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1. Introduction

This report summarizes five related research
projects that have been sponsored by the
Defense Advanced Research Projects Agency.

® Basic research in artificial intelligence and
Sformal reasoning addresses fundamental
problems in the representation of
knowledge and reasoning processes applied
to this knowledge. Solution of these
problems will make possible the
development of analytical applications of
computers with large and complex data
bases, where current systems can handle
only a very restricted set of data structures
and queries.

® Mathematical theory of computation and
program synthesis studies the properties of
computer programs. The goal is to
provide a sound theoretical basis for
proving correctness or equivalence of
designs and to automaticlly synthsize
programs having certain properties.

® Program veiification is a closely related
project whose goal is to improve the
rehiability of important classes of programs
such as compilers, operating systems and
realtime control systems, and to
standardize techniques for program
construction, documentation and
maintenance.

® /mage understanding is aimed at
mechanizing visual perception of three-
dimensional ob jects either from
photographs or from passive imaging
sensors. Advances in this field are
expected to lead to much more efficient
photointerpretation capabilities as well as
automatic visual guidance systems.

® Knowledge based programming is an
interactive approach to programming in
which the computer assists the user in
formulating the specifications of his
problem and in designing the data

structures and procedures needed to solve
it.

Readers who wish to dig deeper should see
the references at the end of each section.
Appendices list dissertations, films, and other
recent reports as well as external publications
by the staff.




2. Basic Research in Artificial Intelligence
and Formmal Reasoning

Personnel: John McCarthy,
Richard Weyhrauch, Student Research
Assistants: Juan Bulnes, Robert Filman,
Andrew Robinson, Carolyn Talcott,
David Wilkns.

Applied research requires basic research to
replenish the stock of of ideas on which its
progress depends. The long range goals of
work 1n basic Al and formal reasoning are to
make computers carry out the reasoning
required to solve problems. These problems
may be intellectual, eg. doing mathematics,
playing games or solving puzzles, or they may
be of the practical sort necessary to carry out
everyday events like getting to the grocery
store on ime. Recent discoveries have made it
clearer how to apply our main tool, first order
logic, both to Al and to reasoning about
programs. This brings application nearer,
especially to proving programs and hardware
correct, and has changed the direction of some
of our research.

This report begins with a brief discussion of
the general problem of representing
knowledge. We discuss a variety of problems
in this class that need to be solved in order to
make progress towards the above mentioned
long range goals. We then discuss the
particular areas of interest to our group and
our recent accomplishments in these areas.
Finally we review the FOL reasoning system
and describe recent developments and
applications of this system. FOL is one of our
basic research tools and has been used in
much of the work described below.

2.1 Fundamental problems of Al and formal
reasoning

Imagine that you want to implement a system
that is expected to do some reasoning. One
basic problem that must be solved is that of
knowledge representation. Many existing
systems represent the particular facts that they

deal with by entries in a data base. This,
however, in not the only kind of knowledge
that is needed to effectively access this data.
For example, few existing systems represent
general facts by entries in the data base.
Instead they represent general facts by
programs or by semi-programs like
productions. This works very well for
applying the general facts to particular cases,
but it doesnt work well if in order to
effectively use the data base you need to figure
out some consequence of these general facts.
In this case you need two things: first, an
exphicit representation of the general facts
themselves; and second, the ability to deduce
new general facts from old ones.

What kind of facilities do you need to
represent these general facts? One important
tool in our research is first order logic.
Current fashion in Al research questions the
rigidity of this approach. One reason for
being interested in first order logic is that
dealing with first order sentences is in some
sense a  minimal requirement for any
reasoning system. Consider the list of
properties a reasoning system must have:

1) it must have the ability to name ob jects:

John and Richard.

2) it must be able to specify the parts and
properties of the ob jects that it can name: the
color of the hair of Richard.

3) it must have ways of building up a
complicated object from its parts: a poker
hand is built out of five playing cards.

4) it must be able to speak about the relation
between things: John is taller than Richard.

5 it must have ways of building up
complicated relations between ob jects in terms
of simpler ones: (x is the uncle of y) means (y
is the brother of 2) and (2 is a parent of x).

Any system that can express ideas like these
contains as a subpart what is called by
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logicians “"quantifier free first order logic™. If
in addition you believe that it is reasonable to
be able to say sentences like "all the chairs in
this room are red”, and “there is a pirate in
the cave” then you must have full first order
predicate logic. Thus, in order to represent
general assertions such as those mentioned
above one needs quantifiers and the most
developed logical system with quantifiers is
first order logic. Within first order logic,
there are many possible ways of representing a
particular kind of fact, and much further
study is required.

Many applications of “intelligent™ programs
will require that decisions be made based on
information obtained in a variety of ways.
For data bases to include the many types of
information that decision makers really need
will require additional major advances in
representation theory. As mentioned above
current data base technology at best allows
simple relations to be represented - eg. "Smith
is the supervisor of jJones." Additions from
current Al techniques would allow simple
generalizations of relations ("Every employee
has a supervisor except the director.”), but this
leaves a tremendous range of representation
problems untreated:

1. Mental states - what a person or group
believes, knows, wants, fears, etc.

2. Modalities - what may happen, what must
happen, what ought to be done, what
can be done, etc.

3. Counterfactual conditionals - if something
were true what else would be the case.

4. Causality - how does one event follow
because of another. The
preconditions of events and the
consequences of events.

Concurrent events and their laws of
interaction and non-interaction.

5. Actions and their modifiers, e.g. "slowly".
Ability - conditions under which a
person or group can do something.

Facts of these kinds cannot be adequately
represented in data bases at present, and there

are undoubtedly other phenomena essential
for intelligence which have yet to be
discovered. Before such facts can be
incorporated in data bases and question-
answering programs in a general way, basic
research must determine the logical structure
of these concepts.

Our ob ject in raising these problems is not to
show that present database efforts are
misdirected. In our opinion, the problems
being explored are entirely appropriate.
However, it is necessary to look further ahead
and provide the basic research foundation for
more advanced database work. The same
basic research will also support other
intelligent system and program verification
advances, but we haven't time or space to
elaborate these here.

2.2 Recent research interests and
accomplishments

We now discuss the areas of particular
research interest of members of the Formal
Reasoning group and give some details of
recent results and accomplishments. At a
detailed level there is a diversity of problems
studied. The problem of knowledge
representation is a common underlying theme.

Knowledge and belief

The solution of real world problems
frequently requires the ability to reason about
other peoples knowledge and beliefs. The
problems of reasoning about knowledge are
more difficult than reasoning about things.

Suppose we have the sentences Pat knows
Mike's telephone number and Mike's
telephone number is the same as Mary's. A
computerized deduction system that uses the
rule that equals may be substituted for equals
might conclude Pat knows Mary’s telephone
number. This is not a legitimate deduction,
even though it would be legitimate to deduce
that Pat dialed Mary's telephone number from
the fact that he dialed Mike's number and the
fact that the numbers are the same.

A" —— = ~ ‘ b
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The fact that substitution of equals for equals
is legitimate in some contexts and not In
others has been well known for a very long
time. Correct logical laws for handling such
cases have been proposed, but the presently
known solutions do not seem adequate.

® McCarthy has continued his study of the
formahzation of facts about knowledge.
There have been two important results
recently. First he has shown how to express
the assumption that a person knows nothing
more about a subject than knowledge
exphcitly ascribed to him. This permits
deducing that he doesn't know something.
Second he has shown how to express the effect
of learning a fact on a person's state of
knowledge. Third, he has shown how to
express joint knowledge of several people, and
finally he has shown how to axiomatize
"knowing what™ rather than merely the
"knowing that” treated by Hintikka and other
philosophers.

Con jectures

It has long been recognized that standard logic
does not represent the many kinds of
reasoning that people wuse in forming
con jectures. It now appears that much human
reasoning involves conjecturing that the
known facts about a phenomenon are all the
relevant facts.

Strict logical deduction does not permit
drawing a conclusion from certain facts that
would be changed if additional facts,
supplementing but not contradicting them,
were discovered. In logic, if a conclusion
follows, it will still follow when more facts are
added. Humans, on the other hand, are
always drawing this kind of conclusion. We
now think that machines must also reason this
way, and that programs confined to strict
logical reasoning must either be unable to
draw conclusions or they must use axioms so
unqualified that they are false.

® McCarthy's minimization schema work has

developed into a study of con jectural
reasoning, the first results of which were
included in (McCarthy 1977b). The method,
now called circumscription, seems to be present
in informal human reasoning and may be the
most important logical difference between
informal human reasoning and the formal
reasoning of mathematical logic. [McCarthy
1978d] gives an axiom schema of first order
logic called the circumscription induction
schema which can be used to represent in a
flexible way the conjecture that the entities
that can be shown to exist on the basis of the
information in a certain data base are all the
relevant entities that exist. The flexibility
comes from the fact that the set of information
con jectured to be all the relevant information
is readily changed.

Circumscription is a fully formal mode of
reasoning and can be programmed for a
computer. On the other hand, it is not valid,
1e. it sometimes leads to wrong conclusions.
This s to be expected, because
mathematicians have proved the completeness
of the rules of inference of first order logic;
admitting any general laws that generate
conclusions not attainable by the old laws
makes the system inconsistent. T herefore,
programs that use circumscription cannot be
certain that their results are correct and must
be made capable of withdrawing applications
of circumscription that lead to wrong resuits.
This will make them more like humans -
getting increased power at the price of
fallibility. Its further development is essential
for progress in Al

Reasoning with observation

Many human reasoning processes involve
interspersing observations of the external
world with the use of logical inferénce. We
believe that intelligent machines must also do
this.

® Bob Filman has completed his thesis
research [Filman 1978) where he demonstrates
that the chain of reasoning involved in a
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complex chess problem requires programs that
cbserve a chess board as well as perform
deductions if the solution is to be considered
feasible. The point of this research was not to
solve chess problems, but to explore how the
ability to make direct observations of the
world, in this case a chessboard, can be
interspersed with deduction to better solve
problems. This work was facilitated by what
we have called the semantic attachment
feature of FOL. His experience with
observational reasoning shows that we still
have only begun to understand it.

Reasoning about programs

Researchers in  mathematical theory of
computation have developed a number of
techniques for analyzing and proving
properties of programs. These techniques
have proved useful but are typically capable
of treating a limited class of problems. We
feel that it is important to develop techniques
that are capable of handling a wide variety of
questions about programs in a uniform
manner. The following is a collection of
examples of properties that we would like to
express and questions that we would like to be
able to answer:

1. Parsing - 1s p a well formed program, is s
an acceptable specification?

2. Correctness - does a program, p, satisfy
some specification, s?

3. Equivalence - do two programs meet the
same specifications?

4. Classes of programs - can we express the
fact that a program contains some
particular construct such as “"while loop”
or "go to™?

5. Properties of such classes - can we state
properties of programs of some such
class, for example that the equivalence of
two programs of a particular class is
decidable?

6. Lemmas - can such facts be applied to
particular ptograms?

7. Resources - how much storage does a
particular program require?

® McCarthy found Cartwright's thesis
(Cartwright 1977] the key to implementing his
long term goal of expressing recursive
program definitions as sentences of logic.
While McCarthy's older approach required
using a logic of partial functions and
predicates which introduces many
complications, Cartwright's approach uses
ordinary first order logic. Using it permitted
McCarthy to simplify his earlier ideas and
apply them to moderately complicated
programs.  Besides an  exposition of
Cartwright's formal ideas separated from his
proof-checker, [McCarthy 1978b) contains a
minimization scheme that characterizes a
recursive program as the minimal solution of
the Cartwright functional equation, a
characterization of the verification methods of
inductive  assertions (Floyd) and subgoal
induction  (Manna-Pnueli and Wegbreit-
Morris) as axiom schemata, and a greatly
simplified analog of the Goedel-Kleene
method of representing recursive functions in
first order logic.

