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. THERMAL SELF-FOCUSING OF A LASER BEAM
IN A DENSE, LOW TEMPERATURE PLASMA

R.S. B. Ong
D ment of Aerospace Engineering
The University omichigan
Ann Arbor, Michigan 48109

1

and
7
Andrew Schmitt

Department of Nuclear Engineering
The University of Michigan
Ann Arbor, Michigan 48109

Abstract - The thermal self-focusing of a Gaussian electromagnetic beam
incident upon a dense, low temperature plasma is discussed. The behavior
of the beam as it propagates through the plasma is analyzed. A measure

of the penetration depth of the beam in an inhomogeneous plasma as a func-

tion of its power is given.

INTRODUCTION

The nonuniform intensity of the electric field in a Gaussian electro-

magnetic beam incident upon a plasma can cause a redistribution of the E
electrons in the plasma. This mechanism leads to the phenomenon of
self-focusing and enables the beam to penetrate into an otherwise over-
dense plasma (Akhmanov, Sukhorukov and Khoklov, 1968). It is well~
known from geometric optics that a ray incident upon a region of increasing
index of refraction will refract into the higher region. In a plasma the

index of refraction is approximately given by

2 2 y 2 3.4l/2 : 1/2
n - (wpe/w ) - x(veiupe/w )]1/ = [ - (ne/nec) - l(veine/wnec)] / !




where nec is the critical electron density, i.e. the plasma density where
the plasma frequency equals the incident laser frequency. Thus, if a ray
is incident on a plasma with a density gradient, the ray will refract into a
less dense region. Hence, if somehow the incident el ectromagnetic radia-
tion can induce a change in the initially uniform plasma density distribution
in the transverse direction, then self-focusing may take place.

In the case of a fast (laser pulse time shorter than the energy relaxa-
tion time of the electrons) pulsed laser interacting with a strongly ionized
collisionless plasma, the ponderomotive force is able to redistribute the
electrons in such a way that there exists a positive density gradient in the
transverse direction away from the beam axis. Thus a transverse gradient
of the index of refraction is established, and this leads to self-focusing of
the incident laser beam.

However, in the case of a low temperature, high density plasma such
as that employed in our laboratory Z-pinch experiment (Rockett, et al.,
1978), the electron-ion collision frequency is very high, v 3x 1012 sec. 5
Moreover, the pulse time of our COZ laser is of the order of 3.5 x ].0"8 sec.,
i.e., much longer than the energy relaxation time of the electrons. There-
fore, in this case, the nonlinearity appearing through the nonuniform heating
of the electrons by the incident laser beam is more important than that due
to the ponderomotive force effect, and we have a thermal self-focusing
phenomenon. This is characterized by a redistribution of the plasma elec-
trons by the nonuniform heating in a direction normal to the incident beam

axis. The transverse nonuniform distribution of the electric field intensity




of the incident laser beam creates a nonhomogeneous electron temperature
in the radial direction away from the beam axis. For a Gaussian electric
field in the laser the electrons on the beam axis become hotter than those
away from it. This also can cause self-focusing of the incident beam as

will be discussed below. (Sodha, Ghatak and Tripathi, 1976).

THERMAL SELF-FOCUSING
The energy of the electrons acquired from the incident laser beam is
dissipated through collisions with the ions and through thermal conduction.

The rate of energy lost due to electron-ion collisions may be described by

d 3
at (2 ¥p Tedeot

3
ol kB(2mveq(Te-Ti)/M)
where ve-; is the equilibration time of the electron and ion temperatures.

On the other hand, the rate of energy loss per electron due to thermal con-

duttion is

oT
d 3 1 0 e
dt 2kB Te)tc r -nrar(r"ar )

e

where k is the coefficient of electron thermal conduction.
For our laboratory Z-pinch plasma experiment the ambient conduc-
tions are described by
T = 2.32x10° °K.
eo
~ TaliE S
e, S \ \r
io ~ Teo & «
L electron thermal velocity = 4.2 x 108 cm/sec.

