example
of such a body is an infinite length perfectly conducting cir-
cular cylinder for which the branch cuts can be associated with
cylindrical Hankel functions. This note is mostly concerned
with cases that the object response does not have branch cut
contributions associated with the object characteristics. How-
ever the same approach as for the case of poles may be used by
including terms for the branch cut integrals in the general ex-
pansion for the inverse Laplace transform integral. Back in
Laplace domain the individual branch cut terms can be found by
first subtracting all the pole contributions and then treating
what is left. Since the only important contribution at the
branch cut is the change in the function across it, then in cal-
culating the branch cut integral one could use this change to
define an appropriate tevm only associated with this change
(along the entire branch cut). Such problems are not considered
in this note but it is determined that for a class of objects of
interest there are no branch cut contributions associated with
the object geometry.

The incident waveform will also typically have singulari-
ties in its Laplace transform and there are terms in the object
response which correspond to these. The object response can
then be split to some extent into terms associated with the
geometry and other electromagnetic characteristics of the object
on the one hand, and theiincident waveform characteristics (in-
cluding how they couple to the object) on the other hand. In
many cases the waveform contributions will be through rather
simple s-'ngularities such as simple poles associated with expo-
nential waveforms.

Having decomposed the object response into various terms in
this manner, one can then see how accurately the first so many
terms describe the complete object response in various of its
characteristics in both frequency and time domains. It is not
apparent that all interaction problems can be most conveniently
characterized using the natural frequencies and modes and other
singularities. However, for highly resonant structures it ap-
pears to considerably simplify the comprehersion of the impor-
tant features of electromagnetic interaction with the structure.
Other techniques will continue to be valuable and waveform and
frequency-response detailed calculations will still be needed.
In scme cases the waveforms, for example, will be useful in do- I
termining how many natural modes etc. are needed for the object
and over what range of the object parameters the incomplete sum
of modes is adequate.

This note first considers the general form of these solu-
tions which separates out various aspects of the object response.
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Then based on finite matrix formulation of integral equations in
a form such as used for numerical solutions various properties
of the solution can be found based on the analyticity properties
of the matrix elements and vector components. For instance, the
conclusion that only poles of finite order appear in the object
respoase for finite size objects applies not only to perfectly
conducting objects but ones of finite conductivity as well.
NNumerous topics are then briefly discussed to point out many
-.reas for further investigation. Finally an appendix discusses
the special "natural frequency" s - 0 and another appendix works
out the object response for a perfectly conducting sphere as an
illustration of natural frequency, mode, and coupling coeffici-
ent calculation and indexing.

In addition to what is oiscussed in this note many refine-
ments of the singularity expansion method are possible and vart
ious extensions of the results would seem possible. In solving
specific boundary value problems with this approach some other
general results may be suggested by the data, thereby focusing
attention on the proof or disproof of these conjectures and the
consideration of other boundary value problems which bett.er ex-
hibit the same general results or test their validity.

While this note considers the solution of electromagnetic
boundary value problems in terms of natural frequencies and
data as well. From frequency or time domain data one should be

( /able to determine natural frequencies aiA modes and other sin-
gularity characteristics by extending the data. to the remainder
of the complex s plane using Laplace transform techniques or
even analytic continuation. Of course there are numerical error
problems as in other data. reduction processes and this will also
require quantitative understanding.

Since this is a new approach to the solution of electromag-
netic boundary value problems there is clearly much work to be
donp to fully understand its many ramifications.
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IX. The Form and Some General Characteristics of the Singular-
iy Expansion for Some of the Simpler Cases

Let us now look at some of the advantages associ S.,,d with
the singularity expansion method because of the form oa the ex-
pansion in simple cases.

First we write the complex Laplace transform variable in
terms of its real and imaginary parts for notational purposes as

s - + iW (2.1)

An arbitrary function of time f(t) which could be in general a
scalar, vector, or tensor of arbitrary rank has a Laplace trans-
form (bilateral or two sided) assuming the integral of If(t)l
over any finite interval exists defined by1

CU

L[f(t)] f(s) B f(t)e dt (2.2)

where the integration is taken on the real t axis. This is the
two sided Laplace transform (indicated by a tilde ~ over the
function) where f(t) is required to have a behavior such that
f(s) exists and is analytic in some strip Q_ < Re[s] < 0+ in the
s plane. The inverse transform (where f(t) is of bounded varia-
tion nears t) is given by

L 1 [f(s)J = f(t) = 1 f(s)estds (2.3)

where the limits to +i= can be interpreted in a Cauchy principal
value sense and where n- < 00 < A+ unless f(t) is discontinuous
at t in which case the inversion gives [f(t-) + f(t+)]/2. In
our cases of interest f(t) = 0 for t < to in which case n+ =
and the transform effectively reverts to a one sided Laplace
transform with the lower limit as to. Typically also A- - 0 as
long as f(t) does not grow as fast 4s an increasing exponential
for t -* ÷w. Thus we normally have f(s) an analytic function of
s for Re[s] > 0, the right half of the s plane, and the inver-
sion integral is defined along Re[s] = no > 0.

The essence of the singularity expansion method involves
evaluating f(s) (which may be surface current density or various
other electromagnetic quantities) by evaluatiag f(s) in terms of
the left half plane singularities (ReIs] < 0). Express the time
domain form f(t) in terms of these same singularities as would

- - -----



¶ •be done by deforming the contour for the inversion integral
( (equation 2.3) into the left half plane and splitting the inte-

gral int, parts associated with each singularity. Note auto-
matically that since we are only concerned with f(t) real for
real t then the Laplace transformed f(t) has some symmetry which
can be found by splitting the transform integral into real and
imaginary parts. Denoting the complex conjugate by a bar - over
the quantity we have

f f(s) (2.4)

Singularities are then automatically syrmmetrically placed with
respect to the n axis except that branch cuts can be movbJ
around as long as the branch points stay symmetrically placed
with respect to the A axis. For convenience we constrain the
branch cuts to also be symmetrically placed with respect to the,I n axis so that equation 2.4 always holds exc-ept of course right
at the singuldrities. Having found the term associated with one
singularity we then automatically have the result for the conju-
gate singularity. Of course this does not help us for those
singularities on the n axis. When we index the terms associated
with each singularity with a set of integers we can also adopt
the convention of a sign reversal on one of the integer indices
corresponding to conjugate positioned singularities. For such
an index positive integers can be associated by convention with
w > 0 (upper half plane) a zero integer for w = 0 (the 9 axis)

V r ( and a negative integer for w < 0 (the lower half plane). Alter-
nately another symbol can be introduced to indicate which of a
conjugate pair is meant.

SI While there are varinus forms of incident waves that onemight use we choose the commonly used plane wave for our exam-

ples. If one wishes, more complex field distribution can be
"found by superposition of many plane waves. 2 For our present
]Rurposes we consider an incident plane wave propagating in the
eI direction (independent of s) wiýh electric field polorization
in some combination of the e2 and e3 directions. Here e is used
for a unit vector. The three unit vectors for our plane wave
are all mutually orthogonal and form a right handed system of
unit vectors as

K e x e2  e3  (2.5)

As shown in figure 2.1 this plane wave 4s incident on some ob-.
ject of finite linear dimensions. Let r denote the observer po-
sition and r' coordinates on the object. Then by aR object of
finite dimensions we can require Ir'I < rO for all r' where r
is some finite radius. (Note that all dimensions are rational-
iled MKSA throughout the note.) Typically the coordinate origin
(r = O) would be chosen near or even inside the object. If we
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gefine some reference axis (as shown in figure 2.1) then given
6e we~can choose e2 parallel to the plane which is parallel .to
both el and the reference axis; e3 will be perpendicular to this
plane. If the object has an axis of symmetry this would nor-
mally be chosen as the reference axis. In spherical coocdinates
as in one the appendices the z axis (or 0 - 0, v) would be
chosen as the reference axis for convenience.

Our incident plane wave is assumed to propagate in free
space with a propagation constant

A (2.6)i k c

where the speed of light in vacuum is

(2.7)

The wave impedance of free space is

100 (2.8)

The permeability of free space is vo and the permittivity of
free space is co. It is not strictly necessary for the medium

I to be free space; vo and co can be regarded as parameters of the
large volume (ideally infinite in size) of the medium in which
the object of interest is placed. However for some results it
may be necessary that this medium have zero conductivity (be
lossless) so zero conductivity is specified for the infinite
medium for considerations in this note..

The general form of our incident plane wave can now be
written as 3 , 4 , 5

ginc(rt) M E o f 2 (t - -cr-)+2 + f 3 (t P e3(

A r (2.9) H
i t2(t e" 3 f3(t 2)

where EO is a scale factor with dimensions volts/m. The two in-
cident fields are related by
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in ic('r, t) X + I•t)

(2.10)

inc 0oi inc

In Laplace form the incident plane wave is

Einc (:,s) = Eo[f 2 (s)e 2÷ + f 3 (s)i,]e-

+ *(2.11)

(-S) r e f 3 (s) 2W eHinc Z02s3 3 2e

Note that for each of the two independent polarizations we can
have separate waveform f-.nctions f 2 (t*) and f3(t*) where the re-
tarded time is defined by

t* = t (2.12)

c

The waveform functions have subscripts which relate them to the
polarization vector for the electric field. ror the magnetic
field 2 and 3 are interchanged with a sign reversal in one cage.
No evanescent waves are allowed for our present purposes, so el
(even when associated with the Laplace form) is taken as a real
unit vector although for some purposes it need not be. This
plane wave can be expanded in terms of the vector wave function
for various other coordinate systems such as spherical coordi-
nates4 (which is used in appendix B) and cylindrical coordinates. 5

For convenience one may introduce a unit dyadic plane wave
for Laplace domain purposes as

-(6 _ () 1 0 )e- (2.13)

(with bl, b2 indicating in this case a pair of indices each
ranging from 1 to 3) which in the time domain is a dyadic delta
function plan- wave as

S' 2) •' 0 1

12
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The subscript 1 indicates propagation in the el direction. Mul-

l t'olying (in a dot product sense) this unit dyadic plane wave by
a waveform and polarization gives our incident plane wave as

$

•inc:(Ks) 0 E[f 2 (s) 2 + f 3 (s)' 3 1 °1

E 0 (2.15)

Ainc(r's) 0 2•o[ (s) 3  f 3 (s) 2 " 1

in the time domain convolution is also needed which we might in-
dicate by

4

inc (t) [f(t)2 + f3(t)•3* " I

(2.16)inc , t2 3 3 1o
""ic*t - Zo[f 2 (t)• 3 - f 3 (t)4 2 1* " (216

0

Note that the dyadic plane wave "contains" both 12ngitudjnal
waves in the el part and transverse waves in the e2 and e3 parts.
Only the transverse waves satisfy Maxwell's equations in source
free media and so the 2 and 3 components giye the most general
uniform plane wave propagating parallel to el.

Thi first problem in the solution of our electromagnetic
interaction problem is then to find the object response to two
incident waves

u e u 0,I (2.17)

whercý these can be taken as either electric or magnetic fields
because of the way they interchange with one another (with a
sign reversal in one case). Knowing the response to these two
waves (taken as both electric or both magnetic) then the re-
sponse to a general plane wave incident in direction el can be
formed in Laplaqe domain simply by reintroduction of the wave-
form functions f2 and f3 and other scale factors just as they
appear in tht incident plane wave as above. In time domain the
iesponse to u2 and u3 can be separately convoluted with f2 and
f3 and scale factors reintroduced to obtain the general solution.

What then is the object response to II and to 12 taken for
convenience &3 the electric field components to correspond di-
rectly to polixization? Here all the waveform characteristics
are factored out leaving two problems, each of which has an
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"incident field function" which has no singularities in the en-
tire a plane. These are termed entire function~s; they are ana-
lytic for all finite s although in thin case the~y each have an
essential singularity at -. These are the simplest plane waves
for our purposes.

There are many kinds of objects which one might considc-.
They can be of finite size or infinite size in. various shapes.
They can be composed of various media arranged in various dis-
tributions. In this note we concentrate our attention on a cer-
tamn kind of such objects and work out some general results for
this class of objects. other kinds of objects can also be con-
sidered in this way and some comments are made regarding su~ch
other classes of objects. AV shown in figure 2.1 we consider
finite bodies described byIr'I < ro, for all points on the body.
Furthermore for some of the considerations and the example in
appendix B we take this object as perfectly conducting which re-
duces our considerations to the body surface which has surface
charge and current densities as quantities of primary interest
for describing the electromagnetic interaction. This body is
not necessarily continuous but may be composed of several sepa-
rate parts.

In a later section of this note it is demonst-rated that
current density (either surface or volume) for a finite object
has its delta function response corresponding to any singu'.ari-
ties in the finite s plane expressed in terms of poles of finite(
order. We identify these poles as so where a is some index set
which indicates which pole is meant. This result is of funda-
mental importance for our general representation of the solution
to the interaction problem. We have a series with (s - ,c)-no
for no = 1, 2, 3,... as a factor in each term. What we need
now is the rest of the expression at each of these poles to cosn-
plete the expansion of the two delta function plane wave re-
sponses in Laplace domain. If there is more than one order of
pole at s = so the a index set can have a number to designate
each term in the expansion corresponding to each order pole;
clearly this number could be just no.

These poles so are the natural frequencies of the object.
By a natural frequency is meant a value of s for which the ob-
ject has a response without an incident field exciting it. The
natural frequencies are generally in the left half of the s
plane (Re jul < 0) because of energy loss (to radiation in the
case of a perfectly conducting body) except that natural fre-
quencies can be on the iw axis (0 - 0) with first order poles
for lossless, situations such as for interior cavity modes. Hlow-
ever in the-time domain such simple poles on the iw axis corres-
pond to undamped sinusoids which, if they can be excited by the
incident wave, must continue to radiate power to infinity indef-
initely by reciprocity. Since this would violate conservation
of energy the residues of such poles nvust be zero and we drop
them from consideration.

14



If %.he object responds at s so with no incident field
then such response must be independent of polarization (e2 and
e3) and direction of incidence (el) since they determine no in-
cident fields for this ideal case. This leads to the concept of
a natural mode. By a natural mode we mean a current, charge,
field, etc. distribution associated with a body self oscillation
at a c~mplex natural frequency sa. We designatV natural modes
by 40(F)(r') for a vector quantity P and vatF) (r') for a scalar
quantity F. A scalar quantity F could be a surface charge den-
sity s and a vector quantity P could be a surface current den-
sity Js parallel to the object surface.

There is of course the question of the uniqueness of the
natmral modes. Clearly the natural modes can be modifiPd by a
scale factor, but this is just a problem of an appropriate nor-
malization of the natural modes. Depending on the problem of
conccrn there may be various appropriate normalizations. Ap-
pendix B considers the case of a perfectly condoicting sphere for
which all the natural frequencies correspond to first order
poles (no = 1 oily). For the perfectly conducting sphere the
natural modes are types of spherical harmonics and here we use
definitions which fit naturally with common usage.

The perfectly conducting sphere is an interesting example
in that all the nctural modes, coupllng coefficients, and natu-
ral frequencies can be more readily calculated. Any general re-
sults for perfectly conducting finite sized objects must be true
for the perfectly conducting sphere.. Thus the sphere (and
other shapes such as prolate and oblate spheriods and disks) can
be used to test general results. Moreover they can be used to
form a basis for conjecture for new general results. For ex-
ample the perfectly conducting sphere has only simple poles (na

1 only) which completely describe its response to a delta
function plane wave.

Aside from the scale factor there is another problem in de-
fining the natural modes. This is the possible degeneracy of
the mnxes. As can be seen for the sphere problem for example
(appendix B) the modes can be degenerate in which case associ-
ated with each natural frequency there may be several modes.
This problem can easily be handled by the a index set to desig-
nate separate independent modes. There are various different
ways to define the different modes and what is noeded is a con-
venient set of modes with the minimum tiumber of modes necessary
to span the space of all pouaible distributions of the quantity
of interest associated with the particular natural frequency.
Of course the sphere has a high degree of symmetry and one would
expect degeneracy of the natural modes associated with symmetry.
Bodies with a symmetry axis will also have a degeneraoy of the
form cos(n#) or sin(n#) as a factor in the natural modes (*oept
for n - 0) giving at least two independent natural modes (for
n > 1) for each natural frequency. Note that it is also
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possible (a,; least in the case of the sphere) to define 'the nat-
ural modes so that more than one natural frequency can hkve the
same natural mode or even set of modes. In many cases this de-
generacy problem may be unimportant, especially for irreoularly
shaped o6.jects.

Further on in this note some calculational techniques for
finding the natural frequencies and modes from general integral
equation formulations of electromagnetic interaction problems
are discussed. In performing such calculations one can observe
for each natural frequency being considered whether other than
first order poles are present and if more than one natural mode
is needed for that natural frequency. Thus the form of the sin-

9 gularity representation can be checked in a problem being worked
ovt and the results compared to more conventional numerical so-
lutions at other frequencies in the s plane and/or in the time
domain.

Having the natural modes va(r)' which depend only on the
object coordinates and the natural frequencies sa which are
fixel cgrnplex numbers we next need the coefficients which multi-
ply va(r')(s - sl)-na to give the response to our incident plane
waves. For the surface current density or, the body we write

Sro) 2( )+ 3 (r')(2.18)

where p - 2, 3 as a subscript designates the part associated
with each polarization of the incident wave. Each part can now
be written as

E
W ',s) - fp(S)Op (r',s) (2.19)

here ap is the response of the surface current density to the
Up plane wave (Laplac-, transformed delta-function wave) taken as
the incident electric field. Note that U is dimensionless.
For cases with volume current densities other normalizations
would be appropriate. Our surface current density response
functions (two of them, one for each incident glectric polariza-
tion) are functions of the object coordinates r' and the complex
frequency s (or of time t when inverse transkormed) and of
course depend on the direction of incidence el.

Now we can write the surface current density response func-
tions for finite sized perfectly conducting bodies as
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'2.20)

where na has dimensions of (time)-no and where the siur is taken

over all the indices in the index set a except for p which is
one index for r. Were a written as say two or three indices
then a double or triple sum would be used in this expansion.
Note that the coupling to the incident plane wave depends on
frequency because there is at least a tima delay or advance in
when the mode is "turned on."