® Richard Weyhrauch has used reflection to
implement the McCarthy minimization schema
(McCarthy 1978b) for proving the correctness
of LISP programs. This is a step toward our
goal of constructing a system for reasoning
about the correctness of LISP programs.

® A program solving the samefringe problem
is given in [McCarthy 1977). Proving the
correctness of this program involves a non-
trivial induction step. It was formalized using
two different first order axiomatizations of
LISP, (once by Richard Weyhrauch and once
by Carolyn Talcott) based on theoretical ideas
of McCarthy [1978b). The proofs were
constructed and checked using FOL.

We believe that these recent results are the
basis for developing a system for reasoning
about programs that will have the properties
mentioned above. And we are beginning
work on such a system using the FOL
reasoning system.




[ Basic Research in Artificial Intelligence and Formal Reasoning

Patterns

Many of the patterns that an “intelhgent”
program will have to recognize do not fall into
the categories so far treated in Al work For
example, explaining an unknown activity of
an adversary requires con jecturing a goal and
its relation to other goals, a behef structure
that makes the goal seem desirable and
attamnable, and a means of attaimng the goal
that gives rise to the observations. Present Al
pattern recopnition programs find patterns in
observed data rather than introduce new
entities 1n  order to explan the data
McCarthy 1s developing a general notion of
pattern, and Wilkins 1s using chess to develop
some advanced notions of strategic pattern

® Dave Wilkins 1s studying the problem of
applying knowledge in a problem solving
system He s developing the system
PARADISE (PAttern Recognition Apphed to
Dlrecting SEarch) which finds the best move
in tactically sharp middle game positions from
the games of chess masters. His system
employs a knowledge-based approach where
much chess knowledge 15 stored as patterns
and used as productions. He has developed a
production language and methods of forming
plans to guide a search.

2.3 The FOL reasoning system

The study of representation of facts and
modes of reasoning has an experimental as
well as a theoretical aspect. The long run test
of the usefulness of a means of representation
or a mode of reasoning 1s its contribution to
the success of question answering and
problem-solving programs. However,
building such systems 1s a slow way of testing
newly developed reasoning concepts, because it
often requires the creation of a whole new
data base format. New concepts can be
studied much more quickly if we can test their
consequences directly in relative isolation.

The FOL reasoning system [Weyhrauch 1977)
provides an environment in which new ideas

can be formulated, tested and developed. In
orider to check that some hine of reasoning is
vahd, we need a formal and mechanizable
notion of proof A program that can decide
whether or not a proof 15 valid is called a
proof checker and forms the basis of a system
for tesung theories and modes of reasoning
The facts we are studying are general facts
about situations, events, actions and goals, the
effects of actions that manipulate physical
objects, and the facts about sources of
information  such as books, computer files,
people and observation that are necessary in
arder for a program to obtain the information
required to solve problems  In addition to its
apphications ta Al, we are using FOL to
develop techniques to verify that computer
programs meet their specifications and to
study other properties of programs

FOL can be thought of as a conwversational
reasoning system. Together, FOL and a user
establish the language they will use, decide on
the objects they are discussing, and agree
about their basic properties, 1. e axioms.
Then they discuss interactively the reasons
why certain facts about these things can be
concluded from others There latter can be
viewed as a form of proof checking or
theorem praving.

The proof checking aspect of FOL is based on
a natural deduction formulation of first order
logic as described n [Prawitz 1965). Formal
proofs carried out in a pure natural deduction
system are generally extremely long, because
the usual logical systems do not incorporate as
prinitives all the modes of reasoning actually
used. FOL contains many features that allow
more natural and efficient expression of facts
and reasoning. One of the most important is
semantic attachment. This feature of FOL
allows the user to create a LISP model of the
object that he 1s wants to reason about. This
allows him to conclude some facts simply by
examining them, rather than doing some
complicated reasoning about them. In
everyday life even the weather man looks out
the window to see if it 1s raining. He does not




2.3 The FOL reasoning system

conclude 1t 15 raining by some complicated
reasoning based on his knowledge of weather
We call the data structure representing the
combination of formal reasoning ability and
observation an L/S pair {or
language/simulation structure pair). In this
environment proofs can be carried out by the
usual methods of deduction, by computation
in the model, or by combinations of both.

Frequently the objects we reason about are
themselves theories, 1e. L/S pairs. This
reasoning about theories i1s called metatheory.
In fact we do meta reasoning all the time. For
example, when we think about what questions
we should ask a data base, we are reasoning
about our theory of what is stored in the data
base, not about the facts that are stored there.
A formahzation of the reasoning about
theories provides (1) a formal description of
FOL and (2) a theory in which to carry out
proofs of statements about theories. An initial
axtomatization, META, of the metatheory of
FOL has been made and has been used in
several projects.

META s just an ordinary first-order theory,
and as such 15 represented as a data structure
in FOL. This provides FOL with a certain
amount of ability to reason about itself. The
ability of programs to manipulate pointers and
the ability of FOL to view the structure
representing an L/S pair as a part of a
simulation structure makes FOL in some sense
self-reflexive.  This kind of self-reflexive
system is completely new. (Further elaboration
1s given in {Weyhrauch 1978b]).

FOL software

Summer 1978 closes a period of intense FOL
software development. The coding was done
under the direction of Richard Weyhrauch
who was helped by Andrew Robinson, Chris
Goad, Carolyn Talcott, Juan Bulnes and Dan
Blom. The extensions and improvements
described allow facts and proofs to be
expressed more naturally, and make shorter
proofs possible by providing simplification

mechanisms, and the ability to replace some
parts of a proof by computation.

® The semanuc attachment mechanism,
including the use of representations, was
completed

® The rewriting system was finished. Thus s
a syntactic simplifier capable of using a user-
specified collection of equalities and logical
equivalences to simplify a term or formula.

® The semantic and syntactic simplification
mechanisms were combined to produce a
general first order expression evaluator. This
turns out to be a very powerful theorem
proving tool, particularly in the applications
involving the use of metatheory.

® The semantic attachment mechanism was
augmented by the implementation of the LET
command, providing the abiiity to attach to an
individual constant the result of evaluating a
term.

® The many-sorted aspect of FOL was
improved to allow the declaration of
polymorphic functions

® Data structures were developed to allow the
presence of several L/S pairs and for multiple
proofs within an L/S pair environment.
Commands were implemented for switching
attention to a particular proof or L/S pair
(context switching).

® Reflection principles can be used to express
the connection between statements in a theory
and its metatheory Several reflection principles
were implemented in the form of a REFLECT
command.

Applications of FOL to problems of
reasoning and representation.

More details about the FOL system and its
applications can be found in (Weyhrauch
1978a,b)
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® A primitive goal structure mechanism has
been implemented in FOL by juan Buines.
He has carried out various experiments using
the new goal structure. In particular a version
of Ramsey's theorem was proved in about one
fifth the number of steps previously required.
This 1s a substantial improvement, although 1t
is stull somewhat longer than an informal
proof would be. (Ramsey's theorem can be
described as follows: given an infinite set of
points such that for every pair there is either
a black hne or a red line connecting them;
there 1s either an infinite subset of those
points such that every pair is connected by a
black line, or there i1s an infinite subset such
that every pair is connected by a red line.)

® Weyhrauch and Talcott axiomatized D.
Michie's blind robot problem as an example
of reasoning about actions and moving. This
work incorporates a new idea of the notion of
situation. The working system has the ability
to answer most reasonable questions about the
robot situations in a single step.

® We have begun using the FOL formalism
to represent reasoning about asynchronous
actions and time and to study the question of
how we get from sensory (or sensor) data to an
understanding of the world. The semantic
attachment mechanism of FOL plays a major
role in this work.

® Todd Wagner studied the problem of
hardware verification. He developed a
language for specifying the behavior of digital
circuits and their components. Several circuits
were described and the verification of their
correct behavior was carried out using FOL
[Wagner 1977).
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3. Mathematical Theory of Computation
and Program Synthesis

Personnel: Zohar Manna, Student Research
Assistants: Nachum Dershowitz, Martin
Brooks, Chris Goad.

3.1 New Verification Techniques
Nachum Dershowitz & Zohar Manna

The goal of this research is to find more
powerful verification techniques that will help
make program verification a more practical
tool for programmers and more readily
amenable to automation.

In the course of recent ARPA supported
research, we have found two techniques of
widespread interest that will undoubtably
have an impact on future work in program
verification. They are the wuse of
intermittent-assertions to prove the total
correctness of programs, and the use of
multiset orderings to prove the termination of
programs. We have also begun investigating
the verification of production systems.

3.1.1 Intermittent Assertion Method

Manna and Waldinger [1978) explored a
technique for proving the correctness and
termination of programs simultaneously. This
approach, which they call the
intermittent-assertion method, involves
affixing comments to points in the program
but with the intention that only sometime will
control pass through the point and satisfy the
attached assertion. Consequently, control may
pass through a point many times without
satisfying the assertion, but control must pass
through ‘the point at least once with the
assertion. satisfied; therefore they term these
comments intermittent assertions. If one
proves the output specification as an
intermittent assertion at the program’s exit,
then he has simultaneously shown that the
program must halt and satisfy the
specification. This establishes the program's
total correctness in a single proof, while the

conventional approach requires two separate
proofs to establish partial correctness and
termination. This intermittent  assertion
method, introduced by Burstall ([1974),
promises to provide a valuable complement to
the more conventional methods.

Manna and Waldinger use the phrase
sometime Q at L

to denote that Q is an intermittent assertion at
label L (ie. that sometime control will pass
through L with assertion Q satisfied). If the
entrance of a program is labelled start and its
exit is labelled finish , one can express its total
correctness with respect to an input
specification P and an output specification R
by
T heorem: if sometime P at start
then sometime R at finish .

This theorem entails the termination as well as
the partial correctness of the program, because
it implies that control must eventually reach
the programs exit, and satisfy the desired
output specification.

Generally, to prove the total correctness of a
program, one must affix intermittent assertions
to some of the program's internal points, and
supply lemmas to relate these assertions.
Typically, one will need a lemma for each of
the program’s loops, to describe the intended
behavior of that loop. The proofs of the
lemmas often involve complete induction over
a well-founded ordering. In proving such a
lemma, we assume that the lemma holds for ali
elements of the well-founded set smaller (in
the ordering) than a given element, and show
that the lemma then holds for the given
element as well.

In their paper, Manna and Waldinger present
and illustrate the intermittent-assertion
method with a variety of examples for
proving total correctness. Some of their proofs
are markedly simpler than their conventional
counterparts. On the other hand, the
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intermittent-assertion method is at least as
powerful as the conventional invariant-
assertion method and the well-founded
ordering method, in addition to the more
recent subgoal-assertion method for praving
partial correctness.

The intermittent-assertion method not only
serves as a valuable tool, but also provides a
general framewark encompassing a wide
variety of techniques for the logical analysis of
programs. Diverse methods for establishing
partial correctness, termination, and
equivalence fit easily within this framework.
Furthermore, some proofs, naturally expressed
with intermittent assertions, are not as easily
conveyed by the more conventional methods.
For example, the method can be applied to
establish the  validity of  program
transformations, and to prove the correctness
of continuously operating programs, programs
that are intended never to terminate.

