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Nonlinear Interaction of Waves in

£ G

Boundary-Layer Flows
Ali H. Nayfeh and Al1i N. Bozatli
Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061
Abstract

\N First-order nonlinear interactions of Tollmien-Schlichting waves of
different frequencies and initial amplitudes in boundary-layer flows are
analyzed by using the method of multiple scales. For the case of two
waves, a strong nonlinear interaction exists if one of the frequencies;
wf§;;_;;fce the other frequency.w;.”Numerical results for flow past a
flat plate show that this interaction mechanism is strongly destabilizing
even in regions where either the fundamental or its harmonic is damped
in the absence of the interaction., For the case of three waves, a
strong nonlinear interaction exists\hhen w3 = w2- wy. This combination

resonance causes the amplitude of the wave with the difference frequency

w3 to multiply many times in magnitude in a short distance even if it

e L Lk ot o nt S T

; is damped in the absence of the interaction. The initial amplitudes
3 play a dominant role in determining the changes in the amplitudes of

the waves in both of these mechanisms.
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I.  INTRODUCTION

One of the major roads from laminar to turbulent flow involves the
initial linear amplification of disturbances, which might be present in
the flow. However, as these disturbances grow to appreciable amplitudes,

nonlinear effects set in. The nonlinear mechanisms that are activated

depend on the spectrum of the disturbances. In this paper, we investigate

two of these mechanisms.

In his experiments on the transition from laminar to turbulent flow
in a separated shear layer, Sato]
of order one-half in addition to the higher harmonics of the fundamental

wave. Nillez

the stability of both circular and plane jets. Kachanov, et a13 observed
that, in addition to the higher harmonics of a fundamental wave, which
was introduced in the flow by a vibrating ribbon, a subharmonic wave

with one-half the frequency of the fundamental wave appeared downstream.
M'ichalke4 postulated that the subharmonic appears when two vortices
rotate around each other in a fusion mating dance. Ke11y5 showed that
the appearance of the subharmonic in a shear layer is due to a secondary
linear instability associated with a time-dependent flow that consists
of the superposition of the basic flow and a finite-amplitude funda-

mental wave. Nayfeh and Bozath’6

investigated the appearance of the
subharmonic in boundary layers by analyzing the instability associated
with a time-dependent flow that consists of the superposition of the
basic flow and a Tollmien-Schlichting wave. The results show that the
amplitude of the fundamental wave must exceed a critical value to

trigger this parametric instability. This value is proportional to a

observed the development of subharmonic waves while investigating

observed the appearance of the subharmonic
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detuning parameter that is the real part of k - 2K, where k and K are

the wavenumbers of the fundamental and its subharmonic, respectively.
For the Blasius flow, the critical amplitude is approximately 29% of the
mean flow. For other flows where the detuning parameter is small, such
as free-shear layer flows, the critical amplitude can be small, thus the
parametric instability might play a greater role. Since the analysis of
Kel]y5 and Nayfeh and Bozatli6 are linear, they do not account for the
effect of the subharmonic wave on the fundamental wave. This effect may
be small initially, but as the subharmonic grows appreciably, its

effect on the fundamental cannot be neglected. One of the purposes of
the present paper is to determine the nonlinear interaction of a Tollmien-
Schlichting wave with its subharmonic.

7, Miksad8, and Kachanov, et a]g observed that the nonlinear

Sato
development of the waves in the transition region depends on the initial
and external disturbances. Sato7 conducted an experiment on the stability
of symmetric laminar wakes by exciting two unstable modes with the
frequencies f, and f,. He observed the generation of waves having the
frequencies f, * f;. Miksad8 excited two unstable modes of a laminar
asymmetric free-shear layer. He also observed nonlinear triggered
instabilities of the difference mode f, - f,, subharmonics, and higher
harmonics of the fundamental waves. Kachanov, et alg introduced two
TolImien-Schlichting waves in the boundary layer on a flat plate by
using two vibrating ribbons. They observed the appearance and growth of
a Tolimien-Schlichting wave having the difference frequency f, - f,.

nl0

Norma also observed the amplification of the difference harmonic of

two introduced disturbance waves in his experimental study of secondary
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é flows around and downstream of protuberances in laminar boundary layers.
The second purpose of the present paper is to determine the nonlinear
interaction of three Tollmien-Schlichting waves (combination resonance)

in boundary layers and show that the difference frequency can be very

unstable when generated by the nonlinearity, even though it is stable
when introduced by itself in the boundary layer.

