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SECTION I
INTRODUCTION

Sparse linear systems occur in many different areas. By sparse linear system
we refer to a system of equations of the form:
AI1 x.I + AIZ x2 + AI3 X3 Pk AIN X, =B

N I

where the As and Bs are known constants and Xs are the unknown and at least 85 to
90 percent of the AIJ are zero. Since such a linear system must have N equations
to have a unique solution, the term linear system will be used to refer to such a
square system of N equations in N unknows. Such a linear system may also be

represented by the matrix equation AX = B, where A is an N x N matrix, and X and
B are N x 1 vectors.

Two algorithms for solving such systems are Gaussian-Elimination and Gauss-
Seidel iteration. Explanations of both may be found in any good text on linear
algebra. Gaussian-Elimination is done by a series of elementary row operations,
each of which produces a different but equivalent linear system (equivalent means
that the same X vector is a solution). Elementary row operations affect a row of
the linear system, where a row consists of one equation in the equation form, or
a row of the A matrix plus the corresponding element of the B vector, in matrix
form. Three basic types of row operations are allowable - exchanging two rows
(order of the equations is not significant), multiplying a row by a constant
(multiplying both sides of an equation by a constant), and adding one row to
another (adding equal quantities to both sides of an equation). Elementary
column operations, though not normally useful, can be performed similarly on a
column of the A matrix and the corresponding element of the X vector.

The main difficulty in applying Gaussian-Elimination to large sparse linear
systems arises from a phenomenon called fill-in. In adding one row to a second
row, the result will in general contain nonzero elements at every position where
either of the original rows contained a nonzero element.

After a number of these row operations, the matrix fills-in with nonzero
elements and is no longer sparse. This fill-in destroys any advantage a routine
may be able to gain (in speed or reduced storage) if the matrix remains sparse.
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Each of the routines discussed in this report is intended to manipulate
large sparse matrices of a particular type or to solve the associated system of
linear equations.
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SECTION II
NARROW-BAND SOLVERPS

FUNCTIONAL DESCRIPTION

TRI2, TRIM, PENT2, and PENTM are all intended to solve matrix equations of
the form AX = B, where X and B are n-vectors and A is a sparse N x N matrix with
a special structure. TRI2 and TRIM accept a matrix in which all the nonzero
elements 11e within the main diagonal (upper left corner to lower right corner)
and the diagonals immediately adjacent above and below (figure 1). This type of
matrix will be referred to as a tridiagonal matrix. PENT2 and PENTM are similar
except that they accept a matrix with one additional diagonal immediately above
and below the nonzero diagonals of the tridiagonal matrix. This type of matrix
will be called a pentadiagonal matrix, as it has five nonzero diagonals: the

main diagonal, the two diagonals immediately above the main diagonal, the two
immediately below it (figure 2).

TRI2 and PENT2 each solve a single matrix equation (AX = B) while TRIM and
PENTM each solve several such equations concurrently by changing the X vector and
the B vector to N x M matrices. This technique allows a saving in computation,
since the A matrix need be reduced only once in solving several matrix equations.
PARAMETER DESCRIPTION

TRI2 and PENT2 need four parameters, which will be names N,A,X, and B.

TRIM and PENTM need one additional parameter, named M.  For all four routines, N

is the dimension of the linear system described by the matrix equation; the A

matrix is N x N, and the X and B vectors have N elements. A is an array represent-
ing the A matrix. The rows of the A array correspond to the diagonals of the A
matrix; and the columns of the A array correspond to the rows of the A matrix,
(figures 1 and 2). For TRI2 and PENT2, X and B are singly-dimensioned arrays to
contain the result vector and the right-hand side of the linear system, respectively,

For TRIM and PENTM, X and B each contain M vectors, where M is the number of linear
systems to be solved concurrently.

