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1, Introduction

Isoplanatism, as it is conventionally used, refers to the uniformity
of the quality of imagery over some portion of a focal plane. Introduced
into the literature in this form, it serves to ''validate'' the concept of the
modulation transfer function. Its meaning is physically straightforward
and intuitively quite clear. But the concept of isoplanatism as applied to
special imaging-through-turbulence concepts is a much more complex
matter. Here, rather than defining the focal plane uniformity of image
quality, it is directly tied to the achievability of image quality.

Our reference to special imaging-through-turbulence concepts is
meant to include adaptive optics and the two speckle imnagery techniques,
the first demonstrated by Labeyrie? and the second conceived and analyzed
by Knox and Thompson.? (Analysis of the amplitude interferometer concept
of Currie® can probably be obtained as a special case of the speckle inter-
ferometer, but we shall not explicitly concern ourselves with this here.)
Adaptive optics and speckle imagery have the highly significant feature
that they sense the received wavefront in time periods shorter than that
in which the atmospheric turbulence-induced wavefront distortion can change.
Isoplanatism for these special imaging techniques refers to the dependence
on field-angle of the wavefront distortion (rather than to the dependence on
field-angle of the image quality). With these special imaging techniques,
if the wavefront distortion is nearly the same for a large enough range of
field-angles, the ''ideal' resolution can be achieved, no matter how severe

the actual wavefront distortion per se is.

We have elsewhere#4® presented an analysis of the isoplanatic con-
siderations in adaptive optics, and therefore will not treat that problem
here. In this work, we shall restrict our attention to isoplanatic effects
i, speckle interferometry (the Labeyrie technique) and in speckle imagery

(the Knox-Thompson concept). In the next two sections, we shall examine
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the Labeyrie technique in the absence of isoplanatism effects. This will

establish the basis for our subsequent analysis. The first of these two

sections, i.e,, Section 2, will treat a single point source (a situation in

which there is manifestly no anisoplanatism effect), and will closely

parallel the analysis of Korif.6 The second of these two sections, i.e.,

Section 3, treats the same problem, but for a pair of point sources. This e
gets us into a situation where we could examine isoplanatism effects, but

at this point we develop results assuming that the point sources are close St

enough to each other that there is no anisoplanatism problem. The com-

pletion of this analysis prepares all of the background that we need, and
in Section 4 we are able to analyze the dual point source problem with a
large enough separation between the points that anisoplanatism effects
have to be considered. This provides us with the basic isoplanatism re-
sults for the Labeyrie technique. In the two sections following this, we
switch our attention to the Knox-Thompson concept. In Section 5, we
treat a pair of point sources close enough together that there is no aniso-
planatism effect. The results presented here parallel the basic work of
Knox.” In Section 6, we extend this analysis to allow consgideration of the

case in which the two point sources are far enough apart that anisoplana-

tism effects have to be taken into account. In this section, we develop our
fundamental results for isoplanatism for the Knox-Thompson concept.
Section 7, the final section, reviews all of the results and indicates their

significance.

Our approach throughout this paper will be to use a notation that is
sufficiently general that it allows treatment of all of the problems. This
will permit us to use one self-consistent notation throughout the paper. It
will, of course, force us to utilize an overly complex notation in some

places, but while this may appear locally inelegant, it will make the totality

of the paper easier to read.
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1 Our analysis will be directed to the problem of optical propagation |4

! down through the atmosphere, and small to moderate zenith angles., For |
this case, we may assume that the intensity fluctuation effects, as meas-
ured by the log-amplitude variance,® are small compared to the phase
fluctuation statistics — small enough to be of negligible significance.

. Accordingly, we shall base our analysis on a formulation in which there

is only a turbulence-induced phase variation at the entrance aperture of
the telescope; and no corresponding intensity fluctuation effects. In the
same vein of reasoning, we shall associate results obtained in terms of
the phase structure function as though they applied to the wave-structure
function.? It can be shown that the discrepancy introduced by this approach

is of the order of an exponential of the log-amplitude variance,19 so that it

kA ok

should consequently be quite small for the problem scenario of interest to

us here, i.e., astronomical viewing geometry.
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2. Labeyrie Technique: Single Point Source

We consider a single point source at an angular position in our

field-of -view of '6" . We assume that the source intensity, at wavelength
A » is such that the amplitude at our telescope aperture is A, . If we
denote position on the telescope aperture by the two-dimensional vector ¥ ,
and let ¢('€, ;T) denote the instaﬁtaneoue random phase shift at ¥ intro-
duced by atmospheric turbulence, then we can write for the wave function

at the telescope aperture due to this point source

U, () = A exp [ikT, - F+io(TF)] (1)
where

k =2n/)\ , )
is the optical wave num ter.

We assume that the telescope has a circular clear aperture with a

diameter, D . It is convenient to introduce here the function

1.5 ¥ ¥ gD
W) = (3)
0 , i |?F|>4D

to provide a mathematical definition of the aperture. Defining position
in the telescope plane in terms of the corresponding field-angle, § , the
wave function due to our point source as it appears on the focal plane can

be written as

u, () = o [ &F WE) exp (-ikF-7) U, @) : (4)

where 3 is a constant of proportionality whose exact value is of no

- RTR—
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particular concern to us as it will drop out of our final results.

The focal plane intensity can be written as
18 =4 |u, (D)2 : (5)

The quantities of immediate interest to us are the fourier (angular) spatial

frequency transform of the focal plane intensity,
SE) = [ d§ exp (-2nif - PIUD (6)

where f is the spatial frequency (in units of cycles per radian-field-of-

view), and a quantity, /(F,T'’) , which we call the bispectrum, and which

is defined by the equation
2€.T°) = (%) si)) : (7)

Here and throughout this work we use the angle brackets to denote an
ensemble average over all possible realizations of the turbulence-induced
wavefront distortion effects. It should be noted that in the case where the
two spatial frequencies, ¥ and T° , are equal, the bispectrum reduces
to the ordinary power spectrum. Our notation, i.e., /(f’,?’) » allowing
for two distinct spatial frequencies is more general than we shall need for
analysis of the Labeyrie techniqu_e, where T and T/ will always be equal.
However, use of this generalized notation will allow a smooth transition

of the analytic work into Sections 5 and 6, where we will analyze the Knox-

Thompson concept.

It should be noted that we have dropped the subscript, j , from
the definition of I(¥) , the focal plane power density. This will allow
the same notation for focal plane intensity, I , and thus for its transform,
S , and the bispectrum, ., , to be used whether we are considering a

aingle point source, (j) , or a pair of point sources, (jand j*) .

=N




If we substitute Eq. (1) into Eq. (4), we get

u (@) =uA [dFWE) exp [ip (F,;F)-ik(FF)-F1 . (8)

Substituting this into Eq. (5), and rewriting the product of integrals as a
double integral, we get

(W) =4 |u* A2 [[ &F &F* W) WE)

x exp {i[¢(¥,:F) -9 (¥,:F")]

- ik[(T-F)- @F-F)]}

(9)
In accordance with Eq. (6), we can write for the spatial frequency fourier
transform
SE) = ¢ |u|* A2 [[] & oF & WE) WE)
X exp (-2niT§) exp {i[0(F,:7) -o(F, ;7))
- ik[(F-F)) G-F*)) (10)

Replacing the variable of integration § by ¥ =3-", , we get in place of
Eq. (10)

SI) =4 |u|3A2 exp (-2niT - [[[ &F oF &7
XWE) WE*) exp {i[¢(F,:T) -9(§F"))

-ik¥T- @+ -T)]

(11)
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It is a well-known property of the fourier transformation that the
repeated fourier integral recovers the starting function. Thus for h(y)

being any reasonably well behaved function

[[ dx dy* exp [ 22n i x(y-y*)] hiy]) = h(y) . (12)

Making use of this result, we can perform the J- and T‘-integrations in

Eq. (11). Thus we obtain the result that

SO) =3 [u]P A2 exp (-2niT-T) [ & WE) WET)
x oxp (1 {8 (¥, ) -9(F, ;D)) ' (13)

where we have suppressed a factor of A? in this result by lumping it in

with the constant ]u" v

We calculate the bispectrum, or rather since we are interested in |

the case where T =T* , the power spectrum J(?,-f') , which we will

write as
7 @) = o) ; (14)

by substituting Eq. (13) into Eq. (7). This gives us the result that
JE) =4 |u|*(A2P [[ dF & WE) WEHT)
x W) W) (exp (i[g(¥,:F) - 0@, :7)

+ o (8, F-nD) - ¢(F, ;¥ , (15)

where, in order to obtain this result, we have made a double integral of

the product of integrals.

AR e sy |




To reduce this expression, we start by noting that the quantity in
the square brackets in the exponential is a gaussian random variable with

zero mean, and that for such a random variable, say x , with o being
any constant,

N i A A 1

(exp (ax)) = exp (§ o® (x3)) g, (16)
Making use of this result and the fact that
(@a-btc-dP = (a-bP- (a-c)® + (a-dP + (b-c)®- (b-dP + (c-dP®, (17)
we can rewrite Eq. (15) as
JE) =3 lu|sapp ([ & @ WE) WEHT)
X WE) WE+\T) exp {-§ [ 5F-F)
- 5E-T A1)+ 507)+ 507) - HE-21F)
+ 5(F-7)]]} ; (18)
where 5(p) is the wave-structure function, defined by the equation
B@) = ([0 (F,743) - 6(¥,;7)2) : (19)

Consideration of the statistical symmetry of the wave-structure function

makes it clear that 3(3) = 3(-‘5’) » a fact which we have used in developing

Eq. (18) in the form presented.

It is obvious that when we consider the zero frequency case, i.e.,

when T= 0 » the exponential in Eq. (18) goes to exp (0) =1 , so that we
can write

J(0) =4 |n|¢(asp [[ & & (WEP[WE)) E (20)
“«B e
- » R R e ) <t |
e - , i
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Consideration of Eq. (3) makes it apparent that W-squared is equal to
W . Moreover, we note that the double integral of Eq. (20) can be re-
written as the product of two identical integrals, each equal to 3nm D .

Thus we can rewrite Eq. (20) as
- 32
FO) =(F |v|® ap ) : (21)

This will provide a bagis for normalization of the results we shall develop

shortly.

To proceed with the reduction of Eq. (18), we make use of the fact

that the wave-structure function can be written asll.1?
5(0) = 6.88 (p/xr 3 , (22)

where

herence of the turbulence distorted wavefront, Thus we can rewrite the

is a length which serves as a measure of the transverse co-
exponent in Eq. (18) as

E = -§ [8E-F*) - 5(F-F*-A0) + p0F) + p(AT)

- G-F420) + 5G]

- [BE-T°) + BOT) - § HE-F/-2T) - 3 BE-F*4 )]

n

- 6.88 rysi (|B-F|5R + A |5/R- ¢ |T-F7- A |sm

- § |[F-TFo4 M [5R) , (23)

Based on the approximation that

14¢8/2-3(1+2¢ cos @ + ¢?)/6 -3 (1 -2¢ cos @ + e3p/e

m ¢8/3 [1-5 @/ (1-§ cos? 0)] ’ (24)

At A
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which is accurate for small enough values of ¢ , and noting that, by virtue

of the law of cosines, we can write

|F-Fo£Af |88 = (|F-F|2 £ 2|F-F| |3f| cos @+ |AT|op® , (25)

where @ is the angle between the vectors (¥-*’) and (\F) , we can in-

troduce the approximations that

E ~ -6.88 (x|?|/r°)m[1_-g (‘—*4%—' (- % cost 0)] :

£ AT << |73 . (26)

and

E = - 6.88 (|?-?'|/r°)5/5rl -5 (%")‘k(l -4 cos? 0)] .

if rr’-?" << I)\‘f‘ 3 27

In developing Eq. (26) from Eq. (23), terms of higher order in \)3'] /‘?-’i”]
have been dropped from inside the square brackets. [ The first term dropped
is proportional to (M?‘/]?-‘f-")"’a.] Similarly, in developing Eq. (27) from
Eq. (23), terms of higher order in |'1’-?"/|7;?| have been dropped from in-
side the square brackets on the right hand side of Eq. (27). [Here the first
term dropped is proportional to ("i‘-?'l /1]?' )”3.] For our purposes, it
will be sufficient to replace Eq.'s (26) and (27) with the further approxima-
tion that .