The coupling coefficients ja(9l,s) are entire functions of
s (no singularities in the finite s plane) with values at sa
which give the proper pole coefficients. Note that for na > 1
the derivatives of na with respect to s at so take a pole of
order na and give coefficients to terms of order na - 1, na - 2,
etc. until a first order pole is reached. Then there is some
flexibility iq our definition of na as long as at each natural
frequency na(el,sa) gives the proper coefficient to the highest
order pole there. The lower order poles at sa then can be par-
tially (if not entirely) included in the terms for tbe poles of
higher order depending on the choice of the form of na for such
higher order poles. This points out what might be termed the
non uniqueness of the form of the singularity expansion. Cer-

( tain features of the singularity expansion are fixed, but others
have some flexibility. One might then ask what is the best def-
inition of Ta consistent with the pole requirements? This might
involve such criteria as simplicity of the resulting functions

k ~ in frequency and/or time domain, asymptotic behavior for ISI 4. O

so as to avoid poles at infinity as separate terms which compli-
cate the form of the time domain expansion, etc.

Also in equation 2.20 we include (es)•,• 's as an en-
tire function of s containing none of the poles of the response
in the finite a plane. This entire function is connected with
the choice of the no and has similar flexibility in its choice.
Only the resulting sum need be the unique nolution for the cur-
rent density etc. We have some flexibility in how we arrange
the terms. In what follows in this section we consider 1a and a
special form for the coupling coefficient as cue-t0 in develop-
ing some of the consequence for the singularity expansion. The
additional entire function p is only included in some of the
expressions; it is usually dropped; it is not needed for the
perfectly conducting cphere discussed in appendix B. This func-
tion is further considered in section 3. For perfectly conduct-
ing finite sized bodies the perfectly conducting sphere results
suggest that a delay can be !actored out so that a coupling 0o-
efficient ca can be written as
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(03., s) - c.(*l)- 1 (2.21)"

HOW general this result applies ic not presently clear. My con-
jecture is that it applies to perfectly conducting finite ob-
jects if not more general objects such as lossy objects, perhaps
with some nuances based on the order of the pole being considered.
Here te is the time that a delta function plane wave first
touches the object and is given by

4.,
to(l) m - J (2.22)

which is illustrated in figure 2.2. For the perfectly conduct-
ing sphere this result is iratiediately apparent as in appendix P.

Let us call ii and ca coupling coefficients and to the turn
on time. In aay event the object response for each and every
mode is zero for t < 0. Note that if (as is often the case) the
coordinate origin is inside the object of interest then to is a
negative time (an advance). The allowable forms for ra, the re-
sulting individual terms in the series (all forms giving the
same sum), is a very important question in the singularity ex-
pansion method. Any entire function of s times (s - sa)na for
example can be added to ýa without introducing any new poles in
the finite s plane. This question is considered further in the
next section.

Now that the surface current density response functions for
finite size objects are expressed in terms of natural modes,
other quantities can be similarly expanded through their rela-
tionship to the surface current density. This includes scattered
fields. However, for electromagnetic interaction questions we
concentrate in this note on the surface current density and sur-
face charge density. From the continuity equation

V + . + -0, v• + 0•-0 (2.23)

we can find the charge density from the curr_nt density. When.
we are dealing with surface current density is and surface
charge density Ps the divergence has to be interpreted as a sur-
face divergence with the spatial derivatives being taken with
respect to two coordinates required to describe a position on
the surface. Thus we can still write without ambiguity

1(
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' "S(•',t) + P ,t= 0 (2.24)

(r',s) + sp (',s) =0

where the prime on the V indicates derivatives with respect to
the object coordinates It.

As before split the surface charge density as

S• ' s) s (r ( ',s) + (r's32.5
2 2

to correspond to the two polarizations. Write each part as

(X'ts) = Eof (s)U (r ,s) (2.26)

where the normalization using coEo is again chosen to make Updimensionless. From the surface current density natural modes
construct a set of surface charge density natural modes as

(P)
V ('') " -aaV' • o (r') (2.27)

where aa is a scale factor with dimension of length which we can
choose for convenience, such as to allow some desired normaliza-
tion condition on the 'u- If desired the au could b. all the
same and perhaps chosen as some characteristic dimension of the
object. Note that some va for the surface charge density might
be identically zero for some index sets a. This is possible be-
cause current density can be split into two parts, one with zero
divergence but nonzero curl and one with zero curl but nonzero
divergence if the current density is confined to a volume of
finite dimensions.6

All the above definitions for surface current and charge
density modes can be directly extended to volume modes or com-
bined modes for volume and surface densities.

Taking out common factors the continuity equation allows us
to write the surface charge density response functions (using
equation 2.20) as

(
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(P (Psa. -ha(p,)
p (r8 a ( (a -SOL) +p 3!1 s

12.a8)

where the splitting of na can be done as before. All our pre-
vious results for the surface current density then carry over to

* the surface charge density. The same set of natural frequencies
and coupling coefficients apply to both (and even to Icattered
fields if you like). Note that iRp(Ps) comes from Wp~(s) via
equation3 2.23.

However, there is what looks like a new pole at s a 0 in-
troduced into the surface charge density response function. Us-
ing a relation for separating poles at separate frequencies we
have

s1(s _ 1) -S -is-

(1.29)
-n. -na-+ls 1( sa =s (s-s)s•s sa

na-I -n

+ + (-1) 3s (s - )- + (-sa)n-

By this expLnsion we can vrite the .urface charge density re-
sponse function: as

M-1 ~ C -
r(s (a. s) V (r') (s -na -

Sn(I c.P') 4. (Ps) 4
F,• •i- 6ae. s) va W•_a •) +(e., rs)

(2.30)

where thf second summation could also be included in G.

Consider for a moment the static response characteristics
(s ", 0) of a body of finite dimensions. For a plane wave of
unit amplitude as a + 0 the object response goes to the static
limit in which both current density and char e density are pro-
portional to the field strength. For small 9i1 the response is
negligibly changed from the s - 0 case. Thus there is no
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cingularity at a - 0 in the s plane for either current density
.,r chargN drnsity. As discus3ed bqfore for the curzont density
there are no poles with nontero residue on the iw axis for
IJw > 0 because of the rcstriction of conservation of energy to-
gether with reciprocity when considering the time domain oe-
sponse. The static response characteristics rule out poles in
the response at s - 0 so that all poles sa lie in the left half
pla&.e kelsi < 0. Thus without loss of generality in our expan-
sions we can require

Re[sai < 0 (2.31)

Cavity modes or any other modes which do not couple to the inci-
dent field are excluded from our consideration.

Note that there are static currqnt density and/or charge
density distributions which can exist on finite sized objects in
the absence of any inci dent wave. However, such static distri-
butions do not couple to the incident wave and can be included
as an additive term in the surface current density and surface
charge density response, but with no dependence on the incident
waveform. Aa the response to the incident wave does not depend
on these modes we do not include them i- our expansion. We can
call this case Zhe natural frequency a* j = 0 and this is
briefly considered in appendix A. This case is like the inter-
nal cavity modes which have natural frequencies on the axis
s - iw; these also do not couple to the incident wave and have
no dependence on the incident waveform; they can be added into
the 7esults at the end if desired.

Referring back to equation 2.30 for the surface charge den-
sity response functions note that a pole at s - 0 is not allowed.
Thus we have letting s -, 0 in the limit

-no __ -I (Ps) 4.(Ps) 6 -1

F, (_so aaC n(e ,O)va 1(') + W 1 (ei,r',0) 0 (2.32)
a

For cases that rn, can be made to factor (such as for the sphere)
as in equation 2.21 then we can write (also dropping Op)

-n c 4 (Ps)
(-so) o cc (el) a (r') - 0 (2.33)

a I

This constrains a relation among the natural modes and theircoupling coefficients.
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For the oase that no - 1 for all a (which is the case forC the perfectly conducting sphere, ,nd perhaps for all finite
size, perfectly conducting objects) and that the coupling fac-
tors as in equation 2.21, the response functions for surface
current density and surface charge density can be written as
(dropping the W functions).

(s 61) aS I.( -
( (W',s) e OEc(l)s (') (s - s)a

(2.34)
(ps) -st (ps)
U (r s) e a ca(el)Va (r

This is a rather simple looking result with each term quite fac-
tored. This also points out the importance of understanding
under what eircumstances (as for the sphere) the delay factoring
of the coupling coefficient can be used.

Now the waveform functions ? (s) can be reintroduced and
multiplied c.a both sides of equations 2.34 or equations 2.20 and
2.30. Recombining the polarizations as in equations 2.18, 2.19,
2.25, and 2.26 c-ives complete representations of the solutions
for surface current density and surface charge density. Thisf ( would give individual terms with frequency dependence in the
form fp(s) ipa(el,s) (s - so)-na+m-l which, for the case as before
that 6-factors, has the frequency dependence in the form
e-Stotp(e)(s - sa)-na+m, 1 which for na - I reduces to
e-stOf p(s)(s - S)-1.

However, why stop hero? The behavior of fp(s) may allow us
to conveniently express !" in terms of waveform singularities,
just as we have been considering the object delta function re-
sponse in ter~s of object singularities. The general idea then
is to expand fp(s) in terms of its singularities and separate
the waveform and object singularities into separate terms. We
might call the resulting separate terms as the waveform part and

* object part of the response for convenience. Consider an ex-
ample by letting

ww

fplS) UM ( w pt s t 2.35)

so that the waveform is a decaying exponential with a simple
pole at sw (a waveform pole). Note that the comuuonly used
double exponential waveform for EMP environments is nothing more
than the sum of two terms such as this.

23



Taktng the surface current denhity first we have (for sw 1
sa for any ca)

p =(s) , (a) (rIs) ( -

os w ' s) (2.36)

where the object part is

n N•s nn 01 +m-1
W aCWE FS)~- q,-&)-. 4.,S, * W~~ ~ )(S- )c

PO a m=l
(2.37)

where the second sum could also be included in U and where the
waveform part is

Cr(,S) 1 w- e1Sne ) (r,) (2.38)

Note that here and for most of what follows the W functions are
not included but can be included in a ccnvenient way in the ob-
ject-waveform split. For the special case of no I this re-
duces to

W o 3,s) (s •. -Sw) •(el,s),V. (•'i) (s-sQ)-

(2.39)

(3) 4-- C(S )-Sr',s - 1--_j--4C.ss -) )- qaeS~ (r')=

P W B - S W L a .. ..

For more general waveforms (but still n- 1) this suggests
a definition of the splitting as

P I(s) ÷ -(s u 8  ) a

(2.40)
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) (3:)s ff(a) (-f (a)
l ,el,,s): • a (..

Pw S'sa

As long as the waveform sing, arities are separate from all sa
then no object poles appiar in the waveform part of the response.
If the Sa do lie on waveform singularities then special treat-
ment is needed but the general idea of equations 2.40 would
still seem appropriate. For na more than just 1 the object part
can be defined through a Taylor expansion of ?p arcund each sa
giving

•(•s) e 4. (4-.(s ) n( 8 ,-n+M-i
i Po (r''s)• S): m m- "n{lsVC (r,)(S-S.

( )(2.41o

wp

As a special case consider the unit step waveform by letting
sw = 0. Then the waveform part of the response we write as

( S) < ., =-l ,•¢el,s)+v r (2.42)

With M factored as before and assuming nua =1 the results ri-
duce to

a4. eSt° +3pw( p (-s)= (r o3Pw ' • p,

(-.43)

-, e OE. &1 c (e )v (r'fls-s )-I

where the static surface current density response is

(s:) -l,4 U(3:3)4r 1)',01 - )(-s)-c V(el)a (r'1 (2.44)

The step function respor se of the object is readily constructed
from the delta function response. A factor of (-90)-l is
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r-
included with each object pole, and then a new term is added

which is nothing more than the static response time a step func-
tion with turn-on time of to. Thus beside tabulating the natu-
ral frequencies, modes, and coupling coefficients of finite size
objects we can tabulate the static response so as to readily
construct the step response of the object in both Laplace and
time domains.

Now the neat thing about the static response is that we
need not consider it in terms of direction of incidenc? and pol-
arization. For the static surface current density r--ponse we
can solve for the magnetic field using the Laplace equation with
a uniform magnetic field incident on the object. The exponen-
tial factor in the incident plane wave (equations 2.11) becomes
irrelevant, going to 1. Thus we need only consider three sepa-
rate cases of the incident magnetic field, corresponding to
three orthogonal direction such as the cart Sian axes (x, y, z).
ýor a unit incident static H field we have is response functions
UsX etc. for each of the three axes giving a dyadic surface cur-,
rent density response function as

:(•s) (• • (¾s) + . (•s)

(r) ÷U s (,') x + Sy ()ey + sz (r ')ez (2.45)

Since the a field is in the &.rection el X en for p = 2, 3 we
can write

-u (rio) *(s 4 )'le X ) I

S X$H -I- • 4 . p S -, s -, + +-Ux (r) e.x(e e p)]+6s y (r )[ey (elXe p)]Uz (r)[z(elxe p)

(2.46)

showing a set of direction cosines for three static solutions.
The'static response dyadic for the surtace current density is
then A useful tool for directly extending the delta function re-
sponse to the step function response. Cne could go to other
types of "static" terms for s-2 (ramp) and higher order such
waveforms. The step function waveform it a useful tool because
of its fast rise time to a finite amplitude making the static

response corr%.pondingly importdnt.

The surface charge density has similar properties when the
waveform is reintroduced as
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. (Ps . _)~(Ps)a(s
lVp (r ,s) -S f (8) (r ,s) =Vp (r ,s) +Vw (r ',s) (2.47)

As before the idea is to associate the object poles with the ob-
ject part of the response Vpo and the rest with the waveform
part Vpw. If nct takes on more values than one the double sum as
in equation 2.30 extends into a triple sum including coeffici-
ents fp(s) and the first na - 1 derivatives all evaluated at s0 .

For simplicity just consider the case of na - 1 with i•
factorable as above so that we have the simple surface charge
density response function as in equations 2.34. The object and
waveform parts of the response may then be written as

(P) -at (gPVo() (r' , ) -e-°-• (pS)•a c c(el) va (r,1)(s_%)

p p asaa 1 a a

(2.48)
_P-at (p) f (s)-f (s)

V 5  1W'1S) =e c ( se )v r S') -fpl
pa aa a I a 6-8

The response to an exponential waveform as in equations 2.35
takes the forms

(P.,.- (et (r)( rs) =-e (-w) (S-, )-I

0
5  (a,-aWh a-, ca e1)

POa

-at (2.49)
e-S) ° c -b. (Ps) 4S(rs (,a,) S • (sw-s a)- a c a (e )v a W)

Vpw w

For sw - 0 we have the step response as

*(P) -at -- c 0 ) P~(r (',s) we c teI)÷r )(-

0 ~ a ca aaa
(2.50)

(PS) 4 tat (p (0) 01V W~s) - - U (ros)

where the static surface charge density is given by
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Up~ ps).• •c(P )

S (' ,o) = (-- 1)V (r) (2.5a)
a a

The step function surface charge density response is then also
constructed from the delta function response in the same way as
the surface charge density with the same form of the results, at
least for na - 1 and a common delay factorable from -10.

For the static surface charge density response we need con-
sider only the response to three orthogonal incident static elec-
tric fields, directly analogous to the relationship of the
static incident magnetic field and surface current density. For
a unit incident static E field we have ps response functions
(scalars) as Us etc for each of the three axes giving a vector
surface charge density response function as

(Ps) (Ps) 4  (P) (PS)
ea + U s Sye+ s ez (2.52)

Since the E field is in the direction ep for p = 2, 3 we canwrite

~(Ps) (Ps)
Up r',o) = (r ')' sI
p p(Ps) ÷ (Ps) (P

= US [e e )]+U [ey.ep]+Jez (2.53)
x ~ y sz

showing a set of direction cosines to weight the three static
solutions. Thus for step response purposes it is useful to tab-
ulate the vector surface charge density response and the dyadic
surface current density response which can be multiplied in a
dot or inner product sense with an appropriate scale factor
times the static field of interest to obtain the static response.
This applied in both frequency domain for small 1s9 and in time
domain for an important term in the step function response.

As discussed near the beginning of this section the fact
that we .re dealing with real valued time functions makes the
Laplace transformed functions have certain symmetry properties
with respect to the Q axis as expressed by equation 2.4. Bas-
ically I(n + iw) has its real part symmetric with respect to a
sign reversal of w while its imaginary part is antisymmetric
with respect to a sign reversal of W. Also as discussed before
all object poles with nonzero coupling to the incident wave liein th;e left half plane n < 0. These two results tell something
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about the object pole pattern in the complex s plane. For con-
venience then let us split the q index set into three parts.
For w > 0 (the upper half plane) use a+, for w - 0 (the fl axis)
use ao, and for w < 0 (the lower half plane) use a-. Since
poles come in conjugate pairs for those not on the 0 axis then
we can relate a- to a+ as

S'_ (2.54)

which specifies which a- goes with which a+ except for the case
of multiple poles at sa in which case we make the identification
of the a- set to the a+ set with the value of na in each case
the same so that we require

na hn (2.55)a+

Equations 2.54 and 2.55 define a one to one correspondence be-
tween a- and a+ index sets, unless we have mode degeneracy in
which case we also require a- and a+ correspond to conjugate
modes with conjugate coupling coefficients as well.

From the conjugate symmetry requirement the natural modes
and coupling coefficients can be made to have the same conjugate
relations. Thus we set

S(r') =I+1' m.Lo1V1

(P) (P3) (P)

a r'1 = v 1r'1 , Imb, (ro)I = 0

a- a+

•a.(rt') " V(l• a(lS = 0loelsaa =a it Im~a]-O (2.56)

11 vs ýU 66"l (e1,s) mu o

ca_(e -% + (e•1) Im(cao (el) ] 0

With these relations we can now write the surface current den-
sity response functions as
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S 1n

U (r s)) vas)(' - no
p 00 0 0

--(38) 4-no+
+ E ýO ( )(sS o

x++ + +

+ (e+ l,(s)vo (r) '- a+]
+ + 1

-Sto + (3s) - -n o
e-.C (e1) VC, (r')(s-S.o)

Q 00 0
0

e-st° 4. + ÷(3s) a n+

+e a [c 1 e1)v,+ (r)(s-s,+)

++

+ (e + (ru)(s-s+)+ (2.57)

"4ihere the case where Fla factors out a simple delay is also in-
cluded. Note now that each term in the sum has the conjugate
symmetry of equation 2.4, is real on the n axis, and corresponds
to real valued time function. Similar properties apply to the
surface charge density response functions. Taking the simpler
form with na factored as in equations 2.34 with only no - 1 we
"Z an write

} .(P ,) A. e-Sto ÷ (P ,, p "s', ) = • ~ o aCc O e ) o ( , s s }-!

r$, +s aeR c (a~elV [,(ra00 a 0a0 00 0o

-(Ps (, P+ , a l + (. )V ( (s-sa+)-I (

c +
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r
The same idea is readily applied to the more complex forms.

