
_ 1E’1E~~~~~ 
4

~~ IADC•
• 

~~~~~~~ 
hsts,L~~~~~

~ ANALYSIS OF TECHNIQUES FOR
~ IMAGING THRO UGH THE ATMOSPHERE

• The Optical Scl.ncss Company

~~~~~~~~~nced Rese~~ch P t s  Agency (DoD)

• L*,psov,o ~s ,ueuc aausL asiuisimow

The views and conclusions conta ined in this doci~~nt are those of the
authors and should not be interpreted as necessarily representing the
Gfflclal policies , either expressed or 1~~l1ed , of the Defense
~dvanced Research Proj ects Agency or the U. S~ Goverment.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
GrIff is~ Air Force Base, New York 13441

7 9 O ~~2 9 u ~?
I: ~~~~~~~~

--
~~~~ ~~~~~

•-
~~~~~~~~~

-
~~~~~*~~~~~~~~—



• ~~~~~~~ ~~~~~~~~~~

—WI ”.” 
_____________

This report has been reviewed by the R*DC Information Offics (01) 
____

is r.ls~~~ ,l. to the Nation al Technical Information Service (NTIS) . At
it viii b.~ releasable to the general public, including foreign nations.

• __________ *ADC-fl—78~285 baa been reviewed ~~ d ii approved for publica t ion. ~è

• -~ 

~~~~~~~~~~~ ~~~è2 tLt~~
/Joirs J. VASSELIJI 

____

/ Proje ct Inginsar

‘~~~
•
~
••

~~~~ ~;
••
~

-• _________

If your address has changed or if you wish to be removed from the RADC
mailing list , or if the add ressee i8 no longer employed by your organ—
isation , please notify RADC (OCSE) Gri ffiès £78 NY 13441. This will
assist us in maintaining a curr en t mailing list .

- 1
3 • • •

_

• •-:• • •

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_______________ ~~
‘- •• ______ 

_
~~~~~~ 

-•

• ••~~~ 
•

- 

~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _a -  • _______________________

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~4~
. ~•~3

_ 
~~~~~~~~~~~~~~~~~~ ~ 

a,

‘a ~~~~~~~~~~~~~~~~~~~~~~ -•

~~~~~~~~~~ ___ 

___ 

___

~~~~~~~~~~~~~~~~~~~ 
• 

• • 4 
_____________

~~~~~~~~~~~~~~~~~~~~~~ : . 1
~~~~~~ • _ - - •~~~

,•- • - ‘: • 
_______ 

•
‘a
,’ •~~,w •_av ~ •~~q

— ‘a,
~~~~~~i~~

• 
- -
- 

- - 

- i•

MISSION
~~f r O f

Rome Air Development Center
• 

- • 
I

- R~X p1 and conducts ~ r c ,  .xpio.ratozy and advanced
dav.1o~~~ t p zugr La ~~~~~~~ contr~Z, and ~~~~~ 1cetLcea
(C3)  actlviti.. . and In the C3 areas of information ecisnc..
and 1nt.f lI ~~zcs. rhe $Iscipsl t*cI*lcsl mission areas
are ~-~‘-—,,-4cati~~~, .Z.ctrc.sgn.t.ic guidmno. and control,
au vsiu1aii~~ of gzOu~~ and a.roap ac. objects, .Lntailigimace
data co.U.ctioa and handLing, Lnf ormatL~ a spatan teoMriology, ,..~
Ionospheric prop agat ion, soLid stat. acf ancsa, aicroewve
p i.gs.ica and l otronic r.liabL Uty, aslntainaliili tg and

• ccsp .tIhIlIeg . _ _ _ _ _

‘a ______

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

a- ~~ ~~ ~~~~~~~~~ ‘~~~~. 

•
~/ 

‘

~~ ~ 
—

~~~

- ‘I

-

a-— 



-~ --a _ _ _ _ _ _ _ _ _ _

a 

‘S

ANALYSIS OF TECHNIQUES FOR IMAGING
THROUGH THE ATM~)SPHER.E

Dr. David L. Fried

Contractor: the Optical Sciences Company
Contract Number: 730602—77—C—0021
Effective Date of Contract: 1 October 1976

f Contract Expiration Date: 1 April 1979
Short Title of Work: Analysis of Techniques for Imaging

Through the Atmosphere
Program Code Num ber: 7E20
Period of Work Covered : Apr 78 — Oct 78

Principal Investigator: Dr. David L. Fried
Phone: 714 524—3622

Project Engineer: John Vasselli
Phone: 315 330—3148

Approved for public release; distribution unlimited .

This research was supported by the Defense Advanced
Research Projects Agency of the Department of
Defense and was monitored by John J. Vasselli (OCSE)
Griffiss APE NY 13441 under Contract F30602—77—C—0021.

‘I

‘a

• -_ —- . • - - --- - • ~~~~~- - 
~~~~~~~~~~~~~ L ~~~~~~~~~~~~~~~~~~~~~~~~~ —a- - -  -



-~~~~~~~~ -~~~~~~~~~~~~~~~~~ - -~~~~~ ~~~~~--- - -- -~~~~ ~~~ - - - ~~~~ -~~~~~~~~~~ .

UNCLASSIPIE!)
SICuRITv ~~~~~S$IFICATI ON OF THIS PAGE (WIlin D 1 • Eni.ród) 

_________________________________ 
a

BEFORE COMPLETING FORM
___________________ S. RECIPIENT’S CATALOG NUMBER
~ 

n.r

~~~~~~~~ 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

4 

(1:1—

I 

~
R

_~~:
7
~~~~~~

” 
GovT ACCE$IION NO. 

T

JNALYSIS OF ~ EcRNIQUES FOR IMAGING THROU] Apr~~~ - Oct 78,1~HE ATMOSPHERE . f ~~~~~~~~~~~~~~~~~~~ — ______________________
t” “a““‘ JNIJMSER

_________________________________________ ~ kl24f •1
I CONTRiCT OR

~~~~~~vid L. ried 

_ _ _ _ __

7 AUTHOØ

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
1JARPA~~~rder~~ _ _ _S. PERFORMING ORGANIZA T ION NAM E AND ADDRESS II UU,.,,.. .,., ..,~~. T1 ’lSJfB T S. a

V AREA & WORK UNI

The Optical Sciences Company 
______

P.O. Box 446
Placentia CA 92670 f!!~ ’~’ 7~~~~1

II. CONTROLLIN G OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency / 1 _______________________
PV~~,U$5ER oc PAGES1400 Wilson Blvd 74

Arlington VA 22209 ____________________________
II. MONITORING AGENCY NAM E & ADORESS(it dSli.r.n i from CantroHing Of tic.) IS. SECURITY CLASS. (of this rsporf)- f Rome Air Development Center (OC UNCLASSIFIED
Griffiss AFB NY 13441. ______________________________

IS.. DECLASSIFICATION DOWNGRADING

IS. DISTRIBUTION STATEMENT (of hi. RsporI)

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMEN T (of A. ab.i,aci .,,t.r.d in Glock 20, ii dill .,.,,? from R.port)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Mr. John Vasselli (OCSE)

IS. KEY WORDS (Contlnu. en r•r•tss aid. ii n.c.a.ary end Id.n ’iiy by block nomb.r)

Speckle interferometry Labeyrie technique
speckle imagery Knox—Thompson alhorit’un
atmospheric turbulence
isoplanatism

- -S

(Cenilnu. .,, ,.v.ra. aid. it n.c..aa’y end id.nUiy by block nsa,b.r)

A detailed analysis of turbulence effects in speckle interferometry, i.e.,
the Labeyrie technique, and in speckle imagery, the Knox—Thompson algorithm, is
presented. Particular concern is devoted to the problem of isoplanatism, as
originally we had thought that the Knox—Thompson algorithm might have a very
large isoplanatic field—of—view. Our analytic results show that the isoplanatii
patch size is approximately the same for Knox—Thompson and Labeyrie methods, am
nearly the same as for adaptive optics. It is noted that, unlike the adaptive

I~ WI FORM
VU I JAN 13 1473 EDITION OF I NOV SI IS OBSOLETE UNCLASSIFIED

SECURI TY CLASS IFICATION OF THIS PAG L (N~,.n D.,a Enftr.d)

t 3~1 3~c~’

~~~~~ ~~~~~~~~~



~~~~~~:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(II)i en 0.1. Zn1.r.d) (

optics syçems for which the ability to record high spatial frequency details -

is lost d~i~~to anisoplanatism, for the speckle methods anisoplanatism 
doss not

suppress the high spatial frequency details of the image — it merely j~~blss
them so that no real information is developed. From these results, it appears
that a direct application of speckle techniques will, not provide a significant
relief from the anisoplanatisin problems of adaptive optics.

As part of the analysis of the Knox—Thompson method, we develop the con—
ditiona for the allowable spatial frequency separation (something done previ-
ously only by simulation). We fin that the allowable spatial frequency separ
ation should be less than 0.427 / , and preferably should be less than

r s ~~ 1 c I

1 1

- 

- a

.

.

. ‘ I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

i~i
SECURITY CLASSI FICATION OP THIS PAGE ~~~ .n D~~. IA# VI~~ 

-
~~ -

—---a—- - -  — 
~ - ~~~—-—-~- —- 

~~~~~~~~~~~~~~~~~~ 
-

~~~~~ 

-— - -— —
~~~a_ . ._, a .~~ . —.&..- ~~~~~~~~ .S — ~~~~~~ 

—. —. -- - —a ,—-. — —



- a  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---—- - -~~~~~~~~~~~~~~~~~~~~~~~~ -

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~ - a ~~~~~~~ ~~~~~~~~~~~~~~~~~~ a~~~~~~~~I ’

t
T A B L E  OF C O N T E N T S

Section Title

1 Introduction 1

2 Labeyrie Technique: Sing le Point
Source 4

3 Labeyrie Technique: Two Point
Sources 17

4 Labeyrie Technique : Anisoplanatism 26

5 Knox-Thompson Algorithm: Isoplana-
tism Assumed 35

6 Knox-Thompson Algorithm: Aniso-
planatiam 44

References 55

Appendix A, Monte Carlo Integral
Evaluation 57

Appendix B, Computer Program
Listings 68

\ ~~~~~~~~~ 

I 
__  

I

- -~~- -,~~~~: - — ~~~~ — ----- -

L _ _ _ _ _ _ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- — — 
~~~~~

—
-.__ - - —

/
LIST OF F I GU R E S

Figure No. Title

1 Speckle Transfer Function for
D/r0 = 10. 49

2 Speckle Tran sfer Function for 3 -

D/r0 = 3 0 . 50
3 Speckle Transfe r Function for

D/r0 = 100 . 51 a

4 Speckle Transfer Function for
D/r0 300 . 52

5 Speckle Transfe r Function for
Dir0 iooo . 53 J a

6 Vertical Distribution of the Refractive-
Index Structure Constant. 54

LIST OF T A B L E S

Table No. Title

A. 1 Speckle Transfer Function, Monte
Carlo Results 66

A ., 2 Monte Carlo Error Parameters 67

~~~~~~~--  ~~~- 

i_ -a__ __ _



- a . - - -~ -a - 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

1. IntroductIon

Isoplanatisrn , as it Is conventionally used , refers to the uniformity

of th. quality of imagery over some portion of a focal plane. Introduced

into the litera ture in this form, it serves to “ validate” the concept of the

modulation transfer function. It. meaning is physically straightforward

~ I 
and intuitively quite clear. But the concept of isoplanatisrn as applied to

special Ima ging-through-turbulence concepts is a much more complex

matter. Here , rather than defining the focal plane uniformity of im age

quality, It I. directly tied to the achievability of image quality.

Our reference to special imaging -th rough-turbulence concepts is

meant to include adaptive optics and the two speckle imagery techniques,

the first demonstrated by Labeyrie1 and the second conceived and analyzed

by Knox and Thompson.’ (Analysis of the amplitude interferomete r concept

of Curri& can probabl y be obta ined as a special case of the speckle inter-

ferometer , but we shall not explicitly concern ourselve s with this here .)

Adaptive optics and speckle imagery have the hi ghly signifi cant feature

that they sense the received wavefr ont in time periods shorter than that

in which the atmospheric turbulence-induced wavefront distortion can change.

