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SECTION 1

INTRODUCTION

The design of equipment to withstand dynamic loading of its
parent structure has been addressed for a wide range of structures by
means of theory and experiment. Shock effects on equipment in hardened,
protective structures have been estimated by constructing envelopes to the
spectral response at the attachment points, Reference 1. It is usual to
avoid mounting sensitive equipment directly on the structure if the fixed
base frequency of the equipment falls near a natural frequency of the structure;
potentially damaging overlap is avoided by redesigning the equipment or by
using shock isolation systems, References 1 and 2. In order to study the
effectiveness of shock isolation systems in complex structure over a wide
frequency range, impedance testing procedures have been developed, References

3 and 4.

Problems involving equipment-structure interaction have been
addressed in submarines, where the equipment is massive, and may be
heavier and have lower natural frequencies than the structure, References 5
and 6. Special analysis and design procedures have been developed to take
advantage of the unique characteristics of such systems. The spectral
response at the attachment point of massive equipment exhibits a minimum at
its fixed base frequencies. Therefore the envelope to the spectral response
is unnecessarily conservative and the maximum stresses in the equipment
will most probably occur at the minima in the shock spectra; this is taken

into account in design, Reference 7.

Earthquake response of structures and their contents is another

area where equipment-structure interaction has been addressed. One common

U




approach is the floor spectrum method, in which interaction is completely
neglected. The equipment is treated as a single-degree-of-freedom system
subject to the base motion that the structure would experience at the
attachment point in the absence of the equipment. In addition to neglecting
interaction, time history analysis of the structure to determine that motion
must be carried out. Approximate techniques have been proposed to develop
floor response spectra from ground spectra that bypass the computational
problems associated with this, but these are ad hoc methods and no estimate
of their accuracy can be made (Reference 8). An alternative approach is to
consider a N + 1 degree-of-freedom model for the equipment-structure system
and subject it to time history analyses for a variety of specified ground
motion inputs. This can be cumbersome and expensive for design. Further-
more, conventional methods of dynamic analysis are accurate in the computation

of the response for the lower modes, and they frequently possess some form

of numerical dissipation to damp out spurious participation from the higher
modes. In the cases where structure-equipment interaction is important, at

intermediate and high frequencies, the use of such codes can mask significant

equipment response. Finally, response spectra methods for N + 1 degree-of-
freedom systems suffer from uncertainty in how to combine the peak modal |
values. The approach using the square root of the sum of the squares,

References 9 and 10, has been shown to be inaccurate in the case of closely-

spaced modal frequencies and light equipment having a natural frequency equal

to one of the natural frequencies of the structure. Penzien and Chopra

(Reference 11) and Penzien (Reference 12) have studied this problem for a

simple tuned system and have proposed a method in which the response spectra

of two-degreeof-freedom systems are used. In this approach, the N modes of

of the structure are determined and to each mode considered as a single-

degree-of-freedom system, the equipment is attached to give a two-degree~

e ——— s ————— s —




of-freedom system. The time history of the response of each of these N
two degree of freedom systems is computed numerically and the maximum

response of the entire system evaluated using the square root of the sum

of the squares of the maximum value for each. This method is shown by
comparison with a direct computation of the time history of the response
of the total system to be fairly accurate. It is shown below that the
method is unnecessarily complicated, in principle incorrect, and that its
accuracy, established in Reference 11 only for the particular low order

system studied, is in a sense fortuitous.

The present work is concerned with a rational approach to one
aspect of this problem, that of light equipment whose frequency is close
to one of the natural frequencies of the structure, a situation described
as "tuning." To gain insight into this problem area, idealized models
are considered which incorporate the characteristics of a structure and

internal equipment, the equipment having natural frequencies which are

higher than the fundamental frequency of the structure. The combined
structure-equipment system considered is one in which the equipment is
relatively light. 1In previous work (Reference 13), we have described the
response of this system to steady~state ground shaking. It was shown that
significant interaction effects occur only in the case characterized as
tuning, or near-tuning; namely, the situation where the frequency of the
equipment considered as a single-degree-of-freedom system is the same as,

or close to, one of the natural frequencies of the structure. If the
equipment frequency is not tuned, or nearly éuned, to a structural
frequency, the response curve is roughly the superposition of the structural

response and the equipment response with little interaction. This indicates

that the conventional floor spectrum method is valid for the solution of

transient problems.
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If, on the other hand, the equipment frequency is tuned to a struc-
tural frequency, it was found that for the combined system there were two
closely spaced frequencies on either side of the tuning frequency and that
a band of high amplification appears around the tuning frequency which offers
a substantial target for sympathetic oscillation. Thus there is a signi-
ficant interaction in this situation between the structure and the equipment
and suggests that the conventional floor spectrum method, which ignores
such interaction, will not be valid for the transient analysis of tuned, or

nearly tuned, systems.

A typical result for the steady state response of a structure-
equipment system is shown in Figure 1 which is taken from Reference 13. 1In
this case; the equipment was tuned to the third natural frequency of the
structure, and the curve shown is the ratio of the equipment acceleration
to the input ground acceleration considered as a function of the frequency
of the input normalized with respect to the natural frequency of the
equipment. The mass of the structure in this example was a thousand times

that of the equipment.

In this report, we will describe a method valid for the transient
analysis of tuned or nearly tuned structure-equipment interaction. This
method is considered as a replacement for the floor spectrum analysis. It
utilizes the shock spectra for the specified input to the structure and
directly provides the shock spectra for the equipment. In this sense, it is
simpler and easier to apply to design than the floor spectrum method which
requires the time history of the structure response to be computed in order
to obtain the equipment spectrum. The simplicity of these results is due
to the fact that it is possible to take advantage of the mathematical

structure of the equations of the tuned or nearly tuned system and also to
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make use of asymptotic methods made possible by the smallness of the equipment

mass in comparison to the structure mass.

The system to be studied is one for which the mass of the equipment
is small in comparison to ths* of the structure. Damping in both the equip-
ment and the structure is also small. The equipment is taken as tuned, or

nearly tuned, to a natural frequency of the structure. It is assumed through-

out that the information available to the designer is a design spectrum for }
the ground motion and fixed-base modal properties of the structure alone and

of the equipment alone. The results obtained will be an estimate of

the maximum displacement and maximum force experienced by the equipmeat.

The rationale for using design spectra methods is that they are cheap and

to a certain extent include the probabilistic nature of the structure
definition, i.e., the lack of precision in specifying the structural parameters
and the probabilistic nature of shock or earthquake input. The probabilistic

nature of the problem is taken into account in the construction of a design

g —— g > Pt A Nttt St " e et

spectrum itself and in the way the maximum values in each mode are combined to

predict the maximum for the entire system.

Under the limitations outlined above, the results obtained are easy

and efficient for practical use by a designer. A feature of the present

L R

analysis, is the extremely simple result that if response spectrum for the

ground motion is available, the response spectrum for the equipment can be
calculated merely by multiplying it by an amplification factor which depends

on the mass ratio, the degree of detuning and the damping.

