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The four-pole method common to electrical circuit analysis is
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applied to analysis of sound transmission through layered media. This
method provides a characterization of the system by means of a 2 x 2
matrix, called the four-pole matrix of the system. A general four-pole
matrix is derived for a single viscoelastic layer.
mission system consisting of many layers is analyzed by specializing
this matrix for each layer, and multiplying the resulting matrices,
giving an equivalent four-pole matrix for the system. Electrical
analogs are easily computed from the terms of the four-pole matrices.

A sound trans-
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BRIEF DISCUSSION OF THE FOUR-POLE PARAMETER METHOD
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The problem considered is the determination for a linear mechanical
system represented in Figure 1 of the input force and velocity (Fl, Vl)
in terms of the output force and velocity (Fp, Vo), and quantities
that depend on the character of the system. If steady-state harmonic
inputs and outputs only are considered, the relationships
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Fp= ®)y Fo* @y Vo

Vi =ap Fp+ @y Vp

are valid(l), where the aij depend on the system under consideration.
The aij are called the four-pole parameters of the system. Determin-
ation of the aij is a relatively simple matter. It is merely assumed
that the input and output have representations* A ei“! yhere A. , W
are constants (A is the complex amplitude and w the angular frequency),
t is time, i is V=I. The equations for velocity and force are written
by Newton's laws and constitutive relations of the system, and evaluated
at input and output terminals of the system, and the aij are solved

for algebraically. A simple example of a spring - mass system is
presented to illustrate.

Fi, Vi, X3 X Fp, Vo, Xp

Figure 2

For the system represented in figure 2., Newton's second law yields:

o s N (1)
Fl-Fz-ME—

t

The constitutive relation for the spring is:

F, = K(X; - Xy) (2)

¥ For an explanation of this representation, see reference (2) sect. 3-3.
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It is now assumed that the input and output forces and velocities
are sinusoidal with constant amplitude,

i.e., Fy = Ay et vy - B ite,
J =1,2. Then from (1) and (2):

Fl - F2 = i‘lmvl

imFa = K(Vl - V2)

Solving for~Fl, Vy o

. w® m
Fl--(l-—-K ) Fp + ium V,
= iw

Gttty

Using relations (3) and (4), or their inverse:

Fa% 3F1t %
=(Bij) » (BiJ ) = (aiy)
;va Vi

any two of the four quantities may be computed if the other two are

known. For example, if the system is driven as shown in figure 3, then
Vo =0, F; =A e™. Then from (3) and (4):

s By Vo

+

=

Y.
o iwt
1 Fl Ae

Figure 3

(3)
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Referring to Figure L, the force voltage analogy* can be obtained
from the four-pole parameters by:

r 2 Z2 “I
v z v,
1 2

e 3 F,

Figure L
the use of the impedance formulae:
7. = 11 -1

_x22 -1
by =3I (6)

: 37 a2 (7

The analogous quantities referred to Figure 4 are given in Table 1.

*Among others reference (3) explains mechanical electrical analogies.

1° 21 (5) .
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Mechanical Electrical
Input force Py Input voltage Py
Output force Fo Output voltage Fo
Input velocity Vy Current Vy
Output velocity Vo Current Vo
Table 1

For the above problem:

If it is specified that V2 -0, Ty =i ei"t, the force-voltage

analogous circuit for the system shown in Figure 3 is as shown in
Figure 5. Dy

—~—> V
iwt 2

o T

Figure 5

L N

For n systems connected in tandem, the kth system from the
input terminal being characterized by the four-pole matrix (@ij)y, the

equivalent single four-pole matric (a1j) for the entire system is
m

aty = JT (@),

lw),

(8)
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i This situation is illustrated in Figure 6:
A
" Fyp ¥ R
(i), = i), o] i) 5 [ —(ai) -3+ n+
Equivalent n
Systems
LR Far1' Vsl

! 6~ aij =0 o

F n F
1 e n+l
2 | I (aij)
v ! kv
1 k=1 n+l

Figure 6

It is noted that the order of multiplication of the four-pole
matrices in formula (8) is required to be the same as the order of
connection of the subsystems, going from input to output.

DERIVATION OF THE FOUR-POLE PARAMETERS FOR A
GENERAL VISCOELASTIC LAYER

Consider a layer of viscoelastic material acted upon by sound
pressure fields as shown in Figure 7, where

& 1l

=+ 3 e

p2! V'2
Figure 7

p represents pressure, and v represents velocity. Using a four-pole
technique similar to that explained in the previous section, we can
compute a four-pole matrix (aij) such that:

p p
Vl V2
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Furthermore, an electrical analog for the layer can be computed using
formilae (5), (6), and (7). Electrical analogs are commonly used in
acoustical problems, and can be obtained by other means; see for
example reference (4). The most important advantage of using a four-
pole technique accrues when a plate is composed of layers, which may
have different viscoelastic properties. The equivalent four-pole

(and subsequently the electrical analog) for the entire composite is
obtained rather simply by application of formula (8). The four-pole
parameters are computed below for a "typical" layer, and the four-pole
matrix for a specific layer is obtained by substituting the appropriate
parameters into this "typical"” matrix. It is emphasized that the
analysis that follows is only valid for plane waves of pure harmonic
character propagating through linear viscoelastic materials normal

to the plane of the layer.