P 1010 sec:_1 51 K

= 12 < g s A -

v " electron-ion collision frequency =~ 3 x 107~ sec T
i \




T, © radius of focal spot of the incident laser beam ~ 6 x 10-3 cm.

For these experimental values it may be shown that the energy loss of the
electrons due to thermal conduction is much larger than that due to elec=~
tron-ion collisions. An estimate of the relative importance of the two dis-
sipation mechanisms yields

(3/2)kB vaeq(Te-Ti)/M

0 0 Te
ar(” or )/ner

R

m ri Yeq'ei =2
3 M _:,7_'3_ = O(10 )
e

for our laboratory experiment. This suggests that we have a thermal fo-
cusing process in which the main energy dissipation mechanism is elec-
tron heat conduction in the direction transverse to the axis of the incident
beam.

Next we calculate the electron density distribution in the transverse
direction. The steady state energy balance equation may be written as

14 e
eg-V~=(ner) I;rkdr ) (1)

Substituting the velocity from the equation of motion for the electrons un-

der the influence of the oscillating electric field of the CO2 laser beam,

we obtain

5 o oS Em(ry g==) (2)
m w

where w is the frequency of the incident CO2 laser beam, and we have used
the fact that in << wZ in our experiment. We now assume a Gaussian

distribution for the incident laser beam:

2 2 ;2.8 &
EE* = EO exp[- & /rof (z)]/f ‘z) (3)
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where Eo is the amplitude of the electric field of the incident beam, and {(z) is
a variable which parametrizes the beam width.

In the linear approximation we carry out a Taylor series expansion of the
right hand side of eq. (3) with respect tor = 0, i. e., the beam axis. Also we

use ambient values for the coefficients in the energy balance equation (2). We

then solve for Te(r), and obtain !
2 2 2 2 2 2252
T (r) = Tee (pozo/uof ){ro[l - (1/4f7)] -r7[1-(r 4r°f )]} (4)
= 2 2
where g = n_e veio/mu (5)

and the subscript zero denotes ambient values.
The sound speed in the z-pinch plasma in our experiment is about 2.2 x

106 cm/sec. As the characteristic length of the laser beam is of the order of

6 x 10“3 cm (i.e., the focal spot radius), the characteristic time scale t
for hydrodynamic motions transverse to the laser beam axis is of the order of
3x10 = sec. As indicated previously the laser pulse time is approximately

3.5 x 10-8 sec. Thus, in the time scale of the laser pulse, i.e., fort> t_,

H

the plasma pressure P + P; is approximately constant across the laser beam.

Furthermore, n,=n, and Te =3 Ti as the time scale for the electron and ion

temperatures to equilibrate is much less than tH. Consequently, By = nekBTe

= constant across the beam. This implies that

ng(r) = n T, /T (r) (6)

wheren =n and T = T , the ambient values, whenr=r . From T (r)
e eo e eo o e

as expressed in eq. (4) we then obtain the electron density distribution:
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3 2 22 4 4 2 2
n(r) = n_ - neo[{(ro =) - (Y4r _f)(r_-r )}/{(4xoTeof /B E,)

2 2 2 4
+[(ro -r ) - (1/4r§f )(r: -r )} 0o<r <t (7)

This expression for the density distribution is now substituted into the formula
for the dielectric constant (neglect the imaginary part which accounts for the
absorption)

e(r) = 1-[w§(r)/w2] (8)

The result is
2 2 2 122 4 2
€)= e, +lon /oM, -x) - et et - e e T, /8 ED)
Z 2
S I V2T S TEE S B 9)

2 2
where € 1- (wpo/w ), i.e., the dielectic constant of the ambient plasma.
Equation (9) gives the radial variation of the dielectric constant necessary

for the thermal focusing process. It may also be written in the form
(1) = € +o(ED (10)
s 5o T

where ¢(E5) is given by the second term of the right hand side of eq. (9). It
is the modification of the plasma dielectric constant by the electric field of the
incident beam through the nonuniform heating of the electrons.