If no factors as in equation 2.21 then the s depenlence of
each term is a delay with a term of the form (s - sa)-n where
n' might be no or other more complicated exponents. Converting
this term to the time domain through the well known Laplace
transform pair gives

L- [e-sto 0_)-n' (t 0 e u(to)) (2.59)
a (n'-i)! e~ ~ -O 2.9

For the extremely interesting case of n' 1 this is

S[-Sto 0-] e(te-to0)
SL"I (s-s) e u(t-tO) (2.60)i0

This is a damped sinusoidal waveform like that which suggested
looking at the natural frequencies in the first place. The
damping constant is just Ra = Re[sal (plus or minus as one
wishes) and the radian oscillation frequency is just % - Im[so]
where a wovid be taken as a+ or ao for this frequency to make
•a > 0. Since fa < 0 for all poles of interest then each term
in The response function goes to zero for large time as we would

b expect. Writing out the real and imaginary parts gives

,:[e tO(s-sa"] ett}n- I -o

[cos(w a (t-t 0 ))+isin(wa(t-tO))]u(t-tO) (2.61)

If the i terms do not factor as above then we need their in-
verse transforms to convolute with terms similar to these.

Consider then the surface cuzrent density delta function
response (for n factored). From equation 2.57 we have

.(is) A. 4.4 8)1•1 (t-t 0) Qa 0(t-tc)

U uP r ~t) c ( 1 )v0 a.(r ')-rn S-.1) 1-e U(t-t0 )

0 0 a0

n, -1
" (• } lWa(to (ttt +' •a (t't)

++ 0w C t-t 0 ) J*~o+c++ 2Pe c Q (ei)va (r'ke (n ,, ) _ r-e u(t-t_)

S+ + (2.62)
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For the surface charge density for na - 1 we have the delta
function response as

a (t-to)(ps) 4,. s fot(tto

c a 0
Up (r t) c e a aa 0 o. )v ao (r e u(t-to)

0 00

(P a 00S+2Re a c at )vt e+) t u(t-tO )(2.63)
a+ [2Re[8  C Ca (1 )v +r~ +e u t

From the way that the terms are split up we have separated the
damped exponential parts of the response from the damped oscil-
latory parts. Depending on the real and imaginary parts of the
natural modes, natural frequencies, and coupling coefficients
the initial "phase angle" of-the sinusoidal oscillation may vary
Vith direction of incidence el, polarization p, and/or position
ro on the object. If one wished he might consider the real and
imaginary parts of a natural mode as separate modes and consider
the coupling to each part with different distributions perhaps
over the object.

With the incident waveforms reintroduced we can also di-
rectly write down response waveforms for cases that no factors
as before. Consider the case that no waveform singularities are
at any of the sa. In particular consider the step function re-
sponse for all na = 1. For the surface current density the ob-
ject and waveform parts from equations 2.43 and 2.46 are

S 0
-( 't) s c (e v ( (') e u (t-to)

2Re [sal a, a e e +u(t-t 0 ) (2.64)

(3s)4 1(3)
Pwr t) 5s (r')-elxe u(t-tO)

For the surface charge density the object and waveform parts of
the step response functions from equations 2.50 and 2.53 are
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(P() f (t-t ), rt) 2= ca (el)vao (r e u . (t-to)

PO a 0 00 0a G

+ 2 - c+(e1 cVa+ (r)e e + u(t-to)
C9 [scllaa+ Q 1

++ (2.65)

(Ps) (Ps,4

V (r t) • (')'epU(t-to)

In the time domain only one term is added to the delta function
response, namely a step function. The coefficients of the
damped sinusoidal (and simple exponential) terms are rather
simply altered.

The response functions for other kinds of incident wave-
forms can be readily found for the object part by introducing
coefficients f (so) in the time domain waveforms in the same
forms as introguced iii the Laplace versions such as in equations
"2.41 and 2.48. The waveform part can be more difficult if only
because of the many possibilities one might choose for incident
waveforms. Different incident waveforms give different types of
time domain waveforms when combined with the terms arising from
the object poles. Note that the response to au incident wave-
form cannot Rlways be simply split into object and waveform
parts. As a trivial example suppose ?p(s) itself has a pole at
some so. In such a case the contribution from so to the re-
sponse has a higher order pole than the delta function response.
However the response associated with so is then easily treated
separately and the same type of time domain function as in equa-
tion 2.59 results.

In this section we have tried to give some insight into the
power of the singularity expansion method for representing solu-
tions in both frequency and time domains, at least for finite
sized objects. While many variations of this problem have been
considered, complicating the notation somewhat, the solution of
specific problems may be expressed somewhat simpler with the no-":. ration adapted to the results of the problem at hand. Specificconvenient choices of the a index set are needed for each prob-

lem and the possibilities for no can be limited. The natural
.* modes and/or coefficients may be expressible as purely real

quantities in some cases, even for natural frequencies off the A
axis. A basic question concerni the coupling coefficients na
and the other entire functions Wp. These need to be optimally
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chosen for the different problems at hand depending on early
times # late times, etc.(

There are still types of problems which have singularity
expansions with terms such as branches which have not been con-
sidered here. Infinite sized objects have object responses with
such terms. However the reader should have a general idea by
now of what the singularity expansion method is all about. What
has been done for expan~ding in terms of natural frequencies for
object response plus another term f or waveform response can be
carried over to natural frequencies and branches for the object
response with perhaps increased complexity associated with the

branches.
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III. Properties of the Singularity Expansion of the Object
Resonse for Finite Size Objects Viewed from the Finite
M(atrix Formulation of Integral Equations

There are two somewhat complementary ways to view some of
the questions regarding the form of the singularity expansion
for objects of finite size. One approach involves consideration
of the properties of an integral equation formulation for the
continuous object geometry. Various types of integral equations
such as those classed as electric field formulation, magnetic
field formulation, extended boundary condition formulation, etc.
caa be investigated to obtain mathematical theorems concerning
the properties of the singularity expansion for various kinds of
object classes. This might be termed the continuous integral
operator approach. Drs. Marin and Latham are presently using
the magnetic field integral equation to consider the question of
there being only poles in the finite s plane in the object re-
sponse for finite size perfectly conducting object from this
viewpoint. Clearly this kind of approach is needed for consid-
ering many such questions so as to establish general theorems
applying for all frequencies and time and stated exactly in an
analytical form. This could be considered a viewpoint which is
based on the continuous nature of the object geometries. Eigen-
function expansions can also be used for such considerations but
the tabulated cases of such expansions are limited. Eigenfunc-
tion expansions are possible for general kinds of object geom-
etries but they must be numerically calculated. 7 However the( analytic properties of such eigenfunction expansions can still
be used to investigate the singularity expansion. Viewed an-
other way such eigenfunction expansions are representations of
the integral operators defined over the object characteristics.

The second and complementary approach might be termed the
discrete approach. This refers to zoning the object into many
discrete zones and treating each zone as a position with a par-
ticular current density etc. associated with it. The integral
equation then takes the form of a vector-matrix equation whichhas the general form

(gn .(s)) 0 (s)) = (In (s)) n,m - 1, 2, ., N (3.1)

where N is some typically large integer. Here the vectors (Jm)
and (In) each have N components and are not the same as th.
three component space vectors. The index n refers to the r co-
ordinates for the "incident" quantities shown here in general as
(In) which might come from an electric or magnetic field that is
incident and therefore specified. Note that in forminq the lin-
ear equations summarized as equation 3.1 each spatial zone can
have one, two, or three nonzero current density components and
this influences how the indices n and m are set up. The (Jm)
refers to the unknown current (W' coordinates) with one, two, or
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three components in each zone. The matrix.(gn,m) has elements
which couple the n zone-component with the m zone-component; it 4

is basically a spatially discrete form of the integral operator.
While equation 3.1 is shown in a form suggesting that it is in-
tended for solving for the current density this is not necessar-
ily the case; it could be solving for another quantity from
which the current density would be obtained by a subsequent cal-
culation. For our present discussion, however, consider it the
current density.

Considering the current density components in each zone as
our unknowns is not the only way to obtain a set of linear equa-
tions from a given integral equation. The current density can
be expanded in a more general set of expansion functions and a
matrix-vector equation formed to obtain the coefficients in this
expansion. Of course, only a finite set is used to obtain a fi-
nite N x N matrix and the sets of functions involved should be
in some sense complete in the 7imit of large N. This general
approach is often termed the method of moments. 8 Both the zon-
ing approach and more general function expansions are valuable
from the viewpoint of numericail calculations. In terms of the
singularity expansion method there is clearly much work to be
done in refining the numerical techniques to find natural fre-
quencies, modes, etc. most efficiently and most accurately.
Much that has been done for other numerical problems can likely
be applied here.

Besides the practical aspect of numerical computations the
matrix-vector formulation can be used as a theoretical technique
for establishing some of the general characteristics of singular-
ity expansions. If in the limit of large N the solution for the
current density

( (gn ) .) 1 (3.2)

converges tc, the exact solution of the integral equation then by
understanding general properties of (3m) we can find general
properties for the continuous case, i.e. a(),s). Only where
the matrix elements are not uniquely defined or the inverse ma-
trix

F = (f mn) (gn~m- (3.3)

does not exist is (Jm) not uniquely defined or non existent.

Let us then look at the singularity expansion charactoris-
tics of the approximate numerical solution (Jm). In the limit
of large N for convergent matrix-vector formulations the
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singularity expansion of CJm) will be that of 3(1', a). Con-
sider the case that some zoning technique is used to convert the( integral equation to a matrix-vector equation by dividing the
body surface or volume as appropriate into discrete zones of fi-
nite linear dimensions. The number of zones is then less than

1., or equal to N. Clearly then we are only considering finite
sized objects here because an infinite surface area or infinite
volume cannot be divided up into a finite number of areas and/or.
volumes with finite linear dimensions unless some very strange
extensions to infinity with finite volume and/or surface area
are included. Let us consider only finite sized objects here so
that all d~stancpsI~. a beqweer, z~nes are finite. The Co-
ordinates r and r go over • he rgnande j rp.,nd area centeredhon
each zone in some sense. The incident quantities and resulting
current density are evaluated in an appropriate average sense at
each zone center.

Let fir, s) be based on an incident delta function plane
wave. It might come from the electric and/or magnetic field or
some spatial projection of these on the object. Since this is
an entirV function of s (analytic in the entire finite a plane
for all r on the finite size object) then the discrete formula-
tion (In) has each element (In(s)) as an entire function of s.
In this formulation let the current density b• the sum of all
terms representing charge motion, including ao (conduction cur-
rent density) s(C - Eo)t (displacement current density), and
V x 1(p - po)A] (magnetization current density). Split electric( •and magnetic fields each into the sum of incident plus scattered
parts. The incident parts are given' in the problem definition.
The scattered parts can then be represented as integrals over
the current density with kernels involving the free space
Green's function which uses y - s/c instead of some propagation
constant involving local medium parameters which may vary with
position.

Thus we have a pair of volume integral equations (which may
reduce to surface integral equations say for perfectly conduct-
ing bodies) which equate scattered electric and magnetic fields
(which could be thought of as a six component vector or even a
four tensor in relativistic formulation) to integrals involving :

incident plus scattered fields. Move the terms involving inci- •
dent fields to one side of the equations and use these to form
the N component vector (In). Note that a, c, and U are assumed ji

to be single valued analytic functions of s except possibly for
poles which can be removed by nmultiplying through the equations
by an appropriate zero to make each In(s) an entire function.
The scattered parts are used to form (gn,m) and (3m) which-ai Is 4n 4-1
appropriate scattered field vector or the current density vector
"less that part directly proportional to the incident fields.
Note that o, c, and v enter the coefficients on the scattered
side and are analytic single valued here then as well while the
exponential terms use y - s/c which is an entire function.
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Through thiR procedure we can construct an integral equation re-
lating current density and/or surface currenf density as appro-
priate to the incident fields involving only analytic single
valued functions as long as the media are suitahly well behaved.
By various manipulations such a pair of integral equations can
be converted into various more desirable forms. Then the in-
tegral equations can be converted into a single matrix-vector
equation which can have various forms.

One advantage of a zoning formulation for thes6 considera-
tions is the somewhat physical picture one can associate with
the discrete zones. Infinitesimal differential line, surface,
and volume elements become discrete ones of small size. As long
as complex radian wavelengths have magnitude large compared to
zone size then the interaction between adjacent zones and one
zone on itself are described by statics. We can start thinking
of the zoned object as a big circuit with simple elements con-
necting adjacent zones but more complex ones connecting distant
zones. In each zone there are a few equivalent sources associ-
ated with the discrete source elements In.

The kernels of the various integral equations are based on
the scalar Green's function (for free space) as

÷ e-Yr-r' I
G(s,2r-r'i) = (3.4)

with

= (3.5)
c

This suaWa4 Green's ýunction is an analytic function of s for
finite ir-r'l with Ir-r'I # 0. This function forms the basis
for the various kernels used in the various types of integral
equation formulations of general interaction or scattering prob-
lems. The dyadic Green's function can be written in the form9 ,10

a(S.ir- rI [1-1 VV] [G(s, 11-•'r J)1 I VVG(s.Ir r-l

(3.6)

with the identity dyadic

0 1 0 for bl,b 2  1, 2, 3 (3.7)
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Note that the dyadic Green's function is formed from the scalar
Green's function by multiplication by y-2 (which contalns s-2)
and spatial derivatives as in VV. Thus for finite Ir-r'I (but
not zero) the dyadic Green's function is also an analytic func-
tion of s, except at s - 0. However in going to static limits
the s-2 term combines with other terms in s to avoid an object
pole at s = 0 as discussed before. Similarly terms lik:e VG etc.
appear in the kernels and the same analyticity properties with
respect to s apply.

Now in forming~the eltments of the matrix (gn,m) for rn
rm the coordinates rn and rm are used in the various Green's
function type terms. In such cases then the matrix clement must
be an analytic function of s except possibly for poles which
don't bother us. The spatial derivatives can be replaced by fi-
nite difference operators based on the spacing between nearby
jones.in the zoning system defined to segment the body. For
r? - rh (including the case g = h) the problem is basically a
static one. The scalar Green's function can be written as

G~,r-= L-- - + O(s3) (3.8)
4wirI-t r

Taking tht first few terms as needed then the matrix elements
(gn,m for rn - rm (including gn,n) can be defined and they too

are analytic functions of s. Thus the matrix (gn,m) can be de-
fined as an analytic function of s except for possible poles of
finite order. Note that finite zne size is important here be-
cause zone size contributes to the matrix elements and vector.
components and we want to avoid infinite values for these.

One should be careful of various approximate formulations
so that the resulting matrix elements are analytic in s without
branch cuts. For example it is common in various thin wire type
formulations to obtain terms containing functions like ln(yw)
where here w is the wire radius. Such terms result from inte-
grating the Green's function to remove a coordinate such as the
azimuthal angle around the wire, perhaps approximating the re-
sult and then integrating say along the wire in the process of
finding an asymptotic form for small wire radius. Such thin
wire formulations are important and perhaps even useful in de-
veloping singularity expansions but for finite size bodies theyi '..do have this limitation which needs to be recognized. ?or our
present purposes we do not use such types of formulations.

The cofactor matrix D for (gn,m) is

D E (dn) - (-)n+mdet ) (3.9)
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where Gnm is the N - 1 by N - 1 matrix formed by deleting the

nth row and mth column from (gn,m). The determinant of (gn,m)we indicate by

A E det(g n,m) (3.10)

Note that the transpose is

D T (dn) (3.11)

The solution of our matrix equation can then be written

m m,n( (s)) (3.12)

where

(fmn 1 •(dm,n)

(3.13)
dm - (-n)n""det G n,m(

Now since the gn,m are analytic functions of s except pos-
sibly for poles, then the same is true of both the dm,n and A
aince the determinant is a polynomial function of the matrix
elements. Therefore since the In(s) are entire functions of s
and the fm n(s) are analytic except for poles, then the Jm(s)
must also Le analytic functions of s except for poles. Further-
more any poles of the gn,m elements are associated with poles in
the medium parameters or with the Green's function with various
operators on it. Poles associated with the Green's function are
at 9 - 0 and do not concern us because they give no resulting
poles with non zero coefficients based on physical grounds if
the media are passive. Poles in the medium parameters a, e, u
can be troublesome so for our present discubsion we restrict
ourselves to the case of no such medium poles. Such polee in
passive medium parameters could, however, be included in the ex-
pansion technique if desired. With this restriction then the
poles in (Jm(s)) are the zeros of A and the order of each pole
is less than or equal to the order of the corresponding zero of
A.

The order of the zero at sa must be finite since if A and
all its derivatives are zero at sa then as an analytic function
A must be identically zero implying no unique solution for (.3m)
violating the uniqueness theorem for the solution of Maxwell's
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equations. Furthermore the zeros of A in the finite s plane
must be isolated, i.e. only a finite number are allowed in a fi-
nite region of the s plane. This again is a property of ana-
lytic functions. As an example suppose that there were a line
of zeros for A. Then by analytic continuation A would be zero
in the entire s plane, again not allowed.

This result is of course of fundamental importance to the
singularity expansion for finite objects. it relies on restric-
tions on the form of the medium parameters and the convergence
of the particular matrix-vector formulation of 'various possible
integral equations. The response has only-pole singularities of
finite order and isolated in the finite s plane. Since we also
restrict the object to be passive then these poles cannot be in
the right half plane. Furthermore as discussed previously (and
in appendix A) any poles on the iw axis must have zero coupl.ing
coefficients and so we can state for our purposes for passive
objects that all poles in the finite s plane have negative real
part (go 0). Stated another way how ca1. the (im) have branches
(removing multiple values) when the elements gn m are chosen to
have no branches because they are single valued6

Arbot!7er way to view this question~ of only piles for the
singulari~ties in the finite s plane concetrns the numerical re-
sults per se. Matrix-vector formulation of various integral
equations has been common for a long time and has been ursd to
obtain many accurate solutions for finite size objects. For

dent vector components (except for poles in the finite s plane)

tenumerical results obtained (usually on the iwaxis and some-
times converted to time domain) must he representable by a sin-
gularity expansion which has only poles in the finite s plane by
our previous discussion. Thus in cases where accurate results
have been obtained such results are accurately representable by
such a singularity expansion. The accuracy of such a singular-
ity expansion for finite size objects is t.ius related to the ac--
curacy of the corresponding matrix-vector representation of the
integral equation from which it is derived.