Isoplanatism for these special imag ing techniques refers to the dependence

on field-angle of the wavefront distortion (rather tha n to the dependence on

field-angle of the image quality). With these special imaging techniques ,

if the wavefront distortion is nearly the same for a large enough range of

field-angles , the ~ideal resolution can be achieved , no matter how severe
a 

- the actual wavefront distortion 
~~~ 

se is.

We have elsewhere’.8 presented an analysis of the isoplanatic con-

siderations in adaptive optics, and therefore will not treat  that problem

here . In this work , we shall restrict our attention to isoplanatic effects

li. speckle interferometry (the Labeyrie technique) and in speckle imagery

(the Knox- Thompson concept) . In the next two sections , we shall examine
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the Labeyrie technique in the absence of isoplanatism effects. - This will

establish the basis for our subsequent analysis. The first  of these two
sections, i. e.,  Section 2 , will treat a single point source (a situation In

which there is manifestly no anisoplai’iatism effect), and will closely

parallel the analysis of Korrf.~ The second of these two sections, i. e.,

Section 3 , treats the same problem , but for a pair of point sources. This 
a

gets us into a situation where we could examine isoplanatism effects , but

at this point we develop re sults assuming that the point sources are close

enough to each other that there is no anisoplanatiarn problem. The corn-

pletion of this analysis prepares all of the background that we need , and

in Section 4 we are able to analyze the dual point source problem with a

large enough separation between the points that anisoplanatism effects

have to be considered. This provide s us with the basic isoplanatism re-

sults for the Labeyrie technique. In the two sections following this, we

switch our attention to the Knox-Thompson concept. In Section 5, we

treat a pair of point sources close enough togethe r that there is no aniso-

planatism effect. The re sults presented here parallel the basic work of

Knox.’ In Section 6 , we extend this analysis to allow consideration of the

case in which the two point sources are far enough apart that anisoplana-

tism eff ects have to be taken into account . In this section, we develop our

fundamental results for isoplanatism for the Knox-Thompson concept.

Section 7, the final section , reviews all of the results and indicate s their

significance.

Our approach throughout this paper will be to use a notation that Is

sufficiently general that it allows treatment of all of the problems. Thia

will permit us to use one self-consistent notation thr oughout the paper. It

will, of course , force us to utilize an overly complex notation in some

places , but while this may appear locally inelegant, it will make the totality

of the paper easier to read..

- 2 -
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Our analysis will be directe d to the problem of optical propagation

down through the atmosphere , and small to moderate zenith angles. For

this case, we may assume that the intensity fluctuation effects , as meas-

ured by the log-amplitude variance ,5 are small compared to the phase

fluctuation ~tatistlcs — small enough to be of negligible significance.

Accordingly, we shall base our analysis on a formulation in which there

Is only a turbulence-induced pha se variation at the entrance aperture of

a. the telescope , and no corresponding intensity fluctua tion effect.. In the

same vein of reasoning , we shall associate re sults obtained in term s of

a the phase structure function as though they applied to the wave-structure

function.’ It can be shown that the discrepancy introduced by this approach

is of the orde r of an exponential of the log-amplitude va r iance ,~° so that it

should consequently be quite small for the problem scenario of interest to

us here , i. e., astronomical viewing geometry.

___________ a,. . -  —_ 
--
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2. Labeyrie Technique: Single Point Source

We consider a single point source at an angular position in our
field-of-view of 1, . We assume that the source intensity, at wavelength

x , is such that the amplitude at our telescope aperture is A3 . If we
denote position on the telescope aperture by the two-dimensional vector ~
and let 0 (f , ;i) denote the instantaneous random phase shift at ~! Intro-
duced by atmospheric turbulence , then we can write for the wave function
at the telescope aperture due to this point source a

-

U
3~~

) A
3 exp [ ikl 3 ~~~~~ i0(f 3 ;~ )] , (1)

where

k 2r r /X , (2)

is the optical wave num I~er.

We assume that the telescope has a circular clear ape rture with a
diameter , D • It is convenient to introduce here the function

1’ if
W(~) = (3)

‘~ P~1>* D

to provide a mathematical definition of the aperture. Defining position
in the telescope plane in terms of the corresponding field-angle , T , the
wave function due to our point source as it appears on the focal plane can
be written as

u~ (f) = d~ W( ~ ) exp ( - ikT .~~) U 3 (~
) , (4)

where ~j is a constant of proportionality whose exact value is of no

- 4 -
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a- particular concern to us as it will drop out of our final result..

The focal plane intensity can be written as

‘(1) = 1 u, (T)~* . (5)

The quantities of immediate interest to us are the fourier (angular) spatial

frequency transform of the focal plane intensity,

= 
$ 

dl exp (_2i,a iT.1) 1(f) , (6)

where ~
‘ ii the spatial frequency (in units of cycles per radian-field-of-

view), and a quantity, ~(f’,D’) , which we call the bispectrum, and which

i. defined by the equation

(S”(?’) S(fl) • (7)

Here and throughout this work we use the angle brackets to denote an

ensemble average ove r all possible realizations of the tur bulence-induced

wavefront distortion effects. It should be noted that in the case where the

two spatial frequencie s, I and I’ , are equal, the bispectrum reduces

to the ordinary power spectrum. Our notation, i. e.,  1(t , T ’) , allowing

for two distinct spatial frequenc ies i.s more general than we shall need for

analysis of the Labeyrie technique , where I and I ’ will always be equal.
However , use of this generalized notation will allow a smooth transition

of the analytic work into Sections 5 and 6, where we will analyze the Knox-

Thompson concept.

It should be noted that we have dropped the subscript , j , from

the definition of I(1~) , the focal plane power density. This will allow

the same notation for focal plane intensity, 1 , and thus for its transform,

S , and the bispectrum , p , to be used whether we are considering a

single point source , (j) , or a pair of point source s , (j and f)

I 
__________ 

- 5 -  

_ _ _ _ _ _ _ _ _ _ _  

L1 U~~~~~~~La ~~~~II~~~ r~~~~I *EUr~~ - 
a- -~~~~ -

a .--- a - -  - - - ~~~~~~~~~

— ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ - a -  - .  a - . .  ~~~~~ . 
_ — _ - .~~~.~~~

i_ : i :.:.~~- —-~~~~~~~.— — ~~~~~~~~~~~~



_ _  7

If we substitute Eq. (1) into Eq. (4), we get

u,(T) A,$d W(i~)exp [iØ (f3 ;~)-ik(f
..f

3).i?] . (8)

Substituting thie Into Eq. (5), and rewriting the product of Integrals as a

double integral, we get

X exp t i C 0 ( t , ;~) -0 ( T , ;a-
~~fl

— i k [ ( f — f 3
) .  (~—?i] 1 . (9)

In accordance with Eq. (6), we can write for the spatial frequency fourier
transform

a 
S (fl=I I~ IaA r $!f~~~~~cri~~di~

# w ( ) w(~~
#)

X exp (-2~r i T ’~~) e~p C i C 0 ( ~ , ;1) -O(T 3 ;~ ’)]

- ik [Ul-f,) . (~-~ ‘)] ) . (10)

Replacing the variable of integration 4 by ~ = 1-43 , we get In place of a-

Eq. (10) )
S(?) = .~.~~~~ aA ,

a exp (-2 i i iT .f 3 ) f l $~~1d~~d~ ”

X W(~) W(?’) exp C i E o ( f 3 ;i?) (1~~1]

- ~k3 . ~ + ~t - ~~~ (11)

I
- 6  
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It is a well-known prope rty of the fourier transformation that the

repeated fourier integral recovers the starting function. Thus for h(y)

being any rea sonably well behaved function

fJ’ dx dy’ exp C ±2it I x(y-y’)) h(y~) h(y) . (12)

Making use of this result, we can perform the ~- and ~ ‘-integrations in

Eq. (11). Thus we obtain the result that

S(T) = 
~ IV I a43 exp (.. 2lTit . f~

) ç d~ W ( )  w ( + ~f)

x exp ~i (~ 
(4 

~ 
;i) - ~ (1~ ;~+xT)] 3 , (13)

where we have suppressed a factor of ~~~ in this result by lumping it in

with the constant

We calculate the bispectrum , or rather since we are interested in

the case where I = I’ , the power spectrum 1(tJ)  , which we will

write as

j (T) 1(T;T) , (14)

by substituting Eq. (13) into Eq. (7). This gives us the re sult that

d(fl = 

~~~~~~ is ~~~~ W(~ ) W (~+xT)

x W(i~’) W(V’+xt) (exp (i[0 (~
’
3 ;i) -~~~(~

‘
, ;~~‘)

(15)

where , in order to obtain this result, we have made a double integral of

the product of integrals, a

a-.- ?-

_____________ — ~~~ 
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To reducs this expression, we start by noting that the quantity in
the square bra ckets in tb. exponential Is a gaussian random variable with
zero mean, and that for such a random variable, say x ~ with ~ being
any consta nt ,

(e~~ (ax)) = exp (
~ 

o~ (x’)) . a (16)

Making use of this result and- the fact that

(a-b+c-d)’ = (a-b~~- a-c) + ( a -d~~ + (b-c)a - (b..d)s+(c..d)a , (17)

we can rewrite Eq. (15) as

;(t) = V~’(A3’)5 II c1~ d~’ W ( )  W(~+~T)

X W(~’) W(~~+X?) e xp ( [,~~~.. ’)

- .-ft(~-1’ - xl) + .o(xfl + f t (X T) -

-: + ,D(~ _?’))) , (18)
- 

I

where .fr( ~ ) is the wave-structure function , defined by the equation

D(
~
’) = ((O(j , ;~+~’) 

....~~(1 ;i)]a) • (19)

Consideration of the statistical symmetry of the wave-structure function
makes it clear that .fr (~ ) = .fr(-~ ) , a fact which we have used in developing
Eq. (18) in the form presented.

It is obvious that when we consider the zero frequency case , i. e. ,
when I z 0 , the exponential in Eq. (18) goe s to exp (0) 1 , 80 that we
can write

.7(0) = 
~~~ 

,ij 4~A,1)5 
•f5 

d~ d? CW (~)] tW (~1)5 . (20)

- 8 -  
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Consideration of Eq. (3) makes it apparent that W.- squared is equal to

W . Moreover, we note tha t the double integral of Eq. (20) can be re-

written as the product of two ident ical integrals, each equal to

Thus we can rewrite Eq. (20) as

(
~ 

1v 1 A 35 ~~~ . (21)

a Thi. will provide a basis for normalization of the results we shall develop

shortl y. a-

To proceed with the reduction of Eq. (18), we make u se of the fact

tha t the wave-structure function can be written as~~.15

= 6.88 (p / r0)5’3 (22)

where r0 is a length Which serve s as a measure of the transverse co-

herence of the turbulence distorte d wavefront. Thu s we can rewrite the —

exponent in Eq. ( 18)as

E = -* (.&(~-~~‘) 
- .~~-i~’-xl) + a-~(x?) +

- j (-
~~~~ ’+ )T) + .8{~-ii]

= - ~~~i~-i’) + b(x?) - I .~~(~~~
-

~~~
‘- xT) - ~ ~~~~~~~~~~ 

x T)~
= - 6 . 88 r~

-6
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-I I~-1~~ ”l~~
) . (23)

Based on the appr oximation that

cos 0 + ss~ / 8_ 4 ( 1  - 2€  cos 9 + ~~~~~/6

~F3 (~ —~~ .
1/s (1-I cos e)~ , (24)

.- —— -a— -a 

- 9 - 
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which is accurate for small enough values of $ , and noting that, by virtue

of the law of cosines, we can write

= (~~-1’~~ ±2,1-li Ix~ 
cos 9+ At~’)L’~ , (25)

where 9 Is the angle between the vectors ( -l’) and (x1)  , we can in-

troduce the approxima tions that

E ~ -6.88 (xIIi /r~~~3[l~~ 
(

~~~~~~~!.J, 1ff~ 
- ~~~ 9)] 

a-

.<< ~l-
a-;i (26)

and

E~~~- 6. 88 (I1_
~ ’I/ r o)

~~11_ ~ ( l ) ~~(l 1co a ,)]

if F~-”1 << . (27)

In developing Eq. (26) from Eq. (23), term s of higher order in l xi’) /~1_l’1
have been dropped from inside the square brackets. t The first term dropped

is proportional to (x~~t) / ~~l-~~~~~) PI3.) Similarl y, In developing Eq. (27) f rom

Eq. (23), terms of higher order in )l-1”) / ~ T) have been dropped from in-

side the square brackets on the right hand side of Eq. (27). tHere the first

term dropped is proportional to ()1-1’) h~1~ )7
/3 .)  For our purposes , it

will be sufficient to replace Eq. ‘s (26) and (27) with the further approxima-

tion that a

E~~~- 6.88 (x~l~Ir 0~ ’3 , if x )f l  << ~l-1’~ , (28)

-j E ~ -6.88 ((1_ 1’~ /r~~
f3 if )

~~
-
~~
‘ << x;T~ . (29)

If we study the exponential in Eq. (18) subject to the assumption

that x it~ is very large compared to r0 , we see that the only condition -:
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under which the exponential function will not be vanishingly small Is when

~i-? ~ is not much large r than (or smaller than) r0 . In this case , in

accordance with Eq. (29), we can write

, 7~t) ~~ I~z~’ (A 3
5) j’

~J’ dld~~ W(~ ) W ( ~+xT) W(~~ ) W ( ~~+xT)

x exp [-6.88 (fi-P)/r0~~~ ] . (30)

It will be note d that the double integral in Eq. (30) appears to allow the

ca se where ~l-1’~ Is not particularly small. Strictly speaking, we slxrnld

include some condition in the integrand restricting the range of integration

so that we only considered pair s of values of (~ ,1’) for which i1-~~’~ was

comparable to or smaller than r0 . In fact , however , such a restriction

is automatically provided by the exponentia l function in Eq. (30).

Based on the assumption that the aperture diamete r D is much

larger than r0 , and noting that the form of the exponential makes the

Integrand vanish when i is not nearly equal to ~~‘ (I. e.,  when

is not comparable to or smaller than r0 ), we can make the approximations

that

W(f) ~ W(f’) , in Eq. (30) , (31)

W (f+~t) ~ W(1’+xT) , in Eq. (30) . (32)

In accordance with Eq. (3), we ca n wri te

W ( )  W(P ) ~ W(~) , in Eq. (30) . (33)

W(~+xt) W( ’+xT) ~ W(~ +xT) , in Eq. (30) . (34)

If we make a change of va r iable of integration in Eq. (30) from (1,1’)
a 

to (~ ,1) , where
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(35)

then with the use of Eq. ‘s (33) and (34), we can rewrite Eq. (30) as

.7(t) = 
~ ~~~~~ 

(A,$)I { j  
dl W(~) W(~+xfl} 

—

x { 
5 

d~t exp [-6.88 (~~j /r~~
/s

~ J. . (36)

The integral in the second curly brackets can be evaluated by rewriting it
in polar coordinates, performing the azimuthal integration , and making a
change of var iable for the radia l integration so as to cast the integral in the -

a

form of a gamma -function, r(6 / 5) to be exact. Thus it can be shown that

J 
dl exp [-6.88 (i~I/r oW3

2 1 r J x d x exp [-6.88 (x/r0~/s]

= [rr / (6. 88fr0~~/s) 
5 

du exp (-us/B)

= ~ [rr/(6.88/r0s/s~/s] dv exp (-v)

=- g [~ /(6 .88/r0E/~~#’6)  r (6/5)

= 0. 342 r05 . (37)

The integral in the first curly brackets in Eq. (36) can be recognized as
corresponding to the area of overlap of two circles of diameter D , with
center-to-center separation of ?~T . This corresponds to the aper ture
area , ~. ~ • times the diffraction-limited optical transfe r function ,

_  
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T~~~ ( f )  1 [cor 1 (x~fl /D) - (x )?) / D ) [ 1_ ( x ) ?~ /D)2 )1/a)  , (38)

for optics of diameter D operating at wavelength x . Thus Eq. (36) can

be rewritten as

.7(1) = 
~~ ~~ ‘(A3 5)’ [i ii JY .~~ (T)) [0. 342 r~2 3  (39)

With a bit of manipulation of terms , and making use of Eq. (21), this result

can be rewritten in normalized form , representing the speckle transfer
function as

?

(
~~~~~ 

= 0. 435 (r0 / D)$ r~~(() , for x~T( >> r0 . (40)

(It can be shown that 0.435 is actually an approximation for 2-8/5 ~ 0.435.)

If we now study Eq. (18) subject to the assumption tha t is

small compared to r0 , then we can see that in thi s case the exponential

function will only deviate from unity when ~l-1’I is large enough tha t the
a small difference between 1-1’ and i-~ ’~~ T makes the cancellation of

the ~ (~ -1’) and .8(1-1’ ± xfl-terms significantly inexact. In this case , we

may use Eq. (28 ) to allow us to rewrite Eq. (18) as

j ( ?’) = 
~ ~~~~4 (A3a) 3 $5 dl dl’ W ( )  W(~+~T) W(ir~ ) W ( 1 ÷~1)

x exp [-6.88 (~~T~ /r0~J3] . (41)

In this case , the double integral can be decomposed into the produce of

two identical integrals , and we can wr ite

.7(t) = 
{ *  lvi’ (A~

$)S exp [-3. 44 (X ) i~ /r0~ /3J

x a-f dl W(l) W (l+ xfl }. (42)

~ 
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where , since the exponentia l is not a function of the variable of integration,
we have taken it out of the Integral (and then taken its square root, along
with that of ~ ~tz~ 4(A ,1)$ , thus replacing 6.88 by 3. 44 ). The integral
can be recognized as the area of overlap of two circles of diameter D with
center-to-center separation of ~T . As noted before , this integral can be
written as

~f 
d~ w(l) w(1+~T) = i~ L~ .~~(1’) (43)

where a-
~DL 

, as defined by Eq. (38), is the optical t~a-ansfe r function for a
circula r apertur e optical system operating at wavelength x . Making use
of Eq. ‘s (2 1) and (43), we can rewrite Eq. (42), in terms of the speckle
transfe r funct ion as

= [T (flla exp [-6.88 (x~i ’{/r0~ /33, for X~f l << r 0 . (44) —

Eq. ‘a (40) and (44), w ith Eq. (38) supporting , represent our ba sic
results for the anal ysis of the performance of the Labeyrie technique opera-
ting against a single point source—thoug h the fac t that these results are

applicable to the Labeyrie technique is not immediately apparent from what
we have said thu s far .  We shall discuss this applica bility shortly, but
before we do this , it is worthwhile to consider the accuracy of the approxi-
rnations we have made in developing Eq. ‘s (40) and (44) from Eq. (18)
[and Eq. (21)]. This will be of value in our late r analysi s where we shall
want to make the same kind of approximations.

