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1. INTRODUCTION

Optimum array processing, adaptive processing, and adaptive beamforming are terms which have

been mentioned in the sonar literature with increasing frequency over the past decade. Are these

three terms synonymous? The equations which describe the behavior of this type of signal proces-

sing can be long and involved. Stripped of the mathematical details, what are the underlying

-principles of optimum array processing, adaptive processing and adaptive beamforming? This paper

presents answers to these questions without matrix algebra.

2. OPTIMUM ARRAY PROCESSING

Figure 1 presents a block diagram of an array processor system. The hydrophone array samples

- - 

- the signal and noise fields propagating through the medium. The processor combines the hydro-

phone outputs to steer a beam in a particular dIrection. Each hydrophone output contains signal

and noise from the steering direction, noise from other directions, and nondirectional noise. The

proportion of the beam output due to signal and noise from the steering direction is higher than
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Figure 1. The 4~.nay Processor System
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the corresponding proportion of the output of a single hydrophone. However, some of the beam

output is still due to sources which come from a direction substantially different from the steering

— direction and some of it is nondirectional noise.

The power estimate P is a random variable. If the averaging time is short, P will have a large
variance, and its probability density function (pdj) might look like the one in Figure 2. lIthe
averaging time is longer, P will have a smaller vaxiance, and its pdf might look like the one in

Figure 3. The expected (or average) value of the power estimate E(P) is the same in both cases.

I

Figure 2. Probability Density Function for Short Integration Time

Figure 3. Probability Density Function for a Long Integration Time

Note that the area under the curves in Figures 2 and ~ is supposed to be equal to unity. In order to
evaluate the behavior of the probability density function as the signal and noise fields change, the
following section will consider the integration time to be fixed . 
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Classical Detection Theor1’
The classical detection theory problem assumes that the statistics of the noise field are known.

That assumption means that the processor designer knows the exact probability density function
of the power estimate P when signal is absent. The detection problem is to determine whether
signal is present. Signal in the steering direction shifts the probability density function curve to the

1 - right. The prob abIlity density function for noise only is sketched in Figure 4, and the probability
density function (pdf) for signal plus noise is sketched in Figure 5.

Po’1’)

Figure 4. Power pdf for Noise Alone

a 
Figure 5. Power pdf for Signal Plus Noise

The processor can not directly observe a shift in the pdf. The operator (or an automated decision
computer) must make a decision as to whether or not signal is present , based upon a single number
P That number Fis a sample of the random variable P drawn from one of the distributions shown
in Figures 4 and 5.

3
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The classical detection theory problem is equivalent to the following problem: Given two
probability distribu tions with the pdf a shown in Figure 4 and 5, decide whether the sample P
of the random variable P came from the distribution with pdf Po (P), or whether it came from
the distribution with pdf p2 (F). Clearly, this can not be done with certainty. Statistical decision
theory tells us to set a thre shold 7 and decide that signal is present if P> 7. Otherwise, it is
decided that signal is absent. The pr3bability that the signal is correctly detected is equal to the
shaded area under the curve in Figure 5. The probability of a false alarm is shown by the shaded
area under the curve in Figure 4.

In this kind of detection problem it is not possible to know with certainty whether or not
the signal is present because there is no finite range of P such that pdf is zero and the other is nonzero.
The subject of where to set the thr eshold involves a value judgement as to the relative importance
of correct detectio ns and false alarm s. For a given processor , when the threshold for a given false
alarm probability is set, the detection probability is set simultaneously . However , the amount by
which a signal shifts the pdf to the right varies for different processors. A normalized measure of
the spread between the pdf of the output power when signal plus noise is present and the pdf of
the output power for noise alone is the signal-to-noise ratio. The expected value of the output
power whe n signal plus noise is present is denoted by E(F/S + N). The expected value of the outpu t
power when noise alone is present is denoted by E (P/N). The difference between the two expected
power out pu’s is a measure of the change caused by the addition of the signal. In order to
compare different types of process ors , the difference of the means is normalized by the square
root of the var iance of the output power when noise alone is present , Var (F/N). Thus, the signal-

E l
to-noise ratio is defined as

E(P/S + N) — E(P/N)

(Var (P/N)J ’~

The denominator is a measure of the spread of the pdf .  A change in the mean is easier to detect
if the fluctuation in outpu t power is small. This detectability can be measured either by the signal-
to-noise ratio or by the probabilities of detection and false alarm.

