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Abstract

)

In this paper we study standard program components applicable to a wide variety of
design tasks; we choose for this study the specific problem domain of data structures for
general searching problems. Within this domain,Bentley and Saxe [1978] have developed

G‘transformat‘igqsr fgg (?og\éevr‘jj?héolutions of simple searching problems to solutions of more
complex problems; We discuss one of those transformations, specify precisely the
transformation and its conditions of applicability, and prove its correctness; we accomplish
this by casting it in terms of abstract data types -- specifically by using the Alphard form
mechanism. We also demonstrate that the costs of the structures derived by this
transformation are only slightly greater than the costs of the original solutions. The
transformation we describe has already been used to develop a number of new algorithms,
and it represents a new level of generality in software engineering tools.
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1. Introduction

In this paper we demonstrate the use of data abstraction techniques to specify precisely
and verify a very general definition that yields solutions to a broad class of problems. Within
@ specific problem domain we explore ways to transform mechanically a solution of one kind
of problem to obtain a solution of another kind of problem without using detailed knowledge
about the implementation of the original solution. We investigate the utility of data
abstraction techniques, particularly formal specifications, in defining the transform and the
conditions under which it can be applied.

Our chosen problem domain is data structures for general searching problems. In a
searching problem we must organize a set of objects so that queries about that set can be
answered quickly. We elaborate this definition of seérching problems and give several
examples in Section 2. Many (if not most) searching problems can be solved by simply
scanning the data set in response to each query; the time to process such a query will then
be (at least) proportional to the number of elements stored. We will be concerned
exclusively with searching problems that require very efficient solutions; we must therefore
store the set in a data structure that is more sophisticated than a simple sequence.

A particular searching problem may arise in either of two distinct forms. In the static case
the structure is built once-and-for-all, and then all queries are asked. In the dynamic case
the structure is initially empty and queries are interspersed with the insertion of new
elements. Both of these forms arise in practice. A solution to a searching problem is given
by a data structure and some algorithms for operating on the structure. In general it appears
that the task of designing efficient data structures for dynamic problems is intrinsically more
difficult than designing static data structures. This paper presents a formal description of a
method due to Bentley and Saxe [1978) whereby a static data structure for a particular
searching problem can be automatically transformed into a dynamic structure for the same
problem.

We have chosen Alphard (see Hilfinger [1978])) for the formal statement of specifications
and programs. This decision has several good effects. First, it gives us an expressive tool:
the style imposed by the language encourages precise, formal statements of assumptions and
calls attention to places where assumptions about types or values are being made. Second,
the specification methodology is well-suited to high-level, abstract descriptions; this is
particularly true for the transformation discussed here, because the transformation applies in
a broad but well-defined set of circumstances. Third, Alphard provides for merging code and
abstract specifications gracefully, which allows us to move smoothly from specification to
implementation and to prove the correctness of the resuit.




The technique demonstrated here makes it possible to write verified components that
extend the abstract properties of other programs, and to do so independent of
implementation details. The ability to specify the dependencies formally opens the doors to a
new class of verified library entities. Not only can we specify the properties provided by a
library unit, we can also specify the minimum properties that must be supplied to it by
submodules, subprograms, data types, or other more primitive definitions.

Before we describe the general transformation we need a more complete definition of
searching problems; this is provided in Section 2. Section 3 uses a particular example to
illustrate and motivate the general transform. Section 4 then develops the general case,
including a complete Alphard form and its verification. Conclusions are offered in Section 5.

2. Searching Problems

Many computing problems are stated directly as searching problems; others are reducible
to searching problems. Perhaps the best-known example of a searching problem is member
searching. In this problem we are given a set F of elements (the stored elements) to organize
so that subsequent queries asking if a given element x (the query object) is in F can be
answered quickly. Member searching arises in such applications as database systems and
statistical packages; many other problems (such as symbol tables in compiler building) can be
reduced to member searching. Knuth [1973] describes many data structures available for
solving the member searching problem. To analyze a particular data structure S we give
three functions of n (the number of elements in the set F) describing the cost of searching:
P(n), the processing time required to organize the set into a data structure; Q(n), the time
required to answer a query; and S(n), the storage required by the structure. The simplest
structure for member searching is the "linear search” structure in which the elements are
stored as a sequence and a search then compares the new element x to every element in
F. This structure has costs P(n) = O(n), Q(n) = O(n), and S(n) = O(n). (All of the structures we
will see throughout this paper have linear storage costs; we will often omit this cost for
brevity.) A more sophisticated structure is the sorted array combined with binary search; its
costs are P(n) = O(n Ig n) and Q(n) = lg n). Thus if many searches are expected to be
performed, it is cost-effective to organize the set in advance to decrease query costs.

Our discussion of member searching has so far been limited to the static case: all of the
elements were presented for processing before any queries were handied. Many
applications, however, demand a dyramic structure -- one in which new elements may be
inserted as the queries are processed. To analyze the computational efficiency of a dynamic
structure we give the same three cost functions as before: Processing, Query and Storage
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costs. In this context, however, P(n) denotes the total time required to insert the first n
elements. There are many kinds of balanced tree data structures that perform dynamic
member searching with costs P(n) = O(n Ig n) and Q(n) = O(lg n) (see Knuth [1973]). It is
pleasing to note that in making the transition from static to dynamic member searching, the
asymptotic complexity of the algorithms does not increase. This apparently happy situation is
marred by the realities of implementation, however: the constants hidden in the "big-ohs” of
the cost functions are all substantially increased in the dynamic case, and the programs for
manipulating balanced trees are much more complex than those for static structures.