This new method has begun to attract a good
deal of attention. Different approaches to its
formalization have been attempted, using
predicate calculus, Hoare-style axiomatization,
modal logic, and the Lucid formalism. It is
believed that the intermittent-assertion
method will have a practical impact on
program verificatici, because it allows one to
incorporate his intuitive understanding about
the way a program works into a proof of its
correctness.

3.1.2 Multiset Ordering Technique

A common tool for proving the termination of
programs is the well-founded set, a set
ordered in such a way as to admit no infinite
decreasing sequences. The basic approach is
to find a termination function that maps the
elements of the program into some
well-founded set, such that the value of the
termination function is continually reduced
throughout the  computation. The
well-founded sets most frequently used for this
urpose are the natural numbers under the
greater-than” ordering and n-tuples of

11

natural numbers under the lexicographic
ordering.

All too often, the termination functions
required are difficult to find and are of a
complexity out of proportion to the program
under consideration. However, by providing
more sophisticated well-founded sets, the
corresponding termination functions can be
simplified. The goal of this research is to
discover and apply suitable well-founded sets
to the problem of termination.

Dershowitz and Manna [1978) have defined a
class of well-founded orderings on multisets.
Multisets, sometimes called bags, are like sets,
but allow multiple occurrences of identical
elements. For example, {3, 3, 3, 4, 0, 0} is a
multiset of natural numbers; it is identical to
the muitiset {0, 3, 3, 0, 4, 3}, but is distinct
from {3, 4, 0}.

The ordering on any given well-founded set
§ can be extended to form a well-founded
ordering on the finite multisets over S . In
this multiset ordering, a finite multiset M
over § is greater than a multiset M’ if
M' may be obtained from M by the removal
of at least one element from M and/or by the
replacement of one or more elements in
M with any finite number of elements taken
from S , each of which is smaller than one of
the replaced elements. Thus, if § is the set of
natural numbers 0, 1,2, . . . under the usual
“greater-than” ordering, then the multiset {3,
3, 4, O} is greater than each of: the three
multisets {3, 4}, {3, 2,2, 1, 1, 1, 4, 0}, and {8, 3,
3, 3,2, 2} In the first case, two elernents have
been remaved, in the second case, an
occurrence of 3 has been replaced by two
occurrences of 2 and three occurrences of I;
and in the third case, the element 4 has been

‘replaced by two occurrences each of 3 and 2,

and in addition the element O has been
removed. y
As an example of the use of a multiset
ordering for a proof of termination, consider
the following trivial program to empty a
shunting yard of all trains:

e ——
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loop until the shunting yard is empty
select a train
if the train consists of only a single car
then remove it from the yard
else split it into two shorter trains
fi
repeat .

This program is nondeterministic, as it does
not indicate which train is to be selected nor
how the train is to be split.

Let ¥ denote the set of trains in the yard, and
trains(Y) be the number of trains in the yard.
For any train teY , let cars(t) be the number
of cars it contains. We present two proofs of
termination.

If we take the set of natural numbers as our
well-founded set, then we are led to the
selection of the termination function

T(Y) = 2 Ey cars(t) - trains(y) .

This solution uses the fact that "splitting”
conserves the number of cars in the yard,
Z cars(t) . Thus, splitting a train increases the
number of trains in the yard, trains(Y), by I,
thereby decreasing the current value of the
termination function 7 by 1. Removing a
one-car train from the yard reduces
2+2 cars(t) by 2 and increases —trains(Y) by
1, thereby decreasing 7 by 1.

If we use multisets of natural numbers as our
well-founded set, then the function

T(V) = {cars(t) : te¥}

demonstrates the termination of the shunting
program. That is, for any configuration of
the yard Y, 7T(V) denotes the multiset
containing the size of each of the trains in ¥ .
Each iteration of the program loop clearly
decreases the value of T(Y) under the multiset
ordering: removing a train from the yard
reduces the multiset by removing one element;
splitting a train replaces one element with two
smaller ones, corresponding to the two shorter
trains.

The value of the multiset ordering is that it
permits the use of relatively simple and
intuitive termination functions in otherwise
difficult termination proofs. In practice, using
the more conventional orderings often leads to
complex termination functions that are
difficult to discover. For example, the
termination proofs of programs involving
stacks are often quite complicated and require
much more subtle orderings and termination
functions. Finding an appropriate ordering
and termination function for such programs is
a well-known challenge among researchers in
the field of program verification. It is in this
respect that the multiset ordering is of great
help. We have, for example, used a multiset
ordering to prove the termination of an
iterative program to compute Ackermann’s
function. That proof is the most intuitive one
known to us. Further research along these
lines is under way.

We have found multiset orderings to be a

particularly effective tool for proving the
termination of iterative programs derived
from recursive definitions, and for
nondeterministic programs.

3.1.3 Verification of Production
Systems

Programs are sometimes written in the form of
a production system . There has been much
recent interest in such systems for constructing
symbolic simplifiers and theorem provers, and
the problem of guaranteeing their correctness
and termination is an actual one.

Consider the following production system,
consisting of nine rewrite rules, intended to
symbolically differentiates an expression with
respect to x :

Dx = |

Dy = 0

D(a+B) = (Da+ DB)
D(a+g) = ((B+Da)+ (a+DB))
D(-a) = (-Da)

D(x-g) = (Da-DB)
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D(a/B) = ((Da/B) - ((a-DB)I(B12)) )

Diina) = (Da/a)

D(a1B) = ((Dap«at(3-1))) +
(((Un a)DB)«(atp)) ) ,

where 9 can be any constant or any variable
other than x . Consider the expression

D(D(x+x)+y) .

We could either apply the third production to
the outer D , or else we could apply the fourth
production to the inner D . In the latter case,
we obtain

D(((x+Dx)+(x+Dx))+y) ,

which now contains three occurrences of D .
At this point, we can still apply the third
production to the outer D, or we could apply
the first production to either one of the inner
D’s . Applying the third production yields

(D((x+Dx)+(x+Dx))+Dy) .

In general, at each stage in the computation
there are many ways to proceed, and the
choice is made nondeterministically. In our
case, all choices eventually lead to the
expression

(((C1 1)+ (x=0)+((1+ 1)4+(x-0))+0) ,

for which no further application of a
production is possible.

The difficulty in proving the correctness of
production systems stems from the fact that
applying a production to a subexpression, not
only affects the structure of that subexpression,
but also changes the structure of its
superexpressions, including the top-level
expression. And a proof must take into
consideration the many different possible
sequences, generated by the nondeterministic
choice of productions and subexpressions.

Proving the termination of a production
system such as this one for differentiation is
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difficult, since some productions (the first two)
may decrease the size of an expression, while
other productions (the rest) may increase its
size. Furthermore, a production (eg. the
fourth) may actually duplicate occurrences of
subexpressions. (Manna and Ness [1970]
describe a general method of proving the
termination of production systems.)

An intuitive proof of termination of this
system, using multisets, is based on the
observation that the arguments to the operator
D are reduced in size by each production.
But since most of the productions increase the
size of the expression as a whole, we need a
termination function that takes the nested
structure of the expression into consideration.
We can do this by a natural extension of the
multiset ordering to nested multisets. A nested
multiset is either an element of some base set
S, or else it is a finite multiset of nested
multisets over S . For example,

{{r. 1L.{{oy. 1, 2}, 0}

is a nested multiset. The nested multiset
ordering is a recursive version of the simple
multiset ordering: two elements of the base set
§ are compared using the ordering on S ; any
multiset is greater than any element of the
base set; and two multisets are compared as in
the simple multiset ordering.

So we let the well-founded set be the nested
multisets over the natural numbers, and let the
termination function yield the size of « for
each occurrence of Da, while preserving the
nested structure of the expression. For
example, the arguments of the six occurrences
of D in the expression D(D(Dx+Dy)+Dy){Dx
are D(Dx+Dy)+Dy, Dx:Dy, x, ¥, 9, and x.
They are of sizes 9, 5 I, I, 1, and |,
respectively. Thus, for

¢ = D(D(Dx+Dy)+Dy)/Dx),

we have

T(e) = {19, {5, {1}, {1}, {1}, {1}}.

hoe
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3.2 Proofs as Programs
Chris Goad

It often happens in mathematics that
examination of a proof that a concrete
mathematical object (eg. a number) exists
allows the explicit construction of that ob ject.
As an example, consider the following trivial
theorem concerning the positive integers.

For each x there exists a y such that y is
divisible by each z which is less than x.

We prove the theorem by induction on x.
For x=1, any choice of y will satisfy the
theorem, since there is no positive integer less
than | of which y must be a multiple. To be
definite, we will take y=1. For the induction
step, we assume the theorem holds at x, and
prove that it holds for x+1. So assume there
is a y divisible by each z less than x. Then
yex is divisible by each zless than x+], so
that the theorem holds for x+1.

If we have a particular value of X in mind, we

can compute a  corresponding y by
“unwinding” the proof of the theorem in the
obvious way - the number we get is
x-1 factorial.

This kind of phenomenon was studied in
detail by the mathematical logician Gentzen in
the nineteen-thirties. He developed a
mechanical method, which he called
normalization, for  unwinding  proofs.
Normalization has the important characteristic
that, when applied to a “constructive” proof of
the existence of a number having a certain
property, it gives explicitly a particular
number satisfying that property. Further, if
the theorem proved has the form, “for all
x there exists a ysuch that the property
ofx, y) holds”, then for each given number
x normalization  computes a number
y satisfying ofx,y). It is in this sense that
normalization allows one to treat proofs as
programs. The class of proofs of formulas of
the appropriate form can be regarded as the
set of programs of a programming language,
where normalization serves as the interpreter.

One can envision two possible applications to
practical computing of the ability to treat a
proof as a program: (1) direct application —
the use of proofs as a programming language
by humans, and (2) the use of a theorem
prover for the automatic synthesis of computer
programs. The first application depends for
its usefulness on the differences between
proofs and computer programs of the usual
kind as expressions of computation. The
second depends on the development of
powerful automatic theorem provers. The
work of Chris Goad, while relevant to (2), is
motivated and directed primarily by (1)
Specifically, he is investigating the nature and
efficiency of proofs as expressions of
computation, using both theoretical methods
and computational experiments.




3.3 Program Testing and Debugging
Martin Brooks

The primary goal of Martin Brooks' (graduate
student) research is to develop a theory of
program testing. Such a theory tells one what
inferences can be made from the observation
that a program produces correct outputs on
some finite set of inputs. Once such a theory
is established its results will be used to build
practical debugging tools to aid working
programmers.

Program testing 1s the usual method by which
programmers obtain confidence in the
correctness of their programs. It is hoped
among mathematicians and computer scientists
that this will be replaced by automatic
program verification. Programmers face two
difficulties using the verification approach:

(1) The programmer must be able to precisely
and correctly specify his program’s intended
behavior, and perhaps annotate his
program, in some specification language.

(2) There is not much theory relating program
incorrectness to difficulties in finding
correctness proofs; verification theory does
not address itself to debugging incorrect
programs.

The goal is to tell how to automatically choose
test examples; all the programmer must know
is what his program’s output should be un
these examples.