The problem is formulated in Sec. II. The analysis for the com-
bination-resonance case is contained in Sec. III, while the results for

the second-harmonic case are stated in Sec. IV. The numerical procedure

is discussed in Sec. V, while the numerical results are presented in

Sec. VI.




II1. PROBLEM FORMULATION

We consider nonlinear interactions of wave packets in a two-dimensional
steady incompressible boundary-layer. The equations describing the

motion of the fluid are

g—2+g—z—=0. (1)
| g—v'rﬁ% +v%=-%g +%vzv. (3)
? i=vV=0 at y =0, | (4)
f -1 as y - o, (5)
where A
A 3?2 2?2

2:
VR T
Here, x and y are made dimensionless by using a reference length 6r’
the time is made dimensionless by using Gr/Um, and the velocities are

made dimensionless by using the freestream velocity U_. The Reynolds

number R = Uwsr/v with v being the fluid kinematic viscosity.

The analysis is restricted to basic flows that are slightly
nonparallel (i.e., vary slowly in the streamwise direction) and to
disturbances that are small but finite. The slow variation is expressed
by using the slow scale x; =c;x, where ¢; is a small dimensionless quantity
that characterizes the nonparallelism of the flow and can be related

to R by €; = R™*. The smallness of the amplitude of the disturbance

is expressed by introducing the small dimensionless parameter €. For

a general solution, we assume that € = 0O(e;) so that the resulting




expansion accounts simultaneously for the effects of nonparallelism and
nonlinearity. When € << €, the nonlinear effects are negligible and
the solution reduces to those obtained in Refs. 11 and 12. When
€ > g, the nonparallel effects are negligible and the solution reduces
to’equations with constant coefficients.

We assume that each flow quantity is the sum of a mean-flow quan-
tity and an unsteady disturbance quantity, which is assumed to be much
smaller than the mean-flow quantity. We can then express the velocity

components and the pressure as

ﬁ(x’.Yat) = Uc(Xn.Y) + €U(X»y,t), (6)
V(X,.V,t) = €1Vo(X1a.V) + ev(X,y,t), (7)
Plxsyst) = P (x1) + ep(x,y,t), - (8)

where Ug, Vo, and P, are the nonparallel basic-flow quantities. Sub-
stituting Eqs. (6) - (8) into Eqs. (1) - (5) anc subtracting the basic-

flow quantities, we obtain

St 0 (9)

%%5+ Uo %% +v %gl + %& - %-Vzu = - U %%% - €1V %g- |
- eu %% - eV %% (10)

%% + U %¥-+ %g-— %-vzv = - glu %%% - gV %5-- €1V %;1 v
-eu-g-%-sv%, (1) .

u=v=0 at y-=0, (12)

U, vV as y o (13)