There are many other types of searching problems besides member searching. In general,
a (static) searching problem calls for organizing some set F of stored objects into a data
structure S so that queries concerning a new query object x can be answered quickly. To
illustrate the general problem we can consider a particular searching problem defined when F
is a set of points in the plane and x is a new point in the plane (not necessarily in F): nearest
neighbor searching calls for finding the point in F nearest to x. Another typical searching
problem is range searching: F is again a set of points in the plane and x is a rectangle; the
search must then list all points in F that lie in rectangle x. Many search structures are known
for these and other static searching problems. Unfortunately, not much at all is known about
efficient dynamic structures for these searching problems. We will soon see, however, a
general transformation that allows a solution for a static searching problem to be converted
into a solution for a dynamic problem, as long as the search problem satisfies a very weak
condition.

3. A Transform for Nearest Neighbor Searching

In this section we will investigate the problem of nearest neighbor searching. This problem
calls for organizing a set F of n points in the plane so that the distance from the nearest
point1 in F to a new query point can be answered quickly. This problem arises in a host of
applications such as geographic data bases and statistics (including density estimation,
classification, and clustering). Until quite recently, no guaranteed fast ways of performing
nearest neighbor searching were known. After a flurry of research activity on the problem,
Lipton and Tarjan [1977] gave an algorithm for static nearest neighbor searching with costs

P(n) = O(n Ig n),
Q(n) = Xig n), and
S(n) « O(n).

‘WMMVQI we refer to the nearest neighbor problem we actually mean the related problem asking for the distance to
the nearest neighbor. A simple bookkeeping operation sllows the point reslizing thet minimum distance to be returned
slso.




This algorithm can be proved to be optimal under a fairly strong model of computation.

Although Lipton and Tarjan’s structure gives us a fast method for static nearest neighbor
searching, it does not appear that their method is at all amenable to modification for
performing dynamic searches. There are, however, two simple ways to build a dynamic
structure. The obvious way is to store the points in the structure as a sequence and then
examine each point to answer a query; this method has constant insertion time (therefore
linear cost for n insertions) and linear query time. (This method can be viewed as storing n
static structures, each of size one.) A more sophisticated method calls for always maintaining
a single Lipton-Tarjan structure (abbreviated LTS) and rebuilding it as each point is inserted.
This scheme will maintain the logarithmic query time, but the total cost for inserting n
elements will be P(n) = O(n2 Ig n). Thus we see that it is possible to achieve very fast
insertion times or query times; we would like, however, a data structure that achieves both.

3.1. Specifications

In order to achieve both fast insertions and fast queries, we will define a more elaborate
data structure in terms of the LTS. It is obvious that we will need operations for building and
querying an LTS; we will also need an operation for obtaining all the elements from an LTS
and one for creating an empty LTS. We begin by stating precisely what functionality we
expect of the LTS solution of the static Nearest Neighbor problem:

aux var St: MultiSet(point);
initially { St ={ } };

func QueryS(x:point, S:LTS):distance post { result = dist(x,S.St) };
func Build(L:List(point)):.LTS post { x¢result.St = x¢L A card(result.St)=length(L) };
fune UnBuild(S:LTS):List(point) post { x¢result s x€S.St A length(result)=card(S.St) };

func Empty: LTS post { resultSt = { } };
In other words, an LTS acts as if it were a muiltiset of points. (Think of "aux var" as meaning
"is modelled as".) Initially (immediately after declaration) the LTS is empty. Four routines are
available; their effects are explicated in post conditions, or predicates that describe
properties of the results in terms of properties of the inputs. In these predicates, qualified
names are used to associate the modelling multiset with a particular LTS; thus "S.St" refers to
the multiset that models the LTS named S and (in Build) "result.St" is the multiset that models
the output of the function. QueryS is passed a point x and an LTS S and returns the distance
from x to its nearest neighbor in S. Build is passed a collection (implemented as a list) of




neighbor structure. To answer a nearest neighbor query for a new point x we search for the
nearest neighbor to x in each of the LTSs in our structure, and then return the point with the
minimum distance of all those as the answer to the query. As an example, consider the case
in which 79 elements are stored in the dynamic structure; we will then have static structures
of sizes 64, 8, 4, 2, and 1. To find the nearest neighbor among the current set of points to
point x we find x’s nearest neighbors in each of the five structures and then return that
point of the five realizing the minimum distance. To insert the new (80-th) point, we “take
apart” the structures of size 8, 4, 2, and 1, and combine the points in those structures
together with the new point into a new LTS of size 16; the 80 points are now stored in
structures of size 64 and 16.

Assuming access to the four static subroutines mentioned above we will now formally
describe three new subroutines that together define our new dynamic structure DNN. In
defining these routines we will make use of a one-way-infinite array P satisfying the
property that for non-negative k the element P[k] is either an empty LTS or one containing
2 points. In the program we will declare an integer and an unbounded vector (a “flexible
vector”) of LTSs with initial index O as follows:

var P: FlexVec (LTS, 0), High: integer;
In order to establish the correspondence of the assertions which model DNNs as muitisets to
this data structure and the programs that manipulate it, we must provide a function that
shows how to interpret any instance of the data structure as a muitiset. This is traditionally
(if inaccurately) called a representation mapping. For the DNN structure it is

repmap {D = U:fgh-l P(i]}.
At any point only some fixed portion of the array P will paint ta LTSs; the value of the
integer High is always one greater than the largest i such that P[i] points to a non-empty
structure. For ease of implementation we maintain the invariant that High 2 0 and require
that P[High] atways be an empty structure. As noted above, we require each element either
to be empty or to contain a suitable number (2“) of points. We can formally describe this
invariant of our structure by the expression

(High20) A (P[High] = { ) A (Osk<High > (P[k] = { } v card(P[k]) = 2%) )
in which each term corresponds to one of the above conditions.

With this background we can now define the new subroutines. Init initializes the structure
to contain no points:

proc Init(F:DNN) is begin F.High := 0; F.P[0] := Empty end

QueryD is the dynamic query subroutine; it accumulates the results of the static query




points and builds them into an LTS. Unbuild performs the inverse operation of
build--extracting the points from the LTS and returning them in a list. Empty produces an
empty LTS.

