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THERMAL SELF-FOC USING OF A LASER BEAM

IN A DENSE, LOW TEMPERATURE PLASMA

R. S. B. Ong__~~~~~~~~~ tment of Aerospace Engineerin g
The University o c/h~ichi gan
Ann Ar bor , Michigan 48109

and

Andrew Schmitt
Department of Nuclear Engineering

The University of Michigan
Ann Arbor , Michigan 48109

Abstract - Tt !e the rmal self-focusing of a Gaussian electromagnetic beam

incident upon a den se, low temperature plasma is discussed. The behavior

of the beam as it propagate s through the plasma is analyz ed. A measure

of the penetration depth of the beam in an inhomogeneous plasma as a func-

• tion of its power is given.

INTRODUCTION

The nonuniform intensity of the electric field in a Gaussian electro-

magnetic beam incident upon a plasma can cause a redistribution of the

electrons in the plasma. This mechanism leads to the phenomenon of

self-focusing and enables the beam to penetrate into an otherwise over-

dense plasma (Akhmanov, Sukhorukov and Khoklov, 1968). It is well-

known from geometric optics that a ray incident upon a region of increasing

index of refraction will refract into the higher region. In a plasma the

index of refraction is approximately given by

- 

~~~~~~ 
i(v w 2

/~~
3)~~

2 
= - 

~~e~~ ec~ 
- i(v .n/ ~ n ) l l/Z

( J l t)
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• where n is the critical electron density, i. e. the plasma density where

the plasma frequency equals the incident laser frequency. Thus, if a ray

is incident on a plasma with a density gradient, the ray will refract into a

less dense region. Hence, if somehow the incident electromagnetic radia-

tion can induce a change in the initially uniform plasma density distribution

in the transverse direction, then self-focusing may take place.

In the case of a fast (laser pulse time shorter than the energy relaxa-

tion time of the electrons) pulsed laser interacting with a strongly ionized

collisionless plasma, the ponderomotive force is able to redistribute the

electrons in such a way that there exists a positive density gradient in the

transverse direction away from the beam axis. Thus a transverse gradient

of the index of refraction is established, and this leads to se lf-focusing of

the incident laser beam.

However, in the case of a low temperature, high density plasma such

as that employed in our laboratory Z-pinch experiment (Rockett, et al. ,

121978), the electron-ton collision frequency is very high, V . 3 x 10 sec.

Moreover, the pulse time of our CO2 laser is of the order of 3 ,5  x lo
_8 

sec. ,

i.e., much longer than the energy relaxation time of the electrons. There-

fore, in this case, the nonlinearity appearing through the nonuniform heating

of the electrons by the incident laser beam is more important than that due

to the ponderomotive force effect, and we have a thermal self-focusing

phenomenon. This is characterized by a redistribution of the plasma elec-

trons by the nonuniform heating in a direction normal to the incident beam

axis. The transverse nonuniform distribution of the electric field intensity
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• of the incident laser beam creates a nonhomogeneous electron temperature

in the radial direction away from the beam axis. For a Gaussian electric

field in the laser the electrons on the beam axis become hotter than those

away from it. This also can cause self-focusing of the incident beam as

will be discussed below. (SOdhd, Ghatak and Tripathi, 1976).

THERMAL SELF-FOCUSING

The energy of the electrons acquired from the incident laser beam is

dissipated through collisions with the ions and through thermal conduction.

The rate of energy lost due to electron-ion collisions may be described by

Te) e_ i = 
~~

kB(2mv eq(T e
_T
i)/M)

where is the equilibration time of the electron and ion temperatures.

On the other hand, the rate of energy loss per electron due to thermal con-

duttion is

8Td 3  1 8 e
~~~~~

- (
~ k8 T )  tc = - — (r ,c

where +c is the coefficient of electron thermal conduction.

