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B: a subset of A
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x dom y: x dominates y

x dom y via leTy: x dominates y via S over T .
x d¢m y: x does not dominate vy
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n
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K: a stable set
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K s(n;(n+1)/2): a semi-symmetric set for (n;k) games with n=2k-1
k]

K u,(N,k): a semi-symmetric set for (N;k) games with respect to w
t ]

s,s
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(n3k): a symmetric game with strongly vital k-person coalitions s
(n3k) : a Bott game

(n;k)h: a Hart game

S: a subset (coalition) of N
U(B): A-Dom B
v: a characteristic function

v: the cover of v

-

the empty set
w: a semi-quota

&X>: the set consisting of all imputations obtained from x by permuting
its coordinates

<B: u <X
xeB ?

A1: the set of all nonincreasingly ordered imputations

LAJ: the set of all nondecreasingly ordered imputations ;
B u D: the union of B and D

B n D: the intersection of B and D

B®: the complement of B in A

B-D: B n D°

BcD: B is included in D

x € B: x belongs to B
[[pl): greatest integer in p
|s|: cardinality of the set S ;

(m): the number of combinations which choose n elements out of m
elements

0: end of proof




CHAPTER 1

INTRODUCTION

Since J. von Neumann and O. Morgenstern presented a theory of n-person
cooperative games in characteristic function form in 1944, a large number
of studies have been made on their solution concept, called the vN-M
solution or the stable set. These works can be classified roughly into
three categories.

The first is concerned with questions about its existence. This was
solved negatively for the general case by W. Lucas in 1967. His counter-
example, however, is of a rather specialized nature. So this existence
problem continues as one of the most important research areas in cooperative
game theory.

The second category is concerned with determining the explicit form
of particular solutions for special classes of games. This approach is
quite important from the viewpoint of application as well as theory. A
good number of interesting results have been obtained along this line, in
particular, for the so-called éymmetric games.

The third one is about its modifications. Several different solution
concepts; for example the core, the Shapley value, the bargaining sets
and so on, have been proposed and studied; as well as several more direct
variations of the vN-M solution. One recently proposed solution concept
of the latter type is the subsolution defined by A. Roth in 1976. It is
somewhat similar to the stable set and moreover Roth succeeded in establish-
ing its existence when the core is nonempty. Additional analysis for games

in characteristic function form is still needed, however, to determine the




nature and applicability of various solution concepts.

This study will be devoted to an analysis of stable sets and sub-
solutions for symmetric games. In Chapters II and III several results
which have been obtained previously and which are closely related to
this work will be reviewed. In Chapters IV and V several types of games
and their stable sets will be presented and analyzed. In Chapter VI, some
production game defined by S. Hart will be further investigated. Finally,

! we will deal with subsolutions in Chapter VII.

1.1 Basic Definitions

An n-person game is a pair (N,v) where N = {1,2,...,n} is the

set of players and v is a real-valued characteristic function on 2N

with v(@#) = 0. Here N denotes the set of all subsets of N and any
nonempty subset of N will be called a coalition.

A game (N,v) is said to be (0,l)-normalized if v(N) = 1 and
v({i}) = 0 for all i e N. Most games (N,v) can be converted to their
(0,1)-normalized form without changing their essential structure, nor

the basic nature of most solution concepts. So we will assume (0,1)-

normalized games throughout.

The set of imputations is

A={xeE"] x, =1 and x

. >0 for all i e N}.
; ieN

i

For any x and y ¢ A and nonempty S c¢ N, we say x dominates

y via S, denoted by x domy via S, if X > ¥y for all i e S

and ] x; < v(S). This latter inequality is referred to as § is
ieS




s effective for x. We also say x dominates y, denoted by x dom y,
if there is some S such that x domy via S. x dém y will be used

to imply x does not dominate y. For any B c A we Adefine

& DomB = {y ¢ A|x domy via S for some x ¢ B}
Dom B = v Dom_B
S
S
and
U(B) = A - Dom B.
A subset K of A 1is said to be a stable set or a vN-M solution if
and only if
KnDomK =29
and ; !
K u Dom K = A. 31
These two conditions are called internal and external stability, respectively; 7

and they can be expressed as the one condition

K = A ~ Dom K

that is, as

K = U(K).

; The core of a game is defined by




c=1{xeal] x
ieS

2 v(S) for all nonempty S < N}.
Clearly the core satisfies internal stability. If it also satisfies
external stability then it is called the stable core.

A subset L of A is said to be a subsolution if and only if

L < u(L)
and
2
L = U°(L) = u(u(L)).
A game (N,v) is said to have vital k-person coalitions, denoted by
(N,k) if
v(8) >0 for all S with |S| =k
and
v(S) = 0 for all S with [S]| < k.
A game (N,v) is said to be a symmetric game, denoted by (n,v), if
v(S) = v(T) whenever |S| = [T|, i.e., whenever S and T contain the

same number of players. In this case we also write v(S) = v(s) whenever

S| = s. We say that a symmetric game (n,v) has strongly vital k-person

coalitions if

v(s) < v(k) * (s/k) for all k<s<n
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and
v(s) = 0 for all s < k.
t The symbol (n3;k) will be used to denote such games. An (n3k) game
‘ is said to be a Bott game, denoted by (n;k)b, if
1 forall s>k
v(s) =
0 for all s < k.
An (nj;k) game with n=qgk +r (q 22 and 0 <r <k-1) is said to
be a Hart game, denoted by (n;k)h, if
f
0 for s <k
1/q for k < s < Zk
v(s) = §
j/q for jk < s < (j+l)k
1l for gk < S,
L =
For any x € A, let <x> denote the set which consists of all
imputations obtained from x by permuting its coordinates. And for any
B c A, we define <B>= v <x>.
x€B
A subset B of A is said to be symmetric if B =<BD>. If a stable
set K is symmetric, then it is called a symmetric stable set and denoted
by sz.
An imputation x is said to be nonincreasingly ordered if
®) 2%, 2 ... 2 x, and nondecreasingly ordered if X) S Xy L eer S Xpe
e i, .




i
¢

The symbol [Al and [A} will be used to denote the set of all nonincreas-

ingly ordered imputations and nondecreasingly ordered imputations,
respectively.

A symmetric set is characterized by its ordered imputations. Thus
we will redefine the concept of domination for ordered imputations. For
any x,y € [AT (or LAJ) and any nonempty Sx = {i(1)y.e..5i(m)},

Ty = {j(1)5...,3(m)} = N, we say x dominates y wvia s, over Ty,

denote: by x dom y via leTy if xi(r) > yj(r) for. v = 1,2 6..50
and Z %5 (p) j_v(Sx). And we say x dominates y, denoted by x dom y,
if thert are some S_ and TY such that x dom y via Sx]Ty. It is
clear that we can, without loss of generality, assume the above T

denotes the set of the last m coordinates if x and y are nonincreas-
ingly ordered, and the set of the first m coordinates if x and y are

nondecreasingly ordered.

We will close this chapter by stating and proving the following theorems

which will be used implicitly throughout this work.

1.2 Basic Theorems

Theorem 1.1: Consider (n;k) games. For any X,y ¢ A and any T < N,

if xdomy via T then there is some S ¢ N such that [S| =k and

x domy via S.

Proof: Let T = {i(1),i(2),...,i(m)}. Then m > k since v(s) = 0 for
all s <k. If m=k, then no proof is required. Thus we assume m > k
and that the theorem is false. Then for all k-person coalitions S in T,

we have ] x, > v(k) which implies ¢ I x, > (Mv(k). Together
tes 1 e

ey e

e —————r— g—



with the definition of /n;k), we must have

1 x, > v(k) * (m/k) > v(m)
7,

which is contrary to the effectiveness condition on T, i.e., Z X < v(T)
ieT
fails to hold. 0

Remark: From this theorem, we only need to concentrate on k-person

coalitions when we determine stable sets for (n3k) games.

Theorem 1.2: For any x and y of [A], if x domy via le{n-m+l,...,n}y

and x € C then we can assume Sx = {n—m+l,...,n}x.

Proof: The effectiveness of Sx implies z % < v(m). Together with
ieS
the fact that x € C, we must have ) X, = v(m). Suppose there is
ieS
for somé £ € Sx' Then

some j € N such that xj < Xy

X, + %, <) x,=v(m
BEAty 0 ge

which is contrary to x ¢ C. Thus we can, without loss of generality, assume

Sx = {n-m+l,...,n}x. O

Remark: One can similarly show that if x,y € |lAJ], xe€e C and x dom y

via le{l,...,m}y then Sx can, without loss of generality, be assumed

to be {l,...,m}x.
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CHAPTER 1II ”

3-PERSON AND 4-PERSON SYMMETRIC GAMES

In this chapter, we will briefly review the known results on stable

sets and cores for 3-person and 4-person symmetric games. This is done

for the sake of completeness and in an attempt to better understand the

results which will be obtained in the following chapters.

2.1 3-Person Symmetric Games

Since we are assuming the (0,l)-normalization, each 3-person

symmetric game is completely determined by v(2). We will classify the

cases according to the value of v(2) and describe what stable sets and

cores look like for each case. a

2.1.1 Symmetric Stable Sets and Cores

v(2) = 1:

Kgop = <(x € [A]]x, = = 0.

sym
c=#.

=1/2, x

%2 3

2/3 < v(2) < 1:

Keym * <{x e[allx, = x, > 1-v(2) > x,P>.

2
c=4.
: v(2) = 2/3: i
: Ksym =(x € TA]lxl =%, 2 1/3 > x3}> vuC
where C =<{x € I'A'lel = x, = %, = 1/3D.

1/2 < v(2) < 2/3:

Kevn =<tx e [A])|x; = x, > 1-v(2) 2 x.}> v C

2

where C =<{x ¢ rﬂlxl < 1-v(2)P. Jl




v(2) < 1/2:

Ksym =C

where C =<{x ¢ rA'Ile < 1-v(2)P.

These five cases are illustrated in Figure 2.1

2.1.2 Stable Sets Obtained Systematically

In general, there are several types of stable sets. For example,
we can get nonsymmetric stable sets by replacing the three lines in the
above symmetric stable sets by the well-known "bargaining curves", as
indicated on pages 403-419 of von Neumann and Morgenstern [37]. Another

type of stable sets could be obtained in the following systematic way.

Systematic way (for (3;2) games):

Define

Al = {x ¢ Althere isno y € A such that y dom x via {2,3}},

A, = {xe'Allthere is no y € A, such that y dom x via {1,3}}
and

Aa = {xe’Azlthere is no y e A2 such that y dom x wvia {1,2}}.
If A3 is a stable set, then let K = A3. If it is not, then define

Ay, = {x €A - Dom A3|there ismo y € A - Dom A, such that
9

y dom x via {1,2}}

and let K = A3 v A3,l°




a2 = 3 s -§-<v(2)<1 :
3 2 3

9 -

(ARIN)

v(2) =

2 3 2 3
v(2) :% 1
2 3

Figure 2.1 Symmetric stable sets for (3;2)

10




- Let us check what type of stable sets will be obtained. Consider

the following cases and the corresponding figures in Figure 2.2.

v(2) > 3/4:
Al = the trapezoid ABCD
A2 = (the diamond EFDB) u (the line CE)

and

K= A3 = the line CD.

The resulting K is one of the so-called "discriminatory" stable sets.

2/3 < v(2) < 3/4: Similarly as above, we get A3 = the line CD.
This As, however, is not a stable set since any point in the small

triangle GHI is not dominated by A But a second iteration on

3
imputations of A - Dom A3 produces

: K=A, uA = (the line CD) v (the line GH).
: 3 3,1

1/2 < w(2) < 2/3:

A

)

the trapezoid ABCD,

(the diamond EFDB) u (the line CE)

and

K= A3 = (the triangle EGH) u (the line CE)

U (the line HF) u (the line @GD).

It is well-known that the resulting K is the stable set which is obtained
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from the symmetric stable set by replacing the three middle lines in

the small triangles by the three lines, or "bargaining curves", CE,

HF and GD.
v(2) < 1/2:
Al = the trapezoid ABCD,
A2 = the pentagon EFBDC
and

K = As = the hexagon EFHGDC.

The resulting K 1is the stable core.

Now define

Ai = {xeAle = 1-v(2)},

Aé = {xeAle < 1-v(2), x, = 1-v(2)}

A = {xeAlxl < 1-v(2), x, < 1-v(2), x, = 1-v(2)}
A = {xeAlxl < 1-v(2), x, < 1-v(2), x,< 1-v(2)}

and

y
K =Aansz=uA

] 1]
e.d. L ys 5o i
Then as easily seen from above, Ke 4 is a stable set if v(2) > 3/u4
and l(sys is a stable set if ' v(2) < 2/3. We will call K,  , and Ksys

an extremely discriminatory stable set and a systematic stable set respect-
ively, if they are stable sets.
In the case where 2/3 < v(2) < 3/4, if we can find a stable set X'

in the small triangle GHI, then as is easily checked K' u K . is a

d.




3 2 3
V(2) >E- §<V(2)‘<‘E
1 n 1
c D
3
¢ D G
i
A B A B |
2 F 3 2 HMI F 3
1 2
292 w(2) < 3
23 1
1
|
5
c D
A |
A3 F 3 B

Figure 2.2 Stable set obtained systematically for (3;2)
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stable set. For example, we can take the middle line GM as K'. The
generalization of this type of stable set for (n3;n-1) games have been
studied by Weber [40].

Before we proceed to the next section, we will summarize some
properties of stable sets and the core obtained for (3;2) games:
> 1-v(2) > x,Bu c.

2
is a stable set if and only if wv(2) > 3/4,

@. Kgn =<{x € I'A]le = x

(b). Kya.

(c). Ksys is a stable set if and only if v(2) < 2/3.
(d). c# @ Aif and only if wv(2) < 2/3.

(e). C is the stable core if and only if wv(2) < 1/2.

2.2 Uu-Person Symmetric Games

In 4-person symmetric games, we need two values, v(2) and v(3),
to determine a game. In order to simplify the argument, we will first

consider (43;3) and (43;2) games.
2.2.1 (4:3) Games

2.2.1.1 Symmetric Stable Sets and Cores

v(3) = 1:

Kgym =<{x ¢ I'A'Hxl

c = g.

Xy 2 X, = xu}>.

3/4 < v(3) < 1:

)
x
v
»

Ksym =<{x ¢ fA'llxl =

" =%, > 1-v(3)1>

&=

v <lx e [AT[x; = %, 2 1-v(3) > x5 > x, D>

c=4.




v(3) = 3/u:
=<{x ¢ fA'Ile =%, > /b > x, _>_xu}>u ¢
where C =<{x ¢ I'A'llxl =x, =%, = x = 14D,

1/2 < v(3) < 3/4:

Ksym =<{x ¢ I'A'llxl = %, > 1-v(3) > X3 2%,}> v

where C = <{x ¢ [Al[x;, < 1-v()D.
v(3) < 1/2:

Koym = ©

where C =<{x ¢ r.ﬂ]xl < 1-v(3)P.

These cases are illustrated in Figure 2.3.

2.2.1.2 Stable Sets Obtained Systematically

An analogue of the systematic way for (3;2) games is given as follows.

Systematic way (for (4;3) games):

Wy R,

Define

Al = {x € A|there is no y € A such that y dom x via {2,3,4}},
A, = {xe Allthere is no y e A, such that y dom x via {1,3,4}},
A, * {xeAzlthere isno y e A, such that y dom x via ({1,2,4}}
and
A {xe Aslthere ismo y e A, such that y dom x via {1,2,3}}.
|
. If A, is a stable set, then K = A

un

y
Similarly as before, we define







L = -
Al = {x e Alxl 1-v(3)}, ?
Aé = {x € Alx1 < 1-v(3), x, = 1-v(3)}, _
1
Ay = {xe A|xl < 1-v(3), x, < 1-v(3), x, = 1-v(3)},
Ay = {xe Alxl < 1-v(3), x, < 1-v(3), x; < 1-v(3), x, = 1-v(3)}
Aé = (% € Alxl < 1-v(3), X, < 1-v(3), Xq < 1-v(3), X, < 1-v(3)}
and |
l
5
= A! = '
Ke.d. Al and Ksys i:1 Ai'

Then the above systematic way reaches Ke 4

if v(3) > 5/6 and K
sys

if wv(3) < 2/3. These cases are illustrated in Figure 2.4. In the case

where 2/3 < v(3) < 5/6, although we will not write it down, it is possible

to find stable sets in the same way as we did in the case where

3 2/3 < v(2) < 3/4 for (3;2) games.
Finally we will summarize the results obtained for (43;3) games. | 4
(a). Keyn =<{x ¢ |'A]|xl Ky 2R TR D> 1-v(3) 1>

uix e [Al]x) = x, > 1-v(3) > x, > x,}> v C.

2

(b). Ke 4 is a stable set if and only if wv(3) > 5/6.

(c). Ksys is a stable set if and only if wv(3) < 2/3. :

(d). C# 9 if and only if v(3) < 3/u.

(e). C is the stable core if and only if v(3) < 1/2.

2.2.2 (432) Games W
{

2.2.2.1 Symmetric Stable Sets and Cores 1
2/3 < v(2):
Kgym =2<{x ¢ I'A'llxl *x, s RGa1/3, = = o

c=0.




Wy

S A ) At ST vt

£
i
g
!
£
T
b
i
{

5
V(3) > *6-

v(3) < 2/3

—

Figure 2.4 Stable sets obtained systematically for (4;3)

A
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1/2 < v(2) < 2/3:

Kgym = <x ¢ rallx, = x, = x, > v(2)/2 > x, P2
c = .
v(2) = 1/2:
e =<x e [Al]x) = x, = x; > 1/4(= v(2)/2 = (1-v(2))/2) > x Pu C
where C =<{x ¢ fﬂlxl ik T R TR /4.

1/3 < v(2) < 1/2:

K ={x ¢ “ﬂlxl ® 2, * 0

Iv

(1-v(2))/2 2 X X tx < v(2)D> uc

3 1

where C =<{x ¢ I'A'Hxl'o-x < 1-v(2) .

2
v(2) < 1/3:

K = €

sym
where C =<{x ¢ [Al]x, +x, < 1-v(2)D.

These cases are illustrated in Figure 2.5.

2.2.2.2 Stable Sets Obtained Systematically

It is easily known that the analogue of the above systematic way for
(433) games does not work well for (4;2) games. So we will propose the

following scheme instead.

Systematic way (for (4;2) games):

Let w = max(v(2)/2, (1-v(2))/2). Define

Ay = {x e Alx, = x, = a, Xy 2w X, < wh
A2={xeA|xl=x2=m, Xy Swy x> wh

>
)

3 = (xeAlx; 2w, %)<, %x3%w %, >ul,

g <
',..-_‘- s

SO

A
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v(2)

1

v(2) = 3 < v(2) < 7

N+

Figure 2.5 Symmetric stable sets for (4;2)
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and
A4={xeA[xl_<_w, Xy =0, Xy =W, x, > o}
m
Finally let K = (v Ai) u C.
i=1

If v(2) < 2/3, then this systematic way works well and we get the
following stable set K:
172 < v(2) < 2/3:
K consists of four lines AE, BF, CG, DH.
1/3 < v(2} % L/&s
K consists of four lines AE, BF, CG, DH and the core.

v(2) < 1/3:

K 1is the core.
These cases are illustrated in Figure 2.6.

We will call this K the systematic stable set for (4;2) games

and denote it by Ksys'

2.2.2.3 Semi-symmetric Stable Sets

Now if we replace the four lines AE, BF, CG, DH in the above Ksys

by the four lines AE, BF, CI, DJ, then another type of stable sets

will be obtained, namely:

1/2 < v(2) < 2/3:
K={xe Alxl = x,

u{x e Alxl or x

= v(2)/2, X, or x, > v(2)/2}

> v(2)/2, Xs = %,

2 = v(2)/2}.

e et g S e ey i

e N ——————— e

L kSR A g i RS 5
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1/3 < v(2) < 1/2:

K= {x¢e€ A|x;L =x, = (1-v(2))/2, x_, or X, 2 (1-v(2))/2}

3

u {x € Alxl or x, > (1-v(2))/2, Xy = X, = (1-v(2))/2} v C
where C = <{x ¢ rA]|xl+x2 < 1-v(2) . '
!
v(2) < 1/3: ‘
K=¢C

where C =<{x ¢ |'A'||xl+x2 < 1-v(2) .

This stable set can be condensed into the following one expression:

K={xeA|x1= = wfg, %, or R > u/2}

3 4

> w/2, x3=xu=w/2} v C i

*2
v {x ¢ Alxl or x,
where « = max(v(2), 1-v(2)) and v(2) < 2/3.

Now this K 1is considered to be semi-symmetric in the sense that it
is unchanged even if we exchange the coalition {1,2} with the coalition
{3,4} and permute the players within {1,2} and {3,4}. Thus we call
this K the semi-symmetric stable set and denote it by Ks,s'
The results obtained for (4;2) games are summarized as follows:

(a). If wv(2) > 2/3, then there is a finite symmetric stable set

=<{x € rﬂlxl

X, = %y = 1/3, x, = 0D |

S
(b). If wv(2) < 2/3, then a symmetric stable set is given by

K
sym

Kogm = <x € TAlx) = %) = x; > max(w(2)/2, (1-v(2))/2) 2 %,

x3+xu < vw(2)Du C.
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(). If wv(2) < 2/3, then K and K  _ are stable sets.

ys
(d). C# @ if and only if wv(2) < 1/2.