Knowing that the inverse matrix (ffm,n) has only poles in
the finite s plane this still leaves open the question of sin-
gularities at infinity associated with an entire function such
as e-sto. One might argue that this matrix is lik *e an admit-
tance -matrix for a large circuit composed of inductors, resis-
tors, and capacitors and like such cases might have only ratios
of polynomials in s for matrix elcmrents. However for large N
the degree of such polynomials could get arbitrarily large.
Thus for completeness at the moment let us write

nQs(f+( (W))(.4
(fmn4 a S% a m,n .1jm+ n
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where the (Um,n)a are constant matrices which are the coeffici-
ents of each pole of order ne > 1 and (fm,n(s))e is an entire
matrix function of s. An interesting question for further in-
vestigation concernt; the properties of (fm,n(s))e for some ma-
trix size N by N and in the limit of large N; perhaps it is zero
for many cases of interest.

Written in matrix-vector form the current density expansion
as in equation 2.20 for the delta function response with polar-
ization p is then

(J!(s)) -F,ýe(els)(VMl (S-S o) + (Wm(el's)) (3.15)
p a a p

At each sa we can expand each ia in a power series since each •
is an entire function. The successive terms in such an expan-
sion produce poles of order na - 1, na - 2, etc. associated with
each na > 2. Note that for eacý sa there may be several na
while each na can have several va (degeneracy) each of which has
an fia. Expanding the inverse matrix (fm,n(s)) as in equation
3.14, substituting this in equation 3.12, and multiplying by
(_s-s)Na we then obtain for each polarization

A. ('i (V) (fm n ('n (eIl, es) (3.16)

(all modes)

where Na is the maximum pole order ng at the se of interest.
Note that the number of independent va for this case need not be
infinite because the coefficient matrices (fm,n)a come from the
inversion of (gn,m(s)) near the sm where A = 0. Similarly we
can expand (In) near sa to obtain the coefficients of the next
higher order pole contribution (order Ne - 1) as

-MNl I n + a e_(m,n) I

n PJa ns-
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Knowing the VU and the choice for ia(ijs) then the terms for
no = Na can be calculated to leave this last equation as one for
the no = No - 1 terms. This can be repeated to o~tain all the
terms for the poles of all orders at sa. If the va are degener-
ate for a given na and are constructed to give an orthogonal set
for this case in the sense

()m (v,) -0 for a 1 a' (3.18)
~cx' a

then the coupling coefficients have the relation for na No as
T1a(elSa so " (e (3.19)

M) "° (I mn elSa))(

For purposes of calcLl'tion with the inverse matrix suppose
A has a zero at so of ord. T., the maximum pole order of
(fm,n(s)) at sa. Say that near sa

Na Nal
A(s) =(s-sa) Na + (S-Sa) ANa+1 +"

(3.20)

-N -NC + 1

a a

with the coefficients related as

AN+1CI i_ 6(3.21'
-Na aN a+1 A -3.21

a N a

and so on by inverting the series for A(s) to one for A-l(s).
Then the (fm,n)a can be calculated from

1 -(s) (3.22)(f m,n(s)) = rW i n (s)(3 22
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No-n

(fmnj d(

I " "-N +L(dm,,n)L(

(dn) a ~
a (3.23)

inj I [L~ d Zs)
(dmn, n), rt ld-7-• (dmn n (s) )

and so on by collecting terms in expanding the series for A(s)
around so intc a series for 1/A(s). Note that there is a dif-
ferent set of (dm,n)t coefficient matrices at each so so they
can also use the general a subscript set.

Instead of using the inverse matrix approach we can set up
an eigenvector equation, factoring out ths coupling coefficient,
by first expanding (gn,m(s)) in a Taylor series around sa as

(gn (s)) == g

(3.24)
g =1 [d (g)• i (gn,m) Z I• (n,m~s

i SmSQ

Note again that there is a separate set of coefficient matrices
for each so so the (gnm)j can also use the a set. Substitute
this series together with equation 3.15 into eqaation 3.1 to ob-
tain

-- 2 (s)) (3.25)n

Since the right side has no poles at sa then collect the coef-
* .ficients of each pole on the left side and equate them to zero

beginning with the highest order pole at so for no - Na as

V(0 g4 (3.26)

44



where the coupling coefficient is assumed non zero and factored
out and (0) is an N component vector with all zero elements.
There may be several natural modes for nao No perhaps associ-ated with symmetry. If there is mode degeneracy for no - Nathen construct an orthogonal set which spans the space of such
modes so that the property in equation 3.18 applies. Going to
the no= No - 1 term we have (for Na > 2)

n na..Nv.o (gn,m)1 na=N+a-l[s" qa (el' ) (gn~m)

N (vut) = (0) (3.27)

At this point let us consider the form of ia to simplify some of
these terms.

Suppose that we restrict Am to have the form

V(l,S) 1 cm(e) (3.28)

where we have factored out the complex frequency dependence as a
common factor for all a. This common factor Tfs)~is specified
to be an entire function in the complex s plane; T(s) may even
have zeros in the finite s plane if we wish to remove some poles
before making a singularity expansion. The new or modified set
of coupling coefficients ca(el) are specified to be constants
and are the same type of constant coupling coefficients as used
in section 2 as for example in equation 2.21. One choice of
T(s) is clearly eSto as used in section 2.

Now multiply the matrix-vector equation 3.1 by T(s) to ob-
tain

(gn, m (s) T() (3m(s)) (s) (In(s) (3S%29)

The right hand si~e is still an entire function. Then restrict
for our presen.. analysis the coupling Coefficients to have the
form in equation 3.28. Solve for the ca and divide the results
by T(s).

Equation 3.25 can now be rewrittea as

(
45



(8-8 c (e -n (

T ,C..(a) ( 8)) (3.c30)

nl

The a derivatives of the coupling coefficients as in equation
3.27 now do not appear. Equation 3.26 can then be generalized
for na - 1, 2, .. , 1Na as

(gn •VM) (0) (3.31)
aan,,=N,- I

from which natural modes can be calculated in the form of orth-
ogonal natural modes constructed for each n% for which there is
modal degeneracy.

Similarly using the expansion of the inverse matrix we can
write

T(s)(J (s)) -- (s-sa) a(fm n) + (f (s)) •Tls) (In (s))
m0 C9n m, n eln

-n•

Ca(el) CVm) (s-s +T(s) (Wm(1,s)) (3.32)

Around sa make the Taylor expansion

T(s)(Inls)) - 0(3-80L) (Tn).

(3.33)
(T [d" -

nTl " ýr•s[Ts) (in(s))']

Sa

where the coefficient vectors (Tn) uan also use the a index
set. Then for the pole at sa of order M we have
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Na-M

n- (, 1 m O0(T) (3.34)

from which we can obtain both the natural modes (constructed an
orthogonal set) and the coupling coefficients. Note that the
dependence on el is contained in the vectors (Tn)t. If we let
M > Na then we can relate the entirV functions as well. Alter-
nately having found all the ca and va these can be subtracted
from equation 3.32 to leave the entire function T(s)(Wi(els))
expressed in terms of T(s)(In(s)) together with the inverse ma-
trix coefficients.

With the natural modes known equation 3.34 gives an expres-
sion for the coupling coefficients for a = a' as

Na-M

Ca (e N sn *(v 1 s) .(f) (T n),Lam'o' ")o ' m a InaM "

(3.35)

The coefficient matrices for the inverse matrix can be related
( to the Taylor expansion of (gn,m(s)) through

(g ,(s)) (fm m(s) (6 n,) = (f n,n,(s)) " (gm m(s))

m m ~ nn m,

N (3.36)
(6)n,m= (s-sa (gn,m,) (S-s a)-If, ,m) + (f , n(s))

~11=m q-1~m) a ~ , q m el

where now the coefficient matrices (fm' ,n)a apply for the par-
ticular sa of interest; the remaining term; at other sa can be
included with the remainder function for present purposes.
Equating l- resulting singular terms to zero gives for the

h or.- pole

(gn,m) "(fm,) (0n (f ,I ( (,m 3.37)n~min m N n~m n,mN

where (Qn,n ts an N x N matrix with zero elements. From this
result the columns (fixed m) oi (fU' m)Na must be eigen-ectors
of (gn m')o and the rows (fixed n) of (gnm')o must be eigenvec-
tors of the transpose of (gnem')o. Also the rows of (fnomo)Na
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are eigenvectors of the transpose of (gm',m)o and the columns of
(gmi,m)o are eigenvectors of (fn,m§)N,. For poles of order n'
in equation 3.36 we have the general result

S,( n~ ') (mo n) " 0n )" (f n ') '- (gli 'm)t

q-1n s(g* ' nI-) (0--n' n

(3.38)

where 1 < n' < No.

Consider the special but practically important case that
the pole at so is simple (No = 1). Then the natural modes are
the eigenvectors from

(gV) ( (0) (3.39)

The coupling coefficients are

a 1 m mj 0 r n 0

= [(yin); [T (Ts (I ([s )) (3.40)
0 M ,n1  a n a

where

f ) limr (s-s (f (s))
mn 1 s~ s a mn

a

with the relation

(gn,m )) (fm M) = (0 n, = (fn,) m (gm'm(S) Q) (3.42)

In another form the natural modes and coupling coefficients are
found from
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c , N( (Tn

(1 naMc M1o nm mn

"(fn) " ["T(s (I (a )) (3.43)

which for the case of no modal degeneracy reducQs to

CQ(el• (V) Q= (f m,n) I• [ý(sa0)(In(s)) (3.44)

There is an alternate way of calculating the coupling co-
efficients. Again let Na - 1 at the sa pole. From equation
3.42 the columns of (fm,n)l are eigenvectore of (gn,m(sa])) As
sume no degeneracy of the natural modes at so. Then the columns
of (fm n)l are all the same except for a scalar factor since
(vm), Is unique except for a scalar factor. Call these constants
urm so we can write

(fm,n) = (Pl(vm), a i2(vm) a - n(*m) , . N("m) a (3.45)

Then we have

(vM) • (f mn), [(Nm) * (m)] (n) (3.46)

defining a new N component vector so that (fmn)1 can be written
in dyadic form as

(f ) = v) (V n) (3.47)M~nm n

whtre the outer vector product or dyadic product is used here.
Thus we also have

'•(f o,S )" n" epn)a Wn)Q(. 348

Now from equation 3.42 the rows of (fm,n)l are eigenvectors of
the transpose of (gn,m(sa)) so that we have

N (gnms (0) (3.49)

(
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From equation 3.40 we can then write the coupling coefficient as

Ca(l) " (inl) • (T(sal(I~ (s )M) (3.50)

giving a simpler form of the result in terms of the eigenvector
of the transpose of (gn,m(sa)). Note that since we have assumed
only one independent (vm)u there is only one independent (um)a.

Now similar statements can be made about the eigenvectors
of (fm,n)l from equation 3.42. Specifically the columns of
(gn,m) must be eigenvectors of (fm,n)l and the rows of (gn,m)
must be eigenvectors of the transpose of (fm,n)l. From equation
3.47 the eigenvectors of (fm,n)l are orthogonal to (00n) and the
eigenvectors of the transpose of (fm~n)l are orthogonal to (vN)a.

We can calculate the transpose eigenvector (rn)a from equa-
tion 3.49 except for a scale factor. To find this scale factor
we can use equation 3.46 to give

(;m) (n (n) (m m,n (n

= .. (;m) a• (dm,n(Sad)) (5n) a 351

If we have found a (iA)a from equation 3.49 then

(3.52)

Another powerful result comes from taking the constant term
in equation 3.36 as

(6 n,m) -(gn ,) * (f m, ) + (gn ,m ) 0 (fmn(Sa))n~ ~ '1onm mn •

" (f n,m') (gnm) + (fm,n(sa))e" (gm',m) (3.53)
1 e 0

Dot multiply on the right by the eigenvector (v\m)a of (gmtm)o
to make the second term vanish giving
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(V n ( ' " (g (vm) (3.54)(n,m 1 ,m

This defines a matrix which maps (vm)o back into itself. Having
some (pn)a solving equation 3.49 we also have from dot multiply-
ing on the left of equation 3.53 the result

( ) a" P~ (9n,,m')l " (ro',M) 1 (3.55)

Thus multiplying equation 3.44 on the left by (pni) " (gn,m)l°
we have after rearranging terms

% (e) I (i (gn~m) *(Vm)] (Pi ((sM) (In (sc)) 3.6

so that we can construct (Pn)a as

giving the additional result

(tin) (gn m) a (vm) a l (3.58)

Thus (0n)a can be explicitly constructed from (gnm)o
through its eigenvector and the eigonvector of its transpose
plus another matrix (gn,m)l which also comes directly from
(gnm(s)). Thus after one finds sa as a zero of A(s) then if
this zero of A(s) is simple and the natural mode nondegenerate,
both the natural mode and the coupling coefficient can be found
from (9n m(s)) through the special formulas above without having
to calculate the coefficients in the expansion of the inverse
matrix. If the zero of A(s) is not simple but of second order,
third order, etc. then the formulas are somewhat more complex.
Thus given an integral equation for the currents on the object
and some matrix-vector representation of this which uses ana-
lytic elements with at most poles and assuming the appzoximate
solution converges in the limit of large N, then there are var-
ious techniques to calculate the natural frequencies, natural
modes, and coupling coefficients. Furthermore the coupling co-
efficients can have many forms, all of which give the correct
contributions at the poles but can have various behavior as
I sl ÷; this also affects the form of the ent.ire function which
is an additional term in the solution.
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Let us now list some of the alternate forms that the cou-
pling coefficients can take. While all forms give the correct
damped sinusoid parts of the waveform at late times there is
still the question of convergence, particularly at early times.
We need to know more general results for the behavior of the en-
tire functions (or behavior at infinity) for various types of
objects as they enter into the singularity expansion. Of course
convergence to the correct result can be determined in part by
calculating the entire functions. One can observe the result
for the matri* inversion times the incident vector for particu-
lar cases of el and p in frequency and/or time domains and com-
pare to the sum of the first several poles to see where there is
or is not convergence and what it takes to remedy the situation.

Consider then several types of coupling coefficients.
Type 1: Factor out the turn on time of the object.

This type of coupling coefficient is defined by

st

T(s) Ee 0(3.59)

so that the coupling coefficients factor as restricted by equa-

tion 3.28 in the form

This iomi sdi aycss in section 2. in appendix B the
perecty cndutin spereisshown to have this form of result

A ith neniefntoinaddition to the pole expansion.
Thee- anentre uncione-sto which is common to all cou-

pling coefficients. However whether we need an entire function
as a separate term in the sum is not at all clear for more gen-
eral objects. In time domain as discussed in section 2 the re-
sulting pole terms go over to damped sinueoids (including cases
of no oscillation) for simple poles with powers of t appearing
for higher order poles. For t < to there are no current. on the
objects which is physically correct. At t -to all modes turn
on all over the object. Before any fields can reach a particu-
lar position on the object (associated with propagation by the
shortest possible path which is not always a straight line) the
modes with the transformed entire function must all add to zero
(if the sum converges) at that position, so this is a test for
this type of coupling coefficient representation.
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Type 2: Factor out the time the incident wave function first( turns on at the observer position.

This type of coupling coefficient is defined by

f(s) e st

0 (3.61)

+4.

•lel,s) e- st' C (e
%a

where

to (3.62)c

with r' as the particular observer position on the object where
the current, charge etc. is to be calculated. For this type of
definition then ca(il) is not the same for the whole object be-
cause the definition is changed to apply to each observer posi-
tion separately. However the natural frequencies and natural
modes are still the same for the whole object. For t < t' at
the observation position the fields, etc. must be zero and for
most positions t' > to for general objects. This form of cou-
pling coefficient then may have some advantages for early time
calculations. For the numerical problem the observation posi-
tion is discrete, say rn. Thus we would use

t in (3.63)

Note the tA is the first time that the vector component In in
the incident vector (In) turns on. This ca is as easy to calcu-
late as the one in equation 3.60 but it is calculated as many
times as there are observer positions. In fact for t > t' the
two forms give exactly the same time domain waveform for simple
poles. For to < t < tA type 1 gives a non zero waveform for the
particular pole contribution. Thus we can calculate the type 1
coefficient but just wait until time tA to turn it on.

To see this in general form take an arbitrary time ta and
make

st
T(s) e (3.64)

Then
5
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-st -(s-s )t•(el, s) =e c (e,) e (s(.6.

ic

which when combined with the simple pole (s - sa)-A gives a time
domain form as

'LI 6 na]s (t-ta

L e) • e (Is ))e u(t-tk 41) 9n n a ~ a

S t
(V d (In(sa))e u(t-ta) (3.66)

Thus for a simple pole the chosen starting time only shifts the
turn on in the unit step. The waveform it multiplies stays the
same. Therefore for t > ta all simple pole waveforms are the
same independent of ta. For higher order poles a term
(t - ta)n-L enters in but this can be expanded to leave tna-l
as the leading power invariant. Furthermore considering all the
pole contributions at s. for na = 2, 3, --- the results can bemanipulated to cancel some terms but we do not go into this here.

Type 3: Factor out the time that resultant fields can first
exist at the observer position.

One can choose ta as in equation 3.64 such that it is the
first time that any field can reach the observer at rn. This
can be longer than the time tn. It can be calculated from geo-
metrical optics. For example if the Rbserver is on the surface
of a perfectly conducting object ayid el is such that it must
point through the object to reach the observer then the wave
must come around the object and arrive at a time greater than tA.
As another example a dielectric object with propagation velocity
less than c may still have the wave propagating through the ob-
jecc reach an obserier on a "shadowed" side first; this time is
still greater than tA. Also for example the expansion of the
response of the perfectly conducting sphere need not be started
st time t - to but to can be replaced by a more appropriate ta
in all the step functions.

Clearly if one choos-n ta to be greater than the time a

signal first begins at an observer then there must be an entire
function contribution foi t < -a because the pole contributions
would all be Tero Such a choi.cL would not seem very useful.
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Type 4: Expand the inverse matrix in poles but leave the entire( function for the incident wave as a coefficient.