E~-6.8 (\|T|/r,pp , if A|f| << |F-F*] . (28)

E~-6.88 (|F-7*|/rm , if |F-F/| <[] . (29)

If we study the exponential in Eq. (18) subject to the assumption

that Mfl is very large compared to r, , we see that the only condition

(]

- 10 -
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under which the exponential function will not be vanishingly small is when
|¥-#*| is not much larger than (or smaller than) T o In this case, in

accordance with Eq. (29), we can write

JEI~31ule (AP [[ &F & WE) WEHT) WE) WET)

x exp [-6.88 (|F-TYr, 2] . (30)

It will be noted that the double integral in Eq. (30) appears to allow the

case where ﬁ'—?" is not particularly emall, Strictly speaking, we should
include some condition in the integrand restricting the range of integration
so that we only considered pairs of values of (f,T’) for which [?-?'| was
comparable to or smaller than r, . Infact, however, such a restriction
is automatically provided by the exponential function in Eq. (30).

Based on the assumption that the aperture diameter D is much

larger than r,

integrand vanish when T is not nearly equal to ¥’ (i.e., when |¥-7°|

, and noting that the form of the exponential makes the

is not comparable to or smaller than r, ), we can make the approximations

(o]
that

W{E) ~ W(?'.) : in Eq. (30) , (31)

wiEaD) ~ WE'+f), inEq. (30) : (32)

In accordance with Eq. (3), we can write

WE) WE’) ~ W(T) , in Eq. (30) . (33)
W@EH) WE ) ~ W(E+ ) , in Eq. (30) . (34)

If we make a change of variable of integration in Eq. (30) from (¥,T")

to (¥,%) , where

-11 <
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X =7 A (35)
then with the use of Eq.'s (33) and (34), we can rewrite Eq. (30) as .
JE) =% jult (App [ [ &F WE) WD)
x { [ @ exp [-6.88 (|| Ir,pR1} : (36)

The integral in the second curly brackets can be evaluated by rewriting it
in polar coordinates, performing the azimuthal integration, and making a
change of variable for the radial integration so as to cast the integral in the

form of a gamma -function, I'(6/5) to be exact. Thus it can be shown that

J % exp [-6.88 (|| /r,pr

= 2n ,f“x e o Lk LB
o

(m/(6.88/r, /5 ] J'adu exp (-us/e)
)

g [r/(6.88/r5/p/s ] f'vl/s dv exp (-v)
0

=8 [n/(6. 88/r 8/)p/s ] 1(6/5)
=0.342r? . (37)
The integral in the first curly brackets in Eq. (36) can be recognized as

corresponding to the area of overlap of two circles of diameter D , with

center-to-center separation of Af . This corresponds to the aperture

ST AR il e
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area, im D? , times the diffraction-limited optical transfer function, ;
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T @) =2 (cost (\TI/D) - (VT|/D) [1- ([T /DR IR}, (38)

for optics of diameter D operating at wavelength » . Thus Eq. (36) can

be rewritten as

JE) =3 |u|¢A (3n D 1 ()]} {0.342 r,2) (39)

With a bit of manipulation of terms, and making use of Eq. (21), this result

can be rewritten in normalized form, representing the speckle transfer
function as

£ = 0935 (/DR 1, @) . for ME] s rg . (40)

(It can be shown that 0.435 is actually an approximation for 2-6/s ~ 0,435.)

If we now study Eq. (18) subject to the assumption that )\l-t’| is
small compared to r, , then we can see that in this case the exponential
function will only deviate from unity when |?-‘r"| is large enough that the
small difference between F-%’ and F-T’:+Af makes the cancellation of
the p(F-7¥’) and B(E-¥ +2T)-terms significantly inexact. In this case, we

may use Eq. {28) to allow us to rewrite Eq. (18) as
JE) =3 |ul* Ap), [[ dF dF* WE) WEHT) WE*) WE )
x exp [-6.88 (A |F| /r )62 . (41)

In this case, the double integral can be decomposed into the produce of

two identical integrals, and we can write

FE) = {3 |u|® (A2P exp [-3.44 (\|T| /r ]

x [ dF W(¥) W('r‘n?)}' (42)

s 13 =
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where, since the exponential is not a function of the variable of integration, 4
we have taken it out of the integral (and then taken its square root, along

with that of L |g||4(A")' » thus replacing 6.88 by 3.44 ). The integral

can be recognized as the area of overlap of two circles of diameter D with

center-to-center separation of Af . As noted before, this integral can be

written as :

i s

[EWEHWEND) =3nD o @) , (43)

where 1, , as defined by Eq. (38), is the optical transfer function for a

circular aperture optical system operating at wavelength A . Making use

g

of Eq.'s (21) and (43), we can rewrite Eq., (42), in terms of the speckle

transfer function as

-

A)_J(;) = {TDL (?)}2 exp [‘6. 88 0\ ‘?' /rowal,for kl?l << ro 1 (44)

Eq.'s (40) and (44), with Eq. (38) supporting, represent our basic
results for the analysis of the performance of the Labeyrie technique opera- ]
ting against a single point source—though the fact that these results are
applicable to the Labeyrie technique is not immediately apparent from what
we have said thus far. We shall discuss this applicability shortly, but
before we do this, it is worthwhile to consider the accuracy of the approxi-
mations we have made in developing Eq. 's (40) and (44) from Eq. (18)

(and Eq. (21)]. This will be of value in our later analysis where we shall

want to make the same kind of approximations. ; :

To demonstrate the accuracy of Eq.'s (40) and (44), we have carried

out numerical evaluation of the double integral in Eq. (18), and obtained g 1

exact results for the speckle transfer function, o @)/y(0). The integral

evaluations were carried out using Monte Carlo techniques.* In Fig.'s 1 to 5,

* To insure reasonably rapid convergences of our Monte Carlo results, we
used uniform sampling over the ¥ and ¥* circles when )\I?I is less than
ro—but when )f is greater than r, , we made the variables of integration

(Continued on next page)
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we show these results for D/ro =10, 30, 100, 300, and 1000 .

Also shown are the approximate results calculated from Eq.'s (40) and
(44). As can be seen, these approximate results are quite accurate in
their respective limits—and accordingly, we argue that the approximation
technique we used to develop these equations is basically sound. In parti-
cular, we argue that our method of inspection of the exponential in Eq. (18)
to decide what relationship between T-T’ and »f dominated the result,
and thus to justify use of either Eq. (28) or Eq. (29), leads to correct re-

sults in the limits of 3T much larger or much smaller than r, , and we

°
shall use it in the following analysis.

At this point, we are ready to take up the question of the relation-
ship between the quantity we have been evaluating, i.e., J(-f")/J(O) , and
the performance of the Labeyrie technique for speckle interferometry. In
the Labeyrie technique, the image of an object, I(?¥), is formed. This is,
of course, a randomly distorted short exposure image. The fourier trans-
form of this image, S() is calculated, and is also a random function, as is
I(Y) . A series of these are generated and represent a randomly sampled set
from the ensemble of all possible atmospheric turbulence-induced distor-
tions of the image. Using this set of image samples and the fourier trans-
forms, the Labeyrie technique then forms the (ensemble) average of the
square of the transform, JEE) = ](F) . This quantity is taken to repre-
sent a measure of the source object's power spectrum. To the extent that
high spatial frequencies are present in ,7(?) , the correlation function which
we can obtain from this power spectrum will contain information on the fine
details of the object. In this sense, Eq. (40) is critically important since it

means that image details will be present at the diffraction limit. The strength

(Continued from previous page) T and T-T’ . In this case, we used uniform
sampling of ¥ over its circle, but sampled T-F¥* according to the two-
dimensional gaussian distribution with probability density [2m(0.207 r 2)]=

x exp {-% [|¥-T*|/(0.207 1,)]2} over the infinite (¥-F*)-plane. [We note

that 3 (0,207)/ ~ 6.88 .]
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of these details is attenuated by a factor of (rO/D)['rM_(-f'.)]‘l/' compared
to what would be obtained with diffraction-limited images, i.e., in the
absence of turbulence effects. But this attenuation factor is not so large

as to be intolerable.

Our analysis to this point, paralleling that of Korffé8, demonstrates
that with the Labeyrie technique, the high spatial frequencies of the image
are not attenuated by more than a factor of (rolD)[fol(-f’)]-I/ﬂ , and is of
great general interest as it shows that the high spatial frequency details
are recoverable. Howéver, since our analysis deals with only a single 3
point soﬁrce, it is unable to accommodate any isoplanatism effects. To
incorporate isoplanatism effects in our analysis, we need to consider a
source with some spatial extent. The simplest such source is a pair of

point sources. In the next section, we shall present an analysis parallel-

ing the one in this section, but for a pair of point sources—with the assump-
tion that there is no anisoplanatism effect. This will then serve as a ref-
erence for the analysis in Section 4 of the Labeyrie technique with a pair

of point sources and anisoplanatism effects.
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3. Labeyrie Technique: Two Point Sources

We shall consider here a pair of point sources with angular positions
F’ and 'g", in our field-of-view, and amplitudes A, and A, atthe tele-
scope aperture. We associate atmospheric turbulence-induced wavefront
distortions, ¢('é" ;T) and ¢("g",;?) with the wavefront sensed at T due to
each point source. Our assumption that in this case there is no anisoplana-
tism problem can be translated into the requirement that ¢@', ;T) and ¢(UJ,;'r’)
are virtually equal, but in anticipation of the problem to be treated in Section 4,
where there is an anisoplanatism problem, we shall retain the distinct nota-
tion for ¢(g" :T) and ¢(’y;—ﬂ 3 ‘ .

We may write for the wave-function at the optics aperture due to these |

two point sources, in correspondence with Eq. (1),

U@ D U,(f) = A exp [ik¥, T+ i (@,:7)]

® A,, exp [ik§, T +ip@,:T)] . (45)

The special notation, & , is used here to indicate a summation, but of an
unusual type. Its proper understanding requires that we recall that the
wave -function is actually subject to @ temporal oscillation at a frequency kc
(of the order of 4x1M8 rad/sec), and that Us (¥) is just a phasor assoc-
jiated with this oscillation, which we use to take note of the relationship of
the phase of the oscillation at two positions, T and T’ , by means of

the product U,*(?) U,('i”) . Moreover, the oscillation itself is '"'somewhat
erratic, ' representing black body radiation over some non-negligible spec-
tral bandwidth. Despite this erratic nature, the phasor UJ(’F) nonetheless
represents the relationship between the phase at ¥ and ¥* . However,
there is no correlation between the erratic oscillations of the radiation from
the two point sources, denoted by j and j* , which are statistically inde-

pendent black body radiation sources. Hence there is no well-defined
o 17 =
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phase relationship between the two wave-functions, and U (¥) and Us,('r')
have no special meaning with respect to each other—their product has no
particular meaning, and will vanish on the average. Thus we use our nota-
tion + to denote the presence of two statistically independent phasors, with

the understandingthat the average of the product of the two phasors will
vanish,

In parallel with Eq. (4), we can write for the wave -function at the
focal plane of the optical system

u @ D u, @ = [ dFf W(7¥) exp (-ik®¥) [U,(7) D U.@)] . (46)
In parallel with Eq. (5), we write for the focal plane intensity

I® =% |u,@ & u,@)2 : (47)

In practice, the time required to measure the intensity is so large com-
pared with the inverse of the spectral bandwidth of the black body radiation

(even for a very short exposure) that measurement of the intensity provides

sufficient averaging that the cross-product uJ*uy in Eq. (47) will vanish,

Thus we can write in place of Eq. (47)

I@ =301y, @) + |u,@)]2] : 8)

With I(@) for a pair of point sources written in this form, Eq.'s (6) and

(7) remain applicable here.

We can now write in place of Eq. (9)

I@) =3 lul® “' d? dt* W(¥) W({¥*)
X {{AJ2 exp {iw(és iT) -¢(§,;?')] -ik[(e‘-‘e’J)-(?-‘r")J}

2 -

{
|
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+AD exp (i[g(@,:T)-9@ 7)) -ik[@-F,.) F-F)1}) . (49)

Substituting this into Eq. (6) and interchanging order of integration as appro-

priate, we get for the random amplitude at spatial frequency f ,

SE) = 3 |u13 [[[ 4§ dF dF* WEF) WE*) exp (-2niT-F)

N S LA DA

X {{Af exp {i[¢(@,;T)-¢@,:F")] -ik[@-F) F-7)])

STeRpTR——

+tA 3 exp (i[¢(3y;'r’)-¢('e'y;'i"’)]-ik['U-Uy)'(?:f’)]}} . (50) ’ a

By separating this expression into a sum of integrals and then replacing

S AR o P A s e e o S

the variable of integration, § , by 3§ = '9'-’9" in one of the integrals, and

by ¥ = ’e’-'e’y in the other integral, and then combining the sum of integrals

g

into a single integral on a sum, we can obtain in place of Eq. (50) the re-

sult that

SE) = § |a]* [[] & &F @ WE) W)

X {Af exp (-2nif -§) exp {i[8(8,:F)-¢@,:¥*)] - ikF - @A -F)] ‘!