(e). C 1is the stable core if and only if v(2) < 1/3.

2.2.3 General 4-Person Symmetric Games

Symmetric stable sets for general 4-person symmetric games have
been obtained by Nering [24]. Since these stable sets are rather
complicated, we will not describe them. However, we will point out the
following properties of the core:

(a). C# @ if and only if v(2) < 1/2 and v(3) < 3/4.

(b). C 1is the stable core if and only if wv(2) < 1/2, v(3) < 3/4

and v(4) + v(2) > 2v(3).

2.3 General 4-Person Games

The fact that every 4-person game (not necessarily symmetric) has

at least one stable set has recently been announced (private communication)

by O.N. Bondareva, T.E. Kulakovskaja and N.I. Naumova in Leningrad.

£
%




CHAPTER III

SURVEY OF SOME RESULTS

This chapter will be devoted to a survey of some known results

related to stable sets and cores for symmetric games.

3.1 (n;k)b Games with n/2 < k< n
First let us consider (n;k)]D games with n/2 < k < n. Recall

(n;k)b games are given by

1 for s >k
v(s) =
0 for s < k.

This means that a coalition of k or more players can obtain the maximum

possible amount and a smaller coalition is totally defeated. The
symmetric stable sets for (n;k)b games with n/2 < k < n were fully

analyzed by Bott [3 J.

Theorem 3.1 (Bott): Let p = n-k+l and write n = sptr where 0 < r < p.

Let

Ksym =<{x e [Al]x, = ... = Xy 2K T e 2 Xy
2> e :x(s-l)p-fl % Ghn @ xsp?-xsp-t-l T xsp+r=0D.

Then Ksym is the unique symmetric stable set. i
This theorem implies that all members of a particular blocking (or veto

power) coalition (namely the smallest coalition which is large enough to

25
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stop its complement from winning) will receive the same amount in an
imputation of the symmetric stable set. Furthermore the defeated r
players are completely exploited.

In the zero-sum case (namely n is odd and k = (n+l)/2) the
symmetric stable set consists of a finite set of imputations, formed

by permuting the coordinates of the imputation

(2/(n*l)yeeep2/(n8l) 05.044,0)
- i I Nasig il

n-k+1 k-1

This is the main simple stable set of the simple majority game.

Finally we point out that if k < n/2, then there is a finite
symmetric stable set consisting of all the permutations of the coordinates

of the imputation

(1/(n-k+1),...,1/(n-k+1),0,...,0) -
T SR )

n-k+1 k-1

Note that such games are not superadditive, i.e, they do not have the

property that

v(S uT) > v(S) + v(T) whenever S n T = §.

3.2 (njn-1l) Games

(n;n-1) games are given by -

Jal et b all a L
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0 < v(n-1) <1
and

v(s) =0 for all s < n-1.

This means that only coalitions with 1, n-1 and n players enter
into the problem and all coalitions with less than n-1 players are
totally defeated.

A symmetric stable set and the extremely discriminatory stable
set have been studied by Lucas [15] and Owen [27 ], respectively, as

indicated by the following.

Theorem 3.2. (Lucas): Let

: [[n/2]]
e ; r:O

K <ix e al|x =

Xp 2 vt 2 %pe1 T For

2 Kppyy 2 e 2% P

where [[n/2]] 1is the greatest integer in n/2.

Then K is a symmetric stable set.

ym

Theorem 3.3. (Owen): Let

K, g, = {x ¢ A|xl = l-v(n-1)}.

Then K, 4 is a stable set if and only if v(n-1) > (2n-3)/(2n-2).
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3.3 The Condition for a Nonempty Core

In the previous chapter, we obtained the following conditions

for a nonempty core:

For (3;2) games, v(2) < 2/3.

For 4-person symmetric games, v(2) < 1/2 and v(3) < 3/u.

The following well known theorem gives us a generalization of these

conditions.

Theorem 3.4: n-Person symmetric games have a non-empty core if and only

if v(s) < s/n for all s < n.

The geometric interpretation of this theorem is that if we plot
the n+l points (s,v(s)) (s = 0,1,...,n) in the plane as in Figure 3.1,
then the core is nonempty if and only if the point (n,v(n)) is "visible"
from the origin (0,v(0)), i.e., the other points fall below the line

through these two points.

v(s)
N
U500, e SRR S B T e S (n,v(n))
|
|
1o b T e T -~ (n-?,v(n-l))
ces ‘ |
P = =nww= -¢ (s,v(s)) I
| | |
s | ( {
v(2) - - —Q(?,V(?))‘ | |
a 1 1 | N s
(0,v(0)) b | - GO R RGO R >

Figure 3.1 The condition for a nonempty core
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3.4 The Condition for a Stable Core

As the final result of this chapter, we will point out the following
interesting statement for the existence of a stable core which is due

to Shapley [35].

Theorem 3.5. (Shapley): Whenever C # # in an n-person symmetric game,

then C is a stable set if and only if

v(n)-v(k) | v(£)-v(k)
n-k i

for all t,k with 0 <k <t<n

where v denotes the cover of v. Namely v(k) = max v(s) - (k/s).
0<s<k

;. -~ v ~ v
DR UL gl P SRS TT Lo
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CHAPTER IV

SYSTEMATIC AND SEMI-SYMMETRIC STABLE SETS

4,1 Systematic Stable Sets

We will start this section with the explicit definition of systematic

sets for (n3;k) games.

Definition 4.1: A set K ¢ A is said to be the systematic set for

(n;k) games if

K& fte Dettnni S, . Al

where

={x € Alxi( = = (1-v(k))/(n-k);

Lo’ U5 ) DOE | e 33 s SR

x, < (1-v(k))/(n-k) forall i< (n-k), i#i(1),...,i(n-k);

-

X, > (1-v(k))/(n-k) for at least one i>i(n-k) if i(n-k)<n}

We will denote this set K by Ksys(n;k). Obviously Ksys(n;k) nC#B@8.
As a generalization of the results obtained in Chapter II, we have the

following theorem.

Theorem 4.1: Ksys(n;k) u C is a stable set for (n3;k) games if and

only if wv(k) < 2/(n-k+2).

Proof: Sufficiency: Internal stability: First we notice the following

simple but important fact.
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Claim: If x € Ki(l),.. ,i(n-k)® then there is only one i%* with
Xig > (1-v(k))/(n-k) and x; < (1-v(k))/(n-k) for all i > i(n-k),

i# i%,

Proof of Claim: Suppose that the claim is false. Then

n
I x; > (n-k+2)(1-v(k))/(n-k) > 1
i=1

since v(k) < 2/(n-k+2). This is contrary to x e A. 0

Now pick any two elements, say x and y, in Ksys(n;k) u C and

assume x dom y via S with |[S| = k.

Case (i) x,y € Ksys(n;k): Assume x ¢ K. and

i(1),...,i(n=-k)
y € Kj(l),...,j(n-k)' Let X;a and Via be greater than (1-v(k))/(n-k).
If i(2) = j(2) for all ¢ = 1,...,n-k then clearly x dgm y. Thus

we assume i(2) # j(&) for some ¢ = 1,...,n-k. Then there must exist

at least (n-k) i's such that x, <y;, x; < (1-v(k))/(n-k) for all

i and xg < (1-v(k))/(n-k) for some i because of the claim shown

above. Thus x d¢m y.

Case (ii) x e C, vy ¢ Ksys(n;k): Assume y ¢ Kj(l),...,j(n-k)’ then

from the definition of Kj(l),...,j(n—k) there is at least one j € S

with Y5 > (1-v(k))/(n-k) and thus x., > (1-v(k))/(n-k) for at least

3

one jeS. Since x ¢ C and S is effective for x, X 3.xj for

all ieS and j € S. Hence x; > (1-v(k))/(n-k) for all i ¢ S.

Therefore we obtain the contradiction
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ll. o~

x; = L oxg+ I x> v(0) +(0-k) (1-v(K))/(n-k) = 1.
i=1 ies igs

External stability: Take any x € A - (Ksys(n;k) uC). Let x' be

the imputation obtained from x by permuting the coordinates into
n
nonincreasing order. Since x £ C, ) x! < wk). If
i=n-k+l
B o (1-v(k))/(n-k), then x < Dom C. In fact, define y by

(1-v(kx))/(n-k) for i =1,...,n-k
yi =
X! e, for i = n-k+l,...,n
i i
where
n n
) €; = v(k) - Z xi, €, >0 for all i = n-k+l,...,n
i=n-k+1 i=n-k+1
and

¥4 < (1-v(k))/(n-k) for all i = n-k+l,...,n.

Then y ¢ C and y dom x' via {n-k+l,...,n}. Thus we have

xi > (1-v(k))/(n-k), xé_k+

since x ¢ C and v(k) < 2/(n-k+2).

1 2 (1=v(k))/(a=k) and x'_

ki (1-v(k))/(n-k)

Now we assume that xi(l)”"’xi(n-k)'z (1-v(k))/(n~k) and

i(1) < ... < i(n-k). Define y by

(1-v(k))/(n-k) for all i = i(l),...,i(n=k)
o x; * €y for & # 4(1),...,i(n=k)




n-k
€, =. 1. =%, - (-v(k)), €, >0
1#101),. o dln-k) T g= 1M +

for all 1 # 1(1),...,i(n-k)

y; < (1-v(k))/(n-k) for all i # i(1l),...,i(n-k).

Then y ¢ Ki(l),. v Emete) and y dom x via N - {i(l),...,i(n-k)}.

Necessity: Assume v(k) > 2/(n-k+2). Then Ksys(n;k) does not
satisfy internal stability since there may exist two or more i's

with x; > (1-v(k))/(n-k). 0

Corollary 4.1: For (n;2) games, Ksys(n;2) u C is a stable set if

and only if C is not empty.
Proof: For (n;2) games, C # # if and only if wv(2) < 2/n. 0

Now under the same condition in Theorem 4.1, a symmetric stable

set is easily obtained.

Theorem 4.2: Let

L — <ix ¢ I'A'llx:L Banal Sy 2 (l-v(k))/(n-k):xn_k+23...:xn}>u c.

Then K is a symmetric stable set for (njk) games if and only

ym
if wv(k) < 2/(n-k+2).
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Proof: Sufficiency: Internal stability: Pick any x,y in K

sym
and assume x dom y via le{n-k+l,...,n}y where Ile z k.,

Case (i) x,y € Ksym-C: First we note that Sx should be

({i(0)} v {n-k+2,...,n})x where 1i(0) ¢ {l,...,n-k+l}x. In fact,

if Sx contains two or more, say £, elements from {l,...,n-k+l}x,

then we get the contradiction

n
) x; > 2+ ((1-v(X))/(n=k)) + 1-v(k) > ((n-k+2)/(n-k)) * (1-v(k)) > 1
i=1

yi'

"es1g

n
since v(k) < 2/(n-k+2). Therefore we obtain z x, >
i=1 i=1

Case (ii) x e C, y € Ksym-C: Without loss of generality, we

assume Sx = {n-k+l,...,n}x. Then x

> (1-v(k))/(n-k) since

n-k+1
Yol > (1-v(k))/(n-k). Hence we have the contradiction
n n-k n
L %, = ) ox.+ ¥ x> (n-k)(1-v(k))/(n-k) + v(k) = 1.
$31 ¢ ode) & demelend ©
External stability: Take any x ¢ [A] - Ksym' Then as in Theorem 4.1,

we obtain X, > (1-v(k))/(n-k), S

< (l-v(k))/(n-k). Since x ¢ Ksym’ there is at least one

) 2 (1-v(k))/(n-k) and

xn—k+2

i* ¢ {1,...,n-k} with Xiw > Xipppe Define y by

= l,u oc,n-k+l

He
]

g T

e
"

+ €, for
&

n-k+2,...,n
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n n-k+1
.Z €, = .Z X - (n-k+l)xn_k+l, € > 0 for-all 1 =1,....n
i=]1 i=1
and
y; < (1-v(k))/(n-k) for all i = n-k+2,...,n.
Then y € Ksym and y dom x via {n-k+l,...,n}.

Necessity: If we assume v(k) > 2/(n-k+2), then clearly internal

stability is not satisfied. O

Corollary 4.2: For (n3;2) games, Ksym is a stable set if and only

if C 1is not empty.

Proof: This prcof is the same as that of Corollary u.l. O

4.2 Semi-symmetric Stable Sets

Before going into symmetric games, let us consider our problem in

a more general setup.

4.2.1 Generalized k-Quota Stable Sets

Throughout this section, we will consider (N,k) games. Recall

(N;k) games are given by

>0 for all S with |S]| =k
v(S)

0 for all S with |[S]| < k.
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Definition 4.2: An n-dimensional vector w is said to be a semi-gquota

for (N,k) games if
) w; = v(s) for all S with [s| = k and w; > 0.
ieS

Let Q = z wg = 1.
ieN

Definition 4.3: Consider (N,k) games with n =gk +r (q > 2,

0 <r < k-1). Let {Sl”"’sq+l} be a partition of N such that

ISjI = e vfop gl cliz 2y, q land ,Sq+ll - 2. If Sq+l # 9, then let
' = ' = =
Sq+l Sq+l u T where lsqﬂ] k and T j:l Tj (TJ. < s].). A set

K € A 1is said to be a semi-symmetric set for (N,k) games with

n=qk +r (q>2) with respect to w if

q+l
Ki= iyt X,
j=1 7
where
Kj = {x € AI.Z x, = .z w; - 9 %, >w, for at least one i ¢ Sj;
ieS i€S,
J
x; = w, forall i ¢ Sj} for 3= Y.
and
g if sqﬂ=¢
Kq+l =
{x € a] - R w, =9 x, 5w, forall {¢ T;
ieS! ieS! . i= 3
q+l q+l
= 1
X, =y for all i ¢ SQ+1} oE Sq+l 0
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The symbol Kq o (N,k) will be used to denote this set K.
t B ]

S

Definition 4.4: Consider (N,k) games with n = 2k-1. Let

{81,82,1(0)} be a partition of N with |Sl| = |s,,| = k-1. A set

5
K< A is said to be a semi-symmetric set for (N,k) games with

n=2k-1 with respect to w if

1L 2
where
e Aliesluz{i(o)} £ ieslu{i(o)}wi- R
at least one i ¢ Sl v {i(0)} X, = w, for all 1i ¢ S2}
and
Ky=ixenl 1] - 17 % %500y 29 0)°

w
ieS2u{i(O)} ieS2u{i(0)}

X; = 0 for all 1i ¢ Sl}'

We will denote this set K by N i (N,(n+1)/2). These definitions

enable us to state and prove the following theorems. The first one is

due to Shapley [31] and Kalisch [14].

Theorem 4.3: Assume k = 2. (a). If Q = 0, then both Ks & (N,k)
b BT o,
and Kg o (N,(n+1)/2) are stable sets. (b). If Q > 0 and every Kj
i
in the above definitions is not empty, then both K o (N,k) and
 dent

e —— P —




Ks,s,m (N,(n+1)/2) are stable sets. o

The following two theorems will give us a generalization of the .

first part of Theorem 4.3.

Theorem 4.4: Consider (N,k) games with n=qgk +r (q>2, 0 <r <k-1).

Assume 2 =0 and ) w; > v(S) for all S with k< [S] < 2k - 2.

ieS
(a). 1If sq+l = @, then Ks,s,w (N,k) is a stable set. (b). Assume
S # 0. Then K (N,k) is a stable set if and only if we can take
q+l S,S,w

Tj's so that |Tj|'i l forall j=1,...,9 or w, = 0 for all | 3

ie Sq+l° 5

Proof of (a): Internal stability: Since ) Wy > v(S) for all S with
ieS
Is| < 2k-2 and v(S) = 0 for all S with |S| <k, it is sufficient

to consider dominations via sets having exactly k members.

Pick any two elements x,y in K (N,k). Assume x e K, and
S $S,W ] {

y e Kj" If j=13', then x dém y. Thus we assume j # j' and
x domy via S. From the definition of Kj’ S e Sj U Sj,, Sn Sj 0

and S n Sj' # #. Furthermore X, >y, = wg for all ie S n Sj and
Therefore we obtain | x; > 1 w; = v(S)

X, = w, forall ie Sn S
b i i ' "
ieS ieS

38

which contradicts the effectiveness of S.

External stability: Take any x € A - K - (N,k) and let

S_={ie lei <w If |s_| >k, then x is dominated by w.

i)
Thus we assume |[S_| < k-1. Let |[S_| =m and i* be one of the players

with the maximum value of Xg = 0y then LI > Wiy since x ¢ Ks,s,u (N,k). . .i
Case (i) S < S, for some j = 1,...,9: Since x ¢ K (N,k),
T e v - 3 SyS,Ww E
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there is some i ¢ Sj with x, > w, and thus Yoo moune 10 i o

. ifs, : i,
Z X, < z w, = v(S,). Hence we can take some y € K. which
ieS, ieS, ] J
] ]
dominates x via S,.

3

Case (ii) s_ f-sj for any j = 1,...,9: For j with Sj ns_#89,

let §J = Sj n'S_ and take Rj E_Sj - SE satisfying |Rj| = k-m and

i* ¢ R,. For some 3j, Iif Z S xi < Z . w, then we can take
J ieRjuS_ ieRjuS_

some Yy € Kj which dominates x via Rj u S_. Thus we must have

z : W, > . w, for all j with s? # 9. Since x, > w, for
ier,usd T T jer,us? * 3 o .

A Jeia= ¢ !
all i¢ u. (R, v SE) and moreover i%* ¢ U, (R. v Sz), we

{j|s’#oy {3]s’#0r

have the contradiction ) x; > ) w = 1. O

ieN ieN

Proof of (b): Sufficiency: Internal stability: This is proved in the

same way as above.

External stability: It suffices to consider the case where S_n Sq+1 0.
Case (i): S_ ¢ Sq+l: It is obvious that there is some y ¢ Kq+1
which dominates x via S' ..
q+l
Case (ii) S ¢S __.: Let ™ e ns .. BED) IN e 8
AL R - - " q41 q+l
For j # q+1 with Si £ 0, take Rj < Sj - SE satisfying
g i - ' _ eqtl
[R| = k-m and Rjthj #. For q+l, take Rq+l S-Sq+l s?
= k- i% - * .
satisfying qu+l| k-m and i%* ¢ Rq+l' (ii-II) i* ¢ Sq+l' Assume
i* ¢ Sj* (j* # q+l). For J # j*, q+l, take Rj as above. For
%
j*, take Rj* E.Sj* - Si satisfying le*I = k-m and i¥% ¢ Rj*'
" . aqtl & 3
Finally, for q+l, take Rq+l €S s: satisfying qu+1| k-m

q+l

e —— ——— - -
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and Rq+1 n Tj* = @. Then in a manner similar to that in the proof

of (a), we get a contradiction.

Necessity: Suppose ITj(O)I > 2 for some 3j(0) ¢ {1,...,q9} and
“:00) >0 for some i(0) € Sq+1'

so that w, > 0 for at least one of 1 e (i',i'',i'''}.

1] e
Take 1', 1i'' ¢ Tj(o) and

i"l € Sj(o)

Let i(+) be one of the players i', i'' and i''' with w.(

i(+) il

and let € = mln(wi(+),w ). Now define x by

i(0)

4 w, for i #i',i'',i''',i(0)
x; = < w, - € for i = i(+),i(0)
w, + e for ie {i',i'',i'''} - {i(+)}.

Then x ¢ Ks s (N,k). Moreover it is easily shown that
LS ]
x ¢ Dom( v K.,). For all & g_sj(o) with |S| = k-1 and
j#j%o).q+l
X, = g Dom K . imi i
i(+) € s, M wse Thus x ¢ Dom 300) Similary if
i(+) ¢ Tj(O)’ then there is no y ¢ Kq+l such that y dom x. If
i(¢+) e T s there is also no y € K such that y dom x, since
j(0) q+l
n, > ) w,. Therefore K (N,k)
3 ) ¢ i SySsw =
] - ) - L ]
1¢sq*l {i(+) ieS&+l {i(+)}
does not satisfy external stability. 0

Theorem 4.5: Consider (N,k) games with n = 2k-1. If Q = 0 and
) w, > v(S) for all S with k < [S| < 2k-2 then K (N, (n+1)/2)
- - - S4S,Ww

ieS
is a stable set.

Proof: Internal stability: This is clear.
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External stability: The same argument as in the proof of Theorem 4.4(a)

holds except when S_n S, =8, S n S2 20,

i
1 and i%* ¢ S_..

<
e 1) e () 2
In this case, the following conditions must be satisfied in order that

X not be dominated by some y € K (N, (n+1)/2); Z X, > z w
S,S,w : W=y 1
1582 1582
and 2 X * Z w, for all Rl E-Sl with lRll = k-m.
ieRlu{i(O)} ieR,u{i(0)}
Now since IRll =k-m<k-2 and S_n S, =@, there must exist some

player 1i € Sl with X, = W, Taking Rl so that Rl contains this i,

we obtain another player j € Sl with xj = mj. Now again taking R

1
which contains i and j, we get player k(# i,j) with X = o

Repeat this procedure. Then finally we get X = wg for all 1 ¢ Sl'

This contradicts the condition ) X 2 w, for all
ieRlu{i(O)} ieRlu{i(O)}

R, €S, with |R | = k-m since x

1 -"1 0

y! i0) © “i(0)’

Remarks: (a). In Theorem 4.4(a), if r+q > k, then we can choose Tj's

which satisfy the condition in this theorem. (b). In Theorems 4.4 and

4.5, if k = 2, then the conditions ITj| &1 fordll 3= lycenely

and | w; > v(8) for all § with k < |S| < 2k~2 are always satisfied.
iesS

Thus the first part of Theorem 4.3 could be obtained as a corollary of

Theorems 4.4 and 4.5.