This approach is attractive for th€e case that the expansion
of the inverse matrix (fm,n(s)) as in equation 3.14 needs no ad-
ditional entire function (fm,n(s))e in the expansion or at least
that this entire function is known and preferably has a simple
form. Define a time

tl(e 1) = max[e c1 (3.67)

While the time to is the turn on time this new time tl is the
tinge when the incident wave has reached every position on the
object neglecting any scattered fields from the object. As such
tl might be called the turn off time. Suppose we write the in-
cident vector as

n 1isl)) = (bnle I1) (3.68)

so that the time delay in each component is explicitly displayed.
( Consider a special excitation function consisting of the nth

component of this vector being as abovV but all other components
zero. Then we would calculate an Aian(el,s! with e-sin as a fac-
tor. Repeat this for all n and add up the results on the basis
that the equations are linear and superposition can thus be ap-
plied. We would then calculate our coupling coefficients for
the case of simple poles as

n(b _lestn) (3.69)
•a( lS) -(Un) •(in(•,) -{Un). (bn (e)

For higher order poles derivatives of the incident vector with
respect to s also come in. Now in the time domain we have for a *~l

simple pole i,.

a•* ;n n ( 'I.t)) ( (Un) (bn(el)8(t-tn)) (3.70)

The pole gives a damped sinusoid •sct for a simple pole and
a factor tna-l for higher order poles. This in convoluted with
n% where each element of the incident vector makes its contribu*-
tion at a time tn. As discussed before for t < ta where ta can
be arbitrary the time domain waveform, at least for simple poles,
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is the same regardless of ta. This applies to our case of con-
sidering each component of the incident vector as separately non(
zero and adding up the results at the end. Thus for t <to the
pole contributions are zero. For to < t < tl the convolution as
above is required which consists of turning on the contribution
of each component of the incident vector at time tA and in time
domain we have

js

~b e)e nU(t-t'))e (3.71)

For ti < t this result goes to the form as in equation 3.66 giv-
ing the same late time behavior as the other types of coupling
coefficient definition. This type 4 coupling coefficient gives
a type of early time behavior which is different from the three
previous types ind thus gives another form of pole contribution
from a convergence viewpoint.

We have shown several possible ways to define coupling co-
efficients. Any of these or combinations of them can be used to
obtain the best representation in the sense of the fewest number (

of terms required in some region of frequency or time of inter-
est. There are clearly many other cases one might consider.
The ones discussed here are some that rather directly follow
from physical considerations and/or give simpler results consis-
tent with the requirement of having the correct coefficients at
the poles. Note that types 1 through 3 for the coupling coeffi-
cients can all be calculated on a conmmon basis. A cag can be
found for any choice of Tf(E) in the form of a time advance. In
particular Ti(s) can be 1. The resulting cc then applies to -

every position on the object. It is just the turn on time in
ths unit step which is shifted in types 1 through 3 based on a
physical time of interest either for the whole object or for a
local observation position on the object. Type 4 gives more
complicated waveformas.

The considerations about the expansions in this section
have been based on incident delta function plane waves. They
can be carried over to other incident waveforms directly by the :
techniques outlined in section 2. The type of the incident wave
may influence what one considers as the bast form for the cou-
pling coefficients. This is because the early time convergence
of the expansion will be affected by the high frequency content
of the incident waveform. As an example suppose we have an in-
cident step function waveform. Then ie c~n invert a term of the
form iAQ(el,s)/[scg(s-sQfl into the time domain and add a static
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term or we can invert a term of the form 1a(e1,s)/[s(s-sG)1 into
the time domain which has a form like the time integral of the
first form. This should give different convergence characteris-
tics for early times and thus another form to be looked at in
combination with types 1 through 4 coupling coefficients.

The remaining entire function in the general expansion is
clearly a subject of much interest. Depending on which form of
coupling coefficient is used this entire function clearly has a
form which is different for different forms of coupling coeffi-
cients. If ta is chosen as in type 3 but made later than the
time a signal first begins (resultant field signal) at the ob-
server then such an additional function must be non zero to give
the only possible fields at early times before ta. If ta is
chosen less than the first time resultant fields reach the ob-
server then the pole terms must either sum to zero (if conver-
gent) or have their sum cancelled by such a function. If, in
specific problems being calculated, the sum does not go to zero
for such early times then this other function must be non zero
for such a case. An optimum choice of coupling coefficients
might be one in which the remaining function is identically zero.
This would have the beginning time for each mode no later than
the first time resultant fields reach the observer, perhaps even
at exactly this time. The "best" coupling coefficients may have
more complicated forms for fjf than those used here. Perhaps us-
ing geometrical diffraction theory to consider asymptotic forms

for 1sJ w one can investigate the properties of the remaining
entire function and/or impose tighter restrictions on the "best"
form for the coupling coefficients.
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IV. Some Possible Extensior.. of the Singular ty, Expansion
Methodand Some Areas for F'urtherF Investigation

Let us now consider some of the implications of the singu-
larity expansion method for somre general classes of objects.
Most of the attention in this note has been ginyen to objects
with finite linear dimensions. This is Clearly an important
class of objects for electromagnetic interaction and scattering.
The pezfectly conducting sphere In appendix B is an example of
this cl.ass of objects and can be used to suggest various general
results for this class of objects. In fact some of the results
and conjectures discussed in ot"-her sections were originally sug-
gested to mue from this excimp1g. The possib~e factorization of
the coupling coefficients fii(%(el,s) into ccg(ei)e-sto for per-
fectly conducting objects of finite linear dimensions is a good
example of such a conjecture. The fact that the perfectly con-
ducting sphere has only poles in the singularity expansion while
the perfectly conducting infinite length circular cylinder has
branch cuts in its singularity expansion (associ3t~ed with the
cylindrical Hankel functions in its eigenfunction expansion)
suggested that tbe expansion only in poles is associat-ed with
the finite dimensions of the object.

Talere -ire other finite sized perfectly conducting objects

sions. Somei examples might be the prolate spheroid, oblate
spheroid, circulpr disk, etc. Such exampl.es.havo less symi~etry
than thr" sphere and one would then expect less degeneracy of the
natural modes. With the circular disk. an edge wriuld be intro-
duced and one could see how this affected the natural modes.

For finite sized perfectly conducting objects with an axis
of symmetry (objects of rotation) one can base a cylindrical (Ti,

*,z) coordinaZ-e system ou thiýs axis and decompose the naturalJ
modes based on cos(m#*) and sin(m*') for integer m wh..Ile the
coupling coefficients have factors cos(m~~.) and4 sin(m~l) based
on one ef the angles of incidence. The integral equation over
the surface reduces to a one dimensional integral equation for
each mn making the numerical solution &impler and the indexing of
the natural modes also simpler. Drs. L. Marin and R. W. LAtham
(private comm~unication) are already putting together n.W~erical
techniques to hiandle this case.

Aao suggested by Prof. C. Taylor (private communication) one
can also look at thin wrire approximations to ciruplifif thoa tdngu-I .riy expanaion analysis for nu~ch cases and perhaps'obtain ap-
proximate analytic expressions for the natural freq~uencies, nat-
ural minctkn, and ccoupling o.oeffici.ents, This v~oul.d have the ad-
vantaqe of determnining the approxcimat.e values of these quanti-
ties and suggesting an appropriate indexing system for the fre-
qjuencies, inodas, "nA coefficients for some rather comuplex object
shapes, such as thint wire models of aircraft atrvctiuxex. Then



in more Jetailed calculations of "fatter" structures one can use( the thin wire results to help locate all the natural frequencies
etc. L•ecause one expects the singularity expansion quantities to
vary somewhat continuously as the object shape and dimensions
are changed. Furthermore one could develop numerical techniques
in which the approximate thin wire results are used as 0'ret
terns in an iterative solution for the corresponding fat objects.

While we have been viewing the singularity expansion method
:om the vie.wpoint of the interaction or scattering problem

there is no reason to expect this method to be limited to such
problems. This method is fundamentally based on the expansion
of analytic functions of the complex frequency s in terms ofIi their singularities in the complex s plane. For example antenna
problems in transmission and reception can be considered from
this viewpoint. Prof. S. W. Lee (private comununication) has
louked at some features of the cyi'indrical antenna and this
method appears to give son.e insight here dnd can even be used to
relate this antenna prohlem to the interaction problem for a fi-
nite length perfectly conducting cylinder.

The result-s for finite sized perfectly conducting objects
can be applied to other types of objecti as well, Consider an
aperture 5.n a perfectly conducting plane as shown in figure 4.lA.
By the Babinet princi2le this can be related to a complementary
perfectly conducting disk. 1 1 P12 Essentially by interchanging
the roles of the electric and magnetic fields (rotating the po-( larizatior) and including a plane wave term for the reflection
from the infiinite plane the solution for the aperture scattering
can be found from that for the disk scattering. Thus one can
describe the deviation of the currents, fields, etc. from the
continuouR plane case by means of the natural frequencies, modes,
and coupling coofficients of the complementary disk. Then these
results can be applied to define natural frequencies, modes, and
coupling coefficients; the modas can be formulated for change in
fields in the aperture and/or changes in surface current andsurface charge densities on the remainder of the perfectly con-
ducting plane. Thus it iz quite possible to define the singular-
ity expansion for the lack of an object, i.e. a hole, at least
in the c•ae of a perfectly conducting plane.

Similar concl.usions apply to a protrusion on a perfectly
conducting plane as shown in figure 4.1B. This follows from
image considarationa. With the image of the protrusion included
then the incident field can be split into symmetric and antipym-
metric parts with respect to the perfectly conducting plane.'

The interaction of each part with the equivalent object with a
symmetry plane in place of the perfectly conducting plane can
then be studied separately. Hooever, due to the reflection of
the incident wave at the perfectly conducting plane only an
tntisymmetric field distributiun can 6xist and thus contribute
to the result. Thus the change in the fields, currents, etc.
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THESE TWO PROBLEMS
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APERTURE EflUIVALENT DISK
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FIGURE 4.1 SOME "OBJECTS" WITH A PLANE OF SYMMETRY
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can be described by the natural frequencies etc. of the protru-
sion with its image but only the antisymmetric natural modes are
needed. This is in contrast to the aperture problem in a per-
fectly conducting plane where only the symmetric part of the in-
cident wave interacts with the aperture making the aperture nat-
ural modes also symmetric.

This reasoning can be carried a little further in consider-
ing two finite size objects which are mirror images of each
ether with respect to a symmetry plane as shown in figure 4.1C.
Such a pair of objects cr~n be considered as one object for an
expansion in natural ,-:. 'a:cies, natural modes, and coupling
coefficients. If thc nbects are far apart then the scattering
from one will not be v•.. large at the second when compared to
the incident fie16. For large separation there is not very much
interaction ,etween the two and we can treat them as two sepa-
rate objects with the same natural frequencies and the same nat-
ural modes except that the modes on the two bodies would be mir-
ror images of one another. Now natural modes can be multiplied
by any scalar merely in changing thair normalization. Thus for
the two objects considered as one we can define natural modes as
symmetric and antisymmetric modes by taking sums and differences
of the mirror modes. Now the symmetric and antisymmetric parts
give an exact division of the natural modes on an object with a
symmetry plane; there is no interaction between the two. Even
for the two objects close together this is the case. As the ob-
jects are brought together one may typically expect a splitting
of the natural frequencies in two, one with the symmetric and
the other with the antisymmetric modes. This is analogous to
the energy level splitting in quantum mechanics, say as two
identical atoms are brought together. For a single finite size
'object near a perfectly conducting plane only antisymmetric
modes contribute and so only natural frequencies associated with
the antisymmetric modes are present. As the object nears the
perfectly conducting plane one might typically expect a shift of
the natural frequencies and not a splitting unless some symmetry
in the object is destroyed in the process or there is some other
degeneracy in the natural frequencies.

These resu:.ts with perfectly ,conducting infinite planes
suggest yet further results might Joe obtained for various per-
turbations on infinitely large perfectly conducting objects.
The perturbation is regarded as the "object" and what is calcu-
lated is the change in the electromagnetic quantities associated
with the introduction of this "object." If the perturbation is
of finite size then we might expect its singularity expansion to
comprise of natural frequencies, natural modes, and coupling co-
efficients. However more development is needed to understand
"this thoroughly. One might even extend this perturbation con-
cept to perturbations on finite sized objects. Particularly if
the perturbation is small compared to the object dimensions then
one could make a singularity expansion for the object and use
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the results to define the incident fields for the perturbation
which might in turn be approximately solved by another singular-

ity expansion.
Of course there is the question of the singularity expan-

sion for infinite or semi infinite objects. We know that the
perfectly conducting circular cylinder has branch cut contribu-
tions in its singularity expansion. There are many other shapes
besides spheres and cylinders which can be treated from the
viewpoint of eigenfunction expansions. 1 3 This can be used to
help divide up the terms in the singularity expansion by treat-
4 ng each term in the eigenfunction expansion separately for its
singularity characteristics. Prof. Garbacz has developed a
method for calculating eigenfunctions associated with general
geometries for lossless objects. 7 Perhaps these expansions can
be used by studying each term to determine its singularity ex-
pansion and thereby aid in developing or even indexing the terms
in a singularity expansion for such objects. In studying infi-
nite objects such as general cylinders (say irregular but of
some maximum "radius") or semi infinite objects such as general
cones (say contained within some maximvm "halZ cone angle") one
may find some general properties of the siDqularity expansion
associated with certain features of the gs.,eral geometries.
This in turn may give some guidance on how to approach the sin-
gularity expansions (and index them) for specific cases of such
objects.

Note that some objects which are finite in size may have
properties of infinite bodies such as branch cuts in the singu-
larity expansion. For example take a perfectly conducting ob-
ject of finite size located between two infinite parallel per-
fectly conducting plates. This can be replaced by an equivalent
problem involving an infinite humber of images extending infi-
nitely far away. This is basically a segmented infinite object.
For the case of a thin wire of finite length between parallel.
plates some frequency domain results (on the iw axis of the s
plane) exhibit peculiar step and slope discontinuities. 1 4 This
may be associated with new tenrus such as branch contributions in
the singularity expansion. Perhaps the case of infinitoly re-
peated objects (and/or images) in one, two, and three directions
can be epecially treated so as to obtain come general results
for the singularity expansions for such problems. Since trans-
lational symmetry is present for such repeated objects perhaps
group theory considerations can be applied to obtain general re-
sults for this type of problem.

Other important classes of objects involve losay media of
infinite size, such as half spaces with finiite non zero conduc-
tivity. Objects of finite size may be close enough 4o such
media to affect their response characteris.Acs, thereby altering
their singularity expaasions. Furthermoret, infinite objects
such as wires may be in proximity to semi infinito losay half
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spaces; this could introduce yet additional features in the sin-
gularity expansion.

Another whole class of problems concerns the analysis of
* experimental data, say from tests using EMP simulatore. Using

numerical Laplace transforms, numerical Hilbert transforms, etc.
features of the singularity expansion of the experimental data
can be found within the limits of accuracy of the experimental
data and the numerical techniques. It would seem that various
approaches to this problem are possible depending on the kind of
experimental data and type of object being considered.I Clearly there are numerous topics in the singularity expan-
sion method involving classes of objects, numerical techniques,
etc. which need extensive development. In this note we have for
the most part considered finite size objects. Even for this im-
portant though limited class of objects much needs to be done.
For example the natural modes come from the coefficients of the
poles in the expansion. The natural modes may be orthogonal
over the volume or surface of the object. Such is the case for
the sphere but what about in general? Perhaps the topology of
the object can be used to he'p index the singularity expansion
quantities and can be used to identify whether or not certain
kinds of terms are present. The object symmetries have much in-
fluence on the degeneracy of natural frequencies and modes.
Group theory should then De useful in understanding the degener-

* acy and splitting up tbQ resulting modes as well as indexing the
S( natural frequencies, natural modes, and coupling coefficients.

A finite size object need not be perfectly conducting.
Suppose that it is composed of linear passive media. Prof.
C. T. Tai has suggested (private communication) that the types
of theoretical considerations applied in circuit theory can beapplied to the singxtlarity expansion to obtain new general re-
sults. Considerations like conservation of energy are important
here fn constraining the allowable forms of the solutions. Per-
haps some properties of the pole expansion can be deduced such
as the pexmissable order of the poles. The perfectly conducting
sphere has only simple poles. It seems safe to conjecture that
this is true of all finite size perfectly conducting objects; as
of yet I h~ve not found any case to the centrary. The case of
lossy objects ray admit more general pole types. The propertiesof the coupling coefficients also need investigation for these
more general finite size objects. Whether or not the linear
passive media are also reciprocal should also have important im-V pact on the properties of the singularity expansion.

Numerical calculations for objects such as finite length
perfectly conducting cylinders can be used to test various nu-
imerical techniques for calculating the singularity expansion
quantities and suggest improvement on them. Dr. F. Tesche is
already doing such calculations showing some cases of very rapid
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convergence for the step function response. Furthermore such
calculations can test conjectures of a general nature and if
calculations are performed for various different objects in the
class of interest and the conjecture proves correct in all cases
then one has high confidence in the general validity of the con-
jecture. Consideration of various example objects has been very
useful to me in suggesting new results and testing old conjec-
tures. it would seem that one important driving force in the
futi~tre development of this technique will be the calculation of
the object response of various important objects of practical
interest.

An interesting and important question for finite objects
concerns the uniqueness of the form of the singularity expansion.
Clearly the natural frequencies and modes for finite !sal are
well -delined, but th.9re are rime possible alternatives in def in-
ing ij0(el1s) and cca(el), the forms of the coupling coefficients.
Specifically AO~ can be an entire function of s (no singularities
in the finite s plane). This gives some flexibility in choosing
the form of the coupling coefficients. of course the choice in
not completely arbitrary. The final resulting current density,
charge density, etc. are unique quantities and all exact repre-
sentations of them must amount to the same thing. The individ-
ual terms in a series expansion can be altered as long as the
sum remains the same. This then raises the question of what is
the "best" form in which to express the coupling coefficients.
A form like cu(el)e-stO clearly has much to recommend it for its
simplicity. However there may be other terms needed if such aI form is used. This problem is associated with the time during
which the incident delta function wave is sweeping over the
body. Since the object response must be zero before a field can
reach any particular point on the object (with this time calcul-
able from geom~etrical diffraction theory considerations) andt since to is the time the first point on the object is excitedp
then all the terms in the expansion must sum to zero (if the sum
converges) for times between to and the time that an excitation
can reach a point of interest on the object. In order to best
define the expansion for early times so as to obtain the most
rapid convergence then some other definition of the coupling co-
efficients may be appropriate. The possible alternative forms
of the coupling coefficients seems to me to be an issue of
fundamental importance in the whole theory and practical utility
of the singularity expansion for finite size objects, especially
for early times. For infinite bodies the terms analogous to
these coupling coefficients may also have similar questions as-
sociated with them. Much research is needed then on coupling
coefficient representation both in term~s of general considera-
tions and specific examples.

