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FOREWORD

The work described in this report was performed by Boelng Aerospace

Company, Seattle, Washington, under Air Force contract F33615-76~C~3170, task

Nc. 3. The AFFDL task number 2403-05, ''Design Methods for Aeroelastic Military ;

Flight Vehicles," was under project number 2403, '"Stability and Control of Aero-
space Vehicles."
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The work was directed by the Control Dynamics Branch, Flight Control Livi-
sion, Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-

Patterson Alr Force Base, Ohio. The work was administered by Lt. Ron Johnson
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and Lt. Jerry Southern of the Control Dynamics Branch.

Mr. Donald L. Grande was the program manager, Dr. Wen-Fan Lin and

Mr. Michael D. Clarke, senior englneers at Boeing Aerospace Company, were the
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investigators. Mr. Gerald M. Dcrnfeld, specialist engineer and prime investi-

gator on the contract, assisted in the review. ;1
i

. This report covers work from April 1977 to April 1978. The report was 51
‘ submitted by the authors in August 1978. ;
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C£ Section 1lift coefficient
‘ c, Lift coefficient
c Pressure coefficient
| v, 2 ¢s LS | . A
! [CFM ], [CPM™"], [CPM ] Pressure influence coefficlent matrices (eqs. (6),(8))
; d Moment arm (eq. (13))
: 2 _%F Total derivative operator
by En Error (eq. (54))
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. reference 10
Lj Interpolation function (eq. (60))
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Mach number

Mode influence coefficient (eq. (59))
Normal vector (eq. (33))

Mode shape (eq. (26))

Nondimens.onal rolling rate
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,f d Nondimensional pitchirg rate

:E Hi Dynamic pressure at steady reference-flight condition
i r Distance between two points (eq. (33))
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;’ R Square error (egs. (46), (49))
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L
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SUBSCRIPTS
AE Asymptotic expansion
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LE Leading edge
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TE Trailing edge
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A Antisymmetric i
cs Constant source A
LS Linear source 1
: S Symmetric
| v Vorticity 3
(*)

Nondimensional time derivative

"

i
B
|
i
!




o T

PR

L e g T T AT T T T ek TR

a
s
b
E"
13
8

it

SECTION I

INTRODUCTION

The purpose of the work documented in this report is to improve the

accuracy of aerodynamic hinge-moment analysis. When addressing this subject,

one 1is primarily concerned with the flow over--and the pressure, force,

and moment experienced by--the nonplanar, multiple lifting surfaces. When

the control surface is deflected, the pressure distribution on the lifting

surface is significantly altered by the presence of the discontinuous kine-

matic downwash field. Associated with the change of geometry are such

phenomena as boundary-layer separation, free vortex flow, and thick wake.
In the transonic flow regime, the shocks lie partway back on the lifting

surfaces and interact with the boundary layer, which makes the problem highly

nonlinear., Attention to these phenomenz would necessitate a long-term study

and a: evaluation of each individual effect. 1Indeed, the prediction of the

hinge moment is a complicated subject. In view of the current status of the

theoretical development and the numerical schemes in various aspects of
computational aerodynamics, one might want to place reliance for such informa~

tion on measurements by wind tunnel or other experimental means when available

In the development of highly maneuverable alrcraft, the accuracy of hinge-

moment prediction is important with respect to the vehicle stability and

controllability. To design such aircraft certainly calls for a more efficient

tool using the product of theoretical aerodynamics instead of relying solely

on measurements. The bulk of this study is to review and exemplify several

of the exlsting methods for analyzing the aerodynamic loadings on the co .rol

surfaces, among which one is of semiempirical nature.

The first part of this work (sec. II) is concerned with reviewing the

formulation and coding of the hinge-moment subprogram in FLEXSTAB. Aero-

dynamic hinge-moment derivatives have previously been computed using the

FLEXSTAB programs. References 1 and 2 present results for the YF~16 and B-52F

aircraft, respectively. The YF-16 analysis was conducted by the AFFDL and

the B-52E analysis was completed by Boeing. An objective of che preseunt study

is to review the work of reference 1 and to improve the accuracy of hinge-
moment prediction.
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Linge mowments weve obtained by Boeing frr the YF-16 Government-furnished

geometry model. The effect of airplane flex.hility on hinge moments was

investigated using AFFDL-supplied NASTAP data. The near-field/far-field

option was applied to the control surfaces. The results of these analyses

were compared with those reported in reference 1.

To investigate the effect
o of paneling on hinge moments, the YF-16 was analyzed with various paneling
o

configurations and the results correlated with the Government-furnished
hinge-moment data.

The second part cf the work (sec. III) is to review and discuss the

theoretical and numerical characteristics of several aerodvnamic methods

|
K

relating to the load prediction on the lifting surfaces. These methods

include‘FLEXSTAB, Datcom, RHO 4, TEA 230, and che PAN AIR pilot code.

The
discussions are ocused on the behavior of their steady, subsonic solutions

PR

\ in regions of singularity, namely at the control-surface hinge line and side
\ﬁl

edges, and at planform breaks that exhibit discontinuities in surface slope,
planform shape, dihedral, etc.

Recommendations are made in sections IV and V to improve the aerodynamic
methods for better prediction of the load distributions on the control surfaces.
A solution procedure that combines the merits of panel and kernel function

methods is proposed as an effective scheme to predict the loading on a control
surface with nonseparated flow.

Conclusions are presented in section VI.

SECTION II

FLEXSTAB PROGRAM PEVIEW AND DEMONSTRATION

2.1 HINGE-MOMENT FORMULATION AND CODE

The hinge-moment theory, as derived by Beeing, was reviewed and judged

essentially correct in the context of the aerodynamic theory as used in FLEXSTAB

(ref. 3, vol. I). The code and flow charts were also checked. The code was

found to describe the theory properly; however, a few minor improvements and
corrections, as reported in monthly progress report No. 2 (31 May 1977)

submitted to AFFDL, are required at the printout level. A large number of

v arrors were found in the hinge-moment program flow charts (ref. 3, vol. III)

and therefore were corrected to represent the coding.
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2.2 HINGE-MOMENT ANALYSIS FOR YF-16

The initial aim of the analysis was to rerun the AFFDL data at Boeing to
establish a baseline to compare the AFFDL results with the Boeing results.
This comparison consisted of analyzing the basic paneled model with the
residual elastic option at sea level and 15,000 ft. A further comparison
was made with the near-field/far-field option (with low-density paneling)
applied to the rigid model. (For a description of the near-field/far-field

option, see sec. 3.1.3.) These correlatieon runs are listed as SD&SS runs
1 through 3 in table 1.

Having established a correlation of analyses between AFFDL and Boeing for
the basic airplane, the balance of the analyses was devoted to investigating

modified paneling configurations and tu the further application of the near-
field/far-field option.

These modified paneling configurations are listed as SD&SS runs 4 through
8 in table 1. Each successive paneling configuration vas based on the
experience obtained from the previous model, with the vbje~tive being to

improve both the hinge moments and airplane derivatives.
2.2.1 Comparison of AFFDL and Boeing Results for Basic Paneled Model

The basic paneled model analyzed by the AFFDL is shown in figure 1. This

model was used to compare directly the AFFDL and Boeing results.

To check the quality of the basic model, the antisymmetric stability and
control derivatives for both the rigid and flexible airplane as obtained by
the Boeing/AFFDL FLEXSTAB analyses were compared (table 2) with wind~tunnel

data obtained from reference 4.

Table 3 compares the hinge moments for the flaperon, horizontal tail, and
rudder obtained by the AFFDL and Boeing analyses for the rigid airplane and
the flexible airplane at sea level and 15,000 ft. For the rigid airplane the
results (except for a few minor discrepancies) are in agreement. However,
large differences are apparent in the comparison of the hinge-moment deriva-
tives for the flexible airplane both at sea level and at 15,000 ft. The
rudder hinge-moment derivatives show the smallest differences between the

Boeing and AFFDL results. The reasons for these differences are not known,

but they could be due to using a different NASTAP or a different version of
ESIC.
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Table 4 compares the AFFDL and Boeing flaperon hinge-moment derivatives
using the near-fileld/far-field option. The low-density paneling case was com-
pared for the flaperon only because 1t was evident from the AFFDL results that

while the basic flaperon hinge-moment d-rivatives Cpp » Chéb, and ChéA compared
o

poorly with wind-tunnel data, application of the near-field/far-field option
considerably improved them as compared to the wind-tunnel data.

While the basic flaperon hinge-moment results between AFFDL and Boeing
correlated well, as noted above, this is not the case when using the near-
field/far-field option. The Boeing near-field/far-field results are more
commensurate with the basic results (as is to be expected) than are the AFFDL

results and generally show much smaller changes.

Because AFFDL applied the near-field/far-field option to all the control
surfaces while Boelng applied it to the flaperon only, there are a different
number of thin bodies and panels involved. Also, it 15 concluded that there

are some coding errors in the optfon; this may explain the differences in the
rosults.,

2.2.2 Investigation of Other Paneling Confligurations

Having completed the comparison runs with the basic AFFDL paneling, alter-
native configurations were investigated; however, while this work was in
progress, it was discovered that there was an error in the hinge-line defini-
tion of the flaperon in the AFFDL input data. Although the x-coordinates
describing the ninge line were correct, the y-coordinates were displaced
inboard, which resulted in the flaperon hinge line belng further aft than the
correct position. This error is the direct cause of the flaperon hinge moments
being so small compared to the wind-tunnel data. As shown in table 5, cor-

rection of the hirge line greatly improves the flaperon hinge moments.

By the same argument the horizontal-tall hinge moments could be improved
since, compared with wind tunnel data, +Chu is too large and ~ch6 is too
small. 1t is evident that by redefining the horizontal-tail hinge line a

little further forward, +Cha would be: reduced and -ChS increased.

Table 6 compares the hinge-moment derivatives obtained from the various
panellng configurations investigated. In each case the flaperon hinge line
is in the correct location. 1In table 6 the first model is the basic paneled

model with the corrected flaperon hinge line (fig. 1).

N -~ - - - : ST b N
el i T s " P . P e il b e N

Ay e

Gur . i . wd

e o o L s, M

U RS P JO




E
]
]

The second model has the same paneling as the bhasic model except that the
ianermost row of panels along the interference body has been incorporated into
one thin body called STRAKE. Previously the forward panels were part of the
wing and the aft panels comprised a thin body called THTAIL. In general, it is
better to have adjacent thin bodies in contact along chordwise lines rather
than spanwise lines, although this is more important when leading-edge thrust
or thickness is being considered.

The third column of tabl. 6 lists the hinge-moment derivatives for the

basic paneled model with the low-density near-field/far-field option applied to
the flaperon only. The flaperon hinge moments Cp S and ChdA and, especilally,
C, are improved over the corresponding hinge moments of the basic paneled

o

model when compared with the wind-tunnel data in table 7.

The fourth column of table 6 lists the hinge-moment derivatives for the
model that was paneled to simulate the low~density near-field/far-field model
(fig. 2). This model gives, in general, no better results than the basic

model while being much more expensive (293 versus 254 singularities),

The fifth column contains the hinge-moment derivatives for an "improved"
paneled model (fig. 3). The paneling for this model 1s changed from the basic
in the following ways:

1) The wing panels are denser both spanwise and chordwise so that the
disparity in size between the panels just ahead of the {laperon hinge
line and those just behind is reduced.

2) The triangular panels in the basic model (believed not to be good
from a numerical point of view) are removed and the fine panelir on
the flaperon 1s continued across the interference body.

2) The horizontal-tail paneling is changed in order that the streamwise
panel intersections continue to line up with those on the wing. The
paneling on the interference body is lined up with that on the
horizontal tail.

4) The final row of panels on the interference body is removed in order
partially to represent the gaps between the empennage and the fuselage.

5) The fin and rudder paneling is left unchanged since the rudder hinge-

moment results are good.

2 -



In spite of these various modifications and a further increase in the number

»
H
N
k1

of singularities (299) over the low-density slmulation (293), comparison to

wind-tunnel data shows thot the hinge moments are not improved correspondingly.

SECTION 111

REVIEW AND DISCUSSION OF EXISTING HINGE-MOMENT ANALYSLS METHOLS

i i ot

In view of the complexity of the subject, the discussion here [s limited

. to longitudinal control in the subsonic flight regime. The general discussion,

however, can be extended to lateral-directlonal concrol and to the supersonic

flight regime where applicable. The control devices include various types of

flaps and slats, such as plain or split flaps, single- or double-slotted {laps,
i Fowler flaps, leading-edge flaps, and sluts.

Complicating the analysils of

, hinge moments are geometric arrangements such as basic airfoil characteristics,

e S NI . o kit

v |

b trailing-edge bluntness and angle, gap size and geowmetry, nose shape, and bal-
E‘ ance ratio, Except for very small angles of attack and control deflections, ‘
; the hinge moments are basically nonlinear. At larger angles, the {low 1is

L bound to separate on the upper surface of the tralling-cdge control surface
and hence is characterized by the boundary-layer formulation. All of these

factors make the predictlon of the hinge moment extremely difficult.

A typleal longitudinal control may be provided by deflecting the elevator,

i which may be all or part of the tail, or a tralling-edge flap in a tallless
design, 1In addition, a tab may also be mounted on the elevator or flav. For

small control deflections, §, as Is usually stipulated, one may assume that

i the hinge moment, Cp, is linear In the coatrol deflectfon such that

Cy = Ch(d,(]) + Ch‘S B (1)

; where Cp(rt,§q) is the basic hinge moment when ¢ = 0 and Ch6 = %%h. In the case
. of small angle of attack, u, and plitch rate, {, the linear relation holds

? ’ among the hinge moment, the pitch rate, and the angle of attack of the surface
that contains the control surface. Then,

ach .

' _n N 2
e chA q + ch(5 8 (2)
o q

]
In terms of the angle of actack, %, we have

Cy = C

e T e . e . SR

Ch = Ch, + Cp, @+ Cpy q+ Cng o (3)
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where the coefficients are related through tail downwash, etc. (ref., 5), as

BCh A S JE
= 1] .. - . ______:—_ r AR
Chp =G " tag Uy mr -y (-l
3] o S
3C
h oL
C, == (1 - <= 4)
hu BaS a0,

Hence, for the range where linearity holds, the calculation of hinge moments
reduces to the evaluation of Chy» Chg,s Cha’ and Chg gseparately. Basically,
Chy is the camber effect; Chy, and Cha are, respectively, the hinge moments due
to unit angle of attack and unit pitch rate at zerc control deflection; and
Chﬁ is the hinge moment due to unit control deflection angle with camber,
angle of attack, and pitch rate set to zero. A typical load distribution on

the control surface with and without deflection 18 shown in figure 4.