We can now show how the static Lipton-Tarjan structure can be transformed to yield a
new dynamic structure for nearest neighbor searching (the transformation is due to Bentiey
and Saxe [1978]). We call this structure the DNN, for Dynamic Nearest Neighbor. Our
objective is to provide definitions for operations with the following properties:

aux var D: MultiSet(point);
initially {D={ 1} }

func Init:DNN post { resultD={} };
func QueryD(x:point, F:DNN):distance post { result = dist(x,F.D) };

proc Insert(var F:DNN, f:point) post { FD=FDu {f} }
Again, the data structure is modelled as a multiset and the effects of the functions are
asserted as post conditions. Note that the value of F produced by Insert depends on the
input values and that the input value is "primed"” to distinguish it from the output value. Thus
the post condition of Insert might be read, "the final value of F may be modeled as a multiset
whose value is the union of the multiset that models the input value of F with the singleton
set containing f."

3.2. Implementation

In the previous section we specified precisely the properties we assume of the
Lipton-Tarjan Structure and those we must provide in the DNN structure. In this section we
will describe an implementation for achieving these properties. We will accomplish this by
first describing the implementation informally in words, and then specifying it more precisely
in Alphard.

Our dynamic structure will consist of an array of static LTSs, each of a distinct size which
is a power of two. Our structure is initially empty. When the first point is inserted, we build
an LTS of size one. When the second point is inserted, we build the two points into an LTS
of size two, discarding our previous LTS of size one. When the third point is inserted we
have two LTSs (of sizes one and two), and after the fourth point is inserted we have one LTS
of size four. Insertions proceed in a way analogous to pinary counting: after the n-th
element is inserted the structure includes an LTS of size 2! if and only if the j-th bit of the
binary integer n is one. Figure 1 illustrates the binary nature of our dynamic nearest
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Figure 1. History of dynamic structure: O through 8 points.

(obtained by calling QueryS) on the individual static structures, keeping track of the minimum
distance encountered. The syntax “for i from upto (1, F.High) do" expresses the counting loop

traditionally written "for i:= 1 step 1 until F.High do". The routine is:
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func QueryD(x: point, F:DNN): distance is
value A:distance of
A := QueryS(x,F.P[0])s
for i from upto(1F figh-1) do A := min(A,QueryS(x,F.P[i]) od;

Insert adds a new point to the DNN. It finds the lowest-numbered empty structure and
replaces it with a structure composed of the elements in the lower-numbered structures and

the new point:

proc Insert(f: point, F:DNN) is
begin v
S := Listify(f);
i =0
while F.P[i] ¥ Empty do
S := Concat(S, Unbuild(F.P{i]))
P[i] := Empty;
imis+l
od;
F.P[i] := Build(S)
if i = F.High then F.High := F.High + 1; F.P[F.High] := Empty fi
end '
The functions Listify and Concat have the obvious meanings; they are formally specified in

Section 4.4,

3.3. Correctness and Performance

The correctness of our dynamic nearest neighbor structure DNN can be established if we
assume the correctness of Lipton and Tarjan’s static structure. The insertion algorithm of our
structure ensures that the set of points currently stored in the structure will be partitioned
into sets which are then stored as LTSs; at any moment every point stored in the dynamic
structure is stored in one and only one of the static structures. We can use this fact
together with the correctness of the LTS and the fact that min correctly "combines” nearest
neighbors to prove the correctness of the QueryD routine. The formal proof of this can be
achieved as a specialization of the proof that will be given in Section 4.

To analyze the efficiency of our dynamic structure DNN we note that if the structure
contains n elements then we are using at most 1 + Ig n LTSs. Since each is of size less than
n we know that we can perform a nearest neighbor search on any of them in O(lg n) time.
The total time required to search all 1 + Ig n LTSs is therefore Q(N) = O(Ig2 n). Since each of
the LTSs requires space linear in the number of elements it contains, the total space
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Alphard form implementing the transformation is given in Section 4.4, and is proved and
analyzed for efficiency in Sections 4.5 and 4.6.

4.1. Decomposable Searching Problems

The transform that allowed us to convert a static nearest neighbor searching structure into
a dynamic one can be used to convert a number of structures from static to dynamic. The
essential point in the struciure we saw above is that the nearest nejghbor problem (not the
Lipton-Tarjan structure) has the following property: we could partition the set F into
subsets, answer the query on the subsets, and then combine those answers to yield an
answer to the original problem. We call this property decomposability. We will identify a
searching problem P by the kind of query it asks--we write Query(x,F) for the query asking
the relation of object x to set F. Formally, a searching problem P is said to be decomposable
if its query satisfies the condition

Query(x, A U B) = box( Query(x,A), Query(x,B) )

for some binary operator, "box", that is computable in constant time. (We use the name “box"
for the operator both for consistency with the original presentation in Bentley and Saxe
[1978] and tc avoid any assumption that it is a particular operator.)

All of the searching problems that we have mentioned so far are decomposable. Nearest
neighbor searching is decomposable because nearest neighbor queries satisfy the property
NN(x, A U B) = min( NN(x,A), NN(x,B) ).
It was this decomposability of nearest neighbor that allowed us to split the points in our
dynamic nearest neighbor structure DNN into separate LTSs and then combine answers on
those to form an answer to the original problem. Likewise, Member searching is
decomposable because it satisfies
Member(x, A U B) = or( Member(x,A), Member(x,B) ).
The problem of Range searching is also decomposable, satisfying
Range(x, A U B) = U( Range(x,A), Range(x,B) ).
(Here x is a rectangle and a range search returns all points in the planar point set that lie
within that rectangle.) Bentley and Saxe [1978] have identified over twenty other searching
problems that are decomposable.

