
-

~~~ Thu
AD—A0 66 806 8DM CORP ALBUQt.ERQUE N HEX FIG 2011’s

EXEI T USERS MAMJAL.(U)
JAN 79 F29601—76—C—0122

UNCLASSIF lED BDM/A—76—14O tR—R2 AFWL—TR—77—207 NL
or2

‘II
‘I



-.
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -—- - - - -

~~~~~~~~~~~~~~
--

~~~~~~~~~~~~~~~~ ---•-

~~~~~~

I ’ P ’

/ AFWL-TR-77 207

~ LE YE Vcc) EXEMPT USERS MANUAL
4

I-

BDM Corporation
Albuquerque, NM 87106

January 1979

_
____  

Final Report

~O_ ~~rs% Approved for public release ; distribution unlimit ed .

I i_i_.

D D C ~

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirt lond Air Force Bose, NM 8711 7

‘~9 () 
~



F — - ________ -

AFW L.-TR- 77-207

This fi nal report was prepared by the BDM Corporation , Albu querque , New Mexico .
under Contract F2960l—76—C-0122 , Job Order 37630113 wi th the Air Force Weapons
Laboratory , K i rt la nd Air  Force Base , New Mexico . Mr R. M. Peizi (ELI) was the
Project Officer—in—Cha rge.

When US Government drawings , specifications , or other data are used for any
purpose other than a defini tely related Government procurement operation , the
Government thereby I ncurs no responsibility nor any obli g a t i o n wha tsoever , and
the fact that the Government may have formula ted , furn ished , or in any way
supp l i ed  the sa i d draw i ngs , specifica tions , or other data is not to be regarded
by implication or otherwise as in any manner licensing the holde r or any other
person or corporat ion or convey i ng any r i g hts or permissio n to manufac ture , use ,
or sell any patented invention that may in any way be re l ated thereto.

Th is report has been authored by a contractor of the US Government. Accord-
ing ly, the US Government retains a nonexciusive royalty-free license to pub ii s~i
or reproduce the mater i al con tained here i n , or al low others to do so , for the
US Governmen t purposes.

This report has been reviewed by the Office of Informat ion (01) and is
releasable to the National Techn i ca l Information Serv i ce (NTIS). At NTIS it
w ill be ava i lable to the gene ra l public , including fore i gn nations.

f This techn i ca l report has been reviewed and is approved for publication .

ROBERT M. PELZL
Projec t Off i cer

FOR THE COMMANDER

,~J I%~~~ ~ Z~Z~~’
,‘J. PHILIP1~AST ILLO , PhD DONALD A. DOWLER

“ Techno1o~’y Branch Colonel • USAF
Elec t romagneti cs D i v is io n

S

DO NOT RETURN THIS COPY . RETA!N OR DESTROY .

‘ I

/ 
_ _

~~~~~~~~


UNCLASS IFI ED (2~j~!7b’/)1t~ ,L. .)
~~l’Cf ’

k$SIP%CATt O N QP TN ~$ ~~itoE ~~~~ D... E.i,.~.d)

REPORT DOCUMENTATION PAGE I BEFO c FORM
1 it U..S(it .-. o~~~ AGC4 ION NO. 3 itE CIøiE~~T $ C A T A L O O suMsEit

TR-Th2e7 2
_ _ _ _ _ _ _

(
~

~~~~~~~~~~E~~~~ NUAL ’ 
Tys, o,*t,O~~~~

IJo
cov cit to

/ ~ 
7~~~~~~~~~M~~~~~~5~~~~~ UMSIR

1. A(j ’r 140A(i) 5 ~ ONTitA CT Oit

e~ 
2~~9~~7~~~~’

0. •E it~~O itMINO OitOANIZ A TI ON NAM E A NO i t OD it iSs tO. •it O GNAM EL(MEN~~. PUOJEC t, Y*$K 
—

A i t I A  4 WOitIC UNIT NUMSE itS
8DM Corpora t ion / .

2600 Yale Blvd SE ~ 64711F / ~~ /
Al buquerque NM 87106 (,4~ 37630+13 / . /

II. CONY NOLLING 0111CC NAME AND A DOitISS ~~
5I

~ 
~~ UFS*1 *JTS

Air Force Weapons Laboratory (ELI) II J~n~~~~ ~ ‘79 / -

Kir tland AFB , NM 87117 ~~~ .

14 MONITOitINO AGENCY N S A 4 •,~~ ~~ ,,uoIISn~ Offlc.) 15. SECUitITY CLASS. (.1 hI. P.vo ,f) 
—

/
~
2 .L’/ //~ UNCLASSIFIED

TO., O(C~~ASSI~~ICAIION. O0WNGitA0INU

Is. Ot 5Tit~Su1ION STATEMENT (01 thi • Rspof t)

Approved for public release ; distribution unlimited.

17. OI$TitISUTIOP.
\
STA?(MINT (.1 it . .b.Ir.c e .nI... d In floeS 20. ii dIU.,. nl ft. ,. R.~.ii)

IS. SU~~~L EM(NTAitY NOT ES

IS. KEY WOit OS (Caøffi uu an ,..Ite. aid . II ,.c.u&y and id.nhl~
. by block m.a.b.r)

Aircraf t susceptib ility to EMP
System analysts of EMP effects on aircra ft
EMP coupling to aIrcraft subsystems
Computer program model ing of aircraft response to EMP

aG A SSYit  AC T (Conifilu. r.v. ,.• .ld• It n.e...~~v .,d Id.nt dtv by block nu.,b.r)

j~’This volume describes the use of the EXEMPT computer program for the Creation ,
ma intenance and modi fication of a data base to support electromagnetic cou-
p ling analysis for linear systems. Use of the EXEMPT Command Language , FOR-
IRAN Mathematical functions . EXEMPT Hbrary functions , and data disp lay
operations is presented. Interface requirements for user provided subroutines
and other programs are defined.

~~ 1473 EDIT ION 01 NCV OS IS 3SSOL ITE UNCLASS I Fl ED
S C C . ~i t I ’ V  ~ LA S S I 1 ICA T I O N  31 ‘~NIO ‘SO C le~ •n ~‘.,a ~~~~~~~~~ _j

9
~~~~~~~~~~~~~~~~~ :. T . TT 

-~~ - .-- - . ..- - . .-

.—--
~~~~~~~~ 

.
~~~~~~~— ~~~~~~~~~~~

—
~~~~~~~~~~~~~~~~~

-.- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Ti~ 
.

~~~~~~~

,— — -

~~~

-— --

~~~~~

-—

~

.-, 
-

PREFACE

This volume describes the capabilities and use of the E~~MPT code which
function as the executive processor for SUN and B—lAN or as a stand—alone

processor for data base maintenance and data manipulation.

The BDM Program Manager was Mr R. J. Balestri and the Lead Programmer

was Mr R. L. Tyler. Mr Robert Peizi of APWL/ELA was the COTR for this effort.

FACCESSION for

NTIS White $ectI~ W
Butt Sectiol D

UNANNOP’~CED
JUSTI ~ k~ION

BY . —

~~~~~~~~~~~ tOOtS
~~i. ~~~~~~~~~~~

SPU~1N.

i/ti

L2 . ~~~~~~~~~~~~~~~~~~~ -
.~~~

p.. -
-

-,I
~~

- -‘:
~

-

~~~~~~ 
— — —

~

-•--,----

~

.--

— — 
— — -

~~~

- -- .-
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~

TABLE OF CONTENTS

Section

INTRODUCTION 1

1. FUNCTION OF EXEMPT 1
2. DATA SET DESCRIPTION

. 1

II EXEMPT COMMAND LANGUAGE 3

1. LIP COMMAND S 9

a. Scan Limit Directives 10
b. Alternative File Directives 11
c. Run Directive 12
d. End Directive 13

2. COMMAND LANGUAGE PROCESSOR 14

a. Command LOOP/LABEL 14
b. EXEMPT Logical Commands 15

III EXTERNAL FILE STRUCTURES 62

1. EXEMPT SEQUENT IAL BINARY FILE FORMAT 62
2. RANDOM ACCESS FILES 66

IV USER INTERFACE REQUIREMENT S 75

1. NO INPUT ARGUMENTS OR RESULTANT SPECIFIED 77
2. RESULTANT ONLY SPECIFIED 77
3. ONE OR TWO INPUT ARRAY AND RESULTANT

SPECIFIED . 79
4. PASSING THE GLOBAL REAL ARRAY AND CURRENT

INDEPENDENT ARRAY 79

V COMPUTER INTERFACE REQUIREMENTS 83

1. EXAMPLE 1 DESCRIPTION 83
2. EXAMPLE 2 DESCRIPTION 83
3. EXAMPLE 3 DESCRIPTION 89
4. EXAMPLE 4 DESCRIPTION 96

iii j

,~~. -

~~
, -,ww ~w . . ~~~~~~~

.
~~~~~~ 

-. -~

- -

LIST OF ILLUSTRATIONS

FIGURE PAGE
1. EXEMPT Program Structure 4
2 EXEMPT CLP Structure 5
3 Skipping Files and Blocks 67
4 EXEMPT Command Language Flow 68
5 RANDOM Access File Structure 71

6 EX}~fPT Run Stream Using the Global Real. Array 81
7 User Subroutine Interface 

. 
82

8 Job Stream and ECL for Example 1 84
9 Output for Example 1 85
10 Job Stream and ECL for Example 2 86

t 1]. LIST Output for Example 2 87
12 METAPLOT for Example 2 88
13 Job Stream and ECL for Example 3 90
14 LIST CURFIL Output 91
15 Index From SAVRAN Command 95
16 Job Stream and ECL for Example 4 97
17 LIST Output of Example 4 98
18 PRTPLT Output of Example 4 99
19 METAPLOT Output for Example 4 LeO

iv



.‘l -

~~~

‘

~~ L~T~~~TT ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
‘

~~~~~~~~~~~
-
~~
_

-

LIST OF TABLES

Table
• 1 EXEMPT COMMAND KEYWORDS 6
- 2 SLAM ~~MMAND KEYWORDS 7

3 KEYWORD DEFAULT LIST 55

4 PERMANENT DATA MASTER TAPE STRUCTURE 73

v/vi

p ‘• - 



—~~~~~ ---,-,-.—~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

_~~~~~

SECTION I

INTRODUCTION

The purpose of this manual is to provide the EXEMPT user with an

understanding of the capability of the EXEMPT code and the information

necessary to correctly implement the program.

The remainder of this section discusses the EXEMPT code at a
general level. Subsequent sections discuss the EXEMPT Command Language
(ECL), the external file structures, the internal data structures, the
user interface requirements, and the computer requirements.

1. FUNCTION OF EXEMPT

The function which the EXEMPT code is designed to perform is that
of a data base interface processor . By manipulating the data provided

j by the user and generated internally, a number of mathematical operations

may be performed on the data. The operations are conmianded by the user

and are performed in the sequence specified. The result of the operations

will be the analysis desired on the system to which the data pertains.
Therefore, EXEMPT stores and retrieves data, provides data arrays to
user supplied programs and subroutines, performs algebraic operations on
data, and will perform EXEMPT library functions on data.

2. DATA SET DESCRIPTION

The basic element of EXEMPT is the data set. This is a collection

of ntimbers which have some physical or logical reason to be included in

a set. In order to assure the integrity of the data and the sanity of

an operation, a certain amount of information about the data set is

required and will be referred to as data set attributes. The attributes

• of a data set are used to identify the type, source , length, and location

of each data set referenced. The user may reference these data sets
using symbolic names (limited to ten characters). When a reference is

made to perform an operation on a data set , the attributes will be

recovered to determine the correctness of the operation, auxiliary data

1



— v— 
~~~
. ,.

~ ~~
___,.

~ ~~~~~~~
— —

-• -- ,. * •*_~~~~~_,~~~._____._ .______-. -

sets required , and the appropriate input/output (I/O) action to recover
the data and store current data. EXEMPT will distinguish between three

basic types of data sets. These are frequency domain, time domain, and

raw or untyped data. Associated with frequency domain data are two

subsets, the dependent or re~’~onse data and the independent or frequency

data. Similarly, a time domain data set will have dependent or response

data and independent or time data. Raw data constitute a user provided

array of data which is not a frequency or time domain data set. Raw

data may be used in direct algebraic manipulations as an arithmetic

operand but may not have frequency or time domain operations performed
upon it. Data sets provided by the user from some external source must

have the type specified. Data sets generated internally by operations

on existing data sets will have the same type attributes as the existing

or parent data sets as modified by the operation. For instance, if a

data set is generated by performing a Fourier transform upon a time

domain data set, the resultant data set will have the attributes of a

frequency domain data set. However, in the direct point by point mul-
tiplication of two like data sets, or a raw and typed data set , the

result will be a data set of the same type as involved in the operands.
In order to avoid unnecessary storage, the independent array is not

regenerated for the resultant array unless the operation alters the

array contents. Instead , the resultant dependent data array is linked
to the independent data array of its parents. This type of implementa—

tion results in EXEMPT being an attribute linked/set theoretic data base
manipulator. As such, it is easily expanded to include other operations

by providing the attributes required for the operations and the software

to implement the operation.

2 J

. —

r~
--—

~ ~~~~~~~~~~~~~

SECTION II

EXEMPT C~~~tAND LANGUAGE

EXEMPT is a highly modularized code with distinct classes of functions

performed in submodules. The top level structure of EXEMPT is shown in

Figures 1 and 2. As illustrated , all codes required for data inter-

facing with system devices (tape files , disk files, and punch cards) are
located in the main segment. The first level of modularization is

represented by the Language Input Processor (LIP) and the Command

Language Processor (CLP). These two modules execute independently of each

other. The LIP is called to read the users ECL and generate CLP decodable

tasks in the task table. After encountering an END or RUN command,
control is returned to EXEMPT which subsequently causes the CLP to be
loaded. The structure of the CLP is shown in Figure 2. There are three

classes of operations illustrated. The logical operations are I/O

oriented. They simply format and transfer data to the appropriate

device. The SLAM operations generate and modify data as required by the

particular submodel being used. The arithmetic operations are the

primary operations within EXEMPT. These operations are employed in

performing the analysis desired.

The following discussion of the ECL is presented by module and

submodule. Each command is presented on a separate page to facilitate

use of the manual and the continued development of EXEMPT. All commands

are input in a free field format with the command name specified as

required by the particular command .
The command s of the language are listed in Tables 1 and 2. Each

command is separated by at least one blank from its parameter field and
may start at any column in the scan field. The parameters for each
command are separated by commas or blanks . There may be multiple commands
on a single card . Multiple commands must be separated by a double slash
(/1).

Continuation is implied by a termination with a comma or an ari th—
metic operator (+, — , / , ‘~~,) . Comments are allowed by placing a $ in

any column and the comment following the $. There is no continuation

for comment cards.
‘1

3

- _i~~~
_ •’_____ __ - _ — — .t _ -w—- —-—--

~~~~~~~~~~ 
~~~~~

_—p—. . -~ —-- --- — -
~‘- -- --—--— - --- - •_-_—“ - _._———-—-- - -- — _---• -~~~~~~~~~

“-----~~~— - -V.—— __-~ -~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L)

a -

><~~~~~~~~~~~
_

(/)C,)

_ _ _ _ _ _  
_ _ _  

I I

LU



-

~~~ TT~~TT~~~1 TII~~~ T~~~~~:j ~~~~~~~

9

LU — LL ~~~ .~~ ~— ~~~
—A = ~~

__ c..~ —/ ~~~I I—. LU (.~~i __

I ~~
C)

~~~~ ~— 
~— LU

I ~~ ~~ LU ~~ C) ~~ C/)
LL U — ~~~ LL C)

S
I
I S
I
I C.)
I a
I
I
I U,

_ _ _ _  I _ _ _

I
I 

U

• /
Q~ I —

L U C) I cJ) .—l C/)C) ~D Ci.) I ~~ __jj  
~~~~~~~~~ C/) C) LU

• S~~~~~LU
_ _ _ _

C) C)
‘.D L) ~~~ ~~~ LU C)

.— = C) C) = c.,l
P V) ~~~~(_) ~~~ Q.. ‘

~ LU LU ._J
‘ ~~.• ~~~~~~~~~~~~~ aC)

Cl)

‘ __J~~~~• ~~~C) C)
—~~- —

C)

LU — C)
~~- ~- C)C) C) — ~~~ C? ~~~-J LU• - O~ 0- 0~~~~ C/)

3

~

--

~

.-_ _

~

- _ -~~~~~~~~~~~ -~~~-~~ ..-“ - . _ _

______ ____ -- - -

Table 1

EXEMPT COMMAND KEYWORDS

ABS MIN
ALOG MOD
ALTFIL PLOT

ATAN POLY
ATAN2 PRTPLT
CALL PUNCH
CLEAN PURGE
CMPLX

CONJG READC
COS READ F
DELETE REWIND
DROP RUN
EDIT SAVE
END SAVRAN
EOF SCAN

EXP SHIFT
FILE SIGN
FORMAT SIN
FT SKIPB
GETRAN SKIPF
INTERP SQRT
INVFT TAN

LABEL TITLE
LIST TRDEXP

LOOP TRDSIN
MAX TYPE
MERGE WRITE

6

r~~~~~~~~~~~~~~~~~~~~~
T

~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-.-

Table 2

SLAM COMMAND KEYWORDS

AS191B PITOT

AVBAY PNLJNT
AVGSKT RADALT
COAX RADAR
COCKPT RVBEA
CO”UIT SFIELD

COUPLER SHIELD
DBCAB SNCLIN

DBCAB1 WEABAY
ENGINE W’EBAOP

HFANT WROOT
INDCOU WWELL
MARBEA WWGND

7

I

~~~~~p 

-
~

- - _ -

~~~~~


- -- -.
~~~ - jnfl ’r ~~~‘~~~““ 

- - 
~~~L_S~~~ 

-
-.. ~~~~~~~~ r%

—-

The following character set is recognized by EXEMPT.

A — Z All alpha characters
0 — 9 All number characters

+ Plus sign

- Minus sign

* Multiply sign

— / Divide sign

(Left parenthesis
) Right Parenthesis

— $ Dollar sign
— Equal sign

$ Blank

Cou~ a

• Period

A number may be an integer , a real number , or a number in E forma t ,
and may contain a unary operator .

Defaults for missing parameters are described where applicable;

• otherwise, the parameter must be present.

The symbols on the commands are:

I I Multiple choice of required field
Optional fields

— Name User defined symbolic name

N Integer number

V,Value Real number

-- ~~~~

• ~~~~~~~~ ~~

“

~~~~~

1. LIP COMMANDS

In order to provide the user additional flexibility during LIP
• execution, four commands are recognizable by the LIP. These commands

must be the only commands on the card; however, they may appear anywhere

on the card. They are used by the prescanning program which collects

all of the user’s input (ECL and coded data) from the card input files

and user specified alternate input file and rewrites the data onto a

file to be read by the LIP. These commands will not be transferred to

the CLP. The normal input file is FORTRAN logical unit 5 and the alter-

nate file available is FORTRAN logical unit 4. If used, the user must

attach this file as TAPE4 and it must be a coded card image file.