If the control surface is not deflected, the evaluation of the coefficients
Cho, Chys and ChEi iy no different from that of 1ift and moment of the basic
airfoll for which various technliques, either analytical or cxperimental, are
avallable. The prediction of ChS’ however, 1s quite involved. Physlcally,
when the control surface is deflected, the geometry of the configuration
becomes

lifting

more complicated, elther through the change in the geomatry of the
surface or through the creation of the gap between the basic afrfoil
and the control surface. The actuation of the control suri.ce also Induces
viscous effects that may alter the boundary layer ahead of the control-surface
leading edge and, possibly, cause the flow to geparate from the control surface,
depending on a variety of geometric factors. Mathematically, potentlal-flow
considerations tell us that the deflection of the control surface includes

a4 discontinuity in the planform and/or the slope; both factors introduce
gingular behavior along the hinge line, the planform breaks, and the side

edges. Aside from the above complications, if the 1'low scparatlon does occur,
as is usual on the upper surface of the tralling-edpe control with moderate

or higher angles, the existing analytlical methods break down completely

gince the current theories for Inviscid flow and boundary-layer 1'low no

longer apply. Consequently, wind-tunnel tests or semiempirical methods are

the last c¢esort for hinge-moment predictions. Nevertheless, it would be morc
beneficial if a certain degree of confidence could be achleved through the

development of capable analytical schemes.

The object of the current task is to review and discuss the theoretical

and numerical characteristics of the FLEXSTAB method (ref. 3) and a few other

7
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numerical methods, with particular emphasis on the prediction of the hinge-
moment control derivative, Ché-

3.1 FLEXSTAB METHOD

The FLEXSTAB method for predicting stability characteristics of the air-
plane is based on the numerical scheme developed by Woodward (refs. 6, 7, 8).

The governing flow cquation ls the linearized potentlal flow with boundary

conditions satisfied on the mean sucfaces; i.e., in a linearized sense.

Numerically, the resulting finite set of integral equations, which correspond
to a set of boundary conditions applied at finlte points, is reduced to a

system of lincar algebralc equations with cvefficients called the "aerodynamic

influence coefficients" (A1C). The solutions of the linearized boundary-

value problem are given in terms of perturbatlon velocities and pressure

coefficients, from which the forces, moments, and stablility parameters atre

consequently derived., A brlef desceription of the aerodynamics In the FLEXSTAB
dgystem 18 glven below, followed by the hinge-moment calculations and the dis-

cussion of the numerical characterdstics of the solutions,

3.1.1 Aerodynamics in the FLEXSTAB System

In the FLEXSTAB system, the components In a general alrplane conflguration
are categorized as either thin bodies (wing, tall, strut, pylon) or slender

bodles (fuselage, tacelle, cexternal storage). Stlll another category of imagi-

nary bodies, called Interfereace bodies, 1s needed to serve as the medlum of

interfereiace between the thin bodles and the slender bodles.

Since both the flow equation and the boundary condition are lincarized,

the principle of superpositcion applies, Thus, for a body having camber and

the total effect can be considered as the sum of
effecty of camber alone and thickness,

bolow.

thickness, the Individual

Each {ndlividual effect is deseribed

clreulation, which can be realized on a sheet of vorticelty, The 1ift of a
thin body is slmulated by placing horseshoe vortices on the mean camber sur-
Tace. The distribution of the vortices ls made simpler by dividing the mean
surface (nto quadrilateral pancls with the vortliclty strength on cacli pancl
specified as a constant.  The boundary conditfon on the solld surface s such

that the cumulative veloclity normal to the surface ts tdentical to the

-
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kinematic downwash Y on the boundary point (control pcint) of the surface.

Mathematically, the vorticity strength SV on each panel 1s determined from the
equation

{} = [AIC) sV) (5)

where each element of the [AIC] matrix, the aerodynamic influence coefficient,

is precisely the normal component of the perturbation velocity induced by a

vortex panel of unit strength. Since the lifting pressure is directly related

to the circulation or the vortex strength, the lifting pressure at zach panel
centroid location ig calculated as

e} = teem'] tsV) (6)
where [CPMV] iy a diagonal matrix with each clement equal to 2. When gsubsti-
tuting equation (5), the lifting pressure is seen to be related to the boundary
condition as

{cp} = [LSCT {p} (7)

where

[LSC] = lCPMV] [ALc]'1

Thin-Body Thickness Problem--$Since the combination of sources with a uniform
freestream yields stream surfaces that resemble solid surfaces, the thickucss
ef fect of thin bodies {s simulated by replacing the vortex singularity distri-

bution in the 1ifting problem by source singuluritices. The thickness pressure

on the thin body can be caleulated without solving the boundary-value problem
since the source strength 1s known to be proportiovnal to the surface slope

which has been gpecifled. 1Tu the FLEXSTAB gystem, the gsource diatribution on

cach panel ls either constant (CS) (for M > 1) or linear (LS) (for M < 1).
In general, we have

{cpb} « [epMe®] (895) 4 oM P (M) (8)

. ; s
where cach element of the [CPM7)] matrices is related to the U~component of the

perturbation velocity induced by source slngularity distributions (constant or
linear) of unit strength.

Slender-Body Thickness Problem--ln a manner similar to the modelidg of the

thin~body thickness, the slender~body thickness can be sfmulated by distribut-

Ing source singularity on the mean centerline. To gfmplify the numerical

L)

. N . . U ST e et
ittt i '

Py

Al et st

L‘E i o e S



it l o

T odlan>

procedures, a slender body 1s divided transversely into many segments. The
constant-strength line source is used in subsonic flow and the linearly varying
line source is used in supersonic flow. At a boundary point of each slender-
body segment, the flow tangency condition 1is imposed. Th: source strength is
derived from the tangency condition, and the pressure due to thickness effect
is computed as in equation (8). Since the flow property is symmetric with
respect to the mean centerline axis, this problem is also referred to as the

axial flow‘problem.

Slender-Body Lifting Problem—-lor a cambered slender body or a slender body

subject to angle of attack or dideslin, a lifting force or side force can be

developed. DBoth phenomena are referred to as the crossflow problem. It is
known that the derivative of the axial flow potential with respect to the
radial coordinate identically satisfies the crossflow equation. 'The lift on
a slender body is simulated by replacing the line source distribution in the
thickness problem by the line doublet distribution, as the doublet potential
ig derlived from the source potential by differentiation. The doublet singular-
ity can be quadratically distributed (for M > 1) or even splined over three
centerline segments (for M« 1), The strength of the line doublet gingularity
on each centerline segment is constralned by the boundary condition imposed

at a certain polnt on the mean centerline of the slender body. The resultant
lifting pressure on cach segment can be expressed similarly to cquation (7),

with the reference arcas properly accounted for,

Multiple~Body Interference Problem--If there are more than one body, eclther of

the game or different category, in the same flow ficld, interference effects
take place between the bodles. These interference cffects must be separately
accounted for and then combined with the results of the solutlons due to
fsolated bodies. The mutual interference among bodies can be illustrated by
u simple wing=-body coafiguration, The effect of the camber and Incldence of
the body on the wing 1s expressed in terms of extra downwash on the mean wing
surface induced by doublet singularity on the bady. On the other hand, the
presence of the camber and the incldence on the wing also affect the body.,
However, thls influence is only indirect; i.e., 1t 1s expressed as the downwash
o an {maginary shileld--the interference body--that wraps around the slender
body. The extra downwash on the interference body 1s canceled by the normal

velocity induced by singularities distributed on the interference-body pancls.

10
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These panels are vortex panels, as are those on the thin bodies. The resultant

pressure on the interference body 1s then transferred to the slender body with

which it is assoclated. In general, the pressure on the siender-body segments

and interference-body and thin-body panels can be expressad as:

{cp} = [Ap,] (v}

(9)

where {{} includes incidence and camber on slender-body centerline segments
3

and thin-body panels, while [Apg] contains the ensemble of [LSC] for each

_ body, with the columns corresponding to interference-body panels deleted. J
|
F‘ The contribution of thickness to the 1ift (buoyancy force) can likewise be i
L\ included as
i" {cpv}i“t - (Lsc] (p°yint (10) |
ﬁ‘ whete {wS}int is the negative of the flow incidence on Interference-body and
EE thin-body panels due to source singularities that are employed to simulate the i
'\ volume of the wing and the body, 1.e., '
i
t 5. int , ,
% WA - ) (%) (11)
b :
! ‘ with [1D] being the thickness downwash matrix. The resulting pressure, which
L
e includes the thickness effect, 1s then
j
P \ o, Vydnt
| M - - ! 1
L ERENUARIERCRY (12) ‘
i 3.1.2 Cemputation of Hinge Moment *
The 1ifting pressure given in cquation (12) contains the loading on the ]
contrul gurface, which 1s part of the thin body. The hinge-moment coefficient i
E ls computed ag i
1 i
P Cy = 5 d 3. AC
E : h ™8 C, Zi: cy 5y My
}

| T { V,int
- é-c{—:: ldc] “’FP] “APO] {U)} - {Cp } }

(13

where the nonzero elements of [dc] are the distances from the centroid of the
control surface panels to the hinge line.

> el

The elements in |[Tpp) are the areas
of control surface panels, and Sc and CC are, respectively, the reference area
and length for the hinge-moment coefficient.

Note that the incidence vector {)} consists of the effects due to camber

and control-surface deflections as well as various motion variables, such as

]
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angle of attack, sideslip, pitching, rolling, and yawing velocities.

3 Since i
‘ only a linear relationship is considered, we have i
(W) = (0} + (W} & + {yg) o + {vg) B i

+{up) B+ (i) &+ L) £ (14) {

‘ For longitudinal motion, only the incidences due to camber, angle of attack 1

|

i o, pitch rate §, and the elevator type of the control deflection § are con-
[1 sidered. With equation (14) in mind, the hinge-moment derivatives for longi-

|

tudinal motion can be obtained from equation (13) as

-

Ch = 5o [e] [Tyy] (lhpgl The) = {¢,"11")
1

- \ 1
?‘ Cha ScCa [d.1] [TFP] [Apei {wa}
. 1 - 1 ! e s
| |
? ‘ Cus = 5oog [de] [Typl [hpgl 0] (15) %
- 3.1.3 Discussion of Numerical Characteristics i
i
. Without elaborating on the limitations that are imposed on the potential
i’ flow solutions, it should be noted that the linearization of the flow equation
b and boundary condition takes on different forms that vary from one p: nel i
. method to another. In the FLEXSTAB analysis, the aerodynamic representatilon }

B is such that the boundary condition is algo applied in a linearized sense;
L.¢,, the boundary condition 1g satisfied only on the mean surface rather than f
the actual configuration surface. Although the approximatdion of the boundary

condition s fully consistent with the linearized theory, it does impose a

t severe restriction on the control-surface deflection as far as the computation

f of the hinge moment 1s concerned. Thus, the vortex singularities used to

! simulate the 1ift on the control surface are placed on a mean surface as 1f

the coutrol surface were not deflected, and the boundary condition is also

' applicd at the mean surface, with the tangency condition (local incidence)

‘ evaluated at the deflected configuration. Furthermore, the FLEXSTAB analysis

employs the velocity conditiorn, while In the linearized theory it has been

‘ shown that it is the mass flux, instead of the velocity boundary condition,

g that satisflesy the flow equatlion., That is to say, the tangency condition

implies that the mass Elux 1s tangent to the configuration surface. The

E perturbation mass flux differs from the perturbation velocity in the component

i 1 2




lying in the compressibility axis direction in which the mass flux component
1s equal to the velocity components multiplied by a factor (1 - M?).

Although the interference effect between all aerodynamic components has
been accounted for in the manner inherent in equation (9), the role of the
thickness only manifests itself as the effect of buoyancy. Consequently, the

thickness of an igolated airfoil, in particular the trailing-edge angle of
the control surface, has no effect on either the loading distribution in
equation (12) or the hinge moment and its derivatives in equations (13) and
(15) since {va}int in equation (10) is identically zero. It is known, how-
ever, that both the control-surface leading-edge bluntness and the trailing-
edge angle are crucial in the hinge-moment calculation. The information on
the thickness of the ailrfoil 1s lost through the assumption that, in the
linearized theory, the flow problem can be separated into the symmetric prob~
lem due to thickness and the antisymmetric problem due to angle of attack and
camber. Because of the gsymmetry of the thickness problem, the thickness of
the airfoil produces no net effect on the loading., Thus, a FLEXSTAB analysis
concerning hinge moments 1is further limited to very thin wings unless it is
corrected by the local effect due to thickness, such as the correction on

the local velocity induced by the thickness of the airfoil. Since the lift
is agsgociated with eirculatlon, and hence the vorticity, the constant-vortex
panel implies a constant-pressure panel. In the linearized theory, che
singular behavior of the flow 1s realized in the areas close to a subsonic
leading edge, planform breaks, control-surface hinge lines, and side edges.
The resultant loading in these regions, therefore, exhibits a large gradient
in a certain direction. 'The effort to simulate this type of loading with
constant-pressure papnels 1s rather stringent. An obvious way to achieve
accuracy in the solution is to increase the density of the panels in the
region of the leading edge and planform breaks, and on control surfaces. This
may not be a good practice from an economics viewpoint and because of the core
limitation of the computer. Thus, a better paneling scheme nust be sought to
yield a loading distribution with a certain accuracy. The panel scheme should
be intimately related to the planform geometry and the kinematic downwash
distribution. One cannot overemphaslze the significance of the solution near
the planform breaks, hinge line, etc. However, a ponr algorithm concerned
with planform breaks has been built into the FLEXSTAB program. If a stream-

wise panel row spans either a leading- or trailing-edge breakpoint in the
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planform, the breakpoint edge is automatically redefined by connecting the row

and planform edge intersections with a straight line (fig. 5).

The singular
behavior of the solutio.

vear the original breakpoint is therefore smeared and

relocated to the neighbor.ang regions. The result of this practice will incur

nore errors.

An alternative method for computing the aerodynamic influence coefficients

in the regions of control surfaces, wingtips, wing-body intersections, etc.,

has been provided in the FLEXSTAB program. This method 1s the near—field/far-

field option, which has been applied to analyze the hinge moment for the

YF-16 airplane in section II. This method presumably yields more accurate

\
results in the region where the loading is changing rapidly: howevler, it has
had very little evaluation and is basically unproven.

The mechanism of this
method is described as follows.