To demon strate the accuracy of Eq. ‘a (40 ) and (44), we have carried
out numerical evaluation of the dou ble integral in Eq. (18), and obta ined
exact results for the speckle transfe r function , J~ ’)/~~(0) . The integral
evaluations were carried out using Monte Carlo techniques. * In Fig. ‘S 1 to 5,

* To Insure reasonably rapid corivergences of our Monte Carlo results , we
used uniform sampling ove r the i and 1’ circles when ~a- Ii ’) is less than
r0—but when xt is greate r than r0 , we made the variables of integration

(Continued on next page)
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we show these re sults for D/r0 10 30 , 100 , 300 • and 1000

Also shown are the approximate results calculated from Eq. ‘s (40) and

(44). As can be seen, these approximate results are quite accurate in

their re spective limits—and accordingly, we argue that the approximation

technique we used to develop the se equations is basically sound. In parti-

cular , we argue that our method of inspection of the exponential in Eq. (18)

to decide what relationship between 1-i ’ and xi’ dominated the result ,

and thus to justify use of either Eq. (28) or Eq. (29), lead s to correct re-

suIts in the limits of ~i’ much larger or much smaller than r0 , and we

shall use it in the following analysis.

At this point , we are ready to take up the question of the relation-

ship between the quantity we have been evaluating , i.e. , .7(1)1.7(0) , and

the performance of the Labeyrie technique for speckle inte rferometry. In

the Labeyz ie technique , the image of an objec t , I(?) , is formed. This is ,

of course , a randomly dis torted short exposure image. The fourier trans-

f orm of this ima ge, S(fl is calculated, and is also a random function , as is

1(1) . A series of these are generated and represent a randomly sampled set

from the ensemble of all possible atmospheric turbulence-induced distor-

tions of the image. Using this set of image samples and the fourier trans-

forms , the Labeyrie technique then forms the (ensemble) average of the

square of the transform, j( t, f )  = ,7 ( f )  . This quantity is taken to repre-

sent a measure of the source object’s power spectrum. To the extent that

hi gh spatia l frequencie s are present in .7(1) , the correlation function which
we can obtain from this power spectrum will contain information on the fine

a- de tails of the object. In this sense , Eq. (40) is critically important since it

means that image details will be present at the diffraction limit. The s t reng th

(Continued Lrom previous page) 1 and 1-7’ . In this case, we used uniform
sampling oi’ I ove r it s circle , but sampled 1-I’ according to the two-

dimensional gaussian distribution with probability density [21T(0. 207 r02)]—’
x exp [-~ [

I1-I’I/(O. 207 r0)]2) over the infinite (l-i’)-plane. [We note

tha t ~ (0. 207)~ /3 ~ 6. 88 .]
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of these details is a ttenuated by a factor of (rO / D) [T DL
( f ) ] h/2 compared

to what would be obtained with diffraction-limited images , i. e., in the

absence of turbulence effects. But this attenuation factor is not so large
as to be intolerable.

Our analysis to this point , paralleling tha t of Korf~~, demonstrate s

that with the Labey r ie technique , the high spa tial f re quencie s of the image

are not attenuated by more than a factor of (ro / D)[1DL (f )]4/$ , and is of
great general interest as it shows that the hi gh spatial frequency details

are recove rable. Howeve r , since our ana lysis deals with only a single

point source, it is unable to accommodate any isoplanatisrn effects. To
incorporate isoplanatism effects in our ana lysis , we need to consider a

source with some spatial extent. The simplest such source is a pair of
point sources. -In the next section , we shall present an analysis parallel-
ing the one in this section , but for a pair of point sources—with the assump-

tion tha t there is no anisoplanatisni effect. This will then serve as a ref-
erence for the analysis in Section 4 of the Labeyrie technique with a pair
of point sources and anisoplanatisrn effects.



F

3. Labeyrie Technique: Two Point Sources

We shall consider here a pair of point sources w ith angular positions

and in our field-of-view, and amplitudes A 3 and A3, at the tele-

scope aperture. We associate atmospheric turbulence-induced wavefront

distortions , 0 (i’s ;I) and Ø(~~,;1) with the wavefront sensed at I due to

each point source. Our assumption that in thi s case there is no anisoplana-

tism problem can be translated into the requirement tha t ø(~, ;7) and

are virtually equal , but in anticipation of the problem to be treated in Section 4 ,

where there is an anisoplanatism problem , we shall retain the distinct nota-

tion for •(~, ;~;) and ø(f 3, ;7) .

We may w rite for the wave-function at the optic s aperture due to these

two point sources , in correspondence with Eq. (1),

U
3 (1) ® U3,(1) A

3 
exp [1kV 3 

.1+ i0(~3 ;I) ]

~~ A3, exp [ik ~~, ~ + iØ (~3,;i) ] . (45)

The special notation, ~ , is used here to indicate a summation, but of an

unusual type. Its proper understanding requires that we recall that the

wa ve-function is actually subject to a temporal oscillation at a frequency kc

(of the order of 4x10’6 rad/sec), and that U3 (7) is jus t  a phasor assoc-
a iated with this oscillation , which we use to take note of the relationship of

the phase of the oscillation at two positions , I and 1’ , by means of

the pr oduct U 3
*(7) U (1’) . Moreover , the oscillation itself is “ somewhat

er ratic , ” repr esenti ng black body radiation ove r some non-ne gligible spec-

tral bandwidth . Despite thi s err atic nature , the phasor U 3 (j) nonetheless

repre sent s the relationship between the phase at I and I’ . However ,

the re is no correlati o~ between the erratic oscillations of the radiation from

the two point sources, denoted by j and j’ , which are statistically inde-
pendent black bod y radiation sources. Hence there is no well-defined
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phase relationship between the two wave-functions, and U. (I) and U3 a -,(l)
have no special meaning with respect to each other—their product has no

particular meaning, and will vanish on the average. Thus we use our nota-

tion + to denote the presence of two statistically independent phasors , with

the underatandingthat the average of the product of the two phasors will

vanish.

In parallel with Eq. (4), we can wri te for the wave-function at the
focal plane of the vp tical system

~) u~,(~) = dl W(l) exp (- ik~~.I) [U , (i) ~~ U ,,(l)] . (46)

In pa rallel with Eq. (5), we write for the focal plane intensity

I (~’) = ~ ~~~ (f) ~ -) U 3, (~~)~ 5 (47)

In practice , the time required to measure the intensity is so large com-

pared with the inverse of the spectral bandwidth of the black body radiation

a (even for a very short exposure ) that measurement of the intensity provides

sufficient averaging that the cross -product u3~~u 3, in Eq. (47) will vanish.

Thus we can wr ite in place of Eq. (47)

I (~’) =~~~ [~~U
3 (~ )~ 2 + !u 3, C~) !2 ] . (48)

With I (~’) for a pair of point sources written in this form, Eq. ‘s (6) and

(7) remain applicable here.

We can now write in place of Eq. (9)

~tj~
x {fA 2 exp j i [0 (g3 ;l) -0 (~, ;l’)] - i k [ (f 4~) ( l -7’)J ) a
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r

+ A 3~ exp [i [Ø( ~3,;i) -cp (~,,;i’)] -ik [( 1-V,, ) (l-I’))) ’
~J . (49) 

a

Substituting this into Eq. (6) and interchang ing order of integration as appro-

priate , we get for the random amp litude at spatial frequency T

S(t) = 
~ 4 dl dl W(7) W(7 ’) exp (-2rr il• 1’)

x ~~~~ exp [1 [ø(~ 3 ;~ ) -o (r 3 ;l) ] - 1k [(f-f 3) (7-1’)])

+A
3~ 

exp ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (50)

By sepa rating this expression into a sum of integrals and then replacing

the variable of integ ration , ~ , by ~ = in one of the integrals , and

by ~~~ = 
~~~~~~~~~~~ 

in the other integral , and then combining the sum of integrals

into a single inte gral on a sum, we can obtain in place of Eq. (50) the re-
sult tha t

S(T) = b I 9 i I~ ss.r d~ dl dl’ W(l) w(7’)

x {A,a exp (-2rr iT .d~3) exp [i [O (ë’3 ;l)-O( 13 ;7’) ] - i k ~’. (7+xT-ii}

+ A 3$ 
exp (-2~~iT.V~,) exp [i[O (~,,;i)-0(~3,;I i] - i k ~~.(7+xT-i’))3

(51)

Now , ia-f we make use of Eq. (12), we can perform the ~~~~- and l’-integrations.

Thus we can write

5(t) = 
~ a-f dl W(7) W(7+~?)

X {A3
2 exp (- 2,y j Ta- V~) exp [1 [0 (~~3 

;i) - (
~Ia- ;7+xflj )

exp ( - 2 I T i t • V 3, ) exp (i [~~~3, ;7)-ø(~ 31;i+ x1)J)~~ . (52)

_ _ _  
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We recall here that just as 0 is a turbulence-driven random function, so

is S(T) a random fourier transform amplitude.

The corresponding power spectral density associated with the spatial

frequency 1 can be obtained by substituting Eq. (52) into Eq. (7). Making

use of the notation simplification introduced by Eq. (14), making a double

integral of the product of integrals, and interchanging the order of ensemble

averaging and integration, we write

.7(1) = 

* 1v14r.r dl dl’ W(7) w(7+~T) w(7’) W(7’+~1)

x ((A 32 )2 exp

+ (A,s)(A,~ ) exp [-Zrr il. ~ b’F a -) ]

x exp [i [0 Cc, ;I) -~ (~ ;I+ x T) +~ 
(f 3, ;l ’+xT) - O ( ~3, ; l ’) ] )

+ (A
3
a)(A31)a exp [2~ ii’. ~~ 

-ii, )]

x exp ( - i [0(~~ ;7) - 0 ( ~3 ; (7+X1) + 0C~3 ;I ’+x T)~ 0( ~3 ;l ’) J )

+ (A3,2)5 exp [i ~0C~’~,;i) -0 (~3, ;l+x i’)+0 (~3,;I’+xT) -ø (~3,;i~i])). (53)

It is to be noted that at this point we have retained terms corresponding to

“interference” between the two point sources—but in this case, it is “inter-

ference” of the two random intensity patterns.

The ensemble average of the sum of fou r terms in Eq. (53) can be
replaced by the sum of four ensemble averages. Following the procedure
used to get from Eq. (15) to Eq. (18), i.e. , making use of Eq. ‘s (16) and
(17), and the definition in Eq. (19), we can show that the fi r st an d last of

the ense mble ave rages can be reduce d to the form
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I

= exp (-(.&(7-I’)+.~(~l) ~*[fr(7-I ’-Xt) + .~(7-l’+XT)])) ‘ (54) 
—

for the f i r s t , and similarl y for the fourth

( exp

= exp ( - [f t ( 7- i ’) + P (xf l -~~~,~(7-i’-x f l +  .&(7-I ’+ xT)] ) ~ . (55)
/

Here the results are es sentially identical , since , in accordance with Eq. (19),

the wave-structure function doe s not depend on the distinction between

and T~,

For the reduction of the second and third ensemble averages ob-

taina ble from Eq. (53), the p rocedure is more complex. For example ,

f or the second of the ensemble averages , in accordance with Eq. (16),

we would be concerned with

a- 

( f t0~~, ;i )_ 0~~3 ;i~~’)] -

L = (E0 (!, ;1) -0 1~ ;l+xT)]~ ) + ([0 (~3,;i’) -( - 2 ([~ 
(O~3 

;i) -0 (~‘ ;~ +x?)] [0 
~~ 

;7’) - 0 (f 3,;l ‘+ x l) ] )

= 2~~(x f l_ 2 ( [O(~3 ;i) -0(f 3 ;l+xT)]r0~~3,;l’)- 0(V,,;7’+XT)]) . (56)

Here we have made use of Eq. (19), but replaced -xl’ by ~l’ , based on

the fact implicit in Eq. (22) that the wave-structure function is only depen-

dent on the magnitude of its vector argument. With a bit more algebraic

manipulation , Eq. (56) can be rewritten as

_______________  a- 
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(( [O (t3 ;~ ) -o(~
’
, ;i+xfl~ 

- (0(~ ,;i’) -O (~3.;i’+x?)])’)

= 2 D(xY) + ([o(~
’
~ ;l) _ ø (~ ,;l’)]5 ~ - ( [(

P ;l) -o(f 3,;?’+xT))~ ’,

(57)

At this point, making use of Eq. (16) to provide a basis for our use of

Eq. (57) in the evaluation of Eq. (53), and substituting Eq. ‘s (54) and

(55) into Eq. (53), we -get

J~1) = 
~~
‘ II dl dl’ W(7) W(7+Xr) W(7’) W(7’+~l)

x {[(A 3.)a+ (A 3~ )a-] exp (-~&(7-ii+b(x r) -j [ b (7-~~’-xf )

+ 2(A3
2)(A~~) cos [21T

r’. (~
‘
3 
_j ,,)] exp

- 

~ <[0 (~, ;i) -~
(i3,;~’f l )  -j- ( [o (i3 ;I+ x7 -0(g ,,;7 +xf fla )

+ ~~ ([0 (~~3 
;i) -~~(~ 3, ;1’~~xi )]~ ) + 

~~ ((~~ (~
‘

3 
;i+xT) _~~(~~,;i~)]5 ))} . (58)

We first of all note here that by virtue of the stationarity of the wavefront

distortion statistics

([0 ~~ ;l) -0 (~~,;r ) ) ) = ([0 (~ ;l+xT) -ø (~,,;7’+xi)]~ ) . (59)

At this point, we introduce the approximation that we can replace

([~ (O ,;i) - 0 (ê’3,;i’)]~ ) by (0 (13 ;i’) - 0~1~,;i)]~~) . This approximation

should be quite accurate when 1~ -~~ , is very small (as it always is in cases

of interest to us , and par ticularly accurate within the inte gral where all

values of (1, 7’) are considered. Wi th this approximation , and making

use of Eq. (59), we can rewrite Eq. (58) as
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J(fl~~~ t v !4 ,fj ’ dldi” W()W(7+xflW(7’)W(7’+xT)

a 

x {c(A ,a)a+(A,,.)a ] exP(- 1.~(7-1’)+ .f r ( x f ) - 4 t f r ( 7~.1’~ xf)

+ .&(7_l ’+Xl)])) + 2(A,s)(A,~~) cos ~2n T’. (1, -a-i
,,)] exp ~

- 

~ ([0 (1, ;l) -~~(1,,;l’)]~ -4 ( [o(f, ;l’) -o(i,,;l)]~ 
a-
,

+ *(C0 (1,;7+xT )-oC1,~;l’)]R)+4([o(1 ;7’+xfl..o (t ;7)]a))}

(60)

t
We have been careful up to this point to retain the distinction between

0(j’3 ;i) and 0 (4 ,, ,x) in our nota tion. This will make Eq. (60) a valid start-
ing point for our analysis in the next section , when we wish to conside r the
effects of anisoplanatism. But in this section, we are restricting our atten-
tion to the case where and 