This research reveals that for programs
within  certain  general classes, called
debuggable classes, there are algorithms, called
debugging algorithms, which use program
testing to either find or guarantee the
nonexistence of certain types of programming
errors, called debuggable errors. The theory
allows for automatic construction of test
inputs, so that a programmer need only be
able to supply the correct outputs
corresponding to the test inputs in order for
the debugging algorithm to debug his
program. If the programmer knows that the
only possible errors he may have committed
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are debuggable errors, then correct outputs on
the tests imply that his program is correct. If
he has committed some debugable errors, his
programs actual output will differ from its
intended output on at least one of the
automatically generated test inputs, and the
debugging algorithm will correct the errors.

This theory of program testing leads to the
possibility of a valuable programming tool: an
automatic test case generator and debugger.
This tool would have well understood
properties and would be capable of
demonstrating program correctness. It would
be programmed to catch all instances of a
finite number of kinds of debuggable errors.
A programmer would use this tool as follows:
First he writes his program and gives it to the
debugger. The debugger analyzes the
program, computes the appropriate inputs to
test the program on, and then asks the
programmer what the output should be on
each of these inputs. The debugger compares
the programmer's responses to the program's
actual outputs. If they are the same then his
program is guaranteed to be free of the sorts
of bugs that the debugger is programmed to
uncover. If some of his program’s actual
outputs are not correc’, then the debugger uses
them, sometimes after asking the programmer
about some more test cases, to correct the
programming errors which caused the bad
outputs. Finally, the debugger returns the
corrected version of the program to the
programmer.

3.4 Program Synthesis
Zohar Manna

3.4.1 Overview

Program  synthesis is the automatic
construction of programs to meet given
specifications. These specifications constitute
a high-level description of the desired
program, which expresses the purpose of the
program, without indicating the method by
which that purpose is to be achieved.
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The specifications are expressed in terms of
many constructs, which are endemic to the
particular subject domain of the desired
program, (eg. numbers, sets, lists). Because
these constructs are only intended to describe
the purpose of the program and need not be
computed, they can be of a much higher level
than the constructs of any programming
language (ie, they can include logical
quantifiers, set constructors, and other
noncomputable  operations).  Thus, the
specification language can correspond closely
with the concepts a programmer actually uses
in thinking about the problem.

The techniques we are developing are
independent of the choice of a target
programming language. The particular
language we use in our examples and in our
experimental system is a simple LISP-like
language containing only basic numerical and
list-processing operations, conditional
expressions, and recursion. In considering the
formation of programs with side-effects, we
extend the language to include assignments to
variables, array elements, and other data-
structure components.

Our basic approach is to transform the
specifications repeatedly according to certain
rules; each rule replaces one segment of a
program description by another, equivalent
segment. The process continues until a
description is obtained that is entirely in terms
of the primitive constructs of the target
language; this description is the desired
program. The entire sequence of descriptions
leading from the specifications to the final
program is called a program derivation. The
method guarantees that the final program will
indeed satisfy the original specifications.

The transformation rules are guided by
certain strategic controls which ensure that
they are applied only at the appropriate time.
Many of the transformation rules represent
knowledge about the program’s sub ject
domain; some explicate the meaning of the
constructs of the specification and target

languages; a few rules correspond to basic
programming principles, which are
independent of the particular sub ject domain
or programming language.

Some of the principles we have identified so
far are:

® Conditional formation — This principles
causes a case analysis to be introduced into
the derivation, yielding a conditional test
in the ultimate program.

® Recursion formation — This principle
introduces a recursive call into the ultimate
program by observing when a subgoal to
be achieved is actually an instance of the
desired top-level goal.

® Well-founded ordering — The termination
of the recursive programs formed by the
above technique is ensured by constructing
a well-founded ordering with the property
that the arguments of the program's
recursive calls are all strictly less than the
program's inputs.

® Procedure formation — A  subsidiary
procedure is formed when a subgoal is
found to be an instance, not of the top-
level goal, but of a previously generated
subgoal.

® Generalization — A generalized procedure
is formed when two subgoals are found to
be an instance of a third expression, which
is somewhat more general than both.

® Simultaneous goals — In constructing a
program to achieve two or more goals
simultaneously, we first construct a
program to achieve one goal, then modify
that program to achieve the others as well,
while protecting the condition that was
already achieved.

Further discussion of the same topics, at a
more leisurely pace, along with bibliographical
remarks and references, appears in the recent

paper

m’ rr————
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Z. Manna and R. Waldinger, Synthesis:
Dreams «> Programs, Technical
Report, Artificial Intelligence Lab.,
Stanford University, Stanford, CA
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$.4.2 Basic Program Synthesis
Techniques

Specifications

In designing the specification language, we
have adopted many constructs (eg., the set
constructor or the logical quantifiers) that
facilitate the description of a program but that
cannot be included in the target programming
language. We present below examples of
specifications for simple programs using some
of these high-level constructs.

A program lessall(x 1), to test if a number x is
less than every element of a list ! of numbers,
is specified as follows;

lessall(x 1) « compute x < all(l)
where is a number and
L is a list of numbers.

In general, the specification construct P(ali(())
denotes that the property P holds for every
element of the list .

- The specification for a program to compute

the greatest common division gcd(x y) of two
nonnegative integers x and ¥ is

ged(x y) « compute max {z : zlx and zly }
where x and y are nonnegative
integersand x » Oory » 0.

The set constructor {u : P(u)} denotes the set
of all elements u satisfying the property P.

The all construct P(all(!)) and the set construct
{u: P(u)}] are nonprimitive specification
constructs (ie, they are not in the target
programming language). The synthesis task is
to transform a description of the desired
program, such as the specifications presented
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above, into an equivalent description that
employs only primitive constructs of the target

language.

Transformation Rules
We use the notation
t-+t" ifP

to denote that a subexpression of form ¢ may
be replaced by the corresponding expression
t’, provided that the condition P is true.

For example, the rule
Qand true » Q

denotes the basic logical principle that an
expression of form °Q and true" may be
replaced by the simpler expression "Q". This
rule has no conditions; it can always be
applied.

The rule

P (all(l)) + P(kead (1)) and P(all(tail(l)))
if not empty(l)

expresses the fact that a property P holds for
every element of a nonempty list /, if it holds
for the first element head(!) and for every
element of the list tail(!) of the other elements.
This rule imposes the condition that the list {
be nonempty.

Derivation Trees

In developing a program whose specification
are

fix) « compute P(x)
where Xx),

we establish the output description as a goal to
be achieved, viz,

Goal: compute P(x).
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Subgoals are derived from this goal by

application of the relevant transformation
rules. For example, in deriving the ged
program, we form the top-level goal

Goal I: compute max{ z : zjx and zjy }.
By appiying a transformation rule
ylv and ujw -+ up and ujw-v
we obtain the subgoal
Goal 2: compute max{ z : z|x and zjy-x }.

If a transformation rule imposes a condition
P, which must be true for the rule to be
applied, a subgoal of the form

Goal: prove P

must be achieved before the rule can be
applied. For example, in developing the
program lessall(x !) to test if a number x is
less than every element of a list / of numbers,
we have the top-level goal

compute x < all(l),

which is obtained directly from the
specification; in attempting to apply the rule

P(all(l)) = true  if empty(l)

to this goal, we are led to the subgoal
Goal: prove emptyl).

From each subgoal that is derived, further
subgoals are generated by the application of
more transformation rules. We thus construct
a tree of goals and subgoals, which we will call
a program derivation (ree.

A subgoal “compute $" is already achieved if
S consists entirely of primitive constructs of
the target language. A subgoal “prove P" is
achieved if P is the logical constant frue.
Such goals are terminal nodes of the
derivation tree.

Our research so far has emphasized the
identification and codification of the basic
programming principles, those techniques that
are applied again and again in the formation
of a program, regardless of the particular
subject domain. In the next few sections we
discuss several of the basic programming
principles which have been considered so far.

Conditional Formation

Many of the transformation rules impose
conditions (eg, ! 1s nonempty, x is
nonnegative) that must be satisfied for the
rule to be applied. Suppose that in attempting
to apply a particular rule, we fail to prove or
disprove a condition P, where P is expressed
entirely in terms of the primitive constructs of
the programming language; in such a
situation, the conditional-formation rule is
invoked. This rule allows us to introduce a
case analysis, and consider separately the case
in which P is true and P is false. Suppose we
succeed in constructing a program segment J,
that solves our problem under the assumption
that P is true, and another program segment
§, that solves the problem under the
assumption that P is false. Then the
conditional-formation principle puts these two
program segments together into a conditional
expression

if P then §, else §,,

which solves our problem regardless of
whether P s true or false.

If we happen to generate the program segment
53 say, without using the case assumption that
P is false, then S, solves our problem
regardless of whether P is true or false. In
this case, no conditional expression is formed,
and the program constructed is simply S,.
Thus, conditional expressions are generated
only for truly relevant conditions.

The conditional-formation rule is among the
best-understood of our basic programming
principles.
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Recursion-Formation and Well-Founded
Ordering

Suppose, in constructing a program whose
specifications are
f(x) « compute P(x)
where (x)

we encounter a subgoal
compute P(t)

which is an instance of our output
specification, “compute P(x)." Because the
program f(x) is intended to compute P(x) for
any x satisfying its input specification (Xx),
the recursion-formation rule proposes
achieving the subgoal by computing P(t) with
a recursive call f{t). For this step to be valid,
it must ensure that the input condition Qt)
holds when the proposed recursive call is
executed. To ensure that the new recursive
call will not cause the program to loop
indefinitely, the rule must also establish a
termination condition, showing that the
argument ¢ is strictly less than the input x in
some well-founded ordering. (A well-founded
ordering is one in which no infinite strictly
decreasing sequences can exist) This
condition precludes the possibility that an
infinite sequence of recursive calls might occur
during the execution of the program.

For example, the program lessall(x !), which
tests whether a given number x is less than
every element of a given list / of numbers, was
specified as follows:

lessall(x I) « compute x < all(l)

where x is a number and
L is a list of numbers.

In deriving this program, we develop a
subgoal

compute x < all(tail(l))

in the case that { is nonempty. This subgoal is
an instance of our output specification, with
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the input ! replaced by rail(l); therefore, the
recursion-formation principle proposes that
we achieve the subgoal by introducing a
recursive call lessall(x tail(!)). To ensure that
this step is valid, the rule establishes an input
condition, that

x is @ number and
tail(l) is a list of numbers,

and a termination-condition that the
argument pair (x tail(!)) is less than the input
pair (x /) in some well-founded ordering.
This termination condition holds because
tail(l) is a proper sublist of /.

The recursion-formation principle is well-
understood and has been applied together
with the conditional-formation principle in
the synthesis of many complete programs.

Procedure Formation

Suppose in developing a program whose
specifications are of the form

f(x) « compute P(x)
where Xx)

we encounter a subgoal

Goal B: compute R(t),
which is an instance, not of the output
description “compute P(x)" but of some
previously generated subgoal

Goal A: compute R(x).
The procedure-formation principle proposes
that we introduce a new procedure g(x) whose
output specification is

g(%) « compute R(x).

In this way, we can achieve both Goals A and
B by calls g(x) and g(t) to a single procedure.

In the case that Goal B has been derived from
Goal A, the call to g(¢) will be a recursive call;

,.im
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otherwise, both calls will be simple procedure
calls.

For example, in constructing a program
cart(s t) to compute the Cartesian product of
two sets, we are given the specification

cart(s t) « compute { (xy): x « s and y ¢}
where s and { are finite sets.