+A 2 exp (-2nif ¥, ) exp (i(8(@,.:F) -0 ,iF)] -ikg - @ -F N}
(51)

Now, if we make use of Eq. (12), we can perform the 3- and T*-integrations.

Thus we can write
SE) = 4 |wl? [ &F WEF) WENT)

X {AJQ exp (-ZniT~U’) exp {i[¢(§J ;'i")-¢(‘9’J ;?+)\?)]}

it e L e Al e e el b et o s

+A2 exp (-2niT ¥ ) exp {i[¢(a'y;?)-¢(5’J,;?+x'f‘)]]] : (52)
, - 19
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We recall here that just as ¢ is a turbulence-driven random function, so

is S(f) a random fourier transform amplitude.

The corresponding power spectral density associated with the spatial
frequency T can be obtained by substituting Eq. (52) into Eq. (7). Making
use of the notation simplification introduced by Eq. (14), making a double

integral of the product of integrals, and interchanging the order of ensemble

averaging and integration, we write

JE) = |u|4[[ & &+ WE) WENT) WE*) WET)

x ((A3)Pexp [i[g(F;T) -0 @ FHT)+o @ T D) -0(8 ;7))

+ (A2)A,3) exp [-2niT - @, -F,,))

x exp {i[¢(8,;7) -6 @ ;Fnl)+g @, T 1) -9@,:F)]]

+ (A3NALR exp (2niT - (§,-5,,)]

x exp {-i[p @ ;T) - (@ ;(FT)+o (@ ;7 1) -9 (F ;7°)])

tAZP exp {i[¢@,F) -4 @, F0D)+0 @, :F 1) -9 6,571}, (53)

It is to be noted that at this point we have retained terms correspondilng to

"interference'' between the two point sources—but in this case, it is "inter-

ference' of the two random intensity patterns.

The ensemble average of the sum of four terms in Eq. (53) can be
replaced by the sum of four ensemble averages. Following the procedure
used to get from Eq. (15) to Eq. (18), i.e., making use of Eq.'s (16) and
(17), and the definition in Eq. (19), we can show that the first and last of

the ensemble averages can be reduced to the form
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(exp {i[p@,:F) -0 @ ;T\ ) +o (@ 7 +\T)-0@,:¥)]})
= exp (-{.a('r'-'r")w(x?) -b[»('r’-?'-u')mﬁ’-?'u?)]}) ' (54)
for the first, and similarly for the fourth ;
(exp {i[¢ @,,:T) -0 Co‘,,:?+x?)+¢(6',,;?'+x?) -8(®,:F1)
= exp (- (AF-F*)+ pOT) - 3 [p(F-F -2+ 2E-F D]} . (55)
Here the results are essentially identical, since, in accordance with Eq. (19), |

the wave-structure function does not depend on the distinction between 'e"

and 7‘,, .

For the reduction of the second and third ensemble averages ob-
tainable from Eq. (53), the procedure is more complex. For example,
for the second of the ensemble averages, in accordance with Eq. (16),

we would be concerned with

({[#(@,:7) -0 @ THT)] - [0 @,,:7°) -0 (@ ,:iT 1)) )°)
= ([¢@,:T) -0 @, T2y + ([0 @7 -¢(@,,;F f)1?)
- 2([p(@, ) -0 @, ;TG E,iT*) -0 @i T 1))

=2 507) - 2([8 @,;F) -0 (@, ;TA) (@ (e’,,:?')-cs@,,;?'ﬂ?)]) . (56)

Here we have made use of Eq. (19), but replaced -Af by T , based on | 4
the fact implicit in Eq. (22) that the wave-structure function is only depen-
dent on the magnitude of its vector argument. With a bit more algebraic

manipulation, Eq. (56) can be rewritten as ’

—
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({[o@®,:F) -3 (@, FHD)] - [0(F,:7°) -¢('0',,;?‘+>\?)J]')
= 2508) + ([ @, :F) -6 @ ,:iT)1%) - ([0 @, :7) -0 (@, F*1T)]*y

(o @, F\E) -9 (@, 78y + ([BEFHE) - 0@, F 1Dy . (57)

At this point, making use of Eq. (16) to provide a basis for our use of

Eq. (57) in the evaluation of Eq. (53), and substituting Eq. 's (54) and
(55) into Eq. (53), we get

FE@) =3 |u|¢ [[ & & WE) WENT) WE) WEHT) |

x fr(agpe (A 207 exp (-(2E-F)+501) -4 [BE-T-2f)
+ HE-Fh) )

+2(A3)A 2) cos [2nf - @,-5,)] exp (—ﬁ(x?)
-3 (@, ) 9@ TR -3 (B @, T -9 T 0Ty

+ 3@, -0 @, F NIy + (8@, FND) -0 679101 ] - (58)

We first of all note here that by virtue of the stationarity of the wavefront
distortion statistics

([p@,iT) -0@,,i7)12) = ([¢@,;Tn) -p @ ,:F 12 (59)

At this point, we introduce the approximation that we can replace

((¢@,:F) - 9@, F")]3) by (8(8,;7°) - 8(§,:T)13)

This approximation

should be quite accurate when -6: -9, is very small (as it always is in cases

of interest to us, and particularly accurate within the integral where all

values of (T,T’) are considered. With this approximation, and making

use of Eq. (59), we can rewrite Eq. (58) as )

.29 .




JE) =3 |u|* [[ &F aF* WE) WEAT) WE*) WE*T)

x frappe(amm) exp (-(56-#)+50F) - § [5G -7 -\T)

+pE-F+0D)]]) +2(A (A, 2) cos (2nT - @, F,,)] exp [-501)

-4 (0@, -0 @ T2y - 3([0(@,:7) -0 (@, 7))
+ 300 @, ) -0 @,T T2y + 3(B @, F) -0 @, THD)]%y

(O E, T -0 @, 7))+ (@, T4 -0 @)1}

(60)

We have been careful up to this point to retain the distinction between
¢(§" ;%) and ¢(3’,;3E) in our notation. This will make Eq. (60) a valid start-
ing point for our analysis in the next section, when we wish to consider the
effects of anisoplanatism. But in this section, we are restricting our atten- i
tion to the case where '9" and 'e", are sufficiently close together that we
can assume that isoplanatism conditions are satisfied. In this case, we can

write for the wave-structure function, in place of Eq. (19),

5(0) ~ ([0 (F,:F+5) - ¢(8,,:7)1%) . (61)

Making use of Eq. (61) and of the fact that, in accordance with Eq. (22),

we can rewrite Eq. (60) as
FE) = 3 |ul* [[ aF a7 WE) WENT) WE) WE-HT)

| x {[(A2+(A2P] exp (- (5E-F)+50F) - § [ BE-F7-XD)

+ 3(;_?'+)‘()]}>+ Z(A’ﬂ)ﬂ+ (Ayﬂ)’ cos [211?‘ (9: -3’,,)]

- 23 «




x exp (- (60F) + 5EF-F)-3 [8F-F+2D) +5@-F+01)) ) }

=3 |0|4{(AP+2(AP)(A 3P cos [2nT - (@, -5,)] + (4,20}
X [[ dF dF* W) WENT) W(E?) WE )

xexp(-{ﬁ(?-?')hb(k?) -3 BE-F M) +E-F0D))) . (63)

At this point, we note that this expression is identical to the one we had to
evaluate in the preceding section for the single point source case, as can
be seen by comparing Eq.'s (63) and (18). Only the coefficient (A,’)a in
Eq. (18) has been replaced by the more complicated expression {(Ajﬂ)z

+ Z(As.)(As") cos [Zn?- (9'J -'9'3,)‘_] + (AJ"P} , but this is simply the difference
in the spatial frequency power spectra of the single point source and of the
pair of point sources. The effect of atmospheric turbulence on the ability
of the Labeyrie technique to obtain information on the high spatial frequency
part of the image power spectrum is the same, whether the object is a
single point source or a pair of point sources, provided that the point
sources are close enough together that isoplanatism applies. For the low
spatial frequencies, for an isoplanatic pair of point sources, the normal-
ized image spatial frequency power spectrum obtained by the Labeyrie tech-

nique can be inferred from Eq. (44) to have the form

- (A3r+2(A3)(A,3) cos [2nf - (§,-F,.)]+ (A 3P 4
L) ! 3 . 3 — § 3 fr. @)
7 (0) [(a,3) + (A,2)] o
for )\l?l << T, . (64)

For high spatial frequencies, we can see from consideration of Eq. (40)
that the normalized image spatial frequency power spectrum obtained by

the Labeyrie technique has the form

- 24 -
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ii?) ; (Asl)l+ 2(~A,3)(A,2) cos [Zﬂ-f.- @'J -",,)] +(A
é J(0) (A7 + AP

2 :
: {o.435 (%)' T (?)}'

for AT} s». %y s (65)

With these results in hand, and Eq. (60) available for future use, we
are now ready to turn our attention to the evaluation of atmospheric turbu-
lence effects on the performance of the Labeyrie technique in the absence of

isoplanatism. In the next section, we take this up for the case of a pair of

point sources,




4, Labeyrie Technique: Anisoplanatism

Our starting point for the evaluation of the effect of anisoplanatism

on the Labeyrie technique is Eq. (60), which represents the spatial frequency

power spectral density for a pair of point sources. As we recall, in

Eq. (60) we retained, but in unreduced form, the distinction between

-

=%
effects of the two point source directions, €, and 61' , on the random

1
phase shifts, ¢ (3'.1 P X ) and ¢ (‘e',' . ;) . At this point we return to
Eq. (60) but with the objective of developing statistical results showing
the dependence of the power spectral density on the angular separation,
- e

We shall aim our algebraic manipulation of the terms in Eq. (60)
at the objective of obtaining results which can make use of a statistical

function which we shall call the hyper wave- structure function, and

which we define as

-t -

D, 7)== (Lo +8:5+0)- 60 23:%3)]
xLo(8;7+7)-0(8;:7)1) . (66)

This quantity has previously been studied 13 and shown to be expressible

in terms of an integral over the propagation path. It can be written as

= =y k 2 - - -
D(9,7) =8.16(5—) [dv CF [di [ 1-exp(i%-7)]
PATH

X n"11/3 [exp(i:- 3v)+exp(- in . 3‘1)] » (67)
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where X is a two-dimensional (spatial frequency) vector, and v is a
variable of integration measuring position along the propagation path,
with v = 0 at the plane of the optics aperture, where we ''measure'' the

wavefront distortion statistics. CZ? is the so called refractive-index

N
structure constant and is a measure of the local optical strength of the

atmospheric turbulence.

Our problem at this point reduces to that of casting the six terms
still explicitly in ensemble average form in Eq. (60) into forms that can
be identified with Eq. (66) . The procedure is tedius but because of its
ultimate importance, is worth presenting in detail here. Starting with

the expression of interest in Eq. (60), we proceed as follows,
SR (Lo (8,5F)-0(F, 57 1%) -3(La(F,:F )-0(F:D 1D
+3(Lo (8, :7)-0(8,:F +AD) ) +2 (L0 (T, :F)-0(5y:F +2D) 1%

’

+3 (00 (8,:T+aF) -0 (BT )P +3 (L0 (F,57 +aF)-0(Fp;7)1%)

- -y -9 -y -y -" -y el
=(p(F:T)0(8:7)) + (o (F,:T)0(8,:7))
-3 (T 5T)e(FrsT4al)) -2 (0 (8,7 )0 (8,77 +27))
-ECo (@ T T e (T T)) -3 (B (F, T +aT) 0 (FpiT)) . (68)
In obtaining the final form of Eq. (68) we have made use of the fact that |
the wavefront distortion statistics are stationary so that the mean square '
value of the phase shift, ([ ¢ (¢ ;2) 1®y , is the same no matter what

the values of ¢ and X . Asa consequence all of the mean square phase

terms, when summed exactly vanish. Proceeding in the same way we




can show that
(Lo (E,:T) -0 (8 ¥ 1L (T T)-0(8,:7) )
tECLe(8,:7) -0 (T +aT) 100 (8/:T)-0 (85T +2)])
300 (8T )-0(0,:T+aF) 100 (8T )-0(F2sT+27) 1)

= (o (F,:T)o(8,57)) + (o (F,:T)0(E,:T))
S HC(F e (B aT)) -3 (0 (35T +2aF) 0 (§y:7))
“3Co(F, 5T (E T AT )) -2 (o (B, T AT )G (F): 7)) . (69)

In developing the final form of Eq. (69) we have again made use of the
statistical stationarity of the random wavefront distortion. This allows
us to argue that the value of ( ¢ (.9‘.1 ;X))o (3,' ;X)) is independent

of ¥ . This in turn, results in the summing to zero of the several terms

of this form that would otherwise appear in the final form of Eq. (69) .

