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Nonlinear Interaction of Waves in

Boundary-Layer Flows

Au H. Nayfeh and All N. Bozatli

Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University,

Blacksburg , Virginia 24061 H

Abstract

First-order nonlinear interactions of Tollmien-Schlichting waves of

different frequencies and initial ampl itudes in boundary-layer flows are

analyzed by using the method of multipl e scales. For the case of two

waves , a strong nonl inear interac tion ex ists if one of the frequencies)
u2~~~~wice the other frequency.~ijT~’flumerical results for flow past a

flat plate show that this interaction mechanism is strongly destabilizing

even in regions where either the fundamental or its harmonic is damped

in the absence of the interaction.N For the case of three waves , a

strong nonl inear interaction exists\~hen W 3 = 
~~~~ w~. Thi s combination

resonance causes the amplitude of the wave wi th the difference frequency

(L)3 to multiply many times in magnitude in a short distance even if it

is damped in the absence of the interaction. The initial ampl itudes

play a dominant role in determining the changes in the amplitudes • f

the waves in both of these mechanisms.
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I. INTRODUCTION

One of the major roads from laminar to turbulent flow involves the

initial linear amplifica tion of disturbances , which might be present in

the flow. However, as these disturbances grow to appreciable amplitudes,

nonlinear effects set in. Trie nonlinear mechanisms that are activated

depend on the spectrum of the disturbances. In this paper, we investigate

two of these mechanisms.

In his experiments on the transition from laminar to turbulent flow

In a separated shear layer, Sato1 observed the appearance of the subharmonic

of order one-half in addition to the higher harmonics of the fundamental

wave. Wille2 observed the development of subharmonic waves while investigating

the stability of both circular and plane jets. Kachanov, et al3 observed

that , in addition to the hi gher harmonics of a fundamental wave, which

was introduced in the flow by a vibrating ribbon, a subharmonic wave

with one-half the frequency of the fundamental wave appeared downstream.

Michalke4 postulated that the subharmonic appears when two vortices

rotate around each other in a fusion mating dance. Kel ly5 showed that

the appearance of the subharmonic in a shear layer is due to a secondary

l inear instability associated wi th a time-dependent flow that consists

of the superposition of the basic flow and a finite-ampl itude funda-

mental wave. Nayfeh and Bozatl i6 investigated the appearance of the

subharmonic In boundary layers by analyzing the instability associated

with a time-dependent flow that consists of the superposition of the

basic flow and a Tollmi en-Schlichting wave. The results show that the

ampl itude of the fundamental wave must exceed a cri tical value to

trigger this parametric Instability. This value is proportional to a

2
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detuning parameter that is the real part of k - 2K, where . k and K are

the wavenumbers of the fundamental and its subharmonic, respectively.

For the Blasius flow, the critical ampl itude is approximately 29% of the

mean flow. For other flows where the detuning parameter is small , such

as free-shear layer flows, the critical ampl itude can be small , thus the

parametric instab i lity might play a greater role. Since the analysis of

Kel ly5 and Nayfeh and Bozatl i6 are linear, they do not account for the

effect of the subharmonic wave on the fundamental wave. This effect may

be smal l initially, but as the subharmonic grows appreciably, its

effect on the fundamental cannot be neglected. One of the purposes of

the present paper is to determine the nonlinear interaction of a Tolimien-

Schl ichting wave wi th its subharmonic.

Sato7, Mi ksad8, and Kachanov , et a19 observed that the nonlinear

development of the waves in the transition region depends on the initial

and external disturbances. Sato7 conducted an experiment on the stability

of syn~netric laminar wakes by exciting two unstable modes with the

frequencies f1 and f2. He observed the generation of waves having the

frequencies f2 ± fi. Mi ksad8 excited two unstable modes of a laminar

asyninetric free-shear layer. He also observed nonlinear triggered

instabilities of the difference mode f2 - f1, subharmonlcs , and higher

harmonics of the fundamental waves. Kachanov , et a19 introduced two

Tollm ien-Schlichting waves in the boundary layer on a flat plate b~

using two vibrating ribbons. They observed the appearance and growth of

a Tollm ien-Schlichting wave having the difference frequency f2 - f i .

Norman10 also observed the amplification of the difference harmonic of

two introduced disturbance waves in his experimental study of secondary

3
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flows around and downstream of protuberances In laminar boundary layers .
The second purpose of the present paper is to determine the nonlinear

Interaction of three Tollmien-Schlichting waves (combination resonance)

In boundary layers and show that the difference frequency can be very

unstable when generated by the nonlinearity, even though it Is stable

when Introduced by itself in the boundary layer.

The problem is formulated in Sec. II. The analysis for the corn-

bination—resonance case is contained in Sec. III , while the results for
the second-harmonic case are stated in Sec. IV. The numerical procedure

is discussed in Sec. V , while the numerical results are presented in
Sec . VI.

4
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II. PROBLEM FORMULATION

We consider nonlinear interactions of wave packets in a two-dimensional

steady incompressible boundary-layer. The equations describing the

motion of the fluid are

= 0 , (1)

(2)

~~ ÷ i ~~ ~~~~~~~ ~~ +~~~~ V 2
~~, (3)