A near-field region may encompass a few
Each panel in the reglon is equally subdivided into many near-field
The downwash-singularity strength relationship is still described as

panels.

panels.

in equation (5), except that the Incidence on the control point of each sub-

panel is set equal to that on the control point of the far--field panel, which

has been subdivided. Since each near-field region has been isolated from the

global region, the singularity distribution and, hence, the loading on the
region are identically the same as produced by an isolated wing. The diagonal
elements of the aerodynamic influence coefficients based on the near-field

calculation are then equivalent to those that would yield the average loading

over the near-fleld region as an isolated wing. As an illustration, we

assign a single panel in a many-panel wing as a near-field region and then
find the aerodynamic influence coefficient using the near-field method.
Suppose we preperly subdivide this panel into 10 panel rows and 5 panel

columns and then compute the near-field aerodynamic influence coefficient

matrix of size 50 bv 50. The singularity strengths and hence the lifting

pressure on each subpanel will then resemble the loading distribution on the
panel as an lsolated wing corresponding to the flow incidence . A

typical chordwise load distribution of a lifting surface in subsonic flow is

depicted in figure 6(a). The method states that the aerodynamic influence

coefficient of this panel based on the near-field calculation is proportional

to the Incidence divided by the average loading of this 1solated panel wing,

=

_— -1 _ =
By fAcp dx] = 'WACp
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On the other hand, the chordwise and spanwise downwash distributions induced

by a constant-pressure panel are shown in figures 6(b) and 6(c), respectively.

The usual aerodynamic influence coefficient in the far-field sense is the down-

wash evaluated at the control point of the panel. Whether the near-field/

far-field method can yield a more accurate result is still an open question,

as is the optimum location of the control point in the panel method.

Finally, this section concludes with numerical results generated by the

FLEXSTAB program and comparisons with test data. The test model is an arrow-

wing wing-body combination provided with leading- and trailing-edge flaps. The

arrangement of panels used for the subsonic flow analysis is shown in figure

7. The chordwise pressure distributions at three spanwise stations on the

wing with the full-span trailing edge deflected are shown in figure 8. Also

included in figure 8 are the wind-tunnel data given in reference 9. By com-

parison, the FLEXSTAB method is shown to be capable of predicting the overall

trend of the loading distribution qualitatively. However, in this case a.

|
|
|
i
§

least, the predictions are quantitatively poor near the hinge line, even at

the inboard sections of this highly swept, low-aspect~ratio wing.

3.2 DATCOM METHODS

b M e . el

The Datcom (Data Compendium) methods of aerodynamic stability and control
(ref. 10) as compilcd by the USAF are basically semiempirical. This 1s the

only reference included for the discussion of semiempirical hinge-moment cal-

culations. The Datcou methods for computing hinge-momecnt derivatives are

limited to small angles so that flow separation does not take place. Under

such restrictions, the hinge moments are expected to be linear. Additional
parameters that constrain the solution to the linear range of the hinge
moments are the trailing—edge angles, the airfoil thickness ratios

shape, and the balance ratio.

the nose
The effects of seals and gaps are important

for either plain or balanced controls, since the pressure distribu! ‘on

changes according to whether the gap is sealed or unsealed. Additional
factors such as type and/or location of the seal, the nose shape, balancing,

and the basic airfoil shape must also be considered. The Datcom methods,

however, do not account for unsealed gaps.

The hinge-moment derivatives discussed in the batcom methods are Cha

and C\G. For either case, the section derivatives are given first, based on

15
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the lifting-line theory.

The hinge-moment derivatives are then computed from

section characteristics, using a lifting-surface correction to account for

sweep and aspect ratio. Ti.e Mach-number effect is accounted for by using the

Prandtl~Glauert rule. Hence the Datcom methods are suitable only for higher

aspect-ratio wings and lower Mach numbers. They do not provide the detail

required for the load distributions on control surfaces. In this section, an

excerpt is given from Datcoum concerning the calculations of hinge-moment
derivatives.

This is followed by an analysis of the hinge-moment derivatives,

Cha and Ch@» for the YF-16 wing configuration using the Datcom methods, and a
discussion of the methods in general.

3.2.1 Method of Computing Hinge-Moment Derivative Cha

The semiempirical method of Datcom for evaluating section hinge-moment
derivative C;, applies only to sealed trailing-edge control surfaces in the
o

linear mowent range. This derivative is computed as

e T o A T T

i ¢ [ Chu } €y )

‘I h = o N T h
: o (Chu theory o theory
: +2 (cp ) 1o and - (e
| o theory (Lﬁu)theory 2

where Chd/(chu)theory and Lem/(cﬁu)theory are empirical. The second term

accounts for the thickness distribution, with ¢ being the trailing-edge angle
and U the thickness ratio.

The nose shape and the nose-balance effects are given by ancther empirical
3 relotion as

(Cha)balanceJ

’ \ - 17
¥ (Lhu)balance Chy I Chy, (17
and the compressibility effect is included via the Prandtl-Glauert rule

. ) (Chu)low—speed ‘
: I = I 18 |
ﬁ ‘ M T M (18) i
% Thls section hinge-moment derlvative 1s then used to compute the hinge-moment :
1 '
K derivative for an entire wing as %
oo My |
. Ny T AR+ 2 cos A Moy T hey (19) .
b Clh .
i Q
1 ,
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where AC; is an approximate lifting-surface correction accounting for induced
o
camber effects.

The expression is directly applicable to control surfaces having constant

chord ratios and constant airfoil sections. Otherwise, the average value of

the section characteristics should be used.

3.2.2 Method of Computing Hinge-Moment Derivative Ch6

The Datcom method of computing Ch6 is very similar to that for Cha' It

is also subject to the limitations as discussed for the Cha computations.

The basic section derivative is given as

Chg' = bS] (o)
hg = oy Ch
8 (Ché)theory 8’ theory
Ce
#2000 oory L1 - ?5—-)-‘—5——— I (tan - D) (20)
£5 theory
The nose shape and the balance effects are corrected as
(Cyy0)
N - ' §’balance "
(('h(s)balance Ch'b Ch(s‘ ] (4-1)

and the compressibility is likewise included by using the Prandtl-Glauert rule.

Tle hinge moment is computed from the section characteristics as

2 cos AC/4
Chg = cos A, cos Ny TChody + dg (Cuydy TR ¥ 7 cos N4

+ Mg (22)

where g is the two-dimensional lift-effectiveness parameter calculated either
as

(Ce—é)‘\l

‘/.LS - _(—(::T_S- (23)

or, if experimental values of the section-lift increment Acf are avallable,
as

¢, T T, )
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3.2.3 Numerical Results for YF--16 Wing

The computations of hinge-moment derivatives for the YF-16 wing using the

Datcom methods are given below.

Wing Data:
b = 348.4 1in M=0.9
S = 40,320 in? q = 1,201.43 1b/ft?
AR = 3 Balance ratio = 0
Cc = 21.85 in Tan AHL = 0.15893

= . 2 - .

Sc = 4,067.6 in Tan AC/4 0.62635
CC/C = 0.191 No thickness

From equation (6.1.3.1-a) of reference 10, we have
Chd !

Cha' = [’-(‘E_‘:;;')—-—-—] (Ch )

theor per radian
theory a y

Next, compute the Reynolds number,

©
i

0.00237689 slug/ft’®
1,005.4475 ft/sec
131.244 in

3.719x10~’ slug/ft-sec
pUm C 7
Re = — = 7.03x10

(=)
o
] ]

=
]

From figure 4.1.1.2-8a of reference 10, we find

Czu

(Ceu)theory

= 0.96

Then, use figure 6.1.3.1-11la of reference 10,

|

Chu
(Cha)theory = 0.9
Also from figure 6.1.3.1-11b of reference 10,

(Cha) = - 0.5 per radian

theory
Thus,

Chu = -0.45 per radian
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Correcting for Mach number by the Prandtl-(Glauert rule, we have

(Chy)y = =1.032

Next apply above section characteristics to the entire wing as follows

equation (6.1.6.1-a) of reference 1

AR cos AC/4

Ch =
a AR + 2 cos AC/

4
= -0.55886 + ACp,

0,

(ChQ)M + ACha

Then, from figure 6.1.6.,1-19a of reference 10, we find

AC
hu

Cey By Ky cos Agyy

= 0.014

Using figure 6.1.6.1-19c of reference 10, we have

82 = 0.92

From section 4.1.1.2 of refereuce 10, we calculate Cp as
(71

1.05 Cly,

Cpg = [
o g (Cfa)theory

= 14.523 per radian
Next,
Yy
”i - 375"- 0.2405

Yo
n, = 375 = (0.775

From figure 6.1.6.1-19 of reference 10, we find

(K ), = 1.35

(Ka)no = 2.90

then, use equation (6.1.6.1-b) of reference 10,

(Rong A=) - (Kin, (1 -n)

K

] (Cea)theory

a HC - ni

Finally,

ACp,, = 0.1106
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Hence,

Cha = -0.55886 + 0.1106 = -0.44828 per radian
On the other hand, the FLEXSTAB result for an entire YF-16 configuration is

HMa = -1,375,229 1b-1in per radian

or
HM

Chy = =55 ~ ~0.1855

qlsc c
The comparable wind-tunnel result as shown in section II (with SC and Cc
adjusted) 1is

6‘1 = =0,2127 per radian

Next, from equation (6.1.3.2-a) of reference 10, the section hinge-moment
derivative Ch6 is calculated as
t

o
<Ché)theory

Ch6 ] (ChG) per radian

theory
CC
with —= = 0.191 and Cp /(Ch)

= 0,96, we find from figure 6.1.3.2~12a
theory
of reference 10,

Ché'
('6—"")_' - 0097
h§’ theory

whereas (Ché)theory is given by figure 6.1.3.2-12b of reference 10 as -0.92,

Thus

Ché' = -0.8924 per radian
At M = 0.9, we have

(ChG)M = ~2,0473

The hinge-moment derivative Ché for the entire wing is given in figure
6.1.6.2-a of reference 10 as

2 cos AC/4
M AR + 2 cos AC/

Chg = cos AC/A cos AHL [(Chd)M + o (Cha) ] + ACh5

4
Now, the definition of the lift-effectiveness parameter is

Qg = _(Czd)a/(cﬁu)ﬁ
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where (Cza)a can be obtained from equation (6.1.1.1-c) of reference 10, for
small flap deflection, asC
(Cpg)y = ["(‘C—['fi“—
§

theory

J (C£5)theory

From figure 6.1.1.1-39a of reference 10,

(Cgé)theory = 3,4 per radian

and from figure 6.1.1.1-39b of reference 10,

Cté
46—) - 0-93
L8’ theory
then
(CKG)u = 3,162
80 that
?huu

Now, from figure 6.1.6,.2-15u4 of reference 10,
AChG

Ceg B, K cos AC/A cos A = 0.025

wheru CEG = 3,162, B2 = (.92, and from figure 6.1.6.2~15b of reference 10, we

find
(}(6)ni m 1,25
(K, = 2.80
So that
v _(Kd)ni(l ; lg)n_(Ké)”O(l - ”0)- 0.5975
o 1
Finally,

AChg = 0.036372
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Hence the hinge-moment derivative Chd is
Chg = -1.646 + 0.036372 = -1.6096 per radian
The FLEXSTAB result for the entire YF-16 airplane 1is

HM = -598,490.2 lb-in/radian

or
HM

Chg = 715,

=« -(),8075 per radian

The comparable wind-tunncel result as shown in gection Il (with Sc and Cc
adjusted) is Cp = -0.,4592 per radian. Tt is noted that both the hinge-
moment derlvatives Chu and Chg computed from the Datcom methods are about
twice as large as the FLEXSTAB results. No conclusion could be made sinee the
FLEXSTAB's prediction is based on the entire YF-16 configuration, Also, the

Datcom methods break down for a low-aspect=ratio wing us on the YF-106.

3.2.4 Discussion of Datcom Methods

The Datcom methods for hinge-moment calceulation are restricted to a linear
relutionshlp between gmall angles and flow propertics. The flow is also
assumed to be attached and the gaps are sealed. The analydls is restricted
to plain trailing-cdge flap types of control gurfaces, The hinge-moment
derivatives are computed from the section characteristics such as the 1ift-
effectiveness parameter e a8 well ag Ctu’ Cté’ Chu’ and ChG' Basically, the
analysls employs the Lifting-line theory to calculate the two-dimensional
hinge-moment derivatives, with an additional lifting-surface coirection to
account for sweep., Consequently, the methods do not account for wing-body
interference effects that may be important for inboard controls. The analysis
is dircectly applicable to control surfaces having constant chord ratios and
constant alrfoill contours across the span; otherwise, the average section
characteristics have to be used. It does not apply to configurations with
wing cutouts or with control surfaces that do not have ends parallel to the
plane of symmetvy. The method does account for such factors as balance-chord
ratio and shape, traliing-edge angle, and bluntness as well as the nose shape.
Since the methods are based on the lifting-line theory, the calculations do
not include the planform irregularities such as planform breaks where the

solutions exhibit singular behavior. In summary, the semiempirical methods
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of Datcom are not superior to the analytical methods so long as they offer no
solution for separated flows or unsealed gaps.

3.3 RHO 4 METHOD

RHO 4 1is a computer proy-am for predicting unsteady lifting-surface load-
ings caused by motions of leading- and trailing-edge control surfaces having

sealed gaps (refs. 11, 12, and 13). In the regions of singularities, namely

at hinge lines and side edges, the discontinuities in downwash are removed

1
: and handled separately by the technique developed in references 14 and 15, 1
|

o ————

The resldual downwash, which 1s falrly smooth, 1s then processed using the
mode~kernel function approach,

: The methods of solutlion for steady flow arce desceribed, followed by a
| discusslon of the numerical results,

3.3.1 Collocation Method of RUHO 4

The analyses of RHO 4 are applicable to thin coufigurations having full-

; gpan or multiple partlal-gpan control gurfaces on the leadlng or treiling
edge in subsgonic flow.

tial={low aquation.

Ry

The basic flow Ly deseribed by the linearized poten-
The numerdieal scheme of solving the flow equatlon can be

fuaedlitated by ugi g the Croecu's function method.
\ cquation 1y of the form

s—

The resulting Integral

WO y) = JUC () K(x,ysEan) dhdn (25)

2 whare K{x,y;f,1) I8 the kernel functlon, which defines the downwash at the
| field point due to the doublet singularlity on the surfaco polut, and Acp(ﬁ.n)
iy the lifting proessure related to singularity strength. ‘The solutlon pro-
cedures dlffer according to the conditlion of the kinematic downwash distribu-
tion, desceribed below. |

solutlon Procedures for Smooth Downwash Distribution--The solutlon of the

integral equation Ls obtalned by assuming that the deflections of the 1ifting

r surface may be represented by a finite sum of dlscrete mode shapes, For

Ei steady flow,

I .

| 2 = LN (x,y) 4 (26)
n

where Ni(x,y) 1 the 1th mode sh pe and 4 is the {th generalized coordinate.