It now follows directly from comparison of the final forms of
Eq.'s (68) and (69) that the two starting forms are equal. The starting
form of Eq. (68) represents a part of the exponent in Eq. (60), while
the starting form of Eq. (69) can be seen , from consideration of Eq. (66),

to correspond to the sum of several hyper wave-structure functions.

Thus we can rewrite Eq, (60) as

J() =2 |u)|® [ldTd? w(?) W(TAT) W@ )W(2'+17)




x {{ [(A°P+(A/2)°] exp (-u('r’ - +507) -2(E-T AD)(E-T +>.?)]])

+2(A %) (Ay72) cos [2nT - (§,-8)] exp (- (B(F,-8;, 7-7')450a7)

- #[96, -8, F-F D49 G, -8, P70 ) -

Examination of Eq. (67) will show that the hyper wave-structure function
possesses sufficient symmetry that

(3.7) = 9(3,-7) . (71)
This allows us to rewrite Eq. (70) in the form
7 =3 lul‘ [[dT dF W(?) W(Z + D) W(F) W(Z +1T)
x JL(A2)+(Ar2)]2 exp(-(5(F - F)p WD)-3L0(F-F-iT) 1p(F-F+2T)] 1
+2(A2) (Ag®) cos[2n T- (8, - §,)]
X exp(-{sx'e’, 8¢, 77 ) +507) - 3G, -8y, -7 -aT)

- - - - T
+9(, -0y, T-T +Af)]})1} . (72)

To isolate the field-angle dependence we rewrite this as




2@ =2 |u|*[Ldra? W@) WE+2F) WE) WE +1T)
X {{[(A’B )2+ (Aj,2 )2] exp(-{,b (T - ';r).‘."b(}“f") ‘%[.D(?'?"K?)"‘ﬂ(?-?"ﬂ?)] ])

+2(A2)(A#?) cos[enf - (§,-8;) ]

-

x exp(-{,p(‘r‘-'r")w(;.?)-ﬂﬁ(r-’r"-x‘f‘)w (Z-#+11)]}+Q(F, -8y, 7-7, x‘f'))]},,m)

where

Q(F,-8y , +-%, A7) = (H(EF-T) - D §, -8y, T-)]

- 3[B(E-T-A) -9(F,-Ty, 2 -0D)]
-3 L7 +2aY) - 2(3,- -9.,' , - +D)]}). (74)

It is obvious that when Q equals zero o () is identical to what we
computed in the previous section, when there was no anisoplanatism
effect. It can be seen from a comparison of the definitions of the wave-
structure function, £, and the hyper wave-structure function, 9, as
provided by Eq.'s (19) and (66) respectively, that when 5’, - -O.’l is equal
to zero Q will vanish and there will be no isoplanatism problem. The
question we address ourselves to is how large ?s - 3‘: can be before we
encounter anisoplanatism problems, i.e., before Q becomes comparable

to or larger than minus one.

We recall from our analysis in the previous two sections that
when we are interested in large values of A[? | » i.e., in the high spatial

frequencies the value of the double integral defining the power spectral

5 aaatelogecs o banlainl b
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density, o/, is determined by the region of (T, ) space where !

|?- | is much less than A|?| . Accordingly, we restrict our
investigation of the relationship between the value of 8, - 'e’,: and
anisoplanatism to the case where A\ |?| is much larger than Ty »
i.e., to high spatial frequencies, and where |T - 7| is small, in
particular, much smaller than A|f | . Making use of Eq. (67), hyper

wave-structure function, P, and noting that when 3 = 0 it also

provides a definition for the ordinary wave-structure function, 5,
we can write Q as

Q(o,p, 1?) 8 16 K [dv c J‘dn % =11/3

PATH

- - - - e i
{#exp(in - (7 +AT)] - expli® - p] + gexp[iR - (7 -2F)])

x {-exp(ix - 3v) +2 - exp(-iX + $v)]

=-88~nl=6 k® [av C [d® =1/ exp(in. 7)
PATH

x [exp (iX + AT/2) - exp (-i% . AF/2)T°

x [ exp (i - 9v/2) - exp (-i% - $v/2)]°

82 126 k® [av C,? [dW w1/2 exp (iR -7 )
m PATH

x sin® (% e[ exp (iR * $v/2) - exp (- iX - 3v/2)]3 . (75)
At this point we note that A I'f" | is very large compared to r, and thus

large with respect to all of the values of p and of #v of interest. As a

consequence we may argue that the sin® ( 2 Af R ) term goes through
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many oscillations in any locality of the - space integration, and there-
fore may be considered to have an approximate value of one-half. Thus
we may rewrite Eq. (75) as

16

Q (3, 7, AT) = %T k® [dv C? [d¥X w™1/2 exp (iX - 7)

PATH

x [exp (i% - 3\7/2) - exp (-ix . 3\'/2)]2 3 (76)

We can rewrite this as

Q(3, 7, M) = _ﬁ-__é_é k? Jdv C2 [dx /3 cos (K - )
m PATH
x sin® (X - 9v/2), (77)

where we have dropped the imaginary part of exp (ix - P) since it is
an odd-function of ¥ while all the rest of the integral is an even-function
of % , so that over the infinite range of the #-integration its contribution

would vanish.

We now further argue that the constraint that we are only interested
in small values of ||, since only small values of |T - ?’l contribute
significantly to the value of o/, allows us to approximate the isoplanatism

constraint by requiring that (5 (3) , where

8.16

=
~

3@ = k® [dv C° [d% »~1/2 sin’(% - $v/2) (78)

PATH
be less than unity. Here we have replaced cos (x * p) with unity based
on the fact that with |J| small or comparable to r, , % * 7 will not be
large for any value of ¥ which contributes significantly to the wavefront

distortion,
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Letting v denote the angle between ¥ and § we can rewrite
Eq. (78) as

Q)= 8n16 k® fav il Idn n'afaj'dv sin® (3 x® v cos (v)]

PATH

= &16 k® dv C du x93 [dv {1-

et PRI;M Inn j’ v {l-cos[ny v cos (v)]}
‘8.16 3,

= Exevik® Jov g Idnn“’“[l-unovn. (79)
L PATH

Making a change of variables, with x = x ¢ v, we can rewrite Eq. (79)
as

Q@) = oo {24848 [ayyus g2 Jaxx=2 [1- 3,1} . (80)
PATH

It is easy to show ! % that

® 3 - 'H_J-s $
dex &8 [1 - Jy(x)] = - 2-93 r(11/6)

= 1.1183 (81)

so that

Q(o)-om{ 2.91 k® [dvves C? }

PATH (82)

Thus our criteria for there to be so significant anisoplanatism, that

Q (3) be less than unity reduces to the condition that

d<d, , (83)
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where

% = {29 # L dvos cut}’“ ] (84)

We call J, the isoplanatism angle.

In Fig. 6, we show a sample vertical distribution of the optical
strength of turbulence, C2 , as reported by Greenwood.1® Using this
distribution, we have calculated the isoplanatism angle for a wavelength
A =5.5%X107 m . We find that in this case 00 =8.6 x 10 rad. Our
theory predicts that the Labeyrie technique should produce good results
when working with a pair of point sources with angular separation less
than this, but that if the point sources are separated by an angle greater
than this, the high spatial frequency details will be lost, or at least sig-
nificantly attenuated from what we expect, based on calibration of the
technique with a single point source. Referring back to Eq. (73) and
noting that Q is the negative of Q , we would expect from considera-
tion of Eq.'s (82) and (84) that the high frequency details will be attenu-
ated approximately as exp [ -(#/9,)62] relative to the ability of the
Labeyrie technique to accommodate a single point source. From con-
sideration of Eq. (73), we can see that the net effect of a lack of isoplana-
tism will be to make the source appear more like a single point source.
A pair of equal intensity point sources would appear like a pair of un-

equal intensity point sources, the ratio of intensities appearing to be

% exp [-(’.9/00)5”] .

With these results in hand, we are now ready to turn our attention
to the Knox-Thompson concept. In the next section, we shall describe
this concept and then present an analysis of its operation, assuming that
we are dealing with a pair of point sources close enough together that
there is no anisoplanatism effect. Then in Section 6, we shall extend this
analysis to treat the case where the angular separation is large enough

for anisoplanatism effects to occur.
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5. Knox-Thompson Algorithm: Isoplanatism Assumed

In the absence of anisoplanatism effects and with a '"calibration
run'’ against a known point source the Labeyrie technique will produce
a useful and valid spatial frequency power spectrum of an object of
interest. While this gives us much of the information we need to know about
the object, it does not permit formation of the image of the object. We
have information on the amplitude of each spatial frequency of the image,
but we have no knowledge of the spatial phase shift to be associated with

each spatial frequency — so we cannot reconstruct the image.

The basic problem in determining the phase shift stems from
the fact that, except for the very lowest spatial frequencies, (namely
|?| < ry/\) , the turbulence induced part of the phase shift introduces
an rms spatial phase shift, o , that is many radians. As a consequence
the average of the random spatial frequency component, S(?) , will be
8o strongly attenuated that we cannot use the ensemble average,
(S (-f.)) » to determine the part of the phase shift due to the image. The
attenuation is exp (-02) , which is too small to allow any practical

use to be obtained from the ensemble average (S (?)) .

In mathematical terms we would write that
S(E) = A A, exp [i(®, +9,)], (85)

where A, is the image associated amplitude, (Which we can determine
using the Labeyrie technique), and @, is the image associated phase shift
which we wish to determine. A, is the random amplitude factor
introduced by turbulence effects and ¢, is the turbulence induced spatial
phase shift, whose variance is a,a . If we determine the (ensemble)

average of the random amplitude, S (?) , Wwe get
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(S(F))y = {(A;)exp(-02) A, explip,) . (86)

The spatial phase shift information is there and we could easily extract
it as the argument of the complex value of (S (?) ) » but because of the
exp (-02) factor we are dealing with such an unfavorable signal strength
situation that we cannot obtain a useful estimate of the spatial phase

shift, Our answer will be determined by the noise rather than by the
signal.

An alternate approach for the calculation of the image associated

spatial phase shift, @ , has been suggested by McGlamery!®, This

involves extracting the phase, (9 , 1 ®;), from each sample of the

random spatial frequency complex amplitude, S ('f) » and then (ensemble)

averaging this phase shift to obtain ((9, +9,)) which, since (¢, =0,

should reduce to ( (9, +®,)) =@, . Unfortunately, due to a combin-
ation of noise effects, [irrevocable incorporated into the results by the
nonlinearity of the process of calculating the argument of S (f) ], and
due to a basic 2TM-ambiguity, ‘there is an uncertainty of the order of
21 N in our knowledge of (¢, + 9,), and as a consequence we do not get

a meaningful result when we attempt to determine ( (o, +9;) ).

The calculation of the spatial frequency power spectral density
J(F) = (S"(F)s(T)y , 87)

does not encounter any difficulty due to the turbulence induced random
phase shift, ¢, , since there is a cancellation of this term in taking the
product S¥* (?) S(f). The Knox-Thompson concept seeks to get around
all of the above difficulties by measuring the bispectrum

|
|
|
|
|
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J(E,T) = (s*¥(F)s(T)y , (88)

where f and f’ are distinct but not very widely different spatial
frequencies. As will be seen in this case, the two turbulence induced
phase shifts, 9; and ¢,/ , are closely correlated. From this it
follows that ¢, - :p,’ , which is the turbulence induced random argument
of the complex product S* (?’) S('t’) , has a small mean square value
a;' , and so the attenution factor, exp (-0%,’), encountered in forming
the (ensemble) average is of the order of unity. The condition required
for this to be the case, i.e., for O ss to be very small, will be seen to
be rf’ --f"| <ry/n .
We shall start our analysis of the Knox-Thompson concept by con-

sidering a pair of point sources with amplitudes A’ and A’, , located
at angular positions 9, and 8, - Making use of the intermediate re-

sults of Section 3, in particular of Eq. (52), we see that we can write the

bispectrum, as defined by Eq. (7), as
SE.T)) =3 |ui¢ [[ &F dF - WE) WEHD) WE) WET )

X ({{(Af)‘ exp [-zm(f‘-?’n)-m exp {i[8@,:T) - 6 (8, :T+2\T)
+ ¢ @ T A °) - ¢ (871}

+A3 A3 exp [-2mi Y -T-8,)] exp (8(:7)
5 q)('e’j ;'r’+7\?) +¢('é"‘;'i-"+7\f”) - ¢(3,,:?')]}

+A3 A2 exp[-2nif 3, -72-8)] exp {i[0@,T)

- 9@, ThI) + 9 (@, Fendr) - 0 (7))

+ (A 2P exp [-2ni[(-T)°8,] exp (i{p @) - 0(6,;FT)

-9 @, 7 0) - ¢(§',,;?‘)]]}) . (89)
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Here we have written a product of integrals as a double integral, carried

out the multiplication, and grouped terms as appropriate in the integrand.

