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Collisional Relaxation of Non-Equilibrium Vibrational Energy Distributions

in a Thermal Unimolecular System.a Surface Collisions.

by D. F. Kelley, B. D. Barton, L. Zalotai® and B. S. Rabinovitch

4 Department of Chemistry, University of Washington, Seattle, WA 98195

There have been no measurements to date of the dynamics of collisional
relaxation of vibrational distributions characteristic of reacting polyatomic
molecules at high energies. Formal theoretical treatments have been given.]’2
The unknown desideratum has been the appropriate matrix of the collisional

transition probabilities, P. The same matter appears in the form of the mean

first passage time, T , of molecules with respect to an absorbing barrier

2 and widom4 have given expressions for T in terms

at energy, Eo‘ Kim
of P . For a thermal unimolecular system, the concept of an absorbing barrier
corresponds to the limiting low pressure behavior. For the trivial case of

a constant temperature, steady-state system, T = l/ko, where k0 is the Tow
pressure unimolecular rate constant. But T has not been measured for the
dynamical case of transients wherein some initial input distribution, not
necessarily Boltzmann, relaxes to a final distribution characteristic of the
bath temperature, whether by homogeneous or heterogeneous collision processes.
Based on a quasi-accommodation model for energy transfer,5 as well as experi-

mental results with bath molecuies of increasing comp'lexity,6

one anticipates
that the wall may be at least as efficient as any bath molecule.

A very simple technique for studying the dynamics of energy transfer at

a surface has been deve]oped.7 The apparatus consisted simply of a large,

degassed 5 &. fused quartz bulb, modified with several attached, heated

% v & <

"reactor" zones of varying dimensions (cylindrically symmetric) distributed

over the surface. The bulb was connected to a gas handling system and could
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also be heated to alter the input distribution. Entrance area to a reactor was

i i ,.“

restricted to ¥ 1/100 of the bulb area. Dimensions of the reactors used so far
provided mean wall collision numbers, m, of 2, 4.5, 10.5 and 22.3, per encounter.

For a given m , the distribution of wall collisions was found by Monte Carlo

7,8

? calculation. Molecules that returned to the bulb were cooled by collisions

4

[ before another encounter with the reactor. Any value of m from 1 to 10" is

readily attained; the technique is termed the Variable Encounter Method.

We have applied the method to the structural isomerization of 1,1-cyclo-
(E. = 63 kcal mole-1).

propane-d2 activated by collisions at a seasoned surface, This system is notably
free from complications. Brief pre-exposure of the oxidized silica wall to sub-
strate provided adequate seasoning and reproducible results. To performa run,

one reactor was heated to a desired temperature, the bulb (at 375 K) was pumped

6

to a stable residual pressure of < 10"~ torr, and substrate was admitted at a

; 4 torr and left for a suitable time. A flow mode was also

pressure of 1-2x10"
possible. Analysis was by gas chromatography; percent reaction varied from
1- 50%.

Figure 1 shows experimental temperature plots of the average reaction proba-
bility per collision, ﬁe » for the four-reactors. The data were compared to
stochastic calculations using two forms of P , gaussian and exponential. Several
models were computed in which the average downjump step size, <AE> , varied as
EX, x = 0, 1/2, 1. The gaussian form (with x = 0, 1/2) tentatively give the best

(cf. refs. 6 and 9).
fits, Some numerical values of <AE> for the case x = 0, are given in the figure
(use of x = 1/2,1 leads, of course, to larger values of <AE> at the level of
energy Eo). Once P has been selected, T follows 1mmed1ate1y.3’4
Figure 2a illustrates the variation of F; with m at constant temperature.

Figure 2b shows the sequential variation of Pc vs collision number, calculated
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from the flat gaussian model.

We find: a) For the temperatures covered, accommodation to a steady
state with the wall takes place in a small number of collisions ~ 8-15 (Fig. 2b),
the number increasing with temperature; this accounts for the findings made in

low pressure pyrolysis st;udies]0

that m values ¥ 80-100 provide temperature
accommodation; at lower temperatures, especially, wall efficiency approaches
strong collider behavior and T is quasi-independent of the input distribution
(bulb temperature). b) Wall collisions are more efficient than gas phase
collisions; the surface seasoned with a film of "polycyclopropane" is charac-
terized by down step sizes <AE> of 4,000 and 3,400 T, (x = 0), at 775 K and
975 K, respective]yglthese compare with the lesser values, ~ 3,500 and 1,900

cm'], measured pr‘evjous’Iy]2

for binary gas phase cyclopropane-d2 collisions;
c) The present data thus support the previous finding that energy transfer
collision efficiency declines at higher temperatures for this polyatomic uni-

molecular system. Dove and co-workers]3 have estimated an "incubation" period

of ~ 3,000 collisions for the shock-heated triatomic N20 system above 2000K.
Features such as surface structure, substrate structure and level of Eo

are subjects for future investigation by this technique.
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Figure Captions

1. Plots of experimental values of 5; vs T for each of the four reactors.
Solid curves are calculated fits for a gaussian model (x = 0) of the
energy transfer probabilities for each value of m, and include the
1imiting case, m = @ . The best-fit values of <AE> (cm-]) are given

at several temperatures.

2. A) INustrative plots of experimental values of 5& vs m at 823K, 973K

and 1123K. Solid curves are calculated for respective values of <AE>

1

of 3800, 3400 and 3050 cm '. The ordinate scales are arbitrary and are

normalized to’ﬁk =1 form = o , at each temperature.

B) Illustrative histograms of the calculated sequential probability
Pc(") vs n , the number of consecutive collisions, for the temperatures

and values of <AE> wused in A).
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