~~~ are sufficiently close together that we

can assume that isoplanatism conditions are satisfied. In this case , we can
write for the wave-structure function, in place of Eq. (19),

~ < [0 (1, ;l+~ ) - O(i,,;l)]~~) . (61)

Makin g use of Eq. (61) and of the fact that, in accordance with Eq. (22),

.5(~”) .8(-~’) , (62)

we can rewrite Eq. (60) as

= 
~ ~ 5’ 

~~ 
dl dl’ W(7) W(7+xT) W(7’) W(7’+~1)

X a-f[[(A ,1) 1+(A
3
2)5] exp (- (.fr(7-l’)+ .~(xfl - 4

+ M7-l”+~l’)]3)+2(A,5)5+(A,,
3)a cos (2n i’~ (ii, -b’,,)]

- 

~~~~

1

23

~~~ _ II_
~- a-

~~
a--

~~~~~~~~~ - ~~~~~~~- - a -~~~~ a - a - a - — - -- — -  a-~~~~~~~ - a- - a - -  a-



---a--.-—------a- - a - - a - a- a-a- - a - a - C .  - a- a- ~~~~~~~~~~~~~~~~~~~~~~~~
a - a - a -  

~
a-
~~~~ - 9 111~~

x exp 
(

a-a-. ~ (J) + .~(7-i’)-4 ~.~(7_I ‘-xT) + .~(7-l’+xl)] ) )}

= 
* ~~ 

4 f  (A3$)5 + 2(A,$)(A,~ )5 cos rznl .  (13 -1’,,)] + (A,,a)S )

dl dl’ W(l) W(7+xT) W(i”) w(7’+xT)

x exp ( - C i’_ 7’)+b(xT) _ a-~- t ..&(7_l’-kl)+ .~(7_ i’+xl)fl) . (63)

At this point, we note that this expression is identical to the one we had to

evaluate in the pr eceding sec t ion for the single point source case , as can

be seen by comparing Eq. ‘s (63) and (18). Only the coefficient (A 35)5 in

Eq. (18) has been replaced by the more complica ted expression f (A 3
3)2

+ 2(A,5)(A,~ ) cos [2i.rl. (1a-~ -~~3~)] + (A,,’)3 ) , but this is simply the diffe rence

in the spatial frequency power spectra of the single point source and of the

pair of point sources. The effect of atmospheric turbulence on the ability
of the Labeyrie technique to obta in information on the high spatial frequency a-

par t of the image power spectrum is the same , whether the object is a

single point source or a pair of point sou rces , provided that the point
sour ces are close enough together that isoplanatism applies. For the low

spatial frequencies , for an isoplanatic pair of point sources , the normal-

ized image spatial frequency power spectrum obtained by the Labeyrie tech-
nique can be inferred from Eq. (44) to have the form a-

_ _ _ _ _  - 
(A,s)2+2(A ,a)(A ,)~~ cos [z~T. (1,_f,,)]+(A ,~)5 a-.

;(O) [(A,3) + (A,,2)3~

for x~l~ << r0 . (64)

For high spatial frequencies, we can see from consideration of Eq. (40)
that the normalized image spatial frequency powe r spectrum obtaine d by
the Labeyrie technique has the form
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- 

(A~1)*+ 2 (.A,’)(A,,$) cos [2n1. (~ 
_T

~,)3 + (A,~ )5 r~. ~
.7(0) 

— 

[(A ,’) + (A,~~)J3 {o. 435 (D) TDL~~~}

for ~~~ >> r0 . (65)

With these results in hand , and Eq. (60) available for future use , we

are now ready to turn our attention to the evaluation of atmospheric turbu -

lence effects on the performance of the Labeyrie technique in the absence of
isoplanatism. In the next section , we take this up for the case of a pair of

point sources.

I

.
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4. Labeyrie Technique: Anisoplanatisrri

Our starting point for the evaluation of the effect of anisopLanatism
on the Labeyrie technique is Eq. (60), which represents the spatial frequency
power spectral density for a pair of point sources. As we recall, in
Eq. (60) we retained , but in unreduced fo rm, the distinction between
effects of the two point source directions , G 3 and 9 3 ’ , on the random
phase shifts, 0 ( 0 , ; x )  and ~ ( 0 k’; x )  . At this point we return to
Eq. (60) but with the objective of developing statistical results showing
the dependence of the power spectral density on the angular separation,

~~ 3
_

_

~~ 3
l 

a-

W e sha ll aim our algebraic manipulation of the terms in Eq. (60)
at the objective of obtaining results which can make use of a statistical
f unction which we shall call the hyper wave- structure function , and

which we define as

a--. -4 -P ~~~ -P 
~ 4

~~~~~~~~~~~~~~ ~~) = ( t ~~~~e + ,~ ; r + p ) -  0 ( 9  + J ; r ) ]

-4 -, -4 —x C 0 ( e  ; I + p ) - 0 ( 0  ; r) ] ) . (66)

This quantity has previously been studied 13 and shown to be expressible

in terms of an integral over the propagation path. It can be written as

~~~~~~~~~~~~~~ 
) = 8.16 ~~~~~~~~~ dv C ~ d~ [ 1  - exp (i~~. ) ]

P API

x ~t
1113 [ exp ( i  ~t ô v)  + exp ( -  i ~t a- ,~ v)  ] , (67)
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where ~ is a two-dimensional (spatial frequency) vector , and v is a

variable of integration measuring position along the propagation path ,

with v = 0 at the plane of the optics aperture, where we “measure” the

wavef rout distortion statistics. C is the so cal led refractive-index

structure constant and is a measure of the local optical streng th of the

atmospheric turbulence. - - a -

Our problem at this point reduces to that of ca sting the six te rms

still explicitly in ensemble average form in Eq. (60) into forms that can

be identif ied with Eq. (66) . The procedure is tedius but because of its

ultimate impor tance, is worth presenting in detail he re. Starting with

the expression of interest in Eq. (60), we proceed as follows,

— 4  ( C ø  (i’, ;l) — 0  (f ~~
l;l’) ]~

) — 4  ( [ 0  (i’3 ;l’) — 0  (i,’;l) ]2)

-4 . .. —., — 1 ~~ 2
+* ([0(e ,; r + X f ) - ø ( 0,’ ;r )] > + * ( C 0 ( 0 , ; r  + x f ) - 0 ( u ,l ;r)] )

.4 —.‘ ..

- 4 < 0  (~~, ; ;)~ (~~,s ;~ ‘+ x T) ) - 4 ( 0  ~~ ;l’ )~ (~~ ‘ ;

- 4 ( 0 ( i ’, ; + x ? ) o ( i ,’ ; ‘) )  - 4 ( 0 ( i ’, ;1’+ X r ) . ( i ,’ ; l ) )  . (68)

In obtaining the final form of Eq. (68) we have made use of the fact that
the wavef rout distortion statistics are stationary so that the mean square

value of the pha se shift , ( [ 0  (~ ; 1) ]
~) , is the same no matter what

the values of • and x • As a consequence all of the mean square phase

terms , when summed exactly vanish. Proceeding in the same way we
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can show that

- ( [ 0  ~~ 
; )  - 0  (~ ;

~~~~~

‘
) ] [0  (i ,i ; )  - 0  (;,‘;i) ~ >

a

+ 1< C o  (i’~ ; )  - 0  (i’, ; + xr ) J [ Ø ( i ’,’ ; )  -~~ 
(i ’,’; +xr ) ] >

—P —P a-p —P P a-4~ .4+ 4 ( C  0 ( 0 k ; r ) — 0 (e~ ; r + ~a- f ) 3 C o  (e ,’ ; r ) — 0 (8~’ ; r + ) a-f ) 3 >

~1(0( i , i ’ ) ø ( i ’’l +x r ) )  - 4 ( 0 ( ~~, ; ÷X1 ) O ( i ’~,’;~~ ) )

In developing the final form of Eq. (69) we have again made use of the
statistical stationarity of the random wavefront distortion. This allows
us- to argue that the value of ( o ( i ’3 ;~~ ) 0 ( ~ ,’; 5 a ) )  is independent
of 5Z . Thi s in turn, results in the summing to zero of the several terms
of this form that would otherwise appear in the final form of Eq. (69)

It now follows directly from comparison of the final forms of
Eq. ‘s (68) and (69) tha t the two starting forms are equal. The starting
form of Eq. (68) represents a part  of the exponent in Eq. (60), while
the starting form of Eq. (69) can be seen , from consideration of Eq. (66),
to correspond to the sw-n of seve ral hyper wave-structure functions.

Thus we can rewrite Eq. (60) as

1(1 ) = 
~ t ’ l ld d~’ W~~~) W( l+x?) Wç?’)W( I’+ xT)
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x .
~f 
[(A 3

2 )2 + (A3’ 9
2 ] exp (-a- ( 8(i~ - ‘) + .~~ 

(xi) - 4 [.D( -I’ - ~3’) +.~(I-I’ +XT )J 3)

+ 2(A,2) (A3’2) cos [Zi-rl a- (i’,-i’,’)] exp (-c~x~,-~’,l ,;_;’)÷.8~xr)

a- - * [~1(f,..i”,’ , - ‘ - X1) +~ (i;-~1 
~~~~~~~~~~ (70)

Examination of Eq. (67) will show that the hyper wave-structure function
possesses sufficient symmetry that

= ~~~~~~~~~~ . (7 1)

This allows us to rewrite Eq. (70) in the form

= * ~~ 11d d ’ W(I)W(~ + x?) W( ’) W(~ +

x { [(A ,2) + (A3’
2 )]2 exp( -(p(~ Ij +.~ (xT)-*E.~ (I-i- J)+~~~-I’+ xfl]

+ 2(A 3
2) (A 3~

2) cos[Znr. (8 —

x exp (~ f~~~, -i,, , -?) +b( xl) - 4C~,(j ’, -i,’, ?~1 - A?’)

+~~(1’, - ~~~~~~ r - 
~~~

+ xi)]3)lf 
. (72)

To isolate the field-angle dependence we rewrite thi s as

I
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~~~~~

-- -  - _ _ _ _ _ _

d(? 4 I ~~I ’J’!d;d1 W(I) W(I + x?’) w(~’) W(~’+ XT)

{{[(A,2 )2 + (A 3’
2 )2 3 exp ( - ~~ 

(~ - ‘)+~(x?) -4L~( -1’-xT)+.~(~-~’+Al)] 
~
)

+ 2(A ,2 ) (A ,s2 )  cos[ZiJ • (i’, -i ’,’) 3

x exp( - C.DG-~ ’ )+.fi(X?)-4[.S -I’ _Ai) +b( a-i?-~~ + A?’))) +Q (f , - 03
11 1._ i . , x1))}~( 73)

where

Q(~ ,-~,’ ~ ~~~~
-

~~~
‘ h?’) = C [a-fr (a-;-?’) - ~ (~~ -8~~’, 

I-I’)]

- ~~[.fr (I-?’- Xi) -~~(~, -~ ,‘, I-~’- x?) ]

- 4  t b (~ -a-
~’ + i T)  _ i ’,- ,s , ~ -~‘÷ A1’)]3. (74)

It is obvious that when Q equals zero a~ (~ is identical to what we

computed in the previous section, when there was no anisoplanatism

effect. It can be seen from a comparison of the definitions of the wave-

structure function, .8, and the hyper wave-structure function, ~), as

provided by Eq. ‘s (19) and (66) re spectively, that when i’~, - 1’,~ is equal

to zero Q will vanish and there will be no isoplanatism problem. The

question we address ourselve s to is how large f~ - i”~, can be before we

encounter anisoplanatism problems , i. e., before Q become s comparable

to or larger than minus one .

We recall from our analysis in the previous two sections that

when we are interested in large values of A , i. e .,  in the high spatial

frequencie s the va lue of the double integral defining the power spectral
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— 
density, a’, is determined by the region of ( ,  I’) space where

- r’ is much less than A , ?  . Accordingly, we restrict our
investigation of the relationship between the value of - e ,’ and
anisoplanatism to the case where A ~1 is much larger than r0
i.e. , to high spatial frequencies , and where - 

~~
‘ is small, in

particular , much smaller than X 
~
‘ . Making use of a-Eq. (67), hyper

wave- structure function, ~ , and noting that when ~ 0 it also
provides a definition for the ordinary wave-structure function, .5
we can write Q as

Q (~~~~ , ~~~~~ , A ?’ )  = 
8. 16 

J~ 
dv CN

2 
!d~ ~ 11/3

P ATH

f4exp[i~~ . ( +  A?)] - exp[i~~. p 3 + 4exp[i~~.(~~..X?)])

x (-exp( i t .  ~v) + 2 - exp( -i ~~~
. ~v)3

- a- = - ~~~~ dv C,? ,fd~ ~ 
11/3 exp(i~~. ~ )

PATH

x [exp (1;~ a- Ai’/Z) - exp (-i~~. A?/2)32

a- -S . - -, 2x [ exp (it t - . ,~v/2) - exp ~~~~~

= 
8.16 k2 J’ dv CN

2 
J~d~ K~~~~~

/
~~ exp (it . ~~)

PATH

x sin2 (4- X?’.~~) [ exp (i~~.3v /2) - exp( -  i t .~~v/2)]
2 a- (75)

At thi s point we note that x is very large compared to r0 and thus
large with respect to all of the values of p and of t~v of interest. As a
consequence we may argue that the sin2 ( * xT .  ~ ) term goe s through
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many oscillations in any lo cality of the ~ -apace integration, and there-

fore may be considered to have an approximate value of one-half. Thu s
we may rewrite Eq. (75) as

Q (~, ~, A?) = ~4~~6 k 2 Sd v C !d~ t 11/ 3 exp (i~ ~~)
P A T H

—P - . —  2x [exp (j ~~ 
. ,~v/Z) - exp (-ut . 

~ v/2)J . (76)

We can rewrite this as

Q C p’ x?’) = - 
8. 16 k 2 J’dv CN

2 $d~. ~~11/ 3 cos (~PATH

. 2 — .  ‘x sin (t  ,~v/2) , (77)

where we have dropped the imaginary part of exp (i~ ~ ) since it is

an odd-function of ~ while all the rest of the integral is an even-function

of ~ , so that ove r the infinite range of the u-integration its contribution

would vanish.