We now introduce the assumption that the statistics of ¢(§;;?) -
with respect to ¢(U’,;?') are identical to the statistics of ¢(‘|";?) with
respect to ¢('é’s ;T’) — in essence, assuming that -e.d and 3" are in the
same isoplanatic patch. Thus restricting our attention in the balance of
this section to the case where isoplanatism is assumed, and making use

of Eq.'s (16), (17), and (19), we can rewrite Eq. (89) in the form

ET) =3 |yt [[ & & WE) WEHT) WE*) WEnT)
X exp {{-i (BOF) + HOT) + 5E-T*)
+L @R AT 1] - 2F-F0T) - 5G-Fo TN}

x {(A3P exp [-2niE-F*) %]

t(A2)(A ) exp [-zni(f’-'e’, - ?'-t,,)]

tAAS exp [-2ni €T, -T-F))

+ (A3 exp [-2ni -7°)-F,]} ‘ (90)

We can rewrite this as
JE. 1) =1 |gf* [[ d&F &F WE) WENT) WE*) WEHT)

X exp {-é (BT + pOT %) + pE-F*) + p[F-T -1\ -T*))

- p@E-FoT) - pE-F - NN ]
x {[(A9) exp (-2miT ) + (A 3) exp (-Zni?-'l’,]

x [(A3) exp (2niT”-§) + (A,3) exp (2miT* ¥ )]} . (91)

Py
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It is particularly significant to note here that the two square bracket terms
in the final curly brackets of Eq. (91) represent the fourier transform of

the two point source pattern at spatial frequency f (in the first of the square
brackets), times the complex conjugate of the fourier transform of the pat-
tern at spatial frequency - (in the second square bracket). As noted pre-
viously, the phase shift agsociated with this product is the difference of the
phase of the two spatial frequency components, at f and T* , of the object
pattern — and if we can determine this difference of phase shift for all
"adjacent' pairs of spatial frequencies in a matrix covering spatial frequency
space, we can determine the absolute phase shift for each spatial frequency
component. (The process is essentially equivalent to that described by us
elsewherel” for determination of wavefront distortion from an array of wave-

front tilt measurements. )

The key question is whether or not we can determine the difference
of phase shifts from a measurement of the bispectrum, 2, F*) . This,
in turn, is determined by the value of the ¥,T’-double integral in Eq. (91).
Comparing the integrand here with the corresponding integrand in Eq. (63),
for the Labeyrie speckle interferometry technique, we see that the two will
be equal when T equals P . If T* is nearly equal to T , then the inte-
grals should have nearly the same value — but exactly what difference be-
tween T and T is allowable under the expression ''nearly equal." We
recall that in the series of steps leading up to Eq. (40), and thus also to
Eq. (63), it was shown that when f and T” are exactly equal, the integral
had a value of 0.435 (r,/DpP To'_(f’) . In the following, we shall repeat those
steps with * nearly but not exactly equal to f , and show that if k!?-‘i"l
<< T, , then the value of the double integral will be essentially as large as

when T’ is exactly equal to T .

It is convenient to start by defining the quantity g by the expression

-89 .




8 = -§ (50X) + 50T°) + pE-F*) + p[F-T @ -T*))
-BE-F+0\T) - pF-F*-2\T*)) . (92)

Making use of Eq, (22), we can write

A = 3. 44 1SR \LPR+ (PR |F-F(8m4 -4\ [F-T)|0n

-|F-FHaT | - | BFaT 58] ' (93)

which expression we may usefully compare with Eq. (23). In our previous
treatment of the Labeyrie technique, developed from Eq. (23), with Eq. (18)
playing the same role as Eq. (21) in defining the range of values of ¥ and
T’ to be considered and the weighting to be assigned to each (¥,7*)-value,
we found that when Af was much greater than r, , then because there
were some very ''convenient'' cancellation of terms in the approximation for
Eq. (23) when l?-?" was much less than )\f , it followed that the value
of the (¥,?*)-integration was determined by the range of integration in which
|?-‘x”l was less than or about equal to r, . Inthe same way, we may ex-
pect here that when there is negligible difference between the values of

T and ¥ , and \f is much larger than r. , then the value of the ®,32°)-

o
integration in Eq. (91) will be determined by the contribution from the region
in which |?—'i"| is less than or about equal to r, . This means thatasa
practical matter in evaluating the bispectrum, J(f,?’) for Af much greater
than r, , and T and 7 nearly equal, we can approximate g from Eq. (93)

subject to the assumption that ]?-'i'" is less than or about equal to Lo o

Making use of Eq. (25) and equivalent approximations, we can now

rewrite Eq. (93) as
A =3.44r58m [|F-F2|sh + |F-F4\([F-T")|5n

+8 IRE-F) A -T7) + & (M) @-F) AT 5—‘;—?1] . (94)
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It is immediately apparent from consideration of Eq. (94) substituted into
Eq. (91) that the key question in determining the value of the integral is

whether Ml’-?" is greater than r, , or less. In either case, the result

is not significantly dependent on anything except the |¥-F*|5/2 and the
|¥-F*+r[f-7*)|e” terms in Eq. (94). We can rewrite Eq. (91) as
sE.T) =3 |u|¢ [[ & &F° WE) WEHT) WE’) WE T )
X exp {-3.44 r B[ |F-F|sA+ |F-F 4+ x(f'-?')|s/an
X {[(AD) exp (-2nif - F) + (A ) exp (-2miT 7))
x [(A9) exp (2m it -3’,) + (A,3) exp (zni?"-b;,)]} . (95)

For the required condition for successful operation of the Knox-Thompson

technique, i.e., for A(-f’) much less than r

i and recalling that the

value of the integral is determined, for the most part, by the region in

which |'1"-?'| is of the order of r, , we see that Eq. (95) reduces to

sET)~ g | [[&F & WE) WENT) WE) WEHT?)
x exp [-6.88 (|T-T*|/r )]
x {{(A3) exp (-2niT -¥) + (A,2) exp (-20 i?-'c,,)]

x [(A2) exp (2mif* ‘T) + (A3) exp (ZniToU’,)]} : (96)

This integral was previously encountered in Eq. (30) and evaluated in
Eq. (39). Making use of Eq. (21), we see that with this integral evaluation,

we can write the normalized bispectrum as

!E ?oz

200y - (0-435(r,/DP 7, ()]

X {[(A2) exp (-2nif -§) + (A,2) exp (-2riT - §,,)]
x [(A3) exp (2niT’ ) + (A9) exp (2miT"-,)]

x [(A2) + (A R)]2) . (97)

L

TR BT . R—————




The leading curly bracket term is the quantity of interest. It represents
the ability of the process to '"avoid' washing out the information carrying
part of the signal because of averaging over a large range of phase fluc-
tuations. The larger the curly bracket term is, the better the system may
be considered to perform. We note that with klf—?l smaller than r, |,
the system's ability to avoid signal washout is as good as for the Labeyrie

speckle interferometry technique.

If we violate the requirement that k'?-f" is to be less than r, ,

then since the value of the double integral in Eq. (95) comes principally

from the (¥,¥’) region of integration where !'i'-?‘] is less than r, ,

we can approximate Eq. (95) by the expression

&, 1) = exp [-3.44 (\|T-T*| /1 )002] } |u|*
x [[ dF dF exp [-3.44 (IF-F*| /r pre
x WE) WEHT) W(E) WE- )
X {[(A2) exp (-2miT-¥) + (A 2) exp (-2niT )]

x[AD exp @uif--¥) + A M exp 2niT- 0]} . (98)

Except for a slight change of coefficient in the exponent (which we can
"'get rid of" by replacing 3.44 r 6/ by 6.88 (1.516 r, 6”2 ] , the integral
is the same one which we just evaluated. Carrying out the integration and

normalizing as before, in this case we get

W 2% o { sxp [_3.44 (-U}%L)"‘] (_;9) Toe (?)}

2(0,0
x {[(A9) exp (-2niT ) + (A D) exp (-2niT-F,)]
x (A9 exp 2niT*-§) + (A 9) exp (2niT-F,)]

x (A2 + (A 2)]2) : (99)




It is immediately apparent from inspection of this result that if we allow
the frequency difference to be large, i.e., if M?-?'l is larger than r, ,
the Knox-Thompson technique will produce poor results, i.e., the inform-

ation carrying part of the signal will be washed out.

From a comparison of Eq. 's (97) and (99), we can form an estimate
of how much smaller than r, we should require x|?-?'| to be. We form
our estimate based on the requirement that the knee of the curve of l'f-f"
dependence should correspond to the value where the two (asymptotic) depen-

dencies intersect. This occurs where

exp [-3.44 (\|T-T| /r )p/° = 0.435 2 (100)
where the subscript K denotes the ''knee' value. Solving this equation,
we get

’\l?-?‘l, =0.427 1, ‘ (101)
Based on this result, we would suggest that for proper implementation of
the Knox-Thompson algorithm, the data processing should be done with an

array of spatial frequencies whose frequency spacing is no greater than

0.4: " , and preferably no greater than 0.2 r,/\ .

Vith this result in hand, we are now ready to proceed to the analysis
of the Knox-Thompson algorithm in the case where the angular separation,
U’ -?’, » of the two point sources is large enough that there will be aniso-

planatism effects. We take this up next, in Section 6.
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6. Knox-Thompson Algorithm: Anisoplanatism

We start our analysis of the effect of anisoplanatism on the Knox-
Thompson algorithm with Eq. (89). Here, unlike our procedure in the
last section, we shall not introduce the assumption that the wavefront dis-

tortion, ¢(3;?) » is independent of the exact value of § . Making use of
Eq.'s (16), (17), and (19), we can recast this as

JET°) =3 |uj* [[ & & WE) WEHT) WE) WE*) WE*+2T)

» {(A’s)ﬁ exp [-2mi([-F7) 7] exp ('i {50T) - BF-F*-2T")
+BEF )+ F-F @)1 - pF-F 1T + 50T)))

+ABAD exp [-2niE T, T )] exp (-3 (5OD)-([8 6,
- 9@, ;T +AT))? )

t ([9(8):7) -9 (8,,:7 )12 yH([o @, FraD)-¢ ({,:F-+2")]9 )
([ @, T T-0 (@, T2y + 3()&")})

tAPA S exp[-2ni €T, -T8)] exp (-3 (0T)-([0 @,:F)
- 0 (§,;F AT ]9 )

H{[o®@,:7)- @, T ) (9@, THD)-9 @, Fel)ey
- ([9 @, T0D)- o (8 F)10y + HOT")})

tAZP exp [-2ni [-1%)-F,] exp (-t (HOT)-pEF-F*-\)

| +HE-B)+ B[ BT\ -T*))-BE-T 1T + _m?')})} ' (102)

We now make use of the symmetrization argument used to let us go from
‘ Eq. (58) to Eq. (60). We then note that we can now repeat essentially the
4

{

same manipulations we used in Eq. (68) and Eq. (69). The equivalence of
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these equations allows us to rewrite our results in terms of the hyper
wave-structure function, as defined by Eq, (66), so that we obtain in
place of Eq. (102) the result that
sE 1) =3 |y [[ & dF° WE) WEHT) WE*) WE H\F°)
X {[(A;r exp (-2ni @-T*)-§,)+(a 3 exp[-zﬂi(r.?o)-t,,]]
x exp (-3 [HOTHBOT* 1H(EF-F )} 5[ F-F 41 €-T°))
-pE-F 1)) (F-F*-\T7))

HANA R exp[-2mi (?-'é; -f2. 9§, )] +exp[-2ni(f 8,181}
X exp ('i‘ (BOI)+50T7) +53“J °U,,;?-'r") +@[U‘ -'9;,;?-?4“?-?‘)]
-9@, -7, 7-7 1\f) -0@, -8,,;F-F A7 )} : (103)

It is useful to rewrite this equation as
J0.1) = 3 |up [[ dF &F* W(F) WEHT) W(E*) WE-T)

X exp ( -3 (pOD+HOT*)+8(E-F 1+ B[ B-2 A E-T7)]
-H(E-Th\F) - pEF-T A7)} )

X ((Af)'exp [-2ni@-F)-5,-9,]+ (A IPexp[-2ni F-T") 3,1

+(AP3)(A 3){exp[-2mi (?"5; -1'"-3y)]+ exp [-2mi (f"'e'y-?-'é', )1}
X exp [?ﬁ@;-‘}.?-?’, Ku 7\1”))}) ’ (104)

where

o, -8, F-¥*. 0T, AT) = ([5F-F*) - 9@, -¥,:F-7]
+ (B[F-F0E-17)] - 9T, -§.:F-F1\@-T)])
- [pE-FonT) - 9@ -9, 7-7+\7)]

- [A@E-F12F") - 9@, -7, -F-A)))

- 45 -




A comparison of Eq. (104) with Eq. (90) makes it clear that the condition

on |‘e” -'d”,| required in order for there to be no significant anisoplanatism

effect is that  must have a value close to zero in the relevant region of

the (¥,T°) integral.