In deriving the program, we obtain a subgoal

Goal A: compute { (x y) : x = head(s) and
yet}

in the case that s is nonempty. Developing
Goal A further, we derive the subgoal

Goal B: compute { (x ) : x = head(s) and
y « tail(t) }

in the case that ¢ is nonempty. Goal B is an
instance of Goal A; therefore, the procedure-
formation rule proposes introducing a new
procedure carthead(s () whose output
specification is

carthead(s t) « compute { (x y) : x = Aead(s)
andyet}

so that we can achieve Goal A with a
procedure call carthead(s t) and Goal B with a
(recursive) call carthead(s tail(t)).
Our method for proving the termination of
ordinary recursive calls does not always extend
to the multiple-procadure case.

Generalization

Suppose in deriving a program we obtain two
subgoals

Goal A: compute R(a(x))
and

Goal B: compute R(Xx)),

neither of which is an instance of the other,
but both of which are instances of the more
general expression

compute R(y). Then the extended
procedure-formation rule proposes that we
introduce a new procedure, whose output
specification is

g(y) « compute R(y),

so that we will be able to satisfy Goal A by a
procedure call g(a(x)) and Goal B by a
procedure call g(Xx)).

For example, in constructing a program to
reverse a list, we derive two subgoals

Goal A: compute append(reversetail(l))
cons(head(l) nil)) .

Goal B: compute append(reversetail(tail(l)))
cons(head(tail(l))
cons(head(l) nil))).

Each of these goals is an instance of the more
general expression

compute append(reverse(tail(l))
cons(head(l) m)) ;

therefore, the extended procedure-formation
rule proposes introducing a new procedure
reversegen(! m), whose output specification is

reversegen(l m) « compute
append(reverse(tatl(l))
cons(head(l) m)) .

This procedure reverses a nonempty list ! and
appends the result to m. Although the
procedure solves a more general problem than
the reverse program we actually require, it
turns out that the reversegen procedure is
actually easier to construct.

ik .
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3.4.3 Structure-changing Programs

In the discussion so far, we have been
concerned with structure-maintaining (1e,
“side-effect-free”) programs, which produce no
permanent change in the data ob jects of the
programming environment.  The same
principles apply to the development of
structure-changing  programs, which can
produce such changes. However, certain new
problems arise in the synthesis of structure-
changing programs; among these is the
simultaneous—goal problem.

In constructing a program to achieve two
conditions P, and P, , it is not sufficient to
decompose the problem by constructing two
independent programs to achieve P and P,
respectively. The program that achieves P,
may in the process make P, false, and vice
versa. Thus, the concatenation of the two
programs will not achieve both conditions.

For example, suppose we want to construct a
program to sort the values of three variables
X, y and z in other words, we want to
permute the values of the variables to achieve
the two conditions x < §y and § s 2
simultaneously. Assume that we are given the
primitive instruction sort2(u v), which sorts
the values of its input variables u and ».
Then we can achieve each of our desired
conditions independently by executing the
program segment sort2(x y) and sort2(y z),
respectively. However, the concatenation

sort2(x y)
sort2(y z)

of these two segments will not achieve both
conditions simultaneously; in sorting ¥ and z,
the second segment sort2(y z) may make the
first condition x < y false.

To circumvent difficulties of this sort, we have
introduced the following simultaneous-goal
principle:

To satisfy a goal of form

Ce o _idmaasciadiis st s 4 e
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achieve P and P,,

first construct a program F to achieve P,
then modify F to achieve P, while protecting
the truth of P, at the end of F. The
program-modification technique we emplay ts
based on the "weakest-precondition operator.”
A special “protection mechanism” ensures that
no modification 1s permitted that destroys the
truth of the protected condition P, at the end
of the program.

To apply this principle to the goal

achieve x < yand y s z

in the sorting problem, we first construct the
program segment sort2(x y) that achieves the
first condition. We then modify this program
to achieve the second condition y s z. We
cannot achieve this condition by inserting the
instruction sort2(y z) at the end of the
program, because (as. we have seen) this
modification violates the condition x s ¥,
which we must protect.

However, our program-modification technique
allows us to achieve a goal by inserting
modifications at any point in the program, not
merely at the end. In this case, the techrique
causes us to introduce the two instructions

if y < x then sort2(x z)
and

if x < y then sort2(y z)

at the beginning of the program segment.
The modified program

if y < x then sort2(x z)
if x < y then sort2(y z)
sort2(x y)

will achieve both conditions x s y and y s 2z
simultaneously.

The derivation of straight-line programs with
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simple side-effects 1s now fairly well
understood, much work needs to be done on
the derivation of structure-changing programs
with conditional expressions and loops, and
the derivation of programs that alter list
structures and other complex data ob jects.

3.4.4 Applications to Programming

Methodology
Although the development of a practical
program-synthesis system requires
considerable research effort, certain

applications of program-synthesis techniques
to more restricted problems will be of more
immediate practical value. Let us consider
several of these areas, to see where program-
synthesis techniques may be applicable.

Structured Programming — Like program
synthesis, structured programming presents
principles  for  deriving a  program
systematically from given specifications.
However, the principles of structured
programming are intended to guide a human
programmer, whereas the principles of
program synthesis are meant to direct a
computer system. Nevertheless, we have
found that some of the techniques we have
developed for a program-synthesis system
could well be employed by a human
programmer. In particular, we show that the
recursion-formation principle is a better
motivated guide for introducing a loop than
the conventional structured-programming
method for the same task.

Program Transformation — In this approach,
the programmer constructs a transparent
program for his task, which is likely to be
correct but which may be inefficient. This
program is then transformed into an efficient
equivalent program, which may be more
difficult to understand. This transformation
process is guaranteed to produce a program
equivalent to the original.  Program
transformation may be regarded as a synthesis
task 1n which the specifications are given in
the form of a clear program in the target

language. All the synthesis techniques we
have developed can be applied to program
transformation as well.

Data Abstraction — In .ms approach, the
programmer expresses his program in terms of
abstract data types, objects such as sets,
queues, or graphs whose properties are well-
defined but whose precise machine
representation is left unspecified. When this
program is complete, representations for its
abstract data types are chosen and the
program 1s transformed to replace the
operations on the abstract data types by the
corresponding concrete operations on the
chosen representation.  Program-synthesis
techniques can be applied to perform this
transformation process.

Program Modification — It is often observed
that programmers spend more of their time
extending programs that already perform
some task correctly than they do in developing
new programs. This process is particularly
fraught with error, because in modifying a
program, the programmer is likely to make
some change that interferes with the program’s
original functioning. We have remarked that
a  program-modification  technique  was
developed to support the simultaneous-goal
principle. This technique can also be applied
to perform independent program-modification
tasks. The protection mechanism ensures that
the modified program must still perform the
task for which it was originally intended.

3.4.5 Related Publications

Our work on program synthesis, which was
partially supported by the ARPA Contract to
the Stanford Artificial Intelligence Laboratory,
resulted in the following publications:

. Z. Manna and R. Waldinger, Towards
automatic program synthesis, CACM, Vol.
14, No. 3 (March 1971), pp. 151-165,

2. Z. Manna and R. Waldinger, Knowledge
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and reasoning in program synthesis,
Artificial Intelligence, Vol. 6, No.2, pp.
175-208,

3. N. Dershowitz and Z. Manna, T ke evolution
of programs: A system for automatic
program modification, IEEE Transactions
on Software Engineering, Vol. 3, No. 5
(Nov. 1977), pp. 377-385,

4. Z. Manna and R. Waldinger, T ke logic of
computer programming, IEEE
Transactions on Software Engineering,
Vol. SE-4, No. 5 (May 1978),

5. Z. Manna and R. Waldinger, Synthesis:
Dreams => programs, CACM (to appear),

and in the following conference presentations:

6. N. Dershowitz and Z. Manna, On

. automating structured programming,
Proceedings of the International
Symposium on  Proving and
Improving Programs,  Arc-et-
Senans, France (July 1975), pp. 167-
193,

7. Z. Manna and R. Walidinger, TAe automatic
synthesis of recursive programs,
Proceedings of the Symposium on
Artificial Intelligence and
Programming Languages, Rochester,
NY (Aug. 1977), pp. 29-36,

8. Z. Manna and R. Waldinger, T Ae automatic
synthesis of systems of recursive
programs, Proceedings of the Fifth
International Joint Conference on
Artificial Intelligence, Cambridge,
MA (Aug. 1977) pp. 405-411,

9. Z. Manna and R. Waldinger, T ke synthesis
of  structure-changing  programs,
Proceedings of the  Third
International Conference on
Software Engineering, Atlanta, GA
(May 1978),
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10. Z. Manna and R. Waldinger, The
DEDALUS system, Proceedings of
the ACM - National Computer
Conference, Anaheim, CA (June
1978).

~



SN .

24

4. Program Verification

Personnel: David Luckham, Derek Oppen,
Friedrich vonHenke, Student Research
Assistants: Richard Karp, Wolfgang
Polak, William Scherlis.

The research of the Program Verification
Group is directed towards the development of
new programming methods and automated
programming aids. The goal is efficient
production of very reliable systems programs
including compilers and operating systems,
and efticient maintenance of such programs.

The group 1s actively pursuing three main
research areas:

1. Design and implementation of interactive
program analyzers.

2. Design of a high level programming
language and associated documentation
language for concurrent processing.

3. Apphcation of program analyzers, and
particularly verifiers, to such programming
problems as debugging, documentation,
proof of correctness, and analysis of
modifications to code and specifications.

Systems that automate or partially automate
the analysis of properties of programs may be
collectively named “program analyzers”. The
group has implemented two analyzers, the
Stanford Verifier and the Runcheck system.
The current Stanford Verifier automates
methods for analysing the consistency of a
program with its documentation. It i1s already
a’ useful debugging tool. The Runcheck
version of our verifier, is designed to analyze
a program for possible common runtime
errors. It automates some simple methods for
improving documentation and analysing why
verifications fail.

Our experiments with these analyzers have
made it clear that verification methods can be
applied to analysis of other programming

problems, including adequacy of
documentation, efficiency of code, and
adaptability of existing code to new
specifications.

Currently the group is working towards
applying analysis based on verification
techniques to a very wide range of programs.
These include:

(). new kinds of programs previously
considered to be beyond the limits of our
techniques; eg,  complicated pointer
manipulating programs, and large programs
such as a compiler.

(). programs using new language constructs
such as Modules and Concurrent Processes.

This has required a research effort in design
of programming languages and documentation
languages, and in programming methods,
particularly in the area of concurrent
processes. This effort has been carried out
with very careful attention to the DoD
Common High Level Programming Language
specifications {3].

The references contain some of the group's
earlier work in areas | and 3 (above) which
has been published (eg., [2, 7, 10, 11, 15, 18,
19, 27)). An overview of this work is
contained in [16).

4.1 Accomplishiments

1. The group has implemented a verifier for
almost the full Pascal language (exclusions
mainly concern floating point arithmetic). The
user manual [26) contains an introduction to
program verification and many examples
illustrating the use of the verifier as an aid in
debugging, documentation and structured
programming. The verifier is currently being
introduced at two other ARPARet sites to test
its portabilty and to obtain some preliminary
feedback from other user groups. Distribution
on a limited basis is planned for Fall 1978. A
library of documented and verified programs
is being built and is available over the
ARPAnet from SAIL on the directory
(EX,VER].
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2. A special version of this verifier for
automatic detection of runtime errors in
programs has been implemented. This is
called the Runcheck system. Results with an
early version of Runcheck have been
published (German, [6]), and are the most
impressive in the area of completely automatic
anaiysis of programs so far. Work on
improvements to this system and on automatic
documentation of Pascal programs s
continuing.

