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THEORETICAL PREDICTION OF BUBBLE PATHS

Air bubble s in the wa ter can degrade the performance of a

1. ship-borne sonar by generating noise or by diffrac ting or absorbing

acoustical signals. A program of full-scale experimental work is
1.. under way to discover which portions of a ship’s hull are likely to

I encounter bubbles and to what extent. It is in support of this

• 

. 
experimental program that we have begun to study theoretical methods

of predicting bubble paths, and in par ticular , of predic ting the

deviation between bubble paths and the paths of the fluid perticles.~ ..

A reasonabl y precise model of the bubble ’s motion leads to

• an extremely difficult boundary value problem, viz., the solution of

the time-dependent Navier-Stokes equations in the presence of a

[ moving and deformable surface (the bubble surface) whose shape is

time-dependent and not known in advance and whose interior is filled

with a compressible fluid - in this case,. air. The stress on this

surface has both tangential and normal components due to the fluids

on either side, as well as an effective normal. component arising

from surface tension.

For tunately , certain facts lead to the hope that a simpli-

fied analysis would predict the bubble paths with sufficient accuracy,

at least in certain ranges of speeds and bubble sizes. These are:

1) Experiments by Rosenberg at DTHB indicate that for

j Reynolds numbers less than 70 (based on bubble diameter) the bubbles

behave like rigid spheres. The velocity entering into this Reynolds

II number is the bubble velocity relative to the fluid.
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2) The bubbles of interest tend to have diameters in the

millimeter range and are usually small compared to the distance over

1. which the underlying flow - this is the flow about the ship in the

absence of the bubbles - departs sensibly from uniform flow.

Accordingly, one is led to try for a perturbation solution based on

the smallness of the bubble diameter.

• 

- 
Guided by these considerations, our first effort has been

to derive the equations of motion of a small rigid sphere moving

through a steady but arbitrary non-uniform underlying flow of
L an incompressible inviacid fluid. The neglect of viscosity in this

• 
I 

first attempt was justified on the grounds that its thclusion would

tend to reduc e the discre pancy between the paths of the bubbles and

• those of the fluid particles, so that without viscosity, we would

obtain an upper bound on this discrepancy.

I. The problem was attacked by expanding the force on the

bubble in powers of the bubble radius, a, and retaining in the equa-

tions of motion only the leading term in the expansion, which turned

out to be of order .~~. This leading term is itself composed of four

terms, each having a readily understood meaning . These are:

1. 1) The ordinary inertial reaction term , equa l to minus the mass

of the bubble times its acceleration .

2) The ordinary added-mass term, equa l to minus one half the

mass of the fluid displaced by the bubble (for spherical bubbles)

times the acceleration of the bubble.

~~

.
• ii 3) A “dynamic buoyancy” term , equal to minus .

~~
. the volume of

the bubble t imes the dynamic pressure gradient associated with the
11 underlying flow. This underlying pressure gradient is calculated

II 2
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with the bubble absent, but is evaluated at the point instantan-

eously occupied by the center of the bubble.

The coefficien t ,~~
. in this term arises from the fact that

£

since the underlying pressure field is dynamically determined, it

is altered by the presence of the bubble. We have shown that the

effect of this alteration on the force on a sphere is, to order a3,

correctly taken account of by the fac tor ~~~~. It should be remarked,

however , that this observ ation has also been made by G.I. Taylor~
2
~.

4) The final term in our equation is the ordinary buoyant

force on the bubble.

We then have for the equation of motion of a small rigid

sphere of radius a moving in the underlying steady flow of an incom-

pressible inviscid fluid:

1) (M + ~~~ pV) ~~ 
- V grad p + pgV~

where M is the mass of the sphere, p the fluid densi ty, U the vel-
L ocity of the center of the sphere, V the volume of the sphere, p the

underlying dynamic pressure, g the acceleration of gravity, and

a unit vector in the vertical direction (positive upwards).

Although the individual terms in this equation have simple

interpretations, the rigorous proof that this equation is correct

to order a3 is quite elaborate. The equation was derived in two ways.

In the firs t deriva tion, which was the more straightforward but also
the more laborious of the two, the time-dependent form of

fi Bernoulli’s equation was used to calculate the fluid pressure, wh ich
was then integrated over the surface of the sphere to give the desired

force. The fluid velocity and velocity-potential ei~~ring into the

Bernoulli equation were expanded in powers of the radius , a: as far
U 3
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- as necessary to yield the lowest-order term for the force on the

[ sphere. In the second derivation, we combined the aforementioned
“dynamic buoyancy” result with a transformation to a coordinate
system moving with the sphere to obtain the lowest-order force

term more directly.

1. As yet , we have not attempted to solve Equation (1).
This would be done numerically in most cases.

I. We are planning to continue work along the forego ing
lines, but with viscosity taken into account. Several approaches

suggest themselves.

1) We might simply add a viscuous drag term to Equat ion (1) .
- Note that the bubble velocity entering into this term would be not

the absolute velocity, U , of Equation (1) but the velocity relative

to the local fluid. A procedure of this kind has been followed by

G.J. Franz. ~3) However , our equat ion would differ from his in at
least one term since he has -v grad p where we would have - V

grad p. ( See Equation (1).]
2) A more powerful attack would be to go back to the Navier-

1. Stokes equations and attempt to deduce from them a rigorous pertur-
bation equation of motion valid for small spheres, analogous to

1. Equat ion (1) of the inviscid case. The word “small” ni.lat still be
- 

understood to mean small compared with the distance over which the

underlying flow departs sensibly from uniformity. Spheres so small

that the Reynolds number falls within the Stokes or creep ing flow

range would not be of great interest in our case. Some clues as to
how to proceed may be ava ilable in papers such as tha t of Saffman~

4
~.

Notice tha t the assumption of inviscid flow past a spher-
ical bubble is not merely unrealistic, (because a sphere is a blunt
body) but is in direct contradict ion to the assumption of constant

El pressure inside the sphere.

II 4
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