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• ELEMENTS OF SOUND TRANSMISSION IN BEANS

ft
by

A.B. Coppens and 0.3. Wilson, Jr.

Abstract

The elements of longitudinal and sheer waves in solids are reviewed

and applied to the propagation of sound in an I beam . Comparison with

experimental data reveals that principle modes of vibration in an I

beam excited under a number of different source placements seem to be

dominated by the first flexural mode. A variety of source transducers

were constructed for the efficient excitation of motion in the beams.
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Introduction

The propagation of mechanical waves in solids can often be described
with the help of two potential functions. Longitudinal motion can be
obtained from the scalar potential which satisfies the wave equation

(1)

where C1 is the 9ongltudinal bulk” speed of sound.
Shear waves can similarly be descri bed by the vector potential
which obeys the wave equation

I i
~ ZI. ;~~

‘ L. ~~~~~~~~ (2)

where c5 is the “shear” speed of sound.
The speeds of sound CL and c5 associ ated wi th these two wave equations

can be expressed in a variety of forms . If we defi ne

V Young ’s Modulus

e = density

= Poisson ’s ratio

Lame constant = Shear Modulus

= Lame constant

then these constants can be related by the following expressions1

3A +2~. ~~~~
a Z~~# I.4 (3)

~~~~~Y 7~~~
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and the speeds of sound can be expressed as

C e  ~~~~e (4)

cjt = .~. (5)

If we define the “longitudinal thin bar” speed of sound Cb

%

(6)b

then the above speeds can be reexpressed as2

•2.
- (7)

• ( I+a-) ( I—2o-~

I 
_ _ _ _  (8)

I ~ ~~

From the relationships between the elastic constants, it Is clear
that ~ must always satisfy ~ < 0.5.

Obtaining the ratio

I . —

— I—  .1 ~k C L J 1 2. (9)
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reveals that the shear wave speed must always be smaller than the
longitudinal wave speed,

o~ ~ < (io

Some acousti cal data1 for a few solids are presented the first five
columns in Table 1. The val ues for Poisson ’s ratio were calculated from
(8) and/or (9) and the tabulated speeds of sound cb, and c1 and c~. If
there was appreciable disagreement between the cal culated val ues of a ,

the average was listed . Val ues of Cb In parentheses were calcul ated from
the listed value of a and the other tabulated quantities .

The particle veloci ty 
~ 

u~x + u~y + u~z of the mechanical wave in
the solid can be obtained from the scal ar and vector potenti al s

~~~~
. ~~~~~~~~~~ 

~~~~~~~~~~~~~ (11)

and the stresses within the solid are given by

(12)

The other stress components are obtained by the usual permutation
of subscripts. The subscript convention is that the first subscript
designates the normal of the plane the stress Is applied to and the
second specifies the direction of the stress. Thus, unlike subscripts
designate shearing stresses In the chosen coordinate system; these
stresses are syninetrical , sj ,j 

= s~~. Like subscripts specify the
principal stresses .

• ~



TABLE 1

Characteristic
Speeds of Sound Density In~edance ~ 

.
~lO5 cm/sec g/cm3 106g/cm2-sec °

~~t?~ 
S

Material Cb C1 C~ p rC L c~(s0)

Aluminum 250 5.10 6.35 3.10 2.71 1 .73 0.35 5.44
1751 5.08 6.25 3.10 2.80 1 .75 0.34 5.40

Beryllium 12.75 12.80 8.71 1.82 2.33 0.07 12.78

Brass 70-30 3.40 4.37 2.10 8.50 3.70 0.33 3.60
naval 3.49 4.43 2.12 8.10 3.61 0.35 3.73

Bronze
(phosphor 5%) 3.43 3.53 2.23 8.86 3.12 0.17 3.48

Copper 3.71 4.68 2.26 8.90 4.18 0.35 3.96

• Steel 5.17 5.85 3.23 7.80 4.56 0.28 5.39
mild 5.05 6.10 3.24 7.90 4.82 0.26 5.28
302 4.90 5.66 3.12 8.03 4.55 0.26 5.10
304L (4.93) 5.64 3.07 7.90 4.45 0.29 5.15
410 5.03 7.39 2.99 7.67 5.67 0.41 5.48
416 (5.20) 6.02 3.23 7.70 4.64 0.30 5.46

Tin 2.73 3.32 1.67 7.30 2.42 0.33 2.89

I
Plastic

acrylic resin (1.88) 2.67 1.12 1 .18 0.32 0.39 2.02
(2.16) 2.68 1.32 1 .20 0.32 0.34 2.30

Plexiglas (1.88) 2.67 1.12 1.18 0.32 0.39 2.03

Polystyrene (1.85 ) 2.35 1.12 1.06 0.23 0.35 1 .96

6
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Rayl~ igh Waves

Perhaps the simplest kind of a surface wave to consider is that
• whi ch exists on the surface of a solid of infinite depth. Let the

surface of the solid at z • 0 be completely free to move, and let the
* solid fill the hal f-space z > 0. If we assume a pl ane-wave disturbance

of constant frequency traveling in the + x direction, then we can
postulate the form of the potentials,

