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SECTION I

* INTRODUCTION -

• Sparse linear systems occur in many different areas. By sparse linear system
we refer to a system of equa tions of the form :

A11 X1 + A12 X 2 + A 13 X3 + ... + A IN XN B1

where the As and Bs are known constants and Xs are the unknown and at least 85 to
90 percent of the A1~ are zero. Since such a linear system must have N equations
to have a unique solution, the term linear system will be used to refer to such a
square system of N equations in N unknows. Such a linear system may also be
represented by the matrix equation AX B, where A is an N x N matrix, and X and
B are N x 1 vectors.

Two algorithms for solving such systems are Gaussian—Elimination and Gauss—
Seidel iteration. Explanations of both may be found in any good text on linear
al gebra. Gaussian—El imination is done by a series of elementary row operations,
each of which produces a different but equivalent linea r system (equivalent means
that the same X vector Is a solution). Elementary row operations affect a row of
the linear system, where a row cons i sts of one equa tion in the equa tion form , or
a row of the A ma trix plus the correspond ing elemen t of the B vector , in matrix
form. Three basic types of row operations are al lowable - exchanging two rows
(order of the equations is not significant), multiplying a row by a constant
(multiplying both sides of an equation by a cons tant), and adding one row to
another (adding equal quantities to both sides of an equation). El ementary
column operations , though not normally useful , can be performed simi larly on a
column of the A matrix and the corresponding element of the X vector.

The main difficulty in applying Gaussian-El imination to large sparse linear
systems arises from a phenomenon called fill-In. In adding one row to a second

• row, the result will in general contain nonzero elements at every position where
either of the original rows contained a nonzero element.

After a number of these row opera tions , the matrix fills-in with nonzero
elements and Is no longer sparse. This fill-in destroys any advantage a routine
may be able to gain (in speed or reduced storage) if the matrix remains sparse.

3
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Each of the routines discussed in this report is intended to manipulate
large sparse matrices of a particular type or to solve the associated system of
linear equations.

0
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SECTION II
- 

NARROW-BAND SOLV~PS

FUNCTIONAL DESCRIPTION
TRI2 , TRIM , PENT2 , and PENN are all Intended to solve matrix equations of

the form AX — B, where X and B are n—vectors and A is a sparse N x N matrix with
a special structure. TRI2 and TRIM accept a matrix in which all the nonzero
elements lie within the main diagonal (upper left corner to lower right corner)
and the diagonals insnediately adjacent above and below (figure 1). This type of
matrix will be referred to as a tridiagonal matrix. PENT2 and PENN are similar
except that they accept a matrix with one additional diagonal ininediately above
and below the nonzero diagonals 0f the tridiagonal matrix . This type of matrix
will be called a pentadiagonal matrix, as it has five nonzero diagonals: the
ma in diagonal , the two diagonal s immediately above the main diagonal , the two
immediately below it (figure 2).

TRI2 and PENT2 each solve a single matrix equation (AX B) while TRIM and
PENN each solve several such equations concurrently by changing the X vector and
the B vector to N x N matrices. This technique al lows a saving in computation ,
since the A matrix need be reduced only once In solving several matrix equations.

PARAMETER DESCRIPTION
TRI2 and PENT2 need four parameters, whi ch will be names N,A ,X, and B.

TRIM and PENN need one additional parameter, named M. For all four routines, N
is the dimension of the linear system described by the matrix equation ; the A
matrix is N x N, and the X and B vectors have N elements. A is an array represent-
ing the A matrix. The rows of the A array correspond to the diagonals of the A
matrix; and the columns of the A array correspond to the rows of the A matrix,
(figures 1 and 2). For TRI2 and PENT2, X and B are singly—dimensioned arrays to
contain the result vector and the right-hand side of the linear system, respectively,
For TRIM and PENN , X and B each contain M vectors, where N is the number of linear
systems to be solved concurrently.

INTERNAL OPERATION
These routines take advantage of the special structure of a tridiagonal or

pentadiagonal matrix to solve the associated linear system as quickly as possible.
They can each entirely ignore the elements outside the original nonzero band

,5
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since Gaussian—El imination will not cause any fill-In on this type of matrix.
• At the end of the forward reduction step, all elements below the main diagonal

will be zeros; therefore, they need not be calculated or even stored--they can
be left as is, and simply ignored in the back—substitution. Similarly, the
elements on the main diagonal will be ones, and since they will be divisors In
the back substitution phase, they may also be Ignored , thus, only the upper
diagonals need to be changed in reducing the matrix-—one diagonal In the case of
a tridlagonal matrix; two for a pentadlagonal matrix. During back substitution ,

only the upper diagonals need be considered again reducing the amount of work.
On a given problem, these routines are approximately two orders of magnitude
faster than the Yale Sparse Matrix Package.