Corresponding to a particular mode, we have the lifting pressure Apl. then

o T T e
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bp =25(8p,) q
n i i

(27)

Using the relation W = Dz/Dt, equation (25) describes the link between the mode-

shape slope and the lifting pressure of that particular mode.

The kernel function is further divided into a nonsingular purt and a

singular part; the latter contains the dipole, the inverse square root, and
the logarithmic singularities.

Upon integration in the chordwise direction, the singularities in the

integrand of the spanwise integral can be identified. In the evaluatlon of

the gpanwilse portion of the downwash Integral, the integration interval i1y
divided Into subreglons and appropriate quadrature formulas are applied to
cach subregion; 1i.¢., the square~root quadraturce formula applicd at the ends
of the interval, the logarithmic quadrature formula applied on cither silde of

the downwash station, and the Legendre quadrature formula applied within the
remalning lutegration ianterval,

Near the leading odge, an assumed pressure
function

that is dinversely proportionul to thu square root of the distanco
from the leading cdge is employed, which will provide the least error in

downwash value ncar the leading cdge.
that the

The above schieme LIs so dmplomented
solution will not be too sensitive to the collocation stationy,

The solutlon of the integral equatlon lu approxlmated by goncerating u
finlte set of downwash digtributions, the combluation of which satiulles the

boundary condition at a finite get of control poidnty, Nach downwash distrlibu-

tlon 1y obtalned by cvaluating the downwash Integral uglng assumed polynomial
presgure distrlbutlons that conform to the loading conditlon on the planform

edges.  Mathematleally, the loading function of the jth mode has the followlng

form:
o = Va2t S Zhay, e ang ™ am (28)
m n

where f oand g are certaln trigonometric functions and ay . arce the unkown

cocefficients to be determined from the Integral equatilons.

solution Procedures for Discontlnuous Downwash Distributions--The above solu-

tlon procedures for predicting loading over a smooth downwagh [leld may fall
to produce reasonable results when applied to conflgurations having discontin-
uous downwash, which may be caused, for instance, by control-surface deflec-

tiong. The technique used to circumvent this dlfficulty is the introduction

of the regidual downwash,
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The residual downwash 1s the difference between the kinematic downwash and
the downwash produced by pressure distribution ApAE obtained from the process
of matched asymptotic expansion, which will provide the proper discontinuous
downwash condition near the hinge line and the side edges of the control sur-
faces (refs. 14 and 15). These pressure distributions (inner solution) are
valid only in the localized regions. However, they can be extended to the
outer region since the distributions in the outer reglon may take any conven-
ient form as loug as they satisfy the required loading condition along the edge
of the planform, A unique solution will be determined from the outer reglon
at a later stage. The usual condition imposed on thede loading functions is
that the pressure distribution diminishes in proportion to the square root of
the digtance from the edges.

The resldual downwash, defined as

wrusldual - wkinemutic'-‘fjApAE(&'”) RGeyyibyn) dbdn (29)

18 axpoected to be falrly smooth and thercfore ls amendable to the standard

lifting-surface golution process, l.c,,

Weawtduar = L JSAR (B0 RGxyikam) dbdn] a (30)

After wolving for Apj' the raesultunt Lifting prewsure becomey
ApCEN) = py () + 20 Ap, (6y1) g (31)
Al ] N 3

The hinge moment can be casily calculated ugdng the 1ifting pressure computed
In equatlon (31).

3.3.2 Discussion of RHO 4 Method

The analysls In this program Ls baged on the mode-kernel [unctlon method,
which uses a predetermined polynowlal type of loading distrlbutlon with coeffi-
c¢loents determined by satisfying the kinematic downwash at cortaln collocatlon
points (standard flat-plate boundary points). The method is applicable to thin
1Lfting surfaces with twist via local lincarization. The thlckness effect can
be included in the downwash boundury condition in terms of local streamwise
velocity varlations. The control surfaces are assumed to have sealed gaps,
and the balance ratlos are set to zero., The side edges are required to be
parallel to the plane of symmetry. The control surfaces symmetrically located
on the Liftlng surfaces are allowed to dellect elther symmetrically or anti-

symmetrically. The input mode shapes have to be defined.
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The special feature of tne RHO 4 method i1s the manner in which it handles
the discontinuous downwash as manifested in the control-surface deflection.
The downwash discontinuity is removed by using the lnner solution, which pro-
vides the proper discontinuous downwash near the hinge line and side edges.

The resldual downwash 1s therefore smooth and amendable to the standard kernel

procedurey, These procedures allow for the accurate prediction of the singular

behavior of the {low properties near the irregular regions of the planform. 1n
particular, the method s sultable for predicting the loading distribution on
the control surface and heuce the hinge moment. The method, however, may still

encounter numerical difflceulties in the reglons of planform breaks, 1f the

downwash chord were located at, or very close to, the planform break stations,
the downwash integral would exhibit singular behavior due to the oversimplificd

loading ddstributlions used In solving the downwash integral. Whenever the

planform broaks are present, the spanwise loading becomes digceontinuous at the
spanwise statdions, which causes numerical problems and produces singularities

in the caleulated downwash shect. Although 1t 1l suggested in the method that

cedther the downwash chord be placad at least a small didstance away from the
planform break statlong or the planform near the breakpoints be modifled by
applylug a small amount of smoothlng, the accuracy of the solutfon may be
degraded.,  Progumably, one may include certain appropriate loading functions
corregponding to the Ilnner soluticns near the plunform breaks In the manner
exaetly parallel to that of applylug the fluner solutlon near the hinge line,
Since the method deals only with the Lifting surfaces, the wing-body interfer-
cuce effeet ts not lucluded dn the golutlon. The thlckuess effect, especlally
at the nose and the trafllng edge, cuan enter the golutlon through the change
of the local veloclty, since the boundary condition 1a applled in a llnearilzed
gense,

The numerlcal results on the chordwise load distribution obtained by the
RHO 4 method are gilven In figures 9 and 10 for a full-span trailing-edpge con-
trol surface at M = 0,21 and an inbourd partial-span control surface at M =
0.60, respectively, DBoth predicted regults agree well with experimental data.
For a deltua-wing model shown in filgure 11, the hinge-moment coefficlents are
also computed and correlate favorably with measurements for a leading-edge
control and a tralling-edge control, These comparisons indicate that the
pressure distributions and the hinge moments can be predlcted with reasonable
accuracy using the RHO 4 program, provided one Is aware ol the limitations of

the method.
26
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3.4 TEA 230 METHOD

The Boelng aerodynamic program TEA 230 (refs., 16 and 17) was originally

developed to determine the aerodynamic characteristics of fan-in-wing configu-

rations using the subsonic-potential-flow theory. This program is applicable

to wings with deflected control surfaces and a wide variety of potential-flow

boundary-value problems. Although the solution is based on the linearized

potential-flow equation, the nonlinear effect has been retained through the

application of the exact boundary condition. Mathematically, the potential-

flow golution is obtained by reducing the problem to solving an integral cqua-

tion, Numerdical solution of the integral equation 1s facilitatad by the disg-

tributions of constant~strength source sheets over the configuration surface,

and distributions of vortex filaments or doublets inside the configuration

surface and on the wake, The source and the doublet strengths are deternined

by satisfying a set of boundary conditions at finite points on the boundary
gurfaces. Once the singularity strengths sve known, the flow-field details

may be calculated. Basdically, the solutiou for the subsonic flow is obtained

in the ilncowmpresyible flow domain with the effect of compressibility accounted

for by means of Gothert's rule, The TEA 230 method is an extension of the

vortex-lattice method and provides for aerodynamic representation of thick

wing configurationg. A boundary-layer theory i1s also included in the program

with the purpose of indicating the boundary-layer conditions in the areas that
are prone to flow separation.

The basic elements of the potentlal-flow theory as used in the program are
presented In detall because they are also used In the more advanced panel
methods., They are followed by the description of the numerical method and a
dlscussion of the numerlcal characterlstics of the solutions pertinent to the

load prediction on the control surfaces.
3.4.1 Potentlal-Flow Theory

A flow fleld that ls uniform In the ambient can be considered as a poten-

tlal flow except in the boundary layer adjacent to the configuration surfaces,

the trailing vortex sheets, the jets, etc. The potential-flow equation ¢ n

be derived from the conservations of mass, momentum, and energy.

ing equation is In general highly nonlinear.

The result-
The total flow 1s assumed to be

made up of an onset flow and a perturbation flow. The perturbation {low, due

to the preseuce of a disturbance in the onset flow, is considered to be very
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small compared to the onset flow. Therefore, the governing equation of the

perturbation flow can be linearized. By using the Gothert rule, the linear-

ized flow equation can be further reduced to the Laplace equation, This solu-

tion 1s already known siance it also governs a wide range of problems in
mathematical physics.

The boundary-value prcblem can be stated as follows. The perturbation

potential is governed by the Laplace equation

Vi = 0 (32)

subject to the boundary conditions
1) Neumann type in which 2¢/9n is given
2) Dirichlet type in which ¢ is given
3) Mixed (Poincaré) type in which a linear combination of ¢ and 9¢/on is
given
Mathematically, the solutilon to equation (32) can be found by expressing

velocity potential at a point P in terms of ¢ and 39¢/9n on the boundary of the
flow field in the following integral equatiOn (ref, 18):

1399
dJP - .m ffs T on ds + 4“ ff ¢ Bn (— ) ds (33)

where 0¢/9n can be identified as the source strength and ¢ as the doublet

strength, The area S (fig. 12) need not include the boundary at infinity
because the potential is known to be bounded at infinity.

When the exterior of the flow field ¢' is considered, it can be related to
the potential inside the flow fileld (ref. 18) as

ffoodctyas - g 3 g (34)

with 9/9n' -3/%n. Equations (33) and (34) combine to yield

1 1,3, ¢ _end (L
bp = -3 JhE (g as g S oo (p) e (39

Note that there are an infinite number of combinations of the singularity
strengths (3¢/3n + 3¢'/3n') and (¢ - ¢') that will give the same value of ¢ at P.
In order to reander the system deterministic, we must either specify one of the

two singularlty strengths or provide a relationship becween the two.
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The boundary of the potential flow can now be identified. The outer flow

beyond the edge of the boundary layer is essentially irrotational.

Moreover,
, we exterd the potential flow

field to the configuration surface, but ignore the nonslip boundary condition
(the "outer'" solution).

since the boundary layer is usually very thin

i
I

TR

Since the wake 1s essentially a segment of the flow
region filled with vortices shed from the trailing edge of the wing, it should

be excluded from the potential flow field. A simplified treatment of the

trailing vortices is to imagine the wakc as a thin vortex sheet across which the

e < LR L R

normnal velocilty is continuous. With that in mind,
written as

¥p = %_ J:[ ‘SL‘) ds + j:[ ¢ -9 )—*~ ( %-) ds

|
l
|
|
|
\ ff a <l> ds
{5 e
3
|

equation (35) can be

(36)

where A¢w is the jump of potential across the wake.

In order to render the representation of equation (36) unique, we postu-
late certain conditions on the interior flow ¢', which 1s still at our disposal

If we put ¢' = ¢ and allow the normal velocity across the surface to be dis-

continuous, then equation (36) can be interpreted as a flow field set up by

a distribution of sources on the surfaces., On the other hand, 1f we put

9¢'/3n = 8¢/9n, and allow the potential to be discontinuous across Lhe surface,
r? the flow field is disturbed from the onset flow by doublet distributions on
i, the configuration surface and on the wake. Thus, the specification of the

interior flow implies a selection of the type of singularity distribution to

be placed on the surface. It should be noted that unless a linear relation-

ship between the two types of the singularity strengths is specified (mixed
boundary condition), the source and the doublet should not bhe allowed to be

placed on the same portion of the boundary surface.

3.4.2 Numerical Method of TEA 230

In the present method, the source singularity is used on onr

surface SS’ and the doublet

part of the
singularity is used on other parts of the surface

Sd and on the wake Sw. The Neumann type of boundary condition for analysis

problems results In
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3% = -n * U, on the body surfaces
S
B
A¢w = A¢Tb on the wake (37)

The glngularity strengths can be uniquely determined from the integral
equat lon

N " '1“—- 2) El fo 1 9 l q
-h Unw 4n on fj; r ds 4 4n dn ff " 3“ ( r ) as
1 d
1 40 l)n ff Al "T ()n ( T ) (38)
where
- J[) t)(j)
0= ( IR

s the svurce strength and
s = !
Ly the doublet strength,

Iy application, for noulifting configurations only the first term on the
vlght-hand ylde of cequation (38) needs to be retalned. Yor 1ifting configura-
tlong, the second term can be applicd to model the shear surface such as fan
fucos, and the thirvd term can be used to simulate the tralling vertex sheet.
Nowever, the doublet sheot startluyg at the trailing edge will imply a con-
centrated vortleity at the tralling edge oi the wing. Thils concentrated trail-
tug, odge will cauge numerdical problems because the source strength near the
Lrall lng odge would have to adjust ftself abnormelly in order to satlsfy the
boundary coudition near the tratling edge.  The above numerical difficulty
can ho alleviated by providing a doublet sheet on the interlor (preferably on

the camboer surface), as an extenslon ¢f the tralling vortex sheet.

The numerleal geheme to solve the integral equation, equation (38), is the
standard panel wmethod.  The source sheet on SS ig divided into quadrllateral
panelu and passes through the mldpoints of the straight lines connecting the
corner points of a quadrilateral, on ecach of which the source streagth is
upproximated as a constant. The doublet sheet on Sd is siwilerly divided into
quadrilaterals.  The doublet panel need not be planar because the velocity
field induced by a constant-strength doublet panel turns out to be the same as
that of a ring vortex along its perimeter for which the Biot-Savart law can be

ugsoed.,
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For cases where there are more boundary points than the number of panels
(equations), the boundary conditions must be satisfied in a least-squares sense
In this program, a boundary condition 1s applied at the centroid of each

source panel and at the average point of each doublet panel. For each addi-

tional condition to be satisfied, an extra control point must be designated.
For example, the Kutta condition can be imposed at the trailing edge by

requiring that the velocity at the trailing edge be directed in the plane

bisecting the trailing edge. This condition will control the spanwise varia-

tion of the wake doublet strength.

