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INTRODUCTION

Stokes’ equation gives the mathematical relationship between the geometric shape of the geoid and the mag-
nitude of gravity on the geoid. The equation is

N = 4':foS(w)Agda a) |

where '
R = mean radius of the earth

G = mean value of gravity over the earth

S(y) = Stokes’ kernel ’

The integration, extended over the unit sphere using a global set of gravity anomalies Ag, produces the geoid-
ellipsoid separation at a given point.

In practice, the integration is not extended over the entire globe, but only up to a spherical distance y, from
the computation point due to a lack of sufficient surface gravity data. The error §N that results from neglecting data
beyond y, has been analyzed by Molodenskii (Reference 1) and is described in Moritz (Reference 2). The mag-
nitude of this error may be reduced if the gravitational potential is known in terms of a finite spherical harmonic
expansion derived from satellite observations by applying, for instance, the computational technique of Rummel |
and Rapp (Reference 3). Equivalently, the error may be reduced by removing known lower-degree harmonies from
the gravity anomaly data used when Equation (1) is applied to a spherical cap assuming the lower-order harmonic
components of N are known. In addition, one might also consider the possibility of modifying or replacing Stokes’
kernel S(y) with a function which produces a better estimate of N using a limited data set. The purpose of this
report is to determine what decrease in §N may be expected if harmonics are removed from S(/) or Ag individually, ]
or from both simultaneously. ]

INFLUENCE OF DISTANT ZONES ON STOKES' EQUATION

CASE 1: STANDARD CASE

The error in the geoid undulation due to neglecting gravity anonaly data outside a spherical cap o of radius
¥, is given by Moritz (Reference 2) as g

h g 2n
s - ;
6Nl = 4nG/ / S(y) Ag sin ¢ dy da )
w=wo =0

where the subscript | refers to the removal of harmonics from the data only (Table 1). Defining a new function

S(y)as

site oot




0 0<y <y,
SW) = 3)
S(v) YoS¥ s

L 2
e ! = ,
8N, == Lo L, SW)agsin v dy da @)

The function S(y) has the following spherical harmonic expansion:

Equation (2) becomes

= =~ 0 + 1
5w = 2y T Q P, (os¥) ©)
where
Q, =/§(w)l’,, (cos y) sin ¥ dy
0
or (6)

s f "S(W) P, (cos ¥) sin ¥ dy
v

0

Following Moritz (Reference 2), the RMS error due to neglecting distant zones is the square root of

2 oo
S Sei Z 2
L 422 2 % o s
n=

where it is assumed the zero and first-order harmonics of the gravity anomaly field are zero.

260 = 2, 2,0 @®)

The quantity ¢, is the anomaly degree variance for degree n defined by
= 2
¢ = E{og?} ®

where E is the expected value operator. The anomaly degree variance is a function of the spherical harmonic coeffi- ’
cients of degree n

B e

e

= 2 @2, +E,) (1) *

1 where the bar indicates normalized coefficients. The coefficients Qn are known as the Molodenskii coefficients, |
‘ and much is known of their properties. :
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CASE II: REMOVAL OF M LOWER-DEGREE HARMONICS FROM S(y)

Equation (1) may be written in the following form:

v 2
R ()
Wen / S(¥) Ag sin ¥ dy da
v=0%=0

x 2n
R / f ;
G e S(y) Ag sin ¥ dy da
4nG v=y, Ja=0

The kernel S(¢) has the spherical harmonic expansion

S(y) = nz=:2 ————2: jll P_(cos ¥)

Now define

2n + 1
n—1

m
SW) = ) - Zz P, (cos ¥)

or

(W) = SW) + S, (¥)
Substituting Equation (13b) into Equation (11) gives

N = ll + l2 + l3

where

R x R
Iy = == S(y) Ag do
2 417G = S
R f" 2n
T = S _(y)Agde
3 MG Sy Jaso T
3

o T R

(1)

12)

(13a)

(13b)

(14a)

(14b)

(14c)

(14d)




Considering the definition of S () and Equation (8), the integral I; becomes

I, = Ny + Ny + ...+ N_ (15)

which are the first m harmonic components of N at the computation point. Assuming I, to be known, the error due
to integration over a limited cap becomes