EXEMPT reads all coded data from these files and writes the data on
FORTRAN logical unit 3. Therefore, the user should avoid using a local

file name of TAPE3 unless he desires to save the EXEMPT input data after I -

initial processing.

9

_ _ _ _ _ _ _ _ _  

—



rpF
~

__ ____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SCAN
a. Scan Limit Directive

SCAN [Nfl [,N2]
This directive establishes the columns of the input cards to

be searched for ECL directives. Nl specifies the first column and if

omitted is assumed to be 1.. N2 specifies the last column and is not

defaulted. If a SCAN command is not provided , card columns 1—80 are

used. If Ni is not provided, a comma must precede N2. All data preceding

column Ni and following column N2 are ignored. If an END or RUN command

is encountered , the scan limits will be reset to columns 1—80 in order

to read data. Thus, a SCAN directive is required after each RUN command

to reestablish the desired scan limits.

Examples:
Establish the scan limit of columns 1 to 50. - -

SCAN ,50
Establish the scan limit of columns 10 to 60 with RUN directive.

SCAN 10, 60

ECL

RUN

CARD DATA

END OF DATA
.- SCAN 10, 60

END OF ECL

10

— -~~~~~——r-r ~~~
‘ Q - - — fl —- — — -‘~~~~~~~

—_— - - - -
~~~ 

- -

ALTFIL
b. Alternative File Directive

ALTFIL
This direct ive causes the scanner to read from the “other”

card input file. For convenience, the user input files available are on

4 SCOPE files TAPE4 and TAPE5. When ALTFIL is encountered in the ECL,
4subsequent input ii read from TAPE 
~ 

depending upon which file is
currently being read. EXEMPT starts reading TAPE5, the normal system

card input. When the first ALTPIL directive is encountered, subsequent

ECL is read from TAPE4. When an END or ALTFIL is encountered on TAPE4,
further input is read from TAPE5 until another ALTPIL or END directive

is encountered. All input is transferred to TAPE3 before processing.

Note, T.APE4 must be terminated by an ALTFIL directive.
Example: Assume that TAPE4 and TAPE5 are structured as illus—

trated in (a) and (b) of the illustra t ion shown below.

TAPE5 TAPE4 TAPE 3

ECL1 ECL3 ECL1

ALTFIL ALTFIL ECL3

ECL2 + ECL4 ECL2

ALTFIL ALTFIL ECL4

END DATA2 END

DATA1 END DATA1
ALTFIL

ALTFIL DATA2
END END

- - (a) (b) (c)

11



- 
- — -  1

RUN
C. Run Directive

RUN
This directive causes the LIP to terminate processing and

execute those commands encountered from the beginning of the ECL or

since the last RUN directive. If data cards are to be read using the

EXEMPT READC command, they must be placed following the RUN directive.
Card input to be read by the SLAM or user provided subroutines appear after
the 718/9 card following the ECL. When all ECL down to the RUN command
has been executed, control returns to LIP to process subsequent commands.
Note that a RUN directive followed by an ALTFIL directive will place the
contents of the alternate file immediately following the RUN directive
on TAPE3, the input file used for execution. This is illustrated in the ~ - -

following example. - -

TAPE5 TAPE4 TAPE3

ECL1 DATA ECL1

R?JN + END RUN
ALTFIL ALIFIL

ECL2 DATA

END END

ECL2

END

(a) (b) (c)

12

- . .•— ::h~



— 
—- ——— --  — -

~
,- -

~

‘---.,— ——. -•- ---- — 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

- -I----- -~~~—

• - END

d. End Directive
END

This directive is used to separate blocks of ECL and coded data.

When encountered by the LIP, control is transferred to the CLP and will not

H be returned to the LIP . As illustrated below, DATA would be read
during execution of ECL1. Control would return to the LIP to process ECL2.

ECL1

RUN

I

DATA

ECL2

END

I

13

— ~~~ ‘7 ~~~w~~’ J ____________

~~~~

- - - - -

~~~~

- -

—~~~~~
- - - —

LOOP/LABEL

2. COMMAND LANGUAGE PROCESSOR

When control is relinquished by the LIP, the user’s ECL has been
translated into a coded execution list. The data reside intact on TAPE3

for reading during execution of a RE ADC command if present. There are

four basic types of operations. These are control, logical, SLAM, and
arithmetic operations.

These commands will be treated in separate sections which follow.
a. Conmand LOOP /LABEL

LOOP Name

n

~~~~ S Narne~

These are the control co iands present in this release of
EXENPT. They must occur in pairs and cause all commands between them to

be executed the number of times specified by n. The name or number used

to identify the LABEL must be unique (i.e., multiple LOOPs cannot terminate
on the same LABEL) . However , LOOPs may be nested to any level as long
as the maximum number of LOOP/LABEL commands does not exceed 100. This
is the internal dimension of the loop control table and may be easily
changed if required . Examples of both simple and nested loops are
presented in the example below. Example (a) presents a simple loop
using an integer label identifier while example (b) illustrates nested

loops using alpha label identifiers.

E~L - 
ECL

LOOP 5, 10 LOOP OUTER, 10

LABEL 5 LOOP NEST 1, 5

END LOOP NEST2, S

LABEL NEST2
LABEL NEST1
LABEL OUTER

(a) (b)
14

S.



- - -
-

- - --
~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

-

r - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

b. EXEMPT Logical Commands

There are two main functions fulfilled by the logical operations

in EXEMPT. There are file manipulation and data set I/O. The underlying

commonality of these operations is that they do not alter the internal

data, they simply format them and read them into EXEMPT or write them to
some device. These commands will be further classified as Random

Access File Commands, Sequential File Commands, and Data Set I/O Commands.

(1) Random Access File Commands
EXEMPT uses FORTRAN logical unit 99 for random access

I/O. All data manipulated internally is sorted on this logical unit.

The detailed structure of this logical unit is presented in Section III.

The user may have up to 20 files identified by a name or number on this

logical unit. Each of these 20 files may contain up to 54 data arrays.

A data array is an element of a data set. For instance, frequency and
time domain data sets contain two data arrays, the dependent (response)

data and the independent (frequency or time) data. A typeless data set

contains only one data set (itself). In order to conserve space, whenever

an independent data array is stored it is compared with existing data

arrays of the same type, and if found to be identical to an existing

array it will not be stored . This prevents clogging up the file with

• duplicate copies of the independent data which are usually the same for

many data sets.

The following commands are to aid the user in creating,

maintaining, and modifying his random access data base. The data to

reside on the data base may have several sources. It may be read from

cards, generated by EXEMPT itself, or interfaced from another computer
program using the sequential I/O commands. Usually, some combination of

these methods is used. When EXEMPT starts execution, it checks to see
if a data base exists. If one does , it is loaded into EXEMPT. The user

must have attached the data base as SCOPE local file TAPE99. If no data

base exists, EXEMPT creates one for use during this particular run. If

the user has requested that TAPE 99 reside on a permanent file device
(REQUEST, TAPE99 , * PF.), the created data base may be cataloged a~ a
permanent file when the run concludes (CATALOG , TAPE99 , MYFILENArIE ,
etc.).

15

__
________ -

~-- ----~~~~-• --- ~~~~ -~~
-
~~~- -~~--r  -- 

- -

- • 

. 

FILE
(a) File Identifier

FILE ~NA?IE~

This command designates the random access file to be
used for data retrieval and storage. Al]. data generated subsequent to

this comm_and will be stored on the file identified by NAME or N. If

data already exist on this file, they will be made available to EXEMPT.

As stated earlier, 20 such files may be designated by the user . If a
file is never identified, the file name TEMP is assumed. - 

- -

In the following example, assume that file EXPDAT
contains experimental data to be used and it is desired to save the results

obtained on a .ile identified as F15ANL.

FILE EXPDAT

ECL TO RETRIEVE DATA

FILE F15ANL $SUBSEQUENT DATA STORED - -

$ON FILE NAMED F15ANL
ECL TO PERFORM ANALYSIS

END

16

-_ _ _ _

a -_ 

-



—-7- 
~~ iF “W77WU 5 mr 

~~~~~~~~~~~~~~~
— -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

SAVE

(b) Save Data Command

SAVE Name [~ FILE — 
N ame ]

This command will result in the data associated with
the name specified being written on the random access file specified.

If no file is specified, the current file is used. If the file has not

been prsviously created via a FILE command, one will be automatically

cr.at~d before the data are transferred.

This command is generally used to transfer data from

the working file TEMP to another file to be saved on a permanent basis.

All data sets which are created during an execution will be stored on

the current file. Unless specified otherwise, this file has the name

TEMP and may become full if data are not selectively moved to another

file when not required in the subsequent commands. This is illustrated

below where the file TEMP is used by default to generate data set ANT47A
and the data are subsequently transferred to file ANTRSP with the SAVE

r command .

ECL TO GENERATE DATA SET AFTFRQ

ANT47A INVFT (ANTFRQ)
SAVE ANT4 7A , FILE - ANTRSP

EN

The data set name (and data) ANT47A will no longer
reside on file TEMP. However, any future reference to ANT47A will cause

the data to be loaded from file ANTRSP.

17

k..



_________________________________________________________________________ ~ ~~~~~~~~~~~~~~~~~~~~~ ___________

~~~~~~~~~~
-_ — —

~~~~~~~~~~~

--

~~~~~~
-

- -
-----.- -.- - - -—

PURGE

(c) Purge Random File Command

PURGE FILE —
Name [, SAvEFN]

This command causes all data stored on the specified

file to be purged. Unless SAVEFN is specified , the file name will also

be purged from the master file directory. In practice, this command can

be used to clean up a data base by purging data no longer required. It

may also be used to eliminate the data of file TEMP before the conclusion -~~
-

• of a run to prevent subsequent users of the data base from using temporary

-

data saved during the current run.

18

DELETE

(d) Delete Data Set Command

DELETE NAMEI
1,

NAME2, ... ,FILE —
N~ME~

This command causes the data set(s) named to be

deleted from the current file or one specified b~ the user. This

command can be used to clean up a file on the data base by selective purg—

lug of data sets no longer required.

I

•1 -

19 -
-

LA
_ -

—~.-—-
- —-- .---~~~~ ~~~~~~~~~~~~

— — -‘.-

~~

-- -

~~~~~~

p—v — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- READF

(e) Read Pile Data

(1) R.EADF Name 
[~
FILE jName ? ]

(2) READF FILE — 
Name

The two forms of this command perform two distinct

functions and must not be confused. In order to aid in the discrimina—

tion of these functions, the commands will be discussed separately.

(1) READF Name 
[~

FILE — 
Name ]

This command causes the data set specified to be

recovered from the random access file specified. If no file is specified,

then the current file is searched for the data set. A very important

action takes place when the data set is recovered. First, the data set

is stored on the current random access file if it was retrieved from

another random access file. Secondly, the global independent array

corresponding to the data set type is overwritten with the independent

data of the data set. Thus, if the data set is a frequency domain type,

FREQ will be overwritten with the frequency values associated with the

data set. If it was a time domain type, TIME would be overwritten. The

primary purpose of this command is to allow the user to use the same

FREQ and TINE data for data sets which reside on different files. The

names FR.EQ and TIME may not be used directly. This is due to the fact

that these are special names and there may be several arrays on each

file with these names. EXEMPT keeps track of the different data by
linking these independent arrays to a particular response data array to

form a complete data set.

For example:
READF ANT47A FILE = ANTRSP

would retrieve the data associated with ANT47A and replace the global

TIME array with that associated with data set ANT47A on file ANTRSP. If

ANTRSP is the current file name, then READF ANT47A would simply overwrite
TIME with the independent data of ANT47A.

20

. 1 1



- _

~~~~~~~~~ 
-- -

~~~~~~~~~~~~~~~~~~

The second form of this command is: —

(2) READF FILE - 
I Name 

- 

-

This command informs EXEMPT of the data set names present

on the file specified . During LIP execution , all data set names are

en tered in a symbol table; however , the file location is unknown. When

this command is executed, the names of the data sets on the specified
H file are recovered and if a match is found in the symbol table, EX~~~T

is informed that the data associated with the symbol reside c~n the

designated file. This allows the user to have data sets with the same

H name on different files. If a data set is referenced before it is defined

either by appearance in a subroutine call or as the result of an operation,

a fatal error will occur. This is analogous to the use of an undefined

symbol in FORTRAN. If the user wishes to use data from a previously

generated data base, a READF command for each of the files containing

the data sets to be used is appropriate. This feature also allows the

use of different data referenced by the same name at different points in

the execution. This occurs since the ECL is executed sequentially and

-; the READF command will only effect those occurrences of the data set

name which follow it. This is illust rat ed in the example below.

READF FILE - E4LIB

ECL $DATA SETS ON E4LIR WILL BE USED

READF FILE - B1LIB

ECL $DATA SETS ON S1LIB WILL BE USED

• END

NOTE: Unique data set names contained on E4LIB are still available to the
ECL following the READF FILE—BILIB command . However , those names
that are the same will be available only from B1LIB.

~~



~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - - -

SAVRAN

(f) Save Random Access Files

[FILE —
Name

This command permits the random access data base to be

saved on a sequential file which would normally be a magnetic tape. This

is required since the data base may grow to a size which demands a lot of

computer resources. Also, this provides a backup capability for the data

base. If the file is specified, it must be present as a SCOPE local

file with the name specified. If the numeric designator is used, TEMPn
must be the SCOPE file name. If a is a single digit number, it must be

preceded by a zero. If the file designator is omitted, the default name is

NEWDAT and a SCOPE file with this local name must be available.

The sequential file format and content is presented as

follows.

Record Contents

1. Active file units table and number of active file units

2 File header and director, first active file

3 Frequency/time response or independent array, data
set 1

4 Frequency/time response or independent array, data
set 2

N+2 Freque1tcy/time response or independent array, data
N (N < 54)

N+3 File header and directory, second active file

N+4 Frequency/time response or independent array, data
set].

M4N+3 Frequency/time response or independent array, data
set M (M < 20)

22
‘

I

- ~ -

7 ;

GETRAN

(g) Recover Random Access Datd Base

GETRAN [IFILE I Name]
This command allows recovery of the random access

data base saved by the SAVRAN command. The same rules apply for the

SCOPE local f ile names , except the default name is OLDDAT. GETRAN can

-f only recover files when they are written exactly as specified in the

SAVRAN command.

4
-

•

23

-— - - - - — --- - -—---~~~~
_

~~~ —_7-.r~~~~~~~_ii_~~ ~~~



~~~~ ‘- ‘1- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LIST INDEX

(h) List File Contents

LIST INDEX f,FILE - {
Name}}

This command allows the user to list the file names
and data set directories for the random access data base. If the par-
ticular file is designated in the FILE field, the index is restricted to
that file specified. Note that the contents of the data sets are not
listed. Another LIST format is presented under OUTPUT commands for this
feature. The output from this form identifies the file name, data set
name, data set type, location of independent array, and the data set
title.

~1 .

. 

‘1
24

1!



-~~-•
- -- - - -  - -U

TITLE

(i) Data Set Title Specification

TITLE (,Name~ [,FILE — 
Name 

,] *Rollerith string*

This directive associates the Hollerith string of ‘

characters with the file or data set specified. The Hollerith string

must contain 120 or less characters.

If the Name and FILE are omitted, the title is

associated with the current file. If Name and PILE are both specified,

then the title is associated with the data set on the specified file.

When only one of the f ields is missing, the title will be associated with

the field provided.

I

25 

_  

ii 
~~--~ •—~~~~--- .—



-7. —‘-‘.7.—-’- -~~ — ___7__• 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

RENAIIE-.
(j) Rename File or Data Set

RENAME (Name,] [FILE Name

~
,] Newname

This con~and changes the name of the item specified
as discussed below.

RENAME Newname
This form changes the name of the current file to

that specified by Newname.

RENAME FILE —
Name

Newnanien

This form renames the specified file to the Newname
provided.

RENAME Name, Newname
This will rename the data set Name on the current

file to be Newname.

RENAME Name, FILE - Name , Newname
This changes the data set Name on the designated

file to Newname.

26

hIIIII__ - - - —---7—.---—-—- - — -•--.- -‘--~~~
- - - ..— — .—-----..- -7 ‘~~~.

-
~~ 1!

1. •

(2) Data Display Commands

Due to the large amounts of data which may be encountered

in an execution, output is kept to a minimum except in the debug mode.
Almost all output must be directed by the user. The data display commands

permit the user to obtain a list of the data on the printer, punched
cards, and various plot devices. These actions are in response to the

LIST, PUNCH , and PLOT commands discussed in the following sections.

- ‘I

27

- . iI tTTiTL1~~ _ _ _ _ _ _

-
- ~~~~~~~~~~~~~~~~~~~~~~~~

FORMAT

(a) Data Formatting

SMP I DGREES
FORMAT Name (,Name,. . . 1, 1 L PAfl

This command directs the format of the output for

the data sets specified. It applies only to complex data since real

data are rigidly formatted. The command will specify that whenever a

data set is displayed, it will be in real/ imaginary (RI) or dB (DB)
format. If not specified, data is displayed in magnitude/phase (NP)

format. If RADS is specified, the phase will be displayed in radian

measure. If not specified, the phase will be in degrees. In all cases,

phase is bounded by ±180°.

28

— -~~~~~ -

--‘ -~~~~~ _ _ _ _
_ _ _

- _ _ _ _ _ _

LIST

(b) List Data Set Contents

1DB
(1) LIST Name 1, Name 2, ... (RI

i M P
(2) LIST CURFIL L

(3) LIST FILE —
) Name

-

-
Form I. of this command is used to output the data

associated with the data sets Name 1, Name 2 ... The data will be

listed sequentially using the format specified. DB implies dB and the

data will be normalized to the maximum value in the array. RI speci—

fies listing the real and imaginary components separately while NP directs

the output to be in magnitude and phase format. The default format is

NP. These formats apply only to complex domain data. Noncomplex data,

being real values only, are printed as they exist in the computer. All

typed data lists will contain both the independent and dependent data.

Form 2 of the command will cause the data associated

with all data sets on the current random access file to be listed. The

output format used will be that specified on a FORMAT directive. If no

format directive is specified, the data will be displayed in magnitude/

phase for complex data and real f or noncomplex data.

Form 3 lists the same data as form 2 for the file

specified.

29


~~~~~~~‘----- -~~ 

~~ ~~~~~~ ~~iiii iT ~~~~~~~~~~~~~~~~~~ ~~~~jj ~~~~~~~~

PUNCH

(c) Punch Data Output

PUNCH Name 1 (,Name 2,. . .] (,SINGLE] (, INDPNT

This command will punch the data associated with the

data set names specified . In all cases, the data from Name 1 will be

punched before any data from Name 2. If SINGLE is specified , a single
data entry will be punched per card. If SINGLE is not specified, there

will be six fields per card containing data determined by the data set

type and the presence of the INDPNT directive. If INDPNT is specified,

the value of the independent variable will be punched with~ the value of 7 -

the dependent data. If INDPNT is not specified, only the response data

will be punched. All data are punched in 12 column fields with the first

column of each field left blank. The data are punched on a 1XG11.5 format

for each field and columns 76 through 80 will contain the Julian date.