With this type of flexibility, the doublet singularity sheet of the

internal lifting system can be placed in an arhitrary manner. If the near-

field solution such as the load distribution on the wing is not of interest,
one may eliminate a number of boundary points on the internal lifting system.
This is done by arbitrarily assigning a certain pattern of vorticity strength

(jump in potential), leaving only the imposition of the Kutta condition. The

1ifting-1line theory implies a single, concentrated vortex placed at the quarter-

chord locatdion. Although the distribution of the bound vortices on the inter-

nal lifting system has no bearing on the far-field solution, it may impose a

burden on the source distribution. This may result in a large gradient on

the boundary surface close to the point where a large isolated bound vorticity

is placed on the camber surface. The effect 1s further magnified for vhin

wings where the external surfaces are very close to the camber surface.

Tt is ideal to distribute the bound vortices in a smooth manner so that

the source strength on the external surface will also be smooth. In figure

13, a number of concentrated bound vortices are shown to be located at a set

of points on the camber surface. Bach concenirated vorticity corresponds to

a jump Iin potential. The only requirement is that the total jump be equal to

the value at the trailing edge (and hence the value on the wake).

The induced normal velocity at each singularity panel is evaluated and the

sum of all the contributions on a panel set equal to the known quantity at the

boundary point on the panel. This results in a system of linear algebraic

equations in the matrix form

[AIC] 1A} = {B) (39)

where {A} contains j and o.
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With source and doublet strengths solved, the flow properties such as

velocity, pressure, forces, moments, and streamlines can be derived from equa-

tion (36). For instance, the pressure coefficient is calculated from the

Bernoulli integral as

(40)

which is then scaled to the value in the compressible flow domain using the
Gothert rule.

3.4.3 Discussion of TEA 230 Method aund Solutions

The panels have many applications as basic building blocks in the TEA 230

program. The source panel can be considered as impermeable or permeable via

the specification of the normal velocity. The permeable panel is used to

simulate the mass transfer through surfaces, such us controlling the inflow to

the fan face or adding the displacement thickness to slimulate the boundary-

layer effect. A boundary condition can also be specified at an off-body point;:

for example, on the engine inlet. The best result will be obtained by having
a smooth source distribution with a small singularity gradient on cach control
point. A constant-strength doublet panel f{s a basic element of the lifting-

system building blocks. Each doublet panel can be viewed as a ring vortex.

Many constant-strength doublet panels can be positioned end to end to form a

doublet column. Doublet columns can be in turn placed side by slde to form a

doublet lattice network.

By proper arrangement of these building blocks, a polvnomial variation of

the doublet strength on the network can be achieved. The versatillity of this

arrangement can be illustrated. For instance, each network can be overlapped

to form a new element, thus providing an endless possibility for simulating a

variety of lifting systems. These networks can provide the proper camber and

twist of a surface and, therefore, can be used In the design of a surface for
a given load distribution.

The superiority of this method compared with the FLEXSTAB method or its
variants is its ability to model the actual configuration surface and the
applicability of the boundary condition in the exact sense. Consequently, [t
will enable us to analyze the control-surface load distribution with provi-

sions to account for the nose shape and the tralling-edge angle. As a matter

of fact,

the TEA 230 program is more capable of analvzing a thick wing than a
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cambered wing because of the manner in which the lifting system is implemented

in the program. For a very thin airfoill, a high density of internal panels is

needed to prevent strong, localized effects on the source panels. 1n addition,

since the wing-body interference effect takes place on the actual configuration

surfaces, it eliminates the necessity for the interference shell employed in

the FLEXSTAB system. This allows a greater flexibility of paneling since it

does not requlre panel edges to be aligned in the streamwise direction.

The method of TEA 230 yields a pressure distribution on the source network

surfacei l.e., on the configuration surface. In terms of wing and taill, this

Ilmplies the pressure on the upper and the lower surface. The load on the con-

trol surface can be taken as the differcence of the pressures on the two sur-

faces. Alternatively, the hinge moment can be computed directly from the

forces acting ou each panel on the upper and the lower control-~surface source

network., For a load prediction near the planform breaks, the method of calcu-

lation does not differ from that of FLEXSTAB; i.e., neither method allows for
the singular behavior near the breaks. For a control-surface load calcula-

tion, TEA 230 ls superior in that 1t properly includes the thickness

effect. The TEA 230 method also applies the boundary condition on the

deflected control surface, although the boundary condition can Le applied, as

in the FLEXSTAB program, in a linearized sense. In essence, the linearized

control surface 1s modeled as if 1t were undeflected, except that a local flow
veloclty (If known a prlori) ls used tu more accurately slmulate the perturba-

tion veloclity required on the panel surface, l.e.,
vens=-U *ntVsing
[ 4]

(41)

whereas In FLEXSTAB, V is taken as U_. The accuracy of the assumption can be

evaluated by examining the streamlines resulting from the integration of the
veloclty field.

The outboard wing-pressure distributlons for an aileron and an aileron-tab

combination on a Boeing 747 wing are shown in figure 14. The solutions are

obtained by applying the boundary condition in a lincarized sense as given in

equation (41). This approach was almed at saving on the computer costs since

only a reference configuration need be modeled.

A comparison of the results of this method with experimental data is made
as follows for a modified NACA 65-210 airfoil shown in figure 15. This wing

has an Inboard partial-span tralling-cdge flap deflected at 30 deg. The

33

. G ke e s
. Ll " ’ <

Y AUV S UL Lt Ca

IO~ RE o TR

N i amie XKty il

.Y

o I o, . T, _aa. .

S T e



e

o\ e i gy ey T

computed spanwise load is shown in figure 16 while the forces, moment, and

chordwise pressure distributions at five spanwise stations are displayed along
with the experimental data in figures 17 and 18. The discrepancy s most
likely the effect of boundary-layer thickening or separation on the f{lap.

The arrow-wing configuration (ref. 9) also was analyzed using the TEA 230
program. The panel arrangement 1s shown in figure 1Y, and the compurison of
the result with experiment is given in figure 20. Also included in figure 20
is the result using the FLEXSTAB program. The chordwise-lifting~-pressure dis-
tribution prediction by TEA 230 {s clearly superfor in many respects to the
prediction of the FLEXSTAB method, especially in the nceighborhood of the
tralling~edge hinge liune, However, for such a highly swept, low-aspect-ratio
wing, both potential-flow programs are unable to predict the flow characteris-
ties near the wingtip with a large flap deflection. The flow in that region
is probably dominated by the splral vortex, which is characterized by flow

separation from the leadinp edge.

Since the TEA 230 method uses singularitics of constant strength, the
solution may also be sensitive to paneling of the network., A proper pancling
scheme based on loading conditlons on the planform breaks and discontinuous
downwash locations may have to be sought so that a relatively sparse panel’

arrangement can still predict the loading with rveasonable accuracy.

3.5 PAN AIR PLILOT PROGRAM MLETHOD

The PAN ALR pllot code ls a computer program system that cmploys advanced
numerical techniques in solving the analysis and deuslgn problems Lor steady,
subsonic potential flow (refs. 19 and 20). The outstandlng features of the
method include curved panel approximations, polynomial type of singularity
strength variations, and exact boundary-condition applications. The numerlcal
results are more accurate and stable comparced with other oxisting potential-
flow programs. The method is currently befng expanded and lmproved both In
englneering and software design under a contract with several Government

agencies (NASA-ARC, NASA-LRC, AFFDL).
3.5.1 Outline of PAN ALR Method
The Integral equation corresponding to the boundary-value problem for the

potential flow is the same as that described in dectlon 3.4 for the TEA 230

program. Specifically, the potential can be expressed as the gum of the sur-
face integrals
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For analysis problems, the specification of the boundary condition ylelds the
integral equation

el | KSR | RN Gr R (43)

while the fntegral equation corresponding to the design problems 1y

%‘f‘ If{ Ire m ) dS 4 n 5c I s oy z.‘,r;> ds (44)

Auxiliary conditions such as closure and {inite downwash are requlred for
uniqueness when solving cquation (44). The standard panel schemes are used in
solving thesce cequations. While they are solved for the incompressible flow,

the subsonic results are subscquently derived by transformation.

The advanced technique for representing pancels and singularity distribu-
tions ls designed to overcome certain practical difficulties encountered In the
carlicer pancl methods, The flut panels with constant singularity strength are
very crude In simulating boundary surfaces having lavge curvature, such as the
wing leading odge, unless very dense pancling 18 used.  The local curvature
and an accurate singularity strength gradient arce also needed for providing a
more realfstle velocity gradient that may be cruclal in an arca such as
boundary-layer calculations. Morcovaer, most panel methods are known to exhibit
sensftivity with regpect to the panel conflguration; the combined features of
this method are to minimlze this sort of sensitivity. The higher degree panel
method {8 required from other considerations as well. For design problems, 1t

turns out that a singularity strength with morce than one degree of frecdom 1s
also needed.

The basic bullding block of the paneling scheme is the network. A network
can be viewed as part of the pancled configuration surface that Is used to
simulate the specific physical phenomenon on that surface. These networks can
be combined to allow the analysis and design on configurations having thin or
thick wings, fuselage, nacelles, empennage, wake, efflux tubes, ducts, or
flaps. Kach network differs In gingularity degrees of freedom and the boundary
points at which the boundary conditions are enforced. Four general types of
the networks are employed in this method: source-analysis, doublet-analysis,
source-design, and doublet-design. These networks are characterized by a

separate set of the geometry specification, singularity parameter location,
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control point location, and the influence coefficient, of course. The new

features of the method are briefly described as follows.

Panel Surface Definition--A curve panel is represénted by fitting a paraboloid
through the corner points that define the configuration surface. The discon-

tinuities in surface, slope, and curvature occur only on the network edges.

Thus, the coefficients in the panel surface representation
L o= 1% 4+ cun? + cafn + cuf + exn + cp (45)

are obtained by minimization of the square crror

R =3 LW -5 (46)
where Gy 14 the ordinate for the kth mesh point and wk iy the weight that iy
chosen to be very large for a corner point through which the surface will pass.
The ratio of the height to the diumetcrl@l//€2+‘nn is asgsumed to be small to

allow for expanslon of the kernel and the integrations in closed form,

Singularity Strength Definiltion--Discrete values of singularity streugth are

placed at certain standard points ou cach network., The distribution of slngu=

larity strength on a source network is assumed to be lincar, 1.c.,

A(g,n) = o(&,n) = 0 + O £ + Gy M (47)

and that on a doublet network ls quadratic, i.e.,

: 1 -2
AE ) = uCEyn) U g &b e &
1 2 (48)
+ He, En + 5 H”” g
The coefficients of the singuiarlty distribution on each panel, source or
doublet, are obtained by minimizing the errvor
Rw 23w (A -2 )? (49)
2 m k k

where the summation extends over all singularity parameter locations on the

particular panel and the neighboring panels as well.

Boundary Conditfon and Boundary Points--At ecach pancl center boundary polnt,

the boundary condlition for analysls problems reads
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e (n s V) + et =B (50)
while for design problems

(Ei - V) + (Eé *VA) = B (51)
For example, the usual condition for analyzing the flow over an lmpermeable
gurface is given by specifying ¢y = 1, ¢y = 3 = 0, 1In order to control the edge
downwash or tu provide a precise network matching, the boundary points arce also
placed on the network edges (which may be slightly withdrawn from the edges to
eliminate numerical problems), Thus, the standard boundury points include the
pancl center points as well as edge abutment points in case of doublet network
to enforce the aerodynamic requirements such as the Kutta condition or the

continulty of singularity strength across the network Junctions, cte.

For the source-design network, Lt 14 also required that on euch punel

column the closure ondition
ff[ul(ﬁ . V) + e,A] d§ = I d8 (52)
be satlsfied.

Influence Coefficient Calculations=-The potential due to the singularity

distribution on a curved pancl, as it stands, cannot be integrated in a closed
form. However, the clused-form dntegration is superior to the numerical
integration in all aspects. ‘The cloged-form integrals are obtained for the
sgerodynamic influence coefficlents for the near-field through an expansion

based on a small puncl curvature agsumption; uand for the far-fleld, through

an uxpansion based on the large separation between the singularity panel and
fleld polnt. Recurslon formulus that reduce the complicated expressions to
those appearing In the flat-pancl, constant=gtrength singularlity techniques

are used extenglvely to facilitate the economy and simplicity in the calculation

of the Influcence coefficient.
3.5.2 Discusalon of PAN ALR Method

In addition to the various versatlile agpects found in the TEA 230 program,

the PAN AIR pllot program has many extra features,

With higher order of singularity distributions on the panel, the accuracy
of Lhe solution Is presumably better. Specifically, with linearly varyling

gsource singularity distribution and quadratically varying doublet singularity
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digtribution, the computed perturbation on each panel 1is linearly varying
instead of constant as in FLEXSTAB or TEA 230. Using the Bernoulli integral,
the pressure 1ls plecewise quadratically varying on each panel. The forces and
moments are obtalned by integration on each panel and summed over all the
panels.  The hinge moment calculated In this manner is definitely superior to
the constant-strength singularity pancel method. Since the spline techniques
are extenslvely used in the panel geometry detfinition and the singularity
strength distributions, the solution 1s mere gtable and less sensitive to
paneled configuration. However, numerical difficulties arige when the odges
of some puanels are near the control points of others, and the use of fine
panaeling in reglons of rupld flow variation often forces fine paneling clse-

where,  Therefore, as in all pancl methods, the proper panelling criteria need

to be determined.

The numerical results are presented for a 35~dog sweptback wing with
partisl-gpan tratling-edge control surface as depicted fn figure 21, Three
different models ave used to wimulate the flow on the wing, the flap, and the
gups, In the first two panel models, the exact boundary condition is appliced
on the flap surface. In the third panel model, the voundary coudltlon 1w
satlsfied ouly in the lincarized sense, similar to that implemented in the
FLEXSTAB program. The modeling of the wake on the side-edge gaps diffoers in

the first two panel models: for the first panel model, it 1y asgumed that the

vorticity is shed from the tralllng edges only; for the scecond pancl model,
the vorticity is shed from the wing side cedges but not from the {lap side
edges.  The chordwise 1ift distributions at five spanwilse statlons are
displayed in figure 22, The 11ift digtributions for the first two panel models
differ only along the wing side of the gaps as 1s expected. The difference
diminishes toward the truiling edge and 1s not discernible along the flap side
of the gap (and hence not shows in the flgures). The lift distributions for
the third vanel model are shown to agrec better with the FLEXSTAL results, as
they should. Both are close to the lift distribution of RHO 4, which also
uses the linearized boundary conditlons. At the midspan, the 1ift distribu-
tions corresponding to those three panel models and the FLEXSTAB result arc
fairly close. However, these results indicate that the panel methods predict
higher 1ift than the collocation method or the test data given in reference 21.
Tt i unknown whether the discrepancy 1is attributable to the effect of

thickness, which 18 not included in the panel-method analyses.
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3.6 SUMMARY OF METHODOLOGLES OF POTENTLAL-~FLOW PROGRAMS

Tha methodologies of FLEXSTAB, RHO 4, TEA 230, and PAN AIR pilot code are

summarized in table 8. The entries of table 8 include the year a particular

program was developed, the panel geometry, the singularity type, and the
restrictions, 1f any.