4.2, Specifications of the Static Problem

The properties of the dynamic searching structure as defined in Alphard depend critically
on the properties of the underlying static structure. In this section we state the properties
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requirement of the DNN is also linear. To count the total cost of having inserted n elements
into a DNN is a bit more difficult. In the process of building a DNN of n elements (where n is
one less than a power of two), a structure of size m--2j is built (n+l)/2}"1 times.. (This is the
number of times the j-th bit in a binary word turns from zero to one in counting from zero to
n.) For n one less than a power of two a simple sum shows that P(n) = O(n Igz n). We can
use this fact to show that P(n) is of the same order when n is not one less than a power of
two.

3.4. Summary of Dynamic Nearest Neighbor Searching

In the next section we will see how the transformation that allowed us to convert the
nearest neighbor structure can be applied to a number of other data structures. Before we
proceed to the general case, however, we will review the important steps in the conversion
of the nearest neighbor searching structure from static to dynamic. On the most basic level,
we were (presumably) given code that implemented the Lipton-Tarjan structure, and we then
produced new code for the dynamic structure. The correctness proof for this structure can
be obtained if we assume the correctness of the underlying LTS; we sketched this above and
we will prove this formally in Section 4.5. Finally, we were given the complexity analysis of
Lipton and Tarjan’s structure, that

P(n) = O(n Ig n), and

Q(n) = O(ig n)
and we showed that our new structure has performance

P(n) = O(n |§2 n), and

Q(N) = O(lg"™ n)
(where P(n) now denotes the total time required to insert n elements). Notice that both the
query times and the processing times of our new structure have increased by a factor of
O(lg n); careful analysis (see Bentley and Saxe [1978)) shows that both factors are equal to
(g n)/2, plus lower order terms. (To emphasize the efficiency of our new structure compared
to the old, consider the case n = 10,000--then (Ig n)/2 is approximately seven.)

4. The General Transformation

In Section 3 we saw how a static data structure for nearest neighbor searching could be
transformed into a dynamic structure for the same problem. In this section we will see how
the same transformation can be used to convert a number of static search structures into
dynamic ones. This transformation applies to a class of problems called the decomposable
searching problems; we define this class in Section 4.1. The formal specifications of data
structures for the static and dynamic cases are then given in Sections 4.2 and 4.3. An
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required of the static structures somewhat more explicitly than we did in Section 4.1. This

will motivate the precise specifications of the static problem that will be given in the next
section, ‘

The disoussion above dealt informally with the types of the various components of a
searching problem. A correct program must be much more precise. Three data types are
involved:

- T1: the “query objects”, or the subjects of searches.

- T2: the “stored objects”, or the elements of the set in which the search is
carried out.

- T3: the answer to the query.

Three decomposable searching problems were discussed in Section 4.1. The types of the
components and the operations box and Q are summarized in the following table.

Query Stored Query

Problem Objects Objects | Answer | Box Q(x,F)
(T1) (T2) (T3)
Member real real boolean | v XF =(x,f)
. 3 3 : : MIN .
Distance to point point distance | min dist(x,f)

- feF
Nearest Neighbor

Range rectangle | point point set| v

feF encloses(x,f)

A complete definition of a static problem must include programmed routines for searching a
static structure, constructing a static structure, extracting the stored objects from a static
structure, creating an empty static structure, and determining whether one is in fact empty.
In addition, the problem definition must supply a function for computing the box operation
and a guarantee that the query and box operations jointly satisfy the assumption of
decomposability. With the above discussion of the required types, we can specify what we
assume in general about a static solution:

Tt 1 oA S S I 1 ™
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form Stat(T2:form) is
specs
aux var St: Multiset(T2);
initially { St = { } };
func QueryS(x:T1, S:Stat(T2)):T3
post { result = Q(x,S.St) };
fune Build(L:List(T2)):Stat(T2)
post { xéresult.St s x€L A card(result.St)=length(L) };
func UnBuild(S:Stat(T2)):List(T2)
post { x¢result = x¢S.St A length(result)=card(S.St) b
func Empty: Stat(T2)
post { result.St = { } };
func IsEmpty(S:Stat(T2)):boolean
post { result s SSt={}}

end;
func box(al,a2:73):T3;

aux fune Q(x:T1,r:Set(T2)):T3
axiom { [r = p U q] > [Q(x,r) = box(Q(x,p), Qlx,aN] }; ' = |

4.3. Specifications of the Dynamic Problem

We now turn to the definition of dynamic structure Dynamic. It needs these properties:

aux var D: Set(T2);
initially { D={ } };

tunc QueryD(x:T1, F:Dynamic):T3 post { result = Q(x,F.D) }
proc Insert(var F:Dynamic, f:T2) post { FD = F.D v {f} }

The general transform for converting a static structure for a decomposable searching
problem into a dynamic structure can now be described. Bear in mind that the dynamic
nearest neighbor structure DNN was produced by applying this general transform to the
particular case of the Lipton-Tarjan (static) nearest neighbor searching structure.

At any given point a Dynamic will consist of a set of Stats whose sizes are distinct powers
of two. Inserting a new element into a Dynamic is analogous to incrementing a binary
integer--starting with the structure of size one, we look at successively larger structures
until one is missing, at which point we use BuildS to make a new structure whose size is that
power of two. We can then query the Dynamic by searching each Stat ‘with QueryS; because




an extendible vector of static structures (a "FlexVec"); the concrete specifications reflect this.