~~~ ~)
— 

(13)

Substitution of these into their respective wave equations yields

~ + (
~~-k~

)]
________ 

( 14)

+ .c~ ~ 4for motion which will vanish In the l imi t of l arge z, where kL and
are defined by

(15)

There can be no stresses on the free surface of the solid , so that

c C  =0 4 i = O  (16)ci

7
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the motion is independent of y so that all a/~y must vanish. The
boundary conditions then become

¶ ~x~f-~+ !~) +2p’~(j~ 4’~ 4) ~~
Application of these boundary conditions to our solutions yields the
amplitude of ~ in terms of A~

A~~~ 2~~ - .~&
and a characteristi c equation for the wave number kR

~~~~~~~~~~ ~~~ a (17)

Under the condi tion kR > k5 ( recal l that we must have k5 2 from (l o) ) ,
which is required for a surface wave which goes to zero for large z,
It can be showr~ that the characteristic equation has only one real root,
which corresponds to propagation in the +~ direction (an imaginary or complex
root would correspond to exponential damping fn the +x direction). This
root kR is given approximately by3

~~~~~~~~~~~~~~~~ 

+1 t.l 
(18)

Cs

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



Thus, for the allowed val ues of Poisson ’s ratio (0 < a < 0.5), the values
of the phase speed of a Rayleigh wave must satisfy the inequalities

Co.ri < -
~~~~~~ < ~~~~ (19)

S

The “skin depth” 
~R 

of the Rayleigh wave is determined by the
exponential decays of the two potentials. Roughly,

I —~~~~~3,l
R (20)

Lamb Waves

When the solid medium is not infinitely thick , there must be a set
of boundary conditions to be appl ied to both surfaces of the material ,
and this can change the properties of the propagation appreciably.

Let the solid be of thickness z and loaded on both surfaces with
air. The boundary conditi ons are then the same as before, vanishing
stress at the interface. For the plane wave disturbance of constant
frequency travel ing in the +x direction, the fo rm of the potential s is
as before,

(21)

Now, however, instead of restri cting attenti on to solutions to the wave
equation representing waves attenuating wi th large z, we must allow for
the possibility of standing waves .

9
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Suitable trial solutions are then

+

_ _ _ _ _  

1~ 
(22)

[i~ J~ 6 ~and the boundary conditions are

G_ = Q  :0 4 ~~~~~~~ (23)
~1 •‘

Applica tion of the boundary condi tions results in two separate characteristics

*~~ ~~ 
- - ~~~J~ -X/~ -~~~~~~~~~

~~~~~~~~~ ~~ f ~ / ) (~ ~~ 
L ~~ )L (24)

_ _ _ _ _  — 
(
~ 

9~~~Y (25)

whose independent solutions together yield the allowed values of k. These
equations reveal that the propagation of Lamb waves in usually highly
dispersive, as to be expected with a waveguide—l i ke system.. The cutoff
frequencies for the various al lowed modes of vibration can be obtained
from the requirement k -

~~ 0 , except for the two lowest modes of vibration
which can exist in the limi t of frequency approaching zero.

The motions of the Lamb waves can be classified as either synmetric
or anti syninetric. In the former case, governed by (24), there is a pl ane
of symetry at z = 1/2 so that the displacements of the surfaces at z 0, ~
are mirror images of each other. For the case of antisynnnetric motion,
governed by (25), the displacements of the two surfaces are identical and
the distortion of the plate resembles that of a transversely vibrati ng
membrane..

10
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The lowest modes are the zeroth order syninetric (s 0) and antisyninetric
(a0) modes . These can be found by allowing the arguments of the trignometric
functions to vanish. In this limi t, we have

j (26)

from (24 ) for the lowest syni~etrical mode (s 0). The phase speed for this
mode can be seen to be

C I- -!