In the last section we solved the plasma heat balance equation by ex-
panding the Gaussian beam intensity profile about its centerline. This approx-
imation is strictly not valid when rz'/rif2 is of order unity. Therefore we
solve the heat balance equation numerically by finite difference method as

follows.




T 2 g

First we note that the collision frequency and electron thermal conduc-

tivity vary with the temperature as (Spitzer, 1956)

: v . |T
ei eio

<
"

/T (0

eo

/2

K
(S

5
Keo[Te(r)/Teo]
where we have assumed that the electron pressure is nearly constant across

the laser beam (see the previous discussion). The subscript zero indicates

ambient conditions. The heat balance equation may now be written as

6 7/2 cro s 5/2
(;30’1‘eo/.<eo'1“e JEE* (r) = 'rar(r Te a're/ar)

2 2
e /mw . Using the Gaussian beam intensity profile and

7/2

where B =n v .
o o eio

defining a new variable, F = T , We can rewrite this as

6 2 2 2,22 21l 4 dF
(ﬂoTeoEo/Keof JESRIEERE & /rof Bt 7 rdr = dr

By letting R = r/rof, this becomes

2

1
- X F(R)exp(~- Rz) = —-—dF + ——-d E (11)
R dR drl
r
h A\ = £ T6 Ezrz/ Equation (7) i bject to the boundar diti
where -ZBO o OoKeo' q )1ssu3ec (o) € boundary condition
7/2
F(ro) = Teo (12)

We solve eq. (1l1) numerically using a finite difference scheme. The R varia-
tion is divided into N intervals of length AR; this results in the following

finite difference equation for F:

Fou ® {1/2n+1)}{4nFn - n(AR) 2)\ F;lexp( -nZA RZ) - (Zn-l)Fn-l} (13)




. First we estimate Fo. Then Fl is obtained using the heat balance equation
above (valid for AR << 1). With these two starting values for Fo and Fl'
the succeeding Fn (n > 1) is generated using eq. (13) above. The value of
Fn so obtained is then compared with the boundary condition (12), and the
next estimate for Fo is adjusted accordingly. An iteration process is now

employed until F__ is as close to T7/2 as desired. The electron tempera-
N eo

ture distribution in the radial direction obtained by this numerical scheme

is given in figures 1 and 2. As a comparison, the corresponding electron
temperature distribution calculated by expanding the Gaussian incident beam

1 profile is also shown. Note that the linearized method yields unphysical re-

sults for the electron temperature distribution as shown in figure 2. However,
! for values of the incident beam electric field intensity not far above threshold,

the linearized method yields reasonable results. i

| Another way of solving the energy balance equation (2) is given in the

| Appendix. This procedure is an improvement upon the linearization method.

In fact, it is an evact method of solution except for the initial integration of

: N 2 2.
the energy balance equation, where the coefficient B = ne Vei/ Mw s assumed

to be independent of the electron temperature. As seen in the Appendix this
s method also leads to an expression similar to eq. (9) for cb(Ei).

The fundamental equation governing the propagation of an electromagnetic

wave is
VZ Z e
E-VV'E) = v € E/C (13)
The second term on the left hand side is negligible in comparison to the first }

term if k-zvz (In €) << 1, where k i5 the wave vector. The above inequality \




is satisfied in almost all cases of practical interest (Sodha, Ghatak and

Tripathi, 1976). For a cylindrically symmetric electromagnetic beam we

then have =
3 E 9E
~ 1 8 = 2 2
og * e 2l e e E/C (14)

To solve this equation we follow the method employed by Akhmanov, Sukhoru-
kov, and Khokhlov (1968) using the paraxial ray approximation in geometric

optics (see also Sodha, Ghatak and Tripathi, 1976). We first write
2
€(r,z) = €(r=0,2z) + (< E >) (15)

2
where ¢(<E >) is the dielectric response to the incident electromagnetic beam
2
given by eq. (12). We assume that $(<E > ) << €(r=0). Using a WKB approx-
imation we may express Ein the form:

z

E = A(r, z)[(l/ 4(0)/(1/"}(z)]exp{i(mt - f dzlu 61/2

c)} (16)
with
A(r,z) = éo(r, z)exp[ - i S(r, z)] ‘ 17)
and S is the eikonal of the wave.
Substituting egs. (15) and (16) into eq. (13), making use of eq. (14), and
separating the real and imaginary parts, the following solution for a Gaussian

incident beam is obtained (Sodha and Tripathi, 1977):