Without loss of generality, we let € = ¢;,. To determine the wave-

packet solutions of Eqs. (9) - (13), we use the method of multiple

scales]3 and seek an expansion in the form
' B dala s ¥eTasTi) + ellglesXy s TosTai) * coes (14) I
: V= Vo(XosX1,¥,TosT1) + evi(XosX1,Y,To,Ta) + ..o, (15)
P = PolXosX1,¥,TosT1) + €pr(xosx15Y,To,T1) + ..o, (16)
where xo = x, To = t, and T, = et. Substituting Eqs. (14) - (16) into |
Eqs. (9) - (13) and equating coefficients of like powers of ¢, we obtain
Order €° |
d)l(uo,vomo) = g#o + Uo a:" + Vo ggl + 'L ]ﬁ = 0, (18)
Cjez(uo,vo,po) E %‘%" Uo gi: + %5—0_ » ]]Q'V%Vo =0, (19)
Ug * Vg =0 at y=0 (20)
Ugs Vo> 0 as y=+o (21)
Order €
(/’(l(ulavupl) - '%%% - Uo %‘f'%%*%'g%:'gyl‘ s Uog—g'g‘
| ' - Vo %%1 - Ug %%3--‘vo %51 ’ (23) g
r".}\z(UL,Vlopl) ot %T_ = Uo g;f 522 g::{ﬁl = Vo 'g%% = Vo %‘}""




Uy =v; =0 at y =0, (29)

U, vi > O as y + o, ) (26)
where
R
L A

In what follows, we describe the details of the analysis for the
combination-resonance case and only state the results for the second-

haromnic resonance case.




R T W Y

N o vt SR e ne

?.

III. COMBINATION RESONANCES
A. First-Order Problem

For the case of combination resonances, we consider three wave-
packets centered at the frequencies w;, w2, and w3, Then we examine the
resonances that might exist among them. Thus, the solution of Egs.

(17) - (21) is expressed as a linear combination of three Tollmien-

Schlichting waves; that is,.

uo= A1 (Xy,Ty)z1(ysxi)exp(i6:) + Aa(xy,Ty) x

Z12(ysxi)exp(i02) + As(x1,T1)z1a(ysxi)exp(i6s) + c.c., (27)
vo= Ar(x1,T1)z21(ysx1)exp(i6,) + Az (xy,T1) x

C22(ysx1)exp(if2) + As(x1,T1)z23(ysx:1)exp(i6s) + c.c., (28)
Po= A1 (X1,T1)z31(ysx1)exp(i61) + A2(x1,Th) x

Caz(ysxi1)exp(iB2) + As(x1,T1)z3s(ysxi)exp(ids) + c.c., (29)

ke ER Y. 5T% =< (n=1, 2, 3) (30)

with the W, being real constants. The quasi-parallel Orr-Sommerfeid

problems for these waves are

Mg s € 03 k) 208+ ikig = 0, (31)
Ma(2 s & ps Tons ks wy) = T(Uoky = wpde o+ g (DU

+ikig - g (02 - K2z = O, 32)




- g (07 - k) =0, (33)
AN at y =0, (34)
Ent Spp > 0 as ¥ + =, (35)

where D = 3/3y.

B. Second-Order Problem

Substituting Egs. (27) - (29) into Egqs. (22) - (26), we find that
the inhomogeneous parts in Egs. (22) - (26) contain terms proportional
to

exp(i6,), exp(ig2), exp(ids),
exp[i(62 - ©1)], exp[i(6: + 65)], exp[i(62 - 83)]

where the overbar indicates the complex conjugate. The terms that are
proportional to these exponential expressions will create secular terms
in the particular solutions for u;, vy, and p, if k; < k2 - k;

and w3 <~ w2 - wy; that is, when a combination resonance exists among the
waves. To express quantitively the nearness of the above resonances, we

introduce the two detuning parameters o, and o, defined by

w3 = W2 + W= E01, (36)

Real(ks - ky + ki) = €0y, (37)

10
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where o = 0(1). Using Eqs. (36) and (37), we write

8y + 85= (ki + k3)dxo - (w; + w3)To=6,+¢ i (k. +k

i1 3l _
- ka;)dxo, (38) H
: B2 - 83= 6, - ¢ + i (k2i + kai - k,i)dx°' (39) |
f 00 - T 05 - ¢ 41 (g kg =k {)dxas (40)
where kni stands for the imaginary part of kn and ]
¢ = J.ozdx,- o111 (41) éy

To determine the An’ we seek a particular solution for the second-

order problem in the form

up = Pra(ysxi)exp(ioy) + via(ysxi)exp(i6z) +yrs(ysxi) x

exp(ig;) + c.c., (42)