R /" 2n s
i e DR R (16)
o

Define the function § as

A 0 0<y <y,
S) =
S(¥) VgSyYSsm
0 o<y <y,
* amn
SW)-S,(¥) Y<y<nm
The function§ has the Legendre series expansion
Sw =2 B3 QP o) (18)
where
6,, = / E(w) P (cos ¥)sin ¢ dy
0
- [ S(4) P, (cos V) sin ¥ dy .[ S0 () Py (cos ¥) sin ¥ dy
0 0
= Q, - / S (W) p,(cos ) sin Y dy (19)
v
Therefore, i
R 4 21!' -
8N, = G A S(y) Ag do
o Y

L
WG A A S(¥) Ag do
4




= ’ ™ f 2n
= 8:(} n}:(,) (2n + l)Qn[-[ Ag P (cos y) sin ¢ dy da

S = ~ 4m Ag i
= 81G §0 20 ¥ DO, Bl
g 4
& e o
2G n=0

The RMS error is, following Moritz (Reference 2),

8Ng = pre ) Q. ¢, 21)
CASE III: REMOVAL OF M LOWER-DEGREE HARMONICS FROM Ag

From Equation (8),

Ag = 3 Ag,00.N)
n=2
where the n’th degree hamonic Agn is given by
n _— —
ag, = ) @, K, 0N+, 5 6N (22)
m=0
] Removing the first m harmonics from the data set gives
m
A = g - 3 Ag, 23)
n=2

Equation (1) becomes

R L 21’ e m
N * %G o S(¥) [Ag + ) Ag,lsin ¥ dy da

n=2

Lt (24a)
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where

n 2n e
|,=Z%[.[ S(V) Ag sin ¢ dy da

m

G 2n
f / S(y) Ag,, sin Y dy da
n=2 0 0

=

I, =

S
3
(]

The second integral reduces to

which is assumed known since Agy, - .. Ag, are assumed given. Therefore,

R U/o 2n %
N=N2+...+Nm+m S(y) Agdo
0 0
s
il S(y) Ag do
471G 0 o

The error due to distant zones is the second integral in Equation (26).

R T f2a .
8N = S(y) Ag do
00 0

n
R T A
2o [ 5oz

Forn=0,1,..., m

L 5 S
f / AgP (cos y)sin Y dy da = 0
0 %

_8—1:0_ E-; (@n + I)Qn["/2" Xan(cosW)sianlllda
e 0

(24b)

(24¢)

(25)

(26)

27

(28)




since Ag contains no harmonics of these degrees. Therefore,

W,

A,

P it

e
Ny = 56 Zon Ag, (29)
n=m+]
and
i Z” 2 .
8Ny " 4G2 Q; <, (30)
n=m+]

It should be noted that this error is the same as that obtained using the Rummel and Rapp (Reference 3)
q procedure with the first m harmonics applied (neglecting here corrections for atmospheric effects and zero-order
undulation correction).

0 s B D A 5 s 5 e

CASE IV: REMOVAL OF M LOWER-DEGREE HARMONICS FROM BOTH S(y/) AND Ag
Using equations (13b) and (23),

3.‘ S=8+8 (13b)
: 1; m :
i ag= A+, e (23) :
! n=2
4 Equation (1) becomes
3
-} N=L +L+L*] (31a)

where :

R " 20,
1" wmc ) J, S(¥) Ag do (31b)
RN [T ;
! lz—mz [ ) S() g, do Gl¢) v

R s 2n "~
|3 = rwre A3 Sm(lIJ) Agdo (31d)

Q

R e




R m m 2n
b= "}:_‘2[ /(; S, (V) Ag, do

By orthogonality, 1, and 1, vanish. Also, by definition of S, (Equation 13a),

i : n 2n
5 - PRS|
By 2 I 5 ik [ P,(cos y) Ag, do

If n # j, the partial sum is zero by orthogonality. When n = j, the nonvanishing terms sum to

m
o 2n + 1 4n
Ty * 4nG Z n =1 nZnei
n=2
n
2
since / / "Pn(cos ¥)4g, do = 4n B,
2n+1
0 0
Therefore,
b * N2 + ... * Nm

Thus, Equation (31a) becomes

R % Mo~
N=N2+...+Nm+3?(—; S(¥) Agdo
v=0 a=0
R L 2n ~ ~
Yt S(¥) Ag do
W=u’40 a=0

Assuming the first m harmonics of N are known, the error in N due to neglecting distant zones is

(3le)

(32)

(33)

(34)




"o

.