We now further argue tha t the constraint that we are only -interested

in small values of ~~ , since only small values of ~~ - ?  contribute

significantly to the value of I , allows us to approximate the isoplanatism

constraint by requiring tha t Q (
~

) , where

8. 16 k 2 J’dv CN
2 

Sd~ ~t 11/3 sin2 (~ ~~v/2) (78)
PATH

be less than unity. Here we have replaced cos (~ ) with unity based

on the fact that with ~ small or comparable to r0 , a- 
~ will not be

large for any value of ~ which contributes significantly to the wavefront

distortion.
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Letting v denote the angle between ~ and ~ we can rewrite
Eq. (78) as

~~ 
= 

8. 16 k2 
J~dv CN

2 
J~d~t K~~~

13 !dv sin2 [4 ,i,~ v cos (v)]

= 
8. 16 k 2 

fdv  2 
Sd~ ,t W3 Idv ~l-cos[t1, v cos (v)])

PATH 0 0

= 
-8.16 k 2 J’ dv C,,2 

J d ~t ~t W3 [1 - J0(~t t~v)) a- (79)
P A T H  0

Making a chang e of variables, with x = ~~~v, we can rewrite Eq. (79)
as

= ~~ { 
8•16 

k
2 5 dvv ~/~ C,,2 

~‘da-x x~~~/~ [1 - Jo (x)]} a- (80)
P A T H

It is easy to show 1 ~ that

Jdx x W3 [1 - J0(x)] = - ~~~~~ 
r (-5/ 6)

= 1.1183 (81)I
so that

~~~ =~~s,a { 2.9 1 k 2 !d y vB/3 C,,2} 
a- (82)

Thus our criteria for there to be so significant anisoplanatism, that
Q (~ ) be less than unity reduces to the condition that

(83)
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where

= 
{ 

2. 91 k2 r dv ‘v6~ . (84)
P ~~T H

We call the isoplanatisrn angle.

In Fig. 6, we show a sample vertical distribution of the optical

strength of turbulence , ~~ as reported by Greenwood.15 Using this

distribution , we have calculated the isoplanatism angle for a wavelength a- 
-

~~~~5 . 5 X 1 0 ~ m a -  We find that in this case 8 a - 6 x  10-6 rad . Our

theory predicts that the Labeyrie technique should pr oduce good result s

when working with a pair of point sources with angular separation le3s

than this , but tha t if the point sources a re separated by an angle greater

than thi s , the high spatial f re quency de tail s will be lost , or at least sig-

nificantly attenuated from what we expect , based on calibration of the

technique with a single point source. Referring back to Eq. (73) and

noting that Q is the ne gative of Q , we would expect from conside ra-

tion of Eq. ‘s (82 ) and (84) that the hi gh frequency detail s will be attenu-

ated app roximately as exp C -(0 /0~)5~~] relative to the ability of the

Labeyrie technique to accommodate a single point source. From con-

side ration of Eq. (73), we can see that the net effect of a lack of isoplana-

tism will be to make the source appear more like a single point source.

A pair of equal intensity point sources would appear like a pair of un-
- - equal intensity point sources , the ra tio of intensities appea r ing to be

4 e x p[- ( 0/00 )6t3J

With these results in hand, we are now ready to turn our attention

to the Knox-Thompson concept. In the next section, we shall describe

this conce pt and then p resent an analysi s of its operation s assuming that

we are dealin g with a pair of point sources close enoug h together that

there is no anisoplanatism effect.  Then in Section 6 , we shall extend this

analysis to treat  the case where the angular separation is large enough

for anisoplanatism effects to occur.

-
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5. Knox-Thompson Algorithxri: Isoplanatism Assumed

In the absence of anisoplanatism effects and with a “calibration
run ” against a known point source the Labeyrie technique will produce
a useful and valid spatia l frequency power spectrum of an object of

interest. While this gives us much of the information we need to know about

th. object , it doe s not permit formation of the image of the object. We

have information on the amplitude of each spatial freque ncy of the image ,

b~ t we have no knowledge of the spatia l phase shift to be associated with

each spatial freq uency — so we cannot reconstruct the image.

The basic problem in determining the phase shift stems from

th. fact that, except for the very lowest spatial frequencies , (namely

c r,,/X) , the turbulence induced part of the phase shift introduce s

an rms spatial phase shift, ~ , that is many radians. As a consequence

the average of the random spatial frequency component, S (1) , will be

- 
- so strong ly attenuated that we cannot use the ensemble average ,

(S (i’))  , to determine the part of the phase shift due to the image. The

attenuation is exp (_ ~~~2)  , which is too small to allow any practical

use to be obtained from the ensemble average (S (?) )

In mathematical terms we would write that

S (?‘) A , A T exp [i (cp , +P Tfl , (85)

where A , is the image associated amplitude, (which we can determine

using the Labeyrie technique), and ç , is the image associated pha se shift

• which we wish to determine. A~ is the random amplitude factor

introduced by turbule~ice effects and ~~ is the turbulence induced spatial

phase shift, whose var iance is ~~ 2 
. If we determine the (ensemble)

ave rage of the random amplitude , S (1) , we get
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(S (r)> = C ( A T )  exp (-a~2) 3 A exp (I q,, ) . (86)

The spatial phase shift information is there and we could easily extract
it as the argument of the comp lex value of ( S  (1) ) , but because of the
exp (-ca-is) factor we are dealing with such an unfavorable signal strength
situation that we cannot obtain a usefuj estimate of the spatial phase
shift. Our answer will be determined by the noise rather than by the
signal.

An alternate approach for the calculation of the image associated
spatial phase shift, ~~, , has been suggested by McGlarnery 16. This
involves extracting the phase , (q + 

~~ T ) , from each sample of the
random spatial frequency complex amplitude, S (1) , and then (ensemble )
averaging this phase shift to obtain ( (~ + P, ) ) which, since (~~) = 0
should reduce to ( ( q , , + cp,~ ) )  = a- Unfortunately, due to a combin-
ation of noise effects, [irrevocable incorporated into the results by the
nonlinearity of the process of calculating the argument of S (r) J , and
due to a basic Z11-ambiguity , there is an uncertainty of the order of

- 

- 2rr N in our knowledge of (~ , + ‘~
) , and as a consequence we do not get

a meaningful result when we attempt to determine ( (p , + q)~ ) )
The calculation of the spatia l frequency power spectral density

; ( r )  = ( S* ( i ) 5 ( ? ) )  , (87)

doe s not encounte r any difficulty due to the turbulence induced random
phase shift, ~~~ , since there is a cancellation of thi s term in taking the
product S~ (1) S(1) . The Knox-Thompson concept seeks to get around
all of the above difficulties by measuring the bispectrum
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, (1 ~~
) = < 5 *  (r )  S (?) ) , (88)

where I and 1’ are distinct but not very widely different spatial

frequencies. As will be seen in this case , the two turbulence induced

pha se shifts, ci and ç~ ’ , are closely correlated. From thi s it

follows that - , which is the turbulence induced random argument

of the complex product S~
’ (T” ) S(I ) , has a small mean square value

, and so the attenution facto r , exp (-a~ ~‘) , encountered in forrnmg

the (ensemble) average is of the order of unity. The condition required

for this to be the case , i. e. , for a, ~ 
to be very small , will be seen to

be )T - 1’)  < r0 / X

We shall start our analysis of the Knox-Thompson concept by con -

sidering a pair of point sources with amplitudes A3 
and A,~ , located

at angular position s 9, and e ,, . Making use of the intermediate re-

sults of Section 3, in particular of Eq. (52), we see that we can write the

bispectrum , as defined by Eq. (7), as

= ~ d~ dc’ W(~) W(~+xi) W(~~ ) W(~~’+xT’)

- x ( {(A 3
2)2 exp C-2r i~t-?’~) - 1~ exp [i[ø (~ f~) - Ø ( ~ ;~+~T)

+~~~~ ;i~ +xT ) ø(f iiJ~

+ A32 A,~ exp [-2~~i U ’’1, -~~~4~)] exp

- ~(~ ;~+xT) +0 (~,,;~~+xT’) _ ø ( ç ;?’)])

+ A3~ A3,2 exp C-2r , i ( ?~~~, -T’ • -b’a- )) exp [i[ø(tr ;
~

)

- ~ (f ,;i+ xT) + 0 ( ~~;~~+~T’) -Ø ( 4~;i’)’,)

+ (A 3,2)’ exp [-
~~~ 

j (T-T’) ~~~~ 
exp [i ~Ø (~‘~,;i) - ~(i,, ;~+ \T)

- 
~~ ~~‘+~?“) - ø(~~~’)J~}) a- (89)
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Here we have written a product of integrals as a double integral , carried

out the multiplication, and grouped terms as appropriate in the integrand.

We now introduce the assumption that the statistics of Ø(~ ;~ )

with respect to 0 ((~,;V) are identical to the statistics of Ø{f~ ;~~) with

respect to Ø(~3 ;r )  — in essence , assuming that and 
~~~ 

are in the

same isoplanatic patch. Thus restricting our attention in the balance of

this section to the case where isoplanatism is assumed , and making use

of Eq. ‘s (16), (17), and (19), we can rewrite Eq. (89) in the form

d’J’) = d~ d~ ’ W ( )  W~~+~T) W(P )

x exp {_ a-j (~ (xr) +~~(xr’) +4(c-~ ’)

+~ -(~-~‘+x~’-T’)-3 - .fr (V~~+xr) -

x ((A,S)’ ex p [ -2r r i~t-T’).~ , )

+ (A ,3)(Ar*) exp [-2n i~T.~~ . r • 1,)]

+ (A 33)(A,~ ) exp [-Zrr i (p.1, - T f ~)]

+ (A3, )’ exp C-2,r i cr-ri .ç~i a- (90)

We can r ew r ite this as

~ ct,r ’) = 
~ ~9~~4 Ia-f d d~~’ W(~ ) W(~+xT ) W (~ ’) W(~ ’+~T’)

X exp {j [.&(x1) + p(xT”) + ~~~~~
-

~~~
‘) +

- ,~~~1’+xr) - .&Ci~-~~’ -

x f [(A 35) exp (-Ziiir f3 ) + (A 3, ) exp (-2,,i?.1,]

x C(A 31) exp (2lTiT ’ .13
) + (A,r) exp (Zt~ iT’ •f,,)]) . (91)
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It is pa r ticularly significant to note here that the two square bracket term a

in the final curly brackets of Eq. (9 1) represent the fourier tran sform of

the two point source pattern at spatia l frequency I (in the f i rs t  of the square

brackets), times the complex conjugate of the fourier transform of the pa t-

tern at spatial frequency T’ (in the second square bracket). As note d pre-

viously, the phase shif t associated with this produc t is the di f fe r ence of the

phase of the two spatia l frequency components , at t and F , of the object

pattern — and if we can determine this difference of phase shif t for all

“adjacent” pairs of spatial frequencies in a matrix covering spatia l frequency

space , we can determine the absolute phase shift for each spatial frequency

component. (The process is essentially equivalent to that described by us

elsewher&”for determination of wavefront distortion from an array of wave -

front tilt measurements. )

The key que stion is whether or not we can determine the difference

of pha se shifts f rom a measurement of the bispectrum, d(T,T’) . This ,

in turn , is determined by the value of the i~,i1’-double inte gral in Eq. (91).

Compar ing the inte grand here with the cor responding inte g ra nd in Eq. (63),

for the Labeyrie speckle interferometry technique , we see that the two will

be equal when 1’ equals ?~ . if t’ is nearl y equal to I , then the inte-

grals shoul d have nearly the same value — but exactly what difference be-

tween T and F’ is allowable under the expression ‘ nearly equal. ~ We

reca ll that in the series of steps leading up to Eq. (40), and thus also to

Eq. (63), it was shown tha t when I and P are exactly equal , the integral

had a value of 0. 435 (r0 / D)’ a-r
Dt (t) a- In the following, we shall repeat those

steps wi th 1~ nearly but not exactly equal to F a- and show that if x;r-r’I
<< r0 , then the value of the double integral will be essentiall y as large as

when P is exactly equal to F

It is convenient to start by defining the quantity g by the expression
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= -
~ 

(~~(~T) + ~(~F’) + j(~-i’ ) + ly-~ ’+xcr-t’)] —

- j{it_ia _~T~)) . (92)

Making use of Eq. (22), we can write

3. 44 r0-e/3[~f~~ + (~f’~~~+ ~i~~’jei~+ (~ -1 ’+x~T-? ’) (e ’~
- ~-1 ‘+ )t I ~ 

- V-1~’ - xF’ ,em ~ , (93)

which expression we may usefully compare with Eq. (23). In our previou s
treatment of the Labeyr.ie technique , develope d from Eq. (23), with Eq. (18)
playing the same role as Eq. (21) in def ining the range of values of ~ and
1’ to be considered and the weighting to be assigned to each (~,l’)-va1ue,
we found that when Af was much greate r than r0 , then because there
were some very “convenient ” cancellation of terms in the approxim ation for
Eq. (23) when I 1-I’I was much less than ~

f , it followed that the value
of the (i~,~~~)-integration was determined by the range of integra tion in which

~1-1’~ was less than or about equa l to r0 . in the same way, we may ex-
- 

- 
pect here that when there is negligible difference between the values of
T and F’ , and ~? is much larger than r0 , then the value of the (~‘,1’)-
integration in Eq. (91) will be determined by the contribution from the region
in which ~1-~~’~ is less than or about equal to r0 . Thi s means tha t as a
practical matter in evalua ting the bispectrum, , ,(t,T ’) for ~f much greate r
than r0 , and F and F’ nearly equal , we can appr oximate • from Eq. (93)
subject to the assumption tha t ~~-1’~ is less than or about equal to r0

Ma king use of Eqa - (25) and equivalent approxima tions , we can now
rewrite Eq. (93) as

= 3. 44 r0-6,~ r ,1-~’is~ +
+ ~ (xf)4m f~ ?i. x(t -P) + ~~ (xf )~~~(~~1) a- ~t I’ ~‘)J . (94)
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It is immediately apparent from consideration of Eq. (94) substituted into

Eq. (91) tha t the key question in determining the value of the integral is
whether )~1’-T’, is greater than r0 , or less. in either case, the result
is not significantly dependent on anything except the ~?-1’ 

~~ 
and the

term s in Eq. (94). We can rewrite Eq. (91) as

~~~~ ~~~~~~ j’f d~ di’ W(~) W(~+~T) W(~ ’) w(~’+~T’)

x exp f-3. 44 ro413[I1-1#t5/3+ I1_1’+ xcr_T-),6~n
x (C(A ,$) exp (-2 i ri l . 1)  + (An ) exp (-2TriF .f ~,))

x ((A 3
1) exp (ZTT iT’.l) + (A3~ ) exp (2tr iT ’ .l ,)fl . (95)

For the required condition for successful operation of the Knox-Thompson

technique, i. e., for x (t-T’) much less than r0 , and recalling that the

value of the integral is determined, for the most part , by the reg ion in

which ~1-1’~ is of the orde r of r0 , we see that Eq. (95) reduce s to

1r,r~)~~~ ~fl4 d~ di~’ ~~~~~~~~~~~~~~~~~~~~~~~~~

x exp C .6.88 (Ii-
a-
~ ’I1ro)5

~
3)

x ([(A3 ) exp (-2ir iF.1~) + (A3~ ) exp (-2rT iT.13,)]

x [(A,’) exp (2ir i?~ 1,) + (A3~) exp (Zu it.1~,)]) . (96)

This integral was previously encountere d in Eq. (30) and evaluated in

Eq. (39). Making use of Eq. (21), we see that with this integral evaluation,

we can write the normalized bispectrum as

= (0. 435 (r0 /D) ’ 
~D%.~~~~1

- 
- x [[(A ,2) exp (-2i r iT a -f ) + (A,~~) exp (-2r~ iF 4 ,)]

x [(A
3
2) exp (2ir tD’ •1) + (A,~) exp (Zn i1~ .g~,)j

x [(A3’) + (A,~ )]—2 ) a- (97)
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The leading curly bracket term is the quantity of interest. It represents

the ability of the process to “avoid” washing out the informa tion car rying
part of the signal because of averaging over a large range of phase fluc-
tuations. The larger the curly bracke t term is , the better the system may
be considered to perform. We note that with XIr-P , smaller than r0
the system’s ability to avoid signal waøhout is as good as for the Labeyrie
speckle interferome try technique.