.
5
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. SECTION III

TRIPLY-TRIDIAGONAL SOLVER

• F’JNCTIONAL DESCRIPTION
GAUSDL iterativel y solves the matrix equation AX = B, where A Is a sparse

Nx N matrix with a special structure (described below), an d X an d B are N x I
vectors. It uses the Gauss—Seidel algorithm , adapted to solve a system with a
block-tridiagonal or “triply-tridiagonal ” matrix. In this type of matri x , the
nonzero elements lie on three sets of three adjacent diagonals. The middl e set

• of three consists of ~he main diagonal and the adjacent diagonal above and below
it, while the other two sets consist of three adjacent diagonal s centered at some
fixed distance from the main diagonal (figure 3).

PARAMETER DESCRIPTION
GAUSDL uses seven parameters--four to describe the A matrix, two for the

right-hand side, and one for the convergance criteria for Gauss-Seidel Iteration .
N is the order of the linear system (the A matrix is N x N; the X and B vectors
are N x 1). The GAP is the distance from the center set of three diagonals to
either of the outer sets, measured center-to—center, NP2GP2 is N + 2*GAP + 2.
It was originally made a formal parameter because it was to dimension an array,
but might now be changed so that it would be computed locally. A is the A matrix,
stored in diagonal form. It is dimensioned 9 x N. The first subscript of an
element designates which of the nine nonzero diagonals , counted from the lowest
to highest, contains the element, while the second subscript tells in which column
the el ement appears . The X an d B arrays con ta in the X an d B vectors (so l ution and
right-hand side, respectively). They must each be equival enced to another array
of length NP2GP2 in such a way that X(1) is equival ent to the (GAP + 2)nd element
of the long array, and B must be set up similarly. This is because the subroutine
subscripts these arrays In the range from -(GAP + 1) to N + GAP + 1. When all
el ements of the X vector change by less than DELTA In one iteration, no further
iterations are made. Thus DELTA is an approximation of the maximum al lowabl e
error In the result.

INTERNAL OPERATION
This routine is a straightforward impl ementation of the Gauss—Seidel

al gorithm, taking advantage of the known structure of the A matrix. 
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SECTION IV

MATRIX PAC KAGES

One of these packages is designed for manipulation of diagonally structured
sparse linear systems, while the other is made for general sparse systems,
assumming no specific structure. Both packages incl ude routines to add two
packed matrices , multip ly a matrix by a constant, multi ply times a vector, extract
a row, col umn , or individual element, and solve the matrix equation AX = B , where
A is a packed N x N matrix and X and B and N—vectors . The diagonal solver uses
an al gorithm which is arithmetically equivalent to Gaussian—Elimination after
rearranging the rows ; the general solver uses the Gauss-Seidel al gorithm . The
general package also includes an eigenvalue and—vector routine and a routine to
pack a sparse matrix.

• REPRESE NTATION OF PACKED MA TRICES
In the diagonal package, IDIAGS is the number of diagonal s in the A matrix

which contain nonzero elements. A is stored in an array dimensioned IDIAGS x N.
The second subscript refers to the column of the A matrix; the first subscript
tells which of the nonzero diagonal s (counting from the lower l eft) contains the
el ement. The corresponding el ement in IPOS tells where the diagonal appears in
the matrix. That Is , IPOs(I) gives the position of the diagonal contained in
A ( I ,*), where the position is given by the directed distance from the main diagonal ,
the positive sense being down and l eft. The main diagonal is the zeroth diagonal ,
the element in the lower l eft corner is the Nth diagonal , and the upper right
corner is the _Nth diagonal . The A array and the IPOS array may be dimensioned
oversize in the first subscript ; an additional parameter to the routine , ID IMA ,
is provided to dimension these arrays to that they need not be tight .

The requirements for packing a matrix are somewhat different for a general
sparse matrix. The nonzero elements themselves are placed in an array called

• PACKED , in the order they would be found if scanning the matrix row by row from
top to bottom, and l eft to right within each row . NNZR is the number of these
nonzero elements. IROWS(I) contains the index in PACKED of the beginning of the
1th row of the matrix. ICOLS parallel s PACKED , with each element containing the

• column index of the corresponding element of PACKED. IBIG(I) contains the index
in PACKED and ICOLS of the pivot el ement in row I of the matrix.