• A further normalization is sometimes used to allow a compar ison of performance under

different signal and noise condi tions. The signal-to-noise ratio at the output of the processor is

divided by the signal-to-noise ratio at the input to the processor (that is, at the output of a single

sensor) to produce the array processing gain A:

4 
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in classical detection theory the noise is assumed to be stationary. This means that the

statistical properties of the noise do not change with time. For example , it means that the pdf of

the power estimate P at the beam output will not change from one hour to the next. If the signal

duration is long, then , in principle, a large output signal-to-noise ratio G can be obtained with the

integration of the output power estimate over a long time period. The long averaging time results

in a low variance Var(P /N) of the power estimate P, facilitating the detection of small differences

between expected outpu t power with and withou t signal.

Stationarity is a relative concept. Nothing is stationary in terms of geological time. On the

other hand , sea noise is usually stationary from one second to the next . Sea noise is composed of

surface noise , biological noise, shipp ing, and other man-made noise . An hour is a long time for

biological noise to remain stationary , and ten minutes is a long time for shipping noise to remain

stationary . The orientation of a sonar platform (e.g., submarine) can change significantly in less

than a minute , which will effect the relative directional nature of the noise observed by the

sonar array .

Because of the limited time during which the signal and noise fields can be regarded as

stationary, signal processing involves more than just time averaging. When either the signal duration

or the nonstat ionarities of the signal and noise fields limit the possible averaging time, there is a

lower limit on the variance of the power estimate. Further improvement in performance can only

be obtained by more sophisticated techniques to accentuate the difference between the probability

density functions of the power estimates , with and without signal. If the signal and noise fields

are assumed stationary for a certain length of time , with known statistical properties, classical

detection theory describes how to maximize the difference between the output pdfs, with and

withou t signal , which will maximize the probability of detection for a fixed false alarm rate. If

the noise field is Gaussian , the property of the noise field which is required for optimum array

processing is the cross-power spectral matrix. When noise alone is present , this matrix gives the

correlations between all possible pairs of hydrophones as a function of frequency .
• Op timum processing theory is valuable in two ways: 1) possible improvement in performance

over conventional processing can be calculated for given signal and noise statistics; and, 2) possible

receiver structure is suggested. The work of Bryn (I) and Vanderkulk (2) showed that for

isotropic noise, little improvement could be achieved over conventional processing performance.
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However , the work of Edelblute (3), Kinnison (4), Shapard (5), Kncipfer (6), and others, has shown that

sonars are confronted with highly anisotropic noise fields under certain operating conditions, and

optimum processing can result in a marked Improvement in performance over conventional processing.
There are three principle limitations to the optimum processing theory : ~)the theory often

leads to filters which are too complex to be implemented within the economic limitations of the

problem; 2) the exact direction of the signal field may not be known; 3) very little is usually known

about the noise field when the system is being built. The problem of uncertainty as to the signal
• direction is met by forming adjacent beams steered in different directions. However, if the design

is based on inaccurate knowledge of the statistics of the signal and noise fields, there is no assurance

that the “optimum” processor will perform better than the standard beamformer. In many array

problems the statistics of the noise field change , and it is impossible to design a fixed processor

which is optimum according to the criteria of classical detection theory .

3. ADAPTIVE PROCESSING

Even though the statistics of a noise field are unknown, the parameters of the statistical dis-

tribution can, in principle, be estimated if the statistics are essentially stationary over some ob-

servation interval . For example , if the noise field is Gaussian, its statistical distribution is com-

pletely determined by the cross-power spectral matrix as a function of frequency. A signal

processing system could be designed to estimate the cross-power spectral matrix of the array at

a number of frequencies. These mathces could be used to form beams which would be optimum

if the estimated cross-power spectral matrices were the true ones. This approach is sometimes

called the matrix inversion approach because the estimated matrices must be inverted before the

beam outputs can be formed. Since the beam outputs are not fixed linear combinations of the

input data, but involve a weighting of the input data by the estimated inverse of the cross-power
spectral matrices, this approach is called adaptive. The term “adaptive” refers to systems which

operate differently in different environments and usually implies an improvement over systems

• 
which perform the same simple operations on the input data regardless of the environment.