In application, FLEXSTAB und RHO 4 programs only

accept mean surfuace paneling; therefore, the deflection of control surfaces is

simulated in a linearlized scnse. On the other hand, the surface paneling is

peagible in either the TEA 230 or the PAN ALR plilot program; hence, the control-

surface deflection cian be treated in an exact manner. However, assocluted with

|
1
k the actual surface paneling ls the difficulty of modeling the trailing vortlcees
k. properly.
[
|
|
|
N
|
1

SECTION 1V

RECOMMENDATIONS FOR 'T'HE BEST APPROACH USLING THE FLEXSTAB METHOD

‘ Despite the numerous cited limitatlons on the FLEXSTAB method, the method
L

has been found to be adequate in predicting approximate aerodynamic character-

letics, provided: (1) the aggumpticon of small flow perturbations is not

violated und (2) the proper paneling scheme 18 employed.,  For hlnge-moment cal- %

; culations in the lincar range, i.e., when the control-surface deflection s

| small, condition (1) 1is likely to be satisfied. To satisfy condition (2), how-

ever, we need gome iasight into the local aerodynamle characteristics along the

e s k. Y

control-surface hinge line, the side edges, and the planform breaks. Inaccurua-

!
cied ardse in the analysis of the loud distribution on a simple control-surface

configuration, not only because condition (2) is difficult to achleve but also

because a constant-pressure. panel is inherently weak in handling the large

pressure gradlent near the hinge line and side edges. In this section, condi-
, tion (2) is ewplored in depth to reveal the essential role it plays not only
in the panel methods like FLEXSTAB but in virtually any numerical method that

solves a differential equation using an integral representation.

A better
gcheme of handling the loadings in the reglons of singularity is also proposed
for panel methods in general.

e ¢ T

4.1 INTYGRAL REPRESENTATION OF DIFFFRENTIAL PROBLEMS

|

It is known that an equivalence exists between the integral equation and
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an initial-value or boundary-value problem of mathematical physics.

In aero-
dynamics, these problems correspond to unsteady and steady flow problems,
respectively.

For fluld dynamic problems, the partial differential equation
governing the conservation of mass, momentum, and energy in steady state is

linearized and then transformed into the Laplace equation for which Green's

function (or kernel function) is well known. Using Green's theorem, the

golution of the partial differential equation 1s symbolically expressed by an

integral equation, The solutlon of the flow problem is then obtained by

golving the equivalent integral equation numerically.

Various methods such as algebraic, iterative, collocation, and least

squares exist to solve the integral equation numerically. In general, panel

methods (FLEXSTAB, TEA 230, or PAN AIR) involve direct integration over the
panel, while the RHO 4 program employs the collocation method. Regurdless of
the method used, each results in an algebraic formulation of the problem

employing matrix algebra, Two methods of solving the integral cquation are

reviewed 1In the next sgectilon for identliyiug certain properties that may be
useful in the paunel methods.

4.2 METHODS OF SOLVING INTEGRAL EQUATION

Conslder the task of determining A (x) from the linear integral equation

fb K(xi6) A(E) dF = w(x) (53)

a

which 1r an integral cquation of the first kind or Fredholm's equation. The
functlon K(x;%) represents a given kernel (fi+V opcerates on the potential
induced by a point source or doublet singularity), w(x) is a prescribed func-
t{on (normal velocity or mass flux on the boundary), and A(x) can be inter-

preied as the gingularity strength or the load dlstribution.

With the procedures of the algebraic method, the intcegral on the left side
of equation (53) 1s replaced by a summation of
term as

n terms augmented by an crror

n
b . «— -
‘ i , , 54
./a‘ K(x;0) A(5) df jz:l Hj M"j) + Ln 5

where the abscigsas &j as well as the corresponding cocfficients H, have been
chosen to obtain the desired degrere of accuracy with a given number of the

terms and to suppress the error term En below a predetermined 1imit,
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Inserting equation (54) into equation (53) and assuming that n is suffi-
ciently large and Hj’ €j are properly chosen for the error En to be ignorable,

the integral equation can then be replaced by an algebraic relation of the
form

n
Ly MG = wix)

(55)
=1

Since there are n unknown A(Ej)'s in equation (55), we can write the same

equation for n discrete values of x as

n
P Hj A(Ej) = w(x) (56)
=1 i=1,2, ..., n

This represents a system of simultaneous linear algebralc equations with
the same number of unknowns. The unknowns A(Ej)(j-l,Z,....n) can be uniquely
determined as long as the determinant of the coefficlents on the left side of
equation (56) does not vanish, which is generally the case for a well-imposed
boundary-value problem. The approximate solution of A(x) in equation (53) can

be regarded as a polynomial of degree (n-1) passing through the n pivotal
ordinates,

In the collocation method, we assume a solutlon in the form of a linear

combination of suitably chosen mode functions gk(x) as

m
A(x) =Y a, 8, () (57)
k=1

where a, are arbitrary constants. Substituting this expression into equaticn
(53), we find

m b
D akf k(x;£) gk(g) df = w(x) (58)
k=l @

where the error of representing A(x) by equation (57) has been ignored.

When equation (58) is written for m distinct values of xi(i-l,z,...,m), it

becomes

m

3 a MIc, = wix,) (59)
k=1
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been solved, the solution is given by equation (57).

The procedures, as tney stand, are very simple. However, an error does

arise because of ignoring the error term (apart from the round-off error). 1In

fact, the determination of Hj and Ej, which renders the error term En a mini-

_ﬁ
¥;

)

\}

1

)/

where 14
b .

MICy = [ K(x;56)g (D) df ;

a )

]

can be evaluated as in equation (54). When the constants ak(k=1,2,...,m) have \
1

i

mum, encompasses the whole subject of the mechanical quadratures (ref. 22).

Basically, we are concerned with a set of discrete abscissas &j and the

corresponding coefficients Hj, which will render the equivalence like that in

equation (54) valid without the error term. By Weierstrass' theorem on polyno-

mial approximation, any continuous function A(x) can be approximated within

As a poly-
nomial of nth degree can be uniquely specified by (n+l) constants, the 2n con-
stants (H

ii [a,b]) to any accuracy by a polynomial of sufficiently high degree.

3 and Ej,j=l,n) in equation (54) can, therelore, accurately deter- }

mine a polynomial A(x) of degree (2n-1) or less. If the function M(x) is of

higher degree, as is usually the case in aerodynamic problems, it cannot be

L}

adequately represented by finite terms and an error cannot be avoided.

Py~

Graphically, equation (54) without the error term states that the shaded

b

areas cancel cach other between the curves; one represents the (2n-1)st degree
' polynomial A(x) and the other represents the polynomial of (n~1)st degree

that passes through the pivotal points, as shown in figure 23.

A family of the formulas that are developed systematically to attain the

e

maximum precision in mechanical quadratures is generally associated with the

i Gaussian quadratures. Gauss' work was extended subsequently by many others.

A detailed account of the various types of quadratures can be found in refer-

ence 22, Only the essential elements of Gaussian quadrature need to be

described here.

It has been shown that the abscissas ¢, (j=1,n) chosen to
render the error term a minimum (zero if A(x) is a polynomial of (2n-1)st

degree or lower} are the roots of a certain orthogonal polynomial. The type of

orthogonal polynomial depends on the type of the kernel and weight function that
may bc present,

et e e e T

For example, for a smooth A(x) with unit weight function, the

i it ) At ST s K. ST MTT, TR

abscissasg xj are the roots of the Legendre polynomial, and the scheme is

e g
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called the Gauss-Legendre quadrature; for the logarithmic type of weight

function we use the log-Gaussian quadrature, etc. The properties and the

values of the coefficients Hj(j=l,n) corresponding to each type of the quadra-

ture are also given in reference 22,
shed some light on the way the panel methods should preferably be directed.

4,3 TIMPROVED FLEXSTAB METHOD OF SOLVING INTEGRAL EQUATION

Without loss of generality, we will consider the integral equation corre-
sponding to the two-dimensional problem given in equation (53).

the function A(x) 1s expressible by its values at n points as
n

Ax) = 2: Ly (x) A(xj) (60)
3=1

where Lj(j=l,n) are obtained by certain interpolation formulas or least~squares

spline techniques, then equation (53) can be evaluated at x =

i

(55), 1i.e.,

n

g] Hy(x)) AGE)) = wix)) (61)

=1
where

b
B Gxp) = }; Ly (6) K(xy38) dE (62)

With the panel method, the interval [a,b] is subdivided into n segments.
Specifically, for the constant-vortex-panel method of FLEXSTAB, we have

Lj(x)

i

1 for x In Aj

= 0 otherwise

where Aj is the jth segment or panel. Then equation (62) becomes

H () =y, KGegs) de = atcy, (63)

so that the solution of the integral equation reduces to solving the matrix
equation
[AICT{A} = {w)} (64)
One notices that the above equation is identical to equation (5) 1f one
identifies {A} as the singularity strength {S} and also {w} as the downwash
{w}. This linkage provides a vehicle to convey the well-established knowledge

developed in the mechanical quadrature to the panel scheme in the panel

43

The purpose of the discussion here is to

Assuming that

= x, as in equatioun




methods. As shown in section 4.2, the values of Hj and ﬁi(j-l,n) must be so

determined from K(x:&) that equation (55) can be adequately used to represent

the integral equation, cequatfon (53), with least error. However, the values of

&j are exactly the dominant factors {n determining the paneling configuration

for the panel methods.
The above conslderation, however, is incomplete because in the pancel
methods the control point arrangement is also related to the paneling config-

uration (even though ft need not be). In general, the control points at Xy

(t=1,n), where the boundary conditlions are fmposed, arce located somewhere within

the pancl.  Thus, the determinat fon of

ij will depend not only ¢n the kernel

\ﬂ function K(xs3f) but also on the downwash distribution w(x).

o

;”l For lnsatance, a discontlnuous downwash ticeld occurs whenever the control

ﬁw surfacae s deflectoed.  Corresponding to this downwash distribution, there arc

i !

E“' cortain loading charactertstics along the hinge line and slide edges.  The panei-
o

Ing contigurat fon must theretore reflect the speelfic loading characteris.les

e ST s o s b - N b LIV | Tl s il et o

due Lo downwash discontinulticas., As the downwash {feld is also related to the

Ju.

planform geometry, the paceling configuration {s dependent upon the planform

shape.  In general the loading characterfstics on a Htfting surface depend

TPy

roughly on two distinet categories of configurations. The flirst category is
related to planform cedges, tips, cranks, and apexes, among which the leading-
adge slougularity in subsonle {Tows and the amoothness of the loading at trail-
fug adges (Kutta conditfon) are the fam{liar ones. The second category is
relatod to discont lnuwous downwash {leld, such as those due to control-surtace

dolTeat Lons,

In referctice 23, the differential equation governing the flow near the

planform breaks (l.e., the corners, tips, cranks, and apexes, fig. 24) is

roduced to an algebrale olgenvalue problem.  Pach flow region near the plan-
form break la Idealized as belng Infinfte in extent; i.e., an angular sector.

The solutlons Tfor cach reglon are not unique because of the lack of a boundary

7 condition at Infinit- The differential equation and the boundary conditions

are both homogencous; colutlons can be found only for certaln cigenvalues, and

DRAPRILS LY 3

L the corresponding solution [s an eigenfunction.  These solutions for cach

i angular reglon are the local solvtfon=, which are then patched into the outer

solution valld on the remainder of the flow field. .
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The loading characteristics near the control-surface hinge line and side

edges are developed in reference 14 for a nonswept control surface using the

matched asymptotic expansion method. The inner solution that governs the flow

characteristics near the control-surface leading edges, side edges, and
corners is further applied to cover the special situation where the control
hinge line extends to the tip of the lifting surface in references 11 through
13 and 15. A survey of the loading singularities inherent in the linearized

wing theory is given in reference 24. The available solutions are tabulated

with regard to the discontinuitles in surface slope, planform breaks, dihedral,

cte. The singularities are categorized as either local or global. By local

singularity, the singularity strengths--not only the form--are fixed by the
condition at the singularity line and are therefore independent of the general

shape and motion of the lifting surface. The global singularities are those

that do not permit the coefficient of singularity strength to be determined

prior to the specification of the wing planform shape and upwash distribution

due to the motion. These undetermined coefflicients indicate the fact that the

lowest ord--r Inner expansions of the solutions are actually the eigenvalue prob-

lem as treated in reference 23. In some cases, the coefficients can be fixed

through the matching process where the method of inner and outer expansion has

been shown to apply, as illustrated in reference 14. Some of the soclutions
have been integrated into the kernel function procedures with success and

improvement, as in references 11 through 13.

Unce the loading characteristics near the planform breaks or control-
surface hinge line and side edges are known, it is possible to express the
total loading )(x) as a linear combination of the singular loading functions

gk(x) corresponding to each particular region and the regular loadings as

m n
V) = Xy g 00+ L 00 M) (65)
k=1 j=1
Upon supstitucin: into equation (53), we find at x = X
m b n b
3:‘,1 a, J; g, (£) K(x ;E) dE + > ME ) j; L (£) K(xg36) df = w(x) (66)

Using the notation in equations (59) and (63), we have

m n

: \ AIC =
X a MIC, + E § AIC =y (67)
k=1 j=1
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where w, S w(xi) and )j = A(xj).

Since there are (m+n) unknowns on the left side of equation (67) but only
n regular contrel points for which wi(i=l,n) are given, the system of cequa-
tions in equation (67) can be made determinate by supplying m additional con-
trol points. FEach of these additional control points {s used to determine the

coefficient of singularity strength associated with the singular reglon on the

planform and 1s located somewhere in the region.

Recalling the methods of solving integral equations in section 4.2, one
notices that the solution procedure just outlined is equivalent to a combina-
tion of the algebraic method and the collocation method. The distinct feature
of the solution written in the form of equation (65) is that the correct load-
ing characteristics near the planform breaks or control-surface hinge line and
side edges can be properly accounted for by using the accurate quadrature inte-
gration technique since the panel methods (especially e constant-pressure
panel) are very poor in handling the flow regions with rapid change of leadiung
conditions., Once that part has been taken care of, the rest can be casily

handled by the usual panel methods.