In past years there has been some consideration of the nat-
ural frequencies of some simple objects and to some extent the
natural modes have also been investigated for such objects. Let
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us mention some examples. Thin wire natural frequencies have
received some attention. 1 5 Natural frequencies have been die-( cussed in the context of antenra resonances.16 Natural frequen-
cies and modes of a sphere have been discussed;17 this forms a
starting point for our discussion of the singularity expansion
of the perfectly conducting sphere in appendix B. Prolate
spheroidal geometry has alse been considered for natural fra-
quencies and modes. 1 8 Since the perfectly conducting sphere ha*
shown so many interesting results it would seem a good idea to
look at the prolate and oblate spheroids to see to what extent
the general form of the results carries over to these geometries.
For example spheroidal goometries can allow one to look at some
analytic results for forms of the coupling coefficients. These
and other investigations, even though limited in some respects,
at least solve some portions of terms in the singularity expan-
sion for some object:s. As such they can shed some light on some
details of the singularity expansion for such objects and give a
start for obtaining the full singularity expansions. They also
give some qi.idance about what problems can be profitably consid-
ered for ,a1les to develop general results for the solution
represenvio4cAis in the singularity expansion method.
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V. Summnary

This note is intended to introduce a new way of looking at
many kinds of EZ4P interaction problems, although it has bearing
on scattering problems as well. Prom an EIP time domain inter-
action viewpoi'.nt this approach has the potential for directly
calculating t e amplitudes, frequencies, damping constants, and
p 04e of the damped sinusoidal oscillations that are commonly
seen as major portions of interaction waveforms on systems under
test. The idea is to then construct a large portion or even all
of such waveforms as a sum of such damped sinusoids.

The general technique can aptly be called the singularity
expansion method because it is based on representirg the func-

in the complex s plane. In the time domain the individual terms

are the inverse Laplace transforms of the singularity terms.
While for general objects we can expect branch cut contributions
the results for finite size objects using well behaved media in-
clude only poles for the singularities in the finite s plane.
This simplifies the form of the terms considerably and allows
one to factor the terms into natural frequencies, natural modes,
and coupling coefficients. The natural frequencies and modes
are independent of the incident wave parameters while the inci-
dent wave parameters enter into the coupling coefficients for
the delta function response. The incident wave can also have
singularities in the finite s plane but these can be separated
out so that the response can be generally written as the sum of
an object part and a waveform part.

There are various matrix techniques for solving integral
equations numer:ically. In this note we have considered thesea
from a general viewpoint, not specifying which integral equation
is being approximated. This shows some general ways to calcu-
late natural frequencies, natural modes, and coupling coeffici-
ents. The actual numerical procedures that one could use are
numerous and need to be considered for varioue problems to de-
termine the most efficient and accurate techniques.

There are various theoretical problems associated with the
convergence of the matrix representations which need to be con-
sidered for the integral equations for finite objects. Prefer-
ably continuous operators over the body geometry can be developed
to analytically represent the terms in the singularity expansion.
The question of the singularities at infinity or additional en-

tire functions for finite objects needs treatment., Of course

the completeness of the singularity expansion with some allow-I
able chosen form for the coupling coefficients can be readily
checked for any given boundary value problem by comparison to4
the solution by standard numerical techniques. This method can
be used to determine better forms of coupling coefficients.
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Thei~e has been some work done in the past on the natural
( frequencies of objects and less work done on natural modes.

This work can serve as useful starting points for the singular-
ity expansions of some classical geometries which can be used
for test problems. There are the essentially new questions of

- * the pole order and coupling coefficients for finite size bodies.
This note has included a common object of past investigations,,
the perfectly conducting sphere. There are analytic forms for
coupling coefficients and there are only simple poles in the fi-
nite s plane with no additional entire function required for the
delta function response. Investigation of other common objects
considered previously should also give some valuable insight
into appropriate forms for coupling coefficients and questions
such as pole order.

I hope that this note has given the reader some insight into
what the singularity expansion method is all about, particularly
with regard to finite size objects. It appears to be qui.te
powerful for some kinds of EMP interaction problems. Several
investigators are already performing sort studies of both gen-
eral problems and specific-examples using this type of expansion.
I would hope then that the near future will see some silnificant
additions both to the theory of the method and problems solvedt using the method.

"Off with her head!" the Queen shouted at the top of her

voice. Nobody moved.

"Who cares for you?" said Alice (she had grown to her full
size by this time). "You're nothing but a pack of cards!"

At this the whole pack rose up into the air, and came fly-
ing down upon her;

"Wake up, Alice dear!" said her sister. "Why, what a long
sleep you've had!"

"Oh, I've had such a curious dream!" said Alice, and she
told hec' sister, as well as she could remember them, all these
strange Adventures of hers that you have just been reading
about; o..

(Lewis Carroll, Alice in Wonderland)
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AppeRndix A: The Natural Frequency s = 0

As mentioned in section 2 it is possible for finite sized
bodies to have static current and/or charge distributions. How-
ever these do not couple to the incident wave and thus do not
start or stop at a time such as to. These kind of static snlu-
tions can be added as separate terms to any response of the ob-
ject to the incident wave. This is not the same term as the
static response of the Object as in equations 2.46 and 2.52.

The natural modes for s = 0 are similar to others on the iw
axis in that they correspond to no power going to infinite
radius. For static current and charge distributions the fields
at large r for dipole and higher terms decay like r- 3 (no radi-
ated power); the r- 1 electric monopole term is a radial electric
field (no radiated power). For other poles on the iw axis not
at s - 0 any radiation field like r-l at infinity would consti-
tute radiated power and thus damping the mode (i.e. making
A < 0). Thus such modes when expanded over some sphere contain-
ing the object in terms of divergenceletis spherical wave func-tiA*ons must give no terms behaving like r-i at infinity, whereas
all such fun tions do for s # 0 on the iw axi- Thus the fields
for sich modes are contained in some vol Ule of -inite dimensions
and inight logically be called the cavity modes.

What are some o" the characteristics of these static natu-
ral modes? Since we are dealiug with the case of s = 0 the wave
equation reduces to the Laplace equation and thc electric and
magnetic Uields are decoupled. Thns we first distinguish be-
tween electrostatic natural modes and magnetostatic natural
modes. As shown in fignre AIA there are various types of ex-
amplt's as in 1 a perfeectly conducting object with net charge Ql;
thic gives rise to an electrost&tic natural mode surface charge
density pal. As in 2 an insulating Aiblectric can have a net
charge Q2 giving rise to the sam.e kind of fieI6 at large r as in
1; the charge distribution throughout th;e body is not coistrained
by the surface shape as irn 1 a'nd static electr.c fields in the
body are possible so that the distribution is arbitrary to some
'?xtent. As in 3 conductors (perfect or imperfect) can be co-
bined with insulating dielectrics to allow not only a net charge
but allow a volume charge distributIon in some parts but not in
others. Of course all the above mentioned cases can be combined
together, say as laid out in figure AlA as multiple objects in a
volume of finite dimensions so that the whole ensemble has a net
charge Ql + Q2 + ... and an associated volume and surface charge
distribution. Xt is not necessary for there to be a net charge,
or even for there to be any fields for large r. The charged ob-
jects could be contained in a closed conducting shell and the
net charge of all (including the shell) made mero; the natural
electrostatic mode would still have a non trivial charge distri-
bution.
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In figure AIB we illustrate some magnetostatic natural
modes. Excluding magnetic charge from Maxwell's equations wa
have no magnetic monopole term to give an r-l magnetic field at
large r. However, we can do next best and get a magnetic dipole
term from a closed perfectly conducting loop as in 1. If the
loop is perfectly conducting then the total magnetic flux
through the loop cannot change because this would imply an elec-
tric field tangential to the perfect conductors which is impos-
sible by hypothesis. A perfectly conducting object as in 2 can
have a surface current density -s2 when immersed in a magnetic
field such as from the looD 1. A permeable object as in 3 can
have a magnetization (with an equivalent volume current density
distribution) induced by a magnetic fVeld from the loop 1. One
might also consider permanent magnets but since we wish to remain
with linear Maxwell's equations we may wish to exclude such
things.

Practically speaking we do not normally deal with perfect
conductors but they still make a useful idcalization for many
problems. Thus the magnetostatic natural modes still are useful
concepts. In a practical case these would not be exactly at
s = 0 but have 9 slightly negative. Of course for the case of
superconductors such magnetostatic modes do exist and have been
observed; they are even quantized. This leads to another phe-
nomenon in which the magnetostatic fields are excluded from
superconductors except for a thin surface layer. This is analo-
gous to the case of magnetostatic fields excluded from perfectly
conducting objects as discussed above. However, there may be
cases of highly conducting objects for which it is useful to
think of a magnetostatic mode with magnetic field penetrating
what is thought of as a perfect conductor for purposes at hand.

Having considered the electrcztatic and magnetostatic natu-
ral modes there is no reason why one cannot combine them and
ha,,e both associated with some object or collection of objects
contained in some volume of finite dimensions. Note that the
static natural modes can easily be degenerate. For example one
can change total charge (01, Q2, etc.) on each of several dis-
crete conductors as well as change the currents (11, 12, etc.)
circulating around perfectly conducting loops (or equivalently
separate holes through perfectly conducting objects). All of
these apply at the natural frequen.y u = 0. Stated hriefly the
natural modes for s = 0 are any electrostatic and/or magneto-
static modes which are not associated with any incident field.

:*
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Aendix B. Exam le to Illustrate the Singularity Expansion:

As an aid to w=derstandir4 the form of the actual singular-
ity expansions we consider an exampl.e chosen so that the various
texms in the expansion may be more readily expressed in terms of
common functions. For this pv'rpose we choose the perfectly con-
ducting sphcre. This example shows all simple poles in the ex-
pansion and poles on both the negative 1 axis and in conjugate
pairs with 0 t O; the internal cavity modes and an electrostatic
mode with poles on the iw axis which have zero coupling coeffi-
cients are not included. The natural modes are degenerate and
We choose thoise for the surface current and charge densities to
correspond to an appropriate Pet of spherical harmonics. The
coupling coefficients have a time advance which factors out
leaving dependence only on direction of incidence and polariza-
tion. Again this example is directed toward explicitly exhibit-
ing the form of the singularity expansion and the kinds of gen-
eral results that ensue. For numerical purposes the singularity
expansion may not be the mose useful in the case of the sphere.
However it can be used to more readily suggest general results
which also apply to more complex shapes. Other interesting re-
sults can be found from considering other spherical problems in-
volving surface resistance and finite volume conductivity, per-
mittivity, and permeability but wu do not go into these varia-
tions in this note.

( Consider then the problem of a plane wave incident on a
perfectly conducting sphere as illustrated in figure Bl. We
ýave.a v:herical (r, 0, 0) coordinate system and unit vectors
er, eg, e# which can also be listed with a prime to indicate the
object coordinates. Let the sphere have radius a and let the
incident plane wave be described as in section 2. The unit vec-tors for the incident plane wave are illustrated in figure al.

As in an earlier note 4 the unit vectors for the plane wave are
expanded as

e1 = sin(0 ) cos( 4 x + sin(el)sin(*y + cos (e1)Z

e, =-cos(eO)cos(Qex-cos(e 1)sin(#)e +sin(OL)ex y Z (Bl)

where 01 is the angle of el with respect to the reference z axis
(ar~itrarily c'osen) and *1 is the orientation of the projection
of el on the x, y plane with respect to the x axis (arbitrarily
chosen), The second unit vectof e2 is chosen in a plane paral- •
1.1 to el and the z axis while ej 3 is then parallel to the x, y

( plane.
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The cartesian (x, y, z) and spherical (r, 6, 4) coordinate

, systems ave related as

x = r sin(e) cos(M)

y - r sin(E) sin(*) (82)

- r cos(O)

and similarly for primed coordinates. Expanding the plane wave
unit vectors in spherical coordinates gives

l= -cos(e )cos(e) +sin(el)sin(e)cos(-*-#l)I]r

+ [-cos(0 1 )sin(e) +sin(e 1 )cos(0)cos( -*1) 1ea

- sin(OI)sin(O-•l)

* 2 [sin(01 )cos(e) -crs(eI)sin(O)cos(ý-•l) r

- sin(e 1)sin(6) + cos (e1)Cos (6) Cos(0 -f )]e 0 (B3)

+ coS( ()sin8()-s)e

( - -sin(e)sin(W-)e)
3 1 1

-cos (e) sin Ws-n1) (0

-cos (8-)# Ie

where we can expand some of the terms in the forms

cos(*-#,) - cos(*1 )coa(#) + sin('l)sin(*)

(B4) I
sin(*- 1 ) cos(* 1 )sin(#) - sin(l)cos((#)

Having the direction of incidence and two polarizations ex-
pressed in spherical coordinates we can go on to express the
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response of the perfectly conducting sphere to the two delta
function plane waves Ap as in equations 2.17. This can be fol-
lowed by finding the delta function resronses for the surface
current density and surface charge density.

For the incident delta function plane wave we first need
spherical harmonics and vector wave functions in which to ex-
press the expansion in spherical coordinates. In spherical co-'
ordinates we have the common differential operators as

VF=er FF+e 8 F F+e# rsin(e T F

=1 a(2 1 3(sine)e) + In aV.- 7 T(r 2 Fr) +r 1ne is F8  r sinCe) "F
r

1 1 F1 (B5)VxsIn( o (sin(e)F - r s-i() ejj 1r r sinne) e

41[ 1 a 1 •~F)

+ sin(8) aoFr -r

+ e, _ire[ •r-re r Fr]

wher• P is a general vector and F a general scalar. Other oper-
ator such as Laplacian (V2P and V2 F) can be constructed using
the three in equations B5. These operators are suggestive of
ones that could be defined to operate with respect to the sur-
face coordinates 0, * on a unit sphere. Of course these operate
on scalar and vector quantities which are functions of these
surface coordinates (or considered as only functions of such co-
ordinates). Using a subscript s to denote these operators we
have

8'sF S ee F+ e# sinl(e) F

-I - -rFVs'• -- sin(8) .--(sin(6)F) sin CO) 3 j

VsXf-e~ n6 •(sin(O)F)-ie) Fe

(B6)
+ 1 F

+e sin(e) r
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Note that in the process of removing all r factors and deriva-
tives with respect to r the Vg operator leav?. the units un-
changed instead of multiplying the units of or F by meter- 1 .

Let us now consider the spherical harmonics. The scalar
spherical harmonics can be written as

Y (81M) P(cos(e)) cosm(m*) m- 0, 1, 2 (B7)

The subscript 8 meaning even or odd, indicating that one is to
be chosen corresponding to whether cos(m4) or sin(mf) respec-
tively is intended. The Legendre functions are given their
standard definition such that for -1 < < I the Pln(M have the
definition1 9

~m m 21 m/] 2 d -

n dc m n

(B8)
p(0) 1 dOn 2 n
n n 211nI d&n

For convenience a subscript a (for symmetry) can be used to in-
dicate e or o or as an index for sums over both. Using tae

Kronecker delta notation defined by

I for a1  C2

1902a02 0 fora o a 
(

2

we can write the spherical harmonics as

Y 0( 0) -P m (cos(0))[6 cos(m*) +8 6 sin(m#)] (B10)*n~,O~ n e,oa 0,0

where we use letters e, o for the arguments with obvious meaning.
If desired + and - or +1 and -1 could be used to denote even and I
odd respectIvely being some kind of parity value.
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Having considered the scalar spherical harmonics we now
need the vector spherical harmonics, three kinds of them. In a
manner similar to previous usage 2 0 we define three types of vec-
tor spherical harmonics. This definition differs slightly from
one of our previous notes 4 but our present definitions seem more
natural. The first kind have only an r component and are simply
defined as

(elf) Y (e 1 0 (Bli)n,mo n,m,o r

The second kind has only 0 and f components and is defined as

nm,- VsYn,m,a(B,*)

e ,,.. 0 + O sin (e) T'O Y n..(12

which can be written out as

nrn

d (,Cos( M P (cos(M))
n {n-r*) n+4r ( lc)I n+m) n+) n-I cos(m)

" ".2n+l sinle) 2in-l) sin(O) J osin(m$l).•Pn (n- os {el~co ) +1(sin sin)() (B131

+e n e Icosl(m)

The third kind also has only 6 and * components and is defined
as

'n,m,o V nmo ,

"e sin(9) Y,,'. 1 eT Yn (e *) (B14-

which can be written out as
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Pm(coe(e)) shin(MO) ~dPn(con(0)) csm)*nLIe(Go#) s- IY mi9 tCOs (M#) 0 d ianO*

-P(cos (e)) snn
Ge s' in (a) (Cos (n4)i

-r-i sin (e) 25Tisn()1jsin(m#)1

Some useful relations hold among the three kinds of vector

spherical harmonics as

Ami(8,f) -e x 6n me, )(

4-

(60)- er x (8,0x

r a nmuia

(VMU(, xs x(e,.))l

These also have various relations to the scalar spherical har-

x0$ [V y (014),)1
a a r~mo (i?