For our laboratory Z-pinch plasma experiment the amb ient conduc-

tions are described by

T = 2. 32 x l0~ 
°K.

eo
— 

~~~~~~T. < T  .tO~~~ eo

= electron thermal velocity ~ 4. 2 x 10 cm/sec. ‘
,

a v ~ 10
l0 

sec
4

= electron-ion collision frequency ~ 3 x 1012 
sec

4 \~, \c~~ . ~ I
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r0 = radius of focal spot of the incident laser beam ~ 6 x lO ’
~ cm.

For these experimental values it may be shown that the energy loss of the

electrons due to thermal conduction is much larger, than that due to elec-

tron-ion collisions. An estimate of the relative importance of the two dis-

sipation mechanisms yields

(3/Z)k B 2mv
~~

(Te
_T
i)/M m r~ V

eg
V
ei 

O(l0
2)

— ( r K )/n r V
8r  8r  e e

for our laboratory experiment. This suggests that we have a thermal fo-

cusing process in which the main energy dissipation mechanism is d c c -

tron heat conduction in the direction transverse to the axis of the incident

beam.

Next we calculate the electron density distribution in the transver se

direction. The steady state energy balance equation may be written as

ld  d T
e E •  V = (n r) ~ —( r ic d

e) 
(1)

Substituting the velocity from the equation of motion for the electrons un-

der the influence of the oscillating electric field of the CO~ laser beam,

we obtain

n v . e2
EE* d Tc c i  l d  e

2 _ ;~~~~ ( r K dr (2)

where ~, is the frequency of the incident CO2 laser beam, and we have used

the fact that V2
. << in our experi ment. We now assume a Gaussian

distribution for the incident laser beam:

EE* = E~ exp[- r
2
/r~f2(z)]/ f

2
~z)  (3)
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where E0 is the amplitude of the electric field of the incident beam, and f(z) is

a variable which parametrizes the beam width.

In the linear approximation we carry out a Taylor series expansion of the

right hand side of eq. (3) with respect to r 0, i. e., the beam axis. Also we

use ambient values for the coefficients in the energy balance equation (2) . We

then solve for T (r), and obtain

T (r) = T
eo + (~ E

2
/4K f

2
){r

2
[ 1 - (l/4f 2

)J - r2
[l - (rZ4r ZfZ)]) (4)

where n e 2
v . /rn~~ (5)

I’
and the subs cript zero denote s ambient values.

The sound speed in the z -pinch plasma in our experin-~ nt is about 2. 2 x

10
6 

cm/sec. As the characteristic length of the laser beam is of the order of

6 x 10 ’
~ cm (i.e., the focal spot radius), the characteristic time scale tH

for hydrodynamic motions transverse to the laser beam axis is of the order of

3 x l0 ’
~ sec. As indicated previously the laser pulse time is approximately

3.5 x io 8 sec. Thus, in the time scale of the laser pulse, i.e., for t >

the plasma pressure 
~e + is approximately constant across the laser beam.

Furthermore, n a n., and T a T. as the time scale for the electron and ~~e i e i

temperatures to equilibrate is much less than tH. Consequently, 1
~e 

= n k
BT

a constant across the beam. This implies that

n (r) a n T ,T (r) (6)e eo eo e
where n = n and T = T , the ambient values, when r = r . From T (r)e eo e eo o e
as expressed in eq. (4) we then obtain the electron density distribution:
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• n (r) = n - n [{( r 2 
- r

2
) - (l/4r

Z
f
Z
)(r4_r4)}/{(4KTf

Z
/~~E

2
)

• + [(r
2 

- r
2
) - (l/4r 2f 2

)(r
4 

- r~ ) f l ] ;  0 < r < r (7)

This expression for the density distribution is now substituted into the formula

for the dielectric constant (neglect the imaginary part which accounts for the

absorption)

2 2€ ( r )  = 1 - [~~ (r)/w ] (8)

The result is

€(r) = + (w
2 

/~~
2)( { (r 2 

~r2) - (l/4r Zf Z)(r 4
~~r

4) } / { ( 4 K T f Z
/~~ E2)

+ [(r
2 

- r2) - (l/4r 2f 2
)(r

4 
- rd)] } )  (9)

where = 1 - (w 2
/~ 

2) i. e., the dielectic constant of the ambient plasma.

• Equation (9) gives the radial variation of the dielectric constant necessary

for the thermal focusing process. It may also be written in the form

2c(r) = + 4 ( E~ ) (10)

where 4 (E~ ) is given by the second term of the right hand side of eq. (9). It

is the modification of the plasma dielectric constant by the electric field of the

incident beam through the nonuniform heating of the electrons.

In the last section we solved the plasma heat balance equation’ by ex-

panding the Gaussian beam intensity profile about its centerline. This approx-
2 2 2imation is strictly not valid when r / r f  is of order unity. Therefore we

solve the heat balance equation numerically by finite difference method as

follows.
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First we note that the collision frequency and electron thermal conduc-

tivity vary with the temperature as (Spitzer, 1956)

v • = v • [T /T (r) ] 3/2

K K {T (r)/T ]
5/2

where we have assumed that the electron pressure is nearly constant across

the laser beam (see the previous discussion) . The subscript zero indicates

ambient conditions. The heat balance equation may now be written as

( p T 6
/ K T

7
~
/2

)EE* (r) = -~--~~-(r TS/2 8T / 8 r )

where 
~ 

= n v . e 2
/m~,

2
. Using the Gaussian beam intensity profile and

defining a new variable, F = T
7
~”~, we can rewrite this as

6 2 2 2 2 2  2 l d  dF(
~
3 o T

eo
Eo/K of )F(r)exp(- r / r f  = - 

~~
-;