3. The success of this verifier depends on
recent advances made by this group in the
theory and implementation of cooperating
special purpose decision procedures (Nelson
and Oppen [20, 21}, Oppen [22)). This new
approach to implementing theorem provers is
the best method found to date. It will
doubtless play an important role in the
implementation of sophisticated analysis and
decision programs in application areas other
than program verification.

\

In developing an underlying theorem proving
capability a second important area of progress
has been the design and implemeptation of a
Rule Language for user-supplied lemmas.
This latter facility allows the user to describe
data structures not handled by special purpose
provers and to define new concepts used in
the specification of programs. The rule
language is a facility for defining specification
languages. Its implementation gives the
verifier the ability to use definitions of
specification concepts in correctness proofs.
Reports on this facility are in the user manual
(26) and in [24).

4. The language accepted by the verifier
extends Pascal by inclusion of Modules in a
form compatible with the DoD Ironman
specifications on Encapsulation (DoD Ironman
(3)). A theory of documentation of modules
has been worked out (Luckham and Polak
[17)). This theory is new and has not been
suggested in any other previous language
design. Its practicality is being tested. The
verifier requires modules to be documented.
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Verification of documented modules has
already been successful on some substantial
examples. One example s a module
implementing Pascal pointer and memory
allocation operations within a subset of Pascal
whose only complex data type is Arrays.

5. It is proposed that the programming
language accepted by the verifier include
features for concurrent processing. A specific
design based on previous work of Kahn
(13,14), Brinch Hansen (1], and Wirth [28), is
being considered. This design satisfies most
of the DoD Ironman design specifications for
parallel processes ([3] section 9). A simple
operating system has been written in our
language and is being studied. A theory of
semantics of concurrent processes and methods
of documenting them 1s being worked out and
tested on parts of the operating system.
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5. lwmage Understanding

Personnel: Thomas Binford, Student
Research Assistants: Donald Gennery,
Reginald Arnold, Rodney Brooks,
Russell Greiner

The objective of this research is to solve
scientific  problems that are crucial in
accomplishing certain tasks in
photointerpretation and guidance. The two
areas of research considered here are
algorithms for shape representation and shape
matching and algorithms for stereo mapping.
A further objective is to incorporate these
algorithms in computer systems which monitor
airfields and buildings, and which locate
airfields, aircraft, and vehicles in aerial
photos.

5.1 Introduction

A photointerpreter typically works with a
sequence of images taken from an aircraft or
satellite. He solves a puzzle by piecing
together selected and multiple clues from
current images, background information, and
previous images. In doing so, he relies heavily
on spatial interpretation from stereo imaging
and shadows, and spatial knowledge about
structures. Cartographers produce contour
maps from stereo images and maps of special
features (e.g. roads) and incorporate them in
digital data bases. Photointerpretation (Pl)
and cartography production systems are being
increasingly automated using computers. The
payoff is quicker response, higher throughput,
and increased availability of resulting data.

The results of this research are expected to
provide for automated systems the spatial
interpretation and effective stereo mapping
capabilities which are important for human
performance. These facilities will  help to
enhance the power of interactive aids in
measuring, counting, and recording, and in
screening and monitoring.

Cruise missile guidance systems rely on radar

range data matched against terrain elevation
data. Stereo and motion parallax ranging is
attractive for guidance because it is passive.
Stereo ranging can be very accurate and has
high spatial resolution. It makes use of well-
developed sensors. Results of this program of
research would facilitate greater survivability
through use of passive sensing. At low
altitude where cruise missiles and tactical
missiles  operate, the world appears
intrinsically three-dimensional; this research
should lead to useful capabilities in three-
dimensional sensing, navigation, and terrain
modeling.

The major objective of this research is to
solve scientific problems which stand in the
way of solution of practical problems in PI
and guidance. A part of their solution is
implementation of algorithms and cystems
which provide new image understanding
capabilities and which are generalizable in the
following sense: algorithms should solve well-
defined subproblems which are common to
typical tasks; systems for different tasks should
be assembled from a core of common modules
and a few modules which are specific to the
task. This objective has been approached by
carrying out sample tasks in PI and guidance
in designing and implementing the model-
based system. Instead of using special-
purpose routines, the general purpose
modeling and matching system will be used.
The same system should be useful for vehicles,
aircraft, and airfields.

The following scenarios indicate potential uses
of these capabilities:

Scenario 1

Interactive aids to measurement: a PI system
measures capacity of oil tanks, cargo capacity
of truck trafficc and sizes of buildings
indicated by an interpreter.
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Scenario 11

An interpreter instructs a Pl system to monitor
_aircraft on selected airfields. The system has
a library containing generic models of classes
of aircraft and specific aircraft models. For
example, it has a model of the class of
commercial jet passenger aircraft, and models
of Lockheed L-1011, Douglas DC-10, and
Boeing 747. The interpreter builds models of
the airfields by indicating runways, taxiways,
parking areas and passenger terminals. The
interactive system helps by grouping edges
and surfaces and making measurements.
Airfield models go into a library for future
use. As images come in, the system locates the
airfield, uses stereo to map the airfield, pick
out objects on the field, and identify those
which are aircraft by class and type if known.

Scenario 111

A building complex is monitored for changes.
The system gives notice when new structures
are found, or roads or nearby airfields are
changed. The interpreter makes an
assessment. The system aids him in updating
and recording the model of the complex.

Scenario 1V

An area is monitored for new buildings, new
airfields, and new roads.

The tasks in these scenarios require operations
of counting, measuring, and comparing. To
count requires identification. To measure
requires segmenting features. For example,
measuring the volume of an oil tank requires
separating out the top, measuring its diameter,
separating the vertical cylinder and measuring
its height. To compare and to identify require
a mechanism to build models of the buildings
or ob jects to be compared and descriptions of
meaningful differences. Programming new
tasks should be feasible for photointerpreters
and not require months of effort by experts in
computer vision. Carrying out the tasks in
these scenarios makes use of three image
understanding abilities:
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a. stereo mapping and segmented description,
b. shape matching and modeling, and
¢. a system for programming PI tasks.

Spatial Understanding

The approach of this research is based on a
few observations.

Typical data which are desired in PI tasks
are identification of ob jects, measurement of
their location and orientation, and
description of their spatial structure and
spatial relations.

Most forms of collateral knowledge, a priori
knowledge, and world knowledge are
knowledge about ob jects, surfaces, and
spatial relations.

A natural means for photointerpreters to
specify PI tasks is in terms of spatial models
of ob jects and relations.

Most low level constraints on stereo
mapping and segmentation are geometric
relations in image and spatial domains.

Recognition is most simple and most general
when image elements are interpreted as
three-dimensional spatial structures.

The approach adopted here was to perform
most interpretation in the spatial (three-
dimensional) structural domain, to build
powerful generic internal modeling capabilities
for shape and spatial relations, and to build
effective stereo spatial perception. This
approach to image understanding has been
called spatial understanding.

5.1.1 Stereo Mapping and Segmentation

Research has been directed toward doing
stereo mapping better and doing it faster.
The mapping operation produces a three-
dimensional map of visible surfaces of
buildings and terrain, together with a
segmentation and symbolic description of
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surfaces and their relations. One form of the
map is a table z(x,y) of height as a function of
image coordinates, with a symbolic data base
of surfaces described as plane or cylindrical,
with orientations horizontal, vertical, or
otherwise, and with parallel and orthogonal
relations between surfaces. The ground
surface may be delineated and there may be
additional terrain modeling.

Consider what 15 desired of the stereo
mapping process. It should be possible to
make measurements and segmentations of
surfaces which are as accurate as the image
data permits, over selected parts of images. It
is not necessarily desirable to do so for entire
images. The mapping algorithm should be
efficient; that is it should perform in near-
minimum time for a given level of
performance and given level of hardware
technology.

It should be possible to choose a good tradeoft
of performance and system complexity. To do
so, 1t is important to characterize and
parameterize classes of mapping algorithms
and to evaluate their performance and
complexity.  All  of this requires a
comprehensive analysis of stereo mapping, an
ab jective of this research.

In cartography, a typical function is mapping
elevation contours. Several systems have
partial success with the simple case of
mapping smooth terrain. However, they have
problems at buildings and with thin ob jects
(surface discontinuities), over water and
pavement which are uniform or surfaces with
repetitive markings (ambiguity problem), and
in trees where there are a range of elevations.
The systems have to be started rianually, The
most success in dealing with these problems
has been achieved here at SAIL and at CDC.
These programs are complementary and still
in progress. Fundamental work on analysis of
stereo has been carried out at MIT Al Lab.

Research on advanced stereo mapping systems
is progressing rapidly. The chief scientific
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problems to be solved are: (1) automating the
matching of corresponding parts of images at
surface  discontinuities;  (2)  resolving
ambiguities by using global correspondence;
and (3) designing algorithms and machine
architectures to meet time ob jectives.

This research program has taken the
following approaches to solving those
problems: (a) development of edge-based
stereo which deals with the problem of surface
discontinuity and provides increased accuracy,
resolution and speed; (b) analyses of stereo
matching which provide a fundamental basis
for algorithms for mapping; (c) interpretation
in terms of surfaces which aids in cutting
computation and resolving ambiguities. The
research would contribute to measurement by
segmenting surfaces regardless of surface
markings and camouflage. Intrinsic three-
dimensional measurements enable accurate
measurement of non-planar ob jects.

The current level of performance of stereo
mapping systems here is described in the
proceedings of recent Image Understanding
Workshops [Arnold, Gennery). Stereo systems
produce depth maps which appear adequate
for interpretation by the model-based PI
system. Both area-based and edge-based
stereo systems have been implemented. The
output of these programs is a three-
dimensional map of small areas in one case,
edges in the other. The ground plane and
large planes are described and their
boundaries are crudely delineated.

Existing change monitoring systems use
differencing of pairs of images after extensive
registration and warping. In radar images,
differencing may be effective if the images are
taken from the same viewpoint. In the visible
part of the spectrum, changes in sun angle
and shadows, rain or snow, and clouds cause
intensity  differences but these are not
interesting changes. Meaningful changes are
changes in spatial structures, eg. new
buildings.




5.1 Introduction

In the approach wused here, a three-
dimensional structural description of the site is
constructed with the aid of existing knowledge
of the site. Structural differences are reported.
The model-based system and the stereo
mapping system are used together in this case.

5.1.2 Model-Based PI System

The second topic of this research is the design
and implementation of a model-based Pl
system. An interactive Pl system should aid
an interpreter by automating routine tasks like
counting oil tanks, measuring their volume,
and recording the results, and by taking over
low priority screening and monitoring tasks.
To perform these tasks, the system must be
able to discriminate the objects to count or
monitor, and must delineate boundaries of
surfaces whose dimensions are to be measured.
In simple cases, objects can be discriminated
primarily by position obtained from maps;
trains run on rails; ships are found at piers.
However, a typical PI task is to monitor traffic
of manpower, arms, and supply in one area.
To carry out this task, the Pl system needs to
identify tanks and military vehicles, trucks,
gasoline trucks, and personnel carriers and to
identify types of railroad cars and ships with
their cargos. These tasks require an ability to
describe shape and discriminate on the basis
of shape.