In the speclal case when the singularities in these flow reglons are local,
that is, the singulacity strengths a, as well as the form gk(x) are independ-
ent of the general shape and motion of the lifting surface and they are con-

sldered as known (cf. ref. 24), then we can rewrite equacion (67) as

n m
2 Ay AIC =w - 3D Ay MIC, (68)
j=1 k=1

The summation on the right-hand side of equation (68) is the downwash
associated with the loadings in Lhe singular regions; hence, the right-hand
side becomes the residual downwash, which is presumably smoother than the
original downwash distribution. One can find thce residual loading ‘i(j=1.n)
using the standard technicue in FLEXSTAB. The total loading iIs the sum of the

loadings corresponding to the singular regions and the residual loading.

The improvement given above is not only applicable to the constant-
strength panel method FLEXSTAB but also to other panel methods. In the panel
methods, the singularity strength on each panel has been prescribed to be
either constant (e.g., FLEXSTAB), linearly varying (e.g., ref. 25), or of

higher order. In the PAN AIR pilot code, the doublet singularitv emploved to
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simulate the lift is assumed to be quadratlcally varying and also continuous

across the panel edge by a least-squares spline fit over the neighboring panels.

As the degree of the polynomial assumed for the singularity distribution

increases, so the complication of the solutilon increases. As long as the

degree of the polynomial for the singularity distribution is so limited, an

|
*

, error will exist that is more pronounced in the singular regions, because the

loadings in those regions (e.g., logarithmic function, inverse square root)

g

usually cannot be accurately expressed by lower order polynomials.

To conclude this section, two numerical examples are given to 1llustrate

the effect of the paneling scheme on the accuracy of the solution.

- T
s i i, TN . a-abligien Wil

The first

example 1s the load distribution on the YF-16 wing with flap deflected by 0.1

; ‘ rad. The details of the paneling of this particular example are shown in fig-
E: ure 1.

The chordwise load distributions at three spanwise stations are shown

s in figure 25, (a) through (c¢). Also included in the figure are the residual

loadings that are obtained by subtracting the singular loadings from the total
loadings shown in the same figures.

ki L mac

These singular loadings are the inner 1
solutions obtained from the method of matched asymptotic expansion (ref. 14), -

E with modifications applied to provide the proper loading conditions near the

: wing leading edge, trailing edge, and side edges (refs. 11 through 13). As
b

a

k]

1

stated in reference 14, the inner solution of this type yilelds rot only the %

! form but also the strength of the singularity along the hinge line; thus the 1
nonvanishing values of the residual loadings near the hinge line indicate the ‘

discrepancy between the predicted loadings and the loadings the linearized

theory should actually yield. These figures also show that FLEXSTAB overpre-

dicts the loads over the wing with control surface deflected. The downwash

distribution corresponding to the singular loading(l) at each control point

along three spanwise stations 1s shown together with the step downwash distri-
I

butlon in figure 25(d). The large value of the residual loading along the

hinge line results {rom improper paneling that does not fully reflect the

H

The downwash corresponding to the singular loading computed here is only
an approximation of MICij in equation (59), i.e.,
= - f . .

“g T MICy JIRGep,y 8,0 gy (6,n) dEdn

~

= 2: AlIC, . X.,Y.

B

where (xj,yj) are panel centroid locations.

r
b
L
!

i
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singular behavior near the hinge line and the side edges. The accuracy of

the solution can be improved i{f the new schemes, equations (65) through (68),
are used.

The second example is a 35-deg sweptback wing of aspect ratio 4 as

depicted 1in figure 21. To retain the proper singular behavior near the

control-surface hinge linc and side edges as predicted in the linearized
theory, the wing and partial-span, traillng-edge control surface are pancled

using the simple cosine functior distribution. 'The total loadings and the

residual loadings along filve spanwise stations are shown Lln figure 26(a)
through (e). It is noticed that the residual loadings near the hinge line
(fig. 26(b) through (d)) are much smaller than those in the YF-106 casc.
This indlcates that with preper paneling in the nelghborhood of the

planform diécontinuities, the FLEXSTAB results of the alrload on the control
surface are reasonably close to those predicted by the inner solution derived
from the method of matched asymptotic expansion. The downwash fleld corre-
sponding to the singular loadings s shown in figurc 26(f) along with a step-
function distribution of the prescribed downwash duc to a controt deflection
of 10 deg. The comparisons of the chordwise pressure distribution near the
midspan between the FLEXSTAB result, the experimental data of referonce 21,
and the collocation methods of references 13 and 26 are shown In {igures 27
and 28. The FLEXSTAB result {s shown to overpredict the loading behind the
hinge line only slightly compared with test data and the results of other

numerical methods.

SECTION V

RECOMMENDAT IONS FOR FUTURE RESEARCH AREAS FOR HINGE-MOMENT ANALYSIS

The subject of theoretical prediction of control-surface hinge moment

involves a wide spectrum of acrodynamic disciplines., Although one may con-

veniently take the steady solution as the lower limit of the more general
unsteady solution, the different ranges of flight conditions (Mach number, iu
particular) make the problem very complicated and thus beyond regular treat-
ment. For example, In the transonic regime, the shock appears in the flow

field and interferes with the boundary layer. Under such circumstances, the
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flow field is nonuniform in the sense that the governing differential eq.ation

in one reglon hus entirely different characteristics from the other. That 1is,

one may have a supersonic flow regime (flow equation being of hyperbolic type)

embedded in the subsonic main flow (elliptic type). In addition, the flow

equation in a layer adj :ent to the wing surface is of parabolic type. Thus,
the nonuniform flow has deterrcd the general solution.

Although the major part of the flow fleld can be idealized as conservative,

the effect of viscosity cannot be completely lgnored (the Kutta condition is

the consequence of this effect)., The effect of viscosity plays a significant

role In the upper-surface flow of a positively deflected control surface. The
adverse pressure gradient toward the trailing edge of the flap retards the flow

to such an extent as to cause the flow to become separated. Even though claims

have been made implying success In obtaining the npproximate solution of the

flow phenomena up to the separatlion point (or line), the solution beyond the

separation is still elusive. A common assumption {s that the pressure 1s con-

stant in the bubble of separated and recirculuted flow. A reasonable scheme

used to handle such a type of flow fleld would be of an 1terative nature., The

bounduarles of different flow regimes (boundary layer, thick wake, and potential
flow) are initially assumed; then the solution to each flow regime 1s obtained

until a solutlon is converged that satisfies all of the boundary conditions.

The shape of a wake is another aspect of the flow that deserves some atten-
tion.

Although the wake does not significantly affect the flow on the wing
as Lt does on the tail or stabilizer, a scheme that can estimate the selfl-
deformation (or true position) of the wake may prove to be useful in imposing
the boundary conditlion on the aft 1lifting surfaces and flaps.

A new modeling technique for trailing-edge wake analysis using a potential-
flow program based on the vortex method (Boeing TEA 372) was suggested 1n ref-
erence 27, It was clalmed that the large fluctuation in either 1ift level or
lift-curve slope predicted by panel methods for a flapped wing arises from the

variation in the path assigned to trailing vorticlty, especilally that of the

wingtip and flap side edges. A reasonably effective modeling scheme was

suggested as a result of helium-bubble-flow visualization for a Boeing

advanced-technology airfoil with flaps. Examples of modeling guidelines are:
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1) All vortices shed at wingtip should be modeled as straight lines leav-

i
i
)
|
!
o s ..-AMmM.aM‘J

ing the trailing edge in the freestream direction.

2) The wake leaving the trailing edge of either wing or flap should be

bent in the direction of the bisector between trailing edge and free-

stream, and then aligned with the freestream after a short distance.

Another area of concern is the flow phenomenon near the gaps of the

a ol wmad s

, control-surface side edges. Tt is evident that the hinge—-moment calculation
]

must properly account for the flow pattern as a result of the viscous

effect. This 1is the case when mathematical models are devised to simulate j

the actual flow problem by using the compromiging boundary conditions. For
instance, in predicting the pressure distribution on the 35-deg sweptback wing

using the PAN AIR pilot program, three different arbitrary mathematical models

are used that differ in the representation of the gaps on the control-surface
slde edges and in the boundary condition specifications (exact or approximate).
The solutilon corresponding to each mathematical model differs significantly near
the side edges, as expected, It 1s difficult to determine which model more

closely resembles the actual flow condition since the supporting experimental

e W T e TS T e gemes =T TR I TS TS

data are still lacking. Once the flow characteristics are more thoroughly i
understood, an optimum model can be constructed using a wide varlety of the
options avallable from the advanced panel aerodynamic program currently being
developed. Numerical experimentation with different mathematical models is

expected to be necessary in using the potential-flow program to solve the real

flow problem as in the deflected control surface. The concept gulding this

approach can be 1llustruted by the case of predicting load distribution on a

v

v
|
3

low-aspect, hlghly swept wing set at a large angle of attack. The load on the
wing ls dominated by separated flow right from the leading edge. The potential-

flow method provides no means of solution when the flow becomes separated.
However, from the observed flow pattern, the separated flow and wakes can be
simulated by conceiving a rolling-up free-vortex system with feeding sheets,

: fed sheet, vortex core, etc. The boundary conditions are appropriately applied
at the sheets whose locations are found by iteration until the solution con-

verges to the one that compares favorably with the measurement (refs. 28 and 29).

The same concept can be applied not only to the flow modeling over the con-

T o i e S e e

trol surface but also to a wilde variety of aerodynamic problems such as free

jet, slipstream, plume with entrainment, evolution of wake, etc. In this
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sense, we can extend the range of applicability of the potential flow outside
the thin layer dominated by the viscous effect to include the vast regime of
the flow fleld created by the viscous effect, provided the mathematical model

can be devised to fit the salient portions of the real flow very well. Appli-

cation of this sort is valuable since viscosity is always present. The fore-

going problems constitute the unfinished aspects of aerodynamic technology and

should be viewed as long-~term research projects as far as hinge-moment predic-
tion is concerned.

The short-term research project is improving the accuracy of the hinge-
moment calculation based on the linear aerodynamic theory. The valid range of
linear theory is associated with thin, small-curvature cambered wings at small-

wngle-of-attack crulsing at Mach numbers away from the critical value. Flow

of this type is free of separation and shock formation, so that equation

(1) applies. Under such circumstances, the linearized boundary condition may

be adequately applied sinre it 1s consistent mathematically with the linearized

flow equation and the linear relationship between pressure and perturbation

velocity. All the methods discussed in section III offer some solutions vary-

ing to a certain extent from one to another, The panel methods, in particular,

are superior because pressure loading functions need not be assumed prior to
the solution, as required in the collocation method. However, a systematic

study of paneling configurations has yet to be made. Generally it is not

pessible to use very dense paneling because of the constraints o' cost or
capaclty of thu computer.

In order to alleviate the difficulty of obtaining the optimum paneling, which
is crucial to the solution near the hinge line, side edges, or planform breaks,
the iuner solutions obtained from the asymptotic expansion method in these
regions can be incorporated into the panel methods as described in section 4.3.
The recommended method subsumes the distinctive features of the exlsting numeri-

cal schemes in the sense that the solution will properly reflect the loading

conditions in regiong of rapid change of flow properties. The philosophical

aspect of the solution procedure is nothing more than saying that the more one

knows about the answer, the more closely one can guess the outcome.

The success
of the proposed numerical scheme, however, cannot be assessed prior to actual

implementation,

51

il sl

T

oy

it il s e




SECTION VI

CONCLUSIONS

The success of any method for control-surface hinge-moment prediction must
ultimately be evaluated by its ability to yileld the result that agrees with
experimental data. One criterion would be that different approaches to a
mathematical idealization of the physical problem should yleld the same result.
In view of the complicated flow phenomena assoclated with the control deflec-
tion, enhanced physical understanding of the problem is necessary for the
mathematical treatment of the subject. The problem is essentially nonlinear
in such flow phenomena as boundary-layer separation evolving to free vortex
flow or shock waves interacting with boundary layers. The principle of super-
position no longer applies and, thus, forms an unfinished area of the subject,
In cases where the major part of the flow field can be characterized as poten-
tial and the perturbation due to the presence of the body 1s small, the linear-
ized potential-flow theory finds 1its application. Because of the mathematical
tractability of the theory, the elegant representation of the solution in a

convenient form renders various numerical schemes possible.

Comparigon of the hinge moments obtained by the Boeilng and AFFDL FLEXSTAB
analyses for the basic (AFFDL) paneled YF-16 model showed the expected agree-
ment for the rigid airplane, but the comparison for the flexible airplane
showed differences of up to 507 in some derivatives. Since these differences
were too frequent to be typographical, it 1s apparent that there must be some
differences between AFFDL and Boelng 1n SD&SS input data, NASTAP data, or
the ESIC program.

With regard to the near-field/far-field option, the erratic results
obtained may be due to coding errors. An investigation using a simple four-

panel model confirms thils supposition.

The importance of correct hinge-line location is obvious from the results
presented. In the case of the flaperon, the hinge line was misplaced in the
AFFDL results so that the leading row of panels subtracted from, rather than
added to, the hinge moments, thus leading to the very small derivatives

obtained. A similar but smaller error may exist on the horizontal tail.
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The analysis of the four different paneling schemes employed (excluding the

erratic near-field/far-field results) showed some variation between the hinge

moments. For the rudder, which is more isolated from the other thin bodies,

the hinge moments vary relatively little from scheme to scheme. However, for

the flaperon and (even more so) for the horizontal tail, the hinge moments are

more panel dependent. In the case of the latter, this may in part be due to

the effect of downwash at the tail. It is noticeable that the hinge moments

obtained from the low-density model were generally the smallest.

Without comparing the results with other data (such as wind tunnel data),

it is difficult to decide which paneling scheme gives the best results. Simi-

larly, there are at present no definite criteria for obtaining the optimum

paneling for a given configuration. Since the hinge moments are affected by

the paneling, it is desirable that such criterila be formulated.

It is apparent from this and other studies (e.g., ref. 2) that generally

FLEXSTAB overestimates the hinge moments Cha’ ChG’ etc., when compared with

wind tunnel data. This is because actual control-surface load distributions

are affected by such parameters as the trailling-edge angle. FLEXSTAB does not
calculate such effects; howaver, the program is useful in that 1t calculates
hinge moment and stability derivatives that are not easily found in any other
way, together with the effzcts of airplane flexibility on their derivatives.

Regarding the semiempirical methods of Datcom, the hinge-moment prediction

is restricted to the lincar rang> of small angles. Since the method i{s based

on the 1ifting-line theory with the effect of sweep, etc., accounted for by
using the lifting-surface theory, its applicability is limited to high-aspect-

ratio wings with sealed controls. A method for predicting the loading in the

transonic range is still lacking and the wing-body interactilon is not included.
The Datcom method 1is, therefore, outdated in view of the more sophlsticated
engineering numerical methods available at present.