Vi = Va1 (ysxi)exp(i61) + 22(ysxi)exp(ifz) + Yas(y;xi) x

exp(ifs) + c.c., (43)
P1 = Ya1(ysx1)exp(if1) + s2(ysxi)exp(i6z) + Yaa(ysxi) x § |
»
exp(i6;) + c.c. (44) |

Substituting Eqs. (27) - (30) and (38) - (44) into Eqs. (22) - (26) and

equating the coefficents of exp(if,), exp(i62), and exp(ifs) on both |

sides, we obtain the following equations:

; k:) =d

2J J 13" (45)

Ml(wlj’ w

P —— — - T AT A SR AN —" i
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Ma(¥, 5 ¥,q0 ¥ 55 ki wg) = d s, (46)
Ms(V 5o 0,50 ¥, 55 Ky wg) = d | (47)
Vj=Y,5=0 at y =0, (48)
T 0 as y > @ (49)

for j =1, 2, and 3, where the dij are given in Appendix A.
C. Adjoint Problem

Since the homogeneous parts of Eqs. (45) - (49) are the same as
Eqs. (31) - (35) and since the latter have a nontrivial solution, the
inhomogeneous equations (45) - (49) have a solution if, and only if, the

inhomogeneous' parts are orthogonal to every solution of the adjoint

homogeneous problem; that is,

* = =
f(dn ¥+ d ek 4 d erdy =0 for §= 1,2, and 3,

(50)
where the z*'s are the solutions of

M (g oot s ki) = Tk L =D <=0 (51)
386, oG gt Ky) = TRp Gy = By = By
M, (o kyo w3) = 1(Uok Yo s+ DU
Z(ij' J' C J s (L\ = 1\Uyp j - (l)j Caj Czj 0
R Lo N ST
Dcxj R (D kj)caj 0, (52)
w0, (2 AT ER (TN Yoo % SRt
Mg g T Kpo g) = 1(Usky - ey ¢ kgt
- g (02 - k)5 = 0, (53)
* *-
Czj = Caj =0 at y=0, (54)
* *
Clj’ Czj +0 as .Y"“’. (55)
12
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Substituting for the dij from Appendix A into Eq. (50) and defining
X

a; = Ajexp[.[ kjidx], (56)
X

we obtain the following differential equations for the evolution

of a,, a2, and as:

1 —

Soom B oo Pk Do+ oe B2 amenp(-10),  (57)
165 2 4 22 . (e, :‘,—:-2- -k gaz + € Qfﬂ— aiasexp(ie),  (58)
13 hss

S B a ey Pk e v e Pz amen(-i0),  (59)

Q)|

>
3

=

where o dw /dk  is the group velocity and ¢ is defined in Eq. (41).
spatial modulation only, o, = 0 and aanlat = 0; all the calculations
presented in this paper are for this case. We note that Eqs. (57) -
(59) account for the combined effects of the nonparalleiism (i.e.,
growth of the boundary layer) and the nonlinear interaction. If

€ << g1, the nonlinear interactions can be neglected and the spatial
variations in Eqs. (57) - (59) reduce to the nonparallel solutions of

Refs. 11 and 12. When €; << ¢, the effects of the nonparallelism are

‘negligible; that is, one can set €; = 0 and all the coefficients in Egs.

(57) - (59) can be treated as constants.




IV. HARMONIC RESONANCE

The interaction between a fundamental Tollmien-Schlichting wave and
its second harmonic is analyzed using a procedure similar to that
outlined in the previous section. In this case, instead of Eqs. (57) -

(59) we obtain

]_ §11_ QE.L = hLL - h 2 3 S

w3t Tax - (eiFt - K j)an + e 2 a.aiexp(-14), (60)
l a—.al éa_2= h22 * _h_z_L 2 .

wi 3t T ox - (et -k j)az + e g2 afexp(is), (61)

where ¢ is defined in Eq. (41) and

€0, = Real(k, - 2k;), €01= wz - 2w;, (62)
and f,, f2, hiy, h22, hy2, and h,, are given in Appendices B and C.