~~~~; 
(r

By letting R = r/r f, this becomes

- X F(R)exp( - R2
) = + (U)

where X = ~3 T
6 

E
2
r

2
/K . Equation (7) is subject to the boundary condition2 o eo 0 0  eo

F(r ) = T
2 

(12)

We solve eq. (U) numerically using a finite difference scheme. The R varia-

tion is divided into N intervals of length t~ R; this results in the following

finite difference equation for F:

Tn+l = {l/ Zn+l)}{4nFn - n(AR) 2
X F1~ exp( -n2

t~R
2) - (2n-l)F~~1} (13)
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First we estimate F .  Then F1 is obtained using the heat balance equation

above (valid for A R. < <  1). With these two starting value s for F and F1,

the succeeding F (n > 1) is generated using eq. (13) above. The value of

F so obtained is then compared with tl~ boundary condition (12), and the

next estimate for F is adjusted accordingly. An iteration process is now

employed until FN is as close to T7
”

2 as desired. The electron tempera-

ture distribution in the radial direction obtained by this numerical scheme

is given in figures 1 and 2. As a comparison, the corresponding electron

temperature distribution calculated by expanding the Gaussian incident beam

profile is also shown. Note that the linearized method yields unphysical re-

sults for the electron temperature distribution as shown in figure 2. However ,

for values of the incident beam electric field intensity not far above threshold,

the linearized method yields reasonable results .

Another way of solving the energy balance equation (2) is given in the

Appendix. This procedure is an improvement upon the linearization method.

In fact , it is an e~~ ct method of solution except for the initial integration of

the energy balance equation, where the coefficient ~3 = ne 2
~• ., ~~ 

2 is assumed

to be independent of the electron temperature. As seen in the Appendix this

method also leads to an expression s imilar to eq. (9) for cb(E~).

The fundamental equation governing the propagation of an electromagnetic
L

wave is

- V(V •E) € E/C
2 

(13)

The second term on the left hand side is negligible in comparison to the first

term if lc 2V2 (in 
~

) << 1, where k is the wave vector. The above inequality

L. ~~~~~~~~~._ _ _ _ _ _ _ _ _
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• is satisfied in almost all cases of practical interest (Sodha, Ghatak and

Tripathi, 1976). For a cylindrically symmetric electromagnetic beam we

then have

____  
1 a 

8E 2 2
+ (r i—)  = w c E/C (14)

To solve this equation we follow the method employed by Akhmanov, Sukhoru-

kov, and Khokhlov (1968) using the paraxial ray approximation in geometric

optics (see also Sodha, Ghatak and Tripathi, 1976). We first write

c(r , z) = € (r=0 , z) + ~ (< E
2

> ) (15)

where ~ (<E 2
> ) is the dielectric respc~nse to the incident electromagnetic beam

given by eq. (12). We assume that 4(<E
2
>) < <  c (r=0). Using a WKB approx-

imation we may express gin the form:

E = A(r,z)[€
1
~ 
4
(0)/c~~

4
(z)]exp{i(~ t - J d z 1~ 

~~~~~ c)} (16)

with

A ( r , z) = A ( r , z)exp[ — i S(r, z)] (17)

and S is the eikonal of the wave .
L i

Substituting eqs. (15) and (16) into eq . (13) , making use of eq. (14), and

separating the real and imaginary parts , the following solution for a Gaussian

incident beam is obtained (Sodha and Tripathi, 1977):

2S = 
1
Y(z)r +

~~l(z)

4,1(z) an arbitrary function of z to be determined by the boundary conditions

A~ = (E~/f
2
)exp(- r

2
/r
2
f
2
) (18)

1/~
_ , 1

y  = (w € /c)1df/dz
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where the beam width parameter £ is governed by

d~f 1 K df
7 — 

3 f
a
d~ (19)

d~~ f

z ‘k r2 is a dimensionaless “distance”

a = (r c € ‘

~ ‘2 ~ , ) d e  /dz
0

_ 2 2 4  2K = ~ £ ~ r /4c K T is the ‘ sell-focusing constant. ”
~0 0 0 CO

The initial conditions on f a t  ~ 0 are f=l and di ‘d~~=O. This

corresponds to an incident plane wave front.

(a) Homogeneous plasma

Let us first consider propagation in a homogeneous plasma; in this

case the last term on the right hand side of eq. (19) vanishes. For a

plane wave incident at ~ =0 we have d
2
f/d~

2 
= 0 eve rywhere, if the first

and second terms on the right hand side of eq. (19) cancel each other.

Thus, will remain at zero, and hence 1=1 for all va lues of ~~. . In this

case the beam propagates without modification, neither diffracting nor

focusing. This condition thus yields the threshold intensity for thermal

self-focusing:

2 2 4E . = 4c’k T /w 4 3 r  (20)o crit B eo ~ 0 0

The behavior of the beam as it propagates through the plasma (2) may be

obtained by solving eq. (19). A numerical analysis of eq. (19) yields the

variation of the beam width parameter f with the dimensionless “distance”

~~~. The result is shown in fig. 3.



_ _ _ _  
_  _ _

The self-focusing constant K can be related to the incident beam power
‘1 by integrating the expression for the Poynting vector

P = (€ ~~
2
c/8~)J dr 2~ r(E~/f

2)exp( r2
/rY)

1/2 2 2
= c c E r/8

0 0 0

Hence, we may write

K = 2~~
2 

L3 r2 
P/c 3 

€~
/2 K T (21)

Thus K is directly proportional to the incident laser pow~~ P.

The critical power for thermal self-focusing is obtained from eq. (20)

as

p 
• c 3

e~/2 
~ T /2~~

2 
~r2

crit o eo po 0

Using Spitzer ’ s values for v . and K this can be approximately expressed

as

~ crit a 4. 3 x l0~~ T
5
/n

3 
ergs/s ec.

With the laser power of 3. 7 x 1014 
er gs/sec used in our laboratory experi-

ment, the critical density is calculated to be n = 2 x 1017 
cm 3

. This

is well satisfied by our Z-pincl-x plasma.

A parameter of interest is f , the minimum value attained by f as

the beam propagates through the homogeneous plasma. This parameter

• signifies the extent of focusing associated with a particular value of K.

It is found by integrating eq. (19) with a 0 once to obtain

(df )2 
= 1 - (1/i) - 2K in f (22)

— •*aS~~~~tM s.. ..~~. .J_nS__-_- - - _______________________________ 

—-—----- — --- - ---— - - — - —— — - ---~~- -
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The minimum value of occurs when df/d~ = 0. Figure 4 show s the

behavior of f as a function of K.m

(b) Inhomogeneous plasma.