'
é The reason for the simplicity of the result can be indicated on

1 physical grounds, if it is recognized that the major portion of the response

is a classical beat phenomenon. It is well known that in weakly coupled

systems with the same frequency, the response of the system involves a per-
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fect energy exchange between each component. The same phenomenon appears
here. The weak coupling is achieved through the small mass ratio of equip-
ment to structure. For simplicity of explanation, consider an undamped tuned

equipment-structure system. Were the structure alone subjected to a ground

motion, the velocity imparted to it would be independent of the mass and
determined only by the ground motion. If the same ground motion were to be
applied directly to the equipment alone, the same velocity would be imparted
to it in the case of tuning. The kinetic energy, on the other hand, will be
proportional to the mass of the system excited. 1In the case of the equipment,
this would be much smaller than that of the structure. However, if the equip-
ment is attached to the structure and the structure is subjected to ground

motion, the kinetic energy imparted to the structure is transmitted in its

entirety to the equipment if tuned, and the velocity imparted is amplified
by the reciprocal of the square root of the mass ratio. This simple result

recurs for all other response spectra of the equipment.

It is clear that damping will play an important role in this pro-

cess, since the energy transfer takes many cycles and much of the kinetic

energy in a damped system could be dissipated before being transferred. i

This is accounted for in the analysis when damping is included. We have also

studied the case when the equipment frequency is not perfectly tuned to a
natural frequency of the structure. If the detuning is small, then two
closely spaced frequencies again occur and the determination of the resulting
peak response must be calculated with care, as for the tuned case. The final
result is analogous to the tuned situation, but the amplification factor is
modified by the inclusion of a parameter describing the degree of detuning.
When the equipment frequency is grossly detuned from that of all natural

frequencies of the structure, then the floor spectrum method is valid.
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However, we have derived a much simpler method which gives the peak response
of the equipment in terms of the given ground spectra multiplied by amplifi-
cation factors depending upon the fixed-base modal properties of the structure

alone and of the equipment alone.
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SECTION 2

SUMMARY OF RESULTS

To assist the reader in understanding the theoretical development
and its applications, the final result is presented in this section in terms
of the free-field spectral acceleration, SA’ which is a function of frequency
and damping, and a modification factor, which depends on properties of the
equipment and the structure. Although the theory is developed for the
special cases of systems which are (a) damped, tuned; (b) undamped, slightly
detuned; and (c) damped, slightly detuned, the result is given by one general J
expression as follows;

Eroy OEE
SA (14"2')(3; 2 )

Z li (2_1)
(Y+€ +48B)

u =
max

where

SA = free-field spectral acceleration evaluated at the frequency
a1+ %)w, with spectral damping ratio (B+B)/2.
& = detuning parameter, expressing the degree of detuning
between the structure (mode of interest has frequency )

and the equipment (frequency w). & = Q -w)/w.

B, B = damping ratio for structure, equipment, respectively
B = C/20M
; B = c/2wm
C, ¢ = viscous damping coefficients for structure and equipment,
respectively. ‘
M, m = masses of structure and equipment, .respectively

Y = m/M




In order to apply Equation (2-1), the free-field spectral acceleration SA

is evaluated at the shifted frequency (1 + %)m and at the average damping

ratio (B; B). Then the modification factor is evaluated which depends on

the detuning £, the mass ratio y, and the damping ratios g and B.

In the event that the mass ratio y << £? + 4BB and § << 1, corres-
ponding to light, nearly tuned equipment, Equation (2-1) becomes equivalent
to the conventional floor spectrum approach and has the further advantage of
being applicable when the only available information on ground motion is a

free-field design spectrum.

|
’
|
j
|
_,l
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SECTION 3

MODAL ANALYSIS OF STRUCTURE-EQUIPMENT SYSTEM

The main characteristic of the interaction between the structure and the
tuned equipment is in the equivalent two-degree-of-freedom system comprising
the equipment and the particular mode of the structure to which it is tuned.
For comparison with the modal analysis of the structure the appropriate

equations of a two-degree-of-freedom system are given.

The equivalent two degree of freedom system is shown in Fig. 2 in which
lower case letters refer to the equipment and upper case letters to the
suitable modal properties of the structure. The equivalent or effective
ground motion is denoted by usz(t) and the equations of motion are:

eff

MU + C(U - dsz)+x(u . ) = F(t)

(3-1)
F(t) = - mi = c(a - U) + k(u - U)

where F(t) is the interaction force between the two systems and where m and

M are equipment and structure modal masses, k and K are the respective

stiffnesses and c and C are the damping coefficients. It is convenient

to introduce the variables

[}

w=v k/m . Q =V K/M

¢/ 2wm : B = ¢/20M

on)
]

the detuning parameter ¢ = (Q-w)/w and the mass ratio y = m/M in terms of
which the equations become:

eff | o2 eff . oo
" = (3-2)

P(t)/m = ~i = 2Bu(E=0) + wo(u-U)

U + 2800 + Q%U = 280G

Applying the Laplace transform to these equations and eliminating the

structure response gives a single equation for the transform of the equipment

13
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i
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response in the form

ﬁ[(p +26wp+w)+Yp (ZBwp+P)]

(2Bwp + w )(ZBQp + Q) ..eff
2 + 280p + 97 ‘s

p2 + 2BQp + Q

The equations of motion of the N degree of freedom structural

system take the form

N N
XMin+2cu+[xU,=ZCru+zK

j=1 J 1 ju1 HIE o5

: i]
jo1 ; i"i%

+ F(t)ei

13 i3 the stiffness

The vector ri is a vector of influence coefficents introduced to

where M

13 is the mass matrix, C

3 the dampltlg matrix and K
t :

which is zero at every degree of freedom except that one denoted by the index

couple the actual ground motion, ug(t) to the structure and e

r, to which the equipment is attached where it takes unit value. F is the

interaction force between the equipment and the structure.

The natural frequencies Qn and modes ¢2 are given by the equation

0?2 ? M, 0" = ? K, 0"
b by T T 0 el

Assuming that the damping is sufficiently small that it does not introduce

coupling between the modes the equations in modal coordinates become

N
v 2 k
G ¥ By + By = b OFM
where
1.0 Il
= b o M,, , 2B Q @
R TN s Rl g o5 ¢yym,
and
) )
F, = C,.r.a + K,.r,u + TFe
15

(3-3)

(3-4)

(3-3)

(3-6)
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The Laplace transform of the structure response U (t) is given by

U, = Y 121<pi jFi(p)
I k=1 Mk(p + 2B, QP + ai)
with & (3.7)
Fi(p) = 121 f€.rp + K ¥ 2)u + Fei

The corresponding equation of motion for the equipment displacement u is

-mu = F(t) = c(a - ﬁr) +K(u - U) (3.8)

or in terms of Laplace transforms
2- = 2 - =
-p’u = F(p)/m = (2Bup + W) (u - T) (3.9)

From Eq. 3.9 a relationship between u and v is obtained in the form

- 2. =
(p% + 280p + wD)a = (2Bup + w)T_ (3.10)
and from Eq. 3.7 this can be written as

E(p2 + 2fwp + wz) N
k -
r
5 B 1§ of O [Fe, + 2ZI(C12 yP F K
= (2Bwp + w°) ) 5 3
k=1 Mk(p + ZBkap + Qk)

1079 %

But we also have F = —mpza . Using this to eliminate F in the above, leads

to the final transformed equation for the equipment response.