For spatial modulation only, o, = 0 and aan/at = 0. A1l the

calculations presented in this paper are for this case.

14




V. COMPUTATION PROCEDURE
A. Solutions of First- and Second-Order Problems

The same procedure is followed in solving the first- and second-

order problems for both harmonic and combination resonances. Therefore,

only the computation methodology for the solution of the first-order
problem for the first mode is outlined here.

Equations (31) - (33) are expressed as a system of first-order
differential equation in the form

dz _
ax - Gz, (63)

where z is a 4 x 1 matrix with the elements

z: = ziaysxa)s z2 = Doaa(ysxi)s 23 =C21(ysx1)s 2u = Tar(yixs),
(64)

and G is a 4 x 4 matrix; its elements are given in Appendix D.

We start the integration of Eqs. (63) at y
than the boundary-layer thickness. Hence, Uy = 1, DU, = 0, and
D2Uy = 0 at Yo Then the matrix G has constant coefficients at y = y
and Eqs. (63) have solutions of the form

Z; = j§1 cijexp(xjy) for f=1,2, 3, and &, (65)

where the Cij

are constants, the A's are the solutions of

and I is the identity matrix. Equation (66) has the roots

A ek, A = [ Ak - w)R] /2, (67)

Yo» where Yo is larger

e
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Two of these roots have positive real parts that make the solution grow
exponentially as y + «; hence, they must be discarded to satisfy conditions
(35). This leaves two linearly independent solutions that decay ex-

ponentially with y. v

The eigenvalues are not known a priori and must be determined along
with the eigenfunctions. For given values of w; and R, we guess a value

for k; and integrate Eqs. (63) from Ye to y = 0. If the quessed value

of k, does not staisfy the boundary conditions at y = 0, k; is incremented
by using a Newton-Raphson scheme and the procedure is repeated until the

boundary conditions are satisfied to within a specified accuracy. The

integration is done by using a computer code developed by Scott and
14

Watts '. This technique orthonormalizes the solution of the set of
equations whenever a loss of independence is detected.

B. Solution of Adjoint Problem

The solution procedure is exactly the same as that for the first-

order problem. The coefficients of the z matrix are

* * *
zZy = g21(ysx1)s 2z = DCaa(ysx1)s 23 = Zar(ysxa),

*
zy = Z11(ysx1) (68)

and the adjoint problem has the same eigenvalues as the first-order

problem. .

C. Solvability Conditions

The calculations are repeated at different streamwise locations to
evaluate fj, hjj' kj, and the other interaction integrals for a given
frequency along the x-axis. A fourth-order fixed step-size Runge-Kutta

16




integration scheme is used to solve either Ecs. (57) - (59) for com-

bination resonances or Eqs. (60) and (61) for harmonic resonances to
find the amplitudes of the waves for different initial amplitudes of the

respective modes.




VI. Results and Discussion

The analysis presented in this paper is applicable to both two-and
three-wave interactions. First, we present and discuss numerical
results for the case of two-wave interactions. Then, we present and .
discuss numerical results for the interaction of three waves whose

frequencies are such that F; = F, - F,.

A. Two-Wave Interactions
The numerical results presented in Ref. 6 show that the amplitude
of a wave a¥ = ca, must exceed a critical value before it can generate

and amplify its subharmonic. For the Blasius flow, the critical value

is approximately 29% of the mean flow. This is for the case when the

subharmonic wave has an infinitesimal amplitude. When the amplitude

a: = €a, of the subharmonic wave is not infinitesimal, it§ influence on
| a: should be taken into account. The equations governing this influence

are Eqs. (60) and (61) whose general solution is not available yet. The

previous results of the parametric instability mode]6 show that aT

oscillates about its non-interaction value until a: reaches the critical

value. Figures 1 and 2, obtained by numerically solving Eqs. (60) and

1 (61), agree with this conclusion. Initially, a: increases while a: %é
oscillates around its non-interaction value.
At R < 580, Fig. 1 shows that a: starts to deviate sharply from its
non-interaction value, while it follows from Fig. 2 that zna: <~ -1.25 .
i or a: = 0.286 at this location. Hence, when a: is less than this