To establish the allowable range of values of !", -8, | for isoplana-

tism to apply, we shall carry out an evaluation of o@,7,\T, \T*) subject

to the conditions that  is less than or of the order of r. , that \f and

(-]

AMf’ are both much greater than r, , and that MI’-?" is less than r,

— as these are the conditions we developed in the last section as defining

the range in ¥,f” and (¥,¥’-integration space within which we get signi-

ficant contributions to the bispectrum, JE.T‘) :
Making use of Eq. (67), we can write

o(3.79.2\T, x?')=i‘“—l,61rs [ av C3 [ & yvs
PATH

X (exp iR G+D)] + exp [in- (B -2F))

- exp (i) - exp (i¥-[F+2E-1)]})
x {-exp (i;{';’v) +2 - exp (-ii’-3v)} <
With a bit of trigonometric manipulation, this can be rewritten as

D")K, Xrn )\?") = - &1?15—6 ka r dv CNa J‘ dx uﬂ.]./a

PATH
x exp {iX-[P+3 2E-T)]}
x {sind (3% \E-T*)] - sind (330 A F+7*)])

X [exp (iX*F v/2) - exp (-iX-F v/2)]?

We may now proceed almost exactly as we did following Eq. (75).

i s st ik

(106)

(107)




We start by noting that for virtually all of the x-values that con-

tribute significantly to the wavefront distortion process, 2 A@+?*) is so
large that the sin® [fi «A{f+7*)] term will oscillate rapidly and therefore
will have an average value of one-half. Thus we can replace that sinc-
function squared by one-half. Also, we note that since all of the rest of
the integrand is manifestly symmetric in ¥ , we can replace exp {i¥-
(P+% AE+T*)]] by the corresponding cosine-function. Thus we can write

in place of Eq. (107)

o577 = 222 e [ oav o J &t
PATH
X cos (R-[B+3 E-T9)]1}{1-2 sin?[3% -1 F-T9)]}
x sind (X -F v/2) . (108)

From our previous work, we know that we are only interested in values of
1'1-’-?" , and thus of 5 which are less than or equal to r, . Similarly,
we know that we must restrict our attention to the case where )\IT-T" is
less than r, . On the other hand, we know that only values of » which
are smaller than r 2 contribute significantly to the wavefront distortion.
It thus follows that to the level of a first approximation, we may treat the

cosine-term and the one-minus-two-times-sine-squared-term in the inte-

grand of Eq. (108) as though they had values about equal to unity.

Taking note of these approximations [and recalling the factor of
one-half in the final exponent of Eq. (104)], we see that the condition on
¢ for there to be no significant anisoplanatism effect is that the function
9(8) , where

B9 = 1632 4y [

dv C3 [ diwuim sin® (X v/2) (109)

PATH

should have a value less than two. Making reference to Eq. (78) and the
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discussion there, we see that we have arrived at exactly the same condi-
tionon ¢ , or |'o'j -'0’,,[ » for isoplanatism to apply for the Knox-Thompson
algorithm as we previously developed for isoplanatism to apply to the
Labeyrie technique, We require that Eq. (83) with Eq. (84) be satisfied

for the Knox-Thompson algorithm to yield isoplanatic performance.
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Figure 1. Speckle Transfer Function for D/r, = 10 .

The rapidly decreasing curve represents the low frequency approx-
imation of Eq. (44). The everywhere relatively low level curve represents
the high frequency approximation of Eq. (40). The curve running the full
range of spatial frequencies represents the Monte Carlo results. The
composite of the two approximations can be seen to constitute a2 fair approx-
imation to the full range result obtained by Monte Carlo methods.
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f approximation of Eq. (44). The everywhere relatively low level curve
represents the high frequency approximation of Eq. (40). The curve
running the full range of spatial frequencies represents the Monte Carlo i
results. The composite of the two approximations can be seen to constitute

a fair approximation to the full range result obtained by Monte Carlo methods.
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The rapidly decreasing curve represents the low frequency ap-
proximation of Eq. (44). The everywhere relatively low level curve
represents the high frequency approximation of Eq. (40). The curve
running the full range of spatial frequencies represents the Monte
Carlo results. The composite of the two approximations can be seen
to constitute a fair approximation to the full range result obtained by
Monte Carlo methods. )
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-The rapidly decreasing curve represents the low frequency ap-
proximation of Eq. (44). The everywhere relatively low level curve
represents the high frequency approximation of Eq. (40). The curve
running the full range of spatial frequencies represents the Monte
Carlo results. The composite of the two approximations can be seen
to constitute a fair approximation to the fuli range result obtained by
Monte Carlo methods.
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Appendix A

Monte Carlo Integral Evaluation

In order to develop a set of values for the frequency dependent
speckle image power spectrum, () , in accordance with the exact
definition provided by Eq. (18), without introducing any approximations
relating to the value of |¥-¥*|/r, , or tothe value of \'f|/r, , in
this appendix we shall carry out a numerical evaluation of the integral
in Eq. (18) for various values of D/ro and of x'?l/ro using Monte
Carlo methods. This allows us to test the accuracy of the results we
developed in Section 2 of this report using approximations concerning
the values of |¥-T*|/r, and of x|'f’| /r, . The numerical results we
shall develop here will show that these approximations lead to quite

accurate results.

Making use of Eq.'s (18), (21), and (22), we may write the

normalized spectrum, which represents the speckle transfer function, as

ZE). 18 po (1 ot a7 WE) WENT) WE) WEE D)

X exp {-6.88 r3[|T-F/|sm + |;I|s/a

-3 (|70 46 |8 4 |2-200T|99))) i (A.1)

It will prove convenient for us to make a change of the variables of inte-
gration here. For this purpose, we define the variables % and P accord-

ing to the equations

*x=7%/D : (A. 2)
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from which it follows that
dx = d_r./D ’

and

3 = ‘?'?')/D ’
from which (treating T as a constant) it follows that
dp = d¥‘/De -

We can now rewrite the speckle transfer function of Eq. (A.1) as

3';(0)1' = (32 [ & &5 ¥() ¥GE+ ) #E-P) #E-B+D)

X exp [-6.88 (D/r, /2 [l‘ﬂm + |3|sR
- & ([B+a]™e + B -gjer]y '
where
b o3 < ¢

»x) = { Fe '
and

@ =1/D '
represents the normalized spatial frequency. (The effective range of the
normalized spatial frequency is from zero to unity. )

It is convenient to rewrite Eq. (A.4) as

°:7(0) = (3P [f & 6B (%) ¥ +3) ¥(&-B) ¥(-F+3)

X exp [-6.88 (D/r p” y (B,3)] ,

(A.2°)

(A.3)

(A.3°)

(A.4)

(A. 5)

(A.6)

(A.7)
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where

¥@.3) = [B|s~ + [S[sP -  (|B+3|se + [B-3[sR) . (A.8)

Making use of Eq. (24), we note that accordingly as |'&| is much
greater than or much smaller than |B| , we can approximate Y(@,5) by

the expressions
4 .2
16D~ [3 -5 (3 Fe s[,—f,—%]
\ v

ol «c Bl (A.9)

and

€D~ [F 3R Ee -4
if |3 >> |B| : (A.10)

We shall not use these approximations in an analytic way to develop our
results (as was done in Section 2 of this report), but rather will use
Eq.'s (A.9) and (A. 10) to provide guidance in the selection of the sampling

function we shall use for the Monte Carlo evaluation. We shall also use

these equations in our numerical computations to assure adequate accuracy
r;i in the evaluation of y(P,3) when the magnitudes of I'ﬁl and |E| are

!

! greatly different, without resorting to double precision computer compu-

tation.

For Monte Carlo evaluation of the integral in Eq. (A.7), we shall
' try to use sampling distributions for ¥ and P that will fully sample the
range of allowed values of X and P , but in such a way as to minimize
the ''variability of the integrand.'' This minimization of the variability

of the integrand is achieved by making use of the fact that for Monte Carlo




integral evaluation, we can multiply and divide the integrand by any

desired probability density and then ""extract' the probability density
function in the numerator for use as the random sampling density gen-
erator. The original integrand divided by the probability density is left
as a modified integrand, whose mean value over the sampling density we
wish to determine. This mean value, which we estimate as a Monte
Carlo average, represents the value of the integral, The accuracy with
which the Monte Carlo procedure will estimate the mean value of this
modified integrand depends on the variability of the integrand in the
sampling range. If we have been reasonably clever in our choice of

E« the sampling distribution, the modified integrand will have a limited

variability and it will take relatively few samples to achieve the desired

accuracy. If we have not been so clever, more samples will be required.

b Either way, the validity of the result is unaffected — it is just a matter

: of how many samples we need to use to achieve the desired accuracy with
our Monte Carlo integral evaluation procedure.* In general, and for the

problem we are treating here, it is not clear what practical sampling f

distribution is optimum, and the matter of making an efficient choice
| is somewhat of an art. We can judge our success in making a suitable
choice of the sampling probability density by evaluating not only the
| mean value but also the standard deviation of the modified integrand
when we generate our Monte Carlo average, and in fact we can use this
standard deviation to help us decide when we have taken enough random

samples,

For Monte Carlo evaluation of the integral in Eq. (A.7), we chose
to use a uniform distribution for ¥ and a gaussian distribution for P .
We chose the range of the X-distribution to correspond to the rectangle
; . that just encloses the region of overlap of the two circles defined by

%#(X) and ¥(X+a) . (Outside this rectangle, the integrand has zero value

* It will later become clear from a study of Table A.2 that we have not been
very clever in our choice of the sampling distribution when D/rb is
very large and |gl| ~r,/D .
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so nothing is excluded by use of the limited sampling range.) If we denote

e s .

the component of X that is parallel to § by x, » and the perpendicular

component by x, , then our rectangle corresponds to the region defined

by the equations

-2 <x <% - |3 , (A.11a)

-3hx, <}h : (A.11b)
where

h=(l- |g|3ps (A.12)

This is a rectangle of width (1 - |'q,’|) and of height (h) . The probability
density function is thus

1- jo[)R]2. i {- I'al}
P.&)- L(- ja]|)h] f {-d<x<tla

and {-gh< x, < $h} (A.13)
0 , otherwise

As remarked above, we will use a (two-dimensional) gaussian

probability density for the P sampi‘mg distribution. We can write this
as

P,B) = 2n PR exp (-3 [B]*/®) (A.14)

where 4 is a sampling parameter whose value we have to choose. To get
some insight into how to choose a value for ¢ , we multiply and divide
the integrand of Eq. (A.7) by P, and by P, . Thus we have for the

speckle transfer function

m:(m = ()0 [[ &% dB () ¥+ D) #E-B) ¥(RE-F+3)

x exp [-6.88 (D/r "R ¥(p,3)] Pl P (A.15)
u (4




Making use of Eq.'s (A.13) and (A. 14), this can be rewritten as

2. 2 wngg) r e e,@ P, @

X {w(i':) ¥ +3) ¥E-B) ¥Z-P+3)

X exp [} |P|?/c® - 6.88 (D/r pm v(i:’.?i)]} ; (A.16)

The quantity in the large curly brackets is the modified integrand whose
mean value, in accordance with the probability densities P, (%) and » @),

we wish to determine by Monte Carlo random sampling.

Taking note of Eq. (A.10), we reason that we can minimize the
effective variability of the modified integrand when '&" is much larger
than r /D by choosing the sampling parameter s to make the argument
of the exponential in the modified integrand vanish when |'p'| equals o .