Now let us return to symmetric games with the above three theorems

in mind.

4,2.2 Symmetric Games

First we will explicitly define semi-symmetric sets for symmetric

games.




Definition 4.3': Consider (n3k) games with n = gk+r (@ > 2, 0 <r < k-1).

Let w = max(v(k)/k, (1-v(k))/(n-k)) and Q = nw-1. Define

{s }, s:., and (T

l"..’sq+l ql l,..o,

set K defined in Definition 4.3 is said to be the semi-symmetric set

Tq} as in Definition 4.3. Then the

for (n3k) games with n = gk + r and is denoted by Ks : (n3k).
9

Definition 4.4': Consider (nj;k) games with n = 2k-1. Let

w = max(v(k)/k, (1-v(k))/(n-k)) and € = nw-1. Define Sl’ 82 and

{i(0)} as in Definition u4.4. Then the set K defined in Definition 4.4

is said to be the semi-symmetric set for (n3;k) games with n = 2k-1 and

is denoted by K_ S(n; (n+l)/2).
]

For (n;2) games, the next theorem will give us a more general

result than that obtained by the direct application of Theorem 4.3.

Theorem 4.3': Consider (n;2) games. Then Ks S(n;2)u C is a
9

stable set if and only v(2) < 2/(n-1).

Proof: For Ks . (3;2), this is trivial. (We note that n = 3 means

v(2) < 1, namely, the condition is always satisfied.) Thus we will deal

exclusively with K (n32) u C with n > 4 in what follows.

sS

Necessity: This is clear. In fact, if v(2) > 2/(n-1), then each Kj

in Definition 4.3 is empty. Thus K s(n;2) u C is empty.

’

Sufficiency: If v(2) > 2/n, then this theorem follows from Theorem 4.3.

Thus we assume v(2) < 2/n.

Internal stability: Pick any x,y € K S(n;2) v C,
9’
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Case (i) x,y ¢ Ks s(n;2) - C: Assume x € K y € K., (3#3")
b}

j’

and x domy via S. Then we get a contradiction since

j'
((1-v(2))/(n-2) - 2 > v(2).
Case (ii) x e C, y ¢ KS s(n;2) - C: If x domy, then we obtain
b}

the contradiction

n
I x> v(2) + ((1-v(2))/(n-2)) « (n-2) = 1
i=1

since AP (1-v(2))/(n-2) where y' is the imputation obtained

from y by permuting the coordinates into nonincreasing order.

External stability: Take any x € A-(Ks S(n;2) U C). Then we must
b

have x; > (1-v(2))/(n-2), x , > (1-v(2))/(n-2) and x' < (1-v(2))/(n-2)

where x' 1is the imputation obtained from x by permuting the coordinates

into nonincreasing order. Assume xé = Xy and i* ¢ Sj*' Define

y by

y + € for 1i e Sj*

Yi =

(1-v(2))/(n-2)  for 1 ¢ Sy,

where
¢ ) x; = (1-v(2)) > o,
1¢sj*

Then vy ¢ Kj* and y dom x via Sj*. 0

Remark: If wv(2) > 2/(n+l), then there is a finite symmetric stable set

consisting of all imputations obtained by taking the permutations of the




Yy

indices of the imputation (l/(n-l),...,l/(n-lzf 0).

N

n-1

We conclude this section by stating the counterparts of Theorems 4.4

and 4.5 without proof.

Theorem 4.4': Consider (n3k) games with n=qgk +r (q2>2, 0<rpr<1).

Assume that the core consists only of one point. (a). If Sq+1 = @, then

Ks’s(n;k) is a stable set. (b). Assume Sq+l # @§. Then Ks,s(n;k) is
a stable set if and only if we can take Tj's satisfying Ile <1

for - § =diianyge

Theorem 4.5': Consider (nj;k) games with n = 2k-1. Assume that the

core consists only of one point. Then K s(n; (n+l1)/2) is a stable set.
b

4.3. Concluding Remarks

Although the results obtained in this chapter are somewhat limited,
systematic and semi-symmetric type stable sets do merit further study in
order to grasp the structure of stable sets for symmetric games. The
following problems would be of particular interest.

(a). What are the systematic type stable sets if the condition in
Theorem 4.1 is not satisfied? As shown in the proof, if this condition is
violated, internal stability of Ksys(n;k) does not hold. Thus some
restrictions on Ksys(n;k) would be required to maintain internal
stability.

(b). Extensions of the second part of Theorem 4.3, along the same
line as done for its first part, would be of interest.

(¢). What are the semi-symmetric type stable sets for (n;k) games

with n =gk +r and r+q < k? In this case, some kind of enlargement
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of Ks s(n;k) would be required to preserve external stability.
b}
(d). What are the semi-symmetric type stable sets for (n;k)
games with k > [[(n+1)/2]]?

(e). What is the relation between the systematic and the semi-

symmetric stable sets?




CHAPTER V

SYMMETRIC STABLE SETS FOR (n3k) GAMES

In Chapters V and VI, we will be concerned with symmetric stable
sets for symmetric games. Therefore we will assume, for simplicity
# _. of notation, that any imputation of A has its coordinates arranged
into nonincreasing order unless we explicitly state otherwise.

Before stating the main results of this chapter, we will prove an

important lemma which will be used frequently in the following.

Lemma 5.1: Let K be a symmetric stable set for (n3;k) games. Then

if x € K-C,

AR e SRR R > (1-v(k))/(n-k).

Xn-k+1

Proof: Case (i) C #8 (i.e., wvw(k) > k/n): we will first show that

H FTH,Z e = for some

- Skl *a-k+1®
1 < i(0) < n-k. Define y by

Suppose that xi(o) > xi(0)+l

X, +¢€ for i # i(0)
yi o
Xi00) " (n-1)e for i = i(0)
| where 0 < € < (xi(o)-xi(o)ﬂ)/n, i.¢., Y1(0) > yi(o)+l' Then
i Yq > X for all i = n-k+l,...,n. Moreover {n-k+1,...,n}y is effective
n
for y. In fact, if Z v 2 v(k), then AT v(k)/k. Thus
i=n-k+l1
we get the contradiction
n n-k n
) v, ® ) vy * ) yg > v(k) * (n=k)/k + v(k) = v(k) * n/k > 1.
i=1l i=1l i=n-k+l
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Therefore y dom x via {n-k+l,...,n}. Hence y ¢ K and thus there
must exist some 2z € K such that 2z dom y. Assume 2z domy via
>
yn-k+r for all
for all r =1,...,k. Thus

{i(l),...,i(k)}z|{n-k+1,...,n}y. Then 2: (p)

r=1,...,k. However yn-k+r > xn-k+r

we have z for all r = 1,...,k which means 2z dom x.

i(r) 7 Xnek+r

This contradicts tkte fact that x,z € K. Finally if we assume that

X. = sea =

1 < (1-v(k))/(n~k), then

Xn=k+1

" e~—g

x; < ((1=v(k))/(n=k)) *n = 1 + (k-n - v(k))/(n-k) < 1

i=1

which is contrary to x € A.

Case (ii) C# 8 (i.e., w(k) < k/n): Since x € K-C,

ol > (1-v(k))/(n-k) and X, > (1-v(k))/(n~k). Suppose X (0) >

for some 1 < i(0) < n-k and define y as above. Then y dom x via

{n-k+l,...,n}. The effectiveness is proved as follows: Suppose
n

N T v(k), then we get the contradiction
i=n~k+l
n n-k n

Doyg= L oyt 1y, > (a-k) s (1-v(Kk))/(n-k) + v(k) = 1
i=1 i=1 i=n-k+l

since Y. 1.1 > X a1 > (1-v(k))/(n-k). The rest of the proof is

exactly the same as in Case (i). a

5.1 The Uniqueness of Lucas' Symmetric Stable Set for (n; n-l) Games

In Chapter III, we reviewed Lucas' theorem which gives a symmetric
stable set for (n; n~1) games. The next theorem demonstrates the

uniqueness of this symmetric stable set.

xi(o)+l
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Theorem 5.1: Let Ksym be defined as in Theorem 3.2. Then Ksym is

the unique symmetric stable set.

Proof: It is sufficient to show the uniqueness. Let K be any symmetric

stable set and take any x € K-C. Then the follwoing claim holds.

Claim: For any i = 1,2,...,[[n/2]], if x >1 - v(n-1), then

2i-1

ym
Therefore the uniqueness of Ksym is achieved by internal stability of

If this claim is true, then x € Ksym"c and thus K E.Ks >

Ksym and external stability of K.

Proof of Claim: This proof will be proceeded by induction. In the

case where i = 1, this claim follows from the previous lemma. Assume

that the claim holds for i < k. Suppose x2(k+1)-l > 1 - v(n-1) and

Xo(ke1)-1 > X(ksp)- Defime y by

X. + ¢ for i # 2(k+l) -1

Xo(ke1)-y = (B=l)e  for i = 2(kel) -1

where 0 < € < min{(x (1 - v(n-1)))/(n-1), (x )/n}.

2(k+1)-1 - 2(k+1)-1 ~ *2(k+1)

Then y dom x via N - {2(k+1)-1}. Hence y ¢ K and thus there is
some 2z ¢ K which dominates y. Now we have Xop-1 > 1 - v(n-1) since

Xo(ke1)-1 > 1 - v(n-1). Thus by the induction hypothesis,

X = xz‘z cos z-x2k-1 = X, Or yl = y2 >0 2 y2k—1 = y2k' Also we have

g B DRt B N g

Suppose z domy via (N - {(0)}_|(N - tihg. If 1(0) > 2(ked) - 1,

=z since z dom y and Yo(ke1)-1 > 1 - v(n-1).
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then z dom x via (N - {i(O)})z|(N - {2(k+1) - 1}) . If i(0) < 2k,

then Z >1 - v(n-1). Hence N - {2(k+l) - 1}

2(k+1)-1 - Y2(k+1)-1
is effective for 2z and thus 2z dom x via N - {2(k+l) - 1}. In either

case we obtain 2z dom x which contradicts the fact that x,z € K. |

5.2 Finite Symmetric Stable Sets

For (n3;k) games with k < (n+l)/2, if wv(k) is "large enough",

then there exists a unique finite symmetric stable set.

Theorem 5.2: Consider (n3;k) games with k < (n+l)/2. Then the set

K =<(1-(n-k+1),...,1/(n-k+1),0,...,0)> is the unique symmetric stable
sym ~— ) S——
n-K+1 k-1

set if and only if wv(k) > k/(n-k+l).

Proof: Sufficiency: It is easy to show that Ksym is a symmetric stable
set. The uniqueness of Ksym is proved as follows.
Suppose K 1is a symmetric stable set and take any x ¢ K. Then

by Lemma 5.1, X, = ... = > (1 - v(k))/(n-k). Now assume

;) Xn-k+1

X < 1/(n-k+1) and define y by

n-k+l

(1/(n-k+1)) - ¢ for i =1,...,n-k+l

e

e/(k-1) for i

N=K+24...40

where 0 < e < (1/(n-k+l1l)) - X kel

since k < (n+l)/2 and wv(k) > k/(n-k+l). Hence y ¢ K and thus

Then y dom x via {1l,...,k}

there is some 2z ¢ K which dominates y. Assume 2z domy via

{1(1),...,1(k)}z|{n-k+l,...,n}y, then 2. )y > ¥ 100 > X e

it e e v g e
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Again from Lemma 5.1, Z) T .. TR and moreover 2 kel

In fact, if B 1/(n-k+1) then we have the contradiction

n
) z, > 1. Thus 2z dom x via {1,...,k} which contradicts the fact
i=1

that x,z € K. Hence x > 1/(n-k+1) which implies that x must

n-k+1
be of the form (1/(n-k+l),...,1/(n-k+1),0,...,0), i.e., x e K__ .
i sym
B
n-k+1 k-1

Therefore K c Ksym from which the uniqueness of Ksym follows.

Necessity: This is clear. In fact, if v(k) < k/(n-k+1l), then Ksym

does not satisfy external stability.

In the following sections, symmetric stable sets for (n3;2), (n3;3)
and (n;4) games will be obtained even when the condition in Theorem

5.1 is not fulfilled.

5.3 (n3;2) Cames

Theorem 5.3: Assume v(2) < 2/(n-1). Then the set

o =<(x e TAl[x; = o0 = x> (1=v(2))/(n=2) > x5

X1 * X, < v(2); X ot Xy 3.v(2)£:>u c

is the unique symmetric stable set for (n;2) games.

Proof: We will first show that Ksym is a stable set. When C # @,

this was already proved in Chapter IV. Thus we assume C = @, i.e.,

v(2) > 2/n.

— o

< 1/(n~k+l).

-
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Internal stability: Take any x,y € Ksym and assume x dom y via

Sx!{n—l,n}y. Here Sx should be of the form {i,n}x where

i e {1,...,n-1}, /1In fact, if Sx consists of two indices, say k
and &, from {1,...,n-1}, then by the effectiveness of Sx we
have X =X = v(2)/2 and thus x cannot dominate y via Sx. There-

n n
fore we get the contradiction ] x, > ] y..
e R S

External stability: We first note that for any x ¢ A X1 N v(2),

since v(2) > 2/n. Take any X € A-Ksym. If X 1< v(2)/2, then

y = (v(2)/2,...,v(2)/2, 1-v(2) *» (n-1)/2) dominates x via

{n-2, n—l}yl{n—l, n}x. Clearly y € Ksym' Thus we :fiume x 1> v(2)/2.

Suppose Xy > Xeg for some i =1,...,n-2, then iél x; > (n-l)xn_l.

Define y by

X -1 + e Iitor s =l e sn=1
Yi =
X, * € for i=n
b
n-1
where ne = izl X; - (n-l)xn_l. Then ¥ ¢ Ksym and y dom x via {n-1, n}.

Uniqueness: Suppose K is a symmetric stable set and choose any

x € K-C.

Case (i) C # @: From Lemma 5.1, X, = ... =X . 2> (1-v(2))/(n-2).

In the same way as in the proof of Theorem 5.1, we obtain R v(2)/2.

Thus x € Ksym since X1 + X < v(2). Hence K ¢ Ksym'

Case (ii) C # @#: If x e K-V, then we must have
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X) %ol =X > (1-v(2))/(n-2) and X 1 + X, < v(2). Hence

X € Ksym-c since X2t X 2+ (1-v(2))/(n-2) > v(2). Thus

1 » . & . . 0
K-C ¢ Ksym C which implies the uniqueness of Ksym'

5.4 (n3;3) Games

Theorem 5.4: Assume n > 5 and v(3) < 3/(n-2). Define

K =<{x e Alfx, = oo = x> (1-v(3))/(n-3) > %, > x 3

X ot R, tX < v(3); X gt X o

tx > v(3)D>

and

K, = <{x ¢ FA'lel T e zx o2 (1-v(3))/(n-3) > X1 T X3

W e L TS T S T > v(3)D.

n-2 n-4 n-3 n-

Then Ksym = Kl v K2 u C 1is the unique symmetric stable set for

(n;3) games.

Proof: Internal stability: Take any X,y € Ksym and assume

x dom y via S |{n-2, n-1, n}y.

Case (i) xeC, ye Kl v K2: Without loss of generality, assume

S = {n-2, n-1, n}x. Then x * Yoon > (1-v(3))/(n-3) and thus we

X n-2

n
get the contradiction ) x; > 1-v(3) +v(3) = 1.
i=1
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Case (ii) x,y € Kl v K2: If S, * {n-2, n-1, n}x then obviously
n n
) X; > 2 Yi» since ) xg > v(4) and thus i <1 = v(4)
i=1 i=1 ies ifs .
for all x € Kl u K2. Thus it is sufficient to consider the following
two cases: (a). Sx = {n-3, n-2, n}x and (b). Sx = {n-3, n-2, n-l}x.

(ii-I) =x,y € K (a). Since Sx = {n-3, n-2, n}x,

l:
Reg "B o ¥ T g B Y M xR, EE = v(3). Hence we get
the contradiction
n
L% e T Tl
i=1 i#n-3,n-2,n B’

n
DL LS WS TS AR T

The second inequality follows from the definition of Kl.

(b). We can easily obtain a similar contradiction in this case.

(ii-I11) x € K;, y €K

9 (a). Since Sx = {n-3, n-2, n}x,

2:

n n
X 3 =X ,>¥ o, and (x ,2)x >y (=y ). Hence izl X, > .Zl ¥
(b). Since v(3) <x ,+x ,+Xx <x J+x ,+tx . <v3),

n
i ® R ThE. J R 5. ) P
n-1 n fop * =1 i

(ii-III) x € K2, y & Kl: This is the same as (a) of (ii-I).

¥ (ii-I:) X,y € K2: Since X1 %% and Yoo1 = Yp* Ve get
3 %> )
" -

External stability: Take any x ¢ A"Ksym'
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Case (i) C = @: We first note that X -2 > v(3)/3. In fact,

if not, then y = (v(3)/3,...,v(3)/3, (1-v(3) - (n-2)/3)/2,
(1-v(3) » (n-2)/3)/2) dominates x via {n-4, n-3, n-2} |{n~2, n-1, n} .
n-2 y -

-
Clearly y € K/. Let ne” = 121 x; = (n=2)x__,.

(i-I) € > 0: Define y by

X 2 * e forr 1= 1,...s0-2
Yi =
Xs + € for i = n-1,n.

Then Yooa® Poy R ¥, v(3). If L ATEE 5 > v(3), then

y e K. and y dom x via {n-2, n-1, n}. Thus we assume

1

SR UL A v(3). 1If s S TR N e N 2v(3), then

n-

define y' by

yi for i=1, ,n=-2
L = i = n-
yi Y; € for i = n-1
yi te for i=n
' ' ' ' ' ' =
where ¢ > 0, ¥os * ¥ s L SR > v(3) and b AN + Yo-2 + - v(3).
Then y' ¢ K, and y' dom x via {n-3, n-2, n}y,l{n—2, n-1, n} . If

2y 4 * 2, ot Y,y *tV, < 2v(3), then define y'' by

yi for i=1,...,n=2

L
Yi

n-l,nn

(yn_l + yn)/z for i

B ———




Then y'' €

n
Lo

i=1

since v(3)

Hence
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K gkt (1-v(3))/(n-3) is proved as follows.

L ]
2' Ypaa

Suppose otherwise, then we obtain the contradiction

n-2
Loyt eylty oyl > (0-2) - v(3)/3 + 2+ (1-v(3))/(n-3)
i=1

(n(n-5) - v(3)+6)/3(n-3) > 1

>3/n and n > 5.

y'' € K, and y'' dom x via {n-3, n-2, n}y,,|{n-2, n-1, n}x.

1

(i-II) € = 0: Since x ¢ Ksym’ we must have X gt X _,tx < v(3)
and L I Define y by
X, + €' forivd =il n cign~2
Yi =
X + ¢'"" for i = n-1l,n
where (n-2)e' + 2¢'' = X1 "X and ¢' is sufficiently small so
that Voon * Yoo 8, < v(3).

A AT SRR T v(3) then y ¢ K, and y dom x via

{n-3, n-2, n}yl{n-2, n-1, n}x 1

Define y'

Thus we assume Youg t Tty & v(3).

by

Y3 for i =1,...,n-2
]
. vy * € for i = n-1
for i =n

yi’e




[} ' ! = '
where € > 0 and R MIPRE U v(3). Then y' € Kl and
y' dom x via {(n-3, n-2, n}y,l{n—2, n-1, n}x since

]
L ~ < .
g ¥ st T v(3) > Yoo Fd o kR implies VARG

¥ n
Case (ii) C # @: If X 3 < (1-v(3))/(n-3), then there is
i some y e C such that y dom x. Thus x_ _, > (1-v(3))/(n-3).

Moreover X, > (1-v(3))/(n-3) since x ¢ C. From these two facts,

x € Dom Ksym is verified in a manner similar to Case (i).
Thus we have completed the proof of internal and external stability

of K 2
sym

Uniqueness: Suppose K is a symmetric stable set and take any x € K.

Then from Lemma 5.1, X = e TR > (1-v(3))/(n-3).

Case (i) C = @: We must have X -2

then x € K,. Thus we assume X + x + x < v(3). Now we will
1 n-3 n-2 n

show ™ and thus x € K2. Suppose X 1> % and define y by

> v(3)/3. If xn_3+xn_2+xn>_v(3),

X, + € for 1 15 veey0=2,0

"
o]
1
[

. (n-1)e for i

0 <e<«< min((xn -xn)/n, (v(3) - (xn_3 + X + xn))/3).

