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Abstract

The elements of longitudinal and shearwaves in solids are reviewed

and applied to the propagatibn of sound in an I beam. Comparison with

experimental data reveals that principle modes of vibration in an I

beam excited under a number of different source placements seem to be

dominated by the first flexural mode. A variety of source

transducers

were constructed for the efficient excitation of motion in the beams.
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Introduction 3

The propagation of mechanical waves in solids can often be described
with the help of two potential functions. Longitudinal motion can be
obtained from the scalar potential which satisfies the wave equation

V¢ = -'— (1)

Q.‘Q,

where L is the "longitudinal bulk" speed of sound.
Shear waves can similarly be described by the vector potential
which obeys the wave equation

2 a0, . :
v z}i % .Cl; 3_.3'5 L:&)Z,} (2)

where Cs is the "shear" speed of sound.
The speeds of sound cL and Cs associated with these two wave equations
can be expressed in a variety of forms. If we define

Y = Young's Modulus

P = density
g = Poisson's ratio

] = Lame constant = Shear Modulus

A = Lame constant

then these constants can be related by the following expressions!

3M+12 A
Y = il o MRt o-_-.-.‘.
e e i (3)

o ¥ (
)“Y(l-rr)(l'?.a-) T“'%-Y |+0




and the speeds of sound can be expressed as

2
CL-_‘M
5 (4)
2
Ca = -ﬁ;L (5)
If we define the "longitudinal thin bar" speed of sound Sy
r Y
Cbe—-— (6)
e
then the above speeds can be reexpressed as?
cz_cz |-q )
i i (1+a) (1-2¢)
Clzcz _I- ! (8)
g b 2 |40

From the relationships between the elastic constants, it is clear
that o must always satisfy ¢ < 0.5.

Obtaining the ratio

(9)
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reveals that the shear wave speed must always be smaller than the
longitudinal wave speed,

(10)
0<c < NT

Some acoustical data! for a few solids are presented the first five
columns in Table 1. The values for Poisson's ratio were calculated from
(8) and/or (9) and the tabulated speeds of sound Cy» and ¢, and c.. If
there was appreciable disagreement between the calculated values of o,
the average was listed. Values of Cy in parentheses were calculated from
the lTisted value of o and the other tabulated quantities.

The particle velocity U= uxi + uy§ % uzi of the mechanical wave in
the solid can be obtained from the scalar and vector potentials,

b =Veg +VxY (1)

and the stresses within the solid are given by

Ju, 9«.) o

2 <9¢L (

6;4'>‘V¢+2";:b 43 & i 7 ¥ on

The other stress components are obtained by the usual permutation
of subscripts. The subscript convention is that the first subscript
designates the normal of the plane the stress is applied to and the
second specifies the direction of the stress. Thus, unlike subscripts
designate shearing stresses in the chosen coordinate system; these
stresses are symmetrical, Sij = Sji- Like subscripts specify the
principal stresses.
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Charx-acetsri stic
Speeds of Sound Densit mpedance .
105cm/sec g/cm®  108g/cm2-sec  ossion’s
¢ c ¢ c Ratio c (s.)
Material b L (3 e F L g e
Aluminum 2S0 5.10 6.35 3.10 2. 1.73 0.35 5.44
1787 5.08 6.25 3.10 2.80 1.75 0.34 5.40
Beryllium 12.75 12.80 8.71 1.82 2.33 0.07 12.78 :
Brass 70-30 3.40 4.37 2.10 8.50 3.70 0.33 3.60 i
naval 3.49 443  2.12 8.10 3.61 0.35 3.73
Bronze
(phosphor 5%) 3.43 3.53 2.23 8.86 3.12 0.17 3.48
Copper 3.1 4.68 2.26 8.90 4.18 0.35 3.96
Steel 5.17 5.85 3.23 7.80 4.56 0.28 5.39
mild 5.05 6.10 3.24 7.90 4.82 0.26 5.28
302 4,90 5.66 3.12 8.03 4.55 0.26 5.10
304L (4.93) 5.64 3.07 7.90 4.45 0.29 5.15
410 5.03 7.39 2.99 7.67 5.67 0.41 5.48
416 (5.20) 6.02 3.23 7.70 4.64 0.30 5.46
Tin 2.73 3.32 1.67 7.30 2.42 0.33 2.89
Plastic
acrylic resin  (1.88) 2.67 1.12 1.18 0.32 0.39 2.02 ]
(2.16) 2.68 1.32 1.20 0.32 0.34 2.30
Plexiglas (1.88) 2.67 1.12 1.18 0.32 0.39 2.03
Polystyrene (1.85) 2.35 1.12 1.06 0.23 0.35 1.96
6
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Rayleigh Waves