S = %Yuuz+¢ﬂm

¢I(z) = an arbitrary function of z to be determined by the boundary conditions
2 2 zh r
AL ® (Eo/f)exp(-r /x ) (18)

<
"

(w el/z/c) %df/dz
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where the beam width parameter f is governed by

dzf R T X df (19)
— = R
e f3 f dg
& . : ! 2
€ = z/k r isa dimensionaless ''distance'
/
a = (ri c cl'z ‘2w)de /dz
2

K = mpoEiB x':/«ic'2 kT, is the ""'self-focusing constant. "
The initial conditions on f at £ = 0 are f=1 and df /d¢ =0. This
corresponds to an incident plane wave front.
(a) Homogeneous plasma
Let us first consider propagation in a homogeneous plasma; in this
case the last term on the right hand side of eq. (19) vanishes. For a
plane wave incident at £ =0 we have dzf/dg'z = 0 everywhere, if the first
and second terms on the right hand side of eq. (19) cancel each other.
Thus, %2—

case the beam propagates without modification, neither diffracting nor

will remain at zero, and hence f=1 for all values of £. In this

focusing. This condition thus yields the threshold intensity for thermal

self-focusing:

é 2 2 4
= k
ocrit e BTeo/“’ poB %o V=)

The behavior of the beam as it propagates through the plasma (2) may be
obtained by solving eq. (19). A numerical analysis of eq. (19) yields the
variation of the beam width parameter f with the dimensionless ''distance

€. The result is shown in fig. 3.

A S e e




The self-focusing constant K can be related to the incident beam power

by integrating the expression for the Poynting vector

P

©
2 2 2
(€i/2c/81r)j° dr Zvr(Eo/f )exp(~ rz/rofz)

1 4
e chro/S

Hence, we may write

BT aa s s
K = Zmpo_BroP/c € KT (21)

€eo

Thus K is directly proportional to the incident laser power P.
.The critical power for thermal self-focusing is obtained from eq. (20)

as

3.1/2 A2
crit = € €o X Teo/zwpo'gro
Using Spitzer's values for 2 and K this can be approximately expressed
as

= 4.3 x 1039

5, 63
crit = Te/ne ergs/sec.

With the laser power of 3.7 x 1014 ergs/sec used in our laboratory experi-
ment, the critical density is calculated to be nec = 2x 1017 cm-3. This
is well satisfied by our Z-pinch plasma.

A parameter of interest is fm, the minimum value attained by f as
the beam propagates through the homogeneous plasma. This parameter

signifies the extent of focusing associated with a particular value of K.

It is found by integrating eq. (19) withe = 0 once to obtain

(%Z—)Z =1 (l/fz) =2K1ln f (22)
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The minimum value of fm occurs when df/d¢ = 0.

Figure 4 shows the

behavior of fm as a function of K.

(b) Inhomogeneous plasma.

For the case when the plasma has a positive density gradient in the

direction of propagation of the incident laser, we can calculate the penetra-

tion distance of beam. For simplicity we consider the case of a linearly

increasing density profile of the form

n (z) = ﬁe[1+(z/L)] (23)

where ﬁe is the electron density at the position where the incident laser
impinges upon the plasma, i.e., the edge of the cylindrical plasma column
in our laboratory experiment. L is a density gradient scale length.

As the beam penetrates into the Plasma with increasing density, the
axial dielectric constant decreases and a turning point is expected where
€(r=0, z) vanishes. However, our method of analysis is not applicable at
this point. Therefore, in order to have an idea of the penetration distance
of an incident laser beam as a function of the power of the beam, we intro-
duce, albeit arbitrarily, a typical penetration distance, 2z , Where
e(r=0, zp) = 0.69. At this position, the ambient plasma density at r=r° is,

of course, larger than the density corresponding to € = 0.69 at the beam

axis. The variation of zp with the incident beam power is shown in fig. 5.
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It is to be noted that the penetration distance is proportional to the elec=~

tric field strength of the incident laser beam. Thus a beam of higher power

will penetrate deeper, and in this way a sufficiently intense beam can penetrate

into an overdense plasma.