N op>(2Buwp + w2)¢k¢k

G[(p2 + 28wp + W) +
k=1 Mk(p + 2B kp + Qk)

N
% ¢ E @ E(C TP + K. r)) RS
2 iy 1 g2 12 il 8 £
= (28w + w°) } 5 3 uy
k=1 Mk(p + zskﬂkp + Qk)
16
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We note that ) K_,4. can be written as Q. ) M.  &. and
o | k L
i=1 i=1 N
the assumption of small damping allows the representation of Z c12¢: as
N i=1
2B Z M Qk . Thus the solution for u for the multidegree of freedom
k ki=1 i i
system takes the form
k2 2
N m@r (2Rwp + w") |

o T 2 2
ul(p” + 2Bwp +w) +p 2 2
k=1 Mk(p + 2B, p + Qk) e
N N 9 9 (3
© k

! 1£1¢i lzl M, oo (2B, Q0 + Q) (28wp + w”)

2 2 g
k=1 Mk(p + ZBkaP + Qk)

(=}

In performing the inversion of the Laplace transform by the use of
residue theory, we are interested in the zeros of the term in brackets on
the left hand side. These zeros are the poles of the transfer function.
Here we are restricting attention to the case where the equipment frequency

is close to a structural frequency, Qn, say. This is indicated in Fig. 3.

In this figure the two expressions in the brackets on the left hand side of
Eq. 3.12 have been plotted separately. These plots were obtained by replacing
p by i2 and then drawing the graph of each of the two resulting functions in
the bracketed expression. For simplicity of illustration we have plotted the
figure for the completely undamped case (B = B, = ... = B_ = 0). The negative

1 n

of the first function plots as a simple quadratic in {2, becoming zero at Q = w,

the natural frequency of the equipment. The function involving the summation

plots as the complicated curve which goes to * © at Q = Qk’ k= 1; 2icealN,

the natural frequencies of the structure. Two such curves have been plotted,
one when the equipment mass is small and one when it is not.
The values of  at the intersections of these two curves give the

locations of the zeros of the bracketed expression on the left hand side of

Eq. 3.12, which are the poles of the transfer function for the equipment
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response, taking into account equipment-structure interaction. It is

seen that in the case of small equipment mass these poles, all of which are
simple, occur near the natural frequencies of the structure. It is important
to note that two closely spaced poles, which we call the tuning poles,

are located near the equipment frequency, one below it and the other above

it as shown in the figure. These two closely spaced poles coalesce into

a double pole when w = Qn and m > 0. Thus the contribution to the sum of

the residues at all of the poles is dominated by those which are associated
with the two tuning poles. In computing the residues at the tuning poles, it
is clear that the contribution from the summation expression is dominated by
the term where k = n because then the denominator of that term is nearly zero.
Hence in the region of p = iw, Eq. 3.12 can be approximated by

2

n
2 mQr 2Bwp + wz

M 2 2
n pr + Bnan + Qn

SH” * By €0y & p ]

(3.13)
2 2
(2B @ p + Q7)) (2Bwp + w) N N .n £
- —nn v §OroiMprg /MG,
p +2BQ +Q i=l 2=1
nn n
Comparing this expression to that for the two-degree-of-freedom system,
Eq. 3.3, we see that the effective mass ratio is
eff n2
)/ = m@r /Mn (3.14)
and the equivalent ground motion is
ueff =C_u
24
n n E g n
c_ =29 o, M, .r./M (3.15)
i ry=1 j=1 1 1] n
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The solution technique used here will be to obtain the contribution
in the region near p = iw by considering the equivalent two-degree-of-freedom
system defined by the above equations. The contribution to the solution from
the tuning poles requires special treatement, and this will be done in the
context of the equivalent two-degree-of-freedom system. The contributions
at the other (N-1) poles is straightforward and will be included after the
two-degree-of-:freedom analysis has been completed. It should be emphasized
that the use of an equivalent two-degree-of-freedom system is not essential,
but is only conceptual and introduces no further approximations beyond that

made in passing from Eq. 3.12 to Eq. 3.13.
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SECTION 4

ANALYSIS OF TRANSFER FUNCTION FOR TWO-DEGREE-OF-FREEDOM NEARLY TUNED SYSTEM

In the previous section the parameters which appear in the equivalent

two-degree-of~-freedom system have been derived. Returning to the Laplace

transform of the equation of motion of the two-degree-of-freedom, Eq. 3.3,

to simplify the subsequent notation, the terms B and {2 are used to represent

the structural parameters Bn’ Qn of the tuned mode and Yy and ug should be
interpreted as the effective mass ratio and ground motion as given by

Eqs. 3.14 and 3.15. 1In terms of these parameters the transformed equipment

acceleration u(p) takes the form

u = [N(P)/D(p)]iig

where
2 2002

N(p) = (2Bwp + w ) (2Bw(1+E)p + (1+&) w")

and
4 3 2 2
D(p) = p + wp (2B(1+E) + 2B(I+E))+ wp (2 + ¥
2 3 2 4 2
+ 28 + £7 + 2B2B(1+8)) + w p(2B(1+E)" + 2B(1+E)) + w (1+8&)

where § = = is the detuning parameter. In what follows attention

will be concentrated on the equipment acceleration. Completely parallel

results can be easily developed for the equipment displacement.

The nature of the solution depends essentially on the zeroes of the
denominator D(p). Since Y, B, B and £ are small parameters, the roots

of D(p) will be close to those of the system with y, B, B and ¢ taken to

be zero; namely

21

(4.1)

(4.2)

(4.3)




To determine the location of the poles of D(p) we replace p in Eq. 4.3 by
p = iw(1+s8) (4.4)

where § is a small quantity. Only the plus sign is taken since the roots

will appear as complex conjugates. In terms of § the equation D(p) = 0

takes the form

§% & [4 - 1[28(14y) + 2B(1+£))]6°

+ [6 -y - 26 - €2 - 4BB(I+E) - 31(2B(1+Y) + 2B(I+E))162

¥ [-2y - 48 - 267 - 8BB(IE) - 1(2B(243y - 26 - £) + 4B(I4ED]S  (4.5)
+ [-y - 4BBQIHE) - 12B(y - 26 - £5)] = 0

Solutions for this equation are easy to obtain when 8 = 0, B = 0 andy # O,

£ # 0 and are

2 oy e T f
6=[1+g+—}+-§l(y+g2+g3+yg+%+—%-+%—)]—1 ;
- |
- 21 [ 7+ k) \

Also if Yy = 0, £ = 0 andB# 0, B # 0, we have %

§aidih ~g° L A8, AL B ) AR AR

1
Thus, throughout the analysis it will be assumed that B, B, & and Yi

A SR MM 55

are all of the same order, say €, and the various approximations for § will

Ry T s

be based on assuming § of order € << 1 . When the parameters are not of ‘

the same order the modifications required are obvious.

i i St S i S T o

The solution of Eq. 4.5 retaining terms of order 62 is

e aXaBXB  u
LR R el &) (4.6)

iy AR G
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where here and throughout the remainder of the analysis the upper signs are

taken together to give one root and the lower the other. The quantities

B

A and U are given by

L, O, £ T S SIS, 5 R g BT

L 5
3 [{(&2 ry - @BH+ 452(3-5)2} + (&% +y-3-B)%)) (6.7)
/3
; 5
3
b= —l-[{caz F ¥ = (BB + 4£2(B-B)2} £ (€ +y-(8-B)%)] (4.8)
/3

It is easy to show that for B # 0 and/or B # 0 the imaginary part is always
positive, thus leading to damped oscillations. In view of the large
number of parameters in this solution there are many special cases and in
the following sections we consider some of these of particular interest

in further detail.

