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, ~~~ A~dr~ LABSTRACT -

Consider an N server queuing system in which service times of server ‘

~

i are exponentially distributed random variables with rate

Customers arrive in accordance with some arbitrary arrival process.

If a customer arrives when all servers are busy , then he is lost to
the system; otherwise, he is assigned to one of the free servers according
to some policy. Once a customer is assigned to a server he remains in

that status until serviàe is completed . We show that the policy that

always assigns an arrival to that free server whose service rate is

$ largest (smallest) stochastically minimizes (maximizes) the number in

the system. The result is then used to show that in an N component

system in which the (~~~component’s up—time is exponential with rate _~~~~~~~~~~
• 

A 1 and in which the repair times are exponential with rate ~r , the
J. 

,

policy of always repairing the failed components whose failure rate A -

is smallest stochasticaily maximizes the number of working components.
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ON THE OPTIMAL ASSIGNMENT OF SERVERS AND REPAIRMAN

by

• C. Derinan, G. J. Lieberman and S. M. Ross

0. INTRODUCTION AND SUMMARY

Consider an N server queuing system in which service times of

server i are exponentially distributed random variables with rate

Customers arrive in accordance with some arbitrary arrival process.

If a customer arrives when all servers are busy , then he is lost to the

system; otherwise, he is assigned to one of the free servers according to

some policy. Once a customer is assigned to a server he remains in that

status until service is completed . We shall show that the policy that

always assigns an arrival to that free server whose service rate is

largest (smallest) stochastically minimizes (maximizes) the number itt the

system. This result generalizes a result of Seth (1] who obtained a

. 4 
• 

similar result in the case where N 2 and the customers arrive in

accordance with a Poisson process. The result is then used to show that

in an N component system in which the j
th component ’s up—time is ex—

ponential with rate A~ and in which the repair times are exponential

with rate ~i , the policy of always repairing the failed components whose

failure rate A is smallest stochastically maximizes the number of

working components.

a
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1. TIlE QUEUEING SYSTEM

Consider an N server queueing system in which the service times

of server i are exponentially distributed random variables with rate

where A
1 

> A
2 

> > A
N . Customers arrive in accordance to some

arbitrary deterministic point process. If a customer arrives when all

servers are busy, then he is lost to the system; othervise,he is ass igned

to one of the free servers, according to some policy. We show that the

policy that always assigns an arr ival to that free server which service

rate is largest (smalle8t) stochastically minimizes (maximizes) the

number in the system.

0 Theorem:

The number of customers in the system is stochastically minimized

(maximized) by the policy which always assigns an arrival to the free

server having the largest (smallest) service rate.

I
Proof:

Let T~ denote the time of the ~
th arrival, and for a given constant

c let L(c) denote the amount of time in [O ,T ]  itt which the number

of customers in the system is no greater than c . Now consider the

problem of choosing a policy which maximizes, under any initial conditions

• as to which servers are initially busy, the probability that L(c) is

no greater than d , for some d . We shall show, by induction on n

that for any c and d , the optimal policy has the proper ty that it

always assigns an arrival to server 1 (the fastest server) when that

server is free . This is obvious for n 1 . So , for a given c and d ,

• consider the probability where we are only interested up to the time of the
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(n + l)st arrival. If server 1. is busy immediately a f t e r  the time of

the first arrival , then the result  follows by the induction hypothesis.