Note - Recently Sharma and Tripathi (1978) made an attempt to interpret the

experimental results obtained by Rockett, et al. in our laboratory. However,

they assumed an incorrect laser beam profile, namely, one which peaked at
r=r_ > 0. Our observations clearly indicates that the focussed laser beam
has a maximum at r = 0, i.e., the axis of the laser beam. Hence, a Gaus-

sian profile is the more correct one to assume.
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Appendix -

The energy balance equation (2) may be written as

2 2 e 2.2 ld d 7/2
(7(5E0/26f )exp(- r /r £ = - rdr{r T, )}
S . ) ; 5/2 .
where the coefficient of thermal conduction is written as x = 0 'I‘e , with
2
6 a constant (Spitzer, 1965). Also g = nveiezmu . We now assume that

g = Bo’ where the subscript zero indicates ambient conditions. Then (Al)

may be integrated once to yield

1/2
e

2.2 2 n2n d
(cy/7) + (pr t”/2miexp(- x /6% = (1'%
where p = 7ﬁE§/29f2.

As dTe/dr = 0 atr = 0, therefore Gy = prifz/z. Hence

2 2 d
-(p ron/Zr) + (p rjf /2r)exp(- rZ/rjfz) .= d—;(T7/2)

e

Before we integrate (A2) let us consider the temperature dependence of the

coefficient B. As B depends on the temperature through the density and the

electron-ion collision frequency, we let

- “wa _ -7/2
PR BT = BT

Equation (A2) may then be written as

2
(87 gt /m{exp(- /2% oy = L))

This equation can be integrated formally. The result is

4 6
1 2.0 r r r 7
c +—plrf{- 55 + - T faen) ® T (¥
& o o rof 4rif4 18 6{ e

(Al)

(A2)
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where we have used the formula
a azx 33x3
f(l/x)exp(ax)dx = Inx + =+ X +

1! 25020 R R e e

Applying the boundary condition Te (r = ro) = Teo' we obtain
2 2. 2 2 2.2 .4 4
T (r) = 'reo{l + (7ﬁ°E°/4xoTe°f Wr -x") - (1/4r ) (r _-r" +
+ (1/18r4f4)(r6-r6) = vy }1/7 (A3)
o o
Proceeding as before this leads to
2 2 2 2 Lirn2l 2
®(Eg) = (opg/w {1 =0/{1 +(7p E_/4k T, (x5 -r)
2.2 4 4 1/7
- (1/4rof )(ro-r ) +...]) / )} (A4)

If we carry out a binomial expansion of the denominator, we obtain the pre-

vious expression for ¢(E§) as shown in eq. (9).
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Fig. 1

T A W™

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Figure Captions

Electron temperature versus beam radius. n..* 2 x 1017/cm3;
Teo = 20 eV; Ei = 2.66 x 109 ergs/cm3; Incident beam is at
critical power for thermal self-focusing. The solid curve

corresponds to results from linear theory, and the dotted curve

corresponds to the numerical results.

Electron temperature versus beam radius. E: = 4.26 x 109 ergs/cm3,
i.e., beam above critical power. . and Teo same as in fig. 1.

Note that the linear analysis yields an unphysical temperature

distribution near r/r° =],

Variation of the beam width parameter f with distance into plasma

for different values of the self-focusing strength

K = Br: wﬁRﬁ/&CZKTeO. K = 1.0 corresponds to the critical power.

The minimum beam width parameter fm versus the self-focusing

strength K.

Penetration distance versus beam intensity, where a = wpiBor:/ACZKTeo.

Bea ™ 2 x 1017/cm3; Teo = 20 eV. aEi is the self-focusing strength K

of the laser beam.
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