4.1 UNDAMPED TUNED TWO~-DEGREE-OF-FREEDOM SYSTEM

In the case B = 0, B 0 and £ = 0 the solution of Eq. 4-5 retain-

. Sin
ing terms of order €~ is

Y’»z Y%
L (4.9)

It is useful in this case to retain the higher order terms in 6 since
these terms are necessary in deriving certain later results on the 1
floor spectrum method. In terms of the transform parameter p the roots
are
4 b
Y
(1 % T") (4.10)

= iw + iw =
4 = 2
These are indicated in the root locus diagram Fig. 4, with the corres-
ponding complex conjugate roots. It is clear that the roots remain on

1
the imaginary axis with the small spread between them equal to Y2 w.

These will lead to an undamped oscillating solution.
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Figure 4. Root Locus Diagram for Undamped, Tuned 2DOF System.
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4.2 UNDAMPED SLIGHTLY DETUNED TWO-DEGREE-OF-FREEDOM SYSTEM

In this case the roots are

L
s b 2
§=meT Ay + &%) (4.11)
which in terms of p is
%
o e da @ & %) + 1wy + €))7 (4.12)

(We note that when Y > 0 these become p = + iw, + iQ, .) These roots
and the corresponding complex conjugate roots are indicated in Fig. 5.
Again an undamped oscillatory solution results and the spread between the

1
2
closely spaced roots is now given by w(y + 52) :

4.3 DAMPED TUNED TWO-DEGREE-OF-FREEDOM SYSTEM

We note first that in the case £ = 0 there is the possibility of
a double root of the equation D(p) = 0. For this to be so, certain relation-
ships must exist between the coefficients of the various powers of p in
the expression for D(p) given by Eq. 18 when £ = 0 . It is easy to show
that these conditions are:
YB =0 (4.13)
and
y + 288 = B2 + (1 + y) 282 (4.14)

for nonzero y it is clear from Eq. 4.13 that 8 must be zero and from Eq. 4.14

we must have y = B2 .

2oy

The solution of Eq. 4.5, when £ = 0, retaining terms of order ez is:

1
g |
s=1824+2 - 8w (4.15)
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Figure 5. Root Locus Diagram for Undamped, Slightly Detuned 2DOF System.
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Utilizing this as a first approximation and using an iterative method
the solution of Eq. 4.5 retaining terms of order 63 is obtained in the

form:

B + 2

B 2 -
6= 1 22242y - ;)% F (r-(3-m) %) (BZ4B2y/2)

3
+ 1 (2By+(B+B) (Y-(B-B)2))}

When the term Y - (B - B)2 is of order €2 it dominates in the

radical, and it is enough to use Eq. 4.15 for the roots § .
We note that when y > 0 this gives the two roots

§ = iB and § = iB

which represents the floor spectrum solution for the damped system.

The solution (Eq. 4.15) suggests a double root when y = (B - B)2, but it
has already been shown that a double root will only occur if 8 = Q3 thus
when vy - (B - B)2 is of order 83 or higher, the complete expression must

be used. In the particular case y = (B - B)2 the roots are:

B L 1
§uyBE BZ B%Ij + Bﬁgf

2 *

When B = 0, the roots become

‘ L
§ =1 _2311 {(y—Bz) + (y’—Bz)%(Bz— %) + iB(Y--Bz)}2

N =

For fixed B the roots go from

1 2 B2

§=1 % i-% yi for y >> B to §=4iB - =, 0 for Yy > 0 .

2
When vy = BZ, Eq. 4.18 indicates a double root at

§ = iB/2

However, by consideration of the complete Eq. 4.5 and substitution of B = 0,

Y = B2 it is easy to show that the double root is given by:

27
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(4.17)

(4.18)




2
B B
§ i 3~ (4.19)

The pattern of the roots in the p plane foer B = 0 is shown in Fig. 6.
When Y # (B - B)2 the nature of the solution depends on whether

Y > (B - B)2 or Y < (B - B)2 . For the first the roots are given in Eq. 4.15.

For the latter they become, to lowest order

%

§=1 (B+B + ((B-B)2 -Y)%)/2 (4.20)

The roots in the p plane thus have the same imaginary value iw, but are
equally spaced from (B + B)/2 on a line parallel to the real axis. It is

important to note that both roots lie in the left-hand plane for all

nonzero values of B, B and Y so that the transient response of the system

always decays.

4.4 DAMPED, SLIGHTLY DETUNED TWO-DEGREE-OF-FREEDOM SYSTEM

In this instance the large number of parameters makes it convenient
to illustrate the form of the solution by considering the special case
when B = B. Here

A=+ ED?

and 4 = 0, giving

vk 2, B+B (4.21)
§ = 5 + 2(7 ) s 3
and
L
Pt Q+Esd ety - BR (4.22)

These roots are similar to those shown in Fig. 5, except that they are

shifted to the left by w(ﬁgﬁ) v

28




| 41, P
i
é
{
Y > B?
‘B B .‘ 3
B/2 B/2 ‘
:
E—Plane '

‘. . : Re(P) ‘: 1
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SECTION 5

INVERSION OF TRANSFORM SOLUTION FOR TWO-DEGREE-OF-FREEDOM SYSTEM

The formal inversion of the transform Eq. 4.1 is

- . _L_ NSE) ~ pt

where I' is a suitable Bromwich path. If ﬁg(p) is taken to be 1, then the
inversion gives directly the Green's function of the solution, uG(t),
which will become the essential ingredient of the subsequent analysis.
The complete solution for the acceleration for given ground motion ug(t)

will take the form
t
u(t) = J uG(t—T) ug(T) dTt
0

The Green's function will be obtained by the use of residue theory, there
being no branch cuts in the p plane. It will be convenient to obtain the
inversion of the transformed Green's function for the general case,

Eq. 4.6 and for different ranges of the parameters y, B, B and £,
corresponding to the special cases discussed in detail in the previous

section.
To obtain the inversion the denominator D(p) is written in the form

D(P) = (p = PP = PP = PP - Py

where

A, E+B

" & - (2B L
p1 iw (1 + 2 + 3 w ( 3 + 2)

- & A _ (BB _ 1
PRpriUrs Pty " ¥

and Bl and 52 are the complex conjugates of P, and Py - Evaluating the

residues at each pole and collecting complex conjugate terms in pairs

lead to the result, correct to dominant order,

(5.1)

(5.2)

e st et v et i .

o




u (t) = T wt cos.wétsin w(1+ é)t
G 22 4 u2 2 2 2

W ~W(B+B) /2 ’)\ ey

(5.3)

| - X cosh w%t sin m%t cos w(1+%)t - u sinh gwt cos w%t cos w(1+£)t

) : 5

g - U cosh 5 wt sin w%t sin w(1+%)t}

The results predicted by this solution are explored in several special cases.

5.1 Undamped, tuned system. When 8 = 0, B = 0 and & = 0, the solution

retaining terms to the order €3 takes the form

ﬁG(t) = %%—sin wt cos Nt - E% cos Wt sin nt
Y
1
where n = Wy 2/2 (5.4)

5.2 Undamped, slightly detuned two-degree-of-freedom system.

In this case the Green's function for the solution takes the form,

.y 2
retaining here terms up to order €,

£

ﬁG(t) T N (1+§)t sin nt (5.5}

(%)

2

B
where now n = (E;2+Y)'2 w/2.

5.3 Damped, tuned two-degree-of-freedom system.

gty

R e Y vV .