Perhaps the simplest kind of a surface wave to consider is that
which exists on the surface of a solid of infinite depth. Let the
surface of the solid at z = 0 be completely free to move, and let the
solid fi11 the half-space z > 0. If we assume a plane-wave disturbance
of constant frequency traveling in the + x direction, then we can
postulate the form of the potentials,

¢ L)t’/QR‘\‘) "'(“f-/P‘R")

-? :Z‘(})& s 'l-pz=%”(}) e (13)
Substitution of these into their respective wave equations yields
2 + A
? = A "‘1’['\/’9% ‘/2‘_ 3 + (uf- R,,,)]
(14)

Y = E *"P[’ /2:’/951 5 b ,_‘(u'&‘/p‘n"")]

for motion which will vanish in the Timit of large z, where kL and ks

are defined by
X = wie

/Q zw/c .

g =0 =0 at 3:0 (16)




the motion is independent of y so that all 3/3y must vanish. The
boundary conditions then become

b3 T
15 -39 -

oo 1

Y o'¢ a‘v
33 )‘( aa¢) 2"'(()3 éJn/.) bt

Application of these boundary conditions to our solut'lons yields the

amplitude of y in terms of A
2 JA -0

[Bl = 3

,2 -4

and a characteristic equat'ion for the wave number kR

5? 4R JA, 27 VR A —(22: —,Q:)t =0 (17)

Under the condition kR > ks (recall that we must have ks > 2 k. from (lo) )
which is required for a surface wave which goes to zero for large z,

it can be shewn that the characteristic equation has only one real root,
which corresponds to propagation in the +x direction (an imaginary or complex
root would correspond to exponential damping in the +x direction). This
root kp is given approximately by3

%

—-—
=

/aﬂ

0.87 +Li2o
| 06~

(18)
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Thus, for the allowed values of Poisson's ratio (0 < ¢ < 0.5), the values
of the phase speed of a Rayleigh wave must satisfy the inequalities

Cr
0.81< — < 0.95 (19)
%

The "skin depth" Zk of the Rayleigh wave is determined by the
exponential decays of the two potentials. Roughly,

¢ %2
VA -8 e

~

(20)

b

3

Lamb Waves

When the solid medium is not infinitely thick, there must be a set
of boundary conditions to be applied to both surfaces of the material,
and this can change the properties of the propagation appreciably.

Let the solid be of thickness z and Toaded on both surfaces with
air. The boundary conditions are then the same as before, vanishing
stress at the interface. For the plane wave disturbance of constant
frequency traveling in the +x direction, the form of the potentials is
as before,

((wt-Ea) Lot
2z T, pazpd™T) @

Now, however, instead of restricting attention to solutions to the wave
equation representing waves attenuating with large z, we must allow for
the possibility of standing waves.
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Suitable trial solutions are then

? . [A‘ i /'—/Q‘:.‘_/P'_c? 3 + 2 rT—BL_/QL}] ci(uf-«&t)

(22)
Y L'(w't‘aptd)
11) -:[B. M\l 2‘-/9} 51- P.L My/ ,P‘, "/?4 a,.) e
and the boundary conditions are
g = = 0 d =0
3 03‘} 3 A (23)

Application of the boundary conditions results in two separate characteristics i

e (VE-T22) 4T B2
o (VE- 25 2/2) (208 ) (24)

ten (VA-R7202) QRN
e (VR-ET2/2) 4R\ REAT

whose independent solutions together yield the allowed values of k. These
equations reveal that the propagation of Lamb waves in usually highly
dispersive, as to be expected with a waveguide-like system. The cutoff
frequencies for the various allowed modes of vibration can be obtained
from the requirement k - 0, except for the two lowest modes of vibration
which can exist in the limit of frequency approaching zero.