_ _ _ _  ~~~ J 2. (27)
1’ ‘[I-e’

whichAindependent of frequency, at least for small frequencies . Because
of this independence it follows that the group speed has the same val ue.
In this low frequency limit, it is seen that propagation in this mode is
d~ispersion1ess. Val ues of c~(s0) are presented tn Table 1 as calculated
from the given values of Cb, c~, and a . If the calculations led to slightly
different answers, the results were averaged. For the lowest antisymmetric
mode, (a0), on the other hand, compl icated analysis 3 reveal s that in the
low frequency limi t the group speed is

~2~/~i7~ ~J~~/ 3( ’ -~~.) I.35 /~~(4~,)fl (28)

where f is the frequency. and the phase speed is

.
~ (29)

11.
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so that there is considerable dispersion for propagation in this mode.
The cutoff frequencies for the higher modes can be determined by

finding the frequenci es for which k 0. These frequencies occur when

(J~~~~~ f~.) 
(30)

for s,yninetri c modes and

(31 )

for antisymmetric modes . The results are

~ /2. c W/ 2 , 3 7T/2 , 5 17/2 , .,.

(32)

•1 /2 = 71 2f l 3 7r . . .

for symmetric modes and

k~ /z 2rr 3~r . ..

(33)
Tr/ 2. 31r/2 ) c~/2)

for antisyninetric m odes.

At very high frequencies, the s~ and a0 modes resemble Rayleigh waves
propagating on both of the surfaces of the solid, and the group and phase *

speeds for both modes monotonically approach the Rayleigh wave limi t CR.
For all higher symmetric and anti syninetric modes , the high frequency limi t *

of the group and phase speeds approaches the shear speed c5 .

ti 12
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Results for Steel Plates

Study of Table 1 reveals that representative va lues for the various
phase speeds and Poisson ’ s ratio in s teels are

CL 5.8 x iO~ cm/sec

c~(4.~) ~ 5.3 x 1O~ cm/sec

5.1 x iO~ cm/sec

c~ — 3.2 x io~ cm/sec

CR 3.0 x ~~~ cm/sec

a ~~ 0.28

On the basis of these values , the cutoff frequencies for some of the lowest
modes in ½ in. and ¼ in. steel plate have been calculated and presented
in Table 2, and estimated value of c~(a0) presented in Table 3 for a number
of frequencies .

The Rayleigh speed CR 
= 3.0 x io~ cm/sec is the asymptotic limit of

(a 0), so values of c~ (a0) calcula ted from the approximate expression (29)
• which exceed CR have been replaced by that quanti ty. Calculated val ues

approaching CR should be considered as only estimates . The group speed
cg(a0) can be taken as nearly CR for all cases l isted in the Table 2.

• While little can be said in general about the absorption of Lamb waves
in plates , the fact that the propagation is in modes requi res that absorption
be greatest where phase speed dispersion is greatest. Thus , greatest
losses at a given frequency should occur for those modes of propagation
having the hi ghest cutoff frequencies . Additionally, the attenuation of
Lamb waves should be determined primarily by shearing losses for those modes
whose motion is predominately shear (such as a0) and by longitudinal losses
for those modes whose motion is dominantly longi tudi nal (such as s0)

~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~ 
_____________________

TABLE 2

CUTOFF FREQUEN CIES FOR THE LOWER
LAMB WAVE MODES IN STEEL PLATE

Cutoff Frequency in kHzMode Condi tion 1/4 in. Steel Plate 1/2 in. Steel Plate

so 0 0

a0 0 0

a1 z a ~~~ 252 126

S1 Z * A L/2 457 228

s2 z = x ~ 504 251

a2 z a 3A 5/2 756 378

14
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I TABLE 3

c~(a0) IN REPRESENTATIVE STEEL PLATES

Approximate Val ue of c~(a0 ) in 1O~ cm/ sec
• Frequency In kHz 1/4 in. Steel Plate 1/2 In . Steel Plate

50 1.8 2.5
100 25 3.0

150 3.0 3.0

200 3.0 3.0

15
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Experimental Study

A short series of experiments was performed at Naval Weapons Center

wi th the participation of Mr. Myron Iverson . The purpose was to study

the propagation of sound from source to receiver In an I beam as a func-

tion of frequency and of transducer placement and separation . The I

beam measured approximately 21 ft. long, has 3 in. flanges , a 5 in. web,

and the thickness of all portions was nominally 0.25 in.

The transmi tter was affixed at several positions very close to one

end of the beam, and the receiver was positioned in the middl e of the

web (between the flanges) at distances of approximately 4, 8, 12, 16

and 21 ft. from the transmitter. The transmitter was excited with a

3 V peak—to-peak , four cycle, tone burst of either 170 or 360 kHz signal .

The received signal was ampl i fied 40 dB and displayed on a CR0 which was

synched to the excitation of the transmitter. Photographs were taken of

the displ ayed waveforms and are presented in Table 4.