~~~~~= O  at y = O , (4)

ii -. i as y + o o , (5)

where
2

r,2 _ 0
v _ w  rT

Here, x and y are made dimensionless by using a reference length 
~r’

the time is made dimensionless by using is /U , and the velocities are

made dimensionless by using the freestream velocity U~. The Reynolds

number R = UI,6r/V wi th ‘v being the fluid kinematic viscosity .

The analysis is restricted to basic flows that are slightly

nonparallel (i.e., vary slowly in the streamwise direction) and to

disturbances that are small but finite. The slow variation Is expressed

by using the slow scale x~ =c1x , where c~ is a small dimensionless quantity

that characteri zes the nonparallel ism of the flow and can be related

to R by c~ = R~~. The smallness of the amplitude of the disturbance

is expressed by introducing the small dimensionless parameter c. For

a general solution, we assume that c = 0(ci) so that the resulting
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expansion accounts simultaneously for the effects of nonparallelism and

nonlinearity . When £ << c1, the nonlinear effects are negligible and

the solution reduces to those obtained in Refs. 11 and 12. When

£ >> E~~, the nonparallel effects are negligible and the solution reduces

to equations with constant coefficients.

We assume that each flow quantity is the sum of a mean-flow quan-

tity and an unsteady disturbance quantity, which Is assumed to be much

smaller than the mean-flow quantity. We can then express the velocity

components and the pressure as

ii(x,y,t) = U0(x~,y) + cu(x,y,t), (6)

~(x,y,t) = ciVo (x1,y) + cv(x,y,t), (7)

~(x,y,t) = P (x1) + cp(x,y,t), 
. 
(8)

where U0, V 0, and Po are the nonparallel basic-flow quantities. Sub-

stituting Eqs. (6) - (8) into Eqs. (1) - (5) and subtracting the basic-
flow quantities, we obtain

- 0 9

+ U0 ~!L + v + - V2 U = - 
~ u - c1V0

au 10C 3~~~
. C  

~~

~~~+ Uo ~~~~+~~~~
_
~~~V 2 v = _  c~u~~~~- _ c i V~~~~~ci v~~

.D
~

- 
- C u~~~~- C v ~~~~, (11)

J 

u = v 0 at y 0 , (12)

u, v as y •+ (13)
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Without loss of general ity, we let e = £~~. To determine the wave—

packet solutions of Eqs. (9) - (13), we use the method of mul tipl e

scales13 and seek an expansion in the form

u = u0 (x0,x1 ,y,T0,T1) + cu1 (xo,x1,y,To,T1) + .. . , (14)

v = vo (xo,x1,y,To,Ti) + cvi (xo,x1,y,To,T1) + ..., (15)

p = po (xo,x11y,T0,T1) + cpi(xo , x1,y,To , T i) + .. . , (16)

where x0 = x, T0 = t, and T1 = €t. Substituting Eqs. (14) - (16) into

Eqs. (9) - (13) and equati1ig coefficients of like powers of c, we obtain

Order c°

+ 0, (17)

+ Uo + v0 + - 

~~~ 

v~u0 = 0, (18)

+ Uo + - 
~~ V~v~ = 0, (19)

u0 = v 0 = 0  at y = O  (20)

u0, v0 -
~~ 0 as y -

~~ 
(21)

Order c