For the situation where £ = 0 it is convenient to obtain the inversion

of the transformed Green's function for three different ranges of the

parameters Yy, B, B.
2
i) For y >(B - B) we can write D(p) in the form

D(p) = (p-iwte;w) (pHiwte w) (p-iw +€,0) (pHwte ,w)

where 2
e o S
Byt T B R AN )

+B i :

She fij;“ -5 (Y - (B-B) )2 | |
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Evaluating the residues at each pole and collecting complex conjugate

terms in pairs leads to the result, correct to domimant order,

iiG(t) =_ﬂ3_)w_t£2_w§w_t sin v/y—(B-B)2 wt/2 e

=57

This function represents a damped beat type solution, the beat frequency

being w V¥ - (B-B)2/2 which is much smaller than the tuning frequency w .

ii) For Y <(B-B)? writing D(p) in the same form as before, evaluating
the residues at each pole and collecting terms in conjugate pairs leads
to a Green's function of the form:

w e..(B+B)mt/2 coswt sinh V(B-B)Z - y wt/2
/8-8)" - v

GG(t) =i (5.7)
2 2

Since (R+B) > (BR-B) - Y for non-zero B, B and Y, the term exp[-(B+B)wt/2]

dominates the term sinh /?E:ETTf??<»c/2. The solution can be interpreted as

overdamped beats by analogy with the concept of overdamped vibrations. For

large values of wt the solution has the appearance of an oscillation of

frequency w damped by an exponential with factor
1 JEEBE = ¥)
-3 (B3 - VEBTE W)t

2
iii) For y = (B-B) the result in Eq. 4.15 predicts a double
pole. However, we have already shown that if B # 0, a double pole will

not appear. In fact, the more accurate location of the root gives:

B+ B
2

A wtiwBy%2 (5.8)

Proceeding in the same manner as before to evaluate the residues the

following result is obtained:
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As in Eq. 5.6 this represents damped beats. The beat period is of order
La3tf2
& and is thus very long.

iv) When B = 0 and Yy = B2 a genuine double root appears. The

Green's function solution in this case takes the form:

ﬁc(t) T e-Bwt/Z

s wt
2 co

This case can be interpreted as critically damped beats.

5.4 Damped, slightly detuned two-degrees-of-freedom system.

In the special case of a detuned damped system with B = B the
appropriate Green's functior solution is

w e-w(6+n)t/2

51 sin nt cos w(1+£/2)t
(y+£%) 2

ﬁc(t) = -

|
where n = (Y+52)~2 w/2.
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SECTION 6

APPLICATION TO EQUIPMENT MOUNTING DESIGN;

UNDAMPED TUNED SYSTEMS

The results obtained in the previous section, for the response of
various types of damped, undamped, tuned or untuned systems can be utilized
in the design of equipment or equipment mounting. The least complicated
forms of these equations are those for the undamped tuned system and it is
worthwhile to examine these in detail before proceeding with more general
cases. Many of the basic features of the phenomena are more readily
apparent for this situation. The methods developed for the damped and
tuned or detuned cases are extensions of the method developed for this

case.

The results given in Eqs. 5-2 with 5-4 could in principle be used
by a designer of equipment or equipment mounting, if a specified ground
acceleration history were available to estimate the forces which would be
developed in the equipment or its mounting. However, such information is
not readily available to a designer and the computation involved in these
integrals may also be inconvenient during the design process. It would be
more common to begin with a design spectrum which may be specified by a
code or determined from averaging several possible inputs as for example in
seismic design, Reference 14. We are thus interested in determining
to what extent the results in Eqs. 5-2 with 5-4 can be used to provide
estimates of maximum acceleration when the information available is the

response spectrum of the ground motion Gg' In the following sections a

number of alternative approaches are explored.
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6.1 FLOOR SPECTRUM ANALYSIS

When the Green's function obtained for the undamped tuned system

Eq. 5-4 is substituted in Eq. 5-2 the response is given by

t 1
li(t) = —(i,)/; J lig(T) {3: Y? cos n(t-1) sin (t-T)
g
0

- sin n(t-T1) cos uKt—T)} drt

with n = wYLilz.

For small values of nt this reduces to
(" 3
i(t) = w ﬁg(T) {5 sin w(t-1) - w(t-T) cos m(t-T)} dt

Note that this result is independent of Yy and could be obtained directly
by means of the floor spectrum analysis method whereby the input to the
structure is used to compute the base motion at the equipment assuming the
equipment to be absent and the equipment motion is calculated with this
motion as input. It is clear that this approximation is valid for small
values of nt, i.e. wY%t/Z << 1. The essential characteristic of this
result is that it neglects interaction between the structure and the

equipment.

One other feature of the floor spectrum analysis is that it can
be obtained from the basic equations by setting y = 0. A double pole will
then appear in the tuned case (for an untuned system only simple poles
occur). This double pole leads to terms in t cos wt and t sin Wt on
inversion. Thus the floor spectrum analysis cannot be used to determine
maximum displacement or acceleration for undamped tuned systems since it
yields responses which grow without limit. It follows that although the

floor spectrum analysis is a valuable method for untuned systems it has no

meaning for undamped tuned systems.

(6-1)

(6-2)
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G2 MODIFIED CROUND MOTION SPECTRA

When Nt is not much smaller than unity the term in Eq. 6-1

1
miitiplied by ‘{/i is negligible in comparison to the other and it becomes

t
u(t) = ~ w[ iig(r) sin n(t-t) cos w(t-t)dT (6-3)
0

Expanding the term cos w(t-T) in Eq. 6-3 allows it to be written in the

form
t 2
u(t) = - w cos (wt=9) ([ [Ug(T) cos wWt] sin n(t-1)dT)
0
t 231
+ ([ [Ug(T) sin wt] sin N(t-1)dT) (6-4)
0
i €
NASEE J [ug(T) sin wt] sin n(t-1)dt
¢ = tan‘ Ot — = (6-5)
j [ﬁg(T) cos wT] sin N(t-T)dT
0
The terms
i
% I [ﬁg(T) cos wT] sin N(t-T1)d1 (6-6)
1 €
ﬁ J [ﬂg(T) sin wT] sin p{t-T)dTt 6-7)
0

can be interpreted as the response of a single-degree-of-freedom system
with frequency n to the modified ground input accelerations ﬁg(t)cos wt
and ﬁg(t) sin wt, We also note that n << w. The term cos (wt-¢) is a
rapidly oscillating function and achieves its maximum many times. The
integrals are slowly oscillating functions and represent a slowly varying
envelope of the more rapidly oscillating term. The maximum of the product

is accordingly very nearly the maximum of the envelope.