R.J/Pijfan § & d
. (V) Ag do
4nG 0 o

L = m 2n s
= —8]:—0- Z (2n + l)Qn/ / Ag Pn(cos V) do (35)
v=0 “a=0

n=0

Forn=0,1,...,m the integral in Equation (35) vanishes giving

.k =
SNy = 56 2 0,28, (36) |
n=m+l] !
The RMS error is the square root of
W, 5 T e @7)
4G2 n=m+l 5

Tables 1 and 2 present summaries of Cases I through IV and of RMS error formulae, respectively.

Table 1. Summary of Cases I through IV

Case Equation for Undulation |

__R |
I N = 4"0[/S(¢)Agda + 5N, |
IR T . fi(w)Agda
Sadi S0 4

| N = + 8N,
m NeN * . o8 S(y) Ag do + 6N
2" W T 206 8 ui
v Noa N # o N $(V)Agda + 8N
o m  4nG 8 v
a |

9
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Table 2. Summary of RMS Error Formulae

Case M Harmonics Removed Square of RMS Error
R & 2
I - 4G2 n;_zon n
I S R 52
) 2 Z Qn Cn
n=2
R2 o
1 Ag — ¥ Q%¢
4Gzn=§m:‘+] e
v R’ $~ 32
S(¥), ag = . Ve
n=m+}

NUMERICAL EVALUATION OF ERROR FORMULAE

The RMS error for each case was computed for m equal to 6, 12, and 18. In these computations the anomaly
degree variances were computed using Kaula’s rule

192

o e——— 2 =
Ch s mgals n = 3,4,... (38)

and ¢, was taken as 10 mgalz. The constant R2/G2 was taken as 42.3 mzlmgalz.

The Molodenskii (Reference 1) coefficients Q, were computed using two algorithms. Initially, the Q,, were
computed using an algorithm of Hagiwara (Reference 4); however, due to numerical difficulties, only the first S0
terms in the error expressions could be summed. The computations were repeated using the algorithm of Paul

(Reference 5). An increased number of terms (250) were summed in this case.

The coefficients 6n were computed using the following procedure:

~

o £ S, P, (cos ) sin y dy 39)

0

(40)

el e K il




where Qn

Q,(¥y)
6“ L4 6,,(\//0)

Taking x = cos y

/."Pi (cos Y) P (cos y)sin Y dy
v

0

cosy
= / PP, () dx,
-1

and using the identities

g =0 - y3H / P,(cos ¥) P, (cos ) sin ¥ dy
v

0

b 1 b
/ P2(x)dx = e a1y / P2 (x) dx
a a
b
+ x [Py + P2 )] - 2P, , P, z
a
b
[" 5 [x(n — k)P (x) P, (x) + kP (x)P, ;(x) — nP_,(x) P (x)]
j P (x) P (x)dx = Xk + 1) y

Equation (41) may be evaluated.

n#k

(41)

42)

(43)

44)

B — S ———

e ——
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CONCLUSIONS

Figures 1 through 4 give the root mean square error for Cases 1 through IV where 250 terms have been
summed in the error equations. In Cases II through IV, the first m harmonic components of the geoid undulation N
were assumed known. An examination of these figures shows that for spherical caps of radii y, < 60°, removal of
known lower-degree harmonics from the cap data alone produces the least-expected error due to neglected zones.
Removal of lower-degree harmonic components from the kernel function S(y/) does not minimize the expected error
for cap sizes normally considered. Thus, the former procedure (Case III) is recommended if the assumptions, upon
which these error formulae are based, are satisfied.

Finally, a comparison of the results based on 50 and 250 terms in the summation demonstrated that satisfac-
tory convergence of the series had been obtained.

RMS
ERROR (m )

20 A

SN,

10 \ —
Sty) =0 —— /

T
o 60 120 180

Figure 1. Root Mean Square Error, Case |
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Figure 2. Root Mean Square Error,
Cases II Through IV, m =6
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34

! .
120

Figure 3. Root Mean Square Error,
Cases Il Through IV,m =12
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ERROR (m)
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Figure 4. Root Mean Square Error,
Cases II through IV,m =18
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