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server queuing system in which service times of server

i are exponentially distributed random variables with rate \i .

Customers arrive in accordance with some arbitrary arrival process.

If a customer arrives when all servers are busy, then he is lost to

the system; otherwise, he is assigned to one of the free servers according

to some policy.

that status until service is completed.

Once a customer is assigned to a server he remains in

We show that the policy that

always assigns an arrival to that free server whose service rate is

largest (smallest) stochastically minimizes (maximizes) the number in

the system. The result is then used to show that in an N

system in which the tZﬁ>component's up-time is exponential with rate .

component

i Ai and in which the repair times are exponential with rate ¥, the

policy of always repairing the failed components whose failure rate X\

is smallest stochastically maximizes the number of working components.
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ON THE OPTIMAL ASSIGNMENT OF SERVERS AND REPAIRMAN

by

C. Derman, G. J. Lieberman and S. M. Ross

0. INTRODUCTION AND SUMMARY

Consider an N server queuing system in which service times of
server 1 are exponentially distributed r&ndom variables with rate Ai .
Customers arrive in accordance with some arbitrary arrival process.

If a customer arrives when all servers are busy, then he is lost to the
system; otherwise, he is assigned to one of the free servers according to
some policy. Once a customer is assigned to a server he remains in that
status until service is completed. We shall show that the policy that
always assigns an arrival to that free server whose service rate is
largest (smallest) stochastically minimizes (maximizes) the number in the
system. This result generalizes a result of Seth [1] who obtained a
similar result in the case where N = 2 and the customers arrive in
accordance with a Poisson process. The result is then used to show that
in an N component system in which the ith component's up-~time is ex-
ponential with rate Ai and in which the repair times are exponential
with rate u , the policy of always repairing the failed components whose

failure rate A 1is smallest stochastically maximizes the number of

working components.




1. THE QUEUEING SYSTEM

Consider an N server queueing system in which the service times
of server 1 are exponentially distributed random variables with rate
xi , where Al > AZ 3 Ees XN . Customers arrive in accordance to some
arbitrary deterministic point process. If a customer arrives when all
servers are busy, then he is lost to the system; otherwise, he is assigned
to one of the free servers, according to some policy. We show that the
policy that always assigns an arrival to that free server which service

rate is largest (smallest) stochastically minimizes (maximizes) the

number in the system.

Theorem:

The number of customers in the system is stochastically minimized
(maximized) by the policy which always assigns an arrival to the free

server having the largest (smallest) service rate.

Proof:

Let Tn denote the time of the nth arrival, and for a given constant
¢ let L(c) denote the amount of time in [O‘Tn] in which the number
of customers in the system is no greater than c¢ . Now consider the
problem of choosing a policy which maximizes, under any initial conditions
as to which servers are initially busy, the probability that L(c) is
no greater than d , for some d . We shall show, by induction on n ,
that for any ¢ and d , the optimal policy has the property that it
always assigns an arrival to server 1 (the fastest server) when that
server is free. This is obvious for n =1 . So, for a given ¢ and d ,

consider the probability where we are only interested up to the time of the

— - .‘_m'—.r.q
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(n + 1)st arrival. If server 1 is busy immediately after the time of

the first arrival, then the result follows by the induction hypothesis.

So consider the case where the first arrival is assigned to some server -
say server 1 - thus leaving server 1 free. Call the best policy of this
type policy A . Now by the induction hypothesis it follows that the

next arrival will be assigned to server 1. Thus, policy A assigns the
initial arrival to server 1 and the next arrival to server 1. We
contrast this, with policy B , which assigns the first arrival to server 1
and the next arrival to server 1 if he is free and to server 1i otherwise,
and then continues optimally. Let S1 and S1 denote the service times
of the initial customer if he were to be assigned either to server 1 or
server i . (Thus, S, and Si are respectively exponential with rates

1

\1 and \1). Letting t denote the time between the first and second

arrivals, we compare policies A and B in the following 3 cases.

Case 1:

t < min (51’51)

In this case,both policies are identical in that one of servers i and

1 is busy until time t at which they both become busy.

Case 2:

t > max (Sl,Si) .

In this case, under policy A ,one of the two servers is busy until time

S1 and then both servers are free until time ¢t when server 1 becomes

busy. Under policy B, it is the same except that one of the servers




Case 3:

is busy until time S As the conditional distribution of Sl given

1
that t > max (Sl’si) is stochastically smaller than that of Si given

that t > max (Sl,Si) , 1t follows that policy B 1is preferable in

this case. :

min (51'51) < t < max (Sl,Si)

The situation under policy A can be described in this case as either

(a) one of the two servers is busy for a time Si , then both are
free, and then server 1 is busy at time ¢t , or
(b) one of the two servers is busy until time ¢t at which time

both become busy.