<] n-2

Then y dom x via {n-3, n-2, n}yl{n-z, n-1, n}x. Hence y ¢ K

thus there is some 2z ¢ K such that z dom y. Suppose 2z domy via
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{i(l),i(2),i(3)}z|{n-2, n-1, n}x. Then at least two of i(1), i(2)

and i(3) must belong to {1,...,n-2} since By % wae BW_p and

P Eeuv Mg Without loss of generality, assume i(l) = n-3 and

2(2) = p-2  then Zi(1) T %i(2) *Vaug T Faan T ¥ps and 2i(3) W

Thus 2z dom x via {i(l),i(2),i(3))z|{n-3, n-2, n}x which contradicts

the fact that x,z € K.

Therefore we obtain x € Ksym and thus K ¢ Ksym'

Case (ii) C # #: We must have X, > (1-v(3))/(n-3) and

gl (1-v(3))/(n-3). Thus in the same way as abcve we get K-C ¢ Ksym-c'

Hence K ¢ Ksym‘
In either case, we obtain K & Ksym which implies the uniqueness

of Ksym' 0

In the case where n = 4, Theorems 3.2 and 5.2 show that the

unique symmetric stable set is given by

where

>x D

3 =%y

n
»

K =<{x e |'A'l]xl > 1-v(3) > x

and

K, =<{x ¢ fA]le 2 %y = x, > 1-v(3)P.

5.5 (n3;4) Games

Theorem 5.5: Assume n > 7 and v(4) < 4/(n-3). Define




K = <ix e mlxl 2 ... %

o3 2 (A=v(4))/(n=b) > x , > x > X 3

n -2 — "n-1 n

X _gtX ot R g tx < v(l); xn-'++xn-3+xn-1+?5n.>."(“)1>’

K, =<{x ¢ I'A'llxl == a2 Qv /(n-4) 2% o = x> X5
Xn-4 s x11-3 * xn-l . xn < Wl xn-u"’xn-a"'xn-2"hxn-l 2 wEe)
*n-5 . ¥ st * 2 v(§) 1>,

X :

Kq ={x ¢ I'A'llxl W Ry (1-v(4))/(n=4) > X ot xS

xn-4+xn-3+xn-2 +xn-l < v(d); xn_5+xn_u+xn_3+xn;_v(l;)>,
K, 2 {x ¢ I'A'llxl SRR (1-v(4))/(n=t) > Ko =X SR ® B
. + X 3 + X 2 tx < v(u); xn—5+xn-u+xn-3 v
and
K ={x ¢ I’A'I|xl == x o2 (1-v(4))/(n-4) > Xeon =R s TR,
Xees FXoon tRo gt X, < VR R tx o tx  tx o > v(8)DD,
9
Then K = (u K,) uC is a symmetric stable set.
sym go1 &

Proof: Internal stability: Take any X,y € Ksym and assume x dom y

via le{n-s, n-2, n-1, n}y.

5
Case (i) xe C, y € v Ki: Without loss of generality, assume
i=1

L. {n-3, n-2, n-1, n}x, then Rs2%2 (1-v(4))/(n-4). Thus we




n
have the contradiction ) X, > 1-v(4) + v(u4) = 1,
i=1

Case (ii) x,y €

I cwm

K.: If S = {n-3, n-2, n-1, n} , then
=1 1 % X

n nt
obviously Z W z

: i

i=1 =1
n
)) x, > ) ys since ) xs > v(4) and thus ) x
i=1 i=1 iesx i¢Sx

i

3 S 1-vW).
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¥y If Sy E_{l,...,n-3}x then we again get

Thus

it suffices to consider the following six cases: (a). Sx = {n-u,n-a,n-l,n}x,

(b). §. " {n-4, n-3, n-2, n}x, (c). B = {n-4, n-3, n-2, n-l}x,
(d). Sx = {n-5, n-4, n-3, n}x, (e). Sx = {n-5, n-4, n-3, n-l}x and
(f). Sx = {n-5, n-4, n-3, n-2}x.
(ii-I) x,y € K, (a). Here LIS R AR N
X > ¥ and Xy + X .3 + X .1 + g v(4). Hence we get the contradiction
g n-is
X, = X, + X + x + % + x + X
j=1 1 i=1 n-2 n-4 n-3 n-1 n
n
RS S Yn-u ¥ Vno3 T Yp1 Y Yy Z..E Yi*
i=1
The second inequality follows from the definition of K.,. (b) to (f).

&

In a similar manner, we can obtain contradictions for these cases.

(a). x =

1° 2 el ¢ Tpal ynaa’

n
(xn_2 >) %1 > Va1 (= yn-2) and x> y,. Hence ) X > Z y

(ii-11) x € K;, yeK

i=1 g1
(b). Since w(4) <x , +x . +nxn-l + :n S By TR g t R s tRE VN,
we must have X1 = %y Thus 121 X, > izl Y (e) e (£

These cases are the same as (b).

(ii-III) x € Kl’ y € Ki (i=3,4,5): The same as (ii-II).
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(ii-IV) x € K y € K.: The same as (ii-I).

z 1

(ii-V) x,y € K2 (a). x = x (x

nzt ~ *p-3 7 Yn-3?
and x > Y- Hence Z x; > z Y.+ (b). The same as (a).

i=1 i=1 *
(e). ot © *n-3 8 Yn-3*> *p-2 g i Yn-1 K yn-2) and
. S X .3 * X 0 + Xy 2 v(4). Hence
121: DES
LA X, +X +x + x + x + x
i=1 i i=1 i n n-4 n-3 n-2 n-1
n
* dewlh) ¢ Yn-u ¥ Ynaz * V0 * Vg -'igl ¥i

(d) to (f). The same as (c).

(ii-VI) x € K2, y € KS: (a), (b). The same as (a) in (ij-V).

(el *n-t = *po3 7 Yp-3* *p-2 © *n-1 7 Yn-1 v yn-2) e

x + xn + xn- + xn ¥ v(y) = yn_5 + yn_u + yn_a + yn. Thus

n n
v = =

iil X, > izl ¥ (4). Woag SRy "% o > Fua and X > A Thus

L TR X _3 + X, >Vt R M v(4) which contradicts

the effectiveness of S, (e), (f). The same as (d).

(ii-VII) x € K, y € K,: (a), (b). The same as (a) in (ii-IV).

(e). xn N Tns 3 5 Yn-3° e * ¥n-1 5 Yn-1 (= Yp-2
>

-3 ) and I sl
2 g+ (@) to (£). The same as (d) in (ii-vI).

Hence Z X,
i=1 i

(ii-VIII) x € K2, y € K5: (a), (b). The same as (a) in (ii-V).

(¢). The same as (c) in (ii-vD). (d). x . = xna“ =X _3>Y¥,3 and

(x

n-2 = *p-1 2 *n 2 ¥ i Yp-1 ©

). Hence ] x, > { vy
i=1

yn-2

n-2 ") xn-l> yh-l (=yh-2

)
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(e). Since wv(¥) <x . +x . +nxn_3 + xg 5 X g BN R Yy ke vlu),
we must have X1 T X Thus Z X, > ; Y- (f). The same as
i=1 i=1
(e).
(ii-IX) =x¢ KS’ y € Kl: The same as (ii-I).

(ii-X) x € KS’ Yy € K2: The same as (ii-V).

(ii-XI) x,ye-K3: (a), (b). The same as (a) in (ii-IV).

(c). Tk ™ s & Yn-u © Yo-3" %p0.F %0 ? Yn-2 ;. Yn-1 aoa
nxn_5 + )-;H_'4 + xn_3 + xn = v(y) = yn_5 + yn—'-& + yn_3 + yn. Thus
Y x,> ) y.. (d) to (£). The same as (d) in (ii-IV).
=1 * 4«3

(1i-XII) x € Ky ¥ € K& (a), (b). The same as (a) in (ii-V).
(¢c). The same as (d) in (ii-VII). (d) to (f). The same as (d) in

(1i-vI).

(1i-XIII) x ¢ K3, y € Ks: (a), (b). The same as (a) in (ii-V).
(¢c). The same as (c¢) in (ii-VI). (d). The same as (d) in (ii-VIII).

(e), (f). The same as (e) in (ii-VIII).

(ii-XIV) x € K,» yeK The same as (ii-I).

l:
(ii-XV) x ¢ Ku, y € K2: The same as (ii-V).

(ii-XVI) x € Ku, y € K The same as (ii-XI).

3:
(ii-XVII) =X,y € K“: Since x = 0, we can ignore (a), (b) and

(d). (e). Here ooy TRLE 2 Yas and Rlg ® By > Vs (= yn_2).

n n
Hence izl X > izl yio (@), (H)e v(¥) sx o+ x _ +x o <x .
t Xy + X -3 + X < v(4) for i = n-1, n-2. Thus we must have




62

n-1 n-2

(1i-XVIII) x € Ko ¥e K The same as (ii-XVII).

5:

(i3i=XIX) %€ K., ¥y ¢ Ki (i=1,2,3,4): The same as (ii-XVII).

5
n n
(ii-XX) x,y € K Obviously .z X, > .Z Vg
e i=1 i=l

External stability: Take any x € A-Ks

yn’

Case (i): C=¢: If x < v(4)/4 then y = (v(u4)/4,...,v(4)/u,

n-3
(1-v(4) « (n-3)/4)/3, (1-v(4) - (n-3)/4)/3, (1-v(4) - (n=-3)/u4)/3) (e Ks)

dominates x via {n-6, n-5, n-4, n-3}yl{n-3, n-2, n-1, n}x. Thus we
n-3

1.
assume x_ . > v(4)/4. Let ne = .Z X, (n-3)xn_3.
i=1
4 i .
(i-I) € > 0: Define y by
r
xn_3 £ € for i=1,...,n-3
y; = ¢
Xy + el for i = n-2, n-1, n.
\

Then b S " Y52 o Yn_l + yn < viu),  If Tk + Yoin + yn?l + : 18 > v(u),

then y ¢ K. and y dom x via {n-3, n-2, n-1, n}. Thus we assume

1

R PO RNE v(4)., If 2y . +2yn_3-+yn_2-+yn_l-+2yn > 2v(),

n
then define y' by

f
Yi fO!‘ i = l’o.o’n-s
yi - € for i = n-2
y; =
& ﬁ y; te for i = n-1
A for i = n.
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' ' ' 1 ' ' ' =
Wasre Yn-u : yn-3 i yn—2 i yn 3-V(u) Ang yn-u ’ yn-3 4 yn-l * yn WY,
Then y' € Ky and y dom x via {n-4, n-3, n-1, n}y|{n-3, n-2, n-1, n}x.

Ll SIS TS Yo ¥ Ypo1 * ¥, < 2v(4), then define z by

(
s Fopa g = i L8 . n=3
z, = 4 (¥, 5 * yn_l)/2 for i = n-2,n-1
' for i=n

Now the following two cases must be considered.

(a) z + z + z

— "n-5 n-4 n-3 o] zn = VilYs | 3

+ > v(kL),

z
n-1—

then ze K, and z dom x via {n-4, n-3, n-1, n}_|[{n-3, n-2, n-1, n} .
2 z X

z + z +z
n-4 n-3 n-2

Thus we assume 2z + z + z + z < v(y):
n n-3 n-2 n-1

(a-I) z stz ,* 2 ig" v(u): If z 5t 2zn_u + 22n-3 + z 5
3 '
. VRN S > 2v(4), then define =z' by
zi for 1i=1...,n-3
2= Ze PLE for i = n-2, n-1
i i
z, - 2 for i=n
i
] - L] ] + 1 1 L} + |l
where ¢ > 0, st e, + Boas T B2 v(4) and z' o, gls T8

' =
+zn-l v(y),

Then 2" ¢ K, and z' dom x via {n-4, n-3, n-2, n-l}z,|{n-3, n-2, n-1, n}x.

s T
If z 5t Zzn_u + 2zn_3 + z 5 + z + z > 2v(4), then define =z by
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z; for i=1,...,n-3
A z. + ¢ for i = n-2, n-1
i 3
z; - 2¢ for i=n
> L + 1 + 1 + LI 11 + re + 1
where € > 0, VLT z 'y z) v(4) and L 24 zn_2

1
tz)'y < w(k).

Then z''e K, and z'" dom x via {n-u,n-a,n-2,n-l}z"[{n-3,n-2,n—l,n}x.

(a-1I) =z + z + z

. o g v(s): If z 3.V(“)’(zn-u*zn-3+zn-2*zn-1)’

then define 2' by

z; for M=l taan=3
2L = Tt e for i = n-2, n-1
i i
= n

z; - 2e for i

+2| +z'

1 = )
n-% "n-3 n-24'zn-l v(4).

where € > 0 A 1 !
ere € s 20 st 2 Lt 3t >v(4) and z'

Then 2z' € K, and z' dom x via {n-4, n-3, n-2, n-llz,l{n-a,n-Q,n-l,n}x.

- 3 1
If R v(y4) (zn_u tz _a tz ., + zn-l) then define 2 by

z; for i=1,...,n=3
- ASUES z; + zn/2 for i = n-2, n-1
0 for i=n

Then 2z''eK, and z'' dom x via {n-u,n-3,n-2,n-l}z"{{n~3.n-2,n-l,n}x.
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5 n
i : = =8z .
(B) z  +z , +tz otz <v(s): Let 3e : N 2y - 3z
9 i=n-2

If €°=0 then ze¢K. and zdomx via {n-S,n-u,n-u,n}zl{ n—3,n-2,n-l,n}x.

5
Here 1z € Ks is proved as follows: It suffices to show that

Z o < (1-v(4))/(n-4). Assume otherwise, then we have the contradiction

n
I z; > (0-3) - v(4)/4 + 3. (1-v(4))/(n-4) > 1 since v(4) >n and

n> 7. Hence zZ < (1-v(4))/(n-4). Thus we assume 52 > 0 and define

e
"

Z for Ly v wsiyD=3

z; tiE for i n-2, n-1, n

o2 tn 2.3 Y2, <v(4) then z'e Kg and z' dom x via

{n-5, n-4, n-3, n}z,]{n-3, n-2, n-1, n} . Thus we assume z' _ + z'
X n-5 n-4

+ zé + zé > v(4) and define z'' by

-3

puy

Zi(= zi) for 1i=1,...,n-3
gyl s J zi te for i = n-2, n-1

zi - 2¢

.

where >0 ' " ' it :
€ and z''s e I z'lat z v(4). Then 2z'' ¢ K2 or

Ky and z'' dom x via {n-5, n-4, n-3, n}z,,l{n-S, n-2, n-1, n}..

since z'' > 2',
n n

X
(i-II) € = 0: Since
x ¢ Ksym’ Xy + X -3 + X1 + X, < v(y).

I % > X 1o then define y by

n-2
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xi + € for i=1,...,0n-3
N X - (n-1)e for i = n-2
Xy + € for i =n-l, n
where ¢ is sufficiently small so that y . *+ ¥ 4%+ ¥, ; i A v(u4)
and Yp-2 5 S Then in the same manner as in (i-I), we obtain
x € Dom K . Thus we assume X =X and consider the following
sym n-2 n-1
two cases.
(a) X s ik S tX ot X > v(4): Since x ¢ Ksym’ we obtain
Xy tR 4t X o tx g < v(u), X 5t Xy o LR TR v(4) and
X, > 0. Define y by
X, + € for i = 1,¢..sh-1
Yo =
s X - (n-1) for i=n
where ¢ is sufficiently small so that X 4t X3 R B v(y),
X + X + x +x >v(4) and x_ > 0. Then in the same manner as
n-5 n-4 n-3 n n
in (i-I), we obtain x € Dom Ksym'
(b) x5t Xy + :n-s s v(4): Since x ¢ Ksym’ we must have
X > X . Let ea = x. - 3x_  and define y by
n-1 n 3 n
i=n-2
x; + e! for i:=1,...,n=3
y =
i X, + (s for i =n-2, -1, n

where €', €¢'' > 0, (n-3)e' + 3¢'' = 53 and ¢' is sufficiently
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small so that Joop BRo, TR < v(4). Then if

 FECTh (TR g S v(4), y e Ko and y dom x via

{n-5, n-4, n-3, n}yl{n—3, n-2, n-1, n}x. Thus we assume Vo5 *

3 1
Yo, e > v(4). Define y' by

v For "1 =405 00.0n=3
Yz i = p= =
yi ¥y b £ for i = n-2, n-1
o 2e for i=n

where SRS SR S P N v(4). Then y' € K2 or K, and

y' dom x via {n-5, n-4, n-3, n}y,l{n—S, n-2, n-1, n}x since

> X .
¥y .

Thus we have completed the proof for Case (i).

Case (ii) C # p: 1If % .3 ¢ (1-v(4))/(n-4), then there is some

y € C which dominates x. Thus we assume x . > (1-v(4))/(n-u).
Moreover we must have X > (1-v(4))/(n-4) since x ¢ C. Using these
two facts, x € Dom Ksym is proved in a manner quite similar to that

in Case (i). O

In the case where n = 5, the unique symmetric stable set is

given by

Kl =<{x ¢ rA]lxl = X, > l-v(u4) 2 %y > X, > xs}>
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and i
K, =<{x ¢ [A][xl =%, 2 X, F R > 1-v(4) > x5}>. .
We conclude this section by stating the following theorem which
# gives us a symmetric stable set for (6;4) games.

Theorem 5.6: Define

K =<{x ¢ rA'llxl

"
E]

= x5 2 (1-v(8))/2 > x, > % > X3

X. + X _>_l-v(li)}>,

P ST—

K, =<{x ¢ I'A'lel = xy = x> (1-v(W))/2 > %, = % 2 X3
Xy + X, > 1-v(4); Xyt X 2 1-v(4) 1,
é Ky =<{x ¢ I'A”xl =%, = %y 2 (1-v(W))/2 = % = x> X3
Xg X 2 1-v(4) P>,
K, =<{x ¢ FA'Ile = Xy = xg 2 (1=v(8))/2 > x, = X > X = 03 i
|
Xy > l-v(u)} > :l
and |
Kg = <{x ¢ fA'Hxl T Xy T Xy 2 X T Xg =X 2 (1-v(u))/2D> ; ;
5
Then K = (v K, uC is a symmetric stable set for (6;4) games. ~




e o AN & R AR

Proof: We omit this proof since it proceeds in the same way as in

Theorem 5.5. 0
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CHAPTER VI 5 1 1

HART'S PRODUCTION GAMES

S. Hart [12] defined a family of symmetric games which reflect

some production economics and determined symmetric stable sets for these
games under some special conditions. This chapter will be devoted to
further study of this class of games. Let us first review his results

briefly.

6.1 Preliminaries

Recall Hart games (n;k)h are given by !

r 0 for s <k
1/q for k<s< 2
v(s) = { i/q for jk s < (j+1)k
1 for gk < s
.

where

n=qgk+r (q2>22 and 0< r < k-1).

e ——————r s s

Hart gave us the following two theorems and two open questions concerning

the games (n;k)h.

Theorem 6.1 (Hart): Define //////’/’f

Ky =<{x ¢ I'A'||xl £ ... =

i
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Then Kh is a symmetric stable set for (n;k)h if and only if

n > (q+l)(k-1).

Theorem 6.2 (Hart): If n > (q+l)k-3, then this Kh is the unique

symmetric stable set for (n;k)h.

Open guestion 1: What are the symmetric stable sets, if any, for

(n;k)h when the condition in Theorem 6.1 is not satisfied.

Open question 2: If Kh is the unique symmetric stable set when the

condition in Theorem 6.1 is satisfied instead of the condition in

Theorem 6.2.

In the following two sections, these two open questions will be

investigated.

6.2 Symmetric Stable Sets

For simplicity, let us first assume »r = 0. Then Theorem 6.1 says that

Kh is a stable set if and only if q > k-1. The next theorem will partly

answer the open question 1.

Theorem 6.3: Define

Ky =<l e TATlx) = cooo=x (0 > 1/Q(k=1) 2 % o= wes = x> x
and
K, ={x ¢ TaA1]1/q(k-1) L S NETTIL I I SPWPSLIRTREL I S 3

x is on a curve connecting

(1/q(k-1),...,1/q(k-1), (k-l-q)/q(k-l)(k-2),...,(k-l-q)/q(k-l)(ktz},O)

~ T
n-k+l k-2




with (1/n,...,1/n) where all coordinates X seeesX vary

monotonically; (k-2)x, + 2x S 1/aq; (k=1)x; + % < 1/q}>.

n-k+2

Then Kl v K2 is a symmetric stable set for (n;k)h games with r = 0

if [[(x+1)/2]] < q < k-1 where [[k+1/2]] is the greatest integer in
(ktl)/2.

Before proving this theorem, we will state some remarks.

Remarks: (a). If [[(k+1)/2]] < q < k-1, then K, is not empty. Namely

there always exists at least one line satisfying the condition for K2.
For example, let

LA - = = = & :
Ky =<{x e TA1]1/q(k-1) > Xy B ees SR 2R T eee T R 2 X

(k-l)xl tx @ /9.

Then it is easily shown that Ké satisfies all the conditions for K2.

In general, there are infinitely many curves satisfying the conditions for

K, except when gq = [[(k+1)/2]] and k is even. (In this case there

is only one such line.)
(b). When q = k-1, K, g.Kz.
consists only of K2. Hart's stable set Kh for this case is easily

Hence the symmetric stable set

shown to be the extreme one of many curves satisfying the conditions for
K2, i.e. the line (k-l)xl *R = 1/q. This fact answers Hart's open
question 2 negatively. (The complete answer for this question will be

given in the next section.)