If INDPNT is specified, the independent data will be

punched preceding each value of the dependent data. For a frequency

domain data set, this corresponds to three numbers for each element of

the ~fata set while two numbers suffice for time domain data. If SINGLE is

also specified, this is the limit for each card. However, if SINGLE is
not specified, two elements of a frequency domain data set, or three

elements of a time domain data set will be punched on each card.

If INDPNT is not specified, only the dependent data

will be punched. This corresponds to two numbers for frequency domain

data and one number for time domain or typeless data. In this case, if

SINGLE is not specif ied, there will be three elements per card for frequency

domain data and six elements per card for time domain or typeless data.

Punched header cards will precede each punched data

set. The header cards will contain the data set name, number of points,

and the data set title.

30

- - - -~~~~~‘-- 4.~~~~~~~~ 
- 

~~~~~~~~~~~~ 
- - -

- — . ~,._--.— -—.•- . - - -
.7, ,. ~ 7.7.~~~~~~~~ .. --7—• -, . -.- - - 7. — —

-7 --- ‘--7- - -~-- -- - - - ‘- --‘-.,7. - __’__
~~~~

_
~ Th~~~~~~~~

_ - -  --
- 

— ~~~~~~~ ~~~~~~“ ‘ ‘ “T  _ ..L.—.——.———— ————-— — — —

PLOT

PRTPLT

(d) Plot Display Commands

LINLIN
LINLOG
LOGLIN

PLOT 
Name 1. (,Name 2, ..., Name, . . .3 [, LOGLOG

PRTPLT 
DBLIN

DBLOG

[,TITLEX = * Hollerith String *1 [,TITLEY * Hollerith String *3
(,OVRLAY]

These commands will plot the data sets specified on the
device indicated. PLOT indicates a METALIB plot file is to be created;

whereas PRTPLT indicates an EXEMPT printer plot is to be placed on the

output file. The disposition of the METALIB plot file is controlled by

the user prior to EXEMPT execution. The plot file will reside on LFN

PLrFIL which may be disposed of immediately or cataloged as a permanent

file for later disposition. (See Section V for an example of the METALIB

file disposition).

To receive any plots through the ~1ETALIB system, the user

should do the following steps prior to execution:

(3.) Request PLTFIL to be a Q file.

(2) Dispose PLTFIL to the proper plot device.

For example, to receive a CALCOMP plot, the following JCL

cards are inserted prior to EXEMPT execution:

6600 7600

REQUEST(PLTFIL,*Q) DISPOSE(PLTFIL ,*MF~~PCF ,ST’~ANY )
DISPOSE (PLTTIL ,*14F~~PCP) LGO .
LGO.

The following plot devices are available to the user:

CODE DEVICE CHARACTERISTICS

PCF CALCOMP DRUM FULL SIZE, .01 INCREMENTS, PLAIN WHITE PAPER
FCC CALCOMP DRUM FULL SIZE , .01 INCREMENTS, RED RULES PAPER

• PG4 GOULD 4800
PVT VERSATEC

• PB1 FR8O B/W 16 MM FILM
PB3 FR8O B/W 35 MM FILM
PFB FR8O 48 X MICROFICHE

-7 —---— 
-



-
~~~~~~~~~~ T JIII~ IT:~ I -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-~~~~T~~~

Also, if the user wishes to have a printer plot of

the META PLOT file, the following card is needed after EXEMPT execution:

DIRECT (PLTPIL , ,PRINTER)

When PLTFIL is directed to the printer, the META

system converts the file for printing to 8 lines per inch rather than the

normal 6 lines per inch.

4 The axis scaling will be determined by the LINLIN

through DBLOG parameters. The first acronym refers to the Y axis and the

second refers to the X axis. When DB is specified , the data will be

normalized to the maximum value of all data sets in the list. The value

plotted will be 20 log
10 ~~~~~~~

max

The axis titles are controlled by the TITLEX and

TITLE! fields. If these are absent, the X axis title will be FREQUENCY

or TIME, as appropriate. The Y axis title will be DB MAGNITUDE on LN

MAGNITUDE, or MAGNITUDE as directed by the axis scaling. If the TITLEX

or TITLE? fields are provided, the Hollerith string between the asterisks

will appear as axis titles. Maximum title length for PRTPLT is 30

characters and for PLOT it is 20 characters.
• Overplotting of data sets is controlled by the OVERLAY

field. For PRTPLT, only one data set per plot will result; however, all

plots will have the same scale for easy comparison. For PLOT, up to four

data sets may be overplotted per plot frame. The reason for the limitation

is that for CALCOMP plots there is only enough room on a frame for a plot plus

four data sets’ characteristics. These characteristics include the data set

name and a 120 character title. More than four may be overplotted; however,

only the first four data sets will have any of its characteristics printed

on the plot frame.

- -7—

3~2

. --7-~~~ -~~~~~~~~
-
~- ’~~ - —7 ~~~~~~~~~~~~~~~~~~~

- - - j -
~~~~~~~~~~~~~~~~



ri’”7 —-_..~~~~~- 

— 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘,

(3) Sequential File Commands

In addition to the random access file capability, EXEMPT
also will manipulate sequential (typically magnetic tape) files. This

type of file is the primary interface with other user programs . The

EXEMPT subroutine EX1NTO may be incorporated in a user program to write
an EXEMPT compatible sequential file. This routine is discussed further

in Section III. In general, the initial input data for EXEMPT will be
experimental or generated by another modeling program. The user may

smooth or modify the data before they are written to tape for future

incorporation into the EXE~.ffT data base. There are two levels of control

allowable on the sequential file. Entire data sets (header, dependent ,

and independent data) are referenced as blocks. Groups of blocks are

delineated by FORTRAN end of file marks and the file may be manipulated

in either blocks or files. This permits the user to minimize his magnetic

tape library since he can direct EXEMPT to position the tape at the
correct data set (block) and subsequently read the data and associate

them with a specific internal EXEMPT symbolic name.
The following pages present a description of the sequential

I/O commands and illustrations of their use. Detailed illustrations of

the sequential file structure are presented in Section III.

3 3

-— — —— - — — _ . - rzkzr~~~~- .- :.n : ~~

-

- .- —.-“ -- -
~~-T~~~’- ~~~~~~~~~~~~~~~ — . P ______________

_______ — — — --

FRQFIL

TIMFIL
I

(a) File Designation Command

FRQFIL — ~Name~

TINFIL J Name

This command establishes the sequential files for
—

frequency and time domain data. These data must be stored on separate 4

sequential files. All subsequent sequential file identifiers may then

be FRQFIL or TIMPIL and the proper user file will be referenced. There—

• fore, in the following coimnand descriptions, FRQFIL or TIMFIL may be
used as the file identifier. The file identified in this command must

be attached as a SCOPE local file with the same name identifier as the

TZMPn designator when n is used. When n is a single digit, it must be

preceded by zero.

-
‘

34

- -

-

- ~~~~~~~—
- -

~~

SKIPF

(b) Skip File Command

SKIPF ~Name k [±N]
This command will skip the number of FORTRAN files

determined by IN I, . If N is positive, the file will be positioned forward

while if N is negative, the file will be positioned backwards to a
preceding file. If N is omitted , it will default to +1. The file

identifier ~Name~ must be attached by the user as a SCOPE local file

caine. If the numeric file identifier n is used , the local file name is

TEMPn. if Name is used, then the local file must have the same name.

For example, suppose that a user has two sequential
files on disk for convenience. Then the SCOPE control cards and ECL

would resemble
ATTACH, NANFIL, SEQFIL1, ID — USRID.

ATTACH, TEMP23, SEQFIL2, ID — USRID.

EXEMPT.

‘8
/

ECL
SKIPF NANF1L 5 $ SKIP FØRWARD 5 FILES

SKIPY 23 1 $ SKIP FORWABD 1 FILE —

ECL
SKIPF NANPIL —2 $ SKIP BACK 2 FILES

35

——-~~~~~~~~ -- -- 7 - -

- --

--

7-

~~~~~T~~~~~ TT~ ~~~~~~~~~~ 
T 

_ _ _ _ _ _- 
-

SKIPB

(c) Skip Blocks Command

SKIPB ~Nwne~ [ 
~ [ 

~ FRQFII..~ ]
This command will cause EXEMPT to reposition the file

by N data sets. Positive N results in forward movement, while negative

N will reposition the file to a previous data set. The file identifier

may be a name or number n and must be a SCOPE local file name. If the

f ile identifier is not FRQFIL or TI14FIL, then one of these must be
- - specified to inform EXEMPT of the type of data contained on the file.
- 

- 

Only one type of data is allowed when using the SKIPB command.

For example, the following SCOPE and ECL would
position the file before the third data set ~f the second file on SCOPE
local file FRQRSP.

ATTACH, FRQRSP, USRPFNA}IE, ID - USERID.
EXEMPT.

7
/

9

FRQFIL — FRQRSP

SKIPF , FRQFIL, 2
SKIPB , FRQFIL , 2

if the FRQFIL connnand had not been used , then the ECL would be
SKIPF, FRQRSP, 2
SKIPB, FRQRSP , 2, FRQFIL

3b 

--~~~~~--7 -



—7--— --7w—,,- 7-’7-7-?•7-
~
7-
~~~~~~~~~~~~~~

’7-’
~~

-

~~~~~ r”” ~~~ ‘—- -
~

ri .

READ

(d) Read Sequential File

READ Name 1 [, Name 2, ... Name], FILE — 
Name

- This command will cause the number of data sets named

- 
in the list to be read from the designated file and stored on the current

random access file with the specified names. The data sets will be read

I 
sequentially; that is, the first will be identified as Name 1, the second

as Name 2, etc. The type of data and format are specified in the header

record. Subsequent reference to the data sets will use the data read - -

- I from the sequential file. -

Continuing the sample from the SKIPB command , we -

could read the next three data sets into EXEMPT with the ECL instruction
- ¶ READ RSP1, RSP2 , RSP3 PILE — FRQFIL -

37



- —-7.•
~~~~~~~~~~ ‘7  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - — - -
___________  - • _ - -- - - __ -

READC
(e) Read Cards Command

READC Maine (, N1J, Name C , N2]
READC Name, Name, ... [, N]

This command will result in a coded card input
read. The data will be decoded for entry into the specified array
storage area. If the number N is specified with the array, the arrays
are filled sequentially. If the number is specified at the end, the
arrays are filled in parallel. The equivalent FORTRAN statement is
shown below.

EXEMPT: READC A, 5, C, 8
FORTRAN: READ*, (A(I) , I 1, 5),

(C(I) , I — I, 8)
EXEMPT: READC A, B, C, 10
FORTRAN: READ*, (ACt), B(I), C(I) ,

I~~~l, lO)

If the named data sets have independents, then those
independents are read as well as the imaginary part of a frequency domain
data set.

The cards to be read are imbedded in the ECL and on
the card input file on the ALTFIL file. This is illustrated below.

READC A, B, C, lcJ

END

DATA FOR A, B , C in free field format

END
7/81 

•

38

-- 7- -  .-~~~~~~~~-- 



- P 
--7- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --  - _______ ~~~~~~~~
—•-- — - 7

~

~d~~~~~
1

WRITE

(f) Write Sequential File

WRITE Name 1 (, Name 2, ... Name], FILE —
Name

This command will write the data associated with the

data sets named on the file specified in EXEMPT format . This format is

discussed with the EXINTO subroutine in Section III.

Continuing the example from the READ command, assume

that aSPI, RSP2 , and RSP3 had been modified by the execution and have the

same names. It is desired to save the new data in place of the old data,

and they can be the last data on the file. The ECL would be

SKIPB FRQFIL -3

WRITE RSP1, RSP2 , RSP3

I

39

— •.7~~~~~~~~~~7

- -- - -_ _ _ _ _ _ --

EOF
(g) FORTRAN End of File

-

LOP J Nanie

1
This command will write a FORTRAN end of file (EOF) onthe file specified. This may be used to separate groups of data and alsoto aid in Positioning the tape with SCOPE control cards. It also aidsEX~~~T in poiitionlng the file efficiently when more than one file ison the file.

1

40

_ _ _ ~~~~~~~~ -) ~ _ _ ~~~~~~~~~ _
-7~~~,

7

[-7---

- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - -

REWIND

(h) Rewind Sequential File

REWIND ~Name~

This conm~and will rewind the designated file and
reposition it at the beginning of the first file. The FORTRAN rules I]apply in that if the last operation on the file was a WRITE, an EOF will
be written before the file is rewound. If the last operation was a LIREAD, the file is simply repositioned.

-

7 
7-

41

--_ 
-~~~~~~~~~~ 

- —
~~ 



—— - -7
~~~~~~~~~

•-7 -•
~~~~~~~~~ ____________________ - -

DROP

(i) Return Sequential File

DROP Name

-
~ This command returns the designated file to the

system. Its primary purpose is to prevent EXEMPT from tying up a tape

- 
servo after the data have been read. The DROP command will free the

-4 unit for other users while EXEMPT executes.

~1

- -



pr —~~~---- 
7- -~~~~~~ ~~~~~~~~~~~~~~~~~~

__ - --
~~~~~~ 

-~
— - ~~~~~~~~~~~~~~~~~~~~~

- -~~~~~~~ w~~~ —~~~~

(4) EXEMPT Library Functions
EXEMPT contains functions to perform certain numeric

operations on previously defined data and to generate analytical data

sets to support linear systems analysis. All of these functions may

apppear in arithmetic expression. When used with an arithmetic expression,

the total function text must be enclosed within parentheses. The two

forms are illustrated below.

Name — FUNCTION (Name 1, Name 2), P1 — n, P2 — m

Name — A * (FUNCTION (Name 1, Name 2) , P1 — n, P2 — m)

In the first example, the function will generate the data

set name by operating data sets Name 1 and Name 2 using the parameters P1

S and P2. In the second example, the data generated by the function will be

multiplied by A before being stored as Name.

As a rule, the parameters in the list are optional and if

no parameters are associated with the command format, the command need

not have the enclosing parenthesis when used in an arithmetic expression.

If parameters are in the command format but not used, the enclosing parenthesis

are required.

7- -..- — - ~~~~~-

- —

~~

_________ — — — -~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 4

I
— 

INTERP

(a) Data Interpolation

Name — INTERP (Name 1 (, Name 2]) (, NPTS n] [, PT1 — v,] [PT2 — vi

This command will interpolate the dependent

data associated with Name 1 onto a new independent data base associated

with Name 2 and store the result as Name. If Name 2 is not provided,

then the global frequency or time array will be used depending on the

type of data in Name 1. The interpolation is an Aitken—Lagrange polynomial

of degree specified NPTS — n. NPTS may have any value from 1 to tO. The

default value is NPTS 1, or linear interpolation. The parameters PT1

and PT2 specify the first and last values of the new independent data.

If PT1 is not provided, interpolation will start with the first point of

the new independent data. If PT2 is not provided , interpolation will L —

continue to the last point of the new independent data. —

If the new independent data of Name 2 extend

beyond the domain of the data in Name 1, a warning will be given to the user.

The new value will be the last value in the domain of Name 1. That is, the

extended data set will contain constant values in the extended region.

In the following example, assume VOLTS is a frequency

domain response function for unequally spaced values of frequency from 1.
to 100 MHz. If a Fast Fourier Transform (FFT) is to be used, then the

independent data must be equally spaced and start at a value of zero.

ECL -

FREQ — 0., L1N512, lOOE6
VOLTS = INTERP (VOLTS)

END.

The resulting values associated with VOLTS for

frequencies between 0 and 1 MHz will be the original value at 1 MHz.

44

L 1 H



‘
~~~~~~~

- ‘- ~~~ ~~~~~~~~~~~~~~~ -F- ,

EDIT

(b) Data Editing

Name— EDIT (Name l) [, PTl vJ (,PT2 — v]

This command removes bad and redundant data from the

data set Maine 1. and stores them as data set Name 2. The parameters PT]. and

PT2 have the same meaning as the INTERP function.
ZERO is a user definable parameter intended to represent

a reasonable criteria for evaluating equality between floating point numbers.

ZERO default value is l.E—lO.

Redundant points occur when two consecutive values

of the independent data I and I are such that P

n n+1

I
n
_ I

n+l
< ZERO

Bad data points occur when two consecutive values

of the dependent data D and D are such thatn n+l

D — Dn n+l 1
D ZEROn

•1
4)

LA - - - -- -~~~~~~~~~~~~~~
- - —--—--- -- -_____________ - .

ri
?IERGE

(c) Merging Data Sets

Name — MERGE (Name 1, Name 2)

~~~~~ I
This function allows the user to combine data from

two data sets into one data set. The source data associated with Name 1

and Name 2 will be combined in ascending order of their independent variable.

When two values of the independent variable are found to be the same (within

an error of ZERO), the action directed by MAXVAL, MINVAL, or the absence

of these parameters will be taken. If MAXVAL is specified, the maximum

dependent value will be chosen. If MThVAL is specified, the minimum will be

chosen. If neither parameter is present, the resultant value will be the
average of the values.

From the INTERP example, VOLTS could be extended to

zero frequency using a MERGE function. Suppose NULL is a data set containing
a zero response for frequencies of 0 and 1 )fllz. Then the following ECL

would generate VOLTS as an equally spaced data set between 0 and 100 MHz.