Shape Matching

Previous research here at SAIL has
demonstrated  effective  three-dimensional
matching of complex shapes [Nevatial
Alternative techniques using the matching of
moments of orthogonal polynomials (McGhee)
identify aircraft from complete and perfect
silhouettes of isolated aircraft. This is a two-
dimensional approach. An exhaustive set of
projected views of each aircraft is recorded,
and the best match is found. That approach
has only limited utility. It is not now feasible
to get perfect silhouettes of isolated ob jects
reliably. For instance, aircraft are often not
isolated, but are connected (o passenger ramps
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and service vehicles. Further, such techniques
are not capable of generic matching. That is,
an aircraft with external pods cannot be
recognized as a variant of the unmodified
craft.

Several systems are relevant to counting and
recording in interactive Pl systems. SRI has
demonstrated a module which counts railroad
boxcars and another which could potentially
be used for counting vehicles on a road.
Rochester has shown how ships at piers can
be counted. In this approach, little shape
information is used. The systems make use of
the restricted context of a road or rails or a
pter. On rails, only railroad cars are expected,
and it is only necessary to measure the
beginning and ends of cars. If it is necessary
to determine types of vehicles on roads or cars
on rails, then more detailed shape
discrimination is essential. In the tasks
described in the preceding scenarios, powerful
shape description and matching mechanisms
are important.

The approach used here has the capabulity for
generic interpretation and for detailed shape
discrimination. It 1s a three-dimensional
approach. The proposed approach does not
need a complete or perfect segmentation. It
integrates segmentation with identification and
uses local shape elements for cues to further
detailed matching. It can thus tolerate many
errors, as long as there are significant local
features correctly described. Use is made of
three-dimensional data and cues, including
internal edges and markings and stereo maps.
Its representation of shape is superior, which
means that it can make better discrimination,
with more compact representations. It has a
three-dimensional part/whole representation
which allows more accurate description of
parts than other techniques.

For example, this representation includes the
knowledge that wings and tail are laminar,
while the two-dimensional silhouette matching

~ technique has no separate concept of wing or

tail and no notion of three-dimensional shape.




g —

32

The representation enables the description of
ob jects by generic parts, which makes possible
generic interpretation.

Programming PI tasks

Three systems represent the state of the art.
The first, the Verification Vision system, was
built in research here at SAIL (Bolles). It
depends on matching parts of a training
image to the test image. The orientation of
objects in the test image must be
approximately the same as in the training
image. [t has the ability to order the sequence
of operations in a cost-effective way. It would
be effective for many problems, but not in the
scenarios being investigated here. For
example, we do not know in advance how
aircraft will be oriented. It has no capability
for generic matching and generic models. Its
only primitives are matching correlation
patches and curve matching.

The second, the Hawkeye system of SRI
[Barrow), addresses tasks which can be
simplified by use of a digutal terrain map and
a road map. It uses a detailed map data base
of digital elevation data and a road data base.
The system provides capabilities for
registering images with the digital terrain map
and localization of points of interest. With
these facilities, it has carried out several road
and rail monitoring tasks which are tightly
constrained to one-dimensional searches along
rails or road.

The third, the ACRONYM system, is being
built here at SAIL to deal with the issues
raised in programming PI tasks. One of these
key requirements is generic modeling and
interpretation. Another key issue is encoding
and using knowledge of PI experts. PI tasks
typically require the integration of knowledge
from structural interpretations of images with
knowledge from collateral sources.

Ultimately, interpreters should program in
natural language. There are rudimentary
natural language systems which could be used.
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A system like ACRONYM is the missing link.
That is, natural language is useful only when
it 1s very high level language. Using natural
language to program at the level of
FORTRAN, LISP, or SAIL is of little help.
The hard part in writing vision programs is
programming vision-specific problems, not
writing FORTRAN. Using natural language
interfaced to ACRONYM may be interesting.

5.2 Progress in Model-Based Interpretation

The design criteria for the model-based
system are: the same system should be used for
several  different  tasks  with minor
modifications; the system should be capable of
generic interpretation, eg. identifying an
object as an aircraft without necessarily
identifying it as an L-10l11 or DC-10; an
interpreter should find it easy to specify a new
task. The system is being built with airfields,
otltanks, aircraft, buildings, and vehicles as
examples for interpretation and measurement.
The system uses models in a more powerful
way than other approaches and is expected to
lead to more powerful and more robust
performance in monitoring, measuring, and
counting. The design and much of the
implementation are completed. The following
paragraphs indicate how these design
ob jectives were met.

A natural way for an interpreter to specify a
task is in terms of ob ject models, rather than
programs. The system was designed with a
high level modeling language. A convenient
common language for interpreter and system is
based on ob ject models.

The criterion of generic interpretation forces
an approach different from other recognition
systems which are oriented toward recognizing
specific instances, not class interpretation. The
solution which was chosen was to use a
part/whole representation in terms of generic
parts. The generalized-cone representation
was originally designed to make this possible.
The key design requirement was that the
primitives in the volume representation must
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aid in generic description of parts of ob jects.
For example, the representation should lead to
description of a fuselage as a circular cylinder
and wings as planar surfaces.

The interpretation process chosen was to
match elements of generalized cones with
elements of line drawings or surface elements
of surface maps, and to match relations
between generalized cones with relations
between elements of line drawings or surfaces.
That process could go either top-down or
bottom-up. That 1s, it could also match
elements of lhne drawings or surface maps
with elements of generalized cones. An
original intention of the generalized-cone
representation was that three-dimensional
cones map in a natural way to two-
dimensional cones (ribbons), and that two-
dimensional cones have a  natural
interpretation in terms of three-dimensional
cones.

A subsystem was designed for predicting
appearances of parts of objects and one for
planning the strategy of matching. If the
predictor were intended to predict appearances
for specific objects from specific viewpoints
with gray scale output, it could be done by
standard graphics techniques. Instead, it 1s
intended to predict appearances for classes of
objects over z range .of viewpoints with
symbolic output. The predictor is intended to
choose quasi-invariants (those features which
are approximately constant over a wide range
of viewpoints and parts variation).

Thus, there are three parts to the model-based
Pl system: the high leve) modeling subsystem,
whose output is an Object Graph; the
predictor and planner whose output is an
Observability Graph; and the matcher whose
output is an Interpretation Graph. A
schematic of the system is shown in figure 1.
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Figure 1: Model-Based Pl System

In a typical scenario, a photointerpreter gives
a brief symbolic description of a typical
airfield and shows examples of some airfields,
from which specific and generic properties are
inferred.  Initially, the most profound
inferences must be made by the user. That is,
he must specify initially which properties and
dimensions are criterial, that is, necessary, and
intrinsic, and not just an accident of the
examples. It is expected that some of these
inferences can be made automatically, but
usually a broad knowledge base of functional
design is required to make such inferences
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automatically. For a simple example, to infer
an approximate value for the length of
runways for jet aircraft requires knowledge
about their function for takeoff and landing of
aircraft and requires knowledge of distances
required for these operations for specific
aircraft. This example appears practical to
mechanize. For others, it is more economical
to make use of human knowledge and
inference. :

In order to use this ability of interpreters,
facilities for communicating this knowledge
are required. Two sorts of communication are
provided: object models; and rules for
reasoning about models. For ob ject modeling,
a high level modeling language has been built,
with advanced capabilities. It is described
below. For reasoning about models, some of
the experience of the Mycin group is being
tapped to aid in encoding the knowledge of Pl
experts. The knowledge is encoded in the
form of rules which are used in a backward-
chaining system for reasoning about models.
The rules are used to predict observables and
will be used to suggest matching rules and to
make inference from examples. It may be
necessary to redesign this reasoning system as
practical requirements make increasingly
sophisticated demands on the formal basis of
the reasoning system. Prediction and
matching elements are described below.

5.2.1 The Modeling System

Ob jects are modeled in a high level language
based on a generalized cone representation of
primitives in a part/whole graph [Binford]
The representations of most objects are very
compact; they are segmented into volume parts
which seem natural to the wuser. This
modeling system provides graphic aids for the
user for modeling generic objects and
relations. The representation also seems
natural for machine reasoning because
important relationships between surfaces are
simply represented in the generalized cone
models.
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The motivation to build a modeling system
can be appreciated by comparison with
previous modeling systems. Briefly, they do
not provide symbolic results which are
necessary for reasoning about generic ob ject
classes and generic viewing conditions, and
they are not general enough. They can be
classified as those based on a few primitives
such as cylinders and blocks [Braid]) and those
based on polyhedra [Baumgart). Those based
on simple primitives were not general enough
to represent the ob jects that were considered.
Those based on polyhedra did not have the
relationships and the part/whole
decomposition needed for reasoning about the
models. Previous systems were aimed at
hidden surface graphics; in the ACRONYM
system, symbolic information about edges and
surfaces was needed which was not available
in those systems. A previous modeling system
based on generalized cones [Miyamoto and
Binford] provided a background for the
design of the new system.

The object models are embedded in an Ob ject
Graph. From the Object Graph, the system
predicts an Appearance Graph and an
Observability Graph. The relationships of
these graphs are shown in figure 1. The
Appearance Graph is primarily for the user to
visualize the internal models of the system. It
is also useful for reasoning about scenes where
the viewing conditions are known and specific
object models are known. The Appearance
Graph is made by computer graphics
techniques. Some innovations in graphics
were possible because of the generalized cone
representation. The predictor and planner
has been implemented for a broad class of
objects. Several analytic problems were
formulated whose solutions have resulted in
efficient and general algorithms which are
expected to be useful in many tasks. Analytic
solutions have been found for symbolic
display of generalized cones of two classes: the
first class has polygonal cross sections with
linear scaling along a circular spine; the
second class has circular cross sections with
linear scaling along a straight spine. These
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analytic solutions are very fast, of order 20
milliseconds. These are two elements of a
scheme for a complete analytic solution for
prediction for the most interesting subclass of
generalized cones. There is reasonable hope
that the rest of the analytic solution will be
found.

Analytic solutions are crucial for generation of
the Observability Graph which requires
symbolic relations. They are useful even for
the Appearance Graph. In most modeling
systems, curved surfaces are displayed by
plane faces, with spurious edges, which are
suppressed in some systems. In this system,
curved surfaces are represented and displayed
as such, which contributes greatly to the
compactness and to the quality of the display.
Consider the analogy with representing curves
in two dimensions. To represent a circular arc
by straight segments requires many segments
for high fidelity, while only a single circular
arc is required, or a few segments of a
polynomial spline. It is expected that
important contributions will be made to
cutting the combinatorics of hidden surface
display because the representations are very
compact. That is, in this  system,
combinatorics are based on the number of
objects rather than on the number of
approximating planar facets, as in other
systems. The symbolic display module is
incomplete. It does back surface elimination
for a fairly general class of ob jects, but does
not yet do complete hidden surface
elimination; other capabilities have higher
priority. Several designs are being considered.

5.2.2 Prediction: The Observability
Graph

The Observability Graph contains generic
and specific predictions about shape elements
and relations which are observable. When
specific objects and viewing conditions are
known, predictions about them are included.
The heart of the prediction mechanism is the
facility for generic predictions. These
predictions are in terms of quasi-invariants.
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These are properties which are stable over a
broad range of variants of ob jects within the
model class and stable over a broad range of
viewing conditions. They are also selected for
visibility, that 1s easily found by available
operators. The predictor which builds the
Observability Graph 1s being implemented in
the form of a system of rules in a backward-
chaining reasoning system, 1n consultation
with members of the Mycin group. Nodes of
the Observability Graph correspond to
features which can he obtained from images,
that 1s, surfaces, hines, and “ribbons”, which
are generalized cones specialized to two
dimensions.  Since objects are made up of
cone primitives, observables for cones and
relations between cones are sufficient to
generate the complete Observability Graph
for all ob ject models.