This leads to the condition

(r,/D) (4/6.88)¥s

Q
n

If we now take note of Eq, (A.9), we see that when |a,'| is much less than
r,/D , then the argument of the exponential in the modified integrand will
have relatively little variation with B if ¢ is comparatively large. So

as to avoid taking too many samples outside the range in which ¥%(X-B) and
#(X-B+3G) are non-zero, we somewhat arbitrarily suggest that the sampling

parameter 5 have the value

0.207 (r,/D) »  for |G| >» (r,/D) . (A.17°)

s=4% ., for [3] << (r,/D) : (A.17")

. §2 e
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To smoothly combine Eq. 's (A.17’) and (A.17*), we chose to use as the

gaussian distribution sampling parameter

6}5"‘5‘)‘ (0.207 (r,/D)]® + (%‘&.{TD'Y (319 /3

g = = . (A.17)
|S!| 9 r;7D 9
(ro/D) & ( 2 )

Given ¢ , itis a straightforward matter to generate appropriately
distributed random samples of the two components of P , namely, p, and

P, according to the equation

where g and g, are gaussian distributed random variables with zero

mean value and unity standard deviation. Well-defined computer routines

for generating the random variables g, and g, exist. The generation
of the random samples x, and x, follows from the equations

x =g - [3] - 013y, . (a.152)

X =h(w, - %) ; (A.19b)
where u, and u, are random variables uniformly distributed on the

interval between zero and unity (0,1). [Clearly X and x, are uniformly

distributed, and by substituting the limiting values of u, and u, , we can

confirm that x, and x, just span the ranges defined by Eq.'s (A.1la) and
(A.11b). ]

If we use the notation MCA {x;p, (%)|¥:p, () | {& )} to denote
the average value of the function f(X,¥) when evaluated as a Monte Carlo

Average over the sampling distributions of X and ¥ defined by P, (%) and
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P, (¥) ., then it is obvious from consideration of Eq. (A. 16) that we can

write the speckle transfer function as

£ ~ = #h-[3|) Mca f3:P, @B P, 6 |

(¥E) ¥E+3) ¥E-B) ¥ (Z-B+ )

X exp (% |B| /o® - 6. 88 (D/r v@.a‘)]]}} ! (A.20)

We can estimate the variance of the modified integrand as
- > 2 :
Var ~ =% 53 h (1-|3|) MCA {x,Pu(SE)ﬁ,PG ® |
() ¥ +3) ¥ (X-P) #(X-B+73)

X exp [ !B| /o -6.88 (D/r P v@.&)]l’}

- W E)/j(0))® . (A.21)

Accordingly, the standard deviation of the Monte Carlo estimate of the
normalized bispectrum, J’(f')/](O) , which we obtain from Eq. (A.20)
is

SD = (Var/Cp/2 ' (A.22)

where C is the number of sample values of (X,P) that we used in forming

the Monte Carlo Average.

In Appendix B, we list a computer program which generates a table
of values for the speckle transfer function, J (f')/J(0) , and for the associated
standard deviation, subject to the conditions that no more than one million

samples will be used, and that otherwise the Monte Carlo sampling process
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will stop as soon as an estimated one-percent accuracy for the speckle
transfer function is achieved. Results were calculated for values of

D/r, equalto 10, 30, 100, 300, and 1000, and for a very large range

of values of the normalized spatial frequency, g = \f/D , from very near
zero to very near unity. The choice of values for the magnitude of 5§ was
made to match a gaussian distribution scale so as to provide fine detail for
|g@| near zero, as well as for |d| near unity. The speckle transfer func-
tion values, J(f)/7(0) , are listed in Table A.1. In Table A.2, we show the
ratio of the standard deviation to the estimated value along with the number

of samples used to form that estimated value for each entry in Table A.1. In
evaluating the speckle transfer function, random samples were used in blocks
of one-thousand, the number of blocks used being adjusted to provide one-

percent accuracy, except that no more than one thousand blocks were ever

used.

We recall that our objective in this appendix was to provide a basis
for testing the accuracy of the approximations to the speckle transfer func-
tion provided by Eq. (40) for large values of |'§._’| relative to r,/D , and
by Eq. (44) for small values of la” relative to r,/D . Accordingly, our
computer program also calculated these approximation results. In Fig.'s 1
to 5, we have plotted the Monte Carlo estimates of the speckle transfer
function as a function of the normalized spatial frequency, |3| =\ |T'|/D ’
for each of the five values of D/r, considered, along with the correspond-
ing approximation results of Eq."s (40) and (44). As can be seen from a

consgideration of these figures, the approximations are each quite good in

their region of expected validity. This is particularly so for the larger

values of D/ro g
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Table A. 1

Speckle Trans{c¢r Function

Monte Carlo Results

Normalised
Spatial Speckle Transfer Function
Freq

sl D/xy=10 D/xy=30 D/x, = 100 D/z,=300  D/z4=1000
c.20021 9.9¢e-01 9.92e-C1 9.8%e-01 $.28e-01 6.160-C1
S.2C02¢6 1.2Ce-30 1.05e¢-00 9.6%¢-01 8.8%-01 S.01e-01
2,020%2 1.S1e+30 9.93e-01 9.81e-21 8,590-01 3.72e-01
C.03940 9.9%¢-31 9.95¢-01 Se=21 .27-01 2.460-01
c.tacso 9.6Ee-"1 9.29-C1 9.500-21 7.62e¢~01 1,360=01
0.02092 9.89¢-21 9.93e-0!¢ 9,340-21 6.7%0=0} S.71e=-02
c.02077 9.%00-21 9.91e¢-01 9.C%e-1 $.73e-01 1.%0=02
C.02096 9.96e-21 9.81e¢-CH 8,83e-1 6,62¢-01 3.15e-C3
J.00:19 Y.96¢-31 9.72e-C: 8.252-21 3.2%-C: 2.200=0¢
L.02147 9.9¢e-J1 9.¢3e-C1 7.5%e-01 2.0%e-C1 1.16e-CS
S.0082 9.78e-22 Q.42e¢-C1 6,80e-31 1e.1%e-C2 1.210-C6
S.%3225 Fe86e-21 9.2¢0-01 Se95e-21 bobPe-C: Y.560-0?
Z.00278 9.53e-21 e.95¢-01 4.90e-21 1.26e-C:2 8.95e-357
Z.r0303 9.50e-22 8.56e0-0C" 3.630-21 2+32e-22 ?.84e-C7
w0022 .5ze¢-21 A.25e¢-C1 2.50e-31 2.40e~C¢ T.83e-0?
c.72¢%18 Ge84¢-21 7.5%e~02 lebBe-D: 2+6%e-0°F 6,.80e~0?
G.7243e 9.73e¢=-21 6.8% -0 7.120=32 1.280-08 6.93¢-0?

«277% 9.02e¢-21 €.99e-01 2.71e-32 1.02¢-08 4.4%e=3?
D.0I%43 3.7¢e=31 b.92e~-C! 7.61e-37 9.25e-Co t,050-27
0.Ctteé 9,.34e-31 3.90e~-01 1.58e-33 e.50e=-Co S, 06e-2?
C.C:3¥ce 7.81e-31 2.89e-3! 3.30¢=34 t.27e~Cs €.73e-2?
0.0:45¢8 T.%6e-31 1.91e-C: 1.32e¢~2¢ 7.5%¢-0¢ £.6%7¢~C?
g.02C232 5.62e-31 1.1%-01 1.06e0~2¢ 7.67e-00 ®,55¢-07
C.02%5%¢ $.,88e~31 €.7%e-02 2,89¢-0% 7.03e=06 S.620=07
0.02245 €elle=-01 2.6le-0C2 8.22¢-28 6.91e-0% £.20e-2?
0.03272? Le26e=1 1.05e¢-02 7.63¢-0% 6.50e-06 S.22¢~37
U.030272 7.3%¢-21 4.21e-01 7.1%=238 6.462-06 £,38e-0?
0.06677 2.50e~21 2.10e-03 6.840-28 6.15¢-06 6.9%0=0?7
0.NS48¢ 1.90e-21 1.36e-01 $.72e~38 6.03e~Co 6.9 e=07
0.06353 1e20e-2J1 1.10e-03 6.25¢-23% £.90e~0¢ 6.72e=07
C.07350 8.420-02 9.66e-04 $.93e-2° $.7%=N% L.%%e=07
O.08401 Se3ce-22 8.E3e-Cé €.79e-235 $.53e-06 4e%%e~07
0.09691 1.50e-232 8.0%e~-0¢ $.51e~238 $.43e-D8 6.%6e~-27
0.1:046 2.260-02 7.5%-04% S.3%e-25 S.26e-06 €.2%e-02
C.12529 1.60e-32 7.15e=-C4 €.07e-25 &.98e-0% 6e19e-C7
0.16142 1e20e~22 6.05e~C4 to.060-25 t.850-06 ¥.009-27
o.1582¢ 3.92e-33 6+3ue=04 t.67e-95 4e6%e~C¢ ¥.03e-27
0.177266 2.33e~32 S.95e-04 LR S (R 11 LetSe=0so Y. %e-C?
0.15727 7.38e~32 S.67e-04 &.20e-935 4.27e-06 ¥.65e¢~07
G.21919 setde~312 S.bze=~Cs 4.00e~25 4.12e-06 T.48e~27
0.2418% 9.23e-23 S.0e~9¢ 3.78e-25 3.85¢~0% ¥,33e-07
C.26533 T.tee=33 4.8%e~00 3.56e~-25 3.70e~0% 1.19e=27
0.2907%¢ 5.292-23 LitSe~a ¥.460-35 Jedbe~06 1,02e-C?
G.21716 L.23e-33 t.2Je~0¢ *,20e-35 3.3%e-0% 2.97e-C7
0.3587C 1.51e-238 ¥,S54e-0s 2.9%2-0% 2.95¢-0> 2.51e~-07
0+62233 T,.17e-33 T.0%e "0« 2.50e-25 2.5%e~06 2.26e~07
Jeb7826 2,714-33 2+.6%e~Ce 2.13e-08% 2.20e-0% 1.%e=-C7
J.53264 2,25:-33 2+.1te-0¢ 1.30e-28 1+940-0% 1.630-2
0.53853 16792-23 1.77%e-C¢ 1.50e-2$ 1.5% 0% 1.¥9e-07
2.642569 1edS5ec-.3 1.62e¢-C¢ 1e23¢-35 1.25e-06 1.13e-3?
Q.£9%65S 1.99e-.3 1.15e=3¢ 9.810-38 1.03¢-00 8.9¢e-08
0.76057 3.37%-34 8.97e-05 7.55¢-26 8:.03e-07 $.92e-C8
C.73374 Selba-is 5.,72e-25 S.6b0-20 6.23e-07 S.%1e-C8
C.8223%¢ Le3b0~ s «.97%e-CS te31e-00 4.S40-07 LeQbke=C®
J.85633 3.01e 3.60e~03 Y.100-26 3.3%5¢-07 2.92e-29
0.03571 2, 2.460~25 2.21e-¢ 2+3%e-07 2.08e-38
0.910862 1.23e~-3¢ 1.64e~0S 1.53e-2s 1.6%e-07 lebbea-C3
0.93129 7.40e-35 1,07e~05 1.30e~36 1.1%+-07 9.77e-39
0.54839 “.0%e~3S s,80e~0¢ 5.51e~27 7.34e-C8 4.5%3e-29
0.94145 2,01e=35 t.9%e-Cs Lolie-? C.See=-29 L.D20-29
0.97133 Y, e60=-26 Celle=de 2,67e¢-7 2.87«-08 2.6%e-C9
0.9797%4 bo18e-3s telle=3s 1.65e-27 1.69e-02 1.55e=C9
3.93563 1.752~36 e300 0, 3%-28 1.01e-02 9.262-1C
0.9999¢ 5.88e-37 Z.7%¢-07 C.5e-138 5.7%7e~09 €.27¢~10
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Monte Carlo Error Parameters

For each of the Monte Carlo results shown in Table A, 1 we show here our
estimate of the rms fractional error, ¢ , and the number thousands of
samples, C , required to achieve this fractional error. Because we never
allowed use of more than one-million samples (C=1000), our worst case
fractional error was 19, 5% (SD=0. 195), but for the most part a 1% (SD=0.01)
fractional error was achieved, generally with only about 37,000 (C=37)
samples in the Monte Carlo estimation process.