The motions of the Lamb waves can be classified as either symmetric
or antisymmetric. In the former case, governed by (24), there is a plane
of symmetry at z = /2 so that the displacements of the surfaces at z = 0, #
are mirror images of each other. For the case of antisymmetric motion,
governed by (25), the displacements of the two surfaces are identical and

the distortion of the plate resembles that of a transversely vibrating
membrane.

(25)

10

iv'_




The Towest modes are the zeroth order symmetric (so) and antisymmetric
(ao) modes. These can be found by allowing the arguments of the trignometric
functions to vanish. In this limit, we have

X
{ s

“» 2 / Ja:_ ’Qa.:

"

(26)

from (24) for the lowest symmetrical mode (so). The phase speed for this
mode can be seen to be

C(a) » —Bonn o ff (27)

whicﬁ:?hdependent of frequency, at least for small frequencies. Because

of this independence it follows that the group speed has the same value.

In this Tow frequency 1imit, it is seen that propagation in this mode is
dispersionless. Values of cp(so) are presented in Table 1 as calculated
from the given values of Cys> Cq» and o. If the calculations led to slightly
different answers, the results were averaged. For the lowest antisymmetric
mode, (ao), on the other hand, complicated analysis?® reveals that in the

Tow frequency limit the group speed is

- 4 =
¢ (=) ~2Jw2/2 NG [3u-e®) =135 (4)F2 ()
where f is the frequency. and the phase speed is

¢ ()~ () /2 (29)

11




so that there is considerable dispersion for propagation in this mode.

The cutoff frequencies for the higher modes can be determined by

finding the frequencies for which k + 0. These frequencies occur when

tan (\/,P;:-,P.:' 2/2) e 98
tun (JE-2F 2/2) i

for symmetric modes and
teu (\’;/Q‘s ’/Q‘:. 2/2)
—> o®
t&( [—-,Q:.-,Q- \.'2/2) (31)

for antisymmetric modes. The results are

M2/ =3 iz, Suf2, ..

(32)
,952/1 = W, 27, 3T, .
for symmetric modes and
/EL%/Z = Tr) 2T[—’ 377: i
(33)

,Q,%/z =T/2, 37,—/2) S/, - -

for antisymmetric modes.

-

At very high frequencies, the So and a, modes resemble Rayleigh waves
propagating on both of the surfaces of the salid, and the group and phase
speeds for both modes monotonically approach the Rayleigh wave limit Cr-
For all higher symmetric and antisymmetric modes, the high frequency limit

of the group and phase speeds approaches the shear speed Cq-

12
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Results for Steel Plates

Study of Table 1 reveals that representative values for the various
phase speeds and Poisson's ratio in steels are

¢, ~ 5.8 x10% cm/sec
Cp(4,) ~ 5.3 x 10% cm/sec
¢y, ~ 5.1 x10° cm/sec
cC. ~ 3.2 x 105 cm/sec
cg ~ 3.0 x '0° cm/sec
g ~ 0.28

On the basis of these values, the cutoff frequencies for some of the lowest
modes in % in. and % in. steel plate have been calculated and presented

in Table 2, and estimated value of cp(ao) presented in Table 3 for a number
of frequencies.