+ ~~~~~-~- = - ~~~~~~~ -°- (22)
ax0 3y ax1

v )
aUO 

~~ ~p1~~~2 a 2u0 - u
~~~~~~~~~~ 

i~ i., i , P i  0 ax1 ax 1 ~ ax 0ax 1 0 ax1

- v0 ~~~~~-~- - uc - v o , (23)

~
- - �~2(u~,v1 ,p1) = - 

~4~- 
- U0 ~~~~~-~ - + 

3X O~~X I 
- V 0 - V o

- u o 
~~~~~~~~~~~~ 

vo (24)

7
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u1 v1 = 0 at y = 0, (25)

Ui, v1 -‘ 0 as y -~~ ~~~, - (26)

where

-.2 ‘~.2
V O  — 

~~~2 ~oX 0 oy2

In what follows, we describe the details of the analysis for the

combination-resonance case and only state the results for the second-

haromnic resonance case.

8
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III. COMBINATION RESONANCES

A. First-Order Problem

For the case of combination resonances, we consider three wave-

packets centered at the frequencies w~, W2,  and W 3 ,  Then we examine the

resonances that might exist among them. Thus, the solution of Eqs.

(17) - (21) is expressed as a linear combination of three Toilmien-

Schl ichting waves; that is,.

u0 A1 (x1,T1)~11(y;x1 )exp(ie1) + A2 (x1,T1)

~j2(y;xl)exp(iO2) + A3 (x1,T1)r13 (y;x1)exp(i83) + c.c., (27)

v0= Aj (xi,T1)~21 (y;x1)exp(iOi) + A2 (x1,T1)

~2z(y;xl)exp(iO2) + A3 (xl,Tl)~23 (y;xi)exp(i83) + c.c., (28)

Po A1 (x1,T1)~31 (y;x1 )exp(iOi) + A2 (x1,T1)

~32(yxi)eXp (iOz) + A3 (xj,T1)~33 (y;xj)exp(i8i) + c.c., (29)

where
90

= k~(x~), J~ = - w~ (n = 1 , 2, 3) (30)

with the ~ being rea l constants. The quasi-parallel Orr-Soninerfeld

problems for these waves are

~~~~~ ~2 n kn) ~~~ + ikll; n 
= 0, (31)

M2(c~~ ~2n ’ ~3n 
kn~ ~~ 

i(liok n - 

~n~~1n + 
~ 2n

D
~

b0

+ ~~~~ 
— 

~~~ (D 2 - ~~~~ 
= 0, ~32)

- 

9



M3 (
~~n I 

~2n ’ ~3n 
kn i wn ) i (U~k~ - 

~~~ +

- 
~~~ (D2 — k~)c~~ 

= 0, (33 )

I
= = 0 at y = 0, (34 )

~~~ 
-

~~ 0 as y oo , (35)

where D = 3/ay.

B. Second-Order Problem

Substituting Fqs. (27) - (29) into Eqs. (22) - (26), we find that

the inhomogeneous parts in Eqs. (22) - (26) contain terms proportional

to

exp(i01), exp(i02), exp(i03),

exp[i(82 - 

~~~ exp [i(01 + 03)], exp[i(o2 —

where the overbar indicates the complex conjugate. The terms that are

proportional to these exponential expressions will create secular terms

in the particular solutions for u,-, v,, and Pi if k3 k2 - k,

and ~~3 
- u,; that is , when a combi nation resonance exists among the

waves. To express quantitively the nearness of the above resonances, we

introduce the two detuning parameters a, and a~ defined by

— u2 + (~~~
= cc~ , (36)

Real (k3 - k2 + k 1)  
= ea2, (37)

-• I - .  - • - -~~~~~~~ -- 
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where a,~ = 0(1). Using Eqs. (36) and (37), we write

+ 03= (k1 + k3)dxo - (W i + w3)To = 02 + 4~ 
i (k . + k

11 3 •
~

— k2i )dxo, (38)

02 — 03=0 1 — p + i (k 1 + k~ - k~~)dx0 (39)

02 - O~= 0~ — + i (k~ + k
~ 

— k 1 )dxo, (40)

where 
~~ 

stands for the imaginary part of k~ and

fa2~x i - a~T~ (41)