* )
critical value, a; can be approximated by its non-interaction value;

that is




a: = atoexp(-klix + i) (69)

where a:o and 1 are the initial amplitude and phase of the subharmonic
wave, respectively. If we substitute Eq. (69) into Eq. (61) and neglect

the nonparallel effects, we obtain

*
* *
g%L +k = Qi—‘ atfexpl-(2k ; + feo;)x + 2i]. (70)

The solution of Eq. (70) that satisfies the initial condition
a: = a:(o) at x = 0 can be written as

h

* * *
a; = [a2(0) + At it?eo{) aI%exp(Zir)]exp(-kzix)
1

B hz, * 4 ; 5
fz(Zin + ie02) a1 §exp[ (Zkli + ieoz)x + 2it].

(71)
Equation (71) represents an approximation to a: as long as it is less

than the critical value needed to trigger the parametric instability in
the subharmonic wave.

Next, we consider the generation and amplification of a second-
harmonic wave by a fundamental Tollmien-Schlichting wave. We consider
the following three cases: (i) fundamental wave is stable while its

second harmonic is unstable, (ii) fundamental wave is unstable while its

second harmonic is stable, (iii) both fundamental and second-harmonic

waves are unstable.
When the fundamental wave is initially stable while its second
harmonic is unstable, a: decays until it reaches the unstable region and |

then it increases as shown in Fig. 1. For Reynolds Number less than |

T

560, a: oscillates around its non-interaction value, implying a small
initial influence of its second harmonic on it. Thus, a: can be approx- |

imated initially by Eq. (71). Figure 2 shows that the values obtained

from Eq. (71) are in good agreement with those obtained by numerically

19




integrating Eqs. (60) and (61) for R < 560. After a short initial
distance, the second term on the right-hand side of Eq. (71) decays.

*
Then, a, can be approximated by

*_ [ * (O) . hLL *2 2
ax= [a; fz(zk;i o a; oexp( 1r)]exp(-k2ix),

(72)
as long as a: is less than the critical value.

Hence, the effect of the fundamental wave on its second harmonic is

*
to increase its initial amplitude. However, as a, attains large values,

it strongly influences at which in turn strongly influences a:. The
result is an accelerated instability.

For the case when the fundamental wave is initially unstable while
its second harmonic is stable, we performed calculations for waves with
the frequencies F; = 46.5 x 107% and F, = 93 X 107, The fundamental

wave is in the unstable region at R = 950 where the calculations are ;

started. Thus, its unstable downstream of R = 950. Figure 3, obtained

by numerically integrating Eqs. (60) and (61), shows that at hardly

deviates from its non-interaction value. On the other hand, a: in-

creases many orders of magnitude even for small initial amplitudes of

the fundamental wave as shown in Fig. 4. In these calculations, the

initial amplitude of the second-harmonic wave is taken to be 0.1% while

the initial amplitudes of the fundamental wave are 0.1% and 0.5%. Since

a: hardly deviates from its non-interaction value, Eq. (71) is expected

to be a good approximation to a:. Figure 4 shows that the values obtained ;

from Eq. (71) oscillate about those obtained by numerically integrating

Eqs. (60) and (61). Since the initial values are very small, a:
does not reach the critical value to influerce a:. After a short initial

distance, the first term on the right-hand side of Eq. (71) decays and

20
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*
a, can be approximated by

* hy, *2 ’, . :
Bz ® = fZ(Zin -u Py ayoexpl (Zkli + ieoz)x + 2it],

(73)
as long as a: is less than the critical value. Consequently, the effect

of the interaction is to produce a second-harmonic wave that grows
approximately at a rate that is twice that of the fundamental wave.