The Rayleigh speed g = 3.0 x 10° cm/sec is the asymptotic limit of
cp(ao), so valuesof cp(ao) calculated from the approximate expression (29)
which exceed Cp have been replaced by that quantity. Calculated values
approaching Cp should be considered as only estimates. The group speed
cg(ao) can be taken as nearly Cp for all cases listed in the Table 2.

While 1ittle can be said in general about the absorption of Lamb waves
in plates , the fact that the propagation is in modes requires that absorption
be greatest where phase speed dispersion is greatest. Thus, greatest
losses at a given frequency should occur for those modes of propagation
having the highest cutoff frequencies. Additionally, the attenuation of
Lamb waves should be determined primarily by shearing losses for those modes
whose motion is predominately shear (such as ao) and by longitudinal losses
for those modes whose motion is dominantly longitudinal (such as so)

13




CUTOFF FREQUENCIES FOR THE LOWER
LAMB WAVE MODES IN STEEL PLATE

TABLE 2

Cutoff Frequency in kHz

Plate

Mode Condition 1/4 in. Steel Plate 1/2 in. Steel
So 0 0
a, 0 0
a4 z=1./2 252 126
S zZ= AL/Z 457 228
Sp z =2 504 251
a, z = 3/2 756 378




Frequency in kHz

TABLE 3

cp(ao) IN REPRESENTATIVE STEEL PLATES

Approximate Value of ¢ (ao) in 105 cm/sec

1/4 in. Steel Plate

1/2 in. Steel Plate

T

50
100
150
200

15

1.8
2.5
3.0
3.0

2.5
3.0
3.0
3.0




Experimental Study

A short series of experiments was performed at Naval Weapons Center
with the participation of Mr. Myron Iverson. The purpose was to study
the propagation of sound from source to receiver in an I beam as a func-
tion of frequency and of transducer placement and separation. The I
beam measured approximately 21 ft. long, has 3 in. flanges, a 5 in. web,

and the thickness of all portions was nominally 0.25 in.

The transmitter was affixed at several positions very close to one
end of the beam, and the receiver was positioned in the middle of the
web (between the flanges) at distances of approximately 4, 8, 12, 16
and 21 ft. from the transmitter. The transmitter was excited with a
3 V peak-to-peak, four cycle, tone burst of either 170 or 360 kHz signal.
The received signal was amplified 40 dB and displayed on a CRO which was
synched to the excitation of the transmitter. Photographs were taken of
the displayed waveforms and are presented in Table 4.

The transmitter was a longitudinal vibrator fabricated at the Naval
Postgraduate School. Its active element was a 1 in. diameter 0.25 in.

thick ceramic disc. It was attached to the I beam with a 3/8 - 24

threaded stud. The mating surface of the I beam was ground down to re-
move rust and sclae and well-greased to provide good acoustical contact
with the surface of the transmitter.

The receiver was an accelerometer furnished by Naval Weapons Center.

It was hand-held or gravity coupled to the I beam with a thin film of

0il between it and the ground surfaces of the I beam.
Analysis of ttephotographs reveals the following significant points:

(1) 1In all photographs, the first signal reaches the receiver with

a speed of about 4900 m/sec. This can be identified with the Tow-frequency

16
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group and phase speed Cp(so) for the So mode. This signal is then a
symmetric compressional wave traveling through the flanges and web from
source to receiver. It is interesting to note that it is always rela-
tively weak compared to the subsequent signal composed of propagation
in other modes and reverberation.
x (2) In all of the photographs for which the frequency was 170 kHz,
there is a very clear, unambiguous arrival with a speed of about 3200
| m/sec. This signal is particularly prominent in Table 4a. This would
i appear to be identifiable as a wave propagating in the a, mode since the
calculated group speed for this mode at this frequency is CR and this
value agrees very well with the values in Table 3 for freqeuncies be-
| tween 150 and 200 kHz. Further supporting evidence is that the geometry
of Table 4a is one which should emphasize propagation in the flexural
wave modes and all higher s and a modes should be cut off.

(3) The photographs for which the frequency is 360 kHz reveal evidence
of considerable multipathing and dispersion. This is plausible because
at this frequency the 3, mode can also be excited.