FREQ — l.,LINlOl, lOO.E6

VOLTS — INTERP (VOLTS)

VOLTS — MERGE (VOLTS, NULL)

END

46



_____ —‘—~w. ~ 7-’~~~~~7-’7- 
~~~~ I

~~~~~~~~~~~~~~~~~ - 

____________ - 
~~~~~~~~~~~~~~ 

-

FT
INVFT

(d) Fourier Transform

Name — FT (Name 1 (, Name 2])
Name — INVPT (Name 1 [, Name 2])

-i The commands will transform the data sets Name 1 to

the time (INVFT) or frequency (FT) domain. If Name 2 is provided, the

output data set, Name, will have the same independent data as Name 2. If

Name 2 is not provided , the output independent data will be generated using

the Nyquist criteria on the independent data of Name 1. For example, if

• I and I are the extremes of the independent data associated with Name 1 ¶
- max mitt - - -

- I which contains N data points, then the independent data of Name will have
increments ~ computed from

- 2 ((1 - I
1
)/N

)
¶

If Name 2 is not provided and the independent data for
- Name 1 are:

4,
- 1 — Equally spaced

• 2 — 1 = 0 ,mitt

then the output data Name will be generated using the Ffl. This is the only

method to employ the FFT. All other input will cause the use of a full Fourier

integration. The INTERP function is provided to allow the user to transform

data from unequally spaced independent arrays to equally spaced independent

arrays.

In this release of EXEMPT, there is no checking

performed to assess the validity of the transform.

In the following ECL examples, EQUAL is assumed to

4
be an equally spaced.frequency domain data set with a zero frequency value.

-
~ UNEQ is an unequally spaced time domain data set .

EQTIM = INVPT (EQUAL)

• NTPUNQ INTERP (UNEQ , TIME)
EQFRQ = FT (NTPUNQ)

-
FRQTJNQ = FT (UNEQ)

47

LA

_ _ _ _
___ -

-
- -

EQTIM will be an equally spaced t ime domain data set
generated by the FFT. NTPUNQ will be the data from UNEQ interpolated
onto the global TIME array which we will assume has a zero value and is
equally spaced. Consequently, the FFT will generate EQFRQ as an equally
spaced frequency domain data set with a zero frequency value. FRQUNQ will
be generated using the full Fourier transform of the data in UNEQ.

I

48

_ _ _ _ _ _ _ _ _ _ -- —-
~-:=~

;-- - r~~~~~-
-- ~~~~~~~~~~~~~

-
~~ z=-— ---

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TRDEXP
(e) Double Exponential Transform

Name TRDEXP (Vi, V2, V3)

This function generates the Fourier transform of:
‘1

/ —V2 t —V3tVl e - e

for the frequency values in the global frequency array FREQ.

The output data set Name is a frequency domain data
set which may be used as any other frequency domain data sets. The primary
purpose of this function is to allow the user to have an analytic function
commonly encountered in EMP or ENC analysis. With the proper values of V2
and V3, this function can represent either an ENP or lightning pulse.

49 
1

L _
_ _ _



-7 -

TRDSIN

(f) Damped Sine Transform

Name — TRDSIN (Vi, V2, V3)

This function generates the Fourier transform of:

vi e ’12t sin (2irV3t)

for the frequency values in the global frequency array FREQ.

The output data set Name is a frequency domain data

set. A damped sine wave is a commonly encountered excitation in EMP and

ENC analysis. The output data may be used as an analytic excitation for

system analysis.

- ~

50

- .



~
•.- 

~~~~~~~~~~~~~~~~ 

-

~~~~ 

- --- - - -

~~~~~~~~

‘

~~

— - -

~~~~~~~~

...__ —

~~~~ ~~

-

~~~~~~~~~~
-
~~~~~

-
~~~

- 
~~~~~~~~~~~~~~~~~~

(g) General Polynomial Functions

Name — POLY (Vi , V2 , V3 , V4)

• This function is used to generate a complex frequency

dependent function which can represent a factor of a polynomial or two
terms of a polynomial. POLY generates a real and imaginary part with user

designated factor and power of w (frequency in radians per second). This

method will calculate factors which can be multiplied to form a transfer

function. POLY can also be used for unfactored polynomials by pairing

real and imaginary terms of w. Each pair can produce a term which can be

added to form a polynomial. w is the radian frequency derived from the

global frequency array as 2n*FREQ.

V’ V4POLY(Vl , V2 , V3, V4) — V1~
- + j V3w

Example:
It is standard notation to represent a transfer function by:

1

(s + a) (s + b)

The transfer function can be written and stored in TR by:

AB - A*B
C - A + B

TR — 1.f(AB—POLY(l.,2.,0.,O.)+poLY(Q.,O.,1.,O.)*c)

51.

LA - -

‘
7 - - ___________

_ _ _ _ _ _ -

SHIFT I -

(h) Phase Shift Function

Name — SHIFT (Namel, t)

This function is used to shift the phase of the

frequency domain data set Name 1 by performing the following operation

• Name — Namel, * ei~
t

for those values of w associated with the frequency data of Name].. If
f(t) and F(w) are transform pairs, then f(t + t) and F(w) ejWto are
also transform pairs. This, the SHIFT function allows the user to adjust

phase without recomputing the transform. —

1~

N

5.~
I-

TIT _ _ _ ~~

TYPE
(i) Data Set Typing

TYPE Name~~~~~~~~

This declarative statement will explicitly define a

data set identified by Name to be a frequency or time domain function.

If a data set is not referenced in a type declaration, it will be typed

implicitly. Implicit typing occurs when a data set name is referenced

as the resultant of a function or arithmetic operation. In an arithmetic
opera tions, the first independent data set encountered will be associated
with the resultant. If none are encountered and the resultant is not

typed, no type will be associated with it; however if none are encountered

and the resultant is typed, the appropriate global independent data will

be associated with it.

Attempting to perform an operation or evaluate a

function with improperly typed data will result in an EXEMPT fatal error.

if

53 —

-7--— ~~~~~~~~~~-

-
~v--- — ~ — -7

~~
—

~~~~~~~ ~~
-

~~
-
~~~~~~

--
~~~

--——----- --7 -7 ~~~~ ~~
7-_, —~ 

_ _ _ _ _ _ _  

- - -—

LIN
LOG

g
(j) Data Initialization

LINn
Keyword — Value 1 LOGn , Value 2 , Value 3 ... . 

-
NAME REPn

NXTn

This command can be used to load data into an indepen—
dent or typeiess data set. The most common use will be to initialize

the global TIME or FREQ data. These data sets may be redefined anytime

during execution. The data starts at value 1 and increments according

to the specification. The meaning of the specifications are:

LINu Load data from the first value to the second
value with n linear steps

LOGn Same as LINn but with logarithmic steps

REPn Repeat the previous value n times

NXTn Repeat the next value a times

When initializing the arrays TIME and FREQ , the first
— and last values need not be specified for the LINn and LOGn option. As can

be seen in Table 3, minimum and maximum values for TIME (TIMMIN and TIMMAX)
and FREQ (FRQMIN and FRQMAX) are already defined. Additionally, these

values as well as all other default valued keywords may be redefined by a

simple replacement expression (i.e., A = value).
Examples:

FREQ = LIN5O

This command loads the array FREQ with 50 equal
linear steps. The minimum value (EMIN) is 0. and the maximum value
(FMAX) is 30.E+6 .

The command:

FREQ — .01, LIN1O, .1, LIN1O, 1., LINIO, 10., LIN 1O, 100.

will load the following data into the global frequency array. .

.01 , .02 , .03 , . 0 4 , .05, .06 , .07 , .08 , .09 , .  1,

.2 , . 3 , . 4 , . 5 , . 6 , . 7 , . 8 , .  9 , 1.,
2., 3., 4., 5., 6., 7., 8., 9., 10.,

2 0 . ,  3 0 . ,  40. , 50 . ,  6 0 . ,  7 0 .,  8 0 . ,  9 0 . ,  100.

54



- 

T~~~~T_ T~~~~~~~~ T~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 

Table 3
KEYWORD DEFAULT LIST

KEYWORD INITIAL
MANE VALUE FUNCTION

FREQMAX 30.E+6 MAXIMUM FREQUENCY DATA VALUE
FREQMIN 0. MINIMUM FREQUENCY DATA VALUE
TIMMAX l.E—5 MAXIMUM TIME DATA VALUE
TIMMIN 0. MINIMUM TIME DATA VALUE
ZERO l.E—lO CLOSENESS TEST FOR TIME OR

FREQUENCY DATA
FRQFIL - CONTAINS THE FREQUENCY ONLY

SEQUENTIAL FILE UNIT
TIMFIL - CONTAINS THE TIME ONLY

SEQUENTIAL FILE UNIT
PAGLIN 51 DEFAULT VALUE FOR THE PAGE 1 -

LENGTH IN LINES PER PAGE
PAGWID 81 DEFAULT VALUE FOR THE PAGE

WIDTH IN COLUMNS PER PAGE
Rl-R23 0 GLOBAL REAL ARRAY FOR USER

SUBROUTINES

55



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ----;r-- _-777 - 77 
.1 .- 

—- 

- -7 -— — - --7--- --- -- - —

(k) Mathematical Expressions

Quantities used in constructing the expression

include numerical constants, symbolic constants, function references,
data sets, and global variables. Also available are a variety of mathe—

statical symbols and several mathematical functions.

The expression is written using constructions similar
to those used in FORTRAN. EiCEM1’T has the capability to evaluate mathe-
matical expressions containing data set names, subroutine names, constants,

and arithmetic functions. 
—

1) Arithmetic Operations
The arithmetic symbols +, — , *, I, and ** , are

used to denote addition, subtraction or negativity, multiplication,

division, and exponentiation, respectively.

All arithmetic operators must explicitly appear
in mathematical expressions. No operations are assumed by juxtaposition

of quantities .

To order the sequence of operations, parentheses

may be used . For example , in division, only the quantity immediately
following the division sign is considered to be in the denominator.

Compound denominators must be enclosed in parentheses. These examples

illustrate the point.

X6 = R1/.5*R3 is interpreted as X6 = ~~~~~31

X7 = Rl/(.5*R3) is interpreted as X7 — 
5R3

The minus sign may be used to indicate the
negative of a quantity:

X9 — —N( l)

56



- “~ ‘~ 

- _ _ _ _  _ _ _ _  - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~

Exponentiation is indicated by the symbol **, where

the quantity appearing immediately after the symbol is the exponent.

Exponents may be constant or variable. Compound exponents must be

enclosed in parentheses. Exponents consisting only of integer constants

should be written without the decimal point.

Data sets contained in expressions must have the

same associated independent data. However, a data set that is neither

frequency nor time dependent may be mixed within an expression.

There are two categories of mathematical operations.

If a lower case letter represents a simple variable or constant (real

or complex), and upper case letter represents an array (real or complex),

and a ° represents the operators 4, — , *, and I, then the categories may
be described as follows.

a. First type. The arguments may be simple variables, arrays, or

both.

— a°b

C a °B

— t 0t. •I. 0

n
C A °B

— (a °b a °b a °b)1 1’ 2 2 ’ ~~~~~~~
‘ n a

b. Second type (exponentiation). The arguments may be simple

variables or a simple variable and an array.

c a **b

C A**b

— (a
1**b, a2**b

, . . . ,  a~**b) j
2) Parentheses

Left and right parentheses are available for

grouping purposes. Many levels of parentheses may be employed to a

maximum of ten. It is important to check for proper pairing of left and

right parentheses so that ambiguous or incorrect groupings are avoided.

H - An example of correc t usage is: : 
-

Xl — Rl/(R2*(N+R3))

57 

[ 7



- - --7- - -- —- -7-————-- ----- - 7.- _ 7_ --7.-.—-.— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— —

which represents the expression

RiXl - R2 (N+R3)

3) Mathematical Functions

The following mathematical functions are available

for use in mathematical expressions:

ABS(x) Absolute value of x

ATAN(x) Inverse tangent of x, result in radians

ATAN2(x,y) Inverse tangent of y/x, result in radians

CNPLX(x ,y) Complex function
CONJG(x) Complex conjugate of x ;

_

—

COS(x) Cosine of x, x in radians
EXP (x) Exponential function of x

ALOG(x) Natural logarithm of x
MA.X(x,y) Maximum value of x and y

MIN(x,y) Minimum value of x and y

MOD(x,m) x modulo in

SIGN(x ,y) Magnitude of x with sign of y

SIN(x) Sine of x, x in radians
SQRT(x) Square root of x, x positive
TAN(x) Tangent of x , x in radians

Function arguments must be enclosed in parentheses .
All EXEMPT functions may also be included in arithmetic statements. EXEMPT —

functions with parameter list must be totally enclosed in parenthesis.

Also, if a data set is complex, EXEMPT will perform the FORTRAN complex
function.

There are three categories of functional opera-

tions. If a lower case letter represents a simple variable or constant

(real or complex) and an upper case letter represents an array (real or
complex) , then the categories may be described as follows :

a. First type . If the argument is a simple variable , the result
is a simple variable. If the argument is an array, the function

is applied to each element of the array separately, and the
result is an array.

58


~~~~~ I W ”~~~~~ 

~~~~~ lIT -

- _ _ _ _ _ _ _ _

7
’

b f(a)
B — f(A)

{ f (a
1
) , f(a

2
) , . . ., f (a) }

b. Second type. Functions with two arguments. If both arguments

are simple variables, the result is a simple variable. If

either argument is an array, the result is an array.

c — f(a ,b)
C — f(A b)

(f (a~,b), f(a2, b) , ..., f(a ,b)}
or -

C — f(A ,B)
— {f (a 1,b1), f(a 2, b2) , ..., f(a ,b) }

c. Third type. The argument must be an array and the result is

an array or both arguments must be arrays and the result is an

array.

B— f(A)

C — f(A ,B)

$ -

59

_ _ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~1~
•
•

(5) User Subroutines
EXEMPT is provided with the capability to interface with

user provided software using two methods. The first method involves

replacing existing EXEMPT subroutines with the user subroutine of the
same name. There are 45 of these available and they are identified as

Fl subroutine SUM -
~~ SUBZ , OPRO -

~~ OPR9, and MYCOMO -
~~ MYCOM9. The interface

for these is presented in Section IV. They may be treated as any other

EXEMPT function with respect to usage. The user must replace the EXEMPT
subroutine with his own of the same name using the SCOPE COPYL command.

7 The identifiers SUBa and OPRn may be referenced directly; however, the

MYCOMn is a LIP equivalency statement. The user defines MYCOMa as a
symbolic name, subsequent reference to the name will result in subroutine

MYCOMn being called by EXE’4PT. This is illustrated below. When the

name GTD is referenced after defining MYCOM5 as GTD, MYCOMS will be called

to perform the user’s operations on the input data.

MYCOM5 - GTD

ECL

ANTRSP = GTD (FREQ)

The user must have provided a subroutine MYCOMS interfaced
as described in Section IV.

The second method for implementing the user’s software is

to append the entry point for a NAME subroutine. This is done by repiac—

ing the EXEMPT subroutine CNGSUB on the relocatable binary file b; using

the COPYL SCOPE utility with the append option specified (see example ,
Section V). The replacement must include an EXTERNAL declaration followed
by a call to SETUP . The arguments to SETUP , shown below, include the

user subroutine name in Hollerith form followed by the subroutine name.

As many pairs of arguments are required as there are user—named subroutines,

up to a maximum of 36 pairs.

60



‘--7——.-—- — .---7--’---—---—-.-- -7 - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~

-n 
-—--

~~~~~~~

----- - - - - - - - -
_ _ _ _

CALL

SUBROUTINE CNGSUB
EXTERNAL RUN1, RUN2
CALL SETUP(4HRUN 1 ,RUN1 ,4p1UN2 ,RUN2)
RETURN
END

. Further information and detailed description of the
‘4 subroutine uses are given in Section IV. It is recommended that the

user read Section IV before trying a user subroutine.
The general types of calls are illustrated below where A ,

B, and C represent data set names and Name is used as a user subroutine
name.

C = [~B 1])

CALL {~EJ ([~ ~~

FREQ

1

f

61

- I 7- — -7-, ___“ ‘--- ‘—_-_-_—,.

—-7— —---———---—------—— — --7-
—

~~~~~~~~~~~~~ ~~~~~~~ 
—.,—- — —--—- .--—

SECTION III
EXTERNAL FILE STRUCTURES

There are two data file structures that the user encounters. These

are binary sequential files and random access files. These file struc-

tures are used automatically through the command execution. Also, it is

possible for a user to format a binary sequential file from an external

program for use on EXEMPT.

A master index will contain the information needed for accessing

each data set on the random access file. The master index points to a

subindex directory for the particular data set.

1. EXEMPT SEQUENTIAL BINARY FILE FORMAT 
—

One of the ways in which the EXEMPT executive computer code can

exchange data with other independent program is through standard format

sequential binary files. Since the files are binary representations of

floating point numbers, information interchange is limited to machines with

the same word length and floating point number structure. Currently,

EXEMPT standard formats are defined for recording frequency domain or

time domain signals along with some title information.

The external unit names that are used for these files are determined

by the user. The unit names can be integer numbers between 1 and 99 or

standard FORTRAN file names in a 6L format. Lf the files are referenced by

number , the external name For these files will be TEMPXX. The files for

numbers between 1 and 9 will be written as TEMPO1 through TEMPØ9. - 
—

Therefore , any set of numbers can be used with these files and they will
not be confused with standard FORTRAN unit numbers.

The structure of a sequential file is in terms of data set. Motion

of the sequential file is done by sets rather than records . A READ wil l

• read one data set and a WRITE will write one data set.

The first record of a set will contain the number of points , data

description , date, program name, and the title information. A time domain

data type will have two other records and a frequency domain data type

will contain three other records. The structures of these data types are :

b2

_______________________________ _______ 
_ _ _ _ _



- 
~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _

a. Frequency Domain Data (Four Records)

1. Record 1: 17 words long

(a) One word integer (N) indicating number of words in

each of the following records.

(b) One word containing data description in CDC display

code.

(c) One word containing data description of data values

are 8HMAGPHASE , 8HREALIMAG , 7HDBPHASE.

Cd) One word containing a date in display code .
(e) One word containing display code or name of program

which wrote data file (e.g. , 7HSCEPTRE , 6HYSYNAP , etc.) .

(f) 12 words of title information in CDC display code.

2. Record 2: N words long containing the array of frequency

points.

3. Record 3: N words long containing the real part or ampli—

tude of a frequency function.

4. Record 4: N words long containing the imaginary part or

phase of a frequency function.

b. Time Domain Data (Three Records)

1. Record 1: 17 words long; same as for frequency data.

2. Record 2: N words long containing the array of time points.

3. Record 3: N words long containing the values of the time

function.

When writing an external file, the user should declare his file to

be record type, RT—W through the FILE and LDSET SCOPE utilities or use

BUTFER IN/OUT.

To properly write an EXEMPT formatted sequential file as described

above, a subroutine EXINTO is available. EXINTO is a FORTRAN subroutine

which is callable by other FORTRAN routines. Its purpose is to write

EXEMPT format data files .
The proper call is:

CALL EXINTO (ITYPE ,LFN,YR ,YI ,FT,N,IOP,TITLE ,IERR ,MANE)

63

——
7-7 —.—,——--, 7-.-

———.7--- ~~~~~~~~~~~~~~ ‘ ‘rnr ’ ~ ~~~~~~ ~
~~~~~~

_ _ _ _  
—

Arguments are as follows :
ITYPE: A two—word integer array identifying the type of data.