A~~~ IV,* -Vx (.)

r leer ~ ,000n (17

rx V ayf 0 n ~~(O,*)
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Note that the three types of vector spherical harmonics are mu-
tually orthogonal at each point on a unit sphere for the same
set of indices. They also are mutually orthogonal in an inte-
gral sense on the unit sphere for any combination of index sets
as

fo we 2w V~ICI0o ,)i(6ddf0  n,m,a , nt , , (e,*)sin(e)d0 = 0

"4 4 n,2. a (m , ) • tn',m (em)sin(e)d dO= 0 (Ble)

f w ~2w J J rnm, (nt m' ,,,(04) sin(8)d~de = 0

For the same kinds of vector spherical harmonics we have orth-
ogonality relationships on the unit sphere as

fn f 2 w 6
0o n,m,a n• ,MIa (,o" ' 

!~~d

~ [l+6 -6 2w (n+m) ! 6 ,6

e,o 6o,1 o,m] n+l Ti-miiI n,n' m,m 0,0'

j f V 2w0o 0f An, (8,I) sinnl(0) (Bod)
Sn , m(,o)

"[-El+[16- -. . .6 n(n+l) (n+m) ! 6 6-- [1.+ [6~- 0o,02n+l (n-a)i °n,n' m,m' 0o,a

As a next st we need vector wave functions for spherical
coordinates. O - part of these functions comes from spherical
Bessel funct. s which are functions of Yr - ikr - sr/c. It is
from these ' at the radial and complex frequency dependences are
formed. zfhese are commonly expressed as

.7
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Jn(k], y.(kr)

M(ir) ( (kr) + iY (kr) S2

hn(2) (Kr) = n(kr) " iyyn(kr)

where the Jn are used for cases of no singularity at r 0, hnM

are used for incoming waves, and h-() are used for outgoingq

waves satisyinlg the radiation condition at infinity. For 0

we have1 9

iMn +E2)

H jn( IT3••"i.Il+°(fl 
(B21)

nh'(2() -1i(C)-n..2nJ)LJ+O• ,

where the double factorial is defined by

rm(m- 2 ) -- (4) (2) for m even

m (m-2) ý-- (3)(1) for m odd (822)

i lIII- Oil 0, (--1) 1t - 1

Nov for present purposes we define spherical Sesel5 func-

tions with argument C w iE and we detine two kinds

f (1)M Ei (0)
( n (923)

f~ k (0)n n

The first kind is used to expand the incident wave (and likoi

jnkr)) and the second to expand the scatte4e fields (mid is

like h (2) (kr))i the functions like y1 and hn(l) cn be formed

as a linear combination of the fn(t) for La , 2. We wish

these functions to be real fo. real Yr so that the com•n e oor t-

jugate relationship of equation 2A will apply and some of tbo

functions will have complex conjugate sy--try. Let us then

constrain r 0 the asymptotic forms
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-n

±n(i) ( (2n+l) ,I I 1 +°()
c)M(824)

S(C) l(2n-l) 1[l+O(cE)]

from which we can make the identification

in(C) - inj(C) - inJn(-ic)

k. (C) - i-n-2h (2 ) .E) - i-n-2h( 2 ) C-ic)nn 1 (B25}

M-i n h(2)Mn
= -i hn2 (CC)

For these functions we need a Wronskian relatica with re-
spect to the argument c as

W{i (C) ,kn(C) i Cikn' (C) - i' (C)kn(c) , - 2  (B26)
n n n n

where the prime with the Bessel function indicates differentia-
tion with respect to the argument. Another related expression
is

in (C)[Ckn(C)]' - kn (0)[cin(c)]' 1 -i (B27)

which in Wronskian form is

W{Ci C(),Ck n(C) - -1 (B28)

These are useful for simplifying coefficients in the field,
current, and charge expansions.

These spherical Bessel functions can be written as combina-
tions of polynomials and exponentials giving them a simpler form
for their exact representation. This is important for finding
the poles for our singularity expansion. From a standard refer-
ence'9 the spherical Hankel functions can be written for n - 0,1, 2, .. as
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n

Ik 0-0) -

From these we can construct the other spherical Bessel functions

as ~()(C) Ith(, h(2)(I) 89

(B30)

- (1) (2 )]

With - it we then can write our k functions as

k (rC)_ i-n-2h(2) e (n+)! (2..). (31)
n8•!2n-) n

with the resulting simplification of the expression this last
form for the spherical Bessel functions for outgoing waves has
some useful advantages. Next consider the spherical Bessel
functions which are analytic at c = 0; these can now be written
a3

in(• in~n• -L n 11+n

e- t n+B) ! -i -0 +(1) n~Al e-r n (n+$) ! -B
"•-'o•"-e"BZ n -WYT + -(z-e• f•n-8)I 1•c)

n "n! --

-cosh(Z) •2[(-])8 + (1-)nl B! (n81)' (2i)""

e 1 )n+1] In+B) ( -2)-1 -ein h2C) + .61+ (n-)( (B32)

(
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The finite sums in equations B31 and B32 can be expressed as
ratios of polynomials in r For the kn functions the numerator
bind denominator both havu zeros (in conjugate complex pairs ex-"
cept on the ReIO] axis). For the in functions we only have
zeros in the complex C plane; the in are then entire functions.
All the inverse powers of C cancel when the exponentials are ex-
panded as power series in C.

Having the Bessel functions in the forms we desire we now
consider tha spherical vector wave functions. These are closely
related to the spherical harmonics.. As a building block we have
the spherical scalar wave functions as

-() (yr) ) (yr,e,,) f(")Iyr)Y (elf) (B33)"n~ma n'm'O n n,m,o

which can be written out as

-(") e(Yr) = f() (yr)P'(8, )s nJcs(m) m= 0, 11, 2, .- o, n (B34)

nm0

where L = 1, 2 refer to in and kn resnectively. Coefficients
times this when summed over all possible indices satisfy the
scalar wave equation which fcr each function we can write in op-
erator form as

V t) (yip) = 0 (B35)n,m,a

From the solution of the scalar vave equation one con-
structs as usual the solutions of the vector wave equation, and
these are of three kinds. The first kind have zero curl but
non zero divergence and are defined by

Ll (t (-Yr)n,m,j r n,m,a

-= r 3(yr) + n- ] n,m,a

I f •£) (yr)fn (Yo) ", (0,) + , (e,• (B36)
n .,m, yr n,m,(

which can be written out in components as
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(~~~~o () f() o(m#)

L~L (yr) f f (yr) (cos (m ()7

ry n ftr sin(ma)

.( r) decos cos(m*)

L ~C) (y) F v M- )i n de Jsin (m#)

I

i @ •yr •"[n (e) 05os=•
nrm 0

The prime is used to indivate derivatives of the functions withrespect r-o the argument (yr here). The second kind have zero
divergence but non zero curl and are defined by

n,*m,a ) r "n,m.o' 0

-e X VE o (c'r)n--r m ,0  (

[-e. X V s Yn,m,alN ) 1 fl)n (8r)

=f{M) (yr)(-.er x 0n:o( 4,) 1

f = (t) (yr). (om (B38)n "n,m,a

The components are

n~'0

M (1)( (Y') f 00) (yr) n.lsi~f
e n sin (O) Icos(m4}

nj , (B39)
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dPO'(cos (s)
I4M )it en dO Isin (mqi)

The third kind also have non zero curl but zero divergence and
are defined by

!M
n,ma y n,Su,

Y xVx Lr n,m•r (y,)

r- .2-(L) -RV -(e m + !(rv)v z: (e,o)
y n,m,C ) Y nm,o

+ -2 V-00 (810

Y n~m,a

2 V(£) (,_t)
- yr=(0) (e,.) + (e,)) + v= 2(9,) o,r nma3y)-n,m,y Y -n,m,a

= nr((fr) +yrfn yr) + 2f n,m,o

+ l~iyr Jf + 2 fn r) ,u6*
f n r(yr)

n(n+l) n _ p e,) + C(,*) (B40)yr n,m,a yr n,m,a

where we have used the differential equation for the spherical
Bessel functions and some vector calculus identities.ll The
components are

f n n ) (yr) m Icos(m*)NCO (Yr) =n (n+l ) nm(cos (e))Ism#
r e yr n Isin (mf)

yrf y (yr) (no6 cos(•)
e e yr dO lsin(mý)In'0'o (B41()
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[yrf tIr)l'P (Cos (0SN •) e (yn) nn J)(-sin(ur
N m, r yr sin() M cos (mO)

Note that all three kinds of vector wa•-e functions satisfy
the vector wave equation in Laplacian form which we can suwmar-
ize as

[V2 Y2 I = A (B42)

However from the operator identity

VxVx VV. - V2  (B43)

and noting from their definitions that

VV.

(B44)

VV hr ý* = _vV 2 .] Y2 LY

we can write a curl curl wave equation for only the second and
third kinds of vector wave functions as

[VxVx += 0 (B45)

The three kinds; of vector wave functions have some interrelations
as

n,m,o n,m,o

A (" r ~ .V x ~(t) ;)n,ma y n,m,a

" "(tY,) = V V x (t) )
nma Y n,m,a

(. (B46)
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Vn m& "n,m,o ''j

Since the vector spherical wave fun,-tions have their 0, % de-
pendence expressed in terms of the ',/ector spherical, harmonics
then these vector wave functions have certain orthogonal:ity
properties on the unit sphere based on those for the sphqrical
harmonics (equations B18 and B19). Howeyer since two sp'.erical
vector harmonics are used for the 1 and N functions the orth-
ogonality rclations for the vector wave functions on the:: unit
sphere are not as simple and convenient.

Returning to our dyadif u.l.ane wave from equation 2.13 in
Laplace forat for propagation iru the direction &1 as

4-y r

1 e- r (B47)

where I is the unit dyadic which can be expressed many ways such
as

1= 16 b1 9 b2 1 = 0 10)

= ee + eye + e e

= ee + ee + e e3

erer + e~e. + e 0e% B8

This dyadic plane wave is expanded in our spherical vector wave
fu~nctiovas as20

[ (6n -m !m Wi) (Yn)

n=O m-0 o=e,o

(n+l) n R n,m,( n,m,(Yr) n,m,O ' "nBm,9

where 61 and 01 are angles giving the. direction of el as used
previousl. Note that for n = 0 the summation is not extendedover the A and functions which are identically zero.
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This dyadic plane wave expansion is related to integral
( representations for the spherical vector wave functions for

t- 1as 2 0

n+l w 2w -' r

Airo J Je0 l'r o~n,i,c 10 1)sn)ld d.1 d

+ ,1) (-D) (-1)n~" 2-e~
nfyj) - e si(0 lsn 1 )n )d ide1

.. .•(B501

4 - o n. n•,m" 'I)sn(ildae

0 0

•4.9-.

nm,o a• "y)foo n,m,oa(ll'l) sin (0Oldld6Id

l f- it 2w" "oe Ye I'r m'a(L'l) sin(el'd'ldel

Thus the spherical vector wave functions for £ = 1 can be con-
sidered as weighted integrals over •lne waves travelling all

-94.

possible)l dwetin of p -opgtinel.r

f v w=e 1 rB5'

p p

For these we need ep expressed in terms of er, se 1 , t 'l unit

vectors which we can see by referring to figure Bi are

e =e

e -e

(. (B52)
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Then considering the terms 
in theecpfiflofiintwehv

n~mno

P'~(cosOeQ) mjsink~m1)

+ 1 0 J. 0 1)

2e~ n~m oee) coummr

3~ 11 ele~ l snmi
eR a- STEP

ar2 f or compltenes

to54

M8

Pn (cs(01) -sinm~iA

sinto os-(01



K e61,01, -0

•1 • e(evi•) -o0nm0

For p = 2, 3 the delta function plane waves (transformed) can be
written as

-ye r e nn12f 2 marm-ye or n

u3 =ee ye~r= br~~ (y-r) aýmo(Y'U3 =a e.e 0 bnm, n n,m,n.a ~ n,mo
n-- m=O a=e

where

PM (cos (O1 ) I-sin (m*,)
a' e = [2-6 _(1 )n+l (2n+l) (n-m)! n 1

noM F-E'IT nnnm m s-lTn (e cos(mfz)
n,rn,0

(B56)

,(_,)n (2n+f) (n-m), dPn(cos(8)) cos(mol)
nbtoo = n(n+l)' (n+m)t de sin(m#1 )

The prime is used with these coefficients to differentiate these
from the a,. Note that we have

L4 [ ye - or'] -ye, or"
zvx ;e e =

Y23

" w h i c h i s a s s o c i a e d. w i t h h e c u rl e a i n e w e h

fucins. Fv.temr n iegneeselectric field expari-
sion (E) can be converted to a magnetic field expansion (i) by

ivid'g_ bythe wave impedance of he medium and changing
and +M. To go from to multiply by Z and change

M ÷ +9 and N 4 -M.
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Now define two sets of coefficients for q - 1, 2 as

a' for p - 2

Al,n,m,ap Ib'n: for p - 3

(B58)
S(bn' o for p - 2

,n,m,op -an,m,a for p = 3

Then for p - 2, 3 we can write our unit incident plane wave as

*-ye ,r n [A M (1) (.Y.)
Up -epe = L LA,n,m,o,p n,om, (i

n=l m=O C=eo
(1)

+ A2 ,n,mp n,m, (B59)

Our incident plane wave electric field is written as

rinc( ,s) =E (f + (B60)

In the presence of our perfectly conducting sphere of radius a
we have a scattered electric field as

,sc(rs) = E o[ 2 (s)u2 + 3 3 ](B61)

where for p = 2,3 the scattered electric field response func-
tions are

SFa oaE [A l,n,m,o,p Mn,m,a "y) A2,n,m,MO,p n,m~OUS(sc) - ~ ~ j~)a ia2 m p 2

n=l m=O aoe,o
(B62)

Constraining the tangential electric field to be zero on r = a
requires for the tangential components

9
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r x,€ ,n,meVP r l,nm,G,p nm,a r

(B63)
K IA (1) ~ +(sc) ~(2) (a i-

er x12,nemep n,m,a "er 2.n.,0 p nm,o •

This gives equations for the coefficients as

((sc) i (a)
lnmo,p k n(ya) A1,nmop

(B64)
A (sc) .[Yai n(ya)) A
2,n,m,o,p [Yakn(ya)]' 2,n,m,cr,p

The surface current and charge densities (equations 2.18,
2.19, 2.25, and 2.26) are written as

E° "((•s) (5s) ,s.]

0
(B65)

( r~ ~ (°s) ~(Ps) ,)
ps(r ,s) = 0oEo[f 2 (s)u 2  (r ,s) + 3 sl3 (r'S)]

To find the surface current and charge densities we need to
evaluate just outside r = a the expressions

(r S( ,) -- er' x H(r',s)

(B66)

The surface current density response functions are then

-(J ) n* I-J
r ~S) =e'K XE A5' S' I-A. ,(AM (Yaer')

P r er E -l,n,m,0,p n,m,a
n-i m=O o-e,o

-A(S) • (2oyaer')÷ +AR1 (Yaer)
l,n,m,op nm, r 2n,ma,p n,m,cy r

2,n,m,cp n,m,a
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n ~ J yain (ya)j'

-e" L E~ ralAienempalp I ya
n-1 mwO o-e, 0

in (ya) (anya].

rkya (ya) J'a 1 ±1~m

+A(a yi(ya)j' k )H ('*)
2.gmarlp [yakn(a1- Jnm~ j

(B67)

From the Wronskian relations for the spherical Bessel functions
this reduces to

(r a) Of

n-i m=O a-e,o (Ila) kn (Ia)

nn

The surface charge density response functions are then

p.''- L. l,n,m,oy,p n,m,a r
n=1, m-0 ca~e,o

,(sc) ~() (a)V
l,n,m,oy,p r n,m,a r

+A ~ ; elON (yae')
2,n,m,ci,p r n,m,C r

+A~s) ~ ~2,n,moc,p r n,m,a yaerJ

- ~ A g,,,[n(n+l) n

nlm=O a=e,o y

(yai~ (ya)J' k (ya),1

yakn (ya)-F ya ma
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Note thet only the q - 2 terms contribute to the surface charge
density. Using a Wronskian relation we have

(r -nn)o-l) A
n-I m-0 o-eo

0 IV) 2 (B70)
nm, O(fya) [yak n(ya)]

Note that since n - 1, 2, 3, --- there is no pole at yam 0 in
either the surface current density or surface charge density re-
sponse functions.

Now that we have explicit representations of the response
functions for surface current and charge densities in terms of
known functions we can identify various terms with the terms in
the singularity expansion. Let us start with the natural fre-
quencies. These are the zeros defined by

k=0, kn(Sa (s 0 (B71)

TVere are then two classes of natural frequencies which can be

labelled by q 1 1, 2 depending on which of equetions B;'1 they
satisfy. Clearly n is another index and for each n there are
some number of natural frequencies which we index by n'. Thusthe index set a as applied to labelling the natural frequencies

can be written as q, n, n' and we have

n)nSnl.SC[2,n,n' c kn(2,n,nh ] 0ic

(B72)

ca -q,n,n'

Since from equation B31 we have

n- (n+ -
k() ( (2) (B73)

8=0 0 n0!(~

Then let us write the spherical Bessel function terms in equa-
tions B68 and B69 as
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2 e (a) °B (ya)
(ya) kn(ya)

1 --aty.a|yakn(.iTF eYaS2,(ya) e- B 2 ,n(a) (B74)

1 eYaBn(Ya) - t B n (ya)

(ya) 2[yak (na)) ] ya

where

to _ _a (B75)

Since the B functions are all ratios of polynomials in ya then
we can make a pole expansion of them. Note that to is just the
turn on time when the incident wave first touches the sphere so
that the coupling coefficients are factored as in equation 2.21;
the perfectly conducting sphere is then an example of this fac-
toring.

The ratios of polynomials are written as

B n =!(n + B) ! (21)B~ ~ =~ -C M.1(-)12,
Bln() -l,n(• 0 =0 (n)

Dn n -1
TC 1E= (2,)-8n2,E, (2f 8

(B76)
1 (2,n 1B3,n() =C3, n(M = -7 M TC2, n~a

In terms of the spherical Bessel functions these rational func-
tions (i.e. polynomial ratios) can be written as
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B M e

IIn

_ e°
BI ,ril n R(F)

n

r" e

B2,n': = ,[]n(Z) "B7)

B3 ,n(2) -;2[•kn(c)],

Let us make a pole expansion of these rational functions where
B1,n has the poles for q l 1 and B2-n and B3 n both have poles
for q = 2. Note that Bl,n has the •ormln-IAivided by a poly-
nomial of degree n. B2,n has the form 1n divided by a polynom-
ial of degree n + 1. B3,n has the form jn-1 divided by a poly-
nomial of degree n + 1. Since n > 1 then Bln and B2,n are zero
for • * 0 while B3,n is a constant (for n or zero (for
n > 2) for C + 0. Thus there are no poles at s = 0 (consistent
with physical requirements). For s + - all three rational func-
tions go to zero; thus there are no poles at s = - and no con-
stant terms in the expansions.

Using the rational functions Cl n, C2,n, and C3,In we can
then write our pole expansions around the sl = Sq,n,n, simple
zeros of the C functions. Since the number of zeros of a poly-
nomial is equal to the degree of the polynomial then for q = 1
we have n values for sa and for q = 2 we have n + 1 values of sQ.
Define

X(b) =- largest integer < b (B78)

Then we have a range for our index n' as

for q =_1

< n' < X4!) with n' 9 0 if n is even

, ~(B79)
for q =2

n+1 n+1• i
-ACT) < n < X(nl with n' ' 0 if n is odd

For the sa we then automatically have the convenient relation
( possible between n' and -n' indices as
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TI

Bl~(•) =r2n)

Sk Wzn
e-r

B2 .n(O) = C[Ckn(MF(B77)

B3 (•) = e2[(nC,

Let us make a pole expansion of these rational functions where
Bln has the poles for q = 1 and B2 n and B3 n both have poles
for q = 2. Note that Bl,n has the .orm, n-I ivided by a poly-

nomial of degree n. B2,n has the form Cn divided by a polynom-
ial of degree n + 1. B3,n has the form ýn-l divided by a poly-
nomial of degree n + 1. Since n > 1 then B1 n and B2,n are zero
for C - 0 while B3,n is a constant (for n or zero (for
n > 2) for C ÷ 0. Thus there are no poles at s = 0 (consistent
with physical requirements). For s * all three rational func-
tions go to zero; thus there are no poles at s = = and no con-
stant terms in the expansions.