The transmitter was a longitudi nal vibrator fabricated at the Naval

Postgraduate School . Its active element was a 1 in. diameter 0.25 in.

thick ceramic disc . It was attached to the I beam with a 3/8 - 24

threaded stud. The mating surface of the I beam was ground down to re—

move rust and sclae and well-greased to provide good acoustical contact

with the surface of the transmitter.

The receiver was an accel erometer furnished by Naval Weapons Center.

It was hand-held or gravity coupled to the I beam with a thin film of

oil between it and the ground surfaces of the I beam.

Analysis of tie photographs reveals the following significant poi nts:

(1) In all photographs, the first signal reaches the receiver with

a speed of about 4900 rn/sec . This can be identi fied with the low-frequency

L. . ~~~~ 
.

• .~~~ • •  

~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _



group and phase speed C~(s0 ) for the S0 mode. This signal is then a

symmetric compressional wave travel ing through the flanges and web from

source to receiver. It is interesting to note that it is always rela—

tively weak compared to the subsequent signal composed of propagation

in other modes and reverberation.

(2) In all of the photographs for which the frequency was 170 kHz,

there is a very clear, unambiguous arrival with a speed of about 3200

rn/sec. This signal is particularly prominent in Table 4a. This would

appear to be identifiable as a wave propagating in the a0 mode since the

calculated group speed for this mode at this frequency is Cg and this

value agrees very wel l with the values in Table 3 for freqeunc ies be-

tween 150 and 200 kHz. Further supporting evidence is that the geometry

of Table 4a is one which should emphasize propagation in the flexural

wave modes and all higher s and a modes should be cut off .

(3) The photographs for which the frequency is 360 kHz reveal evidence

of considerable multipathing and dispersion. This is plausible because

at this frequency the a1 mode can also be excited .

It must be understood that the identification of the “longitudinal

thin bar speed of sound” and the flexural wave modes a0 and S
0 

is really

only an approximation because the geometry of an I beam obviously deviates

from that of an infinite thin plate or bar. However , the propagation in

the I beam can be characterized as very similar to these modes, with the

flexural modes far outweighing the long itudinal modes.

17
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Excitation of Waves in Bars and Plates

One parameter which is important in the transfer of power from a
source of vibratory motion to the elasti c waves In a plate or bar is
the mechanical Impedance at the driving point. Also important is the
internal impedance of the source devi ce.

Mechani cal impedance ~ = 

~~~~ity

For simple harmonic motions, the power del ivered by a Force F = F0R.
1

is wi F0 U0 COS e where e is the phase angle between F and U.

If R + ~ X

C o s e = ~~
.

~
Zm I

F 2 R  U 2
So that Wi =  ~ . _2__ R

rnzm lz /~~

Generally it is found that both R and X may vary with frequency
and it is convenient to calculate expressions for power del ivered by
a constant force generator or a constant velocity generator, in analogy
wi th electrical circuit practi ce .

The driving point impedance of a complex mechanical structure may
vary rapidly with frequency in the neighborhood of resonances. It is
possible to cal culate resonance frequencies and the driving point
impedances for only the most simple structures . It is useful to examine
the resul ts of calculations for the non resonant cases of an i nfinite

• beam or plate . The implication of infinite length is that not only is
• the length large compared to the wavelength but that is large enough to

insure that waves reflected from the far end have a negl igible effect on
the driving point impedance.

For the case of flexural waves In an infinite beam, driven at a free
end, there is no moment at this end and the resul t di ffers from the case

~~ for the driver located at the center of the Infinite beam.

24
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Ross (Ref 4 p. 137) gives the driving point impedance for Ilexural
wave exci tation at the forcedend of an infinite bar,

2 = ~~~~~~~ ~~f S I

Where ~ Angular frequency

V * Young ’s modulus

I = Moment of inertia 0f beam cross section

k = Wave number for Flexural wave in beam

1 p o~~t = oV~~~~- _ ~ ~~
-
~~

)
kE — Low Frequecy value of wave number

0

VF = Phase speed of Flexural wave

= Low frequency value of phase speed
2.

z.
r = Shear parameter =

• K G

G = Shear Modulus

K = A constant which takes account of warping of cross
section during bending, which depends on shape and

Poisson ’s ratio,Nor mall y K < 1

= Ratio of mass of entrained fluid to that of structure

.~cL= .=

Is a reference angular frequency

Ce = = long bar compressive wave speed

• ,4,(. Total mass per unit length of beam which is involved

in the motion.

p Volume density

25
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At high frequencies, ô > 3 , and the reactive part of Z becomes very
small and VF = V F~~~. 

VF

For a constant force source,

where F2 is the mean square of the driving Force.

For a constant velocity sourceb

w 1’ =
U

-

~~

Where U2 is the mean square velocity at the driven point.

For a source located at the midpoint of an infinite beam:
For a constant Force:

~~~~~~~

• for a constant velocity:

W ; = 2 ~AYf j
~

It appears that if the driving point Is away from a free end , the
Impedance increases and the beam becomes increasingly resistant to
absorption of power from a constant applied force as the frequency
increases.