It must be understood that the identification of the "longitudinal
thin bar speed of sound" and the flexural wave modes a, and So is really
only an approximation because the geometry of an I beam obviously deviates
from that of an infinite thin plate or bar. However, the propagation in
the I beam can be characterized as very similar to these modes, with the

flexural modes far outweighing the longitudinal modes.

17




Source Position
Frequency = 170 kHz

Source to receiver (ft) = 4
Horizontal scale (ms/div) = 0.2
Vertical scale (V/div) = 0.5
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0.2
0.5
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Frequency = 170 kHz
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Source Position

Frequency = 170 kHz
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Source Position

Frequency = 360 kHz
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Excitation of Waves in Bars and Plates

One parameter which is important in the transfer of power from a
source of vibratory motion to the elastic waves in a plate or bar is
the mechanical impedance at the driving point. Also important is the
internal impedance of the source device.

Mechanical impedance Z = $%§§§ity > 5

swt
For simple harmonic mctions, the power delivered by a Force F = Foz1

ts Wi = fo Yo  cos o where 8 is the phase angle between F and U.
Z

IFZ, =R+ 1X=|Z][2"

Tane=]§- Cose=E
1Z,]
F2R U2
So that Wi = —> =S R
LT Lt £

Generally it is found that both R and X may vary with frequency
and it is convenient to calculate expressions for power delivered by
a constant force generator or a constant velocity generator, in analogy
with electrical circuit practice.

The driving point impedance of a complex mechanical structure may
vary rapidly with frequency in the neighborhood of resonances. It is
possible to calculate resonance frequencies and the driving point
impedances for only the most simple structures. It is useful to examine
the results of calculations for the non resonant cases of an infinite
beam or plate. The implication of infinite length is that not only is
the length large compared to the wavelength but that is large enough to
insure that waves reflected from the far end have a negligible effect on
the driving point impedance.

For the case of flexural waves in an infinite beam, driven at a free
end, there is no moment at this end and the result differs from the case
for the driver located at the center of the infinite beam.

24
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Ross (Ref 4 p. 137) gives the driving point impedance for flexural
wave excitation at the forcedend of an infinite bar,

e ! bet 17
izvn i ;E;" 4&;:7( ! i,
7 ke

Where o = Angular frequency
Y = Young's modulus
I = Moment of inertia of beam cross section

kF = Wave number for Flexural wave in beam

- he % ke =8 = helire -8

F= Low Frequecy value of wave number

VF = Phase speed of Flexural wave
VF = Low frequency value of phase speed

i P(|+e)(__<;_o£)

I = Shear parameter =

Y

G = Shear Modulus

K = A constant which takes account of warping of cross
section during bending, which depends on shape and
Poisson's ratio,Normally K < 1

e = Ratio of mass of entrained fluid to that of structure

S - Cl;f \}<§§E L ~ﬁ%s-v | €

is a reference angular frequency

C, = V Y/f = long bar compressive wave speed

,&L = Total mass per unit length of beam which is involved
in the motion.

p = Volume density

25




At high frequencies, & > 3, and the reactive part of Z becomes very
v
small and VFsthg Fe /W
o
For a constant force source,
. FL/
W; = WUz
where ?E? is the mean sguare of the driving Force.
For a constant velocity source,
b
Wy = RV
: LY
{ T bt e L
1+ (54/1Qf=

whereTﬁ;is the mean square velocity at the driven point.

For a source locatad at the midpoint of an infinite beam:
For a constant Force:
J

Wi = LT e l;T
A

for a constant velocity:

e,

It appears that if the driving point is away from a free end, the
impedance increases and the beam becomes increasingly resistant to

absorption of power from a constant applied force as the frequency
increases.

26




Impedance For A Thin Plate

The computation of an expression for the input impedance for a
point force exciting flexural waves in a thin plate involves several
types of Besse}'s Functions and considerable manipulation, yet it
results in a sdrprisingly simple formula. (Similar considerations for
a thick plate may not be so simple).