Using the rational functions Cl n, C2.n, and C3,n we can
then write our pole expansions around the sa = Sq,n,n' simple
zeros of the C functions. Since the number of zeros of a poly-
nomial is equal to the degree of the polynomial then for q = 1
we have n values for sa and for q = 2 we have n + 1 values of su.
Define

X(b) larqest integer < b (B78)

Then we have a range for our index n' as

for q = 1

< n' with n' 0 if n is even

(B79)
for q 2

n~l n+1-I-) I•n' < A(- 2-) with n' ,, 0 if n is odd

For the so we then automatically have the convenient relation
possible between n' ard --n' indices as
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Sq,n,-no = Sq,n,n'

Im[Sl,n,O] = 0 for n odd (B80)

Im[s = 0 for n even2,n.0

It is known 1 9 that the zeros of kn lie approximately on an arc
in the left half of the s plane joining sa/c = -in to sa/c = +in
and passing through sa/c = -. 66n. The zeros of [kn(0)]' behave
similarly. Then a convenient way to identify the sa with spe-
cific n' is to start with the most negative value of n' from
equations B79 and assign it to the sa with the most negative
Im[sQ] and progressively work up to the most positive Im[sa].

Thus our pole expansions may be written as

2. Dinnsa • l'n.n
Bln- with n' 9 0 if n is even!•n,_ACn S-Slnn

X(f+l

B 2 D(2'n,n', with n' 90 if n is odd! ~ 2 n'- [n -Sn+l 2,n,n' (B)

B -sa =3,nn with na 0 if n is oddB3,,n E-

n° = - (SS2h] en

n'l 2',"'~ 2,~

where

D- C

o,6

h,n,n' =•" n. =n i ,,- I
I •=Slln,nc

A, .Dnn, n • ;,() aD2,n,-no

S¢=t2,n,nF
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-1 r- 2 ~,~(B82)

,d d 'n,3""j

Si•t;= 2,ni,ni, z s2, n, n

D D

3,n,-n' s ,a D2 ,n,ng

To see that the poles must be simple poles note that the zeros
of the C functions are all simple zeros because they are the
zeros of kn(M) and [(kn()]'. Observe the differential equation
for the spherical Bessel functions is19

C2 f()"(C) + 2- ('() - [2 +n(n+l)]f( ) (I) = 0 (B83)I l n n

Suppose • has a zero at Co # 0. Then since fn is analytic at
this zero we can write a convergent power series expansion in a
neighborhood cf 4 =o. If the zero is higher than first order,
say (C - •o)2, then both fn and fA are zero at ýo, but this
forces f" to also be zero at to so the zero had to be at least
(C - •o)3 as the leading term in the power series. Then divide
through by C - Co, but fn and fA are still zero making f" still.
zero. This process continues to make all terms in the power
series zero and the function then identically zero. Thus the
zeros are all simple for C ' 0. Similarly Ckn(r) satisfies the
Riccati-Bessel equationl 9

Sf(•) - 'f:(I) = 0 (B84)2n4 +nr(n+l)

Differentiating gives a differential equation for [tkn(0)]' as

+n(n+l) C+ "n(n+l)l [f (c) [ f (r) =0

(B85)

Clearing the denominators this equation has the same form as
equation B83 and so for 4 1 0 all zeros must be simple. There-
fore the perfectly conducting sphere has only simple poles in
ito surface current density and surface charge density response
functions.

To see some of the numbers we can write out the first few
terms, say for n 1 1, from
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C =z+1,1

c2,1 - (B86)

d C d -2 d2,1=-r+-1 S11 , ,C C-,3,1 - 1

From these results we can construct a table allowing q 3 for
the surface charge density as

a a-D

nq,l,n'U C q,l,n'

1 0- 1

1 1-.C3
* 2 1+

3 1 2 + 2 - -s

(like q=2) (like q=2)

Table Bl. Pole expansion terms for n = 1

If one wishes these natural frequencies and D coefficients can
be generated to obtain any number of terms in the expansions.

For n = 1, 2, 3 the zeros of the Cq,n polynomials can be
found from formulas for the zeros of up to quartic polynomials. 1 9

There is disagreement in a few cases of the natural frequencies
with the numbers in Stratton. 1 7 However, the present results
appear to be more accurate and are confirmed by Dr. Marin (pri-
vate communication). The zeros have been substituted in the
polynomials to check that in fact the results are closest to the
true zeros to the number of places listed. Figure B2 shows the
positions in the complex sa/c plane (normalized s plane). The
division of the natural frequencies into q = 1 and q = 2 varie-
ties has a physical basis in that only the q = 2 poles contrib-
ute to the surface charge density. Another way to view this is
from a property of the vector spherical harmonics as

8x %n,m,a (0,$) Vs x[V sYn,m,a (,6)] =

(B87)

Vs * n,m,(e,0) = Vs [Vs x rY n,m,a(e,w)]] = 0
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COMPLEX PLANE .tso • + 1 a

2,3,2 13

1 2,2,1 i2

INDICES 2,3 202

x x
Lboc

a. INDICES, 1,3, 2,2,0 1,1,0 -

-3 -2 -1I

2,3,- 2,,-I

a- INDICES x - -i

0 NATURAL FREQUENCIES 2,-I
FOR q = I

- NO SURFACE CHARGE DENSITY -i2

x NATURAL FREQUENCIES
FOR q m2 2,3,'

-53

q,n,n' IS THE INDEX SET
FOR THE NATURAL FREQUENCIES.
NATURAL FREQUENCIES ARE
SHOWN FOR n = 1,2,3.
ALL POLES ARE SIMPLE.

FIGURE B2. NATURAL FREQUENCIES OF THE PERFECTLY
CONDUCTING SPHERE FOR USE WITH EXTERIOR

( INCIDENT WAVE
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q n n sq,n,n'c

1 1 0 -1

2 1 1 -. 500 + i.866

1 2 1 -1.500 + i.866

2 2 1 -. 702 + il.807
0 -1.596

1 3 1 -1.839 + il.754
0 -2.322

2 3 2 -. 843 + i2.758
1 -2.157 + i.871

Table B2. Natural frequencies for n = 1, 2, 3

from which we can divide the surface current density into solen-
oidal terms (precisely q = 1) and irrotational terms (precisely
q = 2). (See ref. 6 for more elaboration of this point in the
general case.) However, the n, n' division may not give the
best indexing. Referring to figure B2 there a-e various possi-
ble paths through the complex s plane which one might trace to
=onncct poles with the same q index. For a given n (and q)
there are many modal distributions generated by varying m and a,
all applying to the entire set of natural frequencies generated
by varying n'. This is a very degenerate situation in both nat-
ural frequencies and modes. Perhaps more insight into the divi-
sion of the indices for the natural frequencies and modes can be
gained from a group theory investigation of the symmetry proper-
ties. Symmetry planes and axes can be used to divide up natural
modes, and thereby natural frequencies as well. A diagram as in
figure B2 is useful in that it can suggest ways of grouping nat-
ural frequencies, even for objects more complex than a perfectly
conducting sphere. Note that the pattern of the natural fre-
quencies tends to fill up the left half of the s plane. This
two dimensional pole distribution may be associated with the
distributed nature of the body; we are dealing with surface cur-
rent and charge densities. For cases that the currents are
idealized as on one dimensional paths then the pole distribution
should be much less dense and localized to "discrete paths" in
the complex s plane; in any event there would be one less index
needed and not say n and m both for the modes or perhaps not n
and n' both for the frequencies.

Next we consider the natural modes of the sphere. This is
the part of the singularity expansion where the object coordi-
nates are expressed. For the surface current density the natu-
ral modes are readily identified in equation B68 as
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v = (ro')

(O ',1') forq- 1i ~n, m, ae
(B88)

for q = 2

Furthermore the surface charge density natural modes are readily
identified in equation B69 as

(Ps) (P
S-*~~~ ('= q,,n,m,a('

0 for q = 1= (B89)
nY a ' for q = 2

Thus for the surface charge densit--y we can drop the q index in
the summation understanding that only q = 2 is used fcr the nat-
ural frequencies and modes. Back in equation 2.27 we observed a
relation between the natural modes for the surface current den-
sity and surface charge density as

(PS 0() 9

V ( s-a)V Va U(') (B90)

where aa is an arbitrary constant depending on how one has de-
fined the natural modes since the modes can be multiplied by any
non zero complex constant. For the sphere problem we can write
this in terms of the divergence on the unit spher:e as

s S! V' • V (r (B91)
a a s a

Now we have
V.* ~ (8,') =Vt '7• x [•Yn (e',,')]] ---

V' 9m x r*n,m,a

(B92)

s n,m,o = r,m,o '

101



so that only q = 2 natural modes have non zero surface charge
density. From the fact that the 2 functions defined in equation
B34 satisfy the scalar wave equation as in equation B35, then
noting that from the separation equation for the radial functions
in spherical coordinates as

f() ( - 2 + .(n+l)]f (yr) = 0 (B93)

equation B35 can then be written as

0 = [9 2)- 7 0(t] )

"[ [V2 -y 2 ]f() (yr)Yn(m,0)
n n,,m,a

nn) f() (Yr)Yn(m, ) (0,0£) f (Yr)V'Y (0,) (B94)= 2"n n,m,a n n,m, c
r

from which we find

s n,m,a s n,m,a

= -n(n+l)Y (e',0') (B95)
n,m,a

Thus we have

a E a = n(n+l)a (B9M)a n

where only q = 2 is relevant.

Having the modes we now only need the coupling coefficients,
these are everything that remains in equations B68 and B69.
Since the poles are all simple the basic equations we are match-
ing come from equations 2.34 giving the plane wave response
functions as
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-2 2
U• (r ,S) =e oj 4 E Fa Cq,n,n,,ma,p(81,

q=l n=l m=O a-e,o n+---11'-

n'WO for n+q odd

( q fnt f1 1Vq,n,m, a (U ' -1 ~~lfl B7
S-q,n,n,

(B97)

U (P's) =e [
UPn=l m=0 o=e,o nsxC 1-q~,.nnan

2 n

In'M0O for n odd
(Ps) 1 !i

p (a a

C2,n n' ,m,a,pl(1li •,,, V S •' s-2,n]n'
( nn, n, n'

S( The coupling coefficients are then for q = 1, 2.•

Cq,n,n,,mva,p(lt1,•) = (-l)q-IA pDq~nn

a Dn', for q = 1, p = 2
rnm, q 1 ,n

fobnc,mcDq,n,n, for q 2hl, p = 2 =1,
c~ (B98-)A

a-b D for q = 1, p = 2

an,m,a q,n,n'ba' MD for q = 2, p = 3nm q,n,n'

The D coefficients are evaluated from equations B82 and a few
are listed in table Bi. The a. and ba coefficients are found
explicitly in equations B56. Note that the surface charge den-
sity expansion uses only q = 2 for the Ca and the Da. While we
can calculate D3 n n, as well it is simply D2,n,n' c/(s2 n,na);
using the results for aa with this and the n(n + 1) coefficient
in equation B70 for the surface charge density one can see that
the same answer for the surface charge density expansion results,
thereby giving a check.

Equations B97 then explicitly give the singularity expan-
sion for the surface current and charge densities. The natural
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frequencies are the zeros of the Ca in equation B76; the natural
modes are ir equations B88 and B89; the aa are given by equation
B96; the turn-on time to is given in equation B75; the coupling.
coefficients are given by equation B98 together with equations
B82 and B56.

Now that we have the singularity expansions for the delta
function response functions we can consider arbitrary waveforms
by taking their Laplace transforms and splitting the response
into a part associated with the singularities of the perfectly
conducting spherr and a part associated with the waveform singu-
larities as developed in section II. For convenience let the
incident wave be a step function. Then from equations 2.43 the
surface current density expansion is

" (r ,s) - ( C ,s) + (•',s)

-st
0 o

V r ('S) e r (j1 0 )

X (B99)

V 5  (rs) =e 2 n: -E .I

q=l n=1 m=O a=e,onn [qn,'nnI =-,.C -

n'yO for n+q odd

a~n4.
Cq~~'m ,(81'1l0 ( )v 01 ]ý

qnnmp 1J q',n',m'°o •'S-S q,n,nI'

and from equations 2.50 the surface charge density step response
is written as

SPs)(•',) -• (p 's +) (p 's(s {o )

Pw po

-st.(P se o 0(ps
Vw (r' s) =R. U ( ,0)
p w s p

(BIGO)
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s .

PO n-i m=, o-e,o +1 is l a
,n n-x (n'n

n'#O for n odd

(ps) ~1

C2 ,njp m, a,p(e1, l) V2,n,m, (' SS,n~n ,m,,n,n

The static surface current density response is

p ,

1B01= AlilmOD 1~,m,cr(e',$') (B101)

m=0 O=e,o

where for m =0, 1 we have

-- e for p =2
A = 3 ÷

1•1,mp e for p =3

2el p " 1,m,o l) (B1o2)

from which the dyadic surface current density static response
function can be written as

m-0 ci-e,o

o-e,o 2 1 ,0 ,0( 1 10 #0

, ,,•l ,B03)
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With the direction of the static magnetic field (which is eI x
ep for our plane wave problem) dot multiplied on the right we d

obtain the static surface current density response. The static
surface charge density is

(Ps + ( PS) +
U (r',O) U U (r') p

1

e~ ,m2 ,op,m,,p1m,o0(' ) (B1,04)
m=O o=e,o

where for m 0, 1 we have

3e2 ,ma (0 1,0l) for p = 2
2 A2 1I3mea'p 3 63 0l,m,o 1,) for p = 3

= +e Q l (0 ,,) (Bl(5)

from which the vector surface charge density response function
can be written as

m=O G=c,o

- 3Yl ( (01 + 3Y ,11, ) 61 , , (106)
o=e,o

Dot multiplying this by ep (the direction of the static electric
field in our plane wave problem) gives the static charge density
response. Thus for the perfectly conducting sphere the plane
wave delta function response can be converted to the plane wave
step function response of both surface current and charge densi-
ties by multiplying each term by i/sq,n n, and adding a static
term (consisting of a few simple known functions) with a unit
step function turning on at time to.

This basically completes the singularity expansion of the
response of a perfectly conducting sphere to an incident plane
wave for simple waveforms. As long as the incident waveform can
be expressed only in terms of poles the delta function response
as in equations B97 can be combined with the waveform poles and
through partial fraction expansion as discussed in section 2
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the response can be split into a waveform part and an object
part. Also as discussed in section II the time domain response
is easily and directly obtained from the pole expansion since
the frequency dependence of the coupling coefficients factors
out as a common delay term e-Sto. For the case of the step
function response the Laplace form as in equations B99 and B100
can be inmediately converted to time domain using equations 2.64
and 2.65 respectively since the poles are all simple poles.
Note also that the natural mode functions are real and the aa
are also real; both of these can then be moved out (together
with c) from the Re function in equations 2.64 and 2.65 leaving
only the natural frequencies, coupling coefficients and oscilla-
tory exponentials for n' > 0 as the only complex terms inside
the Re function. Of course the ca coupling coefficients can be
written in the form an,m,oDa or bn,m,yDa and only the Da coef-
ficients are complex.

As an example of the time domain response consider just a
few terms in the step function response, say for p = 2, n = 1,
ýI = 0, and 01 = w/2 so that we have a vertically polarized wave
propagating parallel tc the x axis. Then we have

V2  (;',t) U _I) t
, e 3 Cotl 0)

Sllllo,2,l,(8','l)eo 01,~1,0

p (pt-to

2, , 00

c2,1I,1i,0,e,2 2 2, 0)ei2e~

2,1,0,

P2 ,1,1 (t-to)
e 2,, (t-tO +

n>l
(B107)

(P) +(Ps÷
V V2 (l',t) =U ss (r') e e2u(t-tO0)

Re c,,~ 2(1,Ole '('
Re,2,1,0,e,2 I 2, 1, 0,e

a 2,1,1 tt0

e 'u (t- to] +

n>l
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",ohere the last terms indicate the remainder terms. Writing
these out we have

(s) 3 +r ( ',t) M= - ,o•*',,' Ct, )

~3

+ a o(', e aou (t +-

+ vrfiSt+ ,-

-3Re i/T , a- a u t C+

n>1
(B108)

(pV2 (rt) 3YlO'e(aS, u)u(t +

-T Re 1- e C• ] Y1 o o°'"'l)

e U~t +aC

n> 1

These can be summarized as

'-s. %J' ' S-e 4. + ut1-

V2  Cr',t) = -. R1 , 1,e [

+ loe'(e'I, esin(4(St-+l))u(t+S)+ ,
n>1

(B109)
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(~V2 (r ',t) =Y (0,ee [3' +22-e-t- cos("(--•--/ t +1)- u(t + ZaP

i.1

+;
n>1

For reference we have

:1,l,o("',O) - -cos(O')e5 + cos(O')sin(O')e

W''' = -sin(e')cos(O')(10ee (Bl10)

Y ,0,(', ') = cos(e')

For comparison to these results for the step response of a
sphere one can consider the numerical reaults for the step re-
sponse graphed in another note. 2 1 Consider the case in that
note that the perfectly conducting plane is infinitely far away
from the perfectly conducting sphere. Note that the basic ring-
ing period agrees closely with 4w//T (in units of ct/a) and that

( in one period the amplitude of the ringing decays by a'pproxi-
mately e-2w/$3 and that even the coefficients of the ringing
terms in equations B109 and Bl10 give about the correct ampli-
tudes for the oscillations. In the referenced note only the
total current crossing the equator 0' = w/2 is considered, and
so the comparison has to neglect the first term in equation B109
which gives no contribution in this case. Note that for times
-a/c < t < a/c we do not expect the first terms only to accu-
rately describe the surface current and charge densities because
the terms for n > 1 have not had a chance to decay to zero ampli-
tude. Even so, the first few terms give a simple description
with some features of the surface current and charge densities
even at such early times. As time goes on the first few terms
asymptotically give the exact results.
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