INTERNAL_OPERATION

These routines take advantage of the special structure of a tridiagonal or
pentadiagonal matrix to solve the associated 1inear system as quickly as possible.
They can each entirely ignore the elements outside the original nonzero band,

5
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since Gaussian—Elimination will not cause any fill-in on this type of matrix.
At the end of the forward reduction step, all elements below the main diagonal
will be zeros; therefore, they need not be calculated or even stored--they can
be left as is, and simply ignored in the back-substitution. Similarly, the
elements on the main diagonal will be ones, and since they will be divisors in
the back substitution phase, they may also be ignored, thus, only the upper
diagonals need to be changed in reducing the matrix--one diagonal in the case of
a tridiagonal matrix; two for a pentadiagonal matrix. During back substitution,
only the upper diagonals need be considered again reducing the amount of work.
On a given problem, these routines are approximately two orders of magnitude
faster than the Yale Sparse Matrix Package.
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SECTION III
TRIPLY-TRIDIAGONAL SOLVER

FUNCTIONAL DESCRIPTION :
GAUSDL iteratively sclves the matrix equation AX = B, where A is a sparse

NxN matrix with a special structure (described below), and X and B are N x 1

vectors. It uses the Gauss-Seidel algorithm, adapted to solve a system with a }

block-tridiagonal or ”triply-tridiagénal" matrix. In this type of matrix, the :

nonzero elements 1ie on three sets of three adjacent diagonals. The middle set

of three consists of the main diagonal and the adjacent diagonal above and below

it, while the other two sets consist of three adjacent diagonals centered at some :

fixed distance from the main diagonal (figure 3).

PARAMETER DESCRIPTION

GAUSDL uses seven parameters--four to describe the A matrix, two for the
right-hand side, and one for the convergance criteria for Gauss-Seidel iteration.
N is the order of the linear system (the A matrix is N x N; the X and B vectors
are N x 1). The GAP is the distance from the center set of three diagonals to
either of the outer sets, measured center-to-center, NP2GP2 is N + 2*GAP + 2.
It was originally made a formal parameter because it was to dimension an array,

but might now be changed so that it would be computed locally. A is the A matrix,
stored in diagonal form. It is dimensioned 9 x N. The first subscript of an
element designates which of the nine nonzero diagonals, counted from the Towest

to highest, contains the element, while the second subscript tells in which column
the element appears. The X and B arrays contain the X and B vectors (solution and
right-hand side, respectively). They must each be equivalenced to another array
of length NP2GP2 in such a way that X(1) is equivalent to the (GAP + 2)nd element
| of the long array, and B must be set up similarly. This is because the subroutine
subscripts these arrays in the range from -(GAP + 1) to N + GAP + 1. When all

1 elements of the X vector change by 1ess than DELTA in one iteration, no further

: iterations are made. Thus DELTA is an approximation of the maximum allowable
error in the result.

INTERNAL QPERATION
This routine is a straightforward implementation of the Gauss-Seidel
algorithm, taking advantage of the known structure of the A matrix.

7
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SECTION IV
MATRIX PACKAGES

One of these packages is designed for manipulation of diagonally structured
sparse linear systems, while the other is made for general sparse systems,
assumming no specific structure. Both packages include routines to add two
packed matrices, multiply a matrix by a constant, multiply times a vector, extract
a row, column, or individual element, and solve the matrix equation AX = B, where
A is a packed N x N matrix and X and B and N-vectors. The diagonal solver uses
an algorithm which is arithmetically equivalent to Gaussian-Elimination after
rearranging the rows; the general solver uses the Gauss-Seidel algorithm. The
general package also includes an eigenvalue and-vector routine and a routine to
pack a sparse matrix.

REPRESENTATION OF PACKED MATRICES

In the diagonal package, IDIAGS is the number of diagonals in the A matrix
which contain nonzero elements. A is stored in an array dimensioned IDIAGS x N.
The second subscript reférs to the column of the A matrix; the first subscript
tells which of the nonzero diagonals (counting from the lower left) contains the
element. The corresponding element in IPOS tells where the diagonal appears in
the matrix. That is, IPOS(I) gives the position of the diagonal contained in
A(I,*), where the position is given by the directed distance from the main diagonal,
the positive sense being down and left. The main diagonal is the zeroth diagonal,
the element in the lower left corner is the Nth diagonal, and the upper right
corner is the -Nth diagonal. The A array and the IPOS array may be dimensioned
oversize in the first subscript; an additional parameter to the routine, IDIMA,
is provided to dimension these arrays to that they need not be tight.