Thus, one way to estimate the motion of the equipment is to

construct spectra for the modified ground accelerations. From this an
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estimate of the maximum acceleration is
1/2

o e, o2 g, 2
iy = {557 + s3m? oy

A similar expression can be obtained for the displacement. In the above,
the terms S:(n) and Si(n) are undamped acceleration response spectra for
the modified ground motions ﬁg(t) cos wt and ﬁg(t) sin wt, respectively.
In principle then it is possible to develop a design technique if the time
history Gg(t) is available by constructing the low-frequency response
spectra for the modified ground motions. In certain cases the given
information may be only the response spectrum of Gg and not the ground
motion itself. As far as can be seen at the moment there is no way to
compute the spectra fo: the modified ground motion if the only information

available is the spectrum of the actual ground motion.
6.3 AMPLIFIED GROUND MOTION SPECTRUM

In view of the remarks in the previous section, we now develop an

alternative approach in which the term sin TW(t-1) is expanded, leading to

t 2
u(t) = - i%-sin (nt - 9 (( ﬁg(I) cos NT cos W(t-1)dT)
Y 0
t 2) 5
+ (J iig(r) sin NT cos W(t-1)dT) (6-9)
0
5 t
boudet [ Gg(T) sin NT cos w(t-1)dT
0 = tan Ot - % (6-10)
I ﬁg(T) cos NT cos w(t-1)dT 1
0 l

We are interested in situations where the ground motion has a prescribed
finite duration and fpr those frequencies w where the maximum response of a
single~-degree-of-freedom oscillator, i.e. the response spectra, is achieved
late in or after the termination of the ground motion. These frequencies

correspond to peaks in the response spectrum of ground motion of the
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earthquake type. Design spectra, reflecting the probabilistic motion of
the input, correspond closely to the peaks of actual spectra and thus

presuppose late occuring maxima. In blast-type ground motion which is of
short duration it is likely that the maximum values of equipment response

will occur at times larger than the duration of the ground motion.

Thus, for values of nt, << 1, where t1 is the duration of the

1

ground motion, the first integral in Eq. 6-9 can be approximated by

t
f iig(r) cos w(t-T1)dT (6-11)
0

and the second neglected since sin nt will be bounded by ntl << 1, Fox

ntl << 1, then, we have

We) = - &

t
sin nt [ iig(r) cos w(t-t)dT (6-12)
Y

0

The term in the integral is a function oscillating with frequency w

1
o2

which is high compared to n and a maximum of that term will nearly
coincide with the maximum of sin nt. An estimate of the maximum value

of u(t) is

t
o w .
lulmax = —g max f ug(T) cos w(t-T)dT (6-13)

Y 0

If the displacement, velocity and acceleration response spectra as
functions of frequency w and damping parameter B are denoted by SD(w, B8,

Sv(w, B) and SA(w, B) respectively, we then recognize that

t
max ‘[ ﬁg(T) cos w(t-1)dT (6-14)
0

is the undamped velocity response spectrum Sv(w, 0) for a single-degree-

of-freedom system with frequency w. Thus, we have as an estimate of umax

the expression

e
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Since Sy = SV/w and SA = va, then
SD(w, 0)
[y R ot (6-16)
. max Y
; Y
S, (w, 0)
’ la) = A (6-17)
max %

It follows that if an engineering designer is given only the response
spectrum of the ground motion, the maximum displacement and force in the
i equipment can be estimated by using these spectra amplified by the factor

1
=2

i Y". These remarks refer of course to the equivalent two-degree-of-freedom

system. The results for the general system are obtained by utilizing the

factors in Egqs. 3-14 and 3-15.
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SECTION 7
APPLICATION TO EQUIPMENT MOUNTING DESIGN;

DAMPED, TUNED AND SLIGHTLY UNTUNED SYSTEMS

In the previous section, a number of procedures were developed for
undamped tuned systems which could provide information to a designer of
equipment or equipment mounting. These procedures were motivated by the
fact that in many cases a specified time history of the ground motion
applied to the structure would not be available except in the restricted
form of a design spectrum. These results enable the designer to utilize the
design spectrum for the structure to estimate directly meximum values of the

equipment acceleration and displacement.

Three different approaches to the design problem were developed.
These were the floor spectrum method, the modified ground motion spectrum
method and the amplified ground motion spectrum method. It was shown that
for tuned, undamped systems the floor spectrum method was not a valid
technique. The modified ground motion spectrum method was valid, but
inconvenient and it is clear that the amplified ground motion spectrum was
the most convenient to use in estimating the response of light uadamped

equipment.

For damped tuned systems it is seen from Eq. 4-3 that if y << 1,
then y is negligible if 4BB >> Y. This means that for such cases the
possibility of significant interaction between equipment and structure can
be ignored and the floor spectrum method used to determine the response of
the equipment. However, the floor spectrum method requires the
computation of time histories, and thus, if a design spectrum is the only

given information, its use may not be the most convenient.

Since the results of the previous section sliowed that the

L SN



e A ————

amplified response spectrum method was the most convenient to use, similar

approximations will be developed for damped and slightly detuned systems.
7.1 UNDAMPED, SLIGHTLY DETUNED SYSTEMS

The acceleration response u(t) to imposed ground acceleration

ﬁg(t) is obtained from Eqs. 5-2 with 5-5 in the form

t
u(t) = - ——VEL—T-I 4 (1) sin n(t-T) cos w(l + Q)(t-r)dr
(& +y)°2 & :
0 (7.1)
where
n = (€2+Y)%w/2

Expanding the term sin n(t-T) as was done in Eq. 6-9 of the
previous section and neglecting the analogous terms an estimate of the maximum
acceleration is obtained as

SA (w(1+£/2),0)

[ gl (7.2)
max

71
(y+E )™
This result is still valid if y << 52 providing § << 1. For such cases the
floor spectrum method is applicable, but of course could not be used if the only
information on the ground motion is a design spectrum. The above result is
clearly more convenient and equally valid. The beating phenomenon which is
the physical basis of the result will appear in the floor spectrum solution
in the slightly detuned case, the beating being between the two closely

spaced frequencies w and w(1+§).
7.2 DAMPED, TUNED SYSTEMS

The results obtained in Section 3 for the transfer functions for
damped tuned systems, indicate that four sets of the parameters Yy, B and B

have to be identified.
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: Case 13 4 > (B-B)2

The acceleration response i(t) to imposed ground acceleration

Gg(t) is given by

W - (B+B)w(t-T)/2

t
i(t) = - — e I ﬁg(T) e cos w(t-T1) sin n(t-1)dT

—(B-B)?2 '
=(B-B)*) " § (7.%)

1
n=4 G-6-m%*

Expanding the term sin N(t-T) leads to

t
i) = - *"*"21"*'1; cos(nt-9) 3{J u (1) e_(B+B)w(t_T)/2 cos w(t=T)
(v-(B-B)*)* L
(t = X
cos NT dr}2 + {J dg(T) e (B+B) w(t-1)/2 cos w(t-T) sin N1 dT}2£li
0 7.4)

-(B+B)m(t--T)/2c

u (1) cos ntT e

where t
f os w(t-T)drt
0

8 = tan e e e e

[t & —(B+B)w(t-T1)/2
0

(7.5)

ug(T) sin NT e cos w(t-Tt)dT

We are interested in situations where the ground motion has a prescribed

RSP -

finite duration and frequencies for which the maximum response of a single-

degree-of-freedom oscillator is achieved late in or after the termination of

the ground motion. Thus, for values of ne, << 1 where tl is the duration of

the ground motion the first integral in Eq. 7-4 can be approximated by

s AT I, x99 0y WA

cosw(t-T)dT

t bl -
( ﬁg(T) ” (B+B)w(t-T)/2
0

and the second neglected since sin nNT will be bounded by ntl << 1 and ﬁg =0

for t > tl. Thus we take

ey = - W sin e Jt 5, () & B2

1 cos w(t-T)d1
(y-(8-B) ) * VS

0
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When the parameters Y%, B and B are small we may interpret this result in

the following way:

For ¢t > tl the above expression can be written in the form;

2 o
34} = = wsin nt & (B+B)wt/2

on R cos(wt-Y)
where
R = (a% + A?)% with
1 2
t
A = [ 1 u (t) e+(8+B)wt/2 cos wt dt
1 g
0
t
A= f 1 u (t) e+(6+8)wt/2 sin wt dt
2 g
0
and