Ross gives the result (P162)

2 2 v(w'B, = LAGh = T uiek

Where /u' = mass per unit area
=fsh
fl = volume density

h

Cp

plate thickness

Tongitudinal wave speed in the plate

'R7 X))

! N s = Bending rigidity of plate per unit
Viex -

Poisson's Ratio

(=]
"

ag
S = Cross sectional area per unit width
K = radius of gyration of cross section

When resonances exist, there are maxima and minima in Z coinciding
with resonances and anti-resonances. Ross quotes results from others
indicating that geometric mean values in such cases agree well with
this result for the characteristic impedance.

An example for a plate of thickness, 4 = | Cw ) f, = 7800 kg/m&

Cp= 5250 m/sec | /u’= 73 ke /o

Q\\lts Z ~ qgoo N.g‘g/m

27




As a comparison, the order of magnitude of the characteristic impedance
of a typical piezoelectic ceramic of 1 cm diameter.

Ce ~ 5000 m/s“

o ~ 70Q0 kg/m3
-y

area A="10" 2

A=pCp A - 2,700 N-See/pmm

It is seen that the order of magnitude of the characteristic driving
point impedance for a thin steel plate is comparable to that of a
piezoelectric ceramic vibrator having a diameter equal to the plate

thickness. This suggests that the problem of obtaining some reasonable
matching of impedances is not severe.

28




Transducer Fabrication

As part of the effort in this program, several electroacoustic trans-
ducers were designed, tested and delivered to the sponsor. Two each of
four different models were furnished. The designs were intended to be
most effective as sohnd sources. Different models had differenct res-
onance frequencies. The intent was to provide sources which radiated
relatively efficiently at a number of frequencies in the range from about
thirty kHz to two or three hundred kHz. These could facilitate measure-
ments of transmission loss through structures and particularly help in
assessing an optimum frequency. The following paragraphs provide a brief
description of their construction and free resonance frequencies. All
transducers used piezoelectric ceramic elements and the dominant mode of
vibration was that of a longitudinal vibrator. The base of each trans-
ducer was designed to accept a threaded stud for clamping to the structure.

Although only a few resonance frequencies are listed, there were a

number of higher frequencies at which resonances also occurred.

Transducer Mod 2
Ceramic: Gulton Mfg. Co. HS 21 Ceramic
Radially polarized cylinder
1/2" 0D x 1/4" 1D x 1 1/2" Long
Base: Brass Hexagonal Rod 5/8" x 5/8" Long
Joint: Epoxy Resin, Unreinforced

Blocked Capacitance: Co = 3500 p F

Resonance Frequencies Noted: 26 kHz, 56 kHz




1
Transducer Mod 3 ,
Ceramic: Channel Industries Channelite 5800
Axially polarized Cylinder
3/4" 0D x 1/4" ID x 3/4" Long
Base: Brass, Round 3/4" 0D x 3/4" Long
Joint: Epoxy Resin, Unreinforced.
Capacitance: Co =130 pF

Resonance Frequencies noted: 43, 75, 83, 95 kHz

Transducer Mod 4

Ceramic: Channelite 5800

Axialiy polarized Discs 1/2" 0D x 1/8" ID x 1/4" Long

Two discs mounted end to end with reversed polarity -
Driven electrically in parallel

Base: Brass, Hexagonal 5/8" x 5/8" Long

Joint: Epoxy resin reinforced by compression screw
Capacitance: Co =400 p F

Resonance Frequencies Noted: 50, 75, 85 kHz

Transducer Mod 5

Ceramic: Channelite 5800 Disc Axially polarized 1" 0D x 1/4" thick
Base: Brass, Round 1" 0D x 1/2" Long

Joint: Epoxy Resin, Unreinforced

Capacitance: C0 =800pF

Resonance Frequencies Noted: 69.5, 74, 84.5 kHz
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