The requirements for packing a matrix are somewhat different for a general
sparse matrix. The nonzero elements themselves are placed in an array called
PACKED, in the order they would be found if scanning the matrix row by row from
top to bottom, and left to right within each row. NNZR is the number of these
nonzero elements. IROWS(I) contains the index in PACKED of the beginning of the
Ith row of the matrix. ICOLS parallels PACKED, with each element containing the
column index of the corresponding element of PACKED. IBIG(I) contains the index
in PACKED and ICOLS of the pivot element in row I of the matrix.

8
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MATRIX ADDITION
In adding sparse matrices, a given element of the result may correspond to i
nonzero elements in both matrices, a nonzero element of one but not the other, or
zero elements in bcth matrices. An element of the result matrix will in general
be nonzero if the corresponding element in either or both of the original matrices
was nonzero. For the general sparse matrix, this must be checked element-by-
element, while the diagonally structured matrix can be ciiecked diagonal-by-diagonal.
In either case, a new packed matrix is assembled without unpacking e?ther matrix.
The matrices to be added are called A and B, and the result matrix is called R.

| MULTIPLICATION BY A CONSTANT

Multiplying a packed sparse matrix by a constant does not affect the
structure of the matrix, so the pointers need not be changed. Likewise, it is not
affected by the structure, so it does not need access to the pointers. Since
elements of the packed array may lie outside the real matrix, they may have
undefined values, and multiplying these values by a number will cause an error in
% some cases, so the multiplying routine must be able to determine which elements
' Tie within the matrix and then may simply multiply those elements by the constant,
without regard.for any pointers.

. MULTIPLICATION TIMES A VECTOR
The routines in both packages input a packed sparse matrix along with a
vector called VECTOR and return a result called RESULT. Since zero elements of
the matrix will not affect the result, the routines deal only with the elements
ﬁi which appear in the packed representation. The routine for sparse matrices
| computes each element of the result in turn, since the rows of the matrix are
E* stored contiguously, while the routine for diagonal matrices traverses each
| diagonal in turn, multiplying each element times the appropriate element of
VECTOR and adding the product to the appropriate element of RESULT. Each routine
is designed to traverse its respective packed representation as simply and quickly
as possible.

N P I T TSNS S Tw

This routine may be used under some circumstances to avoid multiplying two
large sparse matrices. If a matrix equation contains a term of the form (AB)X,
where A and B are N x N matrices and X is a vector, it may be changed to the form

v A(BX) and evaluated by applying this routine twice.

PACKING ROUTINE

The packing routine for the general sparse matrix package accepts rows of the
matrix one at a time, strips out zero elements and compresses the row, places it |
o !
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in the array PACKED, and sets the appropriate pointers. It also makes prepara-
tions for solving a linear system, such as marking columns for pivoting.

EIGENVALUE ROUTINE

In the eigenvalue routine, the eigenvectors are actually found first and
eigenvalues determined by multiplying the eigenvector by the matrix and taking
the ratio of elements of the result vector to the corresponding elements of the
original eigenvector. Any vector may be expressed as a linear combination of the
eigenvectors of a matrix. The routine starts by choosing an arbitrary vector.
It then multiplies this vector by the matrix, thus multiplying each eigenvector
component by its corresponding eigenvalue. The resulting vector is normalized and
again multiplied by the matrix, repeating this process for some specified number
of iterations. In each iteration, the eigenvector with the largest eigenvalue
(in absolute value) is effectively multiplied by 1, while all other eigenvectors
are multiplied by some factor of smaller absolute value. After a number of itera-
tions, the result vector consists of the eigenvector with the largest absolute
value, plus some relatively very small components due to other eigenvectors.
Having found one eigenvector and its eigenvalue, the routine chooses another
arbitrary vector. It eliminates any component of the first eigenvector by effec-
tively multiplying by A - A, where A is the previously determined eigenvalue.
The iterative scheme then proceeds as before, eventually causing the eigenvector
with the next largest eigenvalue to become dominant. Roundoff error can reintro-
duce a component of a previous eigenvalue, so it must be eliminated occassionally
during the iteration process by multiplying by A - AI. This process can, in
theory, eventually find all of the eigenvalues, but is most useful where only a
few of the largest (in magnitude) are desired.