If we violate the requirement that x~T-T1 Is to be less tha n r0 ,

then since the value of the double integral in Eq. (95) comes principally
from the (~~~~,~~~~~

‘) region of Integration where 1_l’l is less than ia-
0 ,

we can approximate Eq. (95) by the expression

= exp [-3. 44 (X R_T’11r0)513J I IvI~
- t x J’J’ d~ d~ ’ exp [-3. 44 (F- ~ ’l/ r ~)’/3

X W(~) W(~+~T) W(1~’) WC~’+ xt’)

x ([(A3’) exp (-2 n IT .1)  + (A~~) exp (-Zntt.4 ))

x [(A 3’) exp (Zn IT’ f~) + (A~~) exp (2nir’.l,))) . (98)

Except for a slight change of coefficient in the exponent twhich we can
“get rid of” by replacing 3. 44 r0-5d~ by 6. 88 (1. 516 r0).eie ] • the integral

is the same one which we just evaluated. Carrying out the Integra tion and
normalizing as befor e, in this case we get

{ 

exp [-3.44 (Fx!r-ri
)
s’s

] (j2) ~DL~~~~}

(((A ,$) exp (-2n iF~~~) + (A,~ ) exp (-ZniF•fr)]

((A,’) exp (2rr iP.1~) + (Ar’) ezp (2i-T1P t,,)]

X ((A31) + (A,p)].a) . (99)
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It is immediately apparent from inspection of this result that if we allow
the frequency difference to be large , I.e. , if x~T-T’, is larger than r0 ,

the Knox-Thompson technique will produce poor results, i. e.,  the Inform-
ation carrying part of the signal will be wa shed out.

From a comparison of Eq. ‘s (97) and (99), we can form an estimate
of how much smaller than r0 we should require x1T-T’1 to be. We form
our estimate based on the requirement that the knee of the curve of IF-P~
dependence should correspond to the value where the two (asymptotic) depen-
dencie s intersect. Th is occurs wh ere

exp [-3. 44 (XI T-T ’l ,/ r0)6/3 0. 435 (100)

where the subscript K denotes the “knee” value. Solving this equation,
we get

= 0.427 r0 . (101)

Ba sed on this resul t , we would suggest that for proper implementation of
the Knox-Thompson algorithm, the da ta processing should be done with an
array of ~p3tiaI frequencies whose frequency spacing is no greater than
0.4 i . , and preferably no greater than 0. 2 r0 /X

th this result in hand , we are now ready to proceed to the analysis

of the Knox-Thompson algorithm in the case where the angular separation,

t3 -f , , of the two point sources is large enough tha t there will be aniso-
planatism effects. We take this up next , in Section 6.

- i
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6. Knox-Thompson Algorithm: Anis oplanati !~~
We start our analysis of the effect of anisoplanatism on the Knox-

Thompson algorithm with Eq. (89). Here , unlike our procedure in the —

last section , we shall not introduce the assumption that the wavefront dis-
tortion, 0 (I;~~) , is independent of the exact value of T . Making use of
Eq. ‘s (16), (17), and (19), we can recast this as

= d~ ’ ‘vc~~ w~~ +xfl W(~ ’) W(~ ’) WC ~~+~F ’)

x {A ,1s exp [-2ni(t-T’) .f~] exp (-j a- (.~~(xT) - .f r C ~-1’-~P )  —

+ 
~~~(~~

-
~~~
‘) + ~[1-~’+~(t-F’)] - a-~~~-i!#+xt) +.&(~F’)3)

+ A 3
$ A,~ exp [- Zn I (I’ ~~ -F’ ‘i,,)] exp (-

~ (a-~(xF) - ( [0 (~ ;
a-P)

- ~~;~ ‘+XT’fl2 )

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~ +

+A 3’A~~ exp [-2ir i ~~ a-1~~~F’.~~~) J  exp (-~ (p(xt)-< [ø (4~M

k -ø (~3 ;~’+xt’]a )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ([~ (4~,;i+xI)- t~ + ~~~~~~ )})

+(A )5 exp f-2n i ( t - t’).~~,) exp

+.
~~~~

-
~~~

‘) ~~~~~~~~~~~~~~~~~~~~~~~~~ + a-~~(~~?” )))J. 
. (102)

We now make use of the symn-ietrization argument used to let us go from
Eq. (58) to Eq. (60). We then note that we can now repeat essentially the
same manipulations we used in Eq. (68) and Eq. (69). The equivalence of
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these equations allows us to rewrite our results in terms of the hyper
wave-structure function , as define d by Eq. (66), so tha t we obtain in
place of Eq. (102) the result that

= I ~~~ a-fl’ d~ dir ’ W(ir) W (ir+~T) W(i r )  w(~’+~F ’)
x {[(A,

s~ exp

x exp (-
~ 

(~(x T) +b (xF’) + .~{~-ir ’) +a-~[ ir..i ’÷x ~T-T ’)]
-.~cir- +xt)-~~c~ -ir’-xr ’)l)

exp (-
~ 

Cb(xT)+.~(~T’) +~ (V~ ,;ir..it#) +~{1~ -f~,;ir-ir’+ x(t-P)J
_
~~(~

‘ -1 ;1-ir ’+ xF) -~ij(~
’
3 
-è’~;ir-i’_ xF’)})} a- (103)

It is useful to rewrite this equation as

d(t,F’) = dir dir’ W(~) W(~~+ xF) W(ir’) W(ir’+~t’)

x exp (j C.~(xT)+j (xT’ )+.fr( ir-i ‘)+ Df i-ir ‘+ x ~i’-1’ )j

-.&(~-i’+XF)

x ((A,s)a ex p [_ z n i ( r_ T ’) .j’, ..ç] + (A 3~~~e x p [_ 2 n i ( f ’_P) .1,)

+ (A35) (A3,’)fexp [ -Zn i F’ .~~,)j + exp [-Zn I ~~~~~~~ )~
x exp 

~~~r ’1” ~~”~~’fl)) , (104)

where
• 

~ (ë’ -~~ ,i-1’, XT, XF’) = ([ -ir’)- -~ ,;T~-ir’]

+ [f r [ ir - i ’+x~r-P f l - ~[1 -~,;i-ir’+K(t-F’)] 3
- [~(ir-?’+~r) - 

~~~~~~~~ -i’,,;i-ir’+x?)]

-[ft(ir-1’- XT’) -~~)~~~ -1~~;?-i’ -Xti)) . (105)
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A comparison of Eq. (104) with Eq. (90) make s it clear that the condition
on 11 -1~, required in order for there to be no significant anisoplanatism
effect is that 

~ must have a value close to zero in the relevant region of
the (ir,i’) integral.

To establish the allowable range of values of 1~ ~~~~ for Isoplana-
tism to apply, we shall carry out an evaluation of ~ (3a- , xl’, xl”) subject
to the conditions that 

~ is less than or of the order of r0 , tha t )~f and
Xf ’ are both much greaa-ter than r0 , and that x t l’-?”~ is less than r0
— as thea-se are the conditions we developed in the last section as defining
the range in T,T’ and ( , l’-integration space within which we get signi -
ficant contributions to the bispectrum, .pr,r’)

Making use of Eq. (67), we can write

s~~~~ xt,~Z’) =~~
1
2
6 I’! J’ dv C~

a Sd ~~~42i~
3

P A T H

x (exp [ i t~ (~ + -),F)) + exp

- exp ( i~~.~~) - CXP

x (-exp (OZ4v) + 2 - exp ( - i t a -3 v ) )  . (106)

H With a bit of tri gonometric manipulat ion , this can be rewritten as

~~~~ xl’ )J”) = - 
8.16 k2 r dv S d~ ç.~1/3

P A T  H

X exp ~~~~~~~~~~~ x (T-Ti]1

x [ sin1[13~. x(r-?’)) -

x [exp ( i~~.~~ v/2)  - exp (-i~~~~~~v/Z)]’ . (107)

We may now proceed almost exactly as we did following Eq. (75).
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We start by noting th;4t for virtually all of the a-
~ -value s that con-

tribute significantly to the wavefront distortion process , ~ x (tit’) is 50

large that the six? 
~~~~~ 

x~T+T”)] term will oscillate rap idly and therefore

will have an average value of one-half. Thus we can replace that sinc-

function squared by one-half. Also , we note that since all of the rest of

the integrand is manifestly symmetric in ~ , we can replace exp (i~~.

[ +Ix (t4?”fll by the corre sponding cosine -function. Thus we can write

in place of Eq. (107)

xl’ xl”) = 
16. 32 k~ $ dv CN’ $ ~

P A T H

x cos [~~.[~~+* X(t . .T#)J)[ l ..2 5i~2r *~~.~~(r_r ’)] 1

x sin’(t .lv / 2 )  . (108)

From our previous work, we know that we are only interested in values of

and thus of ~ which are less than or equal to r0 . Similarly,

we know that we must restrict our attention to the case where x ~t-P 1 is

less than r0 . On the other hand , we know that only value s of x. which

are smaller than r0-t contribute significantly to the wavefront distortion.

It thu s follows that to the level of a f i rs t  approximation, we may treat the

cosine -term and the one-minus-two-times-sine-squared-term in the inte-

grand of Eq. (108) as though they had value s about equal to unity.

Taking note of these approximations [and recalling the factor of

one-half in the final exponent of Eq. (104)], we see tha t the condition on

e~ for there to be no significant anisoplanatism effect is that the function

where

= 
16.32 k , dv 

~~~
1 5 ~~~~~~~~~~ sine (~ v/ Z )  , (109)

P A T H

should have a value less than two. Making reference to Eq. (78) and the
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discussion there, we see tha t we have arrived at exactly the same condi-
tion on ~ , or I1~ ~~~ , for isoplanatlsm to apply for the Knox-Thompson
algorithm as we previously developed for isoplanatisin to apply to the
Labeyrie technique. We require that E~q. (83) with Eq. (84) be satisfied

for the Knox-Thompson algorithm to yield isoplanatic performance.

I
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Figure 1. Speckle T ransfer Function for D/r0 = 10

The rapidly decreasing curve represents the low frequency approx-
ixnation of Eq. (44). The eve rywhere relatively low level curve represents
the high frequency approximation of Eq. (40). The curve running the full
range of spatia l frequencies represents the Monte Carlo results. The
composite of the two approximations can be seen to constitute a fair approx-
imation to the full range result obtained by Monte Carlo methods.
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• Figure 2 . Speckle Transfer Function for D/r 0 = 30

The rapidly decreasing curve represents the low frequency approx-
imation of Eq. (44). The eve rywhere relatively low level curve represents
the high frequency approximation of Eq. (40) . The curve running the full
range of spatia l frequencie s represents the Monte Carlo results. The
composite of the two approximations can be seen to constitute a fa ir
approximation to the full range result obta ined by Monte Carlo methods.
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Figure 3. Speckle Transfe r Function for D/r 0 = 100

The rapidly decreasing curve re present s the low fre quency
approximation of Eq. (44). The eve rywhere relatively low level curve
repre sents the high frequency approximation of Eq. (40). The curve
running the full rang e of spatial frequencie s repre sents the Monte Carlo
results. The composite of the two approximations can be seen to constitute
a fair approximation to the full rang e result obtained by Monte Carlo methods.
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Figure 4. Speckle T ransfe r Function for D ir0 = 300

The rapidly decreasing curve represents the low frequency ap-
proximation of Eq. (44). The eve rywhere relatively low level curve
represents the high frequency approximation of Eq. (40). The curve
running the full range of spatial frequencies represents the Monte
Carlo results. The composite of the two approximations can be seen
to constitute a fair approximation to the Lull range result obtained by
Monte Carlo methods.
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Figur e 5. Speckle T ransfer Function for D/r0 = 1000

. The rapidly decreasing curve represents the low frequency ap-
proximation of Eq. (44). The everywhere relatively low level curve
represents the high frequency approximation of Eq. (40). The curve
running the ful l range of spatial frequencies repre sents the Monte
Carlo re sults. The composite of the two approximations can be seen
to constitute a fair approximation to the full range result obtained by
Monte Carlo methods.
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Appendix A

Monte Carlo Integral Evaluation

In orde r to deve lop a set of value s for the frequency dependent
speckle image power spectrum, j (~ ) , in accordance with the exact
definition provided by Eq. (18), without introducing any approximations
relating to the value of 

~~~~~~~~~~~~~~~ 
/r,, a- or to the value of X~T~ / r0 a- in

th is append ix we shall carry out a numerical evaluation of the integral
in Eq. (18) for various values of D/r0 and of X~TI/r0 ua ing Monte

Carlo methods. This allows us to test the accuracy of the results we
developed in Section 2 of this report using approximations concerning

the values of li-~~I/r o and of XIt~/r0 a- The numerical results we

shall develop here will show that these approximations lead to quite
accurate results .

Making use of Eq. a- s (18), (21) , and (22) , we may write the
normalized spectrum , which represents the speckle transfer function, as

= ~~~‘ II d~ d~ ’ W() w( +XT) W(~~) W(~’+xr)

* exp [-6. 88 ~~~~~~~~~~~~~~ + Ixr ~,s/8
-

~~~~~ 
(Ji.. i2~ + X 7lM3 + ~1-1’_ XT 1&’3)]1 . (A.1)

It will prove convenient for us to make a change of the var iabl es of inte-
gration here. For this purpose , we define the variables i and ~ accord-
Ing to the equations

(A.2)
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from which it follows that

d i x dj t/ 1~~ a- (A.2’)

and

~~
-

= 
~~~~~~~ a- (A.3)

from which (treating ‘ as a constant ) it follows that

. (A. 3 # )

We can now rewrite the speckle transfer function of Eq. (A. 1) as

= (~~ n)a-S II d~ d~~~(~) ~~~
+
~~

) 2~Ci~-~ ) ~~ 4 + )

* exp f— 6 . 88 (D/r0 )E/3 [F ~I& ’3 +
- 

* (5~ +~~s/a + , (A.4)
where

(1 , if
2~~) = 

a- (A.5)
~~
0 a- if

and

(A. 6)

represents the normalize d spatial frequency. (The effective range of the
normalized spatia l frequency is from zero to unity. )

It is convenient to rewrite Eq. (A.4) as

= ~ )4 II ~~ 
)~~~~+~~) ~~~~-~~) -

~~+ )

x exp r-6.88 (D/r0~~3 y (~ , ) 3  a- (A.7)
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where

= I~ IM~ + I~
I6/

~ 
- 

~ ~~~~~ 
+ l~ - I ~~

) . (A.8)

Making use of Eq. (24), we note that accordingly as is much

greater than or much smaller than 
~~ a- we can approximate ~~~~~ by

the expressions

~ I~I~ 
- 

~ F~~ I~l~’~ ‘ - 
_ _ _ _ _ _  

-

~ ki << , (A.9)

and

~ I~ I~~ 
-
~ !~ l~ I~ I-u3 1 ~~~~~~~3

P
J
);,3]

if 
~~ 

. (A.lO)

We shall not use these app roximations in an analytic way to develop our

results (as was done in Section 2 of this report), but rathe r will use

Eq. a- s (A. 9) and (A. 10) to provide guidance in the selection of the sampling

function we shall use for the Monte Ca rlo evaluation. We shall also use

these equations in our numerical computations to assure adequate accuracy

in the evaluation of ~~~~~ when the magnitude s of and are

greatly diff erent , without re sortin g to double p recision computer compu-

tation.