The equation of motion (9) and the constitutive relation (10)
under the assumptions above for the layer in Figure 7 are:

2 e
c“‘;’} - ‘ (9)
«
¢ = -ME% (10)

where the terms are defined below:

X

the lagrangian coordinate normal to the plane of the plate

u

displacement in the X direction

M = a complex modulus*, M =M (L + in)

1?= the appropriate elastic modulus of the system
i= VI

N = a loss factor depending on the material, its temperature, and
the frequency of excitation (5)

*The concept of a complex modulus is explained in reference (5). The
addition of an imaginary term to the modulus allows a representation
that includes internal damping effects for pure harmonic motion.
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e % s if M is real, c is the velocity of sound in the medium

(e}
R
]

P = mass density of material
t = time
¢ = complex stress in the medium

For a layer whose lateral dimensions are large compared to its thick-
ness (5):

M= B+ % G,- where
B = complex bulk modulus
G = complex rigidity modulus

For (9), we assume a solution:

u=1U c 1@t + kx) ; (11)
Performing the appropriate differentiations on (11), and substituting

these into (9) results in k = 4 g » So that we set:

o U_ei“(t*%) + Ugelelt - ) (12)
Setting
vl o et [U_ei“é—" + U+e-i‘:x] : (13)
and using (10)
¢ = M e it [U_ei‘:—x U, ¢ -l‘-‘c’i‘] (14)

Equations (13) and (14) are evaluated at the input and output sides
of the plate: /




R

- A R

NUSL Tech Memo
No. 2133-648-69

) _ =M au » iw it
“HER* ax wi=M < [U U"']
=0
-au = ot
v} =3t = iwe [U_+ U+]
x=0
i = au iw _ iwt iwl -iwl
Gz‘pz‘ "‘Max 'M e [U U+ C]
=1
_au 1wt iwl
Y2 "t iwe [U e u,
=1

-
Equations (17) and (18) can be solved simultaneously for U_e

U,e s » resulting in:
ot _ 1 siwl <
ve Tt e ["z'M Pz]

iwt _ 1 iwl c
U+e ——_Zm e—c'—[vz +ﬁ' Pz]

Substituting (19) and (20) into (15) and (16):
- tcorshy 5, + (Buinsd o,

i ; 1 1
v =(~-11\—<:i sin g-c- ) P, + (cos ‘-"c—) vy

iwt

and

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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Now:
M _oM_ M, % L
C—pc—%(p)_éc -pC—Rp

Substituting (23) into (21) and (22), and writing in vector form:

Py = cos%—l- 1R sm—
5 -1 owl 5 wl
1 T iR c b

P

Equation (24) is a "typical" four pole representation for the system
of Figure 7. It can be used for any layer in a composite system
provided that M, 1, and p for the material of the layer are sub-
stituted into the four-pole matrix. A typical electrically analogous
T-network is obtained below by using equations (5), (6), and (7), and
is shown in Figure 8.

o can S . 3 sl
Z = ll-l= c - iR l-cosc—)

1

f
7
-
=}

; a1 =L sxng-l— i si wl
1R C ™ c
= iR_ tan -ﬁl
P 2
e - _ wl
Z2 = = = Z1 =i R tan ; 73
21
Lin = - -_'%"iR 1 = -iR wl
3 -3;1 i s'm-(-:— i o e

10

(23)

(24)

o g e o




NUSL Tech Memo
No. 2133-648-69
£

7

e W Output pressure
Z3 =~iR, c50125 put p

5

, S wl -
‘1 Z) = iRp tan o Zo = 1iRp tan

13

—— ——
irput velocity output velocity

Input pressure

Figure 8

Cascaded plates are represented by cascading the individual T-
networks as shown in Figure 9. An equivalent single T-network can be
computed by using Norton's and Thevinin's theorems directly on the
electrical analog or perhaps more easily by using equation (8) to
obtain an equivalent single four-pole matrix, and computing a T-
network from this using equations (5), (6), and (7).