ITYPE(l) — 0 for time data or 1 for frequency data

ITYPE(2) — 8HREALIMAG or 8HNAGPHASE or 7HDBPHASE
as appropriate to describe frequency data.

LFN: Logical file name of the file on which data are to ue

written. It is either an integer from 1 to 99 or a name

wit h a maximum of six characters in L format. The system f i le

name for an integer specified file will be TEMPnn where
un is the integer. The file name must be declared on

the FORTRAN program card. To reduce memory requirement ,

set buffer size to 0.

YR: Data array containing real part (or magnitude) of a fre—

quency dependent function or amplitude of time dependent - 

-

function.

Yl: Data array containing imaginary part (or phase) of a
frequency dependent function (not used by t ime) .

PT: Data array containing frequency or time values.
N: Number of points in each array.

lOP: Indicates type of operation.
1-Rewind

2—Skip data block

3—Backspace data block
4—Skip file

5—Read data block
6—Write data block

7—Write EOF

8—Drop File

TITLE: Up to 12 words of Hollerith information.

IERR : Return error codes:
1—ITYPE not 0 or 1

2—Illegal operation code
3—Illegal file name

4—EOF encountered

5—End of information (EOI) encountered

6 !+



— 

_ ..r.. -77-77,~~~~7-~~~7- _ _
~~ 

_____

6—Read parity error

7—End of record (EOR) encountered , data array not N words long

8—Write parity error

NAME: Name of program calling EXINTO in left justified display

code (e.g., 7NSCEPTRE or 6HYSNAP) 
—

Example:
CALL EXINTO (0 ,3,AMP,O,TIME ,679 ,6,TITLE ,IERR,NANE)

These arguments have EXINTO write 679 points of TIME array data with a

title of LFN TEMPO3 .

EXEMPT will read two types of tape format. The first type was pre-

viously discussed. The second type, EXEMPT old format , may be read
only. The first record will contain the number of points and title

information.

An old format EXEMPT data block is defined as follows:
a. Frequency Domain Data (Four Records):

1. Record 1 — 13 words long; (1) one word integer (N)

• indicating number of words in each of the following

records. (2) 12 words of title information in CDC

• display code.

2. Record 2 — N words long containing the real part or

magnitude of a frequency function.

3. Record 3 — N words long containing the imaginary part
or phase of a frequency function.

4. Record 4 — N words long containing the array of fre-

quencies to match the function of the previous two records.

b. Time Domain Data (Three Records):

1. Record I. — 13 words long; same as frequency data.

2. Record 2 — N words long containing the values of a time

function.

3. Record 3 — N words long containing the time array cor—

responding to the values in previous record.

EXEMPT will use the following method to determine whether a data

set is time or frequency domain data:

-l
65

--7 
.j



-.7—., 7- —-  ——------- - 7- — — 
______ — — — •,_7~ _7__1~~rn- —

Fr- 
~~~~~~~~~~~~ 

---—--
—.7-——-- -- -

a. A data set not previously defined will be assumed to be fre—

quency domain data. A data set that has been previously

defined will retain its domain type. (To classify a data set

see the TYPE conm~and.)

b. To avoid reading wrong data, an EXEMPT error will occur when
the number of points in the first record is the same as the

length of the first record. Also, when the number of points

read do not agree with the number of points specified, an

EXEMPT error will occur.
Example:
Figure 3 is a diagram of sequential file containing frequency data

sets. There are four files ordered W, Y, X, and Z. Each data set on these

files are ordered WA, WC, WB, ~JD, YA, YB , YC , YD, etc. It is desired to

read the files and data sets alphabetically (i.e., read file W in the order

WA, WE, WC, WD followed by file Y).
To read the data sets in the order desired , one must be able to

skip files and blocks . In EXEMPT, to skip n files means to skip over n

EOF marks and position the head at the beginning of the current file. To

skip n blocks (note: one block is one complete data set) means to skip

over n data blocks. Also, skipping zero files or blocks (i.e., n — 0)

is quite legitimate; however , the meanings are different . For blocks ,

this is a null operation; but for files, the head is set at the beginning
of the current file.

By following the EXEMPT command language flow of Figure 4, one can see
how the data sets are read in the desired order .

2. RANDOM ACCESS FILES

The random access mass storage file is structured as a master index!

subindex file. The master index will include one subindex containing all

active file names. There can be at most 20 user named files on the master

index. For each file name there is a directory containing each subindex

and its header whose location is the first subindex of the file. A file

has 54 other subindexes that are used as data array locations. The

header for each data array is 50 words long and contains the data array

66

—

- —

~

r ~~~ -
-- —-- ‘

- .7-

- - - -7—-------- ,-

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~

/

/
~~IP—I /

/

/P.4 

/
~1P.4 /

-1 w o u .  / .~
0 - -

/
I

C-, I 
+ ‘0I

I

il l

’

67 ‘H 

___ _ __ _ _ __ ____ _ -7



- 

~~~~~~ r~~
_ _ _ _ _ _ _ _ _ 7 —

_ _ _ _ _ _ _ _ _ _

h

REWIND 31
- -

REAl) WA PILE - 31
SKIPB 31, 1, FRQFIL
READ WE FILE = 31
SKIPB 31, —2 , FRQFIL
READ WC FILE - 31
SKIPB 31, 1 , FRQFIL
READ WD FILE — 31
SKIPF 31, 2
READ XA, X3, XC , XD FILE = 31SKIPF 31, —1
READ YA, Y3 , YC , YD FILE - 31SKiFF 31.. 2
READ ZA, ZB , ZC , ZD FILE — 31

Figure 4. EXEMJ’T Command Language Flow

68

LA _

r ~~~~~~
.-

7~

name, 12 words of title information, the number of points, subindex
location for the data array response type (i.e., time, frequency , or no
type), subindex location for the independent data, the format type, and

31 words of blank information. Figure 5 shows the file structure of

the random access data base. NOTE: In discussions in this document,

the individual subfiles are termed files and are referred to as separate

files. In fact, they are subfiles of the one random access mass storage

FORTRAN file unit 99.

EXEMPT keeps a list of names associated with the 20 files. This

set of names plus the number of active files is written as the 21st

record. Thus, the 21st record contains only 21 words which are the

active file names and the number of active files. When a new file is

added, the first zero entry in the active file namelist is used f or the
index for the subf lie so that a file will be created corresponding

to the index in the list of active file names.

The random access file is opened with the master index in effect.

The master index is kept in the common block/MSTRG/ and a subindex cor-

responding to the proper active file name is read from the random access

file. Only one subindex is contained within EXEMPT at any time. Thus,

when referencing other files in the subindex the file currently in use

is rewritten onto the random access file before a new subindex is read.

Particular care is made in using the random access disk in this

master index/subindex form to always write the current subindex Onto the

record indicated from the master index before a new subindex is read.

In this way, the current values for the record pointers are maintained

correctly so that data are not lost on the random access file because of

an index error. Each file is organized in the same way, containing the

file header and directory and then the block records for the 54 data

arrays on each file.

The first subindex is always used for the temporary file. When

opening the mass storage file, the temporary file is always created

first and then the file that the user desires. If the user is accessing

the temporary file, the program does not open another file. However, if

the user has referenced a particular file by name or number, the user’s

file will be opened as the second file using subindex 2. This process

69

- - - — -7 -

--7-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _

z
0~~~

LU
0.
>~~~~

- LU LUC,, i.~~~~Z 0. U L~.<— LU)— < Z
w ~~ Z I- ~f l 0. —

— In Z 0 ~~~u, I-
o ° Z L U — I- ~~0. — o 0.~~- < 0< w OLU 1

~~~~o. L U<  X ~~~~~~-
~ C,) ~~~~j  ~~ I- <~~~~~~ U LU Z 0  0 —~~~< U J O

I-. 
~~ ~~ 

— ..J U C~~ LU L~a — — — — — —

C-’I LA Li. L
>- >. LU -~

< .~
. _I >-~~~— 

— ~~ ~~ LA ~~ LU 0

<
LU

<w  ~~ <UJ~~~~~~~ W ~;L~:’~}—z I X  < —~ ~~~I—~~~

0
-4
—4

S
S
0
C)

— — — — —
0 5

>- La. 0
‘0

0 )— )C
I— U JW _ Cs

LU 
~~~~LU

— C’-1 (~I~ CY’~ .W <~~~~
—

LA LA O Il,
• — — — — — — 0

1.1
S
00
.,-‘
r~.

I LU LU LU LU Li)

LU LU La) LU Li.
- J o

L~~
u. ta.

11~~~H1. ~Li I
70

‘H

- - ---- --~~~~~~~~~~~~

7-
-

~~~~~~~~fl~~~ -:J- - — - - 7-----— ---- --7-= 
_ _ _ _ _

continues as the user opens new files until all 20 files are in use.

When the user requests that a file be purged, two procedures are followed.
If the entire file is to be unloaded, the subindex pointing to the file

is zeroed, the name in the active file namelist is zeroed , the number of
files active is decremented , and the resulting subindex and new list of
file names are written onto the random access disk. The second procedure

occurs when the file is to be set empty. In this cnse, the file block
directory is changed to indicate that all the blocks are empty. Only

the file header and directory information are rewritten. The subindex,

which is in use after these operations, is then written onto the disk

and operation continues. The next time that particular file is accessed,
C the program recognizes that the file is empty and the first block will

be used. Purge file operations are an irreversible process. If the

user indicates a purge file operation, the contents of that file are

removed completely (see PURGE command , Section Il—B).

Lastly, when the particular EXEMPT job has been completed and a

STOP is executed, the FORTRAN I/O operations automatically write the
master index to the end of the file. This means that if no FORTRAN file
errors occurred during operation, the random access file can be cataloged - —

as a permanent file on the Air Force Weapons Lab computer system. When

EXEMPT completes operation, the master index is always restored and the

last used subindex is written on to the file . If an error occurs tha t is
not associated with a FORTRAN file operation, the SCOPE operating system

automatically calls a routine contained in EXEMPT called CLOSEM. No

attempt is made to change the index to the master index and close the

random access file correctly. If a fatal error is detected by the
FORTRAN I/O , the routines associated with the FORTRAN I/ O will automat—

ically try to close all FORTRAN files. This means that the index in

use at the time of the fatal error will be written as the last record on

the random access file. If this happens to be a subindex, then the

master index and the file structure is completely lost due to the error.

This is a systems function with no user control to override the FORTRAN

error processing. Consequently, it is not recommended that the random

access file be used as a permanent file. It can be temporarily used ,

but a backup must be maintained. This can be done through the permanent

data master tape.

71

LA - —  —
~~~ 

-

“-7’ —7-- -- -- -~~~~~ —.7--- 7-.——--— - -~~
—

~~~~~~~

The permanent data master tape is used to copy the random access

disk to a sequential file which can be saved either as a permanent file

or as a magnetic tape backup. This particular file is written in such a

way as to minimize the storage requirements for the file and yet at the

same time allow restoration of the random access file to the exact

. condition at the time when the master tape was written. The format for
the tape structure is found in Table 4. The first record on the master

data tape contains the active file names and the number of active

files. This is the same record written on the random access file as

record 21 of the master index. This allows the same active files to be
regenerated in the same indexing originally obtained. Each active file

is then written on the master data tape. Each file is formatted on the

master tape by writing the file header and directory, and all data arrays
referenced in the directory . Only those blocks containing data will be
written onto the master tape and each block will be written as one record.

Frequency dependent data will contain both real and imaginary data. If

the block is empty, the data arrays are not written. This minimizes the

storage requirements for the permanent master tape. In addition , only

the number of points indicated on the file are written onto the master
data tape. After all the records are copied from one of the random access

files, the next active file is found and the records for this file are
written beginning with the file header and the directory which contains

2715 words, followed by the data arrays. It should be noted that every

block header and directory from a file is written o n a  master data tape.

This allows easy regeneration of the random access file at the beginning

of execution of EXEMPT.

The master data tape can be obtained at the end of execution using

the EXEMPT command SAVRAN and , when it is written, the data tape is

written on to a file name specified by the user or the default name, NE’~4DAT.
At the beginning of execution, a previously existing master data tape can

be read into the random access file at the time that the random access
file is opened by the EXEMPT command GETRAN and requesting the user’s named

file or the default name OLDDAT for the master data tape. The master
data tape is automatically unloaded by the EXEMPT program after the random
access file is generated.

72 

- -7- 77- 
7 7 7



.T’ITIIITII_ ~~~~~~~
—-

_~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

Table 4
PERMANENT DATA MASTER TAPE STRUCTURE

NO. OF
RECORD WORDS CONTENTS

1 21 ACTIVE FILE NAMES, NUMBER OF ACTIVE
FILES

2 271.5 FILE HEADER AND DIRECTORY FOR
TEMPORARY FILE

3 N DATA ARRAY 1 FOR TEMPORARY FILE
4 N DATA ARRAY 2 FOR TEMPORARY FILE
S N DATA ARRAY 3 FOR TEMPORARY FILE

J 2715 FILE HEADER AND DIRECTORY FOR
NEXT ACTIVE FILE

J~4 M DATA ARRAY 1 FOR NEXT ACTIVE FILE
J+2 M DATA ARRAY 2 FOR NEXT ACTIVE FILE

FOR BLOCK 1
DATA FOR BLOCK 1

73
‘-

I-

The random access data base will reside on LFN TAPE99. If the user

has an existing EXEMPT compatible random access data base he wishes to
use, it must be attached with a LFN of TAPE99. Likewise, to save an

EXEMPT random access data base for later use, a LFN of TAPE99 must be - -

used. However, if the user has attached a random access data base on

LFN TAPE99, he must use the EX1~ND or ALTER option at the end of the .
-

-

EXEMPT run in order to save the modified data base. As mentioned previously,

it is recommended that the permanent master data tape system be used.

EXEMPT has the capability of writing binary data files which may be

saved as external data tapes if required . In addition, specific files, .
-

in particular the master data discussed earlier in this subsection, are - -

written. Any of the sequential data capes written using the standard

EXEMPT sequential file commands can be requested as an external tape and
saved. The file names associated with these tapes are the names given

by the user unless they are specified with a number between 1 and 99. In

that case, the file name w~.1l be TEMPXX where the number is coded into

the position XX. The tens digit is not removed for the numbers between
-

-
1 and 9 so that these files become TEMPO1 through TEMPO9. The random
access data file is saved on disk and can be cataloged as a permanent
file, but cannot be used with a magnetic tape copy. In order to save this -

information permanently, the user should use the GETRAN/SAVRAN option

to write a permanent data master tape.
I

74
I-

- -~~~ .“~“
- 7- 7

.7- -~~~~~~- -— -- ~~~~ -— ---7 - 7 ..-- .“—--

SECTION IV
USER INTERFACE REQUIREMENTS

The user may interface data directly with EXEN PT by using the

rigid interface specification prov ided by the OPRn , SUBa , MYCOMn , and
NANE CALLS discussed in the ECL of Section II. In addition, data from

C

external or internal programs may be retrieved from or written to a

peripheral sequential file using the format specified in Section III.

When using the OPRn, SUBa , MYCOMn, or NAME subroutine call , the
interface must be as specified below:

Subroutine Interface

Name
)

SUBROUTINE OPRn (RSP,M,N,X,C(,A1,B]])
SUBa

MY COMa
REP — Global real array of up to 20 values used as parameters

in the subprogram

M Maximum number of points found in X, C, A, or B

N Specifies type of resultant

1 Time or no type

2 Frequency

X Independent array -

C Resultant array

A Optional input array

B Optional input array
DIMENSION RSP(20)
LEVEL 2, X, C (, A (, B]]

C
DIMENSION X(M)

DIMENSION C (M,N) 1,A(M,N) (,B(M ,N)]]

75

- .

-7 -
- —

~~~~~ 
-7— —

~~~
-
~~:~~~~

‘ ~~~~~~~~~~~~~~~~~~~~ U,

All arrays , except RSP , are passed via the array BLNKCM located in
blank common. BLNKCM is declared a LEVEL 2 variable so that it may be

loaded in LCM on the CDC 7600. As such , all other variables that
—

reference any address in the array BLNKCM must also be declared LEVEL 2.
-~~ On the CDC 6600, the LEVEL 2 declaration is ignored .

When complex data is passed through the user subroutine or to be

returned through the array C, the first column (i.e., C(M,l), A(M ,l) , and
B(M , l)) will contain the real data and the second column (i.e., C(M,2),
A(M ,2), and B(M,2)) will contain the imaginary data.

The user must replace the EXEMPT dummy subroutines OPRn, SUBa, and
MYCOMn on the relocatable ~inary file by using the COPYL SCOPE utility.

To use the NAME subroutine call, the user must append the entry point
identified as NAME to the Direct Manipulation Processor segment using
the COPYL with the append option specified .

To append the entry point for a NAME subroutine, the user must
replace the EXEMPT subroutine CNGSUB on the relocatable binary file by
using the COPYL SCOPE utility. The replacement must include an EXTERNAL

declaration followed by a call to the EXEMPT subroutine SETUP. This

sequence will add the user ’s subroutine name and address location to a

table contained within EXEMPT. The arguments to SETUP, as shown below,

include the user subroutine name in Holler~.th form followed by the —

subroutine name . As many pairs of arguments are required as there are
user—named subroutines, up to a maximum of 36 pairs.

SUBROUTINE CNCSUB
EXTERNAL PULSE1
CALL SETUP (6HPULSE1,PULSE 1)

—

RETURN
END

7b
C

- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -- - ~~~~~~~~~~
~~~~~~~~~~ 2~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~


: ‘~~~

—-- — -‘ —a
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

-

~~ 

—
. 
—

~~~~~~~~

‘

~~~~~~
“

~~~~~~~~~~~~~~
- ~,

1. NO INPUT ARGUMENTS OR RESULTANT SPECIFIED

The MYCOMn subroutines should be the only subroutines callable in

this form. However, since the interface is the same for all user subroutine

calls, any subroutine type may be called in this form. The MYCOMn

subroutines will be the only user subroutines that may have an alternate

name assigned. For example, consider the following ECL:

MYCOM1 • GTD
-

-

-

CALL GTD()

The MYCOMn subroutines are intended to be used as alternate user—

defined commands. Since this is a transfer of control , the CALL keyword
must be used in conjunction with the alternate command. Also, note the

use of the null parentheses. These must be present since they delimit

the start and end of a subroutine parameter list, even if a null list.

The interface for the above example and all null parameter list

calls is:

SUBROUTINE MYCOM1(GREAL , M, N, X, C)

where:

GREAL — Global real array

M — Set to zero

N — Set to zero

X — Dummy argument

C — Dummy argument

2. RESULTANT ONLY SPECIFIED

All subroutines may be used in this manner. However, there are

three types of interfaces within this class and all have to do with how

the independent is to be passed .

_
_ ~~~~~~~~~~~~~~~~ -


~~~~
- -- - - - - ----- ______

7- - - 7 —7-- - ----—7 

a. If the resultant is a frequency or time domain response , the

resultant’s associated independent is called through the

subroutine interface.

b. If the resultant is classified as time or frequency (e.g.,

TYPE command) and the resultant has not yet been defined, the

currently defined frequency or time independent is called

through the subroutine interface.

c. If the resultant is not classified as frequency or time, a

null array is passed as the independent with the following

input parameters:

1. M — Set to 1/3 of current BLNKCM size

2. N — Set to 2. On return, user sets N to the following:

N — 0, resultant is a no type
N 1, resultant is a time function
N 2 , resultant is a frequency function

3. X — On return contains independent values for N ~ 0
The following are examples of calls to subroutines without optional

input arrays.