There is no apparent reason for this method to be unstable, given that
extraneous eigenvectors are eliminated frequently enough. Unfortunately, some
instability exists in this routine which will sometimes cause it to fail miserably,
beyond the second eigenvalue. The determinant apparently does not hold the key to
convérgance, since the routine can either succeed or fail for positive, negative,
or zero determinants and for absolute values greater, less than, or equal to 1.
Diagonal dominance was also tested and seems to bear no relationship. The routine
is not guaranteed to converge beyond the second largest eigenvalue. Since termin-
ation is based on number of iterations rather than convergance, the routine will
not enter an infinite loop, but results must be checked by the calling routine.
Experience has shown that if one eigenvalue is badly in error, all later eigen-

values will be invalid, since the corresponding eigenvector component will not be
10
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correctly eliminated from the test vector. This project was terminated prior to
finding either the reason for nonconvergance or a suitable test for a matrix.
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SECTION V
SOLVING A LINEAR SYSTEM

The solving routine in the general sparse matrix package uses the Gauss-
Seidel algorithm, adapted to this particular packing scheme. Several criteria
for convergance were tried and discarded while writing this routine but none were
found suitable, hence, the termination on either the error tolerance or a fixed
number of iterations is allowed.

The algorithm used in the diagonal package is arithmetically equivalent to
Gaussian-Elimination with a full pivoting scheme to minimize fill-in, but was
developed and will be explained somewhat differently. In figure 4, cells with an
X contain nonzero elements, and empty cells are zero.

The matrix AIJ is the first partitioned into reducible rows and reducing rows
as shown in figure 4. (For the present, assume that the lowest nonzero diagonal
is entirely nonzero.) Rows which 1ie entirely above the lowest diagonal are
reducing rows. Multiplying the first reducing row by an appropriate constant
( -A1.1 / AM+1’])and adding it to the first reducible row clears the first element
(changes it to a zero), but due to the nature of this row operation, it also
causes elements to the right to change. In general, nonzero elements appear where
zeros occurred previously. Since the second reducing row has no nonzeros left of
the second element, it may be used similarly to clear the A1.2 element without
causing fill-in to the left, but also causes fill-in to the right. In general, the
reducing rows are used in sequence to clear the first row from left to right, with
the Ith row used to clear the A!I position while possibly causing some fill-in to
the right but never to the left. Since there are N columns but only N - M reducing
rows, the rightmost M elements will remain nonzero, l1eaving the matrix in the form
shown in figure 5. The same procedure can be applied to the 2nd, 3rd, 4th through
Mth rows, leaving an equivalent matrix of the form shown in figure 6. This matrix
contains a uniquely determined submatrix in the upper right corner, which represents
an M x M linear system consisting of this submatrix, the last M elements of the
X vector (related to the last M columns of the original matrix), and the first M
element of the B vector (related to the first M rows of the original matrix).
Since this subsystem is uniquely determined, it can be solved (by Gaussian
Elimination or any other appropriate procedure), yielding values for the last M

12
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elements of the original X vector. With XN M through XN known, the last equation
of the original linear system now contains only one unknown with a nonzero coeffi-
cient, so that unknown can readily be solved for. With the last M + 1 elements
known, the next-fo-1ast equation has only one remaining unknown, which may now be
found. This procedure, similar to the back-substitution process in Gaussian-
Elimination, continues until all unknowns are found.