For Monte Carlo evaluation of the inte g ral in Eq. (A. 7), we shall

try to use sampling distributions for i and ~ that will fully sample the

range of allowed values of I and ~ a- but in such a way a s to minimi ze

the “variability of the inte grand. ” This minimiza ti on of the variability

of the integrand is achieved by making use of the fact that for Monte Carlo
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integral evaluation, we can multiply and divide the integrand by any

desired proba bility density and then “extract” the probability density

function in the nume rator for use as the random sampling density gen-

erator. The original integrand divide d by the probability density is left
as a modified integrand , whose mean value over the sampling density we

wish to determine. This mean value , which we estimate as a Monte

Carlo average , represents the value of the integral. The accuracy with

which the Monte Carlo procedure will estimate the mean value of thi s

modified integrand depends on the variability of the integrand in the

sampling range. If we have been reasonably clever in our choice of

the sampling distribution, the modified integrand will have a limited

variability and it will take relatively few samples to achieve the desired

accuracy. If we have not been so clever , n-ore samples will be required.

Eithe r way, the validity of the result is unaffe cted — it is just a matter

of how many samples we need to use to achieve the desired accuracy with

our Monte Carlo integral evaluation procedure~ In gene ral , and for the

pr oblem we are treating here , it is not clear what practical sampling

distribution is optimum , and the matter of making an efficient choice

is somewhat of an art . We can jud ge our success in making a suitable

choice of the sampling proba bility density by evaluating not only the

mean value but also the standard deviation of the modified integrand

when we generate our Monte Carlo average , and in fact we can use this
standard deviation to help us decide when we have taken enough random

samples.

For Monte Carlo evaluation of the inte gral in Eq. (A. 7), we chose
to use a uniform distr ibution for x and a gaussian distribution for p

We chose the range of the I-distribution to cor re spond to the rectangle

that just enclose s the region of overlap of the two circle s define d by

~ (~) and ~~(~~+~~ ) . (Outside this rectangle , the integrand has zero value

* It will late r become clear from a study of Table A. 2 tha t we have not been
very cleve r in our choice of the sampling distribution when Dir0 is
very large and I~~I ~ r0/D
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so nothing is excluded by use of the limited sampling range.) If we denote

the component of I that is parallel to ~ by x1 a- and the perpend icular

component by x~ a- then our rectangle corresponds to the reg ion defined

by the equations

- *< x i < - ~~ 
- i~I , (A.l la)

- *h x2 < *h  a- ( A . llb )

where

h (1 -  I•
~I’~’~ 

(A.12)

This is a rectangle of width (1 - t~~
I )  and of height (h) . The probability

density function is thus

1 [ (1- i~~ I ) h ] 1 , if
P~ (~t ) =  I) and ( - èh < x 2 < * h) (A. 13) 

a
-

0 , otherwise

As rema rked above , we will use a (two-dimensional) gaussian

probability density for the ~ sampling distribution. We can write this

as

P~(~) = (2ir~~)-’ exp (j  I~J~/a~
) (A.14)

where ,~, is a sampling parameter whose value we have to choose. To get

some insight into how to choose a value for ~ , we multiply and divide

the inte grand of Eq. (A. 7) by P~ and by P~ a- Thus we have for the

speckle transfer function

= 
~~~ ‘~~~~ ci ~ ~~ ‘~~ ~~~+~~) ~~~~~~~ ,~~~-~~+•

~
)

P~ (I) P)~~~~
x e x pt - 6. 88 (D/r 0W3 ~~~~~~ 

~~~~ 
P)~~~ ~ (A. 15)
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Making use of Eq. a- s (A. 13) and (A. 14), thIs can be rewritten as

= -
~~

-
~~ a* h(1 I ) f f ~~~ d~~P ( ~) P ( ,-)

x {~(I) ~~~+~~) 2~~4) 2~(;4+~ )

X exp [~ ~~I’
1a

~ 
- 6. 88 (D/r0~ m Y ( ~~a-~~ )~~}  

. (A. 16)

The quantity in the large curl y brackets is the modified integrand whose
mean value , in accordanc e with the probability densitie s P1, (I) and P~ (‘a),
we wish to determine by Monte Carlo random sampling .

a- Taking note of Eq. (A. 10), we reason that we can minimize the
effective va r iability of the modified integrand when is much larger
than r0 /D by choosing the sampling parameter ~ to make the argument
of the exponential in the modified integrand vanish when )

~~ 
equals a

This leads to the condition

= (r0 /D) (*/6. 88)a’5

= 0.207 (r0 /D) , for ~~ >> (r0/D) . (A.l7 )

If we now take note of Eq. (A. 9), we see that when 
~~ 

is much less than
r0 iD , then the argument of the exponential in the modified integrand will
have re lative ly little variation with ~ if a is comparatively large. So
as to avoid takin g too many samples outside the range in which 2~(~-~) and
~(I4+~ ) are non - zero , we somewhat arbitra r ily suggest that the sampling
parameter ~ have the value

a- for I~I << (r0 /D) a- (A,l7~ )

_ _  

a- a- 
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To smoothly combine Eq. a- s (A. 17 )  and (A. 17 ), we chose to use as the
gaussian distribution sampling parameter

~~ F~L ~ r /D a i/a
Vro /D ) [0 .207 (r0 /D)]$ + 

(,,~ ) ~j~
s Ia 

~ 
Ia-o~t ~

‘ 
+ 

r /
a-D a  _J . (A.l7)

~r0 / Dj  •~~a J I

Given a a- it is a straightforward matter to generate appropriately
distributed random samples of the two components of ~ a- namelya - p1 and
p2 according to the equation

p1 ~~y- g1 ; p2 a g 2 , (Ap l8)

where g
~ 

and g2 are gaussian distribute d random variables with zero
mean value and unity standard deviation. Well-defined computer r outine s
for generating the random variables and g5 exist. The generation
of the random samples x1 and follows from the equations

xi - ~~ - ( l _ j ~~1) u ~ a- (A. l 9a)

= h (u2 - 4) a- (A. 19b)

where u1 and u2 are ra ndom va r iable s unif ormly distributed on the

interval between zero and unity (0 , 1). [Clearly x1 and x5 are uniformly
distr ibuted , and by substituting the limiting values of u~ and u2 , we can
confirm that x1 and x2 just spa n the ranges defined by Eq. ‘s (A. l l a )  and
(A.llb).]

If we use the notation MCA ifI; p1 (~) J V ;p2 (~) 
~ ~

(
~~a-~~~)B t o denote

the average value of the function ~~~~~ when evalua ted as a Monte Carlo
Average over the sampling distributions of I and 9 defined by p1 (~) and
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p3 (~) a- then It is obvious from consideration of Eq. (A. 16) that we can

write the speckle transfe r function as

•
~~ ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[~~
) ~ (5~+~~) -~ )2~~ -~~+ )

X exp £4 ~~~ 
-6. 88 (D/r0~~~ Y~~~~~])} . (A.20)