The implementation (impl part) of Dynamic gives both the Alphard code for implementing a
dynamic structure and concrete specifications: assertions about the properties of the data
structure that must be preserved (invariant), about the effects of the two routines (post), and
about properties that must hold during execution of the routines (assert -- e.g., loop
invariant). In the concrete specifications, the P[i] may be treated as multisets because Stats
are abstractly specified in terms of multisets. Note also that when an assertion (pre,
invariant) is true, it is omitted from the program.
form Dynamic(Static:form)
assumeg form Static(T1,T72,T3: form) is
specs
form Stat(T2:form) is
specs
aux var St: MultiSet(T2);
initially { St ={ } };
func QueryS(x:T1, S:Stat(T2)):T3
post { result = Q(x,S.5t) };
func Build(L:List(T2)):Stat(T2)
post { xcresult.St 2 xeL A card(result.St)=length(L) };
func UnBuild(S:Stat(T2)):List(T2)
post { x¢resuit 3 x€S.St A length({result)=card(S.St) };
func Empty: Stat(T2)
post { resultSt = {}};
func IsEmpty(S:Stat(T2)):boolean
post { result s S.St = { } }
end;

func box(al,a2:T3):T3;

aux func Q(x:T1,r:MultiSet(T2)):T3
axiom { r = p U q 2 Q(x,r) = box(Q(x,p), Ax,q)) };
end

is specs
aux var D: MultiSet(T2);
initially { D={} };

func QueryD(x:T1, F:Dynamic):T3 post { result = Q(x,F.D) }

proc Insert(var F:Dynamic, f:T2) post { F.D = FP.O v {f} }
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the problem is decomposable the given box operator can be used to combine these answers.
In the next section we will make this informal description precise.

4.4, Alphard Program for Dynamic Structures

We now address the exact implementation of the transform, casting it as an Alphard form.
We gather the specifications given above and combine them with the code for the
implementation. Although the specifications for this program deal only with the functionality,
or input-output relations of the operations involved, we are also able to enforce the
properties of the data structure that are needed to achieve the efficiency we require.

From the description of Alphard given by Wulf, London, and Shaw [1976] we know that a
form has two major components: a specification (for public consumption) and an
implementation (of interest only to the implementor). In addition, a parameterized form

definition must state explicitly what is assumed about the parameters. The power of Alphard
to deal with the very general definition developed here stems from the fact that the
parameter to a form may be another definition (i.e., another form, not simply a value).

The Alphard form definition given below defines operations for dynamic search problems.
In order to use this form, called "Dynamic®, the definitions related to the static structure and
to the crucial operations on the static structure must have been encapsulated in another form.
The specifications for the latter form capture exactly the necessary properties of the static
structure and its associated definitions; the minimum set of properties for the static problem
is specified as an assumption in the definition of the dynamic structure.

The definition of Dynamic is therefore generic; that is, the definition of the dynamic
structure Dynamic is parameterized by the definition of the static problem (with formal name
Static). The precise assumptions that the static definition must satisfy in order for the form
to be used (sketched in Section 4.2) are given in an "assumes” clause. Briefly, these are a _
suitable data structure for the static problem and an operator "box" for combining the results
of the static queries; the query function for the data structure and the box function must |
jointly satisfy the decomposability property, specified here as an axiom.

The properties of both the static and dynamic structures are specified abstractly by
modelling the structures as multisets. In both cases, the abstract specification (spec part) of
the form contains routine headers and assertions couched in terms of multisets (and, in the
case of Stat, sequences). The information provided here is sufficient to use the Dynamic
definition.

An implementation is given only for the dynamic structure. This implementation is based on




=TT

impl
var P: FlexVec(Stat(T2),0), High: integer
init begin High := 0; P[0] := Empty end;

ULE" e

invariant { High20 A P[High] = { } A Osk<High > (P[K] = { } v card(P[K]) = 2*) };

repmap {D =

func QueryD(x:T1, F: DynaFe_n':‘c) T3
post { result = Q(x, U i=0 F P(D %
is value A: T3 of
"A := QueryS(x,F.P[0])%
for i from upto(1,F.High-1)
do
A = box(A, QueryS(x,F.P[i])%
assert { A = Q(x, u' oFPLID A F.P=FP A F.High=FHigh }
~ od
fo;

proc Insert(var Fi D}/namcc, f:T2)
post { u F.P(j] = u 'g” Yepilv i s
is begm
var S: List(T2), i: integer;
S := Listify(f);
i o= 0;
while ~ IsEmpty(P[i])

assert { {f} u uF_gg" -

A length(S) =
A High20 A P[Hngh] = { } A Osk<High o (P[k] = { } v card(P[k)) = 2") }

F. Hugh -1

FP(j] = Setify(s) u U 8" Epp) & U;._t)F.PU] -{}

do
S := Concat(S,UnBuild(F.P[i]))
F.P[i] := Empty;
i =i+l
od;
F.P[i] := Build(S)
if i = F.High then F.High := F.High + 1; F.P[F.High] := Empty fi
end

end
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The implementation depends on two other nonscalar types, List (linear lists) and FlexVec

t (vectors with flexible upper bounds). The portions of the specifications of these two types

that we assume here are

form List(T:form) is
specs
aux var Ls: sequence(T)
initially { Ls = < };
func Listify(x:T):List
post { resultls = <x> };
func Concat(a,b:List):List
post { resultls = als ~ b.ls };
note property of sequences: length(result) = length(a) + length(b) eton
aux func length(a:List):integer
post { result = length(a.Ls) }
aux func &€(x:T, L:List):boolean
post { 3i st x=LLs[i] }
aux func Setify(L:List(T2)):Set(T2)

post { xéresult s x€L.LS A card(result)=length(L.Ls) }
end

form FlexVec(T:form, Ib:integer) is
specs
' aux var Fl:sequence(T);
selector &subscript(F:FlexVec, k:integer)
pre { k2 lb }; post { result = F.Fi[k-lb+1] };
end

Formal definitions of sequences and sets are assumed here and in the definition of Dynamic.