To determine the A~. we seek a particular solution for the second-

order problem in the form

= ~p11 (y;x 1)exp(io1) + ~i2 (y;xi)exp(i02) +~,3(y;x,)

exp(ie1) + c.c., (42)

v, = 
~p2 1 (y;x,)exp(i 0,) + ~22(y;xj)exp(iO2) + ~p2i (y;x1) x

exp( i03)  + c .c . ,  (43)

P1 = p31(y;x 1)exp(i O i) + ~p32(y;x1)exp(i 02)  + ~ 33(y ;x , )  x

exp( iO a ) + c.c. (44)

Substituting Eqs. (27) - (30) and (38) - (44) into Eqs. (22) - (26) and
equating the coefficents of exp(i01), exp(i02), and exp(1e3) on both

sides , we obtain the following equations:

Mi (~D~~1 
~2J ’ 

k~) = ~~~ (45)

11
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M2(iP,~~ ~P2y P 33 ; k3, w~) 
= d

3
, (46)

M3(iP,~. ~~~ 
~~~~~~~ 

k
3
, w~) = d 3

, (47)

= 

~2J 
= 0 at y = 0, (48)

~ Z3 
-
~ 0 as -

~ ~~~ (49)

for j = 1 , 2, and 3, where the d1~ are given in Appendix A.

C. Adjoint Problem

Since the homogeneous parts of Eqs. (45) - (49) are the same as

Eqs. (31) - (35) and since the latter have a nontrivial solution , the

inhomogeneous equations (45) - (49) have a solution if, and only if, the

inhomogeneous parts are orthogonal to every solution of the adjoint

homogeneous probl em ; that is ,

J(dij~*j + ~~~~ + d ~i*~)dy = 0 for j = 1 , 2, and 3,

(50)

where the ii’s are the solutions of

M*i(~~~ ,~~;; k~ ) ~~~~~ - Dc~~ = 0, (51 )

~~~~~~~~~ 

c j ; k,~. wj ) i(Uo k~ - Wj )C j + c~~DUo

- D~*~ - ~~~ 
(D2 - k~)c~ 

= 0, (52)

M*3(c~ 
~ 

c~~; k~ Wj i(Uok~ - wj )~~~~ j  
+ ~~~~

- 
~~
- (02 - ~~~~ = 0, (53)

c;j = = 0 at y = 0, (54)

~~~~~~~~~ 
~ 0 as y -

~ ~~~ (55)

12
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Substituting for the ~~ from Appendix A into Eq. (50) and defining

a~ = AjexP[
f 

k~~dx]~ (56)

we obtain the following differential equations for the evolution

of a1 , a2, and a3:

1 + = (C,  ~~~~
--  - k 1 )ai + C ~ 123 a2a3exp (-i~ ), (57 )

1. ~~ + = ( C i  ~~ - k I)a2 + C ~2 i 3  a1a3exp(1$), (58)