Now let us begin to prove Theorem 6.3.
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" Proof: Internal stability: Pick any two elements, say x and vy,

in X, UK, and assume x domy via le{n-k+1,...,n}y. We will

prove only the case X,y € K For other cases, it is easily shown

2"
that x cannot dominate y. From the definition of K2, Sx must
be of the form {1,...,k-1, n—k+2}x. If this Sx is effective, then

(k-l)xl X e < 1/q. Hence

1~
x
1]

(n—k+l)xl + (k-2)xn_k+2 + X

[P

i

{(q-1)(k-1) + q}xl + (k-2)xn_k+2 tx

(q-l){(k-l)xl + xn-k+2} tax, + (k-q—l)xn_k+2 *x

| A

(q-l){(k-l)xl + xn-k+2} tax, + (k-q)xn_k+2

(q-l){(k-l)xl + xn-k+2} + (k-l)xl + (q-k+l)xl + (k-q)xn__k_'.2

| A

(q-l){(k—l)xl + xn-k+2} + (k—l)xl X o

= q{(k-l)xl + xn-k+2} < 1.

n-k+2 > xn

= %, is satisfied. If neither of these holds,

Here equality holds only if at least one of (a). g=k-1 and x

or (b). & T B

n
then we get the contradiction ) X; < 1. Assume (a) to be true. Then
i=1

we obtain X, >y and X _k+2 - *n > ¥y which contradicts the definition
of K,. If (b) is true, then X = 1/n for all i and thus x cannot
dominate y.

External stability: Take any x ¢ A - (Kl v K2).

o e i b D e

- mm—— o~




T4
n
case (1) x_ .. > 1/q(k-1): Let (n-1l)e = izl x, = (okelds . o
- (k-2)xn_l. Then € > 0 since x ¢ Kl. Define y by
xn-k+l + € for i=1,...,n-k+l
vy = X1 + € for i = n-k+2,...,n-1
0 for i = n.

Then y € Kl. Now we will show that {l,...,k-2,n-k+2,n—k+3}y is

effective for y. If this is true, then we obtain y dom x via
{l,...,k-2,n-k+2,n-k+3}y|{n-k+l,...,n}x. Let us assume

(k-2)x1 * 2%
then q > [[(k+1)/2]] = &. Thus we get

9 1/q. First assume k to be even, say k = 2%,

"ne-—13
<
]

k = (n-—k+l)y1 + (k-2)yn_k+2

(2-1)((22-2)y, + 2y ) * (2q2-2£2+22-1)yl

(2-1)/q + (2q2-20+24-1)/q(28-1)

v

1+ (g-%)/q(22-1) > 1.

Now assume k to be odd, say k = 22 +1, then q > £ + 1. Hence

n
. 2
121 yg = (=1)20-1)y, + 27, o) + (2ak+q#R=20"-1)y 4y, o
> (2-1)/q + (2q2+q+i-222—1)/2ql
=1+ (g-(2+41))/2q2 > 1.
A




Thus we reach contradictions for both cases. Therefore

{1,...,k-2, n-k+2, n-k+3}y is effective for y.

Case (ii) Xkl

- (k-2)xn_l - x.

(ii-I) e > 0: Define y by

< 1/q(k-1): Let

£ =

X, - (n-k+1)x
i i n

~k+l

"ne~—o

!

r ' i = -
xn-k+1 + € for i =1,...,n-ktl
y; = T e"! for i = n-k+2,...,n-1
s R Fopr i = n
n
\
where €', e€'', €''' > 0, (n-k+l)e' + (k-2)e'' + e''' = ¢ and

1/q(k-1) > ¥y-

If yeK, then ydomx via {l,...,k-l,n}yl{n-k+l,...,n}x since

{l,...,k-l,n}y is effective for y. Now assume y ¢ K

must exist some 2z ¢ K. such that (a).

2
or (b). z, > Y1

case, we obtain 2z dom x.

2 Then there

B 2% W8 B e Yo

and z > yn from the definition of K.. 1In either

2

(ii-II) € = 0: We can assert x € Dom K2 in a manner similar to

that above.

0

As an analogue of Theorem 6.3, we can obtain the next theorem which

gives us a symmetric stable set for the case where r 1

Theorem 6.4: Define




.
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Ky ={x ¢ fA1|xl Bopse B By > 1/q(kx-1) Lo TN BT e T o>,

v

2% T Faked 2 ¥noke2 T

X is on a curve connecting

K, =<{x € TA1|1/q(k-1)

(1/q(k~1),...,1/q(k-1), (k-gq-r-1)/q(k-1)(k-2),...,{k-q-r-1)/q(k-1)(k=2),0)
L SR J | . o

e i N

n-k+l k-2

with  (Cheg=1YAgeR ~gitokon), . .. Ekogeld gtk <ty -,
N ,
n-k+1

(k-q-r~l)/q(k2-qk-k-r),...,(k-q-r-l)/q(kz-qk-k-r)) {
. / £

—~—~

k-1 |

where all coordinates x

12 eeX, vary monotonically;

(k-l)xl L T 1/q >

and s
- 2 - - -
Ky = {x e [A1](k-q-1)/q(k“-qk-k-r) 2 %= .. 2 SRV 288 l/qkixn-k-r? = x5
(k=1)%; + x40 2 1/q}¥>.

3

Then v Ki is a stable set for (n;k)h games with r > 1 if
i=1

[([(k-r)/21] < q < k=~ (r+2) where [[(k-r)/2]] is the greatest integer

in (k-r)/2.

Proof: We will only prove the following two properties about effectiveness,

since the other parts of the proof proceed similarly to Theorem 6.3.

(a). If xe€e K then {1,...,k-1, n-k+2}x is effective for x

2’

only when x, = (k-q+l)/q(k2-qk-k—r) and x g (k-q-r-l)/q(k2-qk-k-r).

n-k+
2 < 1/q, then

In fact, if we assume (k-l)xl + xn

=-k+
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II.M!."
»
™
"

(qk+r-k+l)xl + (k-2)xn_k+2 t X

(qk+r-k+l)(Xl+xn_k+2/(k‘l)) + (k-2-(qk+r-k+l)/(k-l))xn_k+2 +tx

I A

% k-1 . (KCekegher)/ k=]
(gk+r k+l)(xl+xn—k+2/( )) + S (k" =k=-gk-r)/(k-1)

< (gk+r-k+1)/q(k-1) + (k-g-r-1)/q(k-1) =1

where equality holds only if x, = (k-q~l)/q(k2-qk-k-r) and

1

= 2
B goea = (k-g-r-1)/q(k"-gk-k-r).

(b). For all x e A, {1,...,k-2, n-k+2, n-k+3}x is effective.

Assume (k-2)xl + 2xn-k+2 > 1/q. Then

n

Zl X = (qk+r-k+l)xl + (k-2)xn_k+2 tx _>__q(k—2)xl + (r+2q-l)xn_k+2
> q(k—2)xl + 2qxn_k+2 > 1

since [[(k-r)/2]] < q and r > 1. 0

Now let us digress in our discussion and consider what we have
obtained so far. For the sake of convenience, we will summarize our
result in Table 6.1. In this table, games below the fine lines have
Kh as their symmetric stable sets. In particular, for any game on the
righthand side of the bold lines, Kh is unique. Games marked by "_'
are those games whose symmetric stable sets have been initially described

in Theorems 6.3 and 6.4. Here attention must be paid to the fact that

‘1’;“)h is marked by "_", i.e. (17;7)h has the symmetric stable

wet defined in Theorem 6.4.
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k=2 gq n k=3: q n k=4
2;fs s 2 ;0 7 8
3sle 7 3;(fe 1012
k=5 gq n k=6: g n S
2; 10 1jf12 13 1 : 2; 12 13 wihs 1w v
3; 15| 16 J17 18 19 3; 18 19|20 Jaa 22 23
w3l 20 21 22 23 24 43 2u|l 25 26 Jo7 28 29
s 25 26 J27 28 29 s;[ 30 a1 323 3 35
8 e e 53{ 36 37 33 a9 40 46
k=7 4q k =8:q D
2 2; 16 17 18 19 z0|fr 22 23
3 3; 2v 25 26 27[ 28 29 30 31
u w; 32 33 3u[3s 36 Ja7 38 39
S ; 5; 40 ulfu2 43 us fus uwe w7
63 6; u48/u9 50 sy 52 53 su s
7 ;49 50 s1 52 |53 su s 74 56 57 s8 59 60 Jel 62 63
8 ;| 64 65 66 67 63 9 70 71

Table 6.1 Hart games (n;k)h
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i
For this (17;7)h game, Hart also gives a symmetric stable set of é
i
another type, namely i
|
K = Kl v K2 |
where
Ky =<{x e Mal]1/11 > Ry % e 8% LTS 3/38 > S See | _>_xn=OP,
and
Ky = <Ix € [A1]26/209 > %, = o0 =% | 0 > 1/ 2% | o =...=x D

] Here it follows from our Theorem 6.4 that his claim of the uniqueness of his

stable set is false. The next theorem shows that all games satisfying the

condition in Theorem 6.4 have symmetric stable sets of this type.

Theorem 6.5: Define

K sl TAdlx) = oo =@y 2% = e =X ) > X = 03

(k=1)x) + %\ .o > 1/qP>

and

K, = <x e [A]le Eoras B ey SR B o Ry

if (qzk-qk2+qk+qr-rk+r-2k+1+k2)/q(qk-k2+2k-1+r) ¥
(gk+r-k+1) > 1/qk, then (q2k-qk2+qk+qr-rk+r—2k+l+k2)

/q(qk—k2+2k-l+r)(qk+r-k+l) > %, > 1/qk;

1
otherwise % = (qzk-qk2+qk+qr-rk+r-2k+l+k2)/

q(qk=k2+2k-141) (qk+r-k+1) I
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Then Kl v K2 is a symmetric stable set if [[(k-r)/2]] < q < k-(r+2).

Proof: We will only point out the following properties since the rest
of this proof is similar to Theorem 6.3.
(a). If x € Kl’ then X 3_(q+2-k)/q(qk-k2+2k-1+r) and

2
X _rap < (@trtl-k)/q(gk-k“+2k-1+r).

(b). If x e K., then x 2:(q+r+l-k)/q(qk-k2+2k-l+r).

22 n-k+

These two properties are easily verified by simple calculations. 0

Now let us return to Table 6.1. This table tells us that for all
games (n;k)h with k < 4, symmetric stable sets have been obtained.
For k=5 and 6, only (10;5)h and (12;6)h are unsolved to this
Thus we next concentrate on these games and determine their symmetric

stable sets.

Theorem 6.6: Assume n = gk, k = 2%+1 (£ > 2) and q = %. ((lO;S)h,

(21;7)h, (36;9)h, etc. satisfy these conditions.) Define

Ky S e AT B e S Ky LGNSR oy SR T
K, ={x ¢ [A]le = = X1y 2 1/atk-1) L SR S W
- a0 = 1
(n k+l)xl + (k ‘)xn-k+2 1>,
Ky =<{x ¢ [A1]i/q(k-1) ZHIE G R s E R LR SR B

(n=2k+2)x, + (k=2)x__, ., = (3-1)/q}>

point.

T —
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and

K, =<{x ¢ [A|1/q(k-1) > Xy Toeee BR 2K o S e SR 2K F X
(n-2k+2)x, + (k=2)x__, . = (q-1)/gP.
y
Then v Ki is a symmetric stable set.
i=1
y
Proof: Internal stability: Take any x,y € U Ki and assume x dom y
(=1
. 1 *
via Sx|{n-k+l,...,n}y. Let s =5 n{l,...,n-k+l} ,
2 3
Sx = Sx n {n-k+2,...,n-2}x and Sx = Sx n {n-k+2,...,n-1}x.
Case (i) x € Ky We first note that [Sil < k-3. 1In fact, if
|Sl| > k-1, then ] x, > 1/q. Suppose ISl| =k-2 and S is effective
o ieSx i
for x. Then we get the contradiction
n
izl x, = (a-kel)x) + (k=2)x o = M(20-D)x, + (28=1)x . .,
S l(2£-l)xl + 2£xn-k+2 <1
where equality holds only if Roiken 0.
Therefore, if y € Kl u K2, then we get the contradiction
1= (n-k+l)xl + (k-2)xn_k+2 > (n-k+l)yl +(k-2)yn_k+2 =1l. For yeKyuK,

x dém y since Rookns < Tuayes®

Case (ii) x ¢ K2: We must have ]Sil < k-2 since X

Moreover if ISil = k-2, then ISil should be less than or equal to

> 1/qtk=1).

1. In fect, 1if [Sil =2 and S is effective, then
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2%

x; = (n=ktl)x) + (k=3)x _, - + 2x = 0(22-1)x) + (22-2)x .o+ 2% .

+2 n-1

" e

i=l

:_E(?E—l)xl + 22.xn 1.

k42 =

Therefore, for y € K, we get the contradiction 1 = (n-k+l)xl

i

52 (n-k+l)yl + (k-2)y

* A 20% n-k+2

< i For.. ¥ & K2,

if Isil = k-2, then we get x_ and thus the same contradiction

is deduced. If ISiI

-k+2  Yn-k+2

< k-2, then clearly we get X k+2 > yn-k+2‘

For y e K3 v Ku, x dgm y.
case (iii) x € K: |s]
_— < X

. 1 3 - 1
Moreover if |Sx| = k-1, then ISXI = 0 and if |Sx| = k-2, then

must be less than or equal to k-1.

= 1. Therefore we get the contradiction 1l/q = (k-l)xl-rxn > (k-l)yl

+
«
v

>1/q or (g-1)/q = (n-2k+2)x1 + (k-2)xn > (n-2k+2)yl+ (k-2)y

-k+2

- r 7 X
(g-1)/q for vy e Ky UK. For ye K UK,

n-k+2

x dém y since

X, < Valk-1) <y, .

X

Case (iv) x € K, Sx must have (n-l)x or n  among its members

and furthermore {1,...,k-1, n-l}x is not effective. Hence we get &

the contradiction for y € K, v Ku‘ For y € K, v K x dém y.

3 1 2
n=-2

Ko Let' ne-s= Z X,

n c £

External stability: Take any x € A - ¥
: a i i
i=1 i=1

- (n-k+l)xn_k - (k-S)xn and define y by

+1 -2

/7

¢ for i = l,... n=kel

X
n-k+1l 8

y. = 4 X -2 + € fon 1

n-k+2,...,0=2

e
[

X. + € for

= n=-1,n.
1 :
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Case (i) ¥, > 1/q(k-1): (i-I) € > 0: First we consider the case

(n-k+l)yl + (k-2)yn_k+2 < l. Define y' by

yi for i

((k-3)yn_k+2 + 2yn_l)/(k-2) for i

l,...4on-k+l

y D-k+2, LR ,n-l

0 for i = n.

Then y'e Kl .and y'domx via {l,...,k-3,n-k+2,n-k+3,n-k+u}y'l{n-k+1,...,n} 7

Here the effectiveness of {1,...,k-3, n-k+2, n-k+3, n-k+u}y, follows
from yi > 1/q(k-1). In fact, if we assume that this is not effective,

then we get the contradiction

n
[ - ' " ' = -, (] W ]
izl y; = (n-keldyd + (k=2)y! o = (22 Lyl + (20-L)yt .,
- - ! - =
> 20y) + (2-1)((22-2)y] + 3y! o) > 1/8 + (2-1)/2 = 1.
Furthermore yé_k+2 > Yp_yep Since (n-k+l)y1 + (k-2)yn-k+2 < 1. +Thus

L = y! =
o R B Tl ™ T B N L

(] = ' = ' .
Fiekez = Tnkad - Tnekoed © Tnakes * Fpeo 2 Fpiy 2%,

Now assume (n-k+1)yl + (k-2)yn_k+2 > 1. Define y' by

Y. for 1 = lj... n=K%l

1
¥ 3 (1-(n-k+l)y,)/(k-2)  for i

n-k+2,...4n=-2

n-1l,n.

(l-(n-k+l)yl)/2(k-2) for i

and y' dom x via {1,...,k-2, n-k+2, n-l}y,l{n-k-rl,...,n}x.

X
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-

The effectiveness of {1,...,k-2, n-k+2, n-l}y, is shown as foIlows: —_

Assume otherwise, then

= 5 o ' { = - ! - ' !
(n-k+l)y] + (k=3)y! \ .o+ 2y! | = &(20-1)y; + (22-2)y} , -+ 2y]

"n e~
<

i

- ! ! = 3 .
2{(22 l)yi + yn-k+2 + yn-l} + (2 2)(y%_k+2 yn_l) > 1.

2 : ; :
Now we will show Yn-k+2 :-yn-l and yn—l Z_yn. First, assume

' - - -
Yo ket Ta-1? then (n k+l)yl + (k 2)yn-l > 1. Thus we get the contra

diction

y, = (o-keldy, + (k=3)y__, .o+ Yoy t ¥y 2 (n-kelly, + (k-2)y , > 1.

ne~—3

i=1

Second, assume yé-l < Vg then (n-k+l)yl + 2(k-2)yn > 1. Together

with yn-k+2 3-yn-l + yn, we have the contradiction

"ne-—3
<
P
"

(n-k+1)yl + (k-3)yn_k+2 L IR

|v

3 = (n-k+l)yl + (k-2)(yn_l + yn)

v

(n-k+l)yl + 2(k-2)yn > L.

>

! = = \ = ' |
Therefore y1 % =+ " ¥k2 " ngwd > *pked 2°°* 2 %20 Ynkw2 2 V01 > %pad

and yé_l 3,yn > X -

(i-II) € = 0: In this case Yy T % for i =1,...,n. We first.assume

(n-k+l)yl + (k-2)yn_k+2 < 1, then we must have e 0. Define y' by

¥s + e Tons 1

"
[
-
.
=
'
—

[
"
=}

» M (n=1)e' for i

-1
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where €' > 0 is sufficiently small so that (n-k+1)yi + (k-2)yr'x_k+2 <1

and yé > 0.

When (n-k+l)yl + (k-2)yn_k+2 > 1 holds, we must have ¥ st Y

Defi ' by
N\\\- S
f
yi + ¢! for i=1,...,n-k+l
yi = < > Pl e'! for i = n-k+2,...,n-2
y; ¢ e't'’ for i =pn-1,n
\
where €', €'', €''' > 0 are sufficiently small so that y' ¢ [A] and

(n-k+l)yi + (k-'z)yx')‘_k_"2 Sl

1f (n-—k+l)yl + (k—2)yn_k+2 = 1, then N 0 since

y=xf{ Kl v K2. Define y' by
%
vy + €' for = LV aaan=l |
b
yn-(n-l)e' for i=n

where ¢' > 0 is sufficiently small so that yé > 0.

Using these y', we can take some y'' € Kl v K, which dominates

2
%x in a manner similar to Case (i-I).
Case (ii) Yy < 1/q(k-1): (ii-I)

€ > 0: Let us first assume

(n-2k+2)y1 + (k-2)yn_k+2 < (g-1)/q. Define y' by
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¥i for 1 =1,...,n-k+l
yi = (q-l-q(n-2k+2)yl)/q(k-2) for i = n-k+2,...,n-1 A s
(l-q(k-l)yl)/q Aﬂ—_—___fgg,_lﬂ;»n.'
g s L

SRS

Then y'eK and y' dom x via {l,...,k-3,n—k+2,n-k+3,n-k+u}yJ{n-k+l,...,n}x.

The effectiveuness of {1,...,k-3, n-k+2, n-k+3, n-k+u}y, follows from
s ! - ' = - i
(n 2k+2)yl + (k 2)yh—k+2 (g-1)/q. In fact, if we suppose

(k-3)yi + 3yl‘]_k+2 > 1/q, then we get

(n-2k+2)yi + (k-2)y!

= 2
P (22 -3£)yi + (22-1)y!

n-k+2

2 (2-1)((22-8)y; + 3y, | o) > (&-1)/q = (gq-1)/q.

: o < - :
Now obviously yi S eie Yk-a TR > xn-k+l > e 3_xn_3. Finally,
we obtain
' s ! St = = s - -
Yook+2 = Yn-k+3 = Ypoken - (Q-1-a(n-2k+2)y,)/q(k-2)

(1/(x=-2))((q-1)/q = (n=2k+2)y;) =y, o

Next assume (n-2k+2)yl + (k-2)yn_k+2 > (g-1)/q. Define y' by

y for 1= lyesssn=k+l

i

yi = (q-l-q(n—2k+2)yl)/q(k-2) for i = n~k+2,...,n-2

e
]

(q+k-3—q(k2-5k+n+u)yl)/2q(k-2) for

= n-1l, n.
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vigen it is easy to show that y' € Kl+ and {1,...,k-2, n-k+2, n-l}y,
: : ' 3 = = y!
is effective for y'. Obviously yl e yk-2 > xn—k+l > ... 3.xn_2.