Example 1:
A~~~ SUBA( )

A is the resultant data set for the subroutine SUBA. A will be

classified to be frequency or time domain data or a no type data by the

user when the SUBA subroutine call is completed. -

Example 2:

TIME • LINlOl

B — 1./TIME

LIST B
TIME • LIN51
CALL OPR1(B)

B is the resultant data set for the subroutine OPR1. Since B had

been classified as a time domain response in statement 2, the independent

associated with B, statement 1, is called through the interface to OPR1.

78

-7- ——--  ~~~~~~~~
—

- - --—~~~~~~~~~~ 
- - - - - -



.—. ~~~

— 
~~~~~~~~~~~~~~~~~~~~ w

3. ONE OR TWO INPUT ARRAY AND RESULTANT SPECIFIED

There are three types of subroutine interfaces within this class
and, again, all have to do with the way the independent is to be passed :

a. Same as the no input array interface (1). Unless TIME or FREQ

is specified as the first input array, then the specified

global independent is passed through the interface and will

become the independent data associated with the resultant.

b. Same as the no input array interface (2). Unless TIME or FREQ

is specified as the first input array, then the specified

global independent is passed through the interface and will

become th. independent data associated with the resultant.

c. If the resultant is not typed , the independent associated
with the input array is called through the interface.

d. If the input array is not typed then a dummy independent of

4 the same size of the input array is passed. Also, the resultant’s

array is set to the size of the input array. However , since
the interface does not know at this point whether the resultant

will be frequency or time domain, a doubly dimensioned resultant

array will be passed (i.e., dimension C to (M , 2)). On the

return , M will be the number of points in independent and/or
resultant. N will be the type of resultant generated :

1. N — 0 — No Independent Associated

2. N • 1 - Time Independent

3. N — 2 — Frequency Independent

4. PASSING THE GLOBAL REAL ARRAY AND CURRENT INDEPENDENT ARRAY

The global real array is set externally to the calling sequence

through the variables Rl—R2O. These variables are set prior to the sub—

routine calls and their values remain in e f f e c t until altered by the
user. The following example will illustrate the point:

79

__ ,-,-----v ~-W. ~~~~~~~~~~~~~~~ -
_ _ _ _ _ _ _ _ _ _ _ _ _ _ - ~~~- - 7- - —

-7- - ----7 - - _

- —— —--— -- —-- _ _

TINE — LIN128 , O.5E—6
R 2 — O $ RESET GREAL(2) = 0.
R3 — 9.366E6 $ SET GREAL (3) — 9.366E6
R4 — l.953E7 $ SET GREAL (4) - l.953E7
TYPE Y — TIME $ CLASSIFY Y AS A TINE FUNCTION
CALL PULSE1(Y)
LIST Y
END

In the above example, the user may wish to pass the TINE array and
set Y internally as a time function. In this case, the TYPE command
would be omitted and the subroutine call would be:

CALL PVLSE1(Y,TIME)

Also , on return from subroutine PULSE1 the user need not set N • 1
to signify a time function. EXEMPT will do this on seeing TIME in the
calling sequence. Additionally, the call could have been placed in an
arithmetic statement such as:

Y — PULSEl(T~~~)
OR

TYPE Y — TINE
Y—PUL$El()

A complete example of passing the global real array and the subroutine
interface is shown in Figures 6 and 7.

80

-~

-

~T~~~~~ TIT T ~~

-~ l~L1 I * *1 II U H I— ~/) I.- ~~
U) ‘-‘ (U (‘) ~~ ‘0 ~~ Z,- z ~~~ t x 1 x~~~ ~- ~~~~~~~~~~~~~~~~~

‘-4

8~

- 7 7 - — - - - - - -7 --- - - - - - -~~~~~~~~~~~~~~
—

- - --

~RIS PAGE IS BEST QUALITY PRLCflCABIJ
-

-

ThOM OQPX !Uk~M1SHED TO DDC ~~~~~—

I

SU
~
R0UT1NE puLsE1c~~sP,M,N,T,rT)

D1MENSlON~~~~~~SP (l 0)~~~~~T (1) ,F T (1)

C
A RSP (2) —

ALPHA = R S D (3)
F = RSP(4)
Q = PSP (5)
TS H IFT = P S P(6)

N T = M - -

C
DATA TwOPI/6.2~~3~ 8~~3l/

TWOPI*F
I F (Q . E O .0 . O) 30 T O 1
ALPHA

1 CONTINUE
IF A.NE .0.0 30 10 2
TP = A T A N (W / A L P H A) / W
A = 1 . 0 / (E X P (_ A L P H 4 * T P) ~~S T t 4 (W * T P))

2 CONTINUE
00 10 I = 1,Nt
X = T c 1 • ISHIFT
F T (I) A * E X P (_ A L P HA * X) O S I N (W O X)

10 CONTINUE
X = — TS H IFT
1 = 0

15 I I + 1
IF (T(I).GE.x) GO TO 20
FT (I) = 0.0
GO TO 15

20 CONTIF4UE
RETURN

-

- END

k
Figure 7. User Subroutine Interface

C- -

82

-- ~~~~~~~~~~
—

~~~~~~
- --- 

-



- - -

SECTION V
COMPUTER INTERFACE REQUIREMENTS

There are three permanent filer with which the user will come in contact.

a. EXEMPT Binary File
b. EXEMPT Segmentation Directive File

c. EXEMPT Absolute File
These files are more clearly defined in the EXEMPT Programmer’s Manual. At

this point, the user only needs to know that the binary and segmentation

directive files will be needed when using the COPYL utility. The user

should normally come into contact with only the absolute file. The following

— examples should illustrate the point.

1. EXAMPLE 1 DESCRIPTION

Example 1, shown in Figure 8, illustrates some of the EXEMPT

arithmetic capabilities available. The example computes the transfer

function

111(w) — ( x + jw)

for each frequency value. The output listing is shown in Figure 9.

2. EXAMPLE 2 DESCRIPTION

Example 2 calculates the input impedance of a shorted transmission

line by using some of the standard functions available within EXEMPT. The

ECL is shown in Figure 10, the LIST output is shown in Figure 11, and

the resultant METAPLOT is shown in Figure 12.

For a shorted transmission line, the input impedance is given by

ZSC — Z tanh (y9~)

However, since hyperbolic functions are not included among the

- 

. 

standard functions available to EXEMPT, the exponential function

83

7- - -

— =-~~~~~~~~~~, - —-7—- 
- -

-- -  - ___ ~~~~~
7 ____&~_



——----7—- — - , , — ~~-----~
w—--

~~-’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .c~
_

——. — -- — :  ________________ - - - - 1 ~

JOB CARD.
ACCOUNT CARD.
ATTACH ,ABS ,PFNAME (PARAMETER LIST). EXEMPT ABSOLUTE FILE
ABS. -

1 7/8/9 (EOR) - EXEMPT ECL
FREO = LIN5I~ 5O.O E6 - -

ALPHA = 1O.0E6
JW = CMPLX(O ,6.28318~pREQ)MW a l/ (ALPHA • JW)
LIST MW
END

~ 
6/7/8/9 (EOF ) END OF JOB

Figure 8. Job Stream and ECL for Example 1

84 -

- 

-

- - — - - ~~~~~~ -— - —--- -~~~-~~



-7 - --7 
- “-

~
-7 ----

~~~~
-- -- —

~~—~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - 7-- _______ —-—------ -- ---- -

~~~
- L _ .~~_ _~~~~LT~~~~

I - -  
~~~~~~~~~~ - - -— -

—l

LIST OF DATA SET 14W

-
-

INDEX FREG ~4*G PHASE PIDEX FRED 14*6 PHASE
I

1 0. 1.000E—07 0. 27 2.600E.0? 6.1IOE-09 —86.5 -
2 1.000E’06 8.467C—08 —32.1 28 2.?OOE.G7 5.884E—09 —86.6
3 2.000E’06 6.227E—08 —51.5 29 2.800E.07 5.675E-09 —86.7
4 3.000E’05 4.687E—08 —62.1 30 2.900E.07 5.480E-09 —86.9

- - 5 4.000E.06 3.697E—08 —68.3 31 3.000E.O? 5.298E-O~ —87.0
6 5.000E•05 3.033E 08 —72.3 32 3.100E.07 5.127E-09 —87.1

- 1 7 6.000E.06 2.564E—08 —75.1 33 3.200E.07 4.967E-0~ —87.2
8 7.000E.06 2.217E— 08 —77.2 34 3.300E.07 4.811E 09 —87.2
9 8.000E.0S 1.951E—08 —78.? 35 3.400E.07 4.676E—09 —87.3
10 9.000E.06 1.741E—08 —80.0 36 3.500E-.07 4.543E-0 —87.4
11 1.000E.07 1.572E—08 —81.0 37 3.600E.07 4.417E 0 —87.5
12 1.1O 0E-~07 1.432E—08 —81.8 38 3.700E.0T 4.295E-09 —87.5
13 1.200E.07 l.315E—08 —82.4 39 3.800E.07 4.185E-09 —87.6

-

-

14 1.300E.07 1.215E—08 —83.0 40 3.900E.07 4.078E—0 ? —67.7
15 1.400E~07 1.130C—08 —83.~ 41 . 4.000E.07 3.976E-O —87.7

- - - 16 1.500E~0? 1.OSSE—08 —83.9 42 4.100E.07 3.879E-0 —87.8
17 1.600E~ OT 9.898E—09 —84.3 43 4.200E.07 3.787E-09 —87.8
18 1.700(.07 9.321E—09 —84.? 44 4.300E.07 3.699E-Og —87.9
19 1.600C.07 8.808t—09 —84.9 45 4.400E.07 3.615E-0 —87.9
20 1.900E.O7 8.347E-09 —85.2 46 4.500E.07 3.535E-0~ —88 0
21 2.000E+07 7,933E—09 —85.5 47 4.bOOE .07 3.458E-U —88.0
22 2.100E~ 07 7.557E— 09 —85. 1 - 48 .4.700E•07 3.384f.-09 —88.1
23 2.200E.07 7.215E—09 —85.9 49 4.800E.07 3.314E-09 —88.1
24 2.300E.07 6.903E—09 —86.0 ~0 4.900E .O7 3.246E-09 —88.1
25 2.400E.07 6.617E—09 —86.2 51 5.000E.07 3.181E—0 9 —ge .2
26 2.500E’OT 6.353E—09 —86.4

..... .** *.. *... END OF LIST -..**e...e**e*.*ee.*•**.**...e

Figure 9. Output for Example 1

83

-7- -

- — -
~~~~

_
~~~~~~ 

\ . —.
~-

—-7-—’—-- -------— -- ---- -——-— - -- --U

- _ _ _ _- -- -- - - - 1: _ _ _ _ _ _ _ _ _

JOB CARD.
ACCOUN T CARD .
REQUEST (PLTFIL ,~ Q)
OISPOSE (PLTFIL, M F P F) DISPOSE PLOTS TO CAL OMP
£TTACH ,ABS ,PFNAI4E (PARAMETER LIST). EXEM PT ABSOLUTE FILE
ABS. -

1 7/8/9 (EOR) EXEMPT CCL
S
S IMPEDANCE OF SHORTED TRANSM ISSIO~l LINE

a 3.161592654
FRCQ = 1.E6,LIN50~ 50.E6
w 2•PI~ FRE Q
LEMGTH 2
Z0 50 S C!-4A~ACTERISTIC IM~ EDAMCE .
CPSR = 3 S RE LAT IV E DIELECTRIC CONSTANT
ROC a 0.1E—3 S DC RESISTANCE PER METER
C 3,0E8 S SPEW OF LIGHT

SI. a CM PLX (ROC~S~RT (REQ)/(2~Z0) ,W~SQRT (EPSR)/C)-’LENGTH

S GAM MA X LENGTH

ZSC Z0~~(CEXP (GL-) — EXP (—GL))/ EXPIGL) • EXP (—GL)))

S ZSC = ZO~ TANH (GAM 4A*LENGT~I)
-

- S TA NI IX) = ((E X P C X I - — EX P (— X)) / (E X P (X) . E X P (’ X)))

PLOT ZSC TITLEY = •IMPEDAN CE
LISI GL.ZSC
END
I 6/7/8/9 (EOF) END OF J08

Figure 10. Job Stream and ECL for Example 2

86

7- --7

:

~
T--

~

:i:

~
T--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

LIST OF DATA SET

INOE* FREQ 43G PHASE lIDU FM~ Q NA G PHASE
1 1.0001.06 7.2581—02 88.4 26 2.6001.07 1.89 89.7
2 2.0001.08 .145 88.9 27 2.7001.07 1.96 89.7
3 3.0001.06 .218 89.1 28 2.8001.07 2.03 89.7
4 4.0001.06 •~ 90 89.! 29 2.9001.07 ~.10 89.7
S S.0001.06 .363 89.3 30 3.0001.07 2.18 89.7
6 6.0001.04 .435 89.4 31 3.1001.0? 2.25 89.7

• 7 7.0001.06 .508 89.4 32 3.2001.0? 2.32 89.7
8 8.0001.06 .580 89.4 33 3.3001.07 2.39 89.7
9 9.0001.06 .653 89.5 34 3.4001.07 2.47 89.7
10 1.0001.0? .726 89.5 35 3.5001.0? 2.54 89.7
11 I.IOOE .07 .798 89.5 36 3.6001.07 2.61 89.7
12 1.2001.0? .871 89.5 37 3.7001.0? 2.60 89.7
13 1.3001.07 .943 89.6 38 3.8001.01 2.76 89.7
14 1,4001.07 1.02 89.6 39 3.9001.07 2.83 89.?
15 1.5001.07 1.09 89.6 40 4.0001.01 2.90 89.8
16 1.8001.0? 1.16 89.8 41 4.1001.07 2.97 89.8
17 1.7001.07 1.23 89.6 42 4.2001.07 3.05 89.8
10 1.8001.07 1.31 89.6 43 4.3001.07 3.12 89.8
19 1.9001.07 1.38 89.6 44 4.4001.0? 3.19 89.8
20 2.0001.07 1.45 89.6 45 4.5001.07 3.28 89.8
21 2.1001.07 1.52 89.7 46 4.6001.07 3.34 09.0
22 2.2001.0? 1.60 89.1 47 4.7001.07 3.41 09.8
23 2.3001.07 1.67 e9.? 48 4.8001.07 3.40 09.0
24 2.4001.01 1.74 89.1 49 4.9001.0? 3.56 09.0
25 2.5001.0? 1.01 89.? 50 5.0001.0? 3.63 09.8

I
LIST OF DATA SET ZSC

INDEX FRED 488 PHASE 1901K ~RE0 NAG PHASE
1 1.0001.06 3.64 88.4 26 2.6001.07 153. —88.0
2 2.0001.06 7.31 88.9 27 2.7001.07 122. —88.3
3 3.000E.06 11 .1 89.1 28 2.eooE.07 101. —88.5
4 4.000E.06 14.9 89.2 29 2.9001.07 84.7 —88.6
3 5.0001.06 19.0 89.2 30 3.0001.07 72.2 —88.7
6 6.0001.06 23.3 89.3 31 3.1001.0? 62.0 —88.?
7 7.0001.06 27.8 89.3 32 3.2001.07 53.6 —88.7
0 8.0001.06 32.8 89.3 33 3.3001.0? 46.3 —88 .7
9 9.0001.06 38.2 89.3 34 3.4001.07 40.0 —88.6

10 1.0001.07 44.3 89.3 35 3.5001.07 ~~~~ —88.5
11 1.1001.0? 51.3 89.2 36 3.6001.01 29.3 —88 .4
12 1.2001.01 ,9.3 89.2 37 3.7001.07 24.6 —88.2
13 1.3001.07 58.9 89.1 38 3.8001.07 20.2 —88,0
14 1.4001.07 00.6 89.0 39 3.9001.07 16.1 —87.6
15 1.5001.07 95.4 88.9 40 4.0001.0? 12.2 —86,9
16 1.6001.0? 115. 88.1 41 4.1001.07 8.45 —85.5
17 1.7001.07 142. 88.5 42 4.2001.07 4.73 —82 .1
10 1.8001.07 184. 88.1 43 4.3001.07 1.27 —59 .0
19 1.9001.0? 257. 87.3 44 4.4001.07 2.62 78e 3

20 2.0001.07 ~l4. 85.1 45 4.5001.07 6.23 8J.7
21 2.1001.07 1.0391.03 79.0 46 4.6001.0? 9.94 88.9
22 2.2001.01 1.8501.03 —69.1 47 4.7001.0? 13.8 86.9
23 2.3001.07 50?. —84.4 48 4.8001.07 17.0 87.3
24 2.4001.07 280. —86.6 49 4.9001.07 21.9 81,8
ZS 2.5001.0? 202. —07.5 30 5.0001.07 26.4 00.0

............................... .. two 8? LIST ..................s............s.

Figure 11. LIST Output for Example 2

87

-



- -

~~ ~~~T~~~~~Iii ~~ T~~~~~
T-7T 1Ti~T ~~~~~~~~~~~~~~~~~~~~~~ !

I 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I
12 JUL 77 13. ’-11.C2. PLOT 1 -f

1 901.03 I I I I 1 1 -

1.52t~03 - 
-

I

- 1  E
C
A
~ 7 B1E.O2- -

E

3.811+02 -

1.2 . -

~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 51E.O~~ 
~~.07

FREQUENCY

12 JUL 77 13. ’4 L03. PLOT 2 -

1.801.02 - I I

_ _ -

—1.081.02 - - I

I I9
~

OQE•~~ elE.~~ ~
07E•cT~ .so~,o?.mE o

~.s E.0?
O1

~ S~~~O~
4. ~~~~~~~ S11.07~

FREQUENCY .

Figure 12. METAPLOT ~r Example 2

88

‘1T~~~~~~ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

representation of the hyperbolic tangent is used. Note that the exponential

function , EXP, can handle a real or complex argument. That is, if

X = real number

then

XEXP(X) — e

but if

then

EXP (X) — e’~(cosB + jsin8)

3. EXAMPLE 3 DESCRIPTION

Example 3, reference Figure 13 for ECL, is an exercise in reading
a data tape generated by another program and storing the generated EXEMPT

random file data base on permanent files. The LIST CURFIL output, shown
in Figure 14, lists each data set as they occur on the random file

including each independent. In this case of the six data sets, GTDF1—

GTDF6, there are five independents also listed. There are only five

independents listed because data sets GTDF3 and GTDF6 reference the same
independent and, therefore, this independent is listed but once. The

output for the SAVRAN coum~and is shown in Figure 15. Figure 15 is an

index to the data base saved as a result of the SAVRAN command.

89

-- - -
~~ ~~- —

AD A066 806 BDM CORP ALBUQUERQUE N MEX FF6 20/LU
EXEMPT USERS MANUAL. (U)
JAN 79 r?9601-74—c—o122

UNCLASSIFIED BDM/A—76—IUO TR—R2 A F W i - T R - 7 7 — 2 O 7

i{i{iFLILiiI~~~j leILmhI&Ia %~

/

-~~~~~

I
THIS PAGE IS BEST QUALITY P~ACflCABL$
ThOu OQ~X I ai~ki~D TO J~D C

JOB CARD.
ACCOUNT CARD.
ATTACH,TEMPOI,PFNAME, (PARAMETER LIST). EXTERNAL FILE
REOIJEST.NEWDAT ..PF.
RE UUEST,TAPE99,~ PF.
ATTACH,ABS .PFNAME (PARAMETER LIST). EXEMPT ABSOLUTE FILE
ABS.
CATALOG,TAPE99,PFN&MEI (PARAMETER LIST). DATA BASE SAVED ON RANDOM FILE
CATALOG.NEwDAT .PFN*ME, (PARAMETER LIST). DATA BASE SAVED ON SEQUENTIAL FILE
~ 7/8/9 (EOR) EXEMPT ECL
S
S EXAMPLE TO DEMOSTRATE EXEMPT LIN~A3E TO A FILE GENERATED BY
$ ANOTHER PROGRAM’ IN EXEMPT FORMAT.
S
S ALSO, THE GE~1Eq*TED DATA BASE IS SAVED ON A PERMANENT FILE FOR
S LATER USE.
$

REWIND I
FILE GTD R1
READ GTDFI FILE*1
READ GTOF 2 FILES1
READ GTDF 3 FILE$1
READ GTDF4 FILE~ 1READ GTDF5 FIl..Esl
READ GTDF6 FILEa1
LIST CURFIL.
5* yR AN
END

8 6/7/8/9 ~EOF) END OF JOB

Yigure 13. Job Stream and ECL for Example 3

90

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~



___________________ - .  .i : T ~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ri~oa ~XM~ ~u j~,ki1~b ~t) IM)

Q
~~~~~~~