]_~ ~.i + .1 = (
~ 

~~~~~~~ - - k I)a3 + ~ ~ 3 i 2  a2iiexp(—i~), (59)

where u,~ 
= dwn/dkn is the group velocity and • is defined in Eq. (41). For

spat ial modulat ion only, a1 = 0 and 9a~/3t = 0; all the calculations

presented in this paper are for this case. We note that Eqs. (57) -

(59) account for the combined effects of the nonparalle~ism (i.e.,

growth of the boundary layer) and the nonlinear interaction. - If

C << C i ,  the nonlinear interactions can be neglected and the spatial

variations in Eqs. (57) - (59) reduce to the nonparallel solutions of

Refs. 11 and 12. When Ci << C,  the effects of the nonparallelism are

negligible; that is, one can set c~ = 0 and all the coefficients in Eqs.

(57) - (59) can be treated as constants.

I
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IV. HARMONIC RESONANCE

The interaction between a fundamental Tollmien-Schlichting wave and

its second harmonic is analyzed using a procedure similar to that

outlined in the previous section. In this case, instead of Eqs. (57)

(59) we obtain

1 + = (c 1~.LL - k
~~

)ai + C ~~ a2i1exp (-i~), (60)

+ = (c i~~i- - k 1 )a2 + ~ ~ -1- a~exp(i4), (61)

where 4 is defined in Eq. (41) and

Ca2 = Real(k 2 - 2k1), cai= W2 - 2w~, (62 )

and f1, f2, h11 , h22, h,2, and h21 are given in Appendices B and C.

For spatial modulation only, a1 = 0 and 9a~/9t = 0. All the

calcula tions presented in this paper are for this case.

14
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V. COMPUTATION PROCEDURE

A. Solutions of First- and Second-Order Problems

The same procedure is followed in solving the first- and second-

order problems for both harmonic and combination resonances. Therefore,

only the computation methodology for the solution of the first-order

problem for the first mode is outlined here.

Equations (31 ) - (33) are expressed as a system of first-order

differential equation in the form

=Gz , (63)

where z i s a 4 x 1 matrix with the elements

z~ = ~11 (y;x1), Z2 = Dcii (y;xi), z3 =~21 (y;x1), z~ 
=

(64)

and G is a 4 x 4 matrix; its elements are given in Appendix 0.

We start the integration of Eqs. (63) at y = 

~e’ 
where is larger

than the boundary-layer thickness. Hence, U0 = 1 , DU0 = 0, and

D2U0 = 0 at 31e Then the matrix G has constant coefficients at y =

and Eqs. (63) have solutions of the form

= 

~~ 

c~~exp(A~y ) for I = 1 , 2, 3, and 4, (65)

where the c1~ are cons tants , the A ’s are the solutions of

IG - Al l  = 0, . (66)

and I is the identity matrix. Equation (66) has the roots

A = ± k1, A ± [k2 + i(k1 - w1)R]’~
’2, (67)

1,2 3 m ’. I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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Two of these roots have positive real parts that make the solution grow

exponentially as y -+ 
~; hence, they must be discarded to satisfy conditions

(35). This leaves two linearly independent solutions that dec~’y ex-

ponentially with y.

The eigenvalues are not known a priori and must be determined along

with the eigenfunctions. For given values of w, and R, we guess a value

for k1 and integrate Eqs. (63) from 
~e 

to y = 0. If the quessed value

of k1 does not staisfy the boundary conditions at y = 0, k, is Incremented

by using a Newton-Raphson scheme and the procedure is repeated unti l the

boundary conditions are satisfied to within a specified accuracy. The

integration Is done by using a computer code developed by Scott and

Watts14. This technique orthonormalizes the solution of the set of

equations whenever a loss of independence is-detected .

B. Solution of Adjoint Problem

The solution procedure is exactly the same as that for the first-

order problem. The coefficients of the z matrix are

* * *z1 = c21 (y;xi), z2 = D~~1(y;x1), z3 =

= cii (y;xi) (68)

and the adjoint problem has the same eigenvalues as the first-order

problem.

C. Solvabil ity Conditions

The calculations are repeated at different streamwise locations to

evaluate f
3
, h3~~ k~. and the other Interaction integrals for a given

frequency along the x-axis. A fourth-order fixed step-size Runge-Kutta

L ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~ 
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integration scheme is used to solve either Ecs. (57) - (59) for com-

bination resonances or Eqs. (60) and (61) for harmonic resonances to

find the ampl itudes of the waves for different initial ampl i tudes of the

respective modes.

17
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VI. Results and Discussion

