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The four-pole method co=on to electrical circuit analysis is
applied to analysis of sound transmission through layered media. This
method provides a characterization of the system by means of a 2 x 2

~~ matrix, called the four-pole matrix of the system. A general four-pole
~~~ matrix is derived for a single viscoelastic 1a~rer. A sound trans-

4 ~ 
C..~ mission system consisting of many layers is analyzed by specializing

J this matrix for each layer, and multiplying the resulting matrices,
giving an equivalent four-pole matrix for the system. Electrical

7 analogs are easily computed from the terms of the four-pole matrices.
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BRIEF DISCUSSION OF TI~ FOUR-POLE PABA~€TER METHOD
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The problem considered is the determination for a linear mechanical
&ystem represented in Figure 1 of the input force and velocity (F1, v1)
in terms of the output force and velocity (F2, v2), and quantities
that depend on the character of the system. If steady-state harmonic

• inputs and outputs only are considered, the relationships

F1 = a11 F2 + a12 V2

V1 = a~~ F2 + a 22 V2

I’are valid’1’, where the aij depend on the system under consideration.
The a lj are called the four-pole parameters of the system. Determin-.
ation of the aij is a relatively simple matter. It is merely assumed
that the input and output have representations* A ~~~ where A., ~are constants (A is the complex amplitude and u~ the angular frequency),
t is time, I is vcr. The equations for velocity and force are written
by Newton’s laws and constitutive relations of the system, and evaluated
at input and output terminals of the system, and the a ij are solved
for algebraically. A simple example of a spring - mass system is
presented to illustrate.

F1, 111, X1 K F2, V2, X 2

4 { M ~~~~~
Figure 2

For the system represented in figure 2., Newton’s second law yields:

F1 -F 2 = M ~~~ 
(1)

The constitutive relation for the spring is:

F2 = K(X1 - x2) (2)

* For an explanation of this representation, see reference (2) sect. 3-3.
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4 It is now assumed that the input and output forces and velocities
are sinusoidal with constant amplitude, i.e., Fj = Aj e~~

t, Vj = Bj C~~t,j = 1,2. Then from (1) and (2) :

F1 -F 2 = i~inV1

i~F2 = K(V1 - V 2)

Solving for -F1, V1

Fl = (1_ w
~~~~)F2 +j~~~V2 (

~
)

V1 ~~ F~ + V2 (Ii)

Using relations (3) and (lê), or their inverse:

= ($ij ) • ($ij ) = (aij)~~

any two of the four quantities may be computed if the other two are
• known . For example, if the system is driven as shown in figure 3, thenV2 ~ 0, F1 = A e~~~. Then from (3) and ( 1e) :

V2

X L L]  _
1 F1 = A e ~~~

t

Figure 3
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Ae1~ t 
= (1 - ~~~ Zfl

) ~~ ~ ~~ m J e~~t

V1 = -
~~~~~ F2 = j~- 

[

‘

i~~ 

~~~ 
e~~~

Referring to Figure Li., the force voltage ana1o~~* can be obtainedfrom the four-pole parameters by:

~Lz1 I  L 1 z 211_7
1z3 1 V2I ~~4

Figure ~i

the use of the impedance formulae:

z - ~~-i- i - l
~~~~~~ 

-
~~~~~~ 

(5)

~ 
_ a2~~~~1

2 21 (6)
z3 = a~ i (7)

The analogous quantities referred to Figure 1i. are given in Table 1.

*~~~ng ot1~ers reference (3) explains mechanical electrical anal ogies .

Ii.
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Mechanical. Electrical

Input force F1 Input voltage F1

Output force F2 Output voltage F2
Input velocity V1 Current V1
Output velocity V2 Current V2 

$

Table 1

For the above problem:

Zl =~~ k
m
,,

/
~~ ~~~ m

Z~~= O

~ =.~ - =3 iw 1wç~~,

If it is specified that V2 = 0, F1 = A ~~~~ the force-voltage
analogous circuit for the system shown in Figure 3 is as shown inFigure 5.