• The term “adaptive” arises from a heirarchy in our understanding of the processor. It is conven-
ient to think of a linear weighting of the input data, with the weights dcter~nined adaptively. The
adaptive process for finding the weights is a highly nonlinear combination of the input data. The
algorithm for finding the weights is a fixed computational procedure. Taken as a whole, the algorithm
and the linear weighting together comprise a fixed nonlinear processor. Although it isa good idea to
remember that the adaptive weights are functions of the input data, it is confusing to look at an
explicit formula for the beam output in terms of constants and the input data.

6
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There are several ways to estimate a parameter associated with a statistical distribution. One
possible way is to use the data sample to compute a sufficient statistic for the parameter. A statistic
is sufficient if , when the statistic is computed , the calculation of other statistics with the same
data will not improve the estimate of the parameter. Beamforming can be interpreted in this
context. The output of the beam can be interpreted as an estimate of the signal in the steering
direction , and the signal can be interpr eted as a parameter of the statistical distribution of the outputs
of the array. Under certain reasonable assumptions, the best estimate of the signal is a linear weighting
of the outputs of the array. This best estimate of the signal is a sufficient statistic for the signal.
Again under reasonable assumptions, the optimum detector can be obtai ned from the best estimator

- ~
- if the signal estimates are squared and averaged .

The optimum weights used in the linear combination of the array outpu ts to achieve the best
estimate of the signal are functions of the inverse of the cross-power spectral matrix of the array.
When the statistics of the noise field are not known , then an attempt can be made to learn enough about
the noise field to estimate the optimum weights. One method is to estimate the cross-power spectral
matrix , invert it , and then calculate what the optimum weights would be if the estimated cross-power
spectral matr ix were the true one. However , there are K(K + 1 )/2 different elements in the cross-
power spectral matrix for an ar ray of K hydrop hones. For one beam only K weights are needed.
If only one beam is to be formed , it is easier from a computation al point of view and bette r from a
statistical point of view to estimate the K beamforming weights directly , rather than to compute
them from the K2 elements of the estimated cross-power spectra l matrix . That is, it is suffiaent
to estimate K weights instead of K(K + 1)/ 2 matrix elements. Only when the number of adaptive
beams approaches K does inversion of the estimated cross-power spectral matrices become attractive.

Several algorithms can be used to estimate the optimum beamforming weights. Stochastic
approximation algorithms prov ide the best convergent properties in a stationary environment;
however , they perform poorly in a nonstationary environment. Steepest descen t adaptive algorithms
are similar to stochastic approximat ion ; their convergent properties are weaker in a stationary en-
vironment, but they can perform reasona bly well in a slowly varying stati stical environment. These
algorithms form beam outpu ts (signal estimates) during adaptation and use the beam outp uts in the
iterat ive adjust ment of the weights. The use of the beam outp ut in the iterative algori thm is called
performance feedback . Algorithms of this type are called “closed-loop” adaptive processing
techniques. Estimation of the cross-power spectral matrices does not involve performance feedba ck
and therefore techniques which compute the inver se of estimated cross-powe r spectral matr ices
are called “open-loop ” adaptive processing techniques. (There are open-loop techn iques which

7
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attempt to find the beamforming weights directly, and closed-loop techniques have been proposed

for finding the inverse of the cross-power spectral matrices.) A single-beam-closed-loop adaptive

array processor system is shown in Figure 6.

I

ARRAY

• 
_ _I ~

Figure 6. A Closed-Loop Adaptive Array Processor

Adaptive Defection Theory

The adaptive detection problem assumes some knowledge about the signal but none about the

noise. The idea of an adaptive array processor is that the system somehow measures or “learns ”

enough abou t the noise field to keep the response low in the directions of loud noises. A stochastic

process with certain temporal characteristics is called a signal if it impinges on the array from a
conical spatial angle called the “main beam,” but the same temporal process is called a noise if it

comes from outside the cone—see Figure 7. Other temporal processes are regarded as noise regardl ess
of their directional properties. It would be desirable to design a processor which could detect
signals anywhere inside ‘i~e main beam but reject any noise, including anyth ing outside the main
beam. I f the solid angle of directions from which it is possible for the signal to arrive is larger than
one main beam, then adjacent main beams may be used to complete the coverage . The array designer
has some control over the width of the main beam , but the aperture of the array, the number of
sensors, and the cost and complexity of the processor place limitation s on the beamwidth.
Although it is desired that the processor reject noise outside the main beam , for most noise fields
there will remain some nonzero probability that the noise outside the main beam will be mistaken
for signal inside the main beam (a false alarm).