8
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MATRIX ADDITION
In adding sparse matrIces, a given element of the result may correspond to

nonzero elements in both matrices , a nonzero el ement of one but not the other, or
zero elements in both matrices. An element of the result matrix will in general
be nonzero if the corresponding element in either or both of the original matrices
was nonzero. For the general sparse matrix, this must be checked element—by-
el ement, while the diagonally structured matrix can be checked diagonal -by—diagonal .

In either case, a new packed matrix is assembled without unpacking either matrix.
The matrices to be added are called A and B, and the result matrix is called R.

MULTIPLICATION BY A CONSTANT
Mul tiplying a packed sparse matrix by a constant does not affect the

structure of the matrix, so the pointers need not be changed. Likewise, it is not
affected by the structure, so it does not need access to the pointers. Since
elements of the packed array may lie outside the real matrix, they may have

• undefined val ues, and mul tiplying these val ues by a number will cause an error in
some cases, so the multipl ying routine must be abl e to determine which elements

• . lie within the matrix and then may simply mul tiply those elements by the constant,

without regard for any pointers.

MULTIPLICATION TIMES A VECTOR
The routines in both packages input a packed sparse matrix along with a

vector called VECTOR and return a result cafled RESULT. Since zero elements of
the matrix will not affect the result, the routines deal only with the elements
which appear in the packed representation. The routine for sparse matrices
computes eac h el ement of the resul t in turn , since the rows of the matrix are
stored contiguously, whi le the rou tine for diagonal matrices traverses each
diagonal in turn, mul tiplying each element times the appropriate element of
VECTOR and adding the product to the appropriate element of RESULT. Each routine
is designed to traverse its respective packed representation as simply and quickly

as possible.

This routine may be used under some circumstances to avoid multi plying two

• lar ge sparse matr ices . If a matr ix equa tion con tains ~ term of the form (AB )X ,
where A and B are N x N matrices and X is a vector, it may be changed to the form
A ( BX ) an d evalua ted by applying this routine twice.

PACKING ROUTINE
The packing routine for the general sparse matrix package accepts rows of the

matrix one at a time , str ips ou t zero el ements an d compresses the row , pl aces it

9
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in the array PACKED, and sets the appropriate pointers. It also makes prepara-
tions for solving a linear system, such as marking columns for pivoting .

EIGENVALUE ROUTINE
In the eigenvalue routine, the elgenvectors are actually found first and

eigenvalues determined by multiplyi ng the elgenvector by the matrix and taking
the ratio of elements of the result vector to the corresponding elements of the
original eigenvector. Any vector may be expressed as a linear combination of the
elgenvectors of a matrix. The routine starts by choosing an arbitrary vector.
It then multiplies this vector by the matrix , thus mu l tiplying each eigenvector
component by Its corresponding elgenvalue. The resulting vector is normalized and
again multi plied by the matrix, repeating this process for some specified number
of iterations. In each iteration, the eigenvector with the largest eigenvalue
(in absolute value) is effectively mul tipl ied by 1 , while all other eigenvectors
are multi pl ied by some factor of smaller absolute val ue. After a number of 1 tera-
tions, the result vector consists of the elgenvector with the largest absolute
value , pl us some relatively very small components due to other eigenvectors.
Having found one elgenvector and its eigenvalue, the rou tine chooses another
arbitrary vector. It eliminates any component of the first elgenvector by effec-
tively mul tiplying by A - XI , where X is the previously determined eigenvalue.
The iterative scheme then proceeds as before, eventual ly caus ing the eigenvector
with the next largest elgenvalue to become dominant. Roundoff error can ~-~1ntro-
duce a component of a previous eigenvalue , so it must be el iminated occassionally
during the iteration process by mul tiplying by A - XI. This process can, in
theory, eventually find all of the elgenvalues, but is most useful where on ly a
few of the largest (In magnitude) are desired.

There is no apparent reason for this method to be unstable , given that
extraneous eigenvectors are eliminated frequently enough. Unfortunately, some
instability exists in this routine which will sometimes cause it to fail miserably,
beyond the second eigenval ue. The determinant apparently does not hold the key to
conv~rgance , since the routine can either succeed or fail for positive , negative ,
or zero determinan ts and for absol ute va lues greater , less than , or equa l to 1.
Diagonal dominance was also tested and seems to bear no relationship. The routine
is not guaranteed to converge beyond the second largest elgenvalue. Since termin- .

ation is based on number of iterations rather than convergance, the routine will
not enter an infinite loop, but resul ts must be checked by the calling routine.
Experience has shown that If one eigenvalue is badly in error , all later elgen-

values will be Invalid , since the corresponding eigenvector component will not be
10
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correctly el iminated from the test vector. This project was terminated prior to
finding either the reason for nonconvergance or a suitabl e test for a matrix.