So consider the case where the first arrival is assigned to some server —

say server L — thus leaving server 1 free .  Call the best policy of this

type policy A . Now by the induction hypothesis it follows that the

next arrival  will be assigned to server 1. Thus , policy A ass igns the

In itial arrival to server I and the next arrival to server 1. We

contrast  this , wi t h  pol icy B , which assigns the first arrival to server 1

and the next arrival to server 1 if he is free and to server i otherwise,

• and then continues optimally. Let S
1 

and S~ denote the service times

of the ini t ial  custome r if he were to be assigned either to server 1 or

server 1. . (Thus, S1 and S~ are respectively exponential with rates

and 
~~~ 

Le t t i ng  t denote the time between the first and second

• arrivals, we compare policies A and B in the following 3 cases .

• Case l:

t ~ mm ( S 1~ S~ )

In this case, both poLicies are identical in that one of servers i and

I is busy until time t at which they both become busy .

Case 2:

t > max (S j.Si)

In this case, under policy A • one of the two servers is busy until, time

S~ and then both servers are free until time t when server I becomes

busy . Under policy B , it Is the same except that  one of the servers

~i ~~~~~ ~~~~. 
~
~.
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is busy until time S1 
. As the conditional distributiou of S

1 
given

that t > max (S1,Si) is stochastically smaller than that of S
i 

given

that t > max (S
1~
S~) , it follows that policy B is preferable in

this case.

Case 3:

mitt (S1,S1
) s t < max (S

1~
S~)

The situation under policy A can be described in this case as either

(a) one of the two servers is busy for a time S~ , then both are

- 

- free , and then server 1 is busy at time t , or

(b) one of the two servers is busy until time t at which time

both become busy.

Situa t ion (a) occurs when S~, < S
1 

and situation (b) otherwise. Under

policy B , the possible situations are

(a’) one of the two servers is busy for a time S
1 , then both

are free, then server 1 is busy at time t

(b’) same as situation (b).

Situation (a’) occ urs when S
1 

< S~ and (b) otherwise. As situation (a’)

is better than situation (a) (since the conditional distribution of S
1

given that we are in Case 3 is stochastically smaller than that of S
i).

and as both are obviously better than situation (b), it follows since it

is conditionally (on the event that Case 3 is in effect) more likely that

• S
1 

is smaller than S~, than the reverse, that policy B is better than

policy A . Hence, in all cases,policy B is better than policy A and
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so by the induction hypothesis it follows that an arrival should be

assigned to server 1 when tha t server is free. Now by conditioning

on the set of service times for server 1 we are left with the same type

of problem except that only servers 2 through N are available for

assignment (it is automatic that an arrival is assigned to server 1 if

• he is free). Hence, by the same reasoning, it follows that if server 1

is busy and server 2 free, an arrival should be assigned to server 2.

Repetition of this argument completes the proof that always assigning

to the fastest server stochastically minimizes the number in the system.

The result for maximizing the number in the system is proved

similarly.

Remarks:

(i) As the same policy is optimal for every deterministic

arr ival process, it follows that it is optimal for any

stochastic arrival process which is assumed independent

0 
of the service times. (To see this, just condition on the

set of arrival times.)

(ii) It is not essential that the system considered was a loss

system — the result holds true for any finite or infinite

capacity system.

(iii) The proof also shows that the percentage of lost customers
I

is minimized by the policy of always assigning an arrival

to the fastest free server. This generalizes a result of

Seth [1] presented for N 2 servers and Poisson arrivals.

It is also interesting to note that Seth presented a counter—

• example to the (obvious modification of the above) when

Li
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the service distributions are assumed stochastically ordered

but not necessarily exponential.

(iv) The foregoing server assignment model does not allow switching

of servers when a server completes a service (i.e., no switching

-
~~~ between arrivals). For example, if server I completes service

at some instant , under the assumption of exponential service

times, it would be reasonable to immediately reassign one of

the customers already in service, but whose service is in—

complete , to server 1.

Suppose such switching is allowable. The policy TT which

always assigns customer arrivals or reassigns customers to

the available server with the largest service rate has the

property that if , at any time, M customers are in the system ,

then the M fastest servers are the busy ones. Consequently ,

the customer departure rate is always largest under ~

It is thus clear (and not difficult to establish) that for

this modified model, the assertion of Theorem 1 holds for it

• 1

iLA
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2. ThE REPAIRMAN MODEL

Suppose we have a single repairman tending an N component system

in which the ith component , when up, functions for an exponentially

distributed length of time with rate where A
1 ~~ A~ > • . .  > A

N

If a component fails when the repairman is idle, then repair is begun.

The time to complete a repair (on any component) is exponentially dis-

tributed with rate ~ . When more than one component is failed, a decision

has to be made as to which one will be repaired . It is assumed to be

allowable to reassign the repairman from one (failed) component to another.

That is , for  instance , if component i is being repaired and component j

fails, then the repairman is allowed to switch from j to i (or any other

failed component).

Theorem 2:

The length of time during which there are k or more components

working in any interval of time (0,t) is stochastically maximized by

the strategy which always assigns the repairman to the failed component

whose failure rate is the smallest.

Proof:

By imagining that the repairman is always working (even when all

components are up) and by using the lack of memory property of the

exponential distribution, it is easy to see that the above model is

mathematically equal to one in which repair completion epochs occur in

accordance with a Poisson process having rate u • and at these epochs

we are given the option of starting up any one of the components that

are down at the time. (If no component is failed at a repair completion
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epoch , then this oppor tun i ty  is not used). Hence , the model is mathe—

tuatically equivalent to t~te loss model of Section 1 under the assumption

of Poisson arrivals in the sense that we interpret component i to be

working whenever server i is busy , and we interpret the decision to

put component i up at a repair completion epoch as the decision to

assign art arrival to server i . The result now follows from Theorem 1.

Remarks:

(i) We have been informed by Smith that he has also obtained

Theorem 2 by different methods .

(ii) Smith (21 was concerned with a series system in which repa~.r

times were exponential but were allowed to depend on the

component under repair. He conjectured that the (asymptotic)

probability that all components are functioning is maximized

by the policy which always repairs the failed component

having the smallest failure rate (no matter what the repair

rates are). Thus, our results prove Smith’s conjecture when

the repair rates are the same. (Of course, we ’ve proven

optimality not only for a series but also for a k—of—N system.)

(iii) A remaining component—repair problem which has not been

treated herein and which shall be treated in a future paper

is the model that imposes the constraint that a repairman

assigned to repair component i must complete his repair

before being assigned to repair another failed component.