4.5, Correctness Proof

The correctness of the dynamic structure can be seen intuitively if we assume the
correctness of the underlying static structure. The insertion algorithm guarantees that if the
n query objects have been inserted into our dynamic structure, then the set represented by
the structure has been partitioned into subsets whose sizes are distinct powers of two, and
that each of these is represented by a Stat. The essential point here for the correctness of
Dynamic is that we have a partitioning of the set of query objects (each point in S is stored
in exactly one Stat)--the powers of two are important only in establishing the efficiency of
the dynamic structure. We have thus sketched that the insertion algorithm maintains a
“reasonable” representation of its set of inputs. Given this, it is easy to show that the search
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4.5.2. Initialization of an Object

We must next show that the object is initialized correctly. Let cln&t denote the code.for
initialization and x a concrete object (i.e., an instantiation of Dynamic). The theorem to prove
is then

true { C. .
[1g]]

t } B._..(repmap(x)) A Ic(x)

init
or

true { High := 0; P[0] := Empty ) U 8" ppi) = ()

A High20 A P[High] = { } A Osk<High > (P[] = { } v card(P[K] = 2)
Computing weakest preconditions for the assignment statements yields

Ty _loP[i] U { ] ={}A020 A Empty={ } A 0<k<0 > (P[k] = { } v card(P[k]) = 2*)
or g
{ }={ } A 020 A { }={ ) A (false > ({ }={ } v card({ })=0))
This is clearly true.

4.5.3. Overview of the Verification of the Routines

Having established the validity of representation and the proper initialization of a Dynamic,
our next step in the verification of the form is the correctness of the routines that operate
on the form. For each routine we must show two things: the correctness of the concrete
program and the correspondence of the concrete program to the abstract specification. In
this section we will sketch such proofs for routines QueryD and Insert; as mentioned before,
the full details of the proofs can be found in Appendix L

In treating routine QueryD our first task is to prove the concrete correctness of the

program. The theorem to prove is
ﬂin(x,F) Al c(F) { body } ﬂou‘(x.F) Al c(F)'

In words, we must show that if both the concrete precondition for routine QueryD and the
concrete invariant for the Dynamic structure are known to hold before execution of QueryD,
then afterwards both the concrete postcondition of the routine and the concrete invariant of
the structure will hold. Showing that the invariant is maintained is trivial: the routine does
not alter the structure. Showing that the concrete postcondition follows from the concrete
precondition and structural invariant is a fairly straightforward exercise in program
verification. The crucial observation in that proot is the place of the decomposability axiom.

i e i e SR
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algorithm returns the correct value. We have assumed that the underlying Stat is in fact
correct, so we know that each of the (up to) Ig n searches correctly answers the query Q in
each of the sets of the partitioning. The decomposability property stated in the axiom of the
Static specification then guarantees that the correct answer for the complete set is computed.

The above sketch makes the validity of the transform believable; we will now show how
given the formal correctness of Static we can formalize the arguments we have just sketched
to show rigorously the correctness of our Dynamic structure. Several steps are required to
verify an Alphard form. We must show that the representation is valid and that each instance
is initialized properly; we will demonstrate these facts rigorously in Sections 4.5.1 and 4.5.2.
In addition, for each operation (Insert and QueryD) we must both verify the concrete
assertions about its implementation and show a proper relation between concrete and
abstract specifications. In Section 4.5.3 we will sketch these proofs; the full details of the
proofs can be found in Appendix L All the proofs up to this point establish only weak
correctness; we examine the issue of termination in Section 4.5.4.

Certain notations will be employed throughout this section. We use the following
abbreviations for standard assertions in the programs:

A i abstract precondition 1 abstract invariant

ﬂpost abstract postcondition lc concrete invariant

ﬂin concrete precondition Iloop loop invariant

ﬂout concrete postcondition Ainit initially clause from abstract specs

This usage is drawn from the description of Alphard methodology given by Wulf, London, and
Shaw [1976]. The notation
P{S}R
states the theorem, “for assertion R to hold after execution of statement S, it is sufficient for
P to hold beforehand”. We use predicate transformers in the proofs, so this is equivalent to
P > wp(S,R).

45.]1. Validity of the Representation

We must first show that any configuration of the data (P and High) that can resuit from
operations sof this form (i.e, any configurations that satisfy the concrete invariant) will
correctly represent a dynamic data structure. If x denotes any instance of a Dynamic, the
theorem to prove is

1 c(x) o1 ‘(ropmap(x)).
The abstract invariant admits any set (i.e,, l. s true), so the theorem is vacuously true.




4.6. Performance

I The termination of the routines of Dynamic assures us only that they will indeed halt after
some finite number of steps; in this section we will count the time complexity of the routines.
In the conversion from the static nearest neighbor structure to the dynamic (in Section 3.3)
we saw that factors of Ig n were added to both query and processing times. That particular
example was indicative of the general case. Bentley and Saxe [1978] have shown that if
Qs(n) is the time for searching a Stat containing n elements, then the time for searching a
Dynam of n elements is bounded above by

QD(n) s Qs(n) (lg n)
(as long as Qs is monotone increasing). Bentley and Saxe have also shown that if P.(n) (the
time to build a static structure of n elements) grows at least linearly, then the time for
inserting the first n elements into a Dynam will be bounded above by

Po(n) s Ps(n) (Ig n).
These bounds are somewhat pessimistic; a more careful analysis shows that the factors of
Ig n can be considerably reduced in many problems.

S. Conclusions

We have described and specified a general generic definition that is applicable in a specific
(but broad) problem domain. The definition, in effect, takes the solution to one problem as a
parameter and automatically yields a solution to a related problem. Specifically, we mapped
solutions of static searching problems to solutions of dynamic ones.

This work also shows the efficacy of formal specification and verification techniques for
problems in algorithm design. The formal specification makes precise the domain in which the
transformation is applicable. The fact that the form is verified allows the transformation to
be applied with confidence -- and without knowledge of the implementation of either the
static solution or of the transformation itself. These advantages were emphasized during the
development of the form given here: the abstract algorithm was reformulated in several
important ways while the formal definition was being developed.

The static-to-dynamic transformation illustrates a general paradigm. Bentley and Saxe
[1978] have developed a spectrum of similar transformations that allow tradeoffs to be made
in the factors added to processing and query times. Such a spectrum is very useful if we

know a priori the expected ratio of queries to insertions in the particular application for
which we are designing the structure. Bentley and Saxe have also described two other
completely different transformations for decomposable searthing problems. One of these
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It allows us to assert that combining the current answer with the response to a new query
via the box operator yields the correct answer to a query on a larger subset of the stored
elements. This shows that the invariant holds through each iteration of the loop, and the rest
of the proof is rather mechanical.