I
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SECTION V

SOLVING A LINEAR SYSTEM 
-

The solving routine in the general sparse matrix package uses the Gauss-
Seidel algorIthm, adapted to this particular packing scheme. Several criteria
for convergance were tried and discarded while writing this routine but none were
found suitabl e, hence, the termination on either the error tolerance or a fixed
number of Iterations Is allowed .

The al gorithm used In the diagonal package is arithmetically equival ent to
Gaussian-Elimination with a full pivoting scheme to minimi ze fill-in , but was

developed and will be explained somewhat differently. In figure 4, cells with an
X contain nonzero elements, and empty cells are zero.

The matrix A1~ Is the first partitioned into reducible rows and reducing rows
as shown in figure 4. (For the present, assume that the lowest nonzero diagonal
Is entirely nonzero.) Rows which lie entirely above the lowest diagonal are
reducing rows . Multiplying the first reducing row by an appropriate constant

( —A1,1 / AM+l ,l) and adding it to the first reducible row clears the first element
(changes it to a zero), but due to the nature of this row operation, it also
causes el ements to the right to change. In general, nonzero el ements appear where
zeros occurred previously. Since the second reducing row has no nonzeros left of
the second element, it may be used similarly to cl ear the A1 2 element without
causing fill— in to the left, but also causes fill— in to the right. In general , the
reducing rows are used in sequence to clear the first row from left to right, with

the 1th row used to cl ear the A11 position while possibly causing some fill-in to
the right but never to the l eft. Since there are N columns but only N - M reducing

rows, the rightmost M elements will remain nonzero, leaving the matrix In the form
shown in figure 5. The same procedure can be applied to the 2nd, 3rd, 4th throug h

Mth rows, leaving an equival ent matrix of the form shown in figure 6. This matrix
contains a uniquely determined submatrix in the upper right corner, which represents

• an N x N linear system consisting of this submatrix , the las t N el ements of the
X vector (related to the last M columns of the original matrix), and the first M

element of the B vector (related to the first M rows of the original matrix).
Since this subsystem is uniquely determined , it can be solved (by Gaussian

El imination or any other appropriate procedure), yielding values for the last M

• 12
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elements of the original X vector. With X
~ —M 

through XN known , the last equation
of the original linear system now contains only one unknown with a nonzero coeffi-
d ent, so that unknown can readily be solved for. Wi th the last M + 1 elements
known , the next-to-last equation has only one remaining unknown, which may now be

• found. This procedure, similar to the back-substitution process in Gaussian—

• Elimination , continues until all unknowns are found.

This discussion of the al gorithm assumes that the lowest nonzero diagonal is
entirely nonzero. The algorithm can be generalized to handle some zeros on the
diagonal as follows. Rows with zeros on the lowest diagonal are simply skipped
during the elimination process. This leaves the corresponding column without a
row to use for el imina tion , so the column rema ins fil led, as in figure 7 and 8.
Each row skipped in this manner remains linearly independent of the reducible rows
since it is not used in the reduction, so it may become a reducibl e row itself.
Thus , for each column added to the reduced system by skippi ng rows during the
el imination process, a row is al so added , as in figure 9. (Diagonals other than
the lowest diagonal are omitted for the sake of clarity in this and subsequent
figures.) Rows may be exchanged if corresponding elements of the B vector are
exchanged to give an equivalent system in the form of figure 10. Columns may be
exchanged by exchanging the corresponding elements of the X vector, leaving the
system in the form shown in figure 11 . Just as in the case of no zeros on the
l owest diagonal , we now have a uniquely determined subsystem to start the final
solution process and back-substitution as in the previous paragraph.
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xxx XXX
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Xxx XXX

xxx xxx
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Figure 3. Triply—Tnidiagonal Matrix
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Figure 5. Matrix After First Row Is Reduced
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Figure 6. Completely Reduced Matrix
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Figure 7. Matrix After First Row is Reduced
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Figure 8. Completely Reduced Matrix
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Figure 10. MatrIx After Exchanging Rows
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Figure 11. Matrix After Exchanging Columns
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