The series or kernel-function method has the traditionzl beauty in that

only a minimal number of exact pressure functions are embedded in the solu-

tion. However, a practical limitatlion does exist for selecting suitable pres-

sure functions to {it physical reality, such as the loading at the wing-body
intersection. Besides that, the truncation error 1s always present, hence

convergence appears to be a problem.
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With the advent of the high-speed computers, the

number of undetermined

coefficients need not be so limited and consequently the pressure functions

R * .

need not be assumed. The same probtlem can be solved by the panel influence

methods. The panel method belongs also to the finite-clement method in the

¥ sense that the boundary condition is only satisfied at finite points on the

configuration. With the panel methods, the computation of the loading distri-

bution on the multiple bodies (control surfaces, in particular) poses no spe-
cial problem from the computational point of view, except that the convergence

of the solution may not always be achieved.

In order to reach a convergent ]
solution, a dense paneling near the hinge line and side edges 1s required 1

i because the loadings in these regions exhibit singular behavior attributable
: to the linearized theory.

Since any computing machine is limited in its capacity to handle the large

e g e T T WY O S T

computational problem, a proper paneling scheme that renders the solution con-

vergent with a limited number of panels naeds to be sought. Thus, with proper

paneling schemes, each numerical program may yileld a solution that is the

= s

svlution to the mathematical modeling of the physical problem. To enhance

kel de AR g~

the solution ccnvergence, 3 scheme 1s proposed that Incorporates the pressure
3 loading functions known from the method of asymptotic expansion near the

reglons of singularity--such as those on the planform leading edge, control-

ik i

surface hinge line, and side edges--into the panel methods. The proposed

scheme uses the kernel-function procedures and the panel methods so that the

two categories serve to complement each ether to yield the desired potential-
flow solution.

The value of such a scheme, however, can only be measured

: through further research and application, which is recommended.
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TABLE 1
SD&SS RUNS FOR CORRELATION AND HINGE-MOMENT IMPROVEMENT (ITEM 20)
Elastic Near/far
Run No. | Paneling scheme option Altitude option Notes
1 Basic Residual-elastic SL No Correlstion with AFFDL
a olastic Flaperon hinge-line
2 Baslc Reddud 16,000 ft No location Incorrect to compare
3 Basic Rigid 15,000 ft On flaperon with AFFDL results
only
4 Baslc Rigid sL No )
5 Basic and strake | Rigid SL No Redefine certain thin bodles g
to improve model 5
] Baskc Rigid SL On flaperon g
only . g
7 Yo simulate near-field/ :
Low density Residual-slastic SL No far-field model
8 Optimum Rigd SL No
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ANTISYMMETRIC STABILITY AND CONTROL DERIVATIVES. COMPARISON OF FLEXSTAB

TABLE 2

AND WIND TUNNEL DATA (FROM REF. 4), BASIC PANELED NODEL

Wind tunnel FLEXSTAB (Bosing)
5:";3‘)" Floxible Flexible

Rigid SL 15,000 %t Rigid SL 15,000 ft
Cvg -1.243 -1.112 -1.121 -0.8221 -0.7353 -0.7637
c,\‘3 .260 239 .2568 1919 1462 .1619
Cig - 1157 - .080 - 086 - .0761 - .086% - 0796
Cvp 50 .78 83 9762 8352 8813
Crg - 458 - 40 - 428 - .4667 - 4809 - 4181
oge A71 135 .185 .1040 27N 1301
Cvs 014 013 014 - .0295 - 0119 -0
Crp - 004 - .003 - .003 0213 0173 0191
s - 326 -.26 - .28 - .3423 - 3924 - 4013
CY&. 0 0 0 .1637 0094 .1203
cﬂs, - 038 - .038 - 0366 - .0837 ~ .03561 - 0422
c,‘&. - .1339 - .0770 - 0022 - .2188 - 1494 -.1770
Cva' .209 .106C .126 A115 2441 209
cns, - .1086 - 0673 - 079 - 2249 - .1360 - .1681
c,,&' .0366 0180 022 0679 0449 0476
a 1deg 1.3250 deg 1.3250 deg 1.9231 deg
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TABLE 3 }/
i ‘ COMPARISON OF HINGE-MOMENT DERIVATIVES—-AFFDL AND BOEING, BASIC ‘
| PANELED MODEL
| AFFDL Boeing i
}
= o Flexible Flexible !
- ! Control Derivative 1
surface | (per rad) Rigid 15,000 ft sL Rigid 15,000 ft sL :
| Chy -0.000367 | — —  |-0.000367 — — f
4 Flaperon i
. Chi - .00230 — — |- .00230 — — :
CpgS | - 000434 - — - .000434 — —_
Ch - .000045 — — - .000045 — —
@ Cha - 52434 — — - 52424 — — ﬂ
L 1
} [l
‘ Chi) - .004019 — — - .004019 — — |
: Ch;S - .000015 — — - .0000147| — —
3
Chg .000055 | 0.0000644 0.000071 [ .000055 | 0.000046 | 0.000041
! Ch - .00009 |- .000067 | - .000048 |- .00009 | - .000141 | - .000182 TJ
; Ch - .000027 | - .000042 | - .000053 |- .000027 | - .000016 | - .000C16 ;
Ch A - .000249 | - .000242 | - .000237 |- .000249 | - .000141 | - .000076
Chf - .004092 | - .003921 | - .004011 |~ .004092 | - .003988 | - .0N4177
| Chp - .000324 | - .000312 | - .000305 |- .000324 | - .000302 | - .000287
' Ch .000063 | .000061| .000060 | .000063 | .00001 | .000060
-
' cth - .000013 | - .000012 | - .000012 |- .000013 | - .000012 | - .000010
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TABLE 3 (CONTD)

COMPARISOGN OF HINGE-MOMENT DERIVATIVES-AFFDL AND BOEING,

BASIC PANELED MODEL
AFFDL Boeing
Control | Deriviative Flexible Flexible
surface | (per rad) Rigid | 15,000 ft sL Rigid | 15,000 ft st
:«i:»'rizontal Che 0.001921 - - 0.001921 - ~

Chy |- 02256 - - - 02255 - -
Chs |- 004001 - - - .004901 - -
Chi |- .000848 - - - .000891 -
Chs | -8.06098 - - -8.05993 - -
Chd - .106008 - - - .106008 - -
Chi® |- 000144 ~ - - .000144 - -
Chg 001621 | 0.002049 | 0.002433 | .001621 | 0.002283 | 0.002857
Chj 000605 | .0008a0 | .001357 | .000604 | .001071 | .001547
Chp |- COMBED |- 0301+ | - 003268 |- .002643 |- .003145 | - .003636
Chg® |- 003840 |- .004670 | - .005444 |- .003846 |- .005278 | - .006518
Chg 223066 | .105740 | .181482 | .223054 | .176664 | .144711
Chy |- .004839 |- 006186 | - .006513 |- .004838 |- ,006290 | - .005722
Ch; |- .003988 |- .003367 |- .002904 |- .003897 |- 002001 | - .002242
Ch:;A - 000127 |- .0001192| - 000106 |- .000127 |- 0001113 | - .000080
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TABLE 3 (CONCLUDED/

COMPARISON OF HINGE-MOMENT DERIVATIVES—
AFFDL AND BOEING, BASIC PANELED MODEL

AFFDL Boeing

Control Derivative Flexible _Flexible

surface (per rad} Rigid 15,000 ft SL Rigid 15,000 ft SL

Rudder Chg 0.00070 | 0.000794 | 0.000851 | 0.00070 | 0.000774 | 0.000826
Chp 000132 | .000029 | .000068 | .000132 | .000094 | .000062
Chp |- 001673 |- .001579 |- .001583 [- .001573 |- .001669 | - .001558
Chs - 002043 |- .001854 |~ .001727 |- .002043 | - 001856 |- .001731
Cj .078782 | .066570 | .061809 | .078782 | .066945 | .06235
Chp .000412 | .000398 | .000390 | .000412 | .000392 | .000382
Cnf |- .001504 (- .001254 |- .001091 (- .001504 |- .001262 |- .001102
Chg ~ .00001 .000008 |- .000006 .00001 |- .000008 |- ,000007

et et i b A L L it Ll s e o R
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. TABLE4 ,
3 COMPARISON OF BOEING AND AFFDL FLAPERON HINGE-MOMENT |
' DERIVATIVES USING THE NEAR-FIELD /FAR-FIELD OPT/ON
| (LOW-DENSITY PANELING) ON THE BASIC MODEL,RIGID AIRPLANE ;
. AFFDL Boeing ‘
: Deriviative Near/far Near/tar
L ! {per rad) Basic on basic Basic on basic
. —
b Cha - .000367 - .000867 - .000367 - .000483
S
- Ch4 - .00230 - .002603 - .00230 - .002235 .
‘: .
Chg® - 000434 | ~.003812 | -.000434 | - .0004802 i
Chy, - .000045 - .000136 -~ 000045 - .00015
Ché - 52434 .044515 - .52424 - .317428
Cng - .004019 - .003542 - .004019 - .002636
: k
1 ChgS - 0000156 ~ .000005 - .0000147 | - .0000083
Chg .000056 .000062 .000055 .000045 H
b - .00009 - .000209 - .00009 - .000124 i
f v - .000027 - .000001 - .000027 - .000032
Chg™ - 001249 - .003513 - .000249 | - .000351
Chj - 004092 - .004757 - .004092 | - .003753
Chy - .000324 - .000156 - .000324 - .000264
b Chy .000063 .000074 .000063 .000056
- ChyA - .000013 - .000005 - .)00013 - .000009 ;
|
t
%
%
|
i
;.
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COMPARISON OF FLAPERON HINGE-MOMENT DERIVATIVES OF BASIC PANELED
MODEL WITH INCORRECT AND CORRECT HINGE LINES, RIGID AIRPLANE

TABLE 5

Centrol Derivative Hinge line Hinge line
surface {per rad) incorrect correct
Flaperon Chq -0,000367 -0.001146
Chg - .002300 - .006373
S
Chg - .000434 - .005046
A
Chy - .000038 - .000050
Chd - .553539 -1.48630
Chg - .004019 - 009279
S
Ch§ - .0000140 - .0000306
Chg .000055 .000122
Chp - .00009 - .000307
o - .000030 - .000080
A
Chs - .000249 - .004548
A
Chg - 004321 - 010653
chg - .000324 - .000993
Chy .000063 .000153
A
Ch§ - .000012 - .000027
91




TABLE 6

COMPARISON OF HINGE-MOMENT DERIVATIVES

FOR VARIOUS PANELING CONFIGURATIONS

Basic paneling

M e e T

R o

Control Derivative Basic Basic paneling 1.0 NF/FF LD Improved
surface {per rad) paneling with strake on flaperon paneling paneling
Flaperon Chg -0.001146 -0.001175 -0.001314 ~0,00106 -0.001085
Chg - 006373 - 006497 - .005763 - .005901 - .006351
Cng® | -.005046 | -.006112 | -.0047185 | - 0044235 | - oods21s
Chl - .000050 - .000063 - .000031 - .000047 - .000074
Cnd -1,486299 -1.542958 - .716667 -1.35821 -1,550761
Ché - 009279 - .009386 - 005248 - .008081 - .006351
.S
Ch - 0000306 - 0000309 - .000014 - .000026 - .00003018
Chg .000122 000124 .000088 .000114 000133
chg - 000307 - .000309 - .000360 - .000283 - ,000287
+ Chft - .00008 - .000081 - .000068 - .000075 - 000080
A
Chy - .004548 - 004593 - .004480 - .003965 - .004335
chg - .0108563 - .010823 - .000226 - .010249 - 011605
Chf) - .000993 - .001009 - .000641 - 000909 - .000967
o .000153 000156 .000131 .000147 .000164
h : - .000027 - .000028 - .000016 - 000024 - .000027
92
i o LI _ Py s i

.

L‘-—r— | Raee o i e AP S



e T T T T ——

_ap

< i v

g T T o —

—— ——— e — T
TABLE 6 (CONTD)
COMPARISON OF HINGE-MOMENT DERIVATIVES FOR VARIOUS PANELING
CONFIGURATIONS

Control Derivative Basic_ B?sic paneling E‘gﬁgf;;’i"g LD ) lmprt?ved

surface (per rad) paneling |with strake on flaperon paneling paneling
Hg)irizontal Chg 0.001921| 0.001933 | 0.001483 | 0.002485 | 0.001755

tai

Chj - 02255 | - ,022574 - .021331 | - .017558 | - .018783

ChsS | - .004901| - .004895 | - .004888 | - .003062 |- .004068

Chl - .000998| - .000939 | - .001014 | - .000891 |- .000901

Ch2 | -8.51040 | -8.594526 | -7.34356 | -7.882348 | ~7.107366

Chd | - .106008| - .106329 | - .106233 | - .097523 |- .094317

CngS | - .000136| - .000136 | - .000136 | - .000138 |- .000120

Chg 001621 .001616 .001581 .000965 | .001262

Chp .000605 |  .000608 000481 | .000641 | 000396

Chpr | - .00261 | - .002624 | - .002573 |- .001879 |- .002113

Chg® | - .003846| - .003844 | - .003844 |- .0022214 (- 0033692

Ch;g'\ 236522 | 235626 240377 | 249017 | .212466

Ch5 | - .004839| - .004858 | - .004516 | - .00444 |- 004311

Che | - .003898| - .003900 | - .003958 |- .004112 |- .003557

ChgA |- .0001219] - .0001219 | - 0001219 |- .0001219 | - .000106
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TABLE 6 (CONCLUDED)
COMPARISON OF HINGE-MOMENT DERIVATIVES FOR V ARICUS PANELING
CONFIGURATIONS
' Basic paneling
Control | Derivative Basic Basic paneling | LD NF/F LD Improved
surface {per rad) paneling with strake on flaperon paneling paneling
Rudder Chﬁ 0.000700 0.000700 0.000701 0.000637 0.000651
Ch{,\ 000132 3.000129 0.000133 0.000121 0.000133
Chy - .001573 -0.001573 -0.001573 -0.001443 -0.001487
Chg - .002043 -0.002043 -0.002043 -0.001797 -0.001983
Chg .083185 0.083172 0.083136 0.075232 0.080189
Chi .000412 | 0.000415 0.000407 | 0.000377 0.000407
Crp - 001504 -0.001504 -0.001503 -0.001337 -0.001459
Ché - .00001 -0.00001 -0.00001 -0.000008 -0.00001
Y4
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