8
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SOLID ANGLE INDICATING
- ESTiMATED DIRECTION OFI TARGET SIGNAL SOURCE
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Figure 7. Array and Desired Main Beam

The heuristic criterion for an adaptive array detector is that the system detect signals in the

main beam but reject any noise, including anything outside the main beam, without prior knowled ge

of the noise statistics. This criterion is substantially different from the criterion of the classical statistical

detection theory described earlier. Classical statistical detection theory requires the knowledge of

statistics which describe the temporal and spatial characte r of the noise field , as well as the signal

field. The adaptive spatial detection criterion allows a description of the statistics of the signal field

but not of the noise field . An optimum solution with this cri terion is not known. The threshold

detection feature which is prescribed by statistical detection theory is sometimes used in adaptive

detection. However , there is a substantial difference between an adaptive detector and an optimum

detector in the classical sense. Classical statistical detection theory recognizes that the detector

output (which is to be compared with the threshold ) will fluctuate , but the only admissible reasons

for the fluctuations are the stochastic nature of the input signal and noise field or a fundamen tal

Complete statistical knowledge of the signal is not required. In some proposed applications ,
only the shape of the wavefront is assumed to be known.

~
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change in the signal field. Because a fundamental change in the noise field is not allowed in classical

detection theory , signal-to-noise ratio is a sufficient measure of the perform ance of a detector which

is optimum in the classical sense. The following paragraphs show that the signal-to-noise ratio
(or array gain) alone is not a sufficient measure of the performance of an adaptive detector.

If the noise field changes very slowly, or is essentially stationary, while the signal field changes

abruptly, the signal can be detected if the outpu t of the adaptive estimator is squared and integrated

for a short time. Then , the adaptive processor does not change significan t ly during the detection
interval , and the system performs in essentially the same way as a fixed linear estimator followed

by a square-law detector. However , there are important applications to passive sonar by which

the signal field changes slowly. When the rate of change in the signal field is comparable to the

rate of change in the noise field , the adaptive processor will change as the sign al changes. In this

case the adaptive processor is a nonlinear system.

The adaptive detector , Like the classical detector , forms a power estimate P for the signal in

the beam . As in the case of the fixed processor , the adaptive detector depends on changes in the

probability density function (pdf) of P to indicate the presence of a signal. However , the classical

detec tion problem assumes tha t the input statistics due to noise never changes so that any shift in
the pdf of P must be caused by the signal. The adaptive detection problem , on the other hand ,

allows changes in the noise statistics. Figures 8 and 9 show two possible probability density functions

for the output power of a processor due to noise alone. If the threshold T is determined to yield a

certain maximum false alarm probabili ty under noise condition No. 1 , the processor will have a

significantly higher false alarm probability under noise condition: No. 2. It is possible to find examples

like Figures 8 and 9 with the same input noise power at the hydrophone. The change in the pdf is

due to changes in the noise statistics, rather than a change in the input power.

\

‘

- Figure 8. Power pdf for Noise Condition No. 1
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Figure 9. Power p df for Noise Condition No. 2

Suppose the processor is designed to maximize array gain under noise condi tion No. I. Then ,
the threshold T is set for a certain maximum false alarm rate under noise condition No. 1 , as shown
in Figure 8. The probability of detection is that area to the right of T illustrated under the curve
shown in Figure 10. If the thr eshold remains fixed , the probability of false alarm increases as the
noise field changes to condition No. 2. This can happ en with an adaptive processor which is
constantly maximizing array gain. Since it is assumed that the signal changes amplitude at approxi-
mately the same rate as the change in noise statistics, it is very difficul t to adjust the threshold to
maintain a fixed false alarm rate. Therefore , in addition to high array gain, the adaptive processor

- 

should minimize changes in the pdf of the output power that are due to changes in the noise

- 
statistics.