Ae~~~~~~~~~ 
J k

Fi~~re 5
For n systems connected in tandem, the kt~ system from the

• input terminal, being characteri zed by the four-pole matrix (aij) kl the
equivalent single four-pole matric (a i.j) for the ent ire system is~~

) :

aij • T (a ij) k (8)

5
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This situation is illustrated in Figure 6:
F 1 1 V 

_ _ _ _  _ _ _

Equivalent 
—_ 1(aii) i1—4_f~xii )z ~-“-j ~~~~~~~~~~~~~ 

+1

Systems F V F V

F n F 

n+ 1

j i 
= [n (aii)

k] ~ IFigure 6

4 It is noted that the order of multiplication of the four-pole
matrices In formula (8) is required to be the same as the order of

• connection of the subsystems, going from input to output.

DER IVATION OF T1~ FOUR-R)LE PARAMETERS FOR A
GENERAL VISCOELASTI C LAYER

Consider a layer of’ viscoelastic material acted upon by sound
pressure fields as shown in Figure 7, where

~L P l ~
v].

1

T’~
Figure 7

p represents pressure , and v represents velocity. Using a four -pole
technique similar to that explained in the previous section, we can
compute a four-p ole matrix ( a  ij) such that :

= (aij) 2
vi V2

6
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Furthermore, an electrical analog for the layer can be computed using
formulae (5), (6), and (7). Electrical analogs are commonly used inacoustical problems, and can be obtained by other means; see for
example reference ( 1+ ) .  The most importan t advantage of using a four-
pole technique accrues when a plate is composed of layers, which may
have different viscoelastic properties . The equivalent four-pole

‘ I  (and subsequently the electrical analog) for the entire composite is
obtained rather simply by application of’ formula (8) . The four-poleparameters are computed below for a “ typical” layer, and the four-polematrix for a specific layer is obtained by substituting the appropriateparame ters into thi s “ typical” matrix . It is emphasized that the
analysis that follows is only valid for plane waves of pure har monic
character propagating through linear viscoelas tic materials normal
to the plane of the layer .

The equation of’ motion (9) and the constitutive relation (10)under the assumptions above for the layer in Figure 7 are:

~~~~~~~ = 
- 

(9)

U = -M-~~~-’ (10)

where the term s are defined below:

X = the lagrangian coordina te normal to the plane of the plate

u = displacement in the X direction

M = a complex modulus*, M = 1? (1 + ii)
• ‘

~~~~= the appropriate elastic modulus of’ the system

i = V:i~
= a loss factor depending on the material, its temperature, and
the frequency of excitation ( 5)

*The concept of a complex modulus is explained in reference (5) . The• addition of an imaginary term to the modulus allows a representation
that includes internal damping effects for pure harmonic motion .

hilL — - ~~~~~~



.

NUSL Tech Memo
No. 2133-61i.8-69

c2 = , if M is real, c is the velocity of sound in the medium

p = mass density of material
H t = time

U = complex stress in the medium

For a layer whose lateral dimensions are large compared to its thick-
ness (5):

M B + G, where

B = complex bulk modulus

G = complex rigidi ty modulus

For (9) ,  we assume a solution:

u = U 0 c~~~~t + 1 ~~ (U)

Performing the appropriate differentiations on (II) ,  and substituting
these into (9)  results in k = , so that we set:

u U _ e~~~t+~~~) 
+ ~~~~~~ 

_
~~~~) (12)

Setting -

v =~~~- i~ e~~t 

[
~~ ei~~ + U~e~~~~~

] 
( 1 3)

and using (10)

U = -M~~L ~~~~~~~~~ [U e~~~ -U,~,. c (14)

Equations (13) and (lii.) are evaluated at the input and output sides
of the plate:

8
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= = = -M~~~ e~~t [u u
+J 

(15)

vi = i~e k~)t [u _ + u+] (16)