The analysis presented in this paper is applicable to both two-and

three—wave interactions. First, we present and discuss numerical

results for the case of two-wave interactions. Then, we present and

discuss numerical results for the interaction of three waves whose

frequencies are such that F3 = F2 - F1.

A. Two-Wave Interactions

The numerical results presented in Ref. 6 show that the amplitude

of a wave a~ = Ca2 must exceed a criti cal value before it can generate

and amplify its subharmonic. For the Blasius flow, the criti cal value

is approximately 29% of the mean flow. This is for the case when the

subharmonic wave has an infinitesimal amplitude . When the ampl itude
p 

* 
-

ai = Cal of the subharmonic wave is not infinitesimal , its influence on
*

a2 should be taken into account. The equations governing this influence

are Eqs. (60) and (61) whose general solution is not available yet. The

6 *previous results of the parametric instability model show that a1
*

oscillates about its non-interaction value until a2 reaches the critical

value. Figures 1 and 2, obtained by numerically solving Eqs. (60) and

* *(61), agree with this conclusion. Initially, a2 increases while a,

oscillates around its non-interaction value.
*At R — 580, Fig. 1 shows that ai starts to deviate sharply from its

non-in teraction value , while it follows from Fig. 2 that ~na~ -1.25

or a2 = 0.286 at this location. Hence, when a2 is less than this

critical value , a~ can be approximated by its non-interaction value;

that is

18
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a~~= a
’
~0exp (-k 1x + iT) (69)

where a10 and r are the init ial ampliti.~de and phase of the subharmonic

wave , respectively. If we substitute Eq. (69) into Eq. (61) and neglect

the non parallel effects , we obtain

+ k 1a~ = ~~~ a~~ex p[~(2k 
~ 

+ i~a2)x + 21r). (70)

The solution of Eq. (70) that satisfies the initial condition

= a (O) at x = 0 can be written as

= [a~(0) + f2(2k
~~

+ i ca2) a~~exp (2iT)]exp (-k i x)

- 

f2(2k~~~ i ca2) a~~exp[-(2k 1 + icaz)x + 2ir).

(71)
Equation (71) represents an approximation to a as long as it is less

than the critical value needed to trigger the parametric instability in

the subharmonic wave.

Nex t, we consider the generation and amplificati on of a second-

harmonic wave by a fundamental Tollmien-Schlichting wave. We consider

the following three cases: (i) fundamental wave is stable while its

second harmonic is unstable, (ii) fundamental wave is unstable while its

second harmonic is stabl e, (iii) both fundamental and second-harmonic

waves are unstable.

When the fundamental wave is initial ly stable while Its second
*harmo n ic is unstable , a~ decays until it reaches the unstable region and

then it increases as shown in Fig. 1. For Reynolds Number less than
*560, a1 oscillates around its non-Interaction value , implying a small

*
initial influence of Its secon d harmonic on it . Thus , a2 can be approx-

imated Initially by Eq. (71). Figure 2 shows that the values obtained

from Eq. (71) are in good agreement with those obtained by numerically 

—.— 
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integrating Eqs. (60) and (61) for R < 560. After a short initial

distance , the second term on the right-hand side of Eq. (71) decays.

Then, a~ can be approximated by

a~= (a (0) + f2(2k ica2) a
~oexp(2iT)]exp(_k~~

x),
1 

(72)
as long as a~ is less than the critical value.

Hence, the effect of the fundamental wave on its second harmonic is
*

to increase its initial amplitude . However, as a2 attains large values ,
* *it strongly influences a1 which in turn strongly influences a2. The

result is an accelerated instabi li ty.

For the case when the fundamental wave is initially unstable while

its second harmonic is stable, we performed calculations for waves wi th

the frequencies F1 = 46.5 x io _6 and F2 = 93 x ici6. The fundamental

wave is in the unstable region at R = 950 where the calculations are

started. Thus, its unstable downstream of R = 950. Figure 3, obtained

by numerically integrating Eqs. (60) and (61), shows that a~ hardly
*

deviates from its non-interaction value. On the other hand , a2 in-

creases many orders of magn itude even for smal l initi al ampl itudes of

the fundamental wave as shown in Fig. 4. In these calculations , the

initial amplitude of the second-harmonic wave is taken to be 0.1% while

the initial amplitudes of the fundamental wave are 0.1% and 0.5%. Since

hardly deviates from its non-interaction value , Eq. (71) is expected