The second step in the verification of QueryD is to show the relation between the concrete
and abstract assertions. The first theorem to be proved is

IC(F) A ﬂpre(x,repmap(F)) > /.!in(x.F) |
This says that the concrete precondition of the structure and the abstract precondition of the
routine must together imply the concrete precondition of the routine. For the case of QueryD
this is trivial because the concrete precondition is {rue. The second representation theorem
to show is

I c(F AR - e(x.ropmap(F")) A ﬂout(x'F) S ﬂp & $t(x,ropmap(l-')).
In words this says that the concrete invariant, the abstract precondition (predicated of the

original structure), and the concrete postcondition together imply the abstract postcondition.
The proof of this follows from the representation mapping.

The verification of routine Insert proceeds in the same two steps. The concrete
correctness of the routine is again just a rather tedious exercise in verification techniques;
the complicated part is showing that the invariant is preserved through the loop. The second
step of the proof is the relation between abstract and concrete assertions; this step again
reduces to observations about similarities in the representation mapping and the conditions.

4.5.4. Termination

Thus far in this correctness proof we have confronted only the question of weak
correctness--that if the program terminates, then it will produce output in accordance with
specifications. In this section we will sketch how all the routines of a Dynamic can formally
be shown to terminate. The termination of the initialization is trivial since the procedure
consists of only two statements (with no iterations). The termination of QueryD is almost as
easy if we assume the termination of QueryS--the only iteration is in a for loop, which must
always halt. To show the termination of Insert we must assume the termination of Build and
UnBuild. We must then show that the while loop of routine Insert always halts. This is
guaranteed by the invariant, however, which asserts that P(High] is always an empty Stat.
The arguments that we have just sketched can be formalized to show rigorously the strong
correctness of the Dynamic structure.
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L. A Detailed Correctness Proof

In this appendix we will provide the details of the proofs we sketched in Section 4.5, We
will employ here the same notations as in that section. In the first part of this appendix,
Section L1, we will prove the correctness of the QueryD routine. We then prove the
correctness of the Insert routine in Section L2.

I.1. Verification of Routine QuaryD

We perform the proof of this routine in two steps, one for the correctness of the concrete
program and one for its correspondence to the abstract specification. The preconditions for
both routines are true, the abstract postcondition is expressed in terms of sets, and the
concrete postcondition is expressed in terms of the FlexVec P and the integer High.

Concrete correctness: The theorem to prove is
,ain(x,F) A lc(F) { bedy } ﬁout(x,F) A Ic(F)
Note that the routine does not modify F.P or F.High. As a result, Ic must remain true (the
loop invariant contains terms to assure that this can be done formally). We will consider here
only the verification of ﬂout‘ The proof follows the same general plan. as will the proof for
Insert. We begin with the loop invariant, and then show that the initiatization statement ieads
correctly to the loop.

Let Z denote the loop body
A := box(A, QueryS(x,F.P[i]))
and let Iloop“"ii] denote the loop invariant
A = Q(x, Uj_oF.P[j]) A F.P=F’P A FHigh=F"High
To show the preservation of the loop invariant, we must show
Iloop[l..i-ll > wp(Z,I' oop[l..i]) A I,oop[l..F.H:gh—lj > ﬂout
The loop does not modify F.P or F.High, so we ignore the identity terms. For the first of the
remaining terms we compute the weakest precondition of the loop body by substituting for
the assignment statement of Z, yielding
box(A, QueryS(x,F.P[i])) = Q(x, u; L))
Separating the last term of the union on the right-hand side from the remainder of the union
and applying the specification axiom of Q..we reduce this to
box(A, QueryS(x,F.P[i])) = box(Q(x, U;IOF.PU]), Qlx, F.P(i] )
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transforms allows queries to be further specified by “range variables® and the other
transform can be used to make tradeoffs between processing and query times in a very
general framework. Each of these three transforms have been used to yield new results in
concrete complexity. Current plans call for formalizing all of these additional transforms as
Alphard forms and rigorously verifying them. This will lead to a set of software engineering
tools as well as a set of components useful to the algorithm designer in building correct and
efficient algorithms with known complexity.

This paper has demonstrated a technique for writing parameterized abstractions that are
much more general than procedures. The ability to specify formally the minimal assumptions
made about the parameter was crucial to the development. This approach has the potential
to affect the practice of software engineering, both by supporting a library or handbook of
software tools with known properties and by making the algorithm descriptions of concrete
complexity more precise. Naturally, much research remains to be done before achieving
those goals. The present work does, however, show that ideas and results can cross the
boundary between complexity and software engineering.
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Concrete correctness: The theorem to prove is

B FNATE) {body ) 8 () ALF)
or that the body satisfies its concrete specifications and preserves the concrete invariant.

We first show the correctness of the loop invariant, then work the postcondition backward
through the program. We argue correctness by showing the state of the computation at
three points: just after the loop, just before the loop, and at the beginning of the routine
body. Let Z denote the loop body

S := concat(S,Unbuild(F.P[i]))
F.P[i] := Empty;
i=i+l;

and let Iloo;: denote the loop invariant

13 v U HiEh=1e prig o setifyes) u UFHBN1Eprig A UL F L] = ()
j=0 j=i =0
A length(S) = 2'

A [High20 A F[High] = { }]

A Osk<High > (P[k] = { } V card(P[k]) = 2%

To show the correctness of the loop invariant, we must show

[ = IsEmpty(F.P[i] A Iloop(i) > wp(Z, I‘oop(iﬂ)) ] A [ IsEmpty(F.P[iD A Iloopm >R]
where R is the weakest precondition for the remainder of the routine (determined from the
postcondition ﬂoutMc)' The second term of this predicate captures the state of the
computation after the loop; the first term establishes the state before the loop.