For the case when both waves are unstable, we performed numerical
calculations for waves having the frequencies F, = 52 x 10'6 and
F, = 104 x 107 starting near R = 600. Figure 5 shows that initially
a: deviates slightly from its non-interaction values. Hence, Eq. (71) is
expected to be initially a good approximation to a:. Figure 6 shows
that the numerical values obtained from Eq. (71) are in good agreement
with those obtained by numerically integrating Eqs. (60) and (61) when
a; is less than 0.29. Thus, in this case, the effect of the interaction
on the second-harmonic wave is to increase its initial amplitude and to
produce a term that grows at a rate that is twice the growth rate of
the fundamental wave. Due to the fact that both waves are initially
unstable, the interaction is more effective in this case than in the
preceding two cases.

B. Three-Wave Interactions

9 10

In their experimental studies, Kachanov, et al”, Miksads, Norman ~,
and Sato7 introduced two separate waves of different frequencies into
the flow that was being studied. They observed the growth of a wave
whose frequency is equal to the difference frequency. Kachanov et al
used the frequency pairs Fy = 88 x 1075 and F, = 104 x 107® and

6

F, = 88 x 1076 and F, = 120 x 107" to analyze the growth of the associated

" o kol




difference-harmonic waves at F3 = 16 x 107 (i.e. F3 = F, - F,) and

Fy = 32 x 1078

in a boundary-layer flow over a flat plate. Using the
same frequency pairs, we determined the amplitudes of the fundamental
waves (a: and a:) and the difference-harmonic wave a: by numerically
solving Eqs. (57) - (59). Figures 7 and 8 show the large increases in
the amplitudes of the above difference-harmonic waves due to the nonlinear
interaction of the waves with the frequencies F, and F,. The amplitude
of the difference-harmonic wave at R Z 715 is increased 120-200 times
its non-interaction value.

However, the amplitudes of the fundamental waves change very little
from their non-interaction values as shown in Fig. 9 for F, = 88 x 10'6

* *
Thus, a; and a, can be approximated by
* * * *
a,; = a,oexp(-kxix + 1y}, @2 = azoexp(-kzix +i12), (74)

* *
where a;o and a,o are the initial amplitudes and T, and T, are the
initial phases of the fundamental waves. Substituting Eq. (74) into

Eq. (59) and neglecting the nonparallel effects, we obtain

*
da; * _ hajp ¥ * . 43
3 k3ia3 ?;1—-a10a20 exp[ (kli + kzi ie0s ) x

+ (1, + 12)] (75)

The solution of Eq. (75) that satisfies the initial condition

* *
a3 = a3(0) at x = 0 can be expressed as

* * * ok ; :
as = [as (0) + fariihilﬁi T ieo,) 2103zeexp(iTy + iT2)] x
1 2

= B hii2 Rafd T "
exp(-ks;x) fa(kli YE T Py aj0dz0exp[ (kj+k;

+ iegy)x + i(1; + 12)]. (76)

Equation (76) represents an approximation to a: as long as the amplitudes

of the fundamental waves do not deviate from their non-interaction values.
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Figures 7 and 8 show that Eq. (76) is initially in good agreement with
those obtained by numerically integrating Eqs. (57) - (59).

According to Eq. (76), the difference-harmonic wave grows at a rate
that is the sum of the growth rates of the fundamental waves. Since the
fundamental waves are unstable at R = 430, where the calculations are
started, the difference-harmonic wave amplifies considerably, inspite of
the fact that it is stable in the absence of the interaction. These

results are in qualitative agreement with the experimental observations

of Refs. 7 - 10.
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APPENDIX A
oA s,
e
le ( 3X1 CIJ + AJ X )9
dzj - dzjo + dzjx,
dA. 3&11
dzjo= -(Uolhj + Ca 'R— k: Cl - VoDij) a“} + [ - U ",
T3, . 3C1- dk
2ol 4 & g —-‘1t;
39X, i J axl d r,1 ]A