*

to be a good approximation to a2. Figure 4 shows that the values obtained

from Eq. (71) oscillate about those obtained by numerically integrating

Eqs. (60) and (61). Since the initial values are very small ,
*

does not reach the critical value to infl uerce a1. After a short initial

distance, the first term on the right-hand side of Eq. (71) decays and

20
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*

a2 can be approximated by

aa = - f (2k 
h2~ ica) a

~~
exp[-(2k

~ 
+ ica2)x + 2it],

1

*

as long as a2 is less than the critical value. Consequently, the effect

of the interaction is to produce a second-harmonic wave that grows

approximately at a rate that is twice that of the fundamental wave.

For the case when both waves are unstable , we performed numerical

calculations for waves having the frequencies F1 = 52 x 10-6 and

F2 = 104 x 10-6 starting near R 600. Figure 5 shows that initially

deviates slig htly from its non-interacti on values. Hence, Eq. (71) is
*

expected to be initially a good approximation to a2. Figure 6 shows

that the numerical values obtained from Eq. (71) are in good agreement

with those obta ined by numerically integrating Eqs. (60) and (61) when
*

a2 is less than 0.29. Thus , in this case, the effect of the interaction

on the second—harmonic wave is to increase its initial ampl itude and to

produce a term that grows at a rate that is twice the growth rate of

the fundamental wave. Due to the fact that both waves are initially

unstable , the interaction is more effective in this case than in the

preceding two cases.

B. Three-Wave Interactions

In their experimental studies . Kachanov , et a19, Miksad8, Norman10 ,

and Sato7 introduced two separate waves of different frequencies into

the flow that was being stud ied. They observed the growth of a wave

whose frequency is equal to the difference frequency. Kachanov et al

used the frequency pairs F1 = 88 x l0 6 and F2 = 104 x io 6 and

F, = 88 x io_6 and F2 = 120 x ici6 to analyze the growth of the associated

21
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di fference-ha rmonic waves at F3 = 16 x 10-6 (i.e. F3 = F2 - F1) and

F3 = 32 x lO
_6 

in a boundary-layer flow over a flat plate. Using the

same frequency pairs, we determined the amplitudes of the fundamental

* * *waves (a, and a2) and the difference-harmonic wave a3 by numerically

solving Eqs. (57) - (59). Figures 7 and 8 show the large increases in

the amplitudes of the above difference-harmonic waves due to the nonl inear

interaction of the waves with the frequencies F1 and F2. The amplitude

of the difference-harmonic wave at R 715 is increased 120-200 times

its non-interaction value.

However, the ampl itudes of the fundamental waves change very little

from their non-interaction values as shown in Fig. 9 for F1 = 88 x lO
_6
.

Thus, a~ and a~ can be approximated by

a’~ = a
~
oexp(-k 

~
x + i Ti ) ,  a = a~oexp (-k 1x + iT2),  (74 )

where aj0 and a20 are the initial amplitudes and T~ and 12 are the

initial phases of the fundamental waves. Substituting Eq. (74) into

Eq. (59) and neglecting the nonparallel effects , we obtain

~!i+ k 1a = 
113 12  a~0a~0 exp[_ (k1~ 

+ k
~ 

+ iea2 )x

+ i(T1 + 12)] (75)

The soluti on of Eq. (75) that satisfies the initial condition

a~ 
= a~(0) at x = 0 can be expressed as

a = Ea~ (0) + f3(k •
h

•~
1~ 

+ ica2) a~0a~oexp(iT 1 + it2)]

exp(-k 3 1x) - 

f(k
3
~
2
k ~ iCa2) 

a~oa~ o exp[-(k~ + k 1

+ lca2)x + i(-r 1 + 12) ] .  (76)

Equation (76 ) represents an approximation to a~ as long as the ampl i tudes

of the fundamental waves do not deviate from their non-interaction values.
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Figures 7 and 8 show that Eq. (76) is initially in good agreement wi th

those obtained by numerically integrating Eqs. (57) - (59).

According to Eq. (76), the difference-harmonic wave grows at a rate

that is the sum of the growth rates of the fundamental waves. Since the

fundamental waves are unstable at R = 430, where the calculations are

started, the difference-harmonic wave amplifies considerably, inspite of

the fact that it is stable in the absence of the interaction. These

results are in qualitative agreement wi th the experimental observations

of Refs. 7 - 10. -
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APPENDIX A

aA
~~ = 

~ ax, ~~ 
+ A~ ax,

3 
~ (Al)

d2~ 
= dz~o + d2J1~ (A2)

V 3A .
d230

= ~~~~~ + 
~3j 

— .~‘ ~~~~ — V o D~i~ ) ~~~~~~~~ + [ — U0

____ 
21 a~1. dk. II