I

-H

Figure 10. Power pdf for Signal Plus Noise No. I
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• Some array systems and processors give larger pdf  changes of output power than others.
An array-processor system that presents an outpu t power estimate P which is statist cally insensitive
to changes in the input noise statistics is called a robust system. An amy-processor system that changes,
as shown in Fig 1I , isj d tob eIe b ustthnth eone tho~~~in Figij re12 The design of
the array and the design of the adaptive processor are both important for robustness. It is possible,
in pri nciple , to obtain a very iobu*t adaptive array-proce ssor system which obta ins near-op timum
array gain under slowly-varying noise statistics. However , some of the adaptive processors which have
been considered obtain high array gain but are not robust. Thus , array gain alone is not a sufficient
measure of the performance of an adaptive amy-processing system.

_ _ _ _ _
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Figure 11. Effect on p df of Output Power Due to Qianges in Noise Statistics
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ROBUST -

-

-p(P)

Figure 12. Effect on pdf of Output Power Due to Chan ges in the Noise Statistics
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4. TERMINOLOGY

This paper has shown a clear distinction between the terms “optimum array processing,”

“adaptive processing, ” and “adaptive beainforming,” although people on the peripher y of the

field sometimes confuse the first two terms. Since there is no known optimum adaptive arra y
processor, the distinction is important. Optimum array processing assumes a complete knowledg e

of the statistical d~stributions of the noise field and the signal field . Adaptive processing is
used when our statistical knowledge is incomplete.

The terms “adaptive array processing” and “adaptive beamforming” are often used inter-

changeably. Since “adaptive array processing” is a mouthful of syllables, “adaptive processing”
is sometime. used as an abbreviation. Some vagueness results from this contraction , since

adaptive processing can refer to the processing of a single channel as well as an array . Beamforming

was the old way of filtering in space. “Adaptive beamforming” is a natural term to describe
adaptive filtering in space . However , what is found adaptivel y may be some intermediate

parameter , rather than the beam output . Furthermore , some adaptive arra y processing schemes

do not form beams! “Adaptive array processing” is the more accurate term for describing

the subject of this paper , but “adaptive beamformin g” is the more popular term .

5. FURThER RESEARCH AREAS

/
Some arrays seem to be more amenable to ada ptive processing than others. At the present time

the choice of arra y geometry is an art , not a science. A theory of optimum array geometry would

be quite useful to the sonar engineer.

Clustering of hydrophones is another topic which merits study. Optimum array gain may increase
as the number of hydrophones increase, but a larger number of time samples is also required to
obtain the potential improvement. Thus , the speed of adaptation is inversely related to the number
of input channels of the adaptive processor. Adaptive processing of conventionally steered clusters

may be preferable to adaptive processing of the individual hydrophones.
The purpose of a passive multibeam array processing system is to map the noise field and

focus atten tion on sources which might be signals (e.g., submarines). If the adaptive processing is

narrowband, the number of beam-frequency combinations can be in the thousands. Operator atten-

tion can only be focused on a few of the beams. The purpose of adaptation is to reduce the

14
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to the output power which results from noise outside the main beam. If the outpu t of a beam is -

low , there is no need to adapt it because attention will not be focused on it. Only those beams

whose output power crosses some threshold will need to be adapted . There fore in light of the main

purpose of a passive multibeam array processing system, it is recommended that a system be de-

signed which will adapt the loudest beams. When a quiet beam becomes loud , an automatic monitor

system would start adapting it; and when a loud beam becomes quiet , the monitor system would

remove it from the group of adaptive beams. The operator should have the ability to designate a

• certain number of beams as adaptive. A statistical evaluation of such a system should be

undertaken.

Attention should be focused on the cost of adaptive processing. Some ada ptive processing

systems are approximately equivalent in statistical performance , but differ considerabl y in complexity

and cost. Some systems may perform a little better but cost much more than other systems. These

considerations should be quantified whenever possible .

6. CONCLUSIONS

This paper has attempted to explain classical detection theory and adaptive detection theory

without mathematics. Detection is the first thing to be done in sonar. There is also a classical

estimation theory and corresponding adaptive approaches. No further discussion is possible at

this point because there is a connection between detection and estimation which can only be cx-
-
‘ plained mathematically. However , all of the statements in this paper can be proved msth ematica lly.

This pap er has been written for the busy man and the vaguely curious. It is hoped that those with

the time and mathematical background will be motivated to sample the depth and diversit y of the

literature in the field.

M ost are proven in the doctoral dissertation by Burwefl Brothers Goode , Adaptive Sensor
Array P?vcessing, NUC 1? 259. The reference list of that report cites papers which complete
the mathematical proofs that are only outlined In the dissertation.
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