= 

~~ 
=~~Ma~~~~~~= -M~~~ e ~~ [U e  ~~~ -U~e ( 17)

vz =~~
t i

~e 1~ t [u e J~ L U÷e
_ 1

~~!] (18)

Equations (17) and (18) can be solved simultaneously for U e  and

U+e ]A~t , result ing in: -

U _ e~~~t =~~,~
_ e . i~ _

1[v2
_ .~_~~

2] (19)

U~ e i~t 
= e ~~~~~~ +

~~~~~
- 

~zII 
(20)

Substituting (19) and ( 20) into (15) and (16):

i M . ~~~31p1 = (cos-~- ) p 2 + ( — ~- s1n -~- - ) v 2 (21)

v1 (~~ sin ) p2 + (cog ~j~) V~ (22)

I
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Now:

~~~~

- =
~~~~~

=
~~~~

( - ) =
~~~ C2 

= P C R ~ ( 2 3)

Substituting (23) into (21) and (22) , and writing in vector form:

p1 = cos iR sin ~~ p2 (24)

-1 ~ 1
V

1 
; -~-~~- si.ii — cos —’- V

2

Eq uation (21i~) is a “ typical” four pole representation for the system
of Figure 7. It can be used for any layer in a composite system

• provided that M, 1, and p for the material of the layer are sub-
s tituted into the four- pole matrix. A typical electrically analogous
T- network is obtained below by using equations ( 5) ,  ( 6 ) ,  and ( 7) ,  and
is shown in Figure 8.

W ia, c o s — - I f W i• i l - i  C I 1-cos —= - = = i R i c
i a 21

- sin — sin —iR C cp

• Wi
= iR tanp 2e

a2 2 1  iZ _ = Z  = i R  tan~~ —2 a p ~c
21

I 
______  • W iZ — = • ~~1 -&R csc —a 21 sin —  p c

10
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iflPUt VClOCity output v
~~

ocity

Input pressure =~iR~ csc~~~ 
Output pressure

Figure 8

Cascaded plates are represented by cascading the individual T-networks as shown in Figure 9. An equivalent single T-network can becomputed by using Norton ’s and Thevinin ’ s theorems directly on theelec trical analog or perhaps more easily by using equation (8) toobtain an equival ent single four-pole matrix, and computing a T-
network from this using equations ( 5) ,  (b),  and ( 7) .

I I I

T~ T2 ‘SS TM

Figure 9

11
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- 
I INRJT AI~D OUTPUT NE IWORKS

The electrical analo~~r of Figure 9 is not complete until input
and output networks are specified. Figure 10 represents a composite
plate upon which is incident a sound pressure p

~
.

o 
Pi~~~ ~R

I

Figure 10

There is a reflected pressure p
~, and a transmitted pressure

Comparing Figures 10 and 7,

The medium on the input side of the plate has specific acoustic in-
pedance R1 = P1 C1 . The specific radiation impedance on both sides
of the plate is assumed equal to the specific acoustic impedance,
since the plate is of large lateral extent. The specific radiation
impedance on the output side of the plate is 

- (6) 14’R2 — P 2 C - .L
~~~
V
Tis the velocity associated with the transmitted wave (6~,

p2 = 
~
‘2 C2 V2 

= R2 V
2 

I -

Since R2 is real, the pressure-voltage analog of the output is as
shown in Figure 11.

• 
_____ _______

2 p1 2 p1 - R1 v1 p
~ 

2

Input Network Output Network
• Figure 11

12
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Similarly, denoting by V1 and 
~R the vo1o4~~es associated with the

incident and reflected waves, respective1y~ / -

p1 = R 1 v1
• pR~~~~Rl vR

Continuity at the input face of the plate requires that:

V
l

_ V
I

+ V
R

Hence: -

= p~+~~ = p1-R1 yR = p1-R1(v1-v1) = p1-R1 v1+R1 V
1 

= 2 p1-R1 v1
• The input voltage to the network of Figure 9 is then 2 p1 - R1 v1 .