d21y = [i(kz - K3)Z12Z1s  + 2220213 + DZ12023]ARs
-t - [y + kg - apand,

d221 = [i(ky + k3)z1iZ1s + 2200213 + D211Z23]ALA; x
exp[i¢ '/(kl-i bl kzi)dx],

d2sy = (=7Ki1Z11212 + TK2Z12001 + 2220011 + D512021)AA, x
exp[-i¢ 'ﬁk‘i + kg - kai)dX],

d3; = d3;e + d3jl,

J J
: oA 9% 2 +
4 2i =al . Fhy seab
dajo- - (U062j = ijzj) %, [Uo %, * Vonfzj + CszVo
dk. 9Z2 s
2 i
R_( dxl CZj i kJ 90X, )]AJ’

di1n = (-1K3212823 + 1KaC22C15 + 2220023 + DZ220235)AA; X

exp[-i¢ -f(kzi + kyy - kyg)dx],

dizy = (KaC11C23 + TKiZ21213 * 2210025 + Dgay223)A A x

explio - fllo + kg - ko e,

(A1)

(A2)

(R3)

(A4)

(As)

(R6)

(A7)

(A8)

(R9)

(A10)




dysy = ( =iKiZ2y + 1KoZ22011 + C2,DC,, + Dz22%21)AR, x

exp[-’l¢ -ﬁkli + kzi - kgi)dX]. (A]])
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APPENDIX B
7 2ik 2ik
* *
fj =[{' CIJCIJ = [(Uo - —h‘i )Clj + CSj]CZj - (Uo - "R'J‘) x
* 3
CZjCSJ d.Y ( =], 2 3): (B])
9z, oC3 91
ket S i § B - B 3
hjj E Clj + [Up %, + X + VoDz, R (kj 3%,
dk 2ik 3L2
g B Eino |
+ a;i‘ ij) + %, Clj]Czj + [(Up - ) %, "'VoDCzJ
JOREE e o
CZj Vo = "R’ dX1 C2j]€3j dy (J = 13 2: 3)0 (82)
® L = 2 2 *
hiz23 = f{[i(kz - k3)Ci12Z13 * T22DC13 + DZ12C23]22)
0
s P o » *
+ ( -1ksZ12Z23 + 1k2Z22C13 + Z22DC23 + DszCza)Cu} dy, (B3)
[++] > *
hz13 = f:[‘(kl + k3)Z11Z13 + 2210213 + DC11Z23])C25
0
*
+ (1ksC11Z23 + ikiZ21Z13 + 21D%23 + DszCza)Csz}d.Y: (B4)
) : e s i 5 e *
h3i2 = /{[1('(2 - ki1)Z12811 + €22DC11 + DC12C21)%23
0
SRA o i = *
+ (-ikiZ21Z12 + 1K2Z22C11 + T22DC21 + DszCzl)Caa}d.V. (B5)
27
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APPENDIX C

Y; — — - s *
hy, = [c22021y + T21Dz12 + i(ky - Ky)Z12211]22s
0

— ! = . *
+ [ik2Z22C1) - TK1Z21212% 722075, + szDsz]Cu}d.Y (c1)

> *
h2, ‘f{[(ikxh% + 2210211)C22  + (ikiZ11Z2; + szDCn)Csz]}dy (c2)
0

. .
e




APPENDIX D

g1y =0, g2=1, 913 =0, g1y =0 (D1)

921 = 1(Uok - OR + K2, g22 = 0, g2 = REL, gau = iR (D2)
gs1 = - 1k, g3z = gss = gsu =0 (D3)

9vy = 0, @y = -ik/R, @gy3 = -[i(Uok - w) + k%/R], gus = O (D4)

Q is a 2 x 4 matrix consisting of the last two rows of the matrix
1

B~ The matrix B has the elements:
by; = by =bys = by =1 (05)
bay = -ks bzz = ks  bzs =k, bay = - K (06)
bsy = 1, bsy = tk/k, bgs = =1,  bsy = =1k/k (07)
byr = (w/k = 1), byz = 0, bus = (w/k - 1), byy =0 (08)
where
k =[k? + i(k - w)R] /2 (D9)
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