We can estimate the variance of the modified integrand as

Var 
~~~~~~~~

(2~(5E) ~~~+~~) 2~~ -~’) 2~(I4+~~)

x exp [4- I~~I i oa _ 6. 88 (D/r0~I3 ~(~,~ )]3a}

- [j (?)/J(o))a . (A.21)

Accordingly, the standard deviation of the Monte Carlo estimate of the

normalized bispectrum , j ( t)f j(0) , which we obtain from Eq. (A. 20)

i i  is

SD = (Var/C)1/S a- (A.22)

where C is the number of sample values of (I,~ ) that we used in forming

the Monte Carlo Average.

In Appendix B, we list a compute r program which generates a table

of values for the speckle transfer function, a7 (fl IJ (0)  a- and for the associated

standard devia tion, subject to the conditions that no more than one million

samples will be used , and that otherwise the Monte Carlo sampling process
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will stop as soon as an estimated one-percent accuracy for the speckle
transfe r function is achieved. Results were calculated for values of

D/r ~, equal to 10 a- 30 a- 100 , 300 , and 1000 . and for a very large range
of values of the normalized spatial frequency, ~ = X T ID  a- from very near
zero to very near unity. The choice of value.~i for the magnitude of ~ was

made to ma tch a gaussian distribution scale so as to provide fine detail for
near zero , a s well as for ~~I near unity. The speckle transfer func-

tion value s. J(flij (O) , are listed in Table A. 1 . In Table A. 2 , we show the
ratio of the standard deviation to the estima ted value along with the number
of samples used to form tha t estimated value for each entry in Table A. 1. In
evaluating the speckle transfe r function , random samples wer e used in blocks
of one-thousand , the number of blocks used being adjusted to provide one -
percent accuracy, except that no more than one thousand blocks were eve r
used.

We recall that our objective in this appendix was to provide a basis
for testing the accuracy of the approximations to the speckle transfe r ‘unc-
tion provided by Eq. (40) for lar ge values of relative to r0 /D a- and
by Eq. (44) for small values of relative to r0 /D . Accordingly, our

computer program also calculated the se approximation -results. In Fig. ‘s 1
to 5, we have plotted the Monte Carlo estimate s of the speckle transfer
function as a function of the normalized spatial frequency, t i  = x m i D
for each of the five values of D ir0 conside red, along with the correspond-
ing approximation results of Eq. ‘s (40) and (44). As can be seen from a
consideration of these figure s , the approximations are each quite good in
their reg ion of expected validity. This is particularly so for the larger
values of D/r0
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Table A. 1

Speckle TransiL ;r Function

Monte Carlo Result s

Normal*s.d
SpitlAl Sp.ckl. Tr .n.(.r Fura -ctio.

7 r.qu.nCy
i;i D1r0 a1 0 D/r ~ .30 D/r0 . l0O D/r~ .3Oo DIr,.I000
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0 . 2 0 ’  5 . : 9 a - — :s  4 . 4 5 • - ’ 34  .. ‘6.—3S 3 . 4~ •—0b ‘.3 2.—C ?
0 . 7 * 1 1 6  4 .~~3 . . 3 3  ‘.23. 04 ‘.20~~~’3 5 3 .33. 06 2 . 1 7 . — C ?
0 . 3 0 5 7 0  !~ ;:.—:s ‘. S 4 . — C ~ 2 . 5 3 . — I S  2 . 9 5 . — C ,  2 . 3 1 . — C ’
O. ~~22 3 1  ? . l 7 a - -~~3 1.QO ~~~Qé 2.S0.— 35 2 . 54 .— C o ? .26 . 07
3 . 4 7 0 2 6  2. 7 : a - — ; 3  a . 6 !. — : .  2 . t3 . .05  2 . 2 0 . — D O  1. 1~~.—C1
3. 53364 ? .3S~ .~~3 2 . l t. .3 4  1. 10 .— I S  t . 9 4 . — o o  1 . 4 3 . — I ,
3 . 5 * 8 3 3  1 . 1 9 - — ; 3 1 . 7 7 . — I ’  1 . 5 3 . — I S  1.57. O6 l.!9. 0l

- :  ‘3 .6 4 . 2 0 3  1.LS. -~~3 1.~~2 . — 0 4  2 .2 3 .— l i  l .2S .—0o  1 . l 3 . 3?
t . ’3 q .—~~3 % . 2 5 . ~~~’ 9.5 1 . — l b  1 . 0 3 . — O s  3. 9 6 . — O S

0 .7 4 0 6 7  5 . 3 7 . .~~ 5 . 9 7 . — C S  7 .5 5 .—lb  3 .03 .— C? 6. 12 e —C3
0. 733 ? ’  s . l o i — ~~. 6 . 7 * 1 — I S 3 . 6 4 . — lb  6.2 1.—al S . l j . — C 5
0 .8 2 2 3 4  4 . 3 6 . - ;~ i . . 9 1.— C5 4 . 3 1 . — O l  6 . 5 4 . — C l  4 . 0 4 . — C !
3 . 5 5 6 3 3  !.0t. .. . 3~~t0, 03 1 . 10 .—lb  3 . 3 5 . -C ?  2 . Q 2 .~~~5
0 . 1 115 71  l . O 2 . — I a - .  2 . 4 4 . 3S 2 . 2 1 . — l b  l .35 .— 07 2.03.—I!
0.~~1062  l . 2 3.—:4 i . o o . — O S  1 . 5 3 . — I *  l . 6 6~~~C 7 l . ’L~~~~1
0. ’3 i29 7 . 4 0 , — I S 1 . 0 1 . — O S  1 . 10 . — l b  1 . l l . — 0 7  9. ’a- le—3 9
0.94 33 9 4 . . O l s — 3 5  o . 1 I . — 0 a -  s . S 1 e — 3 7  7 . 3 ’ .— C 3  4 . 5 3 ~~— 9
0.Q ’ 1.S 2 . 3 1 . — I S  !. 3.- 0 ‘. L l . - 3 7  4. 5 4 . — I S  ‘. 12 .— Il
0 .911 13 ~.‘o.—l6 z.3:.—30 1. 41 •—3?  2 . l ? . — O S  2 . 6 3 . — C l
0.”91 ’ 4 .13 .— Ia : . l 2 . ~~:0 1. o S . — I ?  1 . 6 9 . — C !  1 . S S . — C 9
0. ’5563  t . ’5.— ~~a : . 7 ~~. — 3 ~ • . 3 3 , — 5 1 . 0 1 . — C l  ‘ . 2 6 . — I C
0 .0 3994 l . I l~~~3? .!~~. — C 7  4 . 5 5 . — I S  5. 7 7 . — C l  5 . 2 1 . — I D
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Monte Carlo Error Parameters

For each of the Monte Carlo results shown in Table A. 1 we show here our
estimate of the rms fractiona l errora- c , and the number thousands of
samples , C a- required to achieve this fra ctional error. Because we neve r
allowed use of more than one-million samples (C= 1000), our worst case
fractional error was 19. 5% (SD=0. 195), but for the most part a 1% (SD O. 01)
fractional error was achieved, generally with only about 37 000 (C 37)
samples in the Monte Carlo estimation process.

Nerm~3lz.d
Sp.t~~l 0/; • *0 0/.,’ 30 0/., .100 DI., -300 D/r ~ — 1000
1r.qu.ncy

SD C SD C SD C SD C SD C
0.00021 1.010 17. 0. 1 37~ 0.130 37. 0.010 35. 0.013 11.
O.0 C26 0.310 37.  0. : . :  36 1. 3 10 37 .  0.Ct0 3’. 1 .0 10  37.
0 . 0 3 0 3 2 3 . 3 1 0  37 .  0.113 3’ 0.020 3~ . 0.020 37. 3.010 36.
3.000 40 0. 110 36.  6. 110 1’ 3 .3 10  37~ 0 .0 10  3’ . 1 .3 10 30.
0 .30050  3 . 0 2 0  33. 0 .021 3 1 1.010 57. 0.010 57. 1.110 3 0 .
0 .0 00 2 1 . 3 2 0  31. 0.0 13 3? 2 .013  37. 0 .0 *0 30. 1.510 13.
0.00077 3.313 37. C . C 1 C  3 7 :.310 37. 0.010 3? . 1.311 33. - -
0.00096 3.010 37. 0.OIC 31 1.320 3?. 0.010 Ia. 1.110 33.
0.00119 ‘2.323 37. 0.010 3’ 0.013 37 . 0.110 36. 3 .313 63.
0.0314.7 ‘3 .313 37. 0.010 3~~ 3.310 I I .  1.010 30.  0.0” 1000.
C.00132 1.310 37. 0.010 3? 1 .313 37. 3.010 3~. 1.115 1330.
0.00223 3•5 j3 35. 0.010 3’ 1 .323 37. 3.110 32. 0.117 lOG O.
3.03273 3 .313 13. 1.110 37 3.011 37. 0.010 31 . 1.117 1300.
3.013.3 3.313 17. 1.3:0 1: 3 .321 36. 1.0*0 47 .  3 . 3 9 6  1030.
0.03622 3.110 37. 0.310 !‘ 2.313 15. 3.323 931 . ‘3 .345 1300.
0.01313 3 .310 37. 5 .313 1’ .‘-13 14. .OSa 1303. 1.164. 1300.
0.00634 3 .310 3?. Q.3:C r 3 .3 :3  53. 3. ’3se 1100. 3.33: 2013 .
0.03774 3.310 j7. 0.11: 3’ :.:t: 32. 0.052 1 :01. ‘3.321 1030.
0.0 19 43 1 . 0 1 0  37 .  1. 3 1 3  30 3 .  2 2 1  26. .0~~O 1331. ‘3.313 1010.
0.01144 1 .310 37. 3 .310 30 2 .313 235 . 0.025 1003. 3.311 2030.
0.02334 3 .110 33.  0.0 O 3’ 2. 215 ~~33. 3.120 1003. 3 .3*3 ~~ 9.
0.01603 3 .110 33. 0 .3 10 33 3.32’ 1:10 . 0. 114 1 330. 0 .0:3  233.
0.02032 1.120 33 .  0.3 10 33 3 .321 1133. 0.310 1 303. 3.013 U’.
0.02 394 ‘3.11 0 37 .  0 . 3 1 2  32 :.::, 1033. 0.0 13 S3S. 3.013 55.
0.02549 ‘3 .0 10  36. 0. 0 2 0  ‘1 3 . 3 2 3  1013. 0.310 273. 0.010 27.
0 .033 77 3.010 56. 1.01C 33 3 . 2 2 3  l3~~. 0.C1C 163. 0 .3 *0 13.
0.0 1933 3.010 36. 0 .010  336 3.2:: 510. 0 .02 0  73. 1.0*3 6.
0. 0667 7 2.3 10 36. 0 .02 0 529 3 . 5 1 3  2 *3.  0 .02 0  39. 1.301 6.
0.G 54a6 3.010 34. 0.010 325 .01 117 . 3.010 23. 5.319 4 . .
0 .0 0353  3 .3*3 34. 0.0 10 490 3 .312 30. 3.110 12 .  3.30 1 7.
0.0 1153 1.310 37. 0 .010 363 3.311 ~2 . 3.159 .. •3’39 9.
0. 03461 1.110 .S. 3.010 224 0.31: ~1. 1.339 4 . 3 .3 12  11.
3.09611 3 .3*0 5 7. 3.310 14! 3 .1*0 2 0 .  1.3 13 0 .  3.111 t O .
0 . 2 *04 6  3 .3 *3  76. 3.0 10 93 3.~~I 0  1~ ‘3.310 1. 3 .313  IC.
0.12529 3.313 94. 0 .0 10  55 1.10’ ;. 1.3:0 11. ‘3 .310  16.
0 .1414. 2  1.010 II. 0.010 56 0.313 ... 3.110 .9.  3 . I U  10.
0 . 1 3 83 3  5.013 37. 0 .0 10 22 0 .000 3. l .3 0 26 . ‘3 .313  15.
3 .17766 3.3 10 71. 0.3 10 ~~& 1.010 ~. 1.3 10 13. 3.311 14.
0. 13777 3.313 iS. 3 .02 0  3 3 .309 11. 5 . 0 :0  2 ’. 1.113 35.
0.219 19 3.310 .1. C.C ’39 a-i ‘3 .313 1!. 3 .3 :0  34. 1.113 15.
0 .24159  3 .3 3 3  21. 1.039 5 ‘3 .210  21 .  2.215 23 .  ‘.32 1 10.
0.24513 0.310 23. 0 .0 30  5 0 . 3 11  31. 3 . 2 1 0  1.. 3.111 3g.
0 .29094 0.3 10 15. 0 .OCI 3 1.021 .7. 3 .310  23. 0 . 0 2 1  I I .
0. 11116 3 .0 2 0  11. 0 .039 13 ‘3 . 3 ) 3  22 . 1.110 1~~. 5 .*a -1I  I’.
0. !o!70 0.310 7. 0 .0 13 1? 1.121 2 1. 2 .3 1 0  19. 2 .3 12  13.
0 . 4 3 2 13 1.311 1,. C . 0 2 0  2:  0 . 3 2 3  20 .  3. 213 ~ a .  1.311 20.

2. 310 9. 1.310 45 .0 t 3) .  3 .3 1 0  1!. 3.1:1 11.
0 .53 ! .— 1.3:3 31. 0 . 1 2 3  2 3  1.121 1.. ~~~~~ l~~. 1.523 2 2 .
1 .33115 3  1.1:2 l~~. 0 . 3 : 3  1 3 . 3 2 ?  10. 3.2: 21. 2 .0 12  14 .

3 . 3 12  1 2* .  0.1:3 2: 2.21: 21. 3.::: 12 . :.U tI.
2 . 3 2 3  ~ 1. C .3 C 7? 3 . 3 : 3  — 3 .  3 . 3 1 1  23 .  1 .222  14 .

0.7~ 3.7 3 . 3 13  53.  1.3:3 0 ’  - 23.  3.~~~~ 10. 2 .? :  2!.
G . 7 ! l 7 e  - 3 .3 : 3  c I .  3 .3 : 3  ~~~ 2 . 3 2 2  1 1 1 .  c.::: ‘3 . :.?1: *1.
0 .0323 ’  3 .3 1 2  33. 0. 1 1 0 2 1 . 3 1 3  2 1 .  0.3:1 ::. 2 .3 :3  1’.
0.11563! 3.310 67. D.1ID .3 3.222 1~~. 3 .311 ~~. 3 .317 II.

3.123 05. 0 .3 13  )3  1.2:1 1~~. 3 . 3 1 0  1 - . 3 . 1 1 3  20 .
3 . 1 1 3 4 2  3 . 3 2 3  3 1 .  0 . 0 1 3  2 2  3 .3 2 1  2 9 .  0 . 2 13  2 ’. 1.2 : 2  15.
2. Q ’ l i l  3.313 33 .  0.313 24 3.3:1 22 . 3.110 1’. 3.113 10 .

3 .331 33. 0.020 63 3 .313 16 . 0.111 2.. 3.3:2 36.
2.313 69. 3.310 37 1.211 19. 1.310 2.. .1 3  :5.
2.313 52 . C .210 36 3 . 2 2 2  1’. 3.312 2;. 3.22 . 15.

0. C , c 7 .  1 .2 13  31 . 0.3:3 27 1.1:3 21. :.3~~ 1~~. 2.331 Ii.
1.3:3 227. 0.3:3 3 0.1:2 31. C.~~~3 22. 1.3 2 13.
2 .3 13  2 3 7 .  0 . 2 1 0  52 ;~~l 3  22 .  3.::: 2; .  ‘ .~~ : 1 3 .
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Monte Carlo Integral Evaluation

1 rOi l .
2 •l ..,. i.a- .  s 1 2 l . .(2 ) . . i ( 1 7 . 6 4)
3 ~.l(i),(2.,3.141S92bt.(.t.,C u.rt ((l .l1s .I)1—l .)).I.uIrt (1— ..ul)
& f(e)1 1. —C .5.((I(10.0*9327...O.000164).I•0.125196 1 1.0.196eS6 P.I.1. •— ( 6fl
5 .1681.10.
6 c*3 ’ l . I I .
7 c g e s s . i o .
I c5 !z5 . lS.
9 a - l ’ 1 . i 3  t

13
12 z3 :0 .0 :
12 ‘a -sO
23 •il1.1 )s1 3.
2 ’
35
lb  .st1.4 )~ ’30.
1? •t (l.53z12?3.
3 • •• 533 . , , a -— 3 . ’.— C . 4 ” . C . 0’ 5
3 9  1.11.1
20 f ( . . 0 . l i . .)  

~~ ~o 600
23  •.( 2.~~) . f (. i .)  -

22 so o31
23 603 8.4. 8— s.c
24 .i(2.,a-).1.—f(.,d.)

a- 25 601 cola -sIn. .
.4 500 C O ’ I 3 I n u I
2 7  0. 53 0  . s 5 .— 2 . ’33 . 2 . 3 2 5 . C . 1 4
25
2’ f (..0.It. . I 90 ~~3 610
33 . s(2 .~~) z ~~( i s d )
11 so s o 611

( 32 610
33 - st 2.~a - l s t . — 4 C s s 4 ~~3. ~12 C O ’ a - * i I a - ..S
35 510
36 00 733 , a - g r z . 1 . ’
37

~~ 530 ,a - , I ,Pa . .64
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34 a l , h . s . s 0 Y . n 3 l c~~S)
60 ~r i5Ia—~~.05~~1dPi” 5I)
41 d r180i9rZ0Il’ I

sl~~.il 2. 357614,5
45
64
45 .~~(S..~-z r ,—1. a - i * C 1a -a l * 1 . l 2O
66 I fC.l .n..gt.S .l4’Z) 90 5 0  SCO
47
43 ~~~~~~~~~~~~~~~~~~~ ;o to .00
4? at (g•n3rt_ 2. a -a - 8lo~~*)S;0t(l l 0Ia - $) 5ll(Sl0AS) 4i80(iIOSA )

53 903 c.a - .tIa -a -~.
51 at(5..a-:,:.1.~ s le I t , )1 .i 20
52 2$(.I,ra-..;~~.1.ll0P l* •t1S.~.or ;1.iial0Iti)s0.63S.~ iIt.l0Ia-i)l0elo 9
53 • I 5 . :$2 . .(.4r l ri.1I 9~~I•i I 98l 0.Z! IS4~~1$S ) lCId~~lSi ’I.1a4~~*U0 *
56 I f ( 4 r z I t . 3 . l  , I ; s z s .3
55 •.~~*.l~~p isi l3Pl S
50
57
53
59 a . o s t $ _

~~ . .•13
63
*1 1s t . . — 1 3  -

02 . . ou 3 .
63 d O .
6. 110 c a l l  r , n l o — _ $nsr I l _ 991 0 0 . 2 )
OS •l’slqoi’OU)
66 .2 ’. i ; o . ’ e(3 )
67 •28.lpZ.02
63 .so. ol..1•:2,o
63 200 C a l l  ra.a-dos_ %a - l 00rS_poO(i.2)
73 csc.t
71 . l i O . 5 — . l . n * C . l o a - l S — 1 . P . Z ( 1 )
72 aa’la-.(l(2) 0.5)
73 ulii li2.i2
74 g a o ’ a - 1 • i 1 • s 2 1 0
75 I f ( i . a . ~~t . 0 . l 5 I  ‘o to  310
76 g l . .l u1.I I INS
77 f ( i 1 ~~~~a -1 o . — . 2 i s .~~t . 0 . 2 S)  50 ts 110
73 . L ’. 1 ’. 1 01 -

73
33 t100210 2, 2 02 12S02
31 l f 1 . t oo t .~~ta~ 2 .s . O 2 t 2 . i 5 . G . 2 S )  ~,s. !tO
32 ,80o...1 01..ION.
33 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qe so 310
I’ ~(O . 0 . ) 1 . s 1 8 1 t)  90 50 200
35 l f ( , i . . l t . a 0 1 0 5 )  ;. t. 210
0. i..~~3 * i lS01 3 -

17 øoai ~~1~~.l0~~O
55
39 .1(...,s ia -i

so
91 f ( .va- .l,. — 4 5 . )  .~ 3.
92 i O ( s n . l s . —6 3 . )  ~o t o 330
93
34 30 5 3  305
35 200 cts, ’,1— ,to~ s
96 ; t s a sc 5 s 3. C t i ~~l (0 , 3 4 1 9 2 1
37 •~ (..a/s~~ io).0rsS 3o (.51—c!e•*a,~ Iogi.•c16 .(1.— C 13scss.))
94
99 i f ( , n . l~~.— ’ C . )  .10.

Id ;f c , ø . t s . — 4 3 . )  90 *0 303
101 • * o a - o ( s )
LU ;o t o  301
103 213 dts.s, e .1o41
104 cs u o o c t s s . c  t s i I ( c a -~~..s~~)
ICS 01 0505l.I qs,).4r133.(s... .e54—c34 .(os.l...4e016).( i.—sOI’c ;,.))
1C6 i a - a - I .
1C7
101 If(.a-,.l,.—4 0.)  qo s o 320
ICS •I..a(.P
110 300 i i . — .
I I I  t I 9 l $ i 0~~ø i

112 310 lf (llelt*.IcIill..’..c) ;o to 110
l i i
114
Ill I f((s4l..qt.53) .,n3. (c.lt.,2)) 90 tO 222
116 .s(5.nsrx....lo,.).( 0.l3.l~~1S926l .i i9~~~.a-s( l..sIe Ia-iIe *
117 •5( 5•Ia - JP3~~* . s S l 3 lI l l I ( l 9 . / 3 . 1 . 15923) . , l1, ~~.,.(l. _ . l . I a - .) s ,4
I I .
1*, •a-’ I na -  .03. d r r . . l o~~a .l  p 3 1 5 . n 3 r 3 . l . . a- . l .s , ) . i  ‘— 2 . 1  P.c
22 0 430 f . ru .s( 1’3, .  ‘ 0 . 1.3 . .f ’ .4 .b .  . ‘ ( . I 2 . 4. 3. 3 . 3. .  ~: .0)
131 303 s o s s I n i
121 130 s.ntln.. .
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Table Generation

~iln b. .qr,.
P 1 $I’..a-sl,a-a-( 2 roilsI 31

3 ‘ .8 0 (32)  ii
4,

5 103 •o’os({S.. l l l l / l / l l / )
- o. 233 ‘3 . 6 4- 

P arI a-a-s 30? . 15t2.I ).ut(5.I) ..t(j3.I).at(15 .I)..,(33 .l)..,(35.jpI 
3 300 •s.~~. t C 3 l , . f 1 3 . 5 . t . . t o 5 ( , t 0 . 2 .3 s ) ,
9 200 c o s t I , a - ..u

13 an t s  ( 6 . 635 1I Il  603
1 12 ii 53 5I II 700 p1.!
* 14 ‘12’j~~1)°as(5 j l.UIofl5 sj .I31 15 703

16 onlns tOO . •t(2 .i).(t(J).jsI.1C)
17 600 •.‘.as(3t’..’IO.5.0,.5(15.3.i.,5.o.2,,)- 13 300 c o s t I . a -~~o
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