.—

‘••• C U R l E W !  I * I.E I N D E X  “S.

FIL E INDEX. S FILE NAME. STOOl
DATA UT TI7LE

t t U  01DM RUN—PM!. ~~~~~~ OS 0150RV*TI0N POINT—i. an. ANSLE’ I. JO PNI M~~( 19 14.47. Il/lOll? lI 0*7* F
0*1* SIT NAME RESPONSE TYPE MUM 01 P15 INDEX IMO IMOIX

ITOh FREQUENC Y 05 1 0

LIST 01 0*7* SIT 07011

STOW RUN—PHI . S THETA. 90 OSStXV*T ION POINT—i’ lii. ANILE. 5. JO PHI NOOK 55.14.47. SIlI5l7T S—I DATA F

INDEX INtO REAl. INAS INDEX INtO REM. 1Mb
I —3.s711—IS —S.130E—l3 30.0 *4 —1 .44ff—OS 3.130E•0S III.
0 4.1011—03 S.031E—IS 40.5 13 0.0741—03 1.1901-01 190.r 3 —9.4071—03 —9.4411—IS 70.0 15 —3.1511-OS —l .4191 03 000.
4 3.5411—03 —0.5011—05 50.0 *7 0.0001—05 —0.4331.04 110.
3 —4 .0501—05 3.5*41— U 90.0 II —1.5161—03 1.0751-03 UI.
S —1.1101—OS —3.0031—03 100. 10 •,454(—04 —1.4441—U 030.
7 2.1731—IS 1.1931—IS 110. ii .3791—l i 9.S04C—14 040.
• —1.9101—OS —7.3411—04 *00. 01 —4.1711—IS —4.1431—IS 750.
9 —4 .ISTE—O7 —1.40*1—03 *30. U 4.9551—IS —1 .0141—03 040.
II •*.1321—I5 5.5501—04 *40. 73 hUll—OS 7.1441—14 270.
1* —3.0401—03 —7.4131—I? *30. 74 —1.1931—fl —1.1111 5S ill.
Ii *.104(—0S —1.0531—OS *40. 75 1.5431—01 .4.1441.57 790.
*3 —5.3031—04 1.4411—IS *10. 04 —4.1141—IS 1.4401—05 300.

0*7* SIT T ITLE

DATA SIT NAME NISPONSI TYPE ~4U$ 01 PTS INDIN IND INDEX
INtO NONE 04 2 0

LIST 01 0*1* SET F~ CO

NOEX VALUE MDIII WAL UE NOEl ~*LUE MDIX VALUE MDIII VA LUE
* —3.4701—09 0 4.1021—IS 3 —9.5011—03 4 3.S441—0S I —4.7501—03
4 —1.6101—05 7 2.1731—05 S —1.1101—fl 9 —4.1571—07 15 —*.13&E 15

II —3.0411—OS Ii 1.5041-05 *3 —5.3031—04 *4 —1.4411—04 15 7.1241—IS
*4 —3.1521—05 17 1.1051—IS 15 —1.1141—IS *3 4.4141—05 70 1.3291—OS
21 —4.0701—04 U 4.9531—04 73 1.3551—14 76 —1.0931—05 ii 1.3431—IS
74 —..Ilst—04

DATA SE T T I t L E

lIlt 31DM NUN—PHI. I 74171. U DISIRVATION POINT—i. 723. ANSLIP 0. ~P PHI Moot 43.54.41. Il/Sb,?? S—I DATA F
DATA SET NAME RESPONSE TYPE MUM 01 P71 INDEX IND INDEX

67012 FREQUENCY 75 3 4

LIST 01 DATA 511 01017

51DM NUN-PHI. S T HETA. 90 OUS EbYAT IO N POINT—i. US. *N5~E. 5. JI PHI NODE 51.14.47. ll~I5/TT S—I DATA F

INDEX INtO PEAL IN*S INDEX INtO REAL 1 0*5
* —9.9141—03 —7.1511—OS 90.0 *4 3.9151—I3 5.0571-04 *50.
O —9.54*1—03 3.1441—04 40.0 • 15 —3.2251—03 0.1001-04 *90.
3 —3 .0011-03 4.7901—04 70.0 *4 4.S0S€—03 3.7041-04 200.
4 —4.6291—01 *.1141 04 50., *7 —4.4201—03 — 3.700 1-06 010.

4 S —5.0391—03 —5.9051—06 90.5 15 —5.0041 03 •7.~ Ib1—O4 720.
4 —S .SO (—O3 —4 .03*1—04 *00. 13 —5.0541—03 —4.0651.04 730.
7 —4. 10 11—03 1.0531—04 110. 70 —6,9*01—03 *.5411 04 740.
I —3. 47* 1—03 1.0031—04 UI. 71 —S.SZSE—03 4.5911-04 UI.
• —4.0301—03 7.1141-04 *35. U .4.0091—03 3.0031-04 040.
II —4.4731—03 4.1541—55 *40. 03 —4.5131—03 —3.317E O3 770.
1* —4.7071—03 —4.4311—04 *50. 04 4.0171—13 —5 .0*31-04 750.
*2 5.S4U~53 7.1111 54 SO. ii —3.510E S3 5.354(—14 790.
*3 —4.1531—I) .7.1411 14 *75. 05 —3.1511—13 —0.1161—U 355.

Figure 14. LIST CIJRFIL Output

91



~ .
-
~~~
::- .:-:TiT~~~~~~ .

‘-4
THIS PAGE IS BEST QUALITY PBACflCABL*
FROI XW~ IS1U~.i- i~O bJJC

DATA Ut T It L E

DATA SET NAME RESPONSE TYPE NUN 01 P75 INDEX INO INDEX
IRIS NONE OS 4 5

LIST 01 DATA SET PIES

MDCX VALUE MDIX VALUE NOEl VALUI NOEl VALUE MDIII VALUE
$ —1.9141—03 5 —3.54*1—13 3 —1.0011—53 4 —4.5191—I) 1 —5.1391—I)
4 IeIIU I3 7 4.1II1—I3 I 1.4?1E I3 9 —4.9351—I) II —4.473E 1)
11 —4.7471—13 Il —1.1411—13 *3 —4.5531—03 *4 —5.1151—53 11 —1.1111—53
IS —4.3911—I) 17 •4.SOIE—53 15 —1.7241—13 *9 —1.5141—0) SI —4.1011—U

A 7* —1.3751—03 02 —4.0911—13 7) —4.4151—03 74 —6.9111—13 71 —1.3111—I)
04 —1.5401—53• DATA SE? TITLE

i s i s ITOM RUN—PMI. I T4ITA. ,5 OSSERVATION POINT—i . US. ANILE. S. PS PM! MODE 59.14.47. 11/11/71 S—i DATA I
DATA SET NAME RESPONSE TYPE NUN OF PTS INOIX I’ID INDEX

6T013 FREQUENCY 76 3 4

LIST OF DATA SIT 0101)

570$ NUN—’MI. I THETA. 90 OSSIAVAT IOM POINT—O S US. ANSLI. I. PS P14* WOOl 09.54.4?. 1*/flIt? I—I DATA F

INDEX IREQ IEAL IN AO IND EX INtO NEAL WAS
1 —3.2101—13 1.0741—Il $5.1 16 —1 .3141—14 —3.9331—13 Ill.
2 1.14.1—Il —0 .5*31—13 41.1 II I.43s1—*4 —1.1*01—Il $90.
3 —3.0551—1) —1.3141—12 70.0 14 —1.0431—13 —7.1111-I) 250.
4 2.1101—I) —3.5001—13 05.0 17 3.3001—14 1.5341—13 215.
3 3.1221—1) 5.3541—13 91.1 15 1.4171—13 9.1731-13 UI.
5 1.3751—I) *.4I3E—12 100. 19 1.1)01—13 7.4141—I) 730.
1 1.1901—13 4.1351—I) 115. 25 1.4441—13 —9.409E 14 060.
S —1 .5201—I) ~7.1I71—l3 120. 21 4.700E 14 —1.5751—13 750.
O — 1.1441—13 — l .274E—12 130. 72 •l.451E—14 —5. 9S4E— 13 240.

*0 2.0251—14 —4 .1*51—1 3 140. 73 —9.2131—IS —4 ,6151—14 170.
11 1.1091—13 4.3141—13 155. 74 1.3131—14 4.0311—13 lIe.
*2 0.4341—I) 1.1131—12 145. 75 1.0031—13 4.3441—1) 295.
*3 0.1451—I) 5.4101—13 *70. 75 1.7401—13 1.9111—U 315.

DATA SET TITLE

DATA SIT NAME RESPONSE TYPE NUN OF PTS INDEX lID INDEX
INtO NONE 74 4 0

LIST 01 DATA SIT IRIO

MDIX VALUE MDIX VALUE NDEX VALUE MCCX VALUE MDCX VALUE
1 —1.OIOE— 13 0 7.1441—14 3 —1.1011—13 4 O,?20E—13 S).3211—13
4 1.5751—13 7 1.7901—13 S —1.5001—13 9 —1.1441—13 15 2.1151—14
II 1.1591—13 12 2.4361—13 13 7.1441—13 *4 —1.394E—*4 iS I.4341—l4
II —1.0431—13 I? 3.5551—14 15 1.6171—13 19 1.5311—I) iS 1.1441—13
01 4.7011—14 U —2.5171—14 73 —9.OS3E—13 26 1.3151—14 21 1.1131—13
OS 1.7411—13

Figure 14. LIST CURFIL Output (Continued)

92

_ _ _ _

_ _ _ _ _ _ _ _

- -~~~~~~~-~

-‘-.- ---
~~~~~~~ 

—
~~~~~~~~~~~~~

- ----- — —•-- -
— - —---.—-— —~-~~--- -- —--~~~~-~2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

?HIS PAGI IS BEST QUALITY PRACTICABL~moa ow~ ~~~~~~~~~ ru 1~~Q

OA?A 317 7111.1

isis STOW RUN-P$Il. I IW ETA .  90 3ISIIVATION POINT—I. 773. ANSLEP I. J2 THETA MODE 19.14.41. 51/51/77 S—I DATA F
DATA SIT NAPE RESPONSE TYPE MUM 01 P75 INDEX 1110 INDEX

07014 FREQUENCY iS 7 I

LIST 01 DATA SIT 51~ I4

L I 
STOW RtJN—PMIu S THETA. 90 ORSENVATION POINT—lu 003. ANGLE. 5. .11 THETA MOOt 00.14.4?. 11/13/?? S—I DATA I

~~ 

17101* IRIS REAL INAS INDEX FR(O REAl . INAS
I 4.5441I) —3.1611—04 30.0 14 5.2551—03 —1.1471-53 *00.
O 3.4131—I) 9.1511—IS $1.1 II 1.3731—I) —4.1901-IS 191.
3 3.1071—I) 1.3731—04 75.0 IS 1.0)31—03 l.U1I~S4 005.
4 3.0401—03 —1.5901—06 SI., *7 3.0151—03 —3.45.1—00 Oil.
3 3.2091—03 l.104C—04 90.0 iS S.77S 1—S) 6.3351 05 ill.
• 5.14*1—03 —3.934E—04 ISO. *9 3.0731—03 .1411—IS 131.
7 3.30*1—03 O.910C—0S 110. 25 1.3041—03 —1.3711—OS 060.
S 3.2331—03 3.1111—OS *20. 21 1.2091—53 —1.3301.15 131.
9 3.0551—0) —4.4151—IS *35. 22 3.0711—I) —3.2111—01 140.
II 5.244E—l3 —1.34ff—IS 144. 73 5.1151—5) —1.1111—IS 710.
Ii 1.7131—03 3.43)1—03 110. 24 1.0411—53 1.5171—Il 255.

• *2 3.7331—03 —0.5451—04 *45. 73 3.1101—I) 7.0701—IS 095.
*3 5.3111—13 5.0001—OS * 70. 14 3.3121—I) 2,2511—fl 350.

DATA SET TITLE

DATA SEt NAME RESPONSE TYPE MUM 05 P71 INDEX INC INDEX¶ IRIS NONE 05 I I

LIST 01 DATA SIT I~ E0

MDIX VALUE MDIX VALUE NOEl VALUE MDCX VALUE 7101* VALUE
1 6.5441—03 7 3.4151—03 3 S.IO1C—O3 4 5.24OE—03 5 5.1091—13
4 S.1411—I3 7 5.3011—03 0 1.2931—03 9 3.2911—53 II S.244E—I3
ii 3.2131—03 17 3.2331—0) *3 3.31*1—03 14 3.1501—I) 13 1.3231—03
*5 5.0331—03 17 5.0351—I) *5 1.1711—0) 19 5.2131—53 ii 1 )751—03
01 $.O99E—03 U 3.0791—03 73 5.0721—03 06 5.3411—I) 73 3.0901—03
24 3.3001—03

DATA SET TITLE

5 5 5 5  STOW NUN—PHI. 0 THETA. 90 OSSEIVATION POINT—i. 205. ANILEP 0. JP THETA NODE 10.14.4?. Il/SS/71 5—1 ~~~~~ P
DATA SIT NA ME NESPOPISI TYPE NUll 05 P15 INDEX INC INDEX

OTDFS rN~ou(Ncv 74 9 II

LIST 01 DATA SET 61015

STOW RUN—PHI. S THETA. 90 ORSENVATION POINT—lu 213. ANOLEu 3. JP THETA MODE 19.14.47. SI/Ill?? 5—1 DATA F

1N01* INtO NEAL INAG- 1w01II INtO REAL INAS
I —4.2301—07 1.4361—04 30,0 16 —3.543E—04 1.4111—OS ISO.
2 —3.0701—07 5.4111—OS 60.0 15 3.5041—06 i.I3SC-OS 190.
3 0.1141—04 4.7901—07 10.0 IS I.2i0C—03 0.1741-04 200.
4 —5.342 1—03 —3.512C-0S 50.0 17 1.6501—04 —0.2191-04 710.
S —1.4591—OS —1 .779C— O S 90.0 15 —0.0591—05 —1 .122 1—03 000.
4 —0.0431—03 l.1341 05 100. *9 —1.0141—OS —5.4521—05 030.
7 —1.7751—05 0.0361—OS 110. 00 —1.1341—OS 3.0251—05 040.
I 1.4411—IS 1.07S1—03 125. 21 S.3731—04 1.1441-05 730.
• 2.0001—01 —5.0441—04 130. 22 3.40*1—04 1.0701—01 045.
II 9.1351—IS —1 .0731—03 140. 23 9.2541—04 3.1941—04 271.
Ii —3.2591—IS —I.II*E—O3 ISO. 24 1.4491—OS —3.1431—IS ill.
12 —1.1741—IS —1.33)1—IS *40. 23 1.5131—04 —S .2SOE-04 790.
1) —1 .4151—11 1.5111-IS 171. 24 —4.0911—14 —4.17)1—04 311.

Figure 14. LIST CURFIL Output (Continued)

93

_ _ _ _ _ _ _ _  J



I
— ThIS PAGE I S ~~ST QUALITY PRAC?ICABLI

~XA~~ ~ Ui~~ i~~u~~ I\’ i) L) L~

0*7* 017 TIT LE

DA TA SIT NAME RISIONSI TYPE NUN OF ITS ( NOEl INS INDE X
15(0 NONE 05 II 0

LIST 01 DATA SIT lIES

MCIX VALUE 101* V&LUI 1011 VALUI 101* VAI.U 1 
• 

151* VALUE
I —4,1511-I? 0 —3.9771—07 3 1.1141—IS 4 —1.3411—14 5 —l.5031 1$
4 —l.1431—IS 7 I.77IE~I4 0 1.4471—lI 9 0.III~~I1 II 9.111( 13

• *1 —4.2591—54 12 —1 .7791—IS 13 —1.4111—Il 14 •S.541(—14 II 1.0441—94
14 l.112E—I$ 17 7.4501—14 15 —l ISlE—IS 9 —1.1141—IS 1$ —1.1541—fl
SI —3.3731—06 07 3.511E—14 73 0.0541—04 24 5.4491—IS 21 1.51)1—IS
74 —4.90*1—04

DATA 51? T I T L E

5 5 5 5  STOW NUN 0W1. I THETA. 05 DSU VSTION POINT—i . 72$. ANILE’ I. PS THETA $001 S9.14 47. 01/53/77 5—1 DATA I
DATA SET NAME RESPONSE TYPE WUM 01 PIt INDEX ( IsO INDEX

4T014 FREQUENCY 05 II 4

~
i$? OF DATA SET $7014

STOW RUN—PHi. 0 THITAS II OSSERVATION POINT—i . 725. ANILE ’ 3. PS THETA NODE 11.14.41. 11/11/?? S—I DATA I

INDEX INtO NEAL IMAS INDEX IRIS REAL INAS
* —3.0501—I) .6.4191—13 30.0 *4 — I.PSE—I S 1.11*1 *3 III.
0 7.0461—Il 1.0011—I) 40.0 IS 1.4)41—16 —1 .0431—I) 191.
3 —3 .2001-I) 3.0401—13 70.0 14 —1.0431—I) 5.1431—16 050.
4 0.7001—1) 1.1101—14 00.0 1? 3.SOSE—1 4 4.5051—14 710.
S 3.3771—1) 2.5141—13 90.0 II 1.4771—13 1.4491-13 000.
4 1.3151—13 —0.1011—13 III. 1~ 1.1341—I) —7.9401—IS 230.
7 1.0951—I) —0.3551—I) *15. 70 1.1441—13 S.4S41—14 040.
I — 1.5091—I) —4.7951—16 171. 2* 4.7011—16 —1.1991—13 050.
9 —I.S-4(—J3 3.1*81—14 130. 00 —1.417E—14 —7.44)1—14 040.

IS 0.0001—Is 1.0351—I) 145. 7) —9.0531—13 0.3541—Il 070.
• II l.0I91 1) 2.1711—I) 1%I. 24 1.3111—14 9.0211-Is OIl.

Il 7.4341—I) -4.1331—14 140. iS 1.0131—13 4.5121—14 ftC.
3 0.1411—U —1.1091—14 *15. 24 1.7451—I) 3.3041—14 311.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ENO OF FILE LII? ..,. e.... e.....44 .e..ss *s...s. .

•..S....... S................... .S END OF 4 (17 ~~~

Figure 14. L I S T CURFIL Output (Conc1ude~fl

. 4

- — --—-- ---—~~~~~~~~~ --—--•-•—--—- —--.-,.- ~ . . -
~~ .