This discussion of the algorithm assumes that the lowest nonzero diagonal is
entirely nonzero. The algorithm can be generalized to handle some zeros on the
diagonal as follows. Rows with zeros on the lowest diagonal are simply skipped
during the elimination process. This leaves the corresponding column without a
row to use for elimination, so the column remains filled, as in figure 7 and 8.
Each row skipped in this manner remains linearly independent of the reducible rows
since it is not used in the reduction, so it may become a reducible row itself.
Thus, for each column added to the reduced system by skipping rows during the
elimination process, a row is also added, as in figure 9. (Diagonals other than
the lowest diagonal are omitted for the sake of clarity in this and subsequent
figures.) Rows may be exchanged if corresponding elements of the B vector are
exchanged to give an equivalent system in the form of figure 10. Columns may be
exchanged by exchanging the corresponding elements of the X vector, leaving the
system in the form shown in figure 11, Just as in the case of no zeros on the
lowest diagonal, we now have a uniquely determined subsystem to start the final
solution process and back-substitution as in the previous paragraph.
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XXX
XXX

Figure 3. Triply-Tridiagonal Matrix
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Figure 6. Completely Reduced Matrix
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x x® ®x XX x x %
x X X XX x X
x x X XX x b3 x
X x X XX X x x
x x X XX b x x
; X X X XX X x |x
g ® x X XX ® xX Ix
| x x X XX X %
' X x X XX x
| x x X XX x b3
! x x X XX X |x
x x X XX b3
! x X X XX
1 T X X X XX x
Reducibl "x "x "x":x X
i X X x x
i Reducing
‘ rows
4
i% Figure 8. Completely Reduced Matrix
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gl ool asdk

" AFWL-TR-78-216

XXXXXXKX
HEXRRKRKXXKRN
KRR KKX
KUK X
HEXXHKHKXKXKX
XXX XXXX
XXX XXX
XXX KX
KRXERXXRXKXX X

XXXXXX XX

XXXXXXXXXX
XX XX XXXXXX
xxxxxxxxx#

XXXXXXXXX

b b3 b3 HKAXXXXXXXX

el

X X XXX XXXX

X x HKIKARKXAKXKX XX

xX XU X

T
Reducib| M
row o

Reducing
rows

Figure 9. Reducible Rows Added During Reduction
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s R

AFWL-TR-78-216

x4

X X X X X X
XXXXXXXXXNK

)

XXXXXXXXXXL(

XX XX

Reduciblel *

rows| X

XXX KKK XK
HARKARKAKRKXKK
HAEXHXAKKXK XK
KURXXXKKXX
HRRXRAKXAKRXK
XXX KXX
AKX KXX
HRXXRKKKXKXXK
XXX RKRKX XX
XEXXHXXXX
HKAXKRKXKRKNK
HAXKAKKXX
XXRRXRKXKXX

XXXXXXXXX XXX
XXXXXXXXXX XXX

Reducing
rows

Figure 10. Matrix After Exchanging Rows
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AFWL-TR-78-216

—

r HHHKHKHKK KK KKK KX
3¢ 3¢ ¢ X 3¢ 3¢ X X 3¢ 3% 3¢ X X
3 3¢ 3¢ 3¢ 3¢ 2K X 3 2 N KKK
RKRRKHKXKKKKXKX XX
M 3¢ 3¢ 3 X XK K XK KK KK XX
R A RKHK KKK KK KXXX X
3¢ 3¢ 3¢ 3¢ X X 3¢ X X X XXX
XK KKK K KX XX XX
~N 3¢ 3¢ 3¢ 3 X XK X X X XK K X
RXXKRKXXKXKXXKX
3¢ 3¢ 3¢ 3 K 3 XK KK KX

HRHRKHXRKKHXK XX

X XK KKKK KX

Figure 11. Matrix After Exchanging Columns
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