—h—— pm I”:—"W‘—I—J\Nv—l

P — —

-3
n
ey
e
=]
=
——-‘.—-—_

Figure 9
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INPUT AND CUTPUT NETWORKS
The electrical analogy of Figure 9 is not complete until input

and output networks are specified. Figure 10 represents a composite
plate upon which is incident a sound pressure P1-

PI% _PR
5

L

Pp
Figure 10

There is a reflected pressure Pps and a transmitted pressure Pp -
Comparing Figures 10 and 7,

1 Sl el -

p2=PT
The medium on the input side of the plate has specific acoustic im-
pedance Ry = @ C; . The specific radiation impedance on both sides
of the plate 1s assumed equal to the specific acoustic impedance,

since the plate is of large lateral extent. The specific radiation
impedance on the output side of the plate is (6)
R2 ? . If 'V'T

is the velocity associated with the transmitted wave (6
Pp =Py Cy vy =Ry v

Since Ry is real, the pressure-voltage analog of the output is as
shown in Figure 11.

Ry
VV VW
—> e
2P o b Pp Ry
Input Network Output Network

Figure 11

12
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Similarly, denoting by vy and vy the vcloc%g}es associated with the
incident and reflected waves, respectively 5

Pr=R v
Pr

Continuity at the input face of the plate requires that:

-Ry Vg

Hence:
Py = Py+PR = Pr-Ry Vg = pp-Ry(vy-vy) = pr-Ry v+Ry vy = 2 pr-Ry vy

The input voltage to the network of Figure 9 is then 2 Pr-R vy .
This can be realized by the input network shown in Figure 11. The
total network for the plate is shown in Figure 12. The analogous
quantities of interest are listed in Table 2.

R
1
| 2y Zo -0
A B
R
2 pI Z3 2
C
O o
Figure 12
Acoustic Electrical

Input Velocity v Current through R
1 1

Transmitted Pressure py Voltage Drop BC
Voltage Drop AC minus %

source voltage current
through Ry

Reflected Pressure p;

Output Velocity Vs, Current through R,

Table 2
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APPLICATION OF THE FOUR-POLE TECHNIQUE TO COMPUTE
SOUND TRANSMISSION

Some Specific Examples

Case I - steel plate, thickness small compared to an acoustic wave-
length 1 < .1):
\c— . .

M=R=F+143C (7 =o0)

Since %i is small, we may use the approximations

tan @l - wl = wl _c
¢ 20 - wl
Referring to Figure 8,

Zy =72, =1R ':"l:ipc“ﬂ'-éile
1 2 P ac 2c Z

pl is the mass per unit area of the plate, and is denoted m

Then

Zl=Z

e C -lpcz_-iﬁ_ 1
Z3 = -iRp = ===

1 wl Wl

€

1
iw(x))
@
The electrical T-network corresponding to Fi%u*e & is shown in Figure
0— A - ’
JRSIN, SN %
0 o
Figure 13
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If the plate thickness is on the order of 1 inch, %\ is on the order

of 107 while is on the order of 1. Hence we may disregard the
+ WALS B,

capacitor of Figure 13 and the analogous circuit corresponding to
Figure 11 becomes that shown in Figure 14.

R
1 A Mp B
2
Ry
c
Figure 14

Two important acoustic parameters for a plate are the transmission
loss (TL), and reflection loss (RL). These are computed for this
case:

2
Py
TL = 10 log -
Pp
(R + R + W
= 10 log ( %
2
2 Pr Pr
RL = 10 log | —=|= 10 log
Pr 2 pr Ry - p

(Rl + R2 + imm.p

= 10 log (R1+R2) +w n_”g_
(Rp - Ry)? + w? mp

If Ry =Ry = R,

TL = 10 log
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o pT—
MRS Ml & RS -

2
RL = 10 log (1+ 4 R )

w2 mp2 {
~1 ) wl |
E | Case II - Viscoelastic Material, L
L o |
M=E+§G=M(l+i'l) = |
l

Using the same approximations as Case I, |

1
In this case, X may not be neglected, and the analogous T-network
M - ‘
is that of Figure 15: it
i 1A e, |
iy |

wl

1
e & .
S o

Figure 15

Cases I and II can be combined to yield an electrical analog for a
steel plate with a thin viscoelastic damping coating on the incident
side. This circuit is shown in Figure 16 where the damping material
constants are subscripted with d, and those of the steel plate with p.
The acoustic impedance of both sides of the composite is assumed to
be R.

16 |
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2 Py

Figure 16

CONCLUSION

Transmission of sound through layered media is easily analyzed
by the use of the four-pole method. The basic pole matrix (the
matrix of equation (24)) is used for each layer of the composite
structure, by substituting the appropriate constants into aij.
Formula (8) is then used to obtain an equivalent four-pole matrix
for the entire structure, and if an electrical analog is desired,
equations (5), (6), and (7) are used to obtain the T-network that
appears in the analogous circuit of Figure 11.

Application of this method should be useful for analysis of
sonar dome construction, baffle design, isolation mountings, and

other similar problems.
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