Hence if Ypek+2 2 Yp-y a4 ¥y, 2y, then y' dom x via

n

{1,...,k-2, n-k+2, n-l}y,|{n-k+l,...,n}x. Suppose y;-k+2 < Yo_q0 then

(k—l)yl L ((n-2k+2)yl + (k-3)yn_k+2 + yn_l)

| A

1 - ((n-2k+2)y, + (k-2)y__,) < 1-(q-1)/q = 1/q

which implies that (l-q(k-l)yl)/q e N Therefore the y' defined

at the beginning of Case (ii) dominates x via {l,---,k'l,n}y'|{n-k+l,...,n}x_

Now suppose y;_l i then we obtain (a). 2(622-52)yl + 2£(£-1)yn > 32-2.
2

From (n-2k+2)yl +(k-2)yn_k+2 > (g-1)/q, we get (b). 2(22 -32)yl

+ L(zl-l)yn_k+2 > %-1. Add (a) x 2(2-1) to (b) to obtain the contradiction

y; = £(2£-1)yl £ 2(2-l)yn_k+2 + 2yn -l

"e—9

i=1

(ii-II) € = 0: Here we have ¥ =% fop i = 1.0 We

first assume (n-2k+2)yl - (k-2)y < (gq-1)/q. Then A 0 since

n-k+2
¥y < 1/q(k-1). Define y' by

Y ¥ &' 7o IR S (FERRTE .\

"
=)

e {n=1)e' for i

where ¢ > 0 is sufficiently small so that yi < 1/q(k-1), yé >0

and (n-2k+2)yi + (k-2)y!']_k+2 < 1/q.




Second, assume (n-2k+2)yl + (k—2)yn_k+2 > (q-1)/q. 1If

£3 1
Ypoo > Yooy then define y' by

l,...,n-k+l,n-1,n

n-k+2,...,n=2

where €', €'' > 0 and (k-3)e'' = (n-k+3)e' and €', €'' are

sufficiently small so that yi < 1/q(k-1), y;_z > y;_l and

2N

(n-2k+2)yi + (k-2)yr']_k+2 > (q-1)/q. If  ATNESS. S then iy S

since (n-2k+2)yl + (k-2)yn_k+2 > (q-1)/q. Define y' by

Y3 + ¢! for i =1,...,n=k+l,n
T |
¥y - el for i = pn-kt2,...,n-2,n=1
where €', €'' > 0 and (k-2)e'' = (n-k+2)e' and €', e'' are

sufficiently small so that y; < 1/q(k-1), y' , >y  and

(n-2k+2)y; + (k=-2)y] , .. > (a-1)/q.

Finally, let us assume (n-2k+2)yl + (k-2)yn_k+2 = (g-1)/q. Then

we must have P ™ Fous = N since y ¢ K3 UK. Define y' by

Vi, gt for i # n-1

TP (n=1)et for 4 = n-1

e T AT
» R

R s : 2 ST T
. S T e, r
. o s
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where €' > 0 is sufficiently so that yi < 1/q(k-1) and yx'a-l > yI;.
By using these y', the proof is similar to that in (ii-I), D

The next theorem will give us a symmetric stable set for (l2;6)h.

Theorem 6.7: Define

K =<{x ¢ I'Mlxl Toeee T X, >1/8 2 %= %g ® X102 %), T X, o>,

K2=<{xerA'I|l/83_x Foeee TRy 21/93 Xg TRy TR, > X, > X

11 S ¥ypo

(o]

[

o
|

3xl + 3x8 = 1/2D,

Ky =<tx € TAT]1/9 > x) = .0 = %, > 1/10 > x5 = x5 = %, = X), 2 %), = OB
K, =<{x € [A1]1/9 2% % e B X, > 1/10 > %o = g = Xig 2 ¥q 2 %,

Tx, + 4x_ = 1; u4x. + x +x12_>_l/2>,

= r B = = = : =
K5 ix ¢ A'IIl/lOixl X, > Xg = Xg X0 =Xy q 2% 0 2xl+|+x8 172>,

u

K, ={x ¢ I'A'lll/lo_>_xl e =Xy

1/2; ux, + %, + %, ,.> 12D ]

2xl + 4x8 = 1 8 19
K, ={x € MA1]7/72 2K B o B 2Ry E R Rio 2 Rpy 2 Ryol ’
2x) 4 Umg = 1/2; Um) 4 %g + X, = 172>
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and <

Kg =<{x € TAY7/72 > x, = ... = x, >x_ =x, > % =xll=x12;2xl+ux8=l/2}>. 2

1 7 =8 9 — 710
8
Then v Ki is a symmetric stable set for (12;6)h.
i=1
8
Proof: Internal stability: Take any =X,y € U Ki and assume x dom y
i=1

via sxl{7,e,9,1o,11,12}y.

Case (i) x € K,: S_ must include {8,9,10} since x, > 1/8
———— x b4 X 12 1l -

12
and X1, = X5 T 0. Hence we have the contradiction 121 X, > 121 yi
7 = =

for y € Kl. For ye u Ki’ x dém y since x
i=2
X dém y since Xg < 1l/24 2 Jvo.

8 < 1l/2y < g For

y € K8,
Case (ii) x € K2: Since X ¥ 1/9, Sx cannot contain more than
!

four elements of 11,...,7}x. For y ¢ K clearly x dém y. For

l’

vy € K Sx must be of the form {u,5,6,7,ll,12}x, {H,5,6,7,10,l2}x,

2’
{u,5,6,7,10,ll}x or {4,5,6,7,9,10}x. We will consider the case where

Sx = {u,5,6,7,ll,l2}x. For other cases, the proof will proceed similarly

by using the condition 3xl + 3xg = 1/2 or bx, + X3t X, T dvde - ¥

Sx = {u,5,6,7,11,12}x, then we must have X, > ¥y Xy Yy, and
%10 > ¥yt Thus we get the contradiction
12
=7 =
izl X, X Sk 4% #x. 0= 3m 3 Uk, b, bR,
12
g s Rl A B (T S 121 Y3
TR i miisiras o BT
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since 3xl + 3x8 = 3yl + 3y8 =1/2, For y e l(3

Xg £3/18 < Yg- For y e Ku’ without loss of generality, we can

U Ks. x dédm y since

assume Sx = {'4,5,6,7,11,12}x since Xg < 1/18 f_ye. Hence we get

the contradiction

12
1 x

= 7x. + 3%, +x,. +x.. = (28% +l2x8+l&x + 4% .)/4
i=1

i 1 8 11 12 1 11 12

12
> (3(7y, + Hyg) + Ty, + by, + 4y ) /4 = ) Yy
i=1

The inequality follows from x % and

e LR T e T B T
7xl + uxs 21s= 7yl + uye. For y € l(6 u l%, without loss of generality,

we can assume Sx = {u,5,6,7,ll,l2}x. Thus we get the contradiction similar

to that above, since 7yl + uys = 2yl + uye + Sy:L <1< '7xl + l-txe.
Finally for y € Kgs % dém y since Xg < 1/18 < Yi0°
Case (iii) x ¢ Kg: S, cannot contain more than three elements of
{l,...,7}x. For y e Kl U K2, x dém y s:.fzce xli<_21/9 :yl. For
y € K3, we easily get the contradiction Z Xs > E ;- For
=1 =

yEKuUKSUKSUKW X d¢m y since 7yl+l&y8

and ¥g 2 3/40. Finally, assume y € K then Sx must be of the

8’
form {5,6,7,9,10,ll}x. However this Sx is effective only if

Xy B v = X, = 1/9 and Xg = Xq = X0 ° xll = 1/18. And thus

x d¢m y since Y10 2 1/18.

Case (iv) x ¢ Ku: Sx cannot contain more than four elements of

{l,...,7}x since x> 1/10. For vy ¢ K, vK,, x démy since

X 2 1/9 &Yy For y ¢ Kys % dém y since 7x:L + uxe = 7y‘.L + uye s 1.




For y e'Ku, without loss of generality, we can assume Sx = {14,5,6,7,11,12}x

or {u,5,6,7,10,12}x since Uux, + x, + x.,, > 1/2. Let us first assume

1 8 12
5. * {H,5,6,7,ll,12}x. Then X > ¥ %y, > Yy, and X190 > Vo0 Hence
12
izl X, = 7xl + 3x8 tx,* x12‘= (2lxl + 12x8 + 7xl + uxll + uxlz)/u
12
> (20y, + 12y, + Ty, + Hy,, + Uy, )/4 = izl ¥

since 7xl + uxe = 7y1 + Mye = CEETE Sx = {4,5,6,7,10,12}x, then

X, > yl and xl2 > yl2. Moreover from the effectiveness of Sx’

1

bx, + x_, + X

1 8 12

Hence we get the contradiction

= 1/2 and thus le + 2x8 + %), = /2 > 3yl + 2y8 + Yy

12
7%, + 3x_ + x + X

gl X 3 gt Xy * X, > (280 + 12 + Mx. # Ux,)/4

i 1 8 11 12

(l2xl + 8x8 + “xll + 7xl + uxs + 9xl + ule)/u

12
(l2yl + 8y8 * Uygs * 7yl e gyl + kyl2)/u - izl ys-

v

For y ¢ Kg, % dém y since Vg 2 3/40 > x For y € K6 v K7, we

g
can assume Sx = {‘4,5,6,7,11,12}x or {'4,5,6,7,10,12}x since

Vg 2 3/40. TFor either case, the contradiction is deduced similar to that

> 1/2.

in the case where y ¢ Ku, since 7yl + uya <1 and Hyl it Mg Vi 2

g First, we note that xll

> 1/18, then we get the contradiction

Finally, assume y € K < 1/18. In fact,

if we assume xll
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i 7x1 + 3x8 + X, + X, = (28xl + l2x8 + uxll + uxlz)/u

—
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Xg * Xpp) +5(xy) * ) 4 Mx)) - x ),

"
~~
~
~~
%
[
+

Xg * x12) + 9xll + 2x12)/4 oyl

since bux, + x, +x,, > 1/2 and 7%y + 4xg = 1. Together with the fact

that Y10 > 1/18, Sx must be of the form {5,6,7,8,9,10}x. However

this Sx is effective only when =1/9, x, =1/18 and x., + x,,. = 1/18.

o 8 1 Sl
Hence x dém y.
y
Case (v) x ¢ Kg: For ye v Ki’ obviously x dém y. For
i=1

y € KS’ we easily obtain the contradiction since 2xl +Ux =1/2= 2yl + uys.

8

For y e K_ v K7, Sx must be of the form {u,5,6,7,ll,l2}x. Hence

6
Xy > Yy and X102 Vs and thus
12
izl xi = 7xl + er + xl2 = le + xl2 + 2xl + l+x8
12
> 5y, * ¥, 2, ¢ e :_.Z v,
i=1
since 2xl + uxs =1/2 = 2yl + uye. Finally, for y ¢ K8, we obtain

X, >y and X0 ° Xiq 28,2 %" Y93 = ¥ip0 since Sx must contain

l2x. Therefore we get

L
igl X, = Tx, + Uxg + Xip = sxl Ryt Ry PR F R+ 2y
12
>0y Bygt Vyy *lpg VY t Ty 121 Y3




B el A

oy

2yl + uye. .

n
Case (vi) x € l<.6 [V K7: For y e i:1 Ki’

50 X dgm y since uxl + Xg + X5 >1/2, For y e K6 v K7,

S, must be of the form {u,5,6,7,10,l2}x since Ux, + Xg + X, > 1/2.

Thus we have Xy > Yy» Xg > 1 and X0 > Yi2° Hence

since 2xl + uxe =1/2

x dém y 1is evident.

For y € K

12

151 X, = T 43X+ X+ X, = (ux, + 6xg + 2%, + 2x,,)/2
= (6xl + uxs + 2xll R 2xg + 7xl + 2x12)/2
12
RO, 0, B T, P e izl Vi
since 3x; + 2xg + x,, = /2" ¥ 3y, + 2yg + Y11 and  x, +2x8=1/u=yl+2y8.
For y € Kg, we need to consider only the case where S_ = {5,6,7,9,10,11}x.
In this case, we obtain X =¥y and X1, > Yip = Yi; and thus
12
izl x:.L = 7x1 + 3x8 + xll + x12 = xl + 2x8 + uxl + x8 + x12 + 2xl + xll

>1/4 +1/2 + 1/4 =1

since 2x, + X7 > 2yl $i¥y, * 1/4.

pe
6
Case (vii) x € Kgt For ye v Ki’ clearly x dém y. Assume
i=1

y € Koy then without loss of generality, we can assume Sx = {u,5,6,7,11,12}x.
Hence Xy > ¥s %X %Y, and X190 > ¥yp0 and thus we get the

contradiction 1/4 = 2x, + X,, > 2y, +¥,,
= 1/2., Finally, for y € K

= 1/4 since y; ¢ 2ye = 1/4

and 4y, + vy, evidently x dém y

* Y0

8!
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since 2x, + ux_ = 1/2 = 2yl + uys and thus 2x. + x.. = 1/4 = 2yl * Y0

g 8 1 10
8
External stability: Pick any x € A - U Ki'
i=1
12
Case (i) x, > 1/8: Let 10¢ = izl X; = (7%, +3x ) and define y
by -
X, + € for i1 =1, ol
¥ = < xlo + ¢ for 1i=18,9,10
0 for i = 11,12.
\
Then trivially vy € Kl' If €©'=70, then“'x'='y‘e Kl' If € > 0, then
y dom x via {5,6,7,8,9,10}y|{7,8,9,10,ll,l2}x since y, > 1/8.
10
Case (ii) 1/8 > x, > 1/9: Let ¢ = izl x, = (7%, +3x, ).
(ii-I) € > 0: Define y by
(
X, * €' for' 4 = AL 007
X0 gt for i = 8,9,10,
: g i < I - for i =11
11
iv Ty
X1, + € for i = 12
N
where
R gt pERt elV >0, 7€'+ 3"+ '+ Elv = ¢ and yl T y7 il/e'
b % Syl + 3y8 < 1/2, then define y' by
S - TR P I I S 5 N T P

N N e L L ]
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1
(
yi for 12 1.7
' §/3 for i = 8,9,10
y; = ¢
¥ §! for i =11
¥ = ! for i =12
.

where &', 6'' > 0, &' + §'t = § = uyl iy ¥ Yo 1/2 > 0 and
¥}, 2 ¥, Then clearly y' e K, and y' dom x via
{5,5,7,8,9,1o}y,|{7,a,9,1o,11,12}x since W4y; +y), *+yi, = 1/2. If

3yl + 3y8 > 1/2, then define y' by

(
yi for A= 1 0001
y) = < y; - 8/3  for i =8,9,10
yi + 8/2 for & =11,12
\
where 6 = Syl + 3y8 - 1/2 > 0. Here yio :_yil is shown as follows. i

Assume otherwise. Then Syi + 3y:'Ll > 3yi + Syé = 1/2. Hence yi + yil > 1/6

and thus

(e |
<
e =
n

Wy e L Wty

= v! ' ' 1 1 =
A TR 3yl + 3yg ¢ 3y1 S 0/6 % 172« 178 = 1.

It is easily shown that y' € K2 and y' dom x via

{u,s,s,7,11,12}y,|{7,a,9,1o,11,12}x since 3y; + 3yg = 1/2. If
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Byl + 3y8 =1/2, then y € K2 and y dom x via

{5,6,7,8,9,10}y|{7,8,9,10,11,12}x.

8
(1i=T1) e = 0: . Since_x ¢ uVK.5 3x g+ 3% #1/2, If
— PeR Sl e
3xl + 3x8 > 1/2, then define y by
r
X, + e'/9 fortadesi] Serec T
= =et i =
Y X9~ € /3 for i = 8,9,10
x; + e'/9 for 4 =11 .12
\

' $ = o .
where 0 < ¢' < min(1l/8 X)5 3xl+3x8 1/2). Here ylo > yll is shown

as before. If ayl + 3y8 < 1/2, then define y by

x, + e'/10 For Ui =sais i o1 0
= - ' =
Yy X, "¢ Tor 1 =Rl
< bty Geli
X1p ~ € for 1 = 12

where 0 < e¢' < min(1/8-x., 4x. +X i-xlz- 1/2), et e'' 5:07 and

1y i bl

gYY 4 gttt . = ot

Using these y, the proof proceeds in a manner similar to that in (ii-I).

Case (iii) 1/9 >:x, > 1/10: Ler ¢ =

7/

I o~10

xi - (7xl-+2xg).

i=1
(iii=I) &€ > 0 ‘Defines § “by
X, + ¢! For 1 & Loyt
x. + "' for i = 8,9
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e 2=

x10 + € for 1 10
e iv ik

y; * < X1 + € for i =11
v it

L xl2 + € for i =12

iv v iv v
Wware et e, g2, e L, e 20, T2 YV g 2 e 2 e S and

- 1/9.

152 7yl * g, X 1, then define y' by

¥ for 1= 1,...,7
' o= e AU P
v} (295 + yyo * ¥yq * Y1)/ for 1=8,9,10,1 H
0 for i = 12.

Then y' € K, and y' dom x via {6,7,8,9,10,ll}y‘|{7,8,9,10,ll,12}x.
In fact, {6,7,8,9,10,ll}y| is effective since yi > 1/10.  Moreover

Y om gt = gt &gl LS =
YU M m o 2 Gyt g Yy P Y

Yo t (Y30 *¥11 *¥32 - 2y8)/“> ¥ since 7y, +Uyg < 1. Thus we assume

7yl + uys P TRERE + 4 7yl + uylo < 1, then define y' by

1 4
Y for: iaveil e ea il
i
: < (1-7y,)/4 for i = 8,9,10
y =
i3 yl/2 fop. 21, = Al
:
‘ (l-9yl)/u for i = 12.
Then y' is easily shown to be in Ku. Furthermore, y' dom x via .

{5,6,7,8,9,11}y,|{7,8,9,10,11,12}x. In fact, {5,6,7,8,9,11}, is
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> effective since 3yi + 2yE'3 + yil = 1/2. Clearly 5 " yé = y,'7 = y7 > X ->-x8 1"9'

' =2 y! = - i : 3

¥ * ¥ (1 7yl)/'+ > g™ B2 X,y Since 7y;L + '4le < 1. Finally
M = > > i

Y11 yl/2 Vg > %y, is shown as follows. Assume Y12 > yl/2. Then

we get the contradiction

12
7 1 |
izl Bl T R TR IV R T SR ST |

since 7yl + uya > 1. Thus we assume 7yl # uylo > L. 2f 7yl + uyll > Ly

then y ¢ K, and y dom x via { 6,7,8,9,10,ll}y|{7,8,9.10,11,12}x since

3
¥ 2 E/20. IE 7yl + uyll < 1l, then define y' by

7

yi for e e T |

ylg. = { le - 8/4 for i = 8,9,10 f

| - y; +38/8 for 1 = 11,12 ’
: \\

where § = 7yl + uylo -1>0. If uyJ" + yio + yi2 >1/2, then ¥y e K,

B —

and y' dom x via {u,5,6,7,ll,l2}y, |{7,8,9,lo,ll,l2}x. The effectiveness
of {u,5,6,7,ll,l2}y, is shown as follows. If we assume uyl' +yh+y1'_23 1/2,
then we get the contradiction 5 = 3+2 < 2ly1" + l2yé + le'l + uyil

f = 1 ' ' ' ' $ ' '
+ uylz u(7yl + 3y8 *y,t ylz) + le <5 since 7y1 + uys =1 and

Uy | ' = '
yi < 1/9. Obviously Yy * Y5 * Vg y; > Ry 2 Xg 2 Rg 2 X0 Y1 > %y

' '
and Vi > %Xyp0 If Uy + V10 * Y ¢ 1/2, then define y'' by

ryi for i = l’c'o,lo
vi' =4 yi/2 for i =11
1 (1-9y1)/u for i = 12,
l \
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Then y'' e K and y'' domx via {4,5,6,7,10,12} . 117,8,9,10,11,12} .
y

In fact, {4,5,6,7,10,12}y,, is effective since by ' + Yié o Yié . d

(7yi * dyl + 1)/4 = 1/2. Clearly g gl i gl Yo' > Xy 2 Xg > Xg > X

8 9 10

1 3 [ ]
and Yio 2 Y13 > X1 Finally Y12 > Foiol @ x12 follows from

ML e S e S N2 e e

(iii-II) ¢

Q- TF 7x1 + uxs < 1, then define y by

r

x; + ¢'/18 for' AL =Tl o9 | 4
S0 =
1 ﬁ xlo € for 1 10
i - Ty I =
X1 € for 1 ibik
X, = elv for 1 = 12
§ 12

iv i

where 0 <g' < min(l/9—xl, 1-(7x +4x8)), elty €''; ¢ >0 and

1

iv
E"+€"'+€ :e/2.