- 

~~~ 
+ .

~~
— (k~ axi~ 

+ 
B~~~~~~~1j

) - 
~~~~~~~~ ~~~~~ (A3)

d21, = [i(k2 — k3)~ 12~,3 + ~22Dt13 + D~12~23]A2A3

exp[-i4 - f(k21 + k3i - k,1 )dx], (A4)

d22, = [i(k, + k3)~,,~ 13 + ~21 DC~3 + D~,,~23]A ,A 3

exp[i~ _f (kij + k31 - k2i )dx], (A5)

d23, = (— ff ,~,,~12 + ik2~,2~1, + ~~~~~ + D~,�~21)A2X,

exp[-i~ -f(kii + k21 - k31 )dx], - (A6)

d3~ = d 3~0 + d3~1, (Al)

V aA . 
~~~— (Uo12~ — 

~~ ~~~~ 
1. — [U~ ax1

3 
+ V0D~2~ +

- 

~~ ( ~jj~ ~~2j  
+ k~ ~~~ 

)1A~, (A8)

d311 = (—ff3~12~2 3  + ik2~22~,3 + ~22 D~23 + Dr 22~23)A2A3 x

exp[-i~ _J (k21 + k3i - k11 )dx], (A9)

d321 = (ik3CljC23 + ik 1~2 1~ 13 + t21 Dz 23 + D~2 1~23)A,A3 x

exp[i4 _J~k1i 
+ k31 — k21 )dx], (AlO)
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d 3 3 1  = ( —ir1~2, + ik2~22~1, + C Z2 D 2 1  + Dt22~21)A2X1

exp[-i~ -j7ki~ + k21 - k3~)dx]. (All)
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APPENDIX B

* 2ik 
* 21k

f~ =J 
~~

- 
~~~~~~~~~~~ 

- [(LI0 - R ~~~~~~~ 
+ 

~~3J k2j  
- (t~0 - R

i)

C:j~~JdY ( j = h 2 ,3),

~Ci * at ,. a~3 .  a~1.
h11 = 

j1axi~ ~~
1j 

+ [IJ~ 3x,
3 

+ ax,
3 

+ V~Dc~ 
- —k (k1 ax,3

dk 
* 2ik 3c2 .

+ 
~~~~~~~

- c~~
) + 

~~~ ~1J
]12~ + [(us — R ~ ~ ax,

3 +VoD~2~

+ ~21DV0 - 
~~~~~~~~ ~~~~ } 

dy ( j  = 1 , 2, 3), (B2)

h,23 = J’{[i(k2 — k3)i,2~ 13 + ~22D~13 + Dc,2Z23]~~,

+ ( — ik 3~12’~2 3  + ik2~22~,3 + 
~~2 2 D~~ 2 3  + D~22~z3)~~,~ dy , (B3)

h213 = j{[iki + k3)~11~ 13 + ~21Dt 13 +

+ (1k3c,1c23 + ~~~~~~~ + ~21D~23 + D~21~z3)~~2~dy, (B4)

= j{[ik2 - 
~~~~~~~~~~~~ 

•

+ ~22Dt,, +

+ (— ik ,~2 1~12 + lk2~22~ ,1 + 
~~22D~~ 2l + Dc22t2l)l~ 3~dy. (B5)
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APPENDIX C

h12 =
,(~

[t 22 D~i, + 
~21D~12 + I(I(~ -

+ [ik2c22t, , - 

~~~~~~ ~22D~21 + ~z,D~22]~~, d y (Cl) 
. 

-

1121 f{[(iki~i~ + c21D~,,)~~2 + (ik 1~,,~2, + 

~
aiD

~
2l)?

~
z]Idy (C2)
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APPENDIX 0

= 0 , 9iz = 1, g,3 = 0, g,’. = 0 (Dl)

g2, = i(U0k - w)R + k2 , 922 = 0, 923 = R g•~ , 92’. = ikR (D2)

g3, = - 1k, 932  = g33 = g3’. = 0 (D3)

= 0, g’.2 = -ik/R, g’.~ 
= — [i (Uok — w) + k2/R], 9’.’. = 0 (04)

Q is a 2 x 4 matrix consisting of the last two rows of the matrix

B 1 . The matrix B has the elements:

b,1 = b,2 = b,3 = b,’. = 1 (05)

= —k , b22 = k, b23 = k, b2’. = — k (06)

b3, = i , b32 = 1k/k, b33 = — i , b3~ = -1k/ k (07)

b’., = (w/k — 1), b’.2 = 0, b’.3 = (ca/k — 1), b,. = 0 (08)

where

— li
k = [k2 + i(k — w)R] 12 (D9)
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