State of computation after loop: To show the second term of the theorem about the loop
invariant, we need to determine R (the weakest precondition for the portion of the routine
following the loop) from

R{ F.P[i] := Build(S);
it i = F.High then F.High := F.High + 1; F.P[F.High] := Empty fi } Aout(F.f) A lc(F)
Computing weakest preconditions, we find R is

e Y ——

e e
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Applying the postcondition of Querys we obtain

box(A, Qtx,F.P[i])) = box(Q(x, U F P[], Qlx, F.P[i]) )
which is true provnded

A =Qx, U ‘- F P(iD.
But this is precisely l P“ .i-1}, so the first term of the condition is demonstrated. Next,
note that the exit condmon for the Ioop, [1.F.High-1), is

A = Qix, U F e Rl -

1]

The value expressnon associates A with the function resuit, so the second term of the

condition is demonstrated.

To complete the proof of the routine it remains to show that
ﬂ (x,F) Al (F ) { A := QueryS(x,F.P[0])) } Xloo {1.0])
which follows by dlrect substitution and appeal to the specification of QueryS.

This proves that the body of QueryD implements its concrete assertions.

Relation between concrete and abstract assertions: Two theorems must be proved:
IC(F )A ﬁ (x,ropmap(F)) > ﬂin(xf)

l (F) A ﬂ (x,ropmap(F’)) A ﬁ t(x,F) ) ﬂ (x,ropmap(F))
Since ﬁ is true, the first is vacuously true. Smce .8 |s true, the second reduces to

[1,(F) A rasut = Qtx, U} 0B F.p(jD] o rasuit = Qo UF High-1 prj)

That is, the abstract postcondition is a direct mapping of the concrete postcondition, and the
theorem is proved.

1.2. Verification of Routine Insert

As in our proof of QueryD, we first show the correctness of the concrete program, and
then the relation between the concrete and abstract assertions. The program has (implicitly)
abstract and concrete preconditions of true. The abstract postcondition is given in the
specification part of the form, near the procedure header; it is stated in terms of the set
represented by the parameter F. The concrete postconditior. is given Jn the implementation
part of the form, just before the body; it is stated in terms of the P and High components of
the parameter F and also in terms of the parameter f.
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which simplifies to

v u;’:';“gh'lrw[j] = Setify(S) U UF;';‘iglh'lF.P[i] A (u‘j FPLl= (1)
1

A length(s) = 2'*

A High20 A P[High] = { } A Osk<High 3 (P[K] = { } v card(P[k]) = 2%)
The first term of the theorem about the loop invariant,

-~ IsEmpty(F.P[i}) A lloopm > wp(Z,I'oop(i-ol))
follows directly.
This establishes Il as a valid loop invariant.

oop
State of computation at beginning of body: It remains to demonstrate that
ﬂin(F,f) A lc(F) { S = Listify(fy; i := 0 } ll 0op’
Computing weakest preconditions, observing that Setify(Listify(f)) = {t}, and noting that
k length(<f>)=1, this becomes

true A 1(F)> [ {f} v uf_'g“h'lr'.pm -{f}u uf Herlepria1a20

We have arrived at the beginning of the routine, so F’.High=F.High and F".P=F.P; thus the right
side of the implication is a tautology and the theorem is proved.

These three steps prove that the body of Insert implements its concrete assertions.

Relation between toncrete and abstract assertions: Two theorems must be proved:
lc(F) A ﬂpr e(r-pmap(F),f) > ﬁi n(F,f)

I C(F’) A ﬂpr e(ropmap(F’).f) A ﬂout(F,f) e Bpost(""""’m’f)
Since ﬁin is true, the first is vacuously true. Since 6‘” . is true, the second reduces to

1P A U8 epp) = DAL 7 TR I |

j=0
F.High~ . .High- 2
e LS )
That is, the abstract postcondition is a direct mapping of the concrete postcondition, and the
theorem is proved.
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Fngh -1 F ngh -1

U F.P{j] - F.P(i] v Build(S) =
A [Build(S) ={}v card(Bucld(S))-Z]

F.PlJu ()]

A [F.High=i A F.High+120 A Empty={ } v F.High#i A F.High20 A F.P(F.HighJ={ } ]

A [Osk<F.High > (FP(K]={ } v card(F.P(k]}=2")]
Now to show the second term of the theorem, we must prove

F.Pi]= {}AI‘ op:R
The terms of R correspond in order to the terms in Io . The first term follows because of
the correspondence in the postconditions of Build and Setify. The second term follows
because length(S) = card(Build(S)). The third and fourth terms follow directly.

State of computation before loop: The loop body consists entirely of assignment
statements, so the weakest precondition wp(Z, I‘ oop) is found by back-substitution. After
some manipulation of set expressions, it is

{f} u uF High=15plj] = Setify(Concat(S,UnBuild(F.PLID) u UF- f’igl“ e pri)
U _oFPl1= ()
A length(Concat(S,UnBuild(F.P[i])) = 2\

A F.High20 A P[F.High] = { } A Osk<F.High > (P[K] = { } v card(P[K)) = 2%).
{Recall that the primed identifiers refer to values at input to the routine.) From the
specifications of Concat, Setify, and UnBuild, we know

Setify(Concat(S,UnBuild(F.P[i]))) = Setity(S) u F.P[i]
length(Concat(S,UnBuild(F.P[i]))) = length(S) + card(F.P[i)).
Using these facts, wp(Z, Iloo ) becomes

{flu uF' High=1es p(i] w setify(s) u F.P(i] u «f ”3" leplil- FROTU (D
A <uj_or.P[,] - F.P[i] U Empty) = { }

A length(S) + card(F.P(i]) = Ziﬂ A F.Pi] = Empty

A F.High 2 0 A F.P[F.High] = { } A (Osk<F.High A K#i) o (F.P[F.High] = { }).
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