Situation (a) occurs whem S, < S and situation (b) otherwise. Under

i 1
policy B, the possible situations are

(a') one of the two servers is busy for a time S then both

l ’
are free, then server 1 is busy at time ¢t ,

(b') same as situation (b).

Situation (a') occurs when S1 < Si and (b) otherwise. As situation (a')

is better than situation (a) (since the conditional distribution of S1

given that we are in Case 3 is stochastically smaller than that of Si)’
and as both are obviously better than situation (b), it follows since it
is conditionally (on the event that Case 3 is in effect) more likely that
S1 is smaller than Si than the reverse, that policy B is better than
policy A . Hence, in all cases, policy B 1is better than policy A and




so by the induction hypothesis it follows that an arrival should be
assigned to server 1 when that server is free. Now by conditioning
on the set of service times for server 1 we are left with the same type
of problem except that only servers 2 through N are available for
assignment (it is automatic that an arrival is assigned to server 1 if
he is free). Hence, by the same reasoning, it follows that if server 1
is busy and server 2 free, an arrival should be assigned.to server 2.
Repetition of this argument completes the proof that always assigning
to the fastest server stochastically minimizes the number in the system.
The result for maximizing the number in the system is proved

similarly.

Remarks:

(i) As the same policy is optimal for every deterministic
arrival process, it follows that it is optimal for any
stochastic arrival process which is assumed independent
of the service times. (To see this, just condition on the
set of arrival times.)

(ii) It is not essential that the system considered was a loss
system - the result holds true for any finite or infinite
capacity system.

(iii) The proof also shows that the percentage of lost customers
is minimized by the policy of always assigning an arrival
to the fastest free server. This generalizes a result of
Seth [1] presented for N = 2 servers and Poisson arrivals.
It is also interesting to note that Seth presented a counter-

example to the (obvious modification of the above) when




(iv)

the service distributions are assumed stochastically ordered
but not necessarily exponential.

The foregoing server assignment model does not allow switching
of servers when a server completes a service (i.e., no switching
between arrivals). For example, if server 1 completes service
at some instant, under the assumption of exponential service
times, it would be reasonable to immediately reassign one of
the customers already in service, but whose service is in-
complete, to server 1.

Suppose such switching is allowable. The policy m which
always assigns customer arrivals or reassigns customers to

the available server with the largest service rate has the
property that if, at any time, M customers are in the system,
then the M fastest servers are the busy ones. Consequently,
the customer departure rate is always largest under m .

It is thus clear (and not difficult to establish) that for

this modified model, the assertion of Theorem 1 holds for = .
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2. THE REPAIRMAN MODEL

-

Suppose we have a single repairman tending an N component system
in which the ith component, when up, functions for an exponentially
distributed length of time with rate Ai where Xl > xz > eiaie B> AN .
If a component fails when the repairman is idle, then repair is begun.
The time to complete a repair (on any component) is exponentially dis-
tributed with rate u . When more than one component is failed, a decision
has to be made as to which one will be repaired. It is assumed to be
allowable to reassign the repairman from one (failed) component to another.
That is, for instance, if component i is being repaired and component j

fails, then the repairman is allowed to switch from j to i (or any other

failed component).

Theorem 2:

The length of time during which there are k or more components
working in any interval of time (0,t) is stochastically maximized by
the strategy which always assigns the repairman to the failed component

whose failure rate Xi is the smallest.

Proof:

By imagining that the repairman is always working (even when all
components are up) and by using the lack of memory property of the
exponential distribution, it is easy to see that the above model is
mathematically equal to one in which repair completion epochs occur in
accordance with a Poisson process having rate u , and at these epochs
we are given the option of starting up any one of the components that

are down at the time. (If no component is failed at a repair completion




epoch, then this opportunity is not used). Hence, the model is mathe-
matically equivalent to the loss model of Section 1 under the assumption
of Poisson arrivals in the sense that we interpret component i to be
working whenever server i 1is busy, and we interpret the decision to
put component i wup at a repair completion epoch as the decision to

assign an arrival to server i . The result now follows from Theorem 1.

Remarks:

(i) We have been informed by Smith that he has also obtained
Theorem 2 by different methods.

(ii) Smith [2] was concerned with a series system in which repair
times were exponential but were allowed to depend on the
component under repair. He conjectured that the (asymptotic)
probability that all components are functioning is maximized
by the policy waich always repairs the failed component
having the smallest failure rate (no matter what the repair
rates are). Thus, our results prove Smith's conjecture when

the repair rates are the same. (Of course, we've proven

optimality not only for a series but also for a k-of-N system.)

(iii) A remaining component-repair problem which has not been
treated herein and which shall be treated in a future paper
is the model that imposes the constraint that a repairman
assigned to repair component i must complete his repair

before being assigned to repair another failed component.
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