This can be realized by the input network shown in Figure 11. The
if’ total network for the plate is shown in Figure 12-. The analogous

quantities of interest are listed in Table 2.

2p1~~~ I
Figure 12

• Acoustic Electrical

Input Velocity v1 Current through R1

Transmitted Pressure 
~t 

Voltage Drop BC - 
-

• Reflected Pressure Pt Voltage Drop AC minus ~source voltage current
through B2

Output Velocity V2 Current through R 2

Table 2 13
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APPLICPLTION OF Tk~ FOUR-POLE TECHNIQUE TO COMPUTE
SOUND TRANSMISSION

• Some Specific Examples

Case I - steel plate, thickness smaLl, compared to an acoustic wave-
length (~~ < .1):

M = ~~~=~~~+ 1~/3~~ (, ,  = 0 )

Since is small, we may use the approx imations

tan ~~~~ = , csc = 2...
2c 2c • c wi

Referring to Figure 8,

Z1 Z2 iR~~~~= ipc~~~~~jw 2.~
~~2c 2c Z

p1 is the mass per unit area of the plate, and is denoted m~
Then

Z Z iw~~~1 2 2

c -l p c 2 
- -i~ 1

• Z3-  -i.R~~~~~ - 

1
• iw (6~~)

- The electrical T-networ k orresponding to Fi~ are 8 is shown in Figure

H 

13 

= 

£ 
H

Figure 13
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If the plate thickness is on the order of 1 inch, 4 is on the orde r
of icr7, while m~ is on the orde r of 1. Hen ce we may disregard the
capacitor of Figure 13 and the analogous circuit corresponding toFigure 11 becomes that shown in Figure th .

R1 A M~ B
I _

2P ?

9
Figure 11~

Two important acoustic parameters for a plate are the transmissionloss (II), and reflection loss (RIb) . These are computed for thiscase:

2p1Th lO log —

= 10 log ((Ri 
+ R2) 2 

+ ~2 ~~2 )
p1 p1• RL = 10 log — = 10 log —

PR 2P1 R2 -p 1

= 10 log + R2)
2 

+ w2 ~~2

• 
\ ( R 2 _ R i) 2 + w 2 m~2

:- I f R 1 R2 R,

10 log 

(

~~+~~2 ~~~
2 )  

15
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/
BL = lO log ( 1 +  R

\ w~~mp
• wl

Case II - Viscoelastic Material, <.1

M = E + ~~~G = ’~i’(l + i’? )

• Using the same approximations as Case I,

Zl = Z 2 = 1w? -

• ~ 
- ipc~ = . ~!~ =~~ !+ 1

3 wl wi wl 1iw

1
In this case, ,~~~ may not be neglected , and the analogous T-network

is that of Figure lS:M M

Figure 15

Cases I and II can be couthined to yield an electrical analog for a
• steel plate ‘with a thin visco&LLastic damping coating on the incident

side . This circuit is shown in Figure 16 where the damping material.
constants are subscripted with d, and those of the steel plate with p.

• The acoustic impedance of both sides of the composite is assumed to
be B.

16 H
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2 P

xf

~~~~~~~

°

~~~~~~~~ ~~~~~Z
d ] R  p

Figure 16

CONCLUSION

Transmission of sound through layered media is easily analyzed
by the use of the four-pole method. The basic pole matrix ( the
matrix of equation (2i~)) is used for each layer of the composite
structure, by substituting the appropriate constants into aij.
Formula (8) is then used, to obtain an equivalent four-pole matrix
for the entire structure, and if an electrical analog Is desired,• equations (5), (6), and (7) are used to obtain the T-network that
appears in the analogous circuit of Figure II.

Application of this method should be useful for analysis of
sonar dome construction, baffle design, isolation mountings, and
other similar problems .

S. M. RUPIN SKI
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