If 7x, + 4x, =1 and 7x, + 4x, . < 1 then define y by

p ¢ 8 pl 10
X, + ¢'/22 for 1 =2 Yy.uesdd
Xio = e'/2 for 1 =12
where 0 < g' < min(l/g-xl, l-(?xl-ruxlo), x12)' If 7xl + uxs = 1 and
7xl + uxlo = 1, then uxl + Xg + x12 < 1l/2, X1 > X, >0 and
7x1 + “xll < 1l. Define y by

[-xi + ¢ £o0 12 lyveuyd?
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: #, = Tetlu for i = 8,9,10
il X, " lle'/4 fop' 1 =" 11
%15 + ¢! for i = 12
] $ = - ! -
where 0 < 4g' < min(1/9 X1 X X110 ¥ X150 1/.2 (uxl+x8+xl2)).
If 7xl + uxs > 1 and 7xl + leo < 1, then define y by
x; + e'/10 for 1 = 1. 00,7
¥ X; = e'/2 for i = 8,9 :
X; + ¢'/10 for d=10,1) .19
' ] i~ - - -
where 0 < 2¢' < min(1/9 X1 7xl+'+x8 Ls ol (7xl+!+xlo), Xg xlo).
“ If 7xl + “xe > 1 and 7xl + uxlo = 1, then define y by
3.'
; x; + e'/10 fop L= L. T
= - ! i =
v Xg = € /2 for i = 8,9
X, + ¢'/10 for i = 10,11,12
L 3 - - -
where 0 < 2¢' < min(1/9 X)s Xg=X, 09 i (7xl+uxll)).
iF 7x1 + uxs >1 and 7x1 + “"10 > 1, then define
' x; + €'/11 for i # 10
¥g *
X0 = e! for i =10




(iv-I) ¢

[} $ 49 - -
where 0 < u4e' < min(l/9 X1s X g7%pps 7xl-+uxlo 1)
8
Using these y' we can prove x € Dom wu Ki similarly to that in
i=1
(iii-I).
9
Case (iv) =x, < 1/10: Let ¢ = izl x; = (7x) +2x4).
Define y by
X, t e' Fon S st T
Xq +gl) for i = 8,9
y; = < xlo + et for i = 10
iv s
X1, + € foxr 3 =14
v 5
x12 + ¢ for i = 12
.
where ef, e'!; ety elv, ev 0, delE 2eW E glitiay eiv
and ¥ * - t¥T 1/10.
If 2yl + 4y8 < 1/2, then define y' by
Yi Eov 1 = Lgovy il
yi = (l-uyl)/B for i = 8,9,10,11
(1-10yl)/2 for 1= 19,

Then y' ¢ K5

The effectiveness of {6,7,8,9,10,ll}y, is trivial since

and y' dom x via {6,7,8,9,10,ll}y,|{7,8,9,10,ll,12}x.

2yi + uyé

=1/2. If 2y, + 4y, > 1/2 and 2y, + 4y.. < 1/2, then define y'
1 8 — i | 10

by

[+,

for k= Lyviey?

> 0:
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(l-uyl)/B for i = 8,9,10
L =10 g =
i < (2 loyl)/8 for i=11
(3-28y,)/8 for i = 12.
\\
Then y' e K. u K, and y' dom x via {5,6,7,8,9,ll}y'|{7,8,9,10,ll,l2}x.

The effectiveness of {5,6,7,8,9,ll}y, is obvious. yé = yé = y; >x7 > Xg 2 Xg

and ¥q * yi o> %

3 > X are easily shown. Finally, if we assume yil

10 =" 11

then we get the contradiction

< Yl2 2

122
Y.
i=1 *

Ty gtV gtV P 2T T ¥,

Gyl + 3y12 +3, * 2y8 = 3(16yl + 8y12>/8 + (2yl + 4y8)/2 = 1.

Thus we must have yil-l X.,. Now assume 2yl + uylo_l 1/2 and

1
YT e
2yl + uyll < 12, | LE v, > 7/72, then define y' by

f
yi Lo ad =16 .o
(l-uyl)/e for i = 8,9,10
¥5 *
= Y11 Y for i =1
1e : =
Y12 + 38 for i = 12
\
where &', §'' >0 and §' +§'' =y, +yo + Y, - (3-12y1)/8. If

“Yi + Yé + Yi2~l 1/2, then y' ¢ K. and y' dom x via

6
{u,5,6,7,ll,l2}y,|{7,8,9,10,ll,12}x. The effectiveness of {u,5,6,7,11,12}y,

s t ] ]
is shown as follows. Assume uyl + 11 + Y1, > 1/2, then
32

y: = 7y! + 3y, +y!. +yl syl +y! +yl.+3y! +3y! 51
i=1 i 1 8 11 12 1 11 12 1 8
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sinc= 3yi + 3yé 3.2yi + uyé =1/2. 1If uyi + vé + yi2 < 1l/2, then

define y'' by

.
yi for 1 =817
(1-4y')/8 for i = 8,9,10
e |
(2-16yi)/8 for i =11
L (3-28y])/8  for 1 = 12.

Then y'' e Ks and y'' dom x via {u’5a6,7910!l2}y1'|{7’8’9’10’ll’12}x'

1 L]
Here yié > Y190 follows from the fact that uyi ¥ B, S 1/2
= uyi' + yé' + yié. If ¥ < 7/72, then define the following two imputations
y,I and y,II:
f
Y for -1 =0,
” < (1-4y,)/8 for i = 8,9,10
Y™
q (2-16y,)/8  for i =11
(3-28y.)/8 for i = 12.
1
\
7
3 for {®1,...,7
y'iI = 4 (1-“yl)/8 for i = 8,9
(2-16y1)/8 for i = 10,11,12.
\
Then y'I € K7 and y'II € Ke and y'I dom x via
(4,5,6,7,10,12} 'I|{1,8,9,10,ll,12}x or y'II dom x via
y

{4,5,6,7,11,12) ,11117,8,9,10,11,12} . In fact, if neither of these holds,
y
then we must have 28y1 + 6y12 >3 and lsyl + Byll 2> 2. Hence we get

the contradiction




105

LoYET T g vyt vy vy T (28 sy kvl ok y) )/
= 3 + 4 4>

(2yl ® My, ® 2y, ¥ By a 2y, + by0 * 8y, * hy  * 4y, yl2)/ *>1
where equality holds only if y ¢ K7 and in this case, x is dominated

by y itself via {u,s,s,7,1o,12}y|{7,9,9,10,11,12}x. If

2yl + uyll > 1/2, then define y' by

yi For| [3ERE S T
v} = (1-4y,)/8  for i = 8,9,10,11
(l—lOyl)/2 for i = 12.

Then y' ¢ K5 and y' dom x via {3,&,5,6,7,12}y,|{7,8,9,10,ll,12}x.
1 3 L]

Here Y1z > y12 is shown as follows. Assume y12 i'y12’ then we

i obtain

i 12

| L TL T W Y P Y 2ty 2y ) 2

where equality holds only if Vg = ¥g =¥y © Y11 and 2yl + uyll = 172,

In this case y ¢ K5 and y dom x.

(iv-II) € = 0: If 2x, + Ux, < 1/2, then define y by

1 8

x; + e'/11 for 1 =2 1,...,11
7 T

R =gt for 1 = 12

12

> 0 and

where ¢' is sufficiently small so that ¥, < 1/10, V10 2

2y, + byg < 1/2.
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To show x € Dom K use this y and proceed as in (iv-I). Assume

5!
2xl + Rxe = 1/2 and 2xl + Hxlo < 1/2. If X0 < 1/18, then
y = (1/9,...,1/9, 1/18, 1/18, 1/18, 1/18, 0) dom x via
——— b
7
{5,6,7,8,9,10}y|{7,8,9,10,11,12}x and y e K,. Thus we assume x o > 1/18.
8
Since x ¢ i:l Ki’ we must have xlo > X5 Now define y by
x, + €'/11 o) 3 S e S (P s
y; = :
i e’ £ e
X1 € for i =12
where ¢e' is sufficiently small so that v, < 1/10, Vg 2 0,
2y1 + uylo < 1/2 and Gyl + 3x12 < 3/4. Then by using this vy,
y € Dom(l(6 1] K7) is shown as in (iv-I). Assume 82xl+l«m8= 2x1+uxlo=l/2.
Here we note that 2xl + “xll < 1/2 since x ¢ v Ki’ First, assume
i=1
X > 7/72. Then we must have Uux, + X5 + x,, < 1/2. Define y by
r .
Xs + ¢ for 1 =2 lgsiies?
x; - €'/2 for i = 8,9,10
¥y = <
- ' =
X 13e'/2 for i =11
L X192 + ¢! for i =12

where ¢' is sufficiently small so that y, S 1/10, y,; 2 Y90

2y, * By < 1/2 and Uy, + ¥g * ¥y, < 1/2. Then x e Dom K. is

deduced as in (iv-II). Next, we assume X, < 7/72. Then we must

have uxl *xg %, 1/2. Define y by

Xy + 3¢'/7 for 1i=1,...,7
y =
= Xg for i = 8,9

e e,
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- et i =
L(xlo~+xll-rx12)/3 € for' 1 510,317,112
where €' 1is sufficiently small so that ¥y = 7/72 ard
(xlo-+xll-+xl2)/3 > ) Then vy ¢ K8 and y dom x via
{4,5,6,7,11,12%A(7,8,9,10,11,12}x. Finally we suppose 2x, + bxg > 1/2.
If Xg > %y then define y by
X. + €'/10 for i # 8,9
y, = 3
: X; - e'/2 for i = 8,9

where €' is sufficiently small so that Y1 < 1730, Yg > Y10 and

2yl % 4y8 > 12, If % =% .5 %

8 10 1’ then define y by

X, * e'/9 for 1 # 8,9,10

Xg = €'/3 for i = 8,9,10

where €' is sufficiently small so that ¥i-5 1/10, and

Vg 7 V11
then define y by

2yl + “ya > 1/2. If Xg = X35 T X195

X, + €'/8 for i # 8,9,10,11

X; - e'/u for i = 8,9,10,11

where €' is sufficiently small so that ¥ S 1/10, Vg > Y190 and
8

2yl + uye > 1/2. By using such y we obtain x € Dom u Ki in a
i=1

manner similar to (iv-I). 0

As a result of Theorems 6.6 and 6.7, symmetric stable sets for

all (n;k)h games with k < 6 have been obtained. The author also
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found symmetric stable sets for (14;7)h, (16;8)h and (18;9)h games
which are extensions of these two theorems but these are not described
in this work. So games marked by " o§n Figure 6.1 have also been
solved.

6.3. The Uniqueness of Kh

Hart's second open question will be answered by the following.

Theorem 6.8: Kh defined in Theorem 6.1 is the unique symmetric stable
set for (n;k)h games with q > 2 if and only if (a). r =0 and

n > (q+l)(k-1) + 1 or (b). r >1 and n > (q+tl)(k-1).

Proof: Sufficiency: We first note that we can assume k > 4 since if

k < 3, then the condition in Theorem 6.2 is always satisfied. The

proof will proceed from the following sequence of claims.

Claim 1: Define a = (k-2)(n-k-1)/(k-1)(n-2k+2) and

b = (q+l-k)/q(k-1)(n-2k+2). Then (a). a >0, (b). a<1l if qtl >k

and (¢). b >0 if and only if q+l > k.

Proof of Claim 1: (a) and (c) are obvious. (b) is shown by a straight-

forward calculation, i.e.,

a-1 = (k-2)(n-k+1)/(k-1)(n-2k+2) - 1
< (k%-k=(q+1)(k-1))/(k-1)(n-2k+2)
= (k-(q+l))/(n-2k+2). a

Remark: If n = (q+l)(k-1) then (b) becomes "a < 1 if and only

if q+l > k."
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Case (i) n > (q+tl)(k-1) + 1: Let u = (q-1)/q(n-2k+2) and

m-1
+ ..

6. * a™ + (a .+1)b for m=0,1,2,... . For convenience,

let ¢, = u. Then we come to the following claims.

Claim 2: 1/gk < u < 1/(n-k+l).

Proof of Claim 2: 1/gk - u = 1/qk-(q-1)/q(n-2k+2) < (2-q)/qk(n=-2k+2) < 0.

u - 1/(n-k+l) < -1/q(n-2k+2)(n-k+l) < O. 0

Claim 3: n is monotone decreasing.

Proof of Claim 3: CnCm-1 = ""‘3‘-{(3.1)l_1+b}_<_am'l(-}<+2)/q()<-:l.)(n-2k~f-2)'2 <0.
0
Claim 4: = 1/qk - ni=l 0
lim Cn
mo < 1/qk if r > 1.
; Proof of Claim 4: First assume r = 0. Then q > k+1 and thus
0 < a < l. Therefore
i

lim e = 1im (2% + (4™ +

o .ss + 1)b} = 1/qk.
Mmoo mee

Now let r > 1. If a <1, then
lim Cy = b/(1-a) = (q+l-k)/(gk(q+l-k) +qr) < 1l/qk.
mrc

If a>1, then

dme =u+ ((a=1)u+b) 1im (4™ & ... + 1) = -
Mmoo Mmoo

—




T TR y -
A A TR e e

110 1
since (a-l)u + b < 0, as shown in the proof of Claim 3. ]
Now define
". -
} Ay =<{x ¢ l'A'llxl > 1/qk D
1
‘ AO,m =<{x e er”xl 2 cm}> for m = 0,1,2,... v 4

and

We are now ready to state and prove the next claim which plays a crucial

part of the proof.

Claim S: Let K be any symmetric stable set. For any m(= 0,1,2,...),

if % € AO,m n K then xl 2 e = xn-k+lixn-k+2 Rt xn.

Proof of Claim 5: This proof will proceed by induction on m. Assume

m =0 and take any x € Ao’o n K. Suppose X ke > %y and define

y by

X k4l + e for i=1,...,n-k+l

yig 1
xn * € for i = n-k+2,...,n
n
where ne = L. Rk e (k-l)xn. Then y dom x via
i=n-k+2

(l,...,k-l,n}yl{n-k+1,...,n}x. The effectiveness of {l,...,k-l,n}y is

shown as follows. Assume (k-l)/y1 st 1/q. If q+l > k, then
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ne~— 3

= x 2
i Vi = (n—k+1)yl + (k-l)yn = (k-l)((k-l)yl + yn) + ((n-k+1)-(k-1) )yl

(k-l)((k-l)yl-ryn) + (k(q+l-k)-+r)yl Sl

If q+l1 < k, then

nes~mo

¥ = (n-k+l)yl + (k-l)yn = q((k-l)yl~+yn) + (n-k+l-q(k-l))yl

i=1
+ (k-q-l)yn St
since n-k+l-q(k-1) > 1. Clearly Yp % eee T Vi1l > Rl 2 0 2%
and ¥y > % Since x ¢ K, there must exist some 2z ¢ K such that

z dom y via Szl{n-k+l,...,n}y. This 2z satisfies B % o Aol

> and U gadi? Vg B Hence if

*Fookel T My T - LR

{l,...,k-l,n-k+2}z is effective, then we get z dom x via
s ask=1i, n-k+2}z|{n-k+1,...,n}x which contradicts the fact that
z,x ¢ K. Suppose (k-l)zl Y2 o2 1/q. Then

n

z; _>__(n--k+l)zl + z = (k-l)zl + 2z 2 * (n-2k+2)zl

n-k+2 n-k+

i=1

> 1/q + (n-2k+2) + (q-1)/q(n-2k+2) = 1.

Therefore we have shown that the claim is true for m = 0.
Suppose the claim to be true for m = k and take any
X e ((Ao,k+1"Ao,k) n K). Here if Ao,k+l - Ao,k = @, then no proof

is required. So we assume A £ 0. Assume x

0,k+1 ~ %o,k n-k+2 > %

o




and define y by

p xn-k+l + € for i ® 1l,...;0=kt}
Yi
X, + € for i = n-k+2,...,n
n
where ne = ) %, = (k-1)x . Then y dom x via
i=n-k+2 2

{l,...,k—l,n}yl{n—-kﬂ,...,n}x as shown above. Thus there must exist

some 2z € K such that z domy. If 2z ¢ Ao X n K, then by the
t]
induction hypothesis we must have 2 ke2 T vt T %, and thus 2z dém y.
- LA 3 1
Assume z ¢ (Ao,k+1 Ao,k) n K. Then 2, < ¢ . Now define z' by
c for i =1,...,n-k+l

k
(l-(n-k+l)ck)/(k-l) for i

gt =

n

n-k+2,...,0n.

Then 2z' € K since there is no imputation in K which dominates 3z'
by the induction hypothesis. If z < z;, then 2' dom z via

{ 1,...,k-l,n}z,|{n-k+1,...,n}z which is contrary to the fact that
2', z € K. Assume z, :.zé. Then we have 2z dom x via

(l,...,k-l,n-k+2}z|{n-k+l,...,n}x.

is proved in the following way. Assume (k-l)z1 tz > 1/q. Then

-k+2

n
) z; > (n-ktl)z, + 2z

+ (k~2)z
i=1 2 n

-k+

= (k-l)zl + 2 + (n-2k+2)zl + (k-2)zn

n-k+2

> 1/q + (n-2k+2)(azi +Db) + (k-2)(1-(n-k+1)zi)/(k-2)

= 1/q + zi(a(n-2k+2) - (k-2)(n-k+1)/(k-1) + b(n-2k+2)

+ (k-2)/(k-1) = 1/q + (q+1-k)/q(k=1) + (k-2)/(k-1) = 1.

The effectiveness of {l,...,k-l.n-k+2}z
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. Evidently z > %

Bl e B > EHleis .
1 el T e S0 LR AR
Thus we obtain the contradiction, since x,z € K. Therefore we
obtain B pin ®iaaim X a
For r = 0, this claim, together with Claims 3 and 4, shows
the uniqueness of Kh. For r > 1, we n'ed to prove one more claim

in order to establish the uniqueness.

Claim 6: For any symmetric stable set K, Al n K= 4.

Proof of Claim 6: Pick any x ¢ Al and define y by

1/qk for i=1,...,n-k+l
(k-(r+l))/qk(k-1) for i = n-k+2,...,n.

Then y ¢ K and y dom x via {l,...,k}yl{n-k+l,...,n}x. a

Case (ii) r > 1 and n = (q+l)(k-1): Let u' = (q-1)/q(n-2k+3)

m m=-1
. o5

and cé =au' + (a . +1)b for m=0,1,2,... . For convenience,

let c6 = u'. Then we have the following claims which are analogous to

Claims 2,3 and 4 in Case (i).
Claim 2': 1l/gk < u' < 1/(n-k+l).

Proof of Claim 2': 1/gk-u' = (2-q)/qk(n-2k+3) < 0. u' - 1/(n-k+l)

= -1/(n-k+1)(n-2k+3) < 0. o
Claim 3': c& is monotone decreasing.

Proof of Claim 3': cp - ¢t , = a™t((a-1)u'+b) =

am.l((k-(q+1))(q-l)/q(n-2k+2)(n-2k+3) + (q+l-k)/q(k-1)(n-2k+2)) = a"

-1

(q+1-k)/q(k-1)(n-2k+2)(n-2k+3) < 0, since n = (q+tl)(k-1) and r > 1. [
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Claim 4': 1lim cé = -, .
mo
Proof of Claim 4': From the remark in the proof of Claim 1, we have .
a > 1. Hence the proof is exactly the same as in Claim 4. 0
Now define Ao and Al as in Case (i). Define additional sets
AL (m 20,1,2,.:.F by

0O,m

' = ' -
AS m ixe rA°1|xl_1 cm£> for- m =.0,1,2,...

An analogue of Claim 5 is given by the next claim.

Claim 5': Let K be any symmetric stable set. For any m = 0,1,2,...,

i ! = = = =
X Re AO,m n K then X, Sale Xok+l > Xnoke2 Yste X
Proof of Claim 5': We will proceed by induction. Assume m = 0 and
! i i = =
take any x € AO,O n K. We will first show that Ry B oan e K s 2R s
N T Xy 2K Suppose Rked ® i and define y by
(
x) + e for i =1,...,n-k+l
y; = < xn-l + e for i = n-k+2,...,n-1
x, te for i =n
\
n-1
where ne = D% - (k=2)x .+ Then y dom x via
i=n-k+2 s

{1,...,k-l,n}yl{n-k+l,...,n}x. The effectiveness of {1,...,k-l,n}y
is shown as follows. Assume (k-l)yl + % > 1l/q. Then we get the

contradiction -

n
izl yy = (akelly, + (k-2)y, o + ¥, 2 (n-k#l)y, + (k-l)y_

- Q((k-l)y1 + yn) + (n-k+1-q(k-1))y1 + (k-l-q)yn >1

T




since n-k+l-q(k-1) = 0 and

exist some

k > q+t

z ¢ K such that
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1. Since x € K, there must

z dom x via Sz|{n-k+l,...,n}y. Two cases

(a).

S
z

zl T e e zk-l > yl >

2g >y, > X . Hence 2z dom x via SZI{n-k+l,...,n}x

must be considered. {l,...,k—l,i}z where n-k+2 < i < n.