25
Y= ¢
an - A,/

In the above,R and ¥ are constants independent of t for t > t, and

R cos(wt-¥) is a rapidly varying function of time. The term

A nt o (B+BIwt/2
2n

is a slowly varying envelope curve which attains its maximum value at a time

t* given by
tan nt* = 2n/(B+B)w (7.7)

The value of sin nt at which the envelope achieves its maximum is

sin nt* = n———~—~7
(N?+(B+B) 2w’ /4) 2 (7.8)
It follows that
[G] = Ju(e*)]| = ——2L . |gin ntx|
e (y-(B-B)?)*

t*
| I Gg(r) g VPIDMIGERST)2 cos w(t*~1)dr| (7.9)

0
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Note that the term 1

t
l I Ug(T) e-(B+B)w(t_T) /zco

0

is, to the order of B and B, the velocity response spectrum Sv(w, ﬁ%ﬁ) for

s w(t—T)dTlmax

a damped single-degree-of-freedom oscillator with damping factor (R+B)/2 and is a
bound for the integral in Eq. 7-9. Thus an estimate for the maximum equip-
ment acceleration is

Iul mlsin T\t__l_ S (w, ____)

max

(Y- (B-B)? )
Utilizing the value of sin nt* from Eq. 7-8, the final estimate is
BB
] ;- 5 SV(.Q.L_Z_,._
i 1
max (Y+4BB)ﬁ (7.10)
For the lightly damped systems considered here
- e
w SV = SA w SD
so that the result can be written in the alternative forms,
5 B+B 1/2
[GCe) |y = S, (w5 57/ (v+4BB) (7,113
or
7.12)
B+B 1/2 (
la@® [, = Sy, B/ reapn)’t 1
g

It follows that if a designer is given only response spectra, at various
damping values, of the ground motion applied to the structure, the maximum
displacement and force in the equipment can be estimated by using the |
appropriate damped spectra for a damping factor equal to the average of 1
those in the structure and equipment, amplified by the factor (Y+4BB) % i
It is to be noted that if B+B is fixed, the maximum value of 4BB is achieved
when B = B, yielding the smallest value of the amplification factor. Thus
if the total damping is fixed the optimal choice is to have it shared

equally by equipment and structure. !
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Case 2: Yy < (3-3)2

The solution in this case for {i(t) in terms of specified ground
motion ﬁg(t) takes the form

u(t) = - S

It i (1) e~ (BYB) w(t-1)/2
«8-8) %) 8

0

(7.13)

where
n= (8B - y)% wp

This can be written in a form analogous to that in Eq. 7-4 with the envelope

-(B+B) wt/2

now in the form e sinh nt. When the envelope is analyzed as

before for its maximum value it is found that the time t = t* is such that
sinh nt* = n /(n2 + (B+B)2 mzlé)%

Following the arguments used to obtain the previous results it is

found that as before the amplication factor is (Y+QBB)%.

Case 3: Y= (B—B)2

The solution in this case takes the form

L}

u(t)

t
- —;i-@gf lig(T) o BRI w(t-T) sin n(t-1)dT (7.14)
By

0

where now
n = W%/

In this case the envelope takes the form

sin nte-(B+B)wt/2

and the time t* is given by

tan nt* = 2n/(R+B)w
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Using this and the appropriate value for n gives as the amplification factor
the term
e S S
((B+B) *+8Y) 2
The term By is of order 53 and may be neglected in comparison to
(B+B)2. Thus the amplification factor is simply (B+B)—l, but note that

1
2

since Yy = (B-—B)2 that:(B"l-B)_l = (Y+ABB)‘ . Thus, the same result as in the two

previous cases applies here.

Case 4: Y = BZ, B=0

This is the situation in which a true double root appears and the

solution has the form of a damped floor spectrum result,

2 (t
u(t) = - %? f ﬁg(T) e Bw(t_r)/zcos w(t-1) - (t-T)dT (7.15)
0
-Bwt/2 : ; 7
The envelope is wt e the maximum of which is reached at t* given by

wt* = 2/B. This leads to an amplification factor 1/B. We note, however,

that since y = B2 and B = 0, the amplification factor is again

1
-

(Y+48B)

Thus the Egs. 7-11 and 7-12 obtained for Case 1 are in fact correct for all
combinations of Y, B and B, which is a surprising result when one considers

the differences in form of the Green's functions for each case.

fed DAMPED, SLIGHTLY DETUNED CASE

The addition of slight detuning considerably modified the form of

the response which now becomes
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w I‘ LW(BHB) (1-T) /2

. ¥ u I 2\'_
ug(T) A sinh 2 w(t-T) cos(uz(: T)

0 — u)(l-i%)(t-'l')

2
+ X cosh w(t-T) sin m% (t-1) cos w(1+§)(t—r)

N =

(7.16)

3

+ y sinh § w(t-1) cos m%‘(t-T) cos w(l+§)(t—r)

Nz

€

+ u cosh 7 w(t-1) sin m% (t-1) sin uKl+E)(t—T) dT,

N =

where A and p are defined in terms of &, y, B, B in Eqs. 2-7 and 3-8. To
simplify the algebraic manipulations needed for this considerably more
complicated expression attention is focused on a single case which will be
illustrative of the result. The case selected is that of optimal use of
damping. That is, if a fixed total amount of damping B + B is specified then

the best selection of this damping is the case B = B. Then Eq. 7-16 takes

the form
t
a(t) = - % [ e W{BFBXE-1)/2 ﬁg(T) sin u%’(t-T) cos m(1+%Xt-T)dT
0 (7.17)
where
2 1/2
x = &t
Expanding the sin w%(t-T) term and recalling that for t >> £y the duration
of the ground motion, the term sin % wt, can be neglected, we have
o - at/2
u(t) = - % e (B+B)us sin Awt/2 R cos (wt-y)
.
where here 3
2. .2.10/2 5 -1
R = (Ai+A2) and ) = tan A2/A1 ;
!l E
with !
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t
ﬁg(t) e+(B+B) wt/zcos w(l+£/2)t dt

t

1 +(B+B) wt/2

iig(:) e sin w(1+£/2)t dt

Ao [
0
Az = [
0
The slowly varying envelope function
-(B+
o SPHBIUE2 L sesa
has its maximum at a time t* such that

sin lwt*/2 = — .