26
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Impedance For A Thin Plate

The computation of an expression for the input impedance for a
point force exciting flexural waves in a thin plate Involves several
types of Besséj ’s Functions and considerable manipulation , yet It
results in a surprisingly simple formula. (Similar considerati ons for
a thick plate may not be so simple).

Ross gives the result (P162)

~~~ 

. % (~ C~~

Where ,U.’ = mass per unit  area

=(~h
= volume density

h * plate thickness

= longitudinal wave speed in the plate

=

B a 

~
j  = Bending rigidity of plate per unitp area

a Poisson ’s Ratio

• s = Cross sectional area per unit width

a radius of gyration of cross section

When resonances exist, there are maxima and minima in Z coinciding
wi th resonances and anti -resonances . Ross quotes results from others
indicating that geometric mean values in such cases agree wel l wi th
this resul t for the characteristic impedance.

• An example for a plate of thickness, 4 1 C.’~” ~ 7300 ~~~~
= 52.5o F v i / 5e~ , ,4A’ 7Y k~ /iwi’

~ ~coo ~~~~~
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As a comparison, the order of magnitude of the characteristi c impedance
of a typical piezoelectic ceramic of 1 cm diameter.

C~ - 5000 m/s,~
p - 7000 kg/rn3

area A a ~

4
A p C ~~A 2~~70O FsI ’ss ’.f,,.,

It is seen that the order of magnitude of the characteristic driving

j point impedance for a thin steel plate is comparable to that of a
piezoelectric ceramic vibrator having a diameter equal to the pl ate
thickness. This suggests that the problem of obtaining some reasonable
matching of impedances is not severe.
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Transducer Fabrication

As part of the effort in this program, several electroacoustic trans-

ducers were designed, tested and del ivered to the sponsor. Two each of

four different models were furnished. The designs were intended to be

most effective as sound sources. Different models had differenct res-

onance frequencies. The intent was to provide sources which radiated

• relatively efficiently at a number of frequencies in the range from about

thirty kHz to two or three hundred kHz. These could facilitate measure-
• ments of transmission loss through structures and particularly hel p in

assessing an optimum frequency. The following paragraphs provide a brief

description of their construction and free resonance frequencies. All

transducers used piezoelectric ceramic elements and the dominant mode of

vibration was that of a longitudinal vibrator. The base of each trans-

ducer was designed to accept a threaded stud for clamping to the structure.

Al though only a few resonance frequencies are listed, there were a

number of higher frequencies at which resonances al so occurred.

Transducer Mod 2

Ceramic: Gulton Mfg. Co. HS 21 Ceramic

Radially polarized cyl inder

1/2” OD x 1/4” ID x 1 1/2” Long

Base: Brass Hexagonal Rod 5/8” x 5/8” Long

Joint: Epoxy Resin , Unreinforced

Blocked Capacitance: C0 
a 3500 p F

Resonance Frequencies Noted: 26 kHz, 56 kHz
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Transducer Mod 3

Ceramic: Channel Industries Channelite 5800

Axially polarized Cylinder

3/4” OD x 1/4” ID x 3/4” Long

Base: Brass , Round 3/4” OD x 3/4” Long

Joint: Epoxy Resin, Unreinforced.
Capacitance: C0 = 130 p F

Resonance Frequencies noted: 43, 75, 83, 95 kHz

Transducer Mod 4

Ceramic: Channelite 5800

Axia1~j polarized Discs 1/2” 00 x 1/8” ID x 1/4” Long

Two discs mounted end to end with reversed polarity —

Driven electrically in parallel

Base : Brass , Hexagonal 5/8” x 5/8” Long

Joint: Epoxy resin reinforced by compression screw

Capacitance: C0 = 400 p F

Resonance Frequencies Noted: 50, 75, 85 kHz

• Transducer Mod 5

Ceramic: Channel ite 5800 Disc Axially polarized 1” OD x 1/4” thick

Base: Brass, Round 1” 00 x 1/2” Long

Joint: Epoxy Resin , Unreinforced

Capacitance: C0 = 800 p F

Resonance Frequencies Noted: 69.5 , 74, 84.5 kHz
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