Normalized
F-‘:P"“" 3 D/ry=10 D/xy=30 D/r,=100  D/r,=300  D/r,=1000
1% & € W € = ¢ ®» ¢ W ¢
0.00021 2,019 37. ©.313 7, €.210 32, Q.010 ¥, 9.C19 ¥
0.03c26 €.310 37. @.2:3 38, 2,319 37. 0.C10 3%, 92.C12 ¥V
0.03C32 2.912 37. 0,013 e, c.CIC 37, 0.010 ¥2, 2.010 6.
3.00040 0.910 36. 0.2:C ', 3,310 37, 0,010 ¥, 2.013 36,
0.c0050 c.91¢ 38. 0.013 !7, .01 37, G.0840 ¥7, 9.010 3¢,
0.020%2 2.910 38. 0.0t 37, °: $7. 0.010 ¥, 9.010 I3, i
0.09077 .75 32. 0.C1C 37, 3?. Q.010 ¥7, 9.213 33, |
0.00096 S.910 3?2, 0.01C 37, 37, 0.0:0 3s. 3.9210 33.
0.00119 2.3:9 37. 0.010 37, 37, 9.210 36. 2.31) 63,
0.03147 9.019 3?2, 0.210 37, 38. 3,010 3e. J.04¢ 1090.
c.02182 0.210 32. 9.010 17, 37. 3.010 Ye. J.198 :£20.
c.0022s 9.713  38. 0.01C 17, 37. J.510 32, 0.197 19G0.
3.07273 3.213 8, 9.01C i), 37. 02.910 31. 9.1%7 1000.
9.093e3 M3 ¥ 9038 tue 6. 2.010 &7, 9.79¢ 1900.
0.03422 J.21C 37, Q.36 T, 3%, 3.010 931. ©2.248 :CoC.
0.00518 2.316  32. 49.013 7, S4.  $.05¢ 1303, 2.%¢é 31200
0.0063¢ J.310 32 g@.0ic Y. $3.  3.786 1308. 2.93% 1920,
0.03776 2716 37. 0.715 7. 32. 9.0%2 1303. 3.921 10%0.
G.099¢3 2.010 37, 9.01C  3s. 36, 3.0¢0 1333. 3.918 1520,
0.01166 2.719 37, 0.310  3s. 23%. 0.C2® 1203. 13.313 1030,
0.0133¢ 2.216  38. 0.0t  3é. 1233, C.323% 1033. 2.9t &da.
0.01668 S.,21C  33. 0.910 33, 130. C€.01e¢ 1300, 9.0:3 231,
9.02032 3.910 38. 0.210 33, 1233. 3.210 1203. 9.01C 1le.
0.02394 2.910 37, 0.3:% 32. 1633. 0.013 S35. 2.01)  sS,
C.02849 2.010 36, 0.013 41, 103%. £.2:0 27)3. 9.010 27,
G.03377 3.2t 3. Q3.01C 83, 938, 0.C1C 243, 0,213 13,
G.C3993 2.010  J6. 0.01C 236, €1s. 0.010 73, 7,913 6.
0.0¢677 3.710 36. 0.010 S23. 239. 0.010 3%, 9,903 ‘o
0.CS5686 2.010 36. 0.910 &25. 157, 2.010 23. %.399 L.
0.06353 3.310 34, 0.910 4%6. 38, 3.3:10 1. 9.39% 9.
0.07352 7.310  37. 0.010 3é3. 2. 3.4909 s, 2.399 9.
0.0%¢61 2.910 «S. 9.010 <226. 2%, 2.029 LN D £ €
J.09691 3.213 57, 2.010 1e?. te. 0.019 4. S.713 10,
0.110¢8 %.%13 76, C.010 93. 3. %.010 8 3010 10
0.12529 3.313 96, C.,010 S5, P ] t1. 3.019 6.
Oe16162 2.210 8. 0.019 36, ce 3,010 9. 10.
g.1523¢ %.913 37, 9,010 22. 5. 3.3:10 2%, 18,
3.17768¢ 3.310 75, C.010 14, 7. 3.910 19, 16,
C.13727 3.313  sS, 9,010 9 LR P - (R 1 LE N
0.21919 3.216 <3, C,099 5o 1%, .20 38 19.
0.26139 3.2717 6. e.009 S, ‘1. T.rin 23, 18,
C.2¢883 €.210 20. 0.030 . i PO - T 3,
0.29094 $.310 15, 0.0C% 8. 47, Z.010 . 18,
0.¥1716 3.310 33, 0.00% 11, 22, $.010 1. 16,
0.75220 2.910 s QSIS - ¥y 21, I.210 16, 13.
G.42223 [ 2 le. C.C! 2%, fee S 318 . 2C. i
C.67r2¢ 3. 216 9. 0.0 <5, v GeSUE [ B8 11, ,
G.5335a guvdse  23. OeIE 29 Lo Svsit . B 12.
S.55933 Ge¥8 19 0.0 19 Yoo Tis B T :
L.te200 8985 128, C.010 254 Gnl1l @S¢ B.008 5 ¢3,
0.e970: swele dbs GBI Y, CL.TYS  wEa SeEIY 2 1%,
0.74067 4255  55¢ 0036 Bl Sl 2% 0T 15, 11,
C.7%7%: ' Seo3% 68 04315 @7 $.013 1a. g.tis 13, 11.
C.0223s 4336 33, 0.31C 2e. S.B1D 21, 04038 S3s 1é.
C.ece32 55010 8%, 0,510 &3, 4518 1Y, .00 te. 13,
Q.02¢7y Se31C  o8. 0.019 18, G35 1% 5.0%0 Gl 20.
G.91382 .31 31, 6.010 2. S.°10 8. C.T1) T, 15,
l.97129 4.319 33, 0.010 5. 9,91C 2%, L.510 1% 19,
L,90896 3,319 83« 0,030 €3¢ 9431Y 6. 0.SIT te 3¢,
C.98148 Sed85 69 G810 37 RIS 19, S4S10 fas 15,
C.e7121 SeSI0 83, o310 Fe. EHE35 PY STIC . 25, 18,
0.€757% 84212 1. 00050 @7, S.043 ¥y OIS g, i1,
o953 Cv33 157, 04318  Fe. Q91T  Ste GuSit Rl 18,
C.52%9¢ S+318 UBPe CCIC  $3s S.010 FTE. ML e 13,
- 67 - :
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Monte Carlo Integral Evaluation

10005)3(2.73.3415926)0(psan(sare((l./(a®x))=1,))vxogart(lensex))
()83, -0,80(((((0.08952%0°0.200364)0020,11519()ex0,19685(0)axe1,)00(~¢())

Appendix B
1 res! o
H gimension 202).0(2)e0t(2%:04)
3
-
] c1631./6.
6 c1321./3.
? cS€zS./¢.
s c5%:5,/3.
L 211,03
13 12t1.0%
11 23:0.0:
1z n: g
13 srll.10:1C,
1e arl1.2):0,
15 at(1.3):109.
io atll.42:200,
17 8t(1+5):1300.
19 90 530 at0z~3,7.=Ce47%:C.075
19 nzne}
&0 itlas0.l1t.2.) go to 600
él at(2.n)z¢(as3)
&2 9o to o1
&3 600 essdmz-psc
e et(2en)zl, ~flascn)
és 60! continue
H S09 continue
e? g0 SI1C as2:-3,%35.,2.325.C.1¢
cs nznel
év iflago.lt.2.) 3o 2o 613
35 at(2.n)z2%(3s0)
1 9o to 611
3¢ 610 asdmz~-zs0
23 © eat(2endzi ~f(asen)
3. 01l continue
15 510 continue
38 @0 730 n2rzzl,.S
1?7 grzzatii.ror2)

do 830 nzlorazt.bé
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T i
39 alanaszas(2.naiche)
40 arzS3z=g.2% (drzees:53) f
[} argzsqtarzear: o
62 sl gmazd, 20%/are
43 sarztaip™eccr:
(13 aarzs3tgdrzerdn?
(%] ac(Senarr-2.nalcnalsl e=29 .
[ itlalona.gt.%5.70rz) 30 t3 9CI #
«? exgonscrz®lenizhasecsy
.8 ifleupenele.=5%.) ;o t3 900
(%) at(Senirz-2.naloralzzaltetons)etdi(alongleexalexpen) ]
53 903 continue <1
s1 at(Senzrz=t.nalcnp)zi,.e=20
€2 it(alonas3ze.2/0r2) at(Sencorz=1snatons)s0.s3Sezailaloned/arzse
s3 sigssz2.s(adrzsaesizreesignacd.29/a3rzsa)/(adrasas)e./adrzsa)
L) it(drz 1te2.) sl3easl,S
S5 asaszalarasalons
se nzgart(l.-as3)
s? sigmazsgre(0.%esi3sa)
£4 as3zalcnisscty 1
$9 88Qtts il.%0813
6
(13 stl,e=13 "'
62 ssazd.
¢3 c20.
(1] 110 call ranzo=_3Snares! _se3(3,2)
65 ol3sigmace(:)
1) p2tsigmacell)
6? 0280202992
(1] osasoleplez23a
69 100 call rando»_Syunitorm_seo(z.2)
73 cicel
21 s120.S-0lona(alona=1.)02(1) | #
22 123he(2(2)-0.9) g
23 52sa3xlen? g
7 ssazaloszleonlsg
7S if(usas3t.0,2%) o to 310
2¢ s1oe%zleslons
?? iflelgaen100°2283.3¢%.0.25) go to 10
78 1leols el 3
79 s2=32xi-e2 ?
[ B] sm32sa312%32%c2@02
o if(xlmolioximolocmp233.3t+0.25) go teo 210
(] t@mpoassi~olenlions
es if(xmD38%1m920°3mc287,.3%.0.23) qo to 31Q
es iftlosg. )t att) 3o to 230
(1] if(osa.lt.as30) 39 to 210
eo pvazdi-alene
e’ ooazoi-alone
23 e2(008°370°0293)%0c3%+(0np’Dmac0293)%¢c5t
87 e:(psa/3i293)e(ps3ees89cp3 =), S0n)oarsS?
$d enze
91 iflen.lte=£9.) @23,
92 itlen.ite=4n.) 30 to 230
$3 ezexd(e)
9 30 t2 3122
$S 209 ctsazpierionhs
9s ctsafctgrectea’/(0sasasa)
9?7 e:(osa’/sizsalearzS3e(a53-cfee(asa/osge®clbleo(lo=clIecrsa))
9 enze
99 iflen,ite=4C.) @30,
1c3 iflen,lte=62.) g2 to 302
i 101 ezexsle)
i 1ce 30 to 300
t 1c3 213 ctsqzoisnisng
1 104 ctsgsctgrecrsa/(csasasa)
K :25 e:(osa/gigsaleadreSie(pngacecSs-cStelosa/osacecitdef(li, ~c13%crsa)d))
| [] enze
! 1c? iflen.lte=6t0.) e2C.
i 108 iflen.1t.=40.) go to 33C
1 1cH ezexa(e)
110 300 s3see
111 (IERR I T AL LY
112 310 if(zisitinte/2z1).ne,c) go to 110
113 m3s/c
11 sd2gqre(abs(((ssa/(c=1.) )ememn}/c))
115 if((sasmoqr.23),9n3,(c.lto22)) 39 to 152 %
116 at(Senzrz.relone)s(i5./75.1¢15926800siqurenell ~alghs)en ;
117 st(Senarzel nelona)s(14./3.1«1%92600gi3s3¢ e(1.2along)oge
118 at(Sengrze2,nalchalze E
1 orine «CJ drzeelonaslat(Senarzeinalonaleit=2el)ee
é0 “0C format(19ne98. e nef?,00bncb(@12.6030)e80s%2.0)
121 803 continue
a2 700 continue
(¥ 3 | reaving 39 4
lie write(33) at
1é5 reving 31
19 erite(3t) e

137 eng
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Appendix B
Table Generation
Main Program
§ divension at(27.84),¢1R)
e reving 11
3 reso(3l) ae
. Irine (3
S 102 torenelSvel/r2/70717)
s d0 230 itl.¢a
? orint 307 9t(2+ideat(Seident(10,i0ent(18Seideac(200ident(25.0)
[} 33 forvat(Mu.#213.8. 61 t05(e10.2,35))
3 200 continue
T erita (8.437°)
11 403 tormac(t™7/1/711111)
12 d0 530 isl,s¢
13 ge 730 js1.§
| 28 tl20 =120t S je1,i)/0¢t(80j,i)
13 703 c(20)sae(%sje2,i)/1,.0%
1 orimt 0% atl2.idele(jloj2ietl)
1?2 600 format(i02.%10.5.8¢.8(¢S.3.2,¢%.002x))
18 300 continue
19 end
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