(0% (B+B) 2)1‘2

From this result and using the same reasoning as before

SA ((1+%-)m,ﬁt§)

lal ., = 2
T (£ 24 Y+4BB)
and
€., BB
5 Ll =il>_((1_:2__)fl—2_ :
s (£ +y+4BB) 2

amplification factor

2 -
(E7+Y+4BB)

It is surprising that for all the cases considered a universal result

and the average frequency of structure and equipment is multiplied by the

(7.18)

(7.19)

applies: The appropriate response spectrum evaluated at the average damping

Loy ‘. 9 " ™ —— ¥
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SECTION 8

COMPLETE SOLUTION INCLUDING OTHER POLES

In the previous sections we have determined the contribution to

the response from the tuning poles of the equipment-structure system. This

is of course the dominant part of the responsSe in the case of light

equipment mass, but it is easy to include the contributions from the other

poles. To do this recall that the non-tuning poles of Eq. 3-12 are close to

their location for the structure alone, as indicated in Fig. 3. For the

th
m  non-tuned mode the poles are

=-BQ *i
) QO 1Qm

Evaluating the residues and dropping the negligible terms, which are those

2
k
multiplied by the small modal mass ratio, m¢r /Mk << 1, k=1 to N, we

: : 3 : t
obtain, to dominant order, the contribution from the m & poles as
C’: -B Q t
2 e ™ sin th ,M # n

‘i:zg;}lﬂz m

and contributions of the same order from the tuning poles as

m

N C o
—_—rT we Bwt _in wt

m=1 1-(w/Qm)

m#n

where CT is defined in Eq. 3-15. Thus, the complete solution for the

response of the equipment takes the form

= t N g -B Q  (t-T)
u(t) = I u (1) ) ——tey (e ™" sin Qm(t-r))
g % feri1-@ 0 MU
m
m#n

N e
+ ) __.r__._z_ wo POE=T) w(t-1) | + i, (e-1) } dt

m=1 1—(m/Qm)

m#n

(8-1)

(8-2a)

(8-2b)

(8-3)
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where ﬁG(t) is the appropriate form of contribution from the tuning poles

given in its various forms in Section 5.

In utilizing this complete solution to develop the spectral !
response in each mode for design purposes, it is important to note that the
two parts of the solution in Eq. 8-3 have an entirely different character. The :
contributions from the non-tuning poles and the nondominant contributions from :
the tuning poles are conventional and would attain their peaks during the ground
excitation or shortly thereafter, while the dominant response from the tuning
poles as indicated in Sections 6 and 7 is controlled by the energy transfer from
the structure to the equipment through beating, which takes a relatively long 4

time. The maximum in the latter case will be achieved considerably later than 4

the former. It does not make sense to add these in the conventional way such 1

as square root of the sum of squares, or by a similar rule. In fact, they 1

should not be added at all, but treated as separate maxima. The maximum res-
ponse from the nondominant contributions can be estimated by the conventional

method of square root of the sum of squares.

Accordingly, the estimate of the maximum acceleration has two parts,

an early peak given by

N c';‘ 2
Iulmax £ z [ 2 SA(Qm’Bm)]

m=1 1-(Qm/w)
m#n (8-4)
. &
* s s SN )
[m=1 -/’ A ]
m#n

and the other, a later peak, from the dominant contribtions of the tuning poles

given by

. g BB
| ﬁ‘ - —— SA (ﬂ(l"’i) ’ “'—'Q> (8_5)

2 L
£ +v*tfrupn )'2
n

max 2




where § = (Qn-w)/w, and Yeff is given by Eq. 3-14. For light equipment mass

and lightly damped closely tuned systems the second peak will be the most

important.

Although not of immediate interest in this report, it is also
possible to utilize the methods developed to obtain estimates of the peak
response for systems which are grossly detuned, i.e., where the equipment

frequency is spaced between and well away from all of the structural frequencies.

To do this note that for light mass the structure poles are only

slightly shifted from their location for the structure alone, namely

P==-B& *im (8-6)

and additional poles at

LS
.i';‘\
.

p=-Bw t iw (8-7)

due to the equipment are included as shown in Fig. 7 (illustrating the

Aty i s Mgt ST ANIAL 5 i ISP

undamped case). The residues at the structure poles are as

before with the contributions from each m = 1 to N poles given by Eq. 8-2a.
The residues at the equipment poles, Eq. 8-7, provide a contribution to the

Green's function in the form, similar to Eq. 8-2b

N m
Cr -Bwt

=——————~l6j e sin wt (8-8)
m=l 1= (/) £

The derivation is completely standard and is similar to the terms from the

s HiasSi

structure poles. The complete response for the equipment in the grossly

untuned case is thus given by
! t N e -B Q_(t-T)
u(t) = Iii () § ——F—~ Q e = sin ©_(c-T)
o ° |m=l 1-@ /w)?

m

N 7
+( Y ______r___?) ol SN w(t-m¥ dt
m= | 1—(w/Qm)

s i e o G, AL bl 015431
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and the appropriate estimate of the pcak response is the conventional one
using square root of the sum of squares
m
N C 2

la] = )| —— s, ,8)
m=101- (2 /w)? A"m m

N v 2) %

| B gl %
m=1 1-w/q )?

This result can be used as an alternative to time history or modal analysis
of the composite N + 1 system. It is also an alternative to the standard floor
spectrum analysis which requires computation of the time history of the
structure aione. This is next applied as input to the equipment and then the
time history of the equipment is computed. Note that Eq. 8-9 is completely
independent of the modal mass ratios. In fact, it represents the general
closed form solution of the floor-spectrum method, and its interpretation
directly provides the simple estimate, Eq. 8-10. Indeed, the preceding
analysis which led to Eq. 8-9 is the mathematical justification for the use
of the floor spectrum method for the grossly detuned system. All of the
information needed for Eq. 8-10 is available from the building design, the
equipment frequency, and the design spectrum; it should thus be very

convenient for the designer to use in practical design applications.

It is worthwhile noting that the methods developed for dealing with
the tuned poles can be used to determine the response of systems with closely
spaced modes even if no equipment is included. Of course, in this case the
approximations used here based on the small mass ratio could not be used, but
the treatment of the envelope of the beating response would be entirely
similar. It is not to be expected, however, that, in the case of closely

spaced modes the maximum response would be much different from that of the
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other modes, except that it will occur at a much later time. It is the
light equipment mass that produces the large amplification, and the dominance
of the result in Eq. 8-5 for the late peak over that in Eq. 8-4 for the early

peak.

This is the reason that the peculiar ad hoc approach used by
Penzien and Chopra in Reference 11 led to a good result. In their approach,
they model an N-degree-of-freedom system with a light appendage by consider-
ing a set of N-two-degree-of-freedom systems in which one component is one of
the N modes of the structure without an appendage and the other is always the

appendage and numerically solve the N sets of coupled differential equationms.

They then add together the peaks from each of the two-degree-of-freedom systems

by the square root of the sum of the squares to obtain the maximum response of
the appendage. That the result is reasonable arises from the fact that in a
tuned system the contribution from the tuning poles, and thus in their case
from the particular two-degree-of-freedom system which is tuned, dominates the
rest. For this reason, their result is fortuitous. Were this approach used

for an untuned system, it could produce erroneous results.
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NOTATION

constants

equipment damping coefficient

model damping coefficient

structure damping matrix

modal participation factor

transform transfer function denominator
equipment attachment vector

interaction force between equipment and structure

indices

equipment support stiffness

model elastic stiffness

structure stiffness matrix

equipment mass

model larger mass

structure mass matrix

modal mass

total number of structural degrees of freedom
transform transfer function numerator
Laplace traiusform parameter
generalized modal coordinate
influence coefficient vector

time

duration of input ground motion
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SA( i acceleration response spectrum

Sv( ) velocity response spectrum

SD( s ) displacement response spectrum

u, 4, u equipment displacement, velocity, acceleration

u, ﬁ, ﬁ model displacement, velocity, acceleration

Ui, ﬁi’ Bi structure displacement, velocity, acceleration

ug, ﬁg ground displacement, acceleration

ﬁ;ff effective ground acceleration

ue Green's function for equipment response

B, B, Bn damping factors

Y mass ratio

§ root locus variable

€ small parameter

€5 62 roots

A, U Toots

n beat frequency ‘

¥ phase angle ;

equipment natural frequency \
structural natural frequency ?i
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