For the case when the plasma has a positive density gradient in the

direction of propagation of the incident laser, we can calculate the penetra-

tion distance of beam. For simplicity we consider the case of a linearl y

increasing density profile of the form

n (z) 
~~~~ 

÷ (z/L)] (23)

where 
~ 

is the electron density at the position where the incident laser

impinges upon the plasma, i. e., the edge of the cylindrical plasma column

in our laboratory experiment. L is a density gradient scale length.

As the beam penetrate s into the plasma with increasing density, the

axial dielectric constant decreases and a turning point is expected where

€(r=0, z) vanishes. However, our method of analysis is not applicable at

this point. Therefore, in order to have an idea of the penetration distance

of an incident laser beam as a function of the power of the beam, we intro-

duce, albeit arbitrarily, a typical penetration distance, z , where

€ (r=O, z~ ) = 0. 69. At this position, the ambient plasma density at r=r is,

of course, larger than the density corresponding to € = 0.69 at the beam

axis. The variation of z~ with the incident beam power is shown in fig. 5.

- - - - -  

--
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It is to be noted that the penetration distance is proportional to the elec-

tric field strength of the incident laser beam. Thus a beam of higher power

will penetrate deeper , and in this way a sufficiently intense beam can penetrate

into an overdense plasma.

Note - Recently Sharma and Tripathi (1978) made an attempt to interpret the

experimental results obtained by Rockett, et al. in our laboratory. However ,

they assumed an incorrect laser beam profile, namely, one which peaked at

r = r >  0. Our observations clearly indicates that the focussed laser beam

has a maximum at r = 0, i. e., the axis of the laser beam. Hence, a Gaus-

sian profile is the more correct one to assume.
‘4
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Appendix -

The energy balance equation (2) may be written as

(7~~E~j 2Of 2)exp( - r 2
/r 212) = - Lf {r ~~~T7

~
2) } (Al)

where the coefficient of thermal conduction is written as s~ = 0 T
5
~

2, with

o a constant (Spitzer , 1965). Also ~ E nv ,e 2mw 2
. We now assume that

= where the subscript zero indicates ambient conditions. Then (Al)

may be integrated once to yield

(c1/ r) + (pr ZiZ/Zr)exp(~ r 2
/ r

2f 2) =

where p 7~~E
2/ZO i2.

As dTe/dr = 0 at r = 0, therefore C
L 

= - pr 21
2
/Z. Hence

- 

- 

. 
- (p r2i2/2r) + (p r~f

2
/2r)exp(_ r

2
/r

2
f
2
) 

-= ~— (T~
12) (AZ)

Before we integrate (AZ) let us consider the temperature depe~~ ence of the

coefficient ~3 . As ~3 depends on the temperature through the density and the

electron-ion collision frequency, we let

= ~~(T /T )
7/2 

= ~1T 7’2 .

Equation (AZ) may then be written as

2 2  2 . 2 2  d 7(~31r f  / r){exp( - r / r f  ) — 1} =

This equation can be integrated formally. The result is

2 4 61 2 2  r r r 7c 2 ÷~~~p]r f {_  
2 2  + 4 4  

- 6 6 ~~~”~~ 
T ( r )

r i  4 r f  l8r f
0 0 0
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where we have used the formula

2 2  3 3• J(1/x)exp(ax)dx = lnx + 
~~~~~~~~~ + 3 3 ! +

Applying the boundary condition Te (1 r )  = T , we obtain

T (r) T { l  + (7~~0E~/ 4 K T f
Z
)[(r Z _r 2) - (1/4r ZfZ)(r4 _r4 

+

+ (l/l8r4f4
)(r

6 -r6) - .. . 1) 1/7 
(A3)

Proceeding as before this leads to

= (w~~ /w
2) {l - [1/(1 + (7p EZ

/4 K o T
eo

f Z)[(r Z _r 2)

- (l/4r 2f 2)(r 4 -r4 ) + . . . J } l/ 7)} (A4 ) 4

If we carry out a binomial expansion of the denominator, we obtain the pre-

vious expression for 4 (E 2) as shown in eq. (9).
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Figure Captions

Fig. 1 Electron temperature versus beam radius. 
~eo 

2 x l0~
7/cm 3;

• T — 20 eV; E2 
— 2.66 x 1O

9 ergs/ cm3; Incident beam is at

critical power for thermal self—focusing. The solid curve

corresponds to results from linear theory, and the dotted curve

corresponds to the numerical results.

2 9 3 -‘Fig. 2 Electron temperature versus beam radius. — 4.26 x 10 ergs/cm

i.e., beam above critical power. n and T same as in fig. 1.eo eo

Note that the linear analysis yields an unphysical temperature

distribution near r/r — 1.
0

Fig. 3 Variation of the beam width parameter f with distance into plasma

for different values of the self—focusing strength

K — Br4 w2R2/4C2KT . K — 1.0 corresponds to the critical power.o p o  eo

Fig. 4 The minimum beam width parameter versus the self—focusing

• strength K.

2 4 2Fig. 5 Penetration distance versus beam intensity, where ~ — w p B r / 4 C  KTeo~

~eo 
2 x 1017/cm3; T — 20 eV. cLE2 is the self—focusing strength K

of the laser beam.
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