~~~~~~~~~~~~~~~~~ 
-

- . —~~-------- -•- — -- ~~-- — - --—--~~~~_~--~~
-

TRIS FAG! IS ~~ST QUALITY PRACIICIJi4
ThOI OO~P~ FURI~LSHED TO

•e•. N A M P O N  T O  S E  Gil l N T  I A L  £~~~ D E  A

FILE INDEX. 1 FILl NAME. IT(1P

•s............s...... ~.S.s•..PP (N) 01 FILE LIST I••PP•••I••.PPPPP ~~•P~~•*P•••P•SP

FILE INDEX. 7 PILE NAME. STOOL
DATA SET TITLE

siPs STOW RUN-PHI. I T ilTs. 90 OSSEIVATION POINT—i. 025. *114CM I. JO P841 MOOt 59.14.4?. 01/03/7? 5—1 DATA F
DATA SET P.A5( RESPONSE TYPE NUN 05 PTS INDEX IWO (MDIX

etOFI IR1DUCNCY 74 1 1
DATA SET TITLE

DATA SET NA ME RESPONSE TYPE NUN OP PTS 7N01* lID INOEX
IRIS NONE 74 0 I

DATA SET TITLE

sit STOW NUN—PHI. 5 TNCTAP 95 OISE*VATIOM POINT—i. 725. ANILEU I. .iP PHI $001 50.14.47. 11/1Sf?? I—I DATA F
DATA SET NAME RESPONSE TYPE NUN Dl P71 INDEX INO INDEX

51012 I91QUCNCY OS ) 4
DATA SIT TITLE

DATA SET NAME RESPONSE TYPE SUN Dl ITS INOIX INS INDEX
15(4 ‘lONE 74 4

DATA SET TITLE

l’s; STOW RUM—Psi. I TPIUA. 90 DOSENVATION POINT—Z4 225. *1141W 0. 55 PNI MODE’ 09.14.47. Il/IS/Ti I—i DATA F
DATA SET NAME RESPONSE TYPE NUN OF P75 INDEX IWO INDEX

$7013 IRESUINCY 74 I 4
DATA SET TITLE

• DATA SET NAME RESPONSE TYPE NUN OP ITS INDEX IWO INDEX
INtO NONE 24 4 I

DATA SET TITLE

$851 57DM NUN—PHI~ S TME TA. 90 355 (I VATI ON PO INT—i.  223. ANIL1M I. .11 THETA MODE 50.14.47. Il/I ll?? S—I DATA P
D*7A SET NAME RESPONSE TYPE NUN OP ITS INDEX INO INDEX

GTDF4 FREQUENCY 25 1 5
DA TA SET TITLE

DATA SET NAME RESPONSE TYPE NUN OF 175 INDEX INC INDEX
1510 NONE 24 I 5

DATA SET TiTLE

ills ITOH RUN—PHI. I THETA. 95 )USERVSTIOPI POINT—i. 00. ANILE . I. .11 THETA WOOf 10.14.41. 51/55/?? S—i DATA P
SA IA SET NAME RESPONSE TYPE MUM OP 111 INDE X I’SD INDE X

01DFS PR1GUCISCY 75 0 II
• DATA SIT TITLE

DATA SET leANt RESPONSE TYPE NUN Dl ITS INDEX INC INDEX
FNEO NONE 04 11 I

OATA 5(7 TITLE

$855 STOW RUN~~MI. S THETA. 90 OIifRYAT1ON POINT—i. ill . ANILE. I. PS THETA MODE 00.14.47. Il/IS/i? I—I DATA P
DATA SET NAME NESPONSL TYPE MUM OF P15 INDEX IWO 11101*• STOPS IRCIU(NCY 04 Ii I...~~...............I......4... END OP 117.1 LIST ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ END 31 LIST •••P•S4•SPP ••••• ••4••P•P•••• SS$•

Figure 15. Index From SAVRAN Command

-

~~~~~~

.- • .



• _ ____  - -

~~

4. EXAXPLE 4 DESCRIPTION

Figure 16 is the job stream and ECL for linking a user—defined
subroutine to EXEMPT. If the user wjøhee to use a SUBa , OPRn, or a MYCOMn
then the job stream is exactly the same. The SCOPE COPYL utility modifies
or appends any new routines to the present program. The output of this
example is presented in Figures 17 to 19.

4

J

96

;~~ 
-

- . --•



_______________________________________________________________________ ,r ~~-- -~~~~~~~ ~~.w— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~-- —•. — .

ThIS PAG! IS BEST QUALITY PRACTICA~LZ
FW)A COPY FUI’~MSHEI) TO L)DC

$05 CARD.
ACCOUNT CARD.
FI N.
A T t A C N . O L O .P F N AN ~ I P A N A N C T E R  L I S T ) .  E X E M P T  SINAQY
COPYL.OLO.LGO,CXMSIN..A.
L I S R A R Y  I M E T A L I S S
£TTACM .S(O.PFNAML PSRAMEI(R L I S T S .  SEG M ENT D I R E C T I v E S
SESI,.OAD II .570 5
LOAD SEAM S INS
N0S0.
REQUEST IPLT’IL.’3)
DISPOSE(PLTFIL,.Nr.PFS DISPOSE PLOTS TO CALC O M P
ASS.
7. 7/S 9 (EONS INPUT FOR rUe CARD

SUBROUTINE CNGSUB
E X T E R N A L  P~iLStl
CALL SCTUP(A NPJLSCI.PULSC7.s
NE TURN
END
SU5ROUTINC PULSE) SRSP.M.N,T.FT)
DIMENSION A S ’ I lO S , T I l S . F T U S

C
A . RSP(2S
ALPHA • RSPS3 I
F •
O • RSP ISP
TSPe I FT — RSPI4 )
NT — N

C
DATA TWOP!/6.25385S31/
d — IWOP)•F
) r ( O. (Q .O.0S  SO TO 1
ALPHA • 0.S.N/O.

I CONTINUE
!FIA .NC.O.05 30 TO 2
TI • AIA N(W/ALPNAI /W
A — 1.O/5C5P(—IL PHI.T PS’SIN(d .TPSI

2 CONTINUE
00 10 I • I.Nf
A • TI!) • ISNIFT
FYI! 5 • A C X ~~I *LP’4I~ X)~~SIN (d•i)

80 CONTINUE

1 . 0  t
IS I — I • I

IrIT I) .G E.X) 00 ID 20
FT U) • 0.0
00 10 15

20 CONTINUE
RETURN
IWO

I 7/I/O ICON) EXEMPT CCL

$ S
S DEMONSTRATES USER Si~0ROUTI NE CA PABILITIES S• S $

FiLE  OMPSI N
$
S USER DEFINED SUBR)UTIYC TO CALCULATE A DAMPED SIN 0?
S
S VIT)—N2 .CXpI—R3 T •SIP4IZ•PI.P4.T)~~U I T )
S

TIME — LIN1ZS.0.5U.6 $ INITIALIZE GLOBAL TIME ANNA !

S INITIALIZE GLOXAI. REAL ARRAY FOX SuBAO&ITINC PULSE!

Re • 0. S FOR R2.O. THEN FITS CALCJLATED SUCH THAT MAX rIfl.5.0
R3. 5.366(4 ~/ P4 • 1.953E7
NS.0. 5 SPE~~IFIf5 A 0 RATM(R THAN A DAMPING FICTOR FOR XC N.3T (DUAL TO 0.

S OPT1v .e I~.i TINE SHIFT FOR fJNCTIO-e Sh IFT FROM 0

V PULSC1ITI$SES S USER F U N C T I O N  P1)1.5(1 CALLED

TITLE y ~ DA NPC3 SIN FUNCTION CALCULATED 1—12—77 FROM EXE MPT W I T H  PULSE! •
LI ST v
PR IPLY Y

PLOT V
END

• ~ 4/7/51, StOP ) (NO Dl JOB

Figure 16. Job Stream and ECL for Example 4

97



— -••~~~~ * 
• • ~~~~~~~~~~~~~~

.

-
~~ ~~J~~JTT— -

LIST OP DA TA SET V
DAMPED SIN FUNCTION CALCIA.ATED 1— 12—7? INON EXEMPT M IT N Pu~$El

‘40CX TIME VALUE MDCX TjN( V~~.UC NDEX TIME VALUE
1 0. 0. 44 1.4931—07 .116 IT 3.316t—17 —3.0631—02
O 3.937~—O9 .503 45 1.730C—S? .249 II 3.415C—0? —4.120t—O2
3 7.874E—09 .359 46 l.770E—l? S.314(-IZ $9 3.455E—O7 —4.358E—02
4 1.1O1C—O$ .099 47 l.SUE—57 —4 .740f—02 90 3.5341—07 —3.3191—02
S 1.5751—00 •?O7 40 1.4501—07 — .130 91 3.5431—07 —1.9591—02
6 1.9691—08 .S21 49 1.0901—0? — .171 92 3.5331—07 —7.4101—04
7 2.3a21—OI .01? SO 1.9291—07 — .1S3 93 3.6001—07 1.6921—02
• 2.7561—08 — .207 51 1.9691—07 — .147 94 3.6S IF— O7 2.9511—02
9 3.1501—05 —.354 50 2.0091-07 —1.1211—fl 93 3.70 11—0? 3 .4?T E— 02

10 3 5431—OI —.754 53 2.0411-07 — 1.7951—03 96 3.1401—01 3.1881—02
11 3.9371—OS — .772 54 2.0171—0 7 7.2431—00 97 3.7501—0? 0.2101—02
12 4.3311—08 —.5*8 55 2.1261-07 .105 98 3.4191—01 0.1411—03
* 3 4. 7241—08 — .337 56 2.1651—07 .147 99 3.OSdE—0 7 —6 .6461—03
14 5.2 181—08 — 1.994 1—03 37 2.2051—0 1 .134 100 3.0081—0? —2.4 9 11—02
15 5.5121—OS .310 58 0.2441-07 9.2341—02 101 3.4311—07 —2.610 1—02
16 5.9061—00 •531 39 0.2831—07 3.3251—02 102 3.976 1—0? —0.6991—02
17 6.2991—08 .518 SO 2 .323 E—0 7 —2 .90 11—02 103 4.0161—07 —2. 1831— 02
1$ 6.6931—00 .362 61 2.3621—07 —0 .0411—02 104 4.0551—07 — 1.2191—02
19 7.0571—08 .385 62 0.4021—0? — .110 lOS 4.0041—07 —5.2861—04
20 7.45O1 01 .136 63 2.641 1—07 — .124 106 4. 134 1—07 1.0421—02
21 7.8741—08 — .126 64 2.4801—07 —9 .145 1—02 307 4.173 1—0? 1.8281—02
22 8.2681—08 — .342 65 0.5201—07 —5.0501—02 108 4 .2131—07 2.152 1—02
23 8.66*E’ O8 — .466 66 0.5531 07 1.3921 03 109 4.2321—07 1.9761—02
24 9.0551—05 — .478 67 2.5991—07 4.4611—02 110 4.2011—07 1.3731—02
25 9.4491—08 —.383 60 2.6391-07 7.7441—02 *11 4.3311—07 5.0921—03
26 9.5431—05 — .010 69 2.6771—01 9.0751—02 112 4.3701—07 —4.0651—03
27 1.0241—07 —0.3451 03 70 2.7171—07 8.2981—02 7.13 4.4091—07 —1.1671—fl
28 1.0o31—O7 .191 71 2.7561—07 5.7341—02 114 4.4491—0 1 —2. 6 141—02
29 1.1021—07 •325 72 2.7951—07 2.0301—02 115 4.4981—0 ? — 1.4721—02
30 1.1421—07 .383 73 2.4351—0? —1.7751—02 116 4.5081—01 —1.3541—02
31 1.1811—07 .349 74 2.8741—07 —4 .9631—02 117 4.5571—0? —7,5841—03
32 1.2201—07 .039 75 2.9131—01 —6 .8231—02 115 4.6361—0? —3.6821—04
33 1.2601—07 5.4911—02 76 2.9531—07 —7.0361—02 1*9 4.6461—07 6.4161—03
34 1.2991—07 — 7.744 1—02 7? 2.9921—01 —5.6731—02 120 4.6951—01 1.1291—02
35 1.3391—07 — .011 70 3.0311—01 —3.1681—00 121 4.7241—0? (.3321—00
36 1.3781—07 — .088 79 3.0711—07 — 1.034 1—03 122 4 .7541—07 1.?241—02
31 1.4171—07 — .296 80 3.1101—07 2 .747 1—02 123 4. 80 3E—07 8.5281—03
38 1.4571—07 — .238 81 3.1501—07 4.1961—02 *24 4 .$4 3 E—0 7 3.2851—03
39 1.696 1—07 — .131 82 3.1891—07 5.617 1—02 125 4 .43~ 1—O7 —2. 4861—03
40 1.5351—07 —2.1781—03 83 3.2231—07 5.143 1—02 126 4.9211—0 ? — 7.202 1—03

• 41 1.3751—07 .7.18 84 3.2691—07 3.5511—02 127 4.957.1—07 —9.9841—03k 42 1.6*41—07 203 85 3.3011—07 1.3021—02 128 5.0001—07 —1 .0351—02
43 1.6541—0? .037 56 3.3461—0? —1.0361—02

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ENO 01 LIST ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 17. LIST Output of Examp le 4

98

- •

I

l.a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..o. ~.• • . S... I• e i~~ •s ..•o. •.......e 1*

S S
S .

1.5 •A •
• A
. Sa .

.5. . •
. .

.45 • A A
. A
• A
A

.45 . .

A • A A
N • LA
P • A

• A
.25 • A *4

T • A
U • A A £44
0 e A A A *4 •
E • * A A A A *4 •

A A A *4 AA *A *4*4 AAAA •
• A * A A A 4 * * 4 * *4 4* *AAA AA AA A AAA *

• A A 4* 4* •
• A A AAA .
. A A L A •— .25 • £
. A A * •
• A •
• AL S
• A A .

—.4. • A .
. .
• A S
• * S

— .45 • £
• A •

.

— S.. • .S .S* .• • ..S....•S . S. . S. •....... e.......•.......•.S...,....,...,,.. .. 5 . . 5 5 ..
p.. S.IIEPISL.SSE—I71S5O E—O 72.IOE—572.g,t—0 73 .•5E . 57I.S,E—OT4.Q,E .O74.S.E~.73.,,E..,7

TINE

DATA SET V
TITLE • DAMPED SIN ‘UNCTION CALCULA TED 1—12—?? FROM EXEMP T 11TH Put.SE I

5- MAO V

Figure 18.
•
PRTPLT Output of Example 4

99

•
~~~~~~~~~ ~iT ~~~~~~~~~~~~~~~~~ ~~~

12 JUL 77 1~.O3.39. PLOT 1

I
.

1.0 I I I I I I I — *

.6’2

A

L

Ii ~~~~~~~D(
‘Sc -•

~~~~~~~~~~~~~~

.

—
I I 1 I I 1 I

0. 5~~~J .ao1-m~ ~~ .~~1-o7~ j c a~o73 9i S• lIZ-92
~~J. LIZ-O7

TIME
DATA SET Y TITLE - DAMPED SIN FUNCTION CALCULATED 1-12-77
FROM EXEMPT WITH PULSE1

Figure 19. ~IETAPLOT Output for Example ~+

103