X and

In this case, we have &

*n-k+l 2 070 2 ¥poy

which contradicts

the fact that x,z ¢ K. (b). Sz {l,...,k-j,i(l),...,i(j)}z where

2 <j<k-1 and n-k+2 < i(1) < ... < i(j) < n. 1In this case, we have

5T R B T B R T 2780 2 Thar P Raa
and zn_k+3 > zi(2) > yn > xn. Moreover {l,...,k-2,n-k+2,n-k+3}z is
effective . In fact, if we suppose (k-2)zl * Bhio T % kg > 1795
then we get the contradiction

n n

.z z, = (n-k+l)zl - ) z, 3_(n-k+l)zl R R e

i=1l i=n-k+2

= (n-2k+3)zl + (k--2)zl L P Z ke3> 1

since 2, > % > u' = (q-1)/q(n-2k+3). Therefore z dom x via

{1,...,k—2,n—k+2,n-k+3)z|{n-k+l,...,n}x which contradicts the fact that

X,2 ¢ K. Thus we have shown that i T xn-k+l 2 X pp See T xn—lz-xn'
Now, we will show that X -1 = X Suppose -1 > 8 and define
y by
Xy +e for i=1,...,n-k+l
b 3
- X, te€ for i = n-k+2,...,n
n
where ne = 2 X, = (k-1)x . Then y dom x via
i=n-k+2 n




> se0 2 X

{l,...,k-l,n}yl{n-k+l,...,n}x since y, = ... =Yy > K 002 oy

and Yo > Ry The effectiveness of {1,...,k-l,n}y was already shown
above. Thus there is some 2z ¢ K such that z dom y. As shown above
this 2z must satisfy Z) % ... S B kel X B b Sh Ll #

Now we will show that {l,...,k-l,n-k+2}z is effective. Suppose

z ST
n-1—"n

(k-l)zl + 2z g 2 1/q. Then we obtain

n-k+
n
121 z; = (n-k+l)z, + (k-2)z . + 2z > (n-ktl)z, + (k-2)z .
= q((k-l)zl-rzn_k+2) + (n-k+l—q(k—l))zl + (k-2-q)zn_k+2 > 1
since n = (q+l)(k-1) and k > q+l. Furthermore we have
B Y0 T Bad 2y ey - TR A TR A RS SRS =

dom x via {l,...,k—l,n—k+2}z|{n-k+l,...,n}x which contradicts the
fact x,z ¢ K. Thus we have shown that the claim is true for m = 0.
The rest of the proof proceeds along the same lines as in Claim 5. (0

The uniqueness of K in Case (ii) is obtained from Claims 3', 4',

5' and 6.
Necessity: This is clear from Theorem 6.1 and Remark (b) in Theorem
6.3. O

6.4 Semi-symmetric Stable Sets

We conclude this chapter by stating the following theorem which shows
that (n;k)h games always have semi-symmetric stable sets as defined

in Chapter IV. Before stating the theorem, we note that in this section

for x € A, the coordinates of x are not necessarily arranged into

nonincreasing order.
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Theorem 6.9: Let {Sl"'°’sq+l} be a partition of N satisfying
Is].|=k for j =1,...,q and Isqﬂl = r. Define
Kj = {x ¢ AI.Z x; = 1/q3 x; = 1/gk for all i N-Sj-Sq+l;
ieS,
]
x; = @ for all 1 e Sq+l} for 5 = 1,.4.9.
q
Then u Kj is a stable set for (n;k)h games with n = gk +p.
3=1

Proof: We will omit this proof since it is similar to that of Theorem 4.4.

Remark: When q = 1, the above Kj turns out to be

W c.0

j=1

fueal x; =1; %, =0 for all ie¢N-S}.
ieSl

This is a well known "mein simple stable set".

C

PRS-

v




CHAPTER VII

SYMMETRIC SUBSOLUTIONS

In [(30], A. Roth introduced an interesting generalization of the
stable set, called a subsolution, and proved its existence for all games
with nonempty core. The aim of this chapter is to determine the minimal
nonempty symmetric subsolutions for symmetric games and to investigate how
they differ from stable sets. As a result, the coincidence of cores

with supercores will be shown when games are symmetric.

7.1 Preliminaries

We begin this chapter with a brief review of Roth's results.

Definition 7.1: A subset Ksub of A is said to be a subsolution if

it satisfies the following two conditions:

= y2 <
(a). K % U(Ksub) and (b Ks =U (Ksub) = U(U(Ks )).

sub ub ub

Recall that for B < A, U(B) = A-Dom B.

Theorem 7.1 (Roth): If the core is nonempty, then there always exists a

nonempty subsolution.

Theorem 7.2 (Roth): If the core is nonempty, then the intersection of all
nonempty subsolutions is nonempty and is itself a subsolution, which is

called the supercore.

It is not true, in general, that cores coincide with supercores.
See Example 5.3 (i.e., the ten person game with no stable set presented
by W. Lucas) in [30]. However when games are symmetric, their coincidence
will be proved in Section 7.5 of this chapter.
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7.2 3-Person and 4-Person Symmetric Games

f . As we did for stable sets, let us first study subsolutions for 3-person

and 4-person symmetric games. The symbol K will be used to

sub,m,s

denote a minimal nonempty symmetric subsolution.

7.2.1 3-Person Symmetric Games (3;2)

v(2) = 1:
AE =<(1/2, 1/2, o>
2/3 < %(2) < 1:
Ksub,m,s =<(v(2)/2, v(2)/2, 1-v(2))>.

v(2) = 2/3:
Ksub,m,s s € = (1/3, 1/3, 1/3).
w(2) < 2/3¢
Ksub,m,s .
These cases are shown in Figure 7.1.
7.2.2 (43;3) Games

v(3) = 1:

[
*
v
X
"

Kgub =<{x ¢ ('A1|xl =2y 2 % xu}>.

3/4 < v(3) < 1:

Ksuh =<(x ¢ l'A'lel TRy 2Ky T XD 1-v(3) >,

v(3) = 3/u:
Ksub,m,s =C = (1/4, 1/4, 1/4, 1l/u),
v(3) < 3/u:
e C.

Ksub,m,s




The author only conjectures that the above Y for wv(3) > 3/u

is a minimal symmetric nonempty subsolution. It has not yet been

proved. These are illustrated in Figure 7.2.

7.2.3 (432) Games
2/3 < v(2):

T =<(1/3, 1/3, 1/3, 0>

1/2 < v(2) < 2/3:

SR =(v(2)/2, v(2)/2, v(2)/2, 1-3v(2)/2)X
v(2) = 1/2:

Ksub,m,s =C = (1/4, 1/4, 1/4, 1/4).
w{2) < 1/2:

Ksub,m,s S5

Figure 7.3 illustrates these sets. As is easily seen from figures,

2 : . : oy G o
Ksub,m,s is obtained from Ks by removing its "bargaining curves.

ym
Now let us generalize the results obtained above. -

7.3. (n3;2) Games
As a generalization of the results obtained for (3;2) and (4;2),

we have the next theorem.

Theorem 7.3: Consider (n;2) games with empty core. Define

Kgup =<(v(2)/2,...,(2)/2, 1-(n=1)v(2)/2)>

o sy
i ...-"v—.‘. saspld




v(2) =1
JL
7
2 i 3
-§-<v(2)<l L
/

Figure 7.1 Symmetric subsolutions for (3;2)




v(3) =1 r

“

!
3
: ; 2 v(3) <1 .
m
“ k u
] 2 ;

3

Figure 7.2 Symmetric subsolutions for (4;3)
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2/3 < v(2)
I
2
; 3
* /2 < w(2) < 2/3 p
y
2

Figure 7.3 Symmetric subsolutions for (4;2)




Then Ks is a minimal nonempty symmetric subsolution.

ub

5 ! g
Proof: K., £ U(K ) 1is clear. Before proving K_, =U (K p) we

will consider the next claim.

Claim: UK ) =<{x e [Al|x__, > v(2)/2}> v K .

Proof of Claim: Take any x € U(Ksub) - Ksub and assume X 1< v(2)/2.

Then it is obvious that y = (v(2)/2,...,v(2)/2, 1-(n-1)v(2)/2) dom x

via {1,2}yl{n-l,n}x. Thus x € Dom(Ks ), which contradicts x € U(Ksub).

ub

The converse is trivial since for any x of the righthand set,

X

T > v(2)/2. O

. 2
Now we will show K_ ., U (Ksub)' Take any x € K_ ., then

v(2)/2 and w = 1-(n-1)v(2)/2. Hence x ¢ Dom(U(Ksub)) since

for any y ¢ U(Ksub)’ Yoy 2 v(2)/2 and thus Y. = 1-(n-1)v(2)/2
c 2
from the above claim. Therefore x ¢ Uz(Ksub)- Next, KS u.b"-a- u (KS ub)
s 2
is shown as follows. Take any x € U (Ksub)’ Then I v(2)/2

since U(Ksub) 2 Ksub' Assume x ¢ Ksub then (a). X 12 v(2)/2 or

(b). x = v(2)/2 and there is some i(0) (1<i(0)<n-2) with

n-1
xi(O) 7 xi(0)+l' For (a)s define y by

X; te for i # n-1
Yi ¥
v(2)/2 for i = n-1

where (n-1)¢ = x_, -v(2)/2. Then y dom x via {l,n}yl {1,n}.
The effectiveness of {l,n}y follows from v(2) > 2/n. For (b), define
y by

y, = X, + ¢ for i # i(0)
xi-(n-l)c for i = 1(0)
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where 0 < ¢ < (xi(o)-xi(o)+l)/n. Then y dom x via {J.,n}y [ {1,n} .

In either case we obtain x € Dom (U(Ks ub)) which contradicts

X € U:"(Ks u.b)' Finally, minimality is easily seen.

7.4 (n3n-1) Games

Theorem 7.4: Consider (njn-1) games with empty cores. Define

r = = - - i i
" : <ix ¢ A1|xl X, 2 > Wels iR 2 l-v(n-1)>> if n is even,
sub = 5 i .
<{x e l'A]lxl o T > X 9= Xy 2% = 1-v(n-)>

if n is odd.

Then Ks ik is a symmetric subsolution.

Proof: Let w = l-v(n-1) and define

A ={x ¢ r“l"ll"'i" > w> X

g 2 ._>_xn}> for j =0,k,...,n-1.

n-j+lz e

Then it is easily shown that {AO’Al""’An-l} is a partition of A

and K ., S A,. We will first prove the following claims which will be

useful in showing that Ks il is a subsolution.

Claim 1: Ksub n Dom(l(sub) = @ and thus Ksub s U(Ksub)'
Proof of Claim 1: This follows from Theorem 3.2. g

Claim 2: Ao = Ksub v Dom(l(sub).

Proof of Claim 2: We will show A0°K3ub < Dom(Ksub)‘ Take any

X € A -Ks

0 ub’

» "




Case (i) n is even: There is some odd i(0) such that

X1 (0) > X5 (0)41° Define y by

Y; = yi+l = xi+l + ¢ for i =1,3,...,n-1
n n/2
where ne = 121 X - 2 igl Xy Then y ¢ Ksub and y dom x via

{l,...,n-l}y|{2,...,n}x. Therefore x € Dom(Ksub)'

n (n-1)/2
Case (ii) n is odd: Let ne = ( ] x, = 2 X,.) + (x_~w)
————— o2 3 o2 21 n
i=1 i=1l

and define y by

¥ "N "M +e¢ for i=1,3,...,n-2, and

Then y e K, and ydom x via {l,...,n-l}y|{2,...,n}x. Therefore

x € Dom(K_ ). o
Claim 3: A _; S-Dom(Ksub)'

Proof of Claim 3: Take any x € An—l‘ Then X, 2w >% 2 ... > s,

Case (i) n is even: Define y by

(1-2w/(n=-2) for i=1,...,n=2
Y =
4 w for i = n-1,n.

Then y e K, and y dom x via {l....,n-l}yl(z,....n}x.
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Case (ii) n 1is odd: Define y by

[

. . (1-w)/(n-1) for o S L

w for i =n. !

Then y ¢ Ksub and y dom x via {l,...,n-l}y]{2,...,n}x. In either
E
case, we obtain x ¢ Dom(Ksub)' d0
Claim 4: Take any Aj (j =1,...,n-2) and any x of Aj'
(a)- n is even: x ¢ D°m(Ksub) if and only if
(n-3)/2
i % Xy < (1-jw)/2 if j 1is even, and
i=1
(n-(j+1))/2 |
X, . < (1-(j+l)w)/2 if j§ is odd. |
: 21
i=1
(b). n is odd: x € Dom(K_ ,) if and only if ‘
S (n=(j+1))/2
Z X1 < (1-(j+l)w)/2 if j 1is even, and
i=1
(n-j)/2
X, < (1-jw)/2 if j 1is odd. '
2i
i=1

Proof of Claim 4: We first assume n to be even.

Sufficiency: Case (i) Jj is even: Define y by
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y; = > X1 +. e for iimed. 3.%5...A=T=1, “and
y; = w for i = n-j+l,...,n ‘
(n-%)/2
where (n-j)e = 1-(2 X1 + jw). Then y ¢ Ksub and y dom x

i=1
via {l,...,n-l}y|{2,...,n}x. Case (ii) j 1is odd: Define y by

yi = Yi+1 = xi+l + € for 15 1,3,...s0n~3-2, and
y; T w for "1 = n~d, . 0n {
(n-(j+1))/2
where (n-j-l)e =1 - (2 Z X3 + (j+1l)w). Then y ¢ Ksub and

i=1
ydom x via {1,...,0-1} |{2,....0} .
y X

Necessity: Case (i) j is even: Assume

(n-j)/2
% § 2 (1-jw)/2 and

X
je1 2

X € Dom(Ksub). Then there is some y € K such that y dom x via

sub

(n-%)/2 :
Sy|{2,...,n}x. Slnc: & Xps > (1-j@)/2 and y € K 4, <A, we obtain
the contradiction Z y. > 1. Case (ii) j 1is odd: Assume
(n-(j+1))/2 . e
Xpp 2 (1-(j+l)w)/2. Let y € K ub dominate x. Then we get
i=1 % s
n (n-(j+1))/2
the contradiction ] y, > 1 since X.. > (1-(j+1l)w)/2 and
o S e 21 =
i=1l i=1
y € Ao.
When n is odd, the proof is similar to that above. 0
From Claim 4, we obtain that for j = 1,...,n-2, D°mj(Ksub) =
Dom(Ksub) n Aj
(n=4)/2
<{xe [Aj]! Xy < (1-w)/2> if n and j are even or
2 i=1 n and j are odd
(n=-(3+1))/2 ;
<{x c[Aj]l ) Xpq < (1-(§+1)w)/2> if n is even, j is odd
i=1 2 or n is odd and j is

even




and Uj(Ksub) = Aj-Domj(Ksub).

n-1
Claim 5: If x € K ., then there isno y € u A, such that
_ sub 351 3

y dom x.

Proof of Claim 5: This is obvious since X, 2w for any x ¢ Ksub

n-1
and y_<w forany ye u A,. 0
n sei | A
2 X
= F
Now we are ready to show that Ksub U (Ksub)' First, we note
2 :
that K, S U (Kgp) follows from Claims 2 and 5. In order to show
the converse, take any x € U(Ksub)-Ksu.b' Then x ¢ Uj(Ksub) for
some j =1,...,n-1 since KSub E-Ao and A0 = Ksub(z_?gngsub)'
Assume that both n and j are even or odd. Then ) Xys > (1-jw)/2.
i=1 b
If there is some i(0) ¢ {1,3,...,n-j-1} with X100y 7 *1(0)+1° then

) which dominates x. Thus we assume

B0 (n-f')/Z

X = Xl for all i = 1,3,...,n-j-1. Then
i=1

since X; < for all i = n-j+l,...,n. Here the following two cases

we can take some y € Uj(Ks

Rps > (1-jw)/2

must be considered: (i) There is some i ¢ {2,4,...,n-j-2} with

X5 > Xi41) and (ii) xn-j > w. In either case we can pick some
y € U.(Ksub) which dominates x. When n is even and j is odd, or
J (n=(j+1))/2
n is odd and j is even, we must have L Xy
i=1
Thus in a manner somewhat similar to that above we can show that there is

i _>. (1°(j+l)(ﬂ)/2.

some Y € Uj(Ksub) which dominates x. Therefore we have shown
K
s

vk ) e

sub® - -

b’

7.5 Cores and Supercores

Theorem 7.5: Consider any symmetric game (n,v) with C # §. Then C

itself is a subsolution.
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Proof: To simplify the notation, we will assume that the coordinates
of any imputatiorn x are arranged into nondecreasing order, i.e.,
X % 2 ... Sx . Now let us begin the proof. Assume C is not a

subsolution, i.e., C'i U2(C). Take any X € Uz(C)-C. The following

two claims are easily verified.
Claim 1: If y dom x, then y e Dom(C).

Claim 2: There must exist some 1i(0) ¢ {1,...,n-1} with X:0) < Xi(0)+1°

Let t = max{i ¢ {1,...,n-l}|xi <x .} and classify cases as
)

follows.
t+l
Case (i) ) x; < v(t+l): In this case, we must have
i=1 n
Repy 2 eee 2R 2 (1-v(t+l))/(n-(t+l)) since ' 7 x; > 1-v(t+l).
i=t+2
Define y by
x; +ic for i # t+l
e (n-1)e for i = tsl
X, - (p-lde or i = t+
t+l
where 0 < € < min((xt+l-xt)/n, (v(t+l) - izl xi)/(t+l),
(xt+1 - (1-v(t+1))/(n-(t+1)))/(n-1)). Then
y éC and y dom x via {1,...,t,t+2} |(l,...,t,t+2}x. yéc is
t+l t+l y t+l
trivial since I Z X, + te - (n-1l)e < 2 X, < v(t+l). Now we
i=1 i=1 i=1

will show that y dom x via {l,...,t,t+2}y|(l,...,t,t+2}x. From the
definition of y, it is sufficient to show the effectiveness of

t
{l,...,t,t+2}y. Assume Z Ty > v(t+l). Then from the

i=1 t+2
definiticn of ¢, we obtain the contradiction

n

n t
2 Yi - Z yi + yt+2 + yt+l + Z yi > v(t+l) + l-v(t+l) = 1.

i=1 i=1 i=t+3
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Hence there must exist some 2z ¢ C such that z domy via
{l,...,s}zl{l,...,s}y. If s<t, then 2z domx via
{l,...,s}zl{l,...,s}x since y, > x, for all i =1,...,t. This

contradicts x € U2(C). If s > t+l, then

Z? Y§+l > % - (a=l)e > (l-V(t+l))/(n-t-lé+land thus we must
have J 2z, > l-v(t+l). On the other hand ) z, > v(t+l) since
i=t+2 ST
n
z € C. Therefore we obtain the contradiction | z, > 1
i=1
t+l
Case (ii) z X 2 v(t+l): Since x ¢ C, there must exist some
i=1 r
re {l,...,n~1} such that } x; < v(r).

i=1

s
(if=1) ] X, 2 v(s) for all s
i=1
P& (Byevestl. Define ¥y by

t+2,...,n: In this case,

X, + ¢ 5o ikt L e | S
i
= -t i = t+
Vs < X1 e for i = t+l
X. for 1 = £42,...4n
i

r
Y x.)/v). Then y ¢ C and
y dom x via {l,...,r}yl{l,...,r}x. Hence there is some 2z € C such

)/n, (v(r)

< < i -
where 0 < ¢ mm((xt+l X,

that z dom y via {1,...,u}z|{l,...,u}y. Here we note that u < t.

In fact, for any s > t,

s s t s
Y 9. )} v.or¥. ¢ ) ¥.tr ] X trtEex_C-tesd ] w
i=1 *  i=1 i i i=t+2 - i=1 * i i=t+2
1 ] )
2 X, + X, = x, > v(s).
fo1 % fetss * qap 1
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Therefore z dom x via {l,...,u}z|{l,...,u}x which contradicts 2
X € U2(C).

s
(it=220 ) X, < v(s) for some s = t+2,...,n: Take one of

i=1 n
these s and let it be s(0). Then ) X, > 1-v(s(0)) and
i=s(0)+1
thus el i (1-v(s(0))¥(n-s(0)) since s(0) > t+l.

Define y by

X, + e for 1 # t+l
Y:'=
i N
®edh " (n-1)e .for i = t+l
) s(0)
where 0 < e < m1n((xt+l~xt)/n, Cv(s(0)) - igl xi)/s(o),

(xt+l'-(l-V(S(O)))/(n-s(O)))/(n-l)). Then y # C and y dom x via

{1,...,t,t+2,...,s(0)+l}y|{l,...,t,t+2,...,s(0)+l}x. It suffices to

show the effectiveness of {l,...,t,t+2,...,s(0)+l)y. Suppose

t s(0)+1
) yi* z y; > v(s(0)), then we obtain the contradiction
i=1 i=t+2

n € s(0)+1 n

T T T e AR TR y

o0 g8 gegen b TR gag(fyee 2

> v(s(0)) + 1-v(s(0)) = 1.

Hence there is some 2z € C such that 2z dom y via {1,...,u}z|{l,...,u}y
for some u ¢ {2,...,n=1}. If u < t, then 2 dom x via

{l,...,u}zl{l,....u}x which contradicts x ¢ 02(C). If u 3> t+l, then

we 233? have Zeel > Voo > (l-v(s(o)))/(n-s(gzg) and thus
g z; >1-v(s(0)). On the other hand ! z; 2v(s(0)), since
i=s(0)+1 i=1
z ¢ C. Therefore we obtain the contradiction E z; >
i=1
Thus we have shown that C = Uz(c) which implies that C is a

subsolution. a




‘ CHAPTER VIII

UNSOLVED PROBLEMS

Finally, we will list the following unsolved problems which merit

further study and are closely related to this work.

1. (n3k) games.
(i) Existence of (symmetric) stable sets.
(ii) Determination of (symmetric) stable cets. Especially, it
is of interest from the viewpoint of application, to
determine symmetric stable sets for (n3;k) games (n=2k-1)

with one-point cores and for (n3k) games (n=2k) with

one-point cores. The former games, suggested by S. Hart, |
reflect a kind of majority voting rule, and the author

i conjectures that the study of the latter games will lead us

LA W =

to the determination of symmetric stable sets for all Hart

.

H games given in Chapter VI.

2. General symmetric games.
(i) Existence of (symmetric) stable sets when cores are nonempty.
(ii) Existence of (symmetric) stable sets when cores are empty.

In order to solve these existence problems for general symmetric

games, the determination of (symmetric) stable sets for (nj;k) games ?
might prove useful, as one approach. Another approach, which may be
promising, is to use the set theoretical concepts which were developed in I

Roth (30] in proving the existence of subsolutions.
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