5.2.3 Matching

The matcher first makes a coarse selection of
match candidates based on nodes and arcs of
the Observability Graph. It then makes a
detailed match based on the Object Graph.
Each primitive node in an Observability
Graph corresponds to a class of ribbons, or a
surface; it may be viewed as a predicate which
accepts a ribbon or surface with a certain set
of attributes. Contextual  information
provided by related parts or objects of the
scene is encoded in arcs between these nodes.
The matcher establishes a Linking Graph
which has tentative links from nodes of the
Observability Graph to those nodes of the
Picture Graph which satisfy necessary
conditions attached to the nodes of the
Observability Graph. It then examines arcs
of the Observability Graph to determine
consistency between nodes.

Two probiems are encountered in matching
programs. Errors are made on decisions based
on evidence which is too local, and
combinatorial search is prohibitive for global
decisions. The matcher uses the Observability
Graph in several mechanisms for efficiency:
first, it uses shape and structure in a powerful
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way n obtaining candidates for detailed
matching; second, it uses global information in
a coarse to fine matching strategy, matching
coarse features from the Observability Graph
and detatled features from the Qb ject Graph,
and third, it wall match nodes in order of their
cost-effectiveness for achieving the match. The
matching will incorporate the structuring of
Observability Graphs which was introduced
in previous research here at SAIL [Nevatia)
That structuring reduces match combinatorics
drastically by imposing a lattice structure on
matches. Of these efficiency measures, the
effective use of shape prediction and
structuring of graph matching are the most
powerful. Effective use of shape prediction is
a major contribution of this research.

Each match of a subgraph of OG, the
Observability Graph, with a subgraph of PG,
the Picture Graph, correspends to an
interpretation of that Observability subgraph

interpretation by mapping from Observability
Graph to Picture Graph. Typically, there will
be muluple spatial relations between edgés
and ribbons in the Picture Graph, only some
of which are consistent with the Observability
subgraph. It s, however, a local mapping.
The goal then is to determine the best overall
interpretation, one which uses the full model.
Consider matches between nodes ON of the
Observability Graph and nodes PN of the
Picture  Graph.  Global considerations,
‘particularly structural or spatial relations,) are
used to determine whether a pair of ON-PN
mappings 1s consistent. The consistency-
finding algorithm now invoked regards each
ON-PN correspondence as a node in the
"Pairing Graph®. 1Its first task is to use the
arcs and relations of the OG to link together
consistent pairs of these pairing nodes. It then
removes the more isolated nodes from this
graph, to leave a large and self-consistent
sub-graph.

In the airfield example, the global context
primarily involves distinguishing runways
from portions of highways among candidate

1]
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ribbons.  Because there are detailed
expectations for each interpretation, it is
useful to consider each. Locating taxiways,
storage areas, and aircraft, nearby large flat
areas, and clear flight path along alleged
runways supports an airfield interpretation.
On the other hand, locating connecting
highways, car trafficc  buildings and
obstructions along the path, supports a
highway interpretation.

A simphfied version of an Airport serves as
an example. Its Object Graph can be briefly
described as a collection of several runways
and taxiways, close to some terminal and
hanger buildings. There will probably be
airplanes in the vicinity as well. The system
of runways and taxiways should be connected
and all these constituent parts of an airport
should be in close proximity.

There are both parallel and intersection arcs
between runways in the Airport Object
Graph. Intersections are usually planar, not
overpass intersections. Several runways may
be parallel. There will usually be runways in
several directions to accomodate wind changes.
Further, there 1s often an underlying
equilateral triangle pattern dating back to the
time before jets, when runways were much
shorter. The glide path will be free of
obstructions. Runways are connected by
taxiways to terminals or storage areas. A
taxiway may be curved, relatively short or
hard-to-see.

At the next lower level, these parts must be
defined. Runways must be straight, long,
level, narrow and visible. In addition, they
commonly have markings and a dotted line
running down their center, and appear as
roads which lead nowhere. (That is, they do
not connect into the highway system.) The
runway node is itself a graph. with two nodes,
the "outline” of the runway, a long straight
ribbon with high contrast, and the dotted line
down the center of the runway. The range of
lengths and widths are approximately known.
The sole arc in the runway graph specifies

Y5 SR
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that the dotted-lhne ribbon must be contained
in the main ribbon and that their axes
coincide.

Aircraft are described in terms of graphs
whose nodes are volume parts (fuselage, wings,
tail, engines) and whose primitives are
generalized cones.

There are two types of nodes in the Airport
Observability Graph, runways and aircraft.
From almost any angle, runways appear as
long, straight ribbons with constant width.
They usually have markings and boundaries
with high contrast. Thus their boundaries or
markings are hkely to be found by edge
finding routines. Runways are more easily
found than aircraft for this reason, as well as
their length and simple shape. Thus,
strategies derived from the Observability
Graph are expected to focus attention on
runways.

In typical examples, there will be accurate
observer altitude, location and orientation and
ground elevation. This will enable good
approximate estimates for length and width to
be made directly from the image. Under these
circumstances, typical length and width are
observables. In many cases, the images could
be registered with familiar observables. For
example, in photos of the San Francisco Bay
Area, the shore can be registered, to provide a
measurement scale over the whole image.
Even in other situations, when these quantities
could not be included in the Observability
Graph, the length to width ratio could be
used, as it would be large in almost any
viewing situation; and this qualifies it as an
observable. In stereo viewing, measurements
can be made of flatness and levelness. They
would not be observables in monocular
viewing. With accurate observer location and
information,  parallelism is  accurately
determined. Otherwise, in almost all cases
parallelism is nearly preserved. Intersection is
invariant. In stereo images, planar
intersection can be determined, otherwise it
can sometimes be inferred.
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Thus far, the edge detection and subsequent
ribbon finding process, have been simulated
by hand. Also, the interfaces between the
Matcher and the Knowledge Base are still
being built. The matching process sketched
above refers to the driver routines — the real
work will be done by the observability
functions; that is, the node, arc, and relation
predicates.

Past research contributed to these results. The
formulation of “generalized translational
invariance" provided the generalized cone
representation [Binford). A symbolic display
program based on generalized cones preceded
this system [Miyamoto). A program of
research led to recognition of a doll, a toy
horse, and other complex ob jects [Nevatia),
based on data from a laser ranging system
[Agin).  Concepts and algorithms for
description of depth maps and for the
matching process were demonstrated in that
research.

5.3 Progress in Stereo Mapping

New results in stereo mapping contribute to
showing the potential of accurate passive
ranging. Passive ranging has a survivability
advantage over active ranging systems for
cruise missiles in hostile environments. Stereo
mapping using edge matching has produced
stereo maps with a quality adequate for
subsequent recognition.  Several analytic
results have been obtained which will lead to
faster and more accurate stereo mapping. The
beginnings of a model for stereo mapping
systems are beginning to emerge.

Edge-Based Stereo

Results of depth maps of edges were obtained
with photos of San Francisco Airport, an
apartment building, and a parking lot
[Arnoldl. The system requires about two
minutes of machine time to make a depth map
of edges of surfaces. The edge map appears
adequate for identification. Edge maps are
relatively continuous with few errors. The
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depth resolution is sufficiently good that it is
possible to tell that the wingtips are higher
than the wingroots (dihedral). Some of the
weaknesses of current edge operators show up
under the close scrutiny of image matching.
The system has been rebuilt, with memory
management to work with very large images,
and is now being tested.

This research aims at high resolution of
surface boundaries to make measurement of
dimensions and angles. Typically, edge-based
techniques offer a factor of 10 improvement in
accuracy of determination of surface
boundaries over area correlation methods. In
correlation, accuracy near a boundary is
limited to a fraction of the width of the
correlation window (typically 8x8). The
Hueckel edge operator, however, provides
measurements to a fraction of a pixel, even for
weak or noisy edges. Edge-based systems also
have an advantage with small objects. Poles
and other long, thin objects are prominent
features, but are too small for correlation
windows.

A serious deficiency of area correlation is
failure at surface discontinuities. Simple area
correlation techniques inherently fail in the
vicinity of surface discontinuities because the
edge of an object appears against a different
background area in each view of the stereo
pair. It s important to locate surface
discontinuities, since it is precisely the
boundaries of objects where accurate
measurements are most important. However,
edge operators are ineffective in the presence
of texture and most edge operators have
problems with smooth shading. In those cases,
edge-based techniques encounter problems,
while correlation is effective. Thus, edge-
based and area-correlation approaches are
complementary. The edge-based system will
work well in scenes of man-made ob jects and
poorly in natural scenes. For area correlation,
the situation is just the opposite. The reason
is that man-made ob jects (cars, buildings) tend
to have planar surfaces of uniform intensity
and well defined linear edges. Natural
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surfaces (clouds, trees, hills), on the other
hand, are often curved with strong texture
and indwistinct or irregular boundaries. A
general purpose vision system would need to
employ both types of techniques.

An essential part of the research is the use of
context in matching. The system currently
uses local context of edge continuity, and the
context of the ground plane. The system is
being extended to use context of locally planar
surfaces, with successive approximation
modeling.

If necessary, a model of the transform from
one image to the other can be obtained
automatically from the two images, with no
knowledge of guidance parameters; an estimate
of velocity and time between pictures 1s useful
to estimate the baseline between pictures
[Gennery). Imagine an aircraft approaching a
runway. As it moves, objects on both sides
appear to move radially outward from a
center, the fixed point. The center is the
instantaneous direction of motion. The pilot
knows that the point which appears stationary
is where he will touch down, unless he
changes direction. If guidance information
about the two images 1s available, that can be
used to eliminate the process of obtaining the
camera model. An Interest Operator
[Moravec) is applied to the left view to select
approximately 50 “interesting” points. A point
is "interesting” if 1t promises to be easily
locatable in two dimensions (ie. corners and
intersections). A fast binary search correlator
[Moravec) produces an initial match for each
point, searching the entire right image. The
correlator uses a binary search strategy to
match points efficiently.

These matches are refined with a high
resolution area correlator [Gennery) and
passed to a camera model solver [Gennery).
This camera model program solves for four
parameters: 1) direction of the stereo axis; 2)
relative rotation between left and right views;
3) scale factor between left and right views; 4)
in the picture. It is useful to make the
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5.3 Progress in Stereo Mapping

The usual camera solver determines 5
parameters. This form is useful in the
degenerate case in which scene heights are
small with respect to distance from the camera.
The relative positions (disparities) of each
matched pair along the stereo axis provide
information on heights relative to the film
plane. At this stage, about half the original
50 points have been automatically rejected for
various reasons. The points and their heights
are given to a ground plane finder (Gennery)
which fits a plane to a subset of them such
that few points are assigned heights below the
plane, some may be above the plane, and as
many as possible he on the plane. Total
processing for camera model and ground
plane is about 8 seconds.

The camera transform  provides the
information necessary to measure distance of
corresponding points. It also determines the
stereo axis. Search for matches can then be
restricted to one-dimensional searches along
the stereo axis, with a great saving in
computation.

In any stereo system, ambiguity 1s a major
problem. Edge elements in one view may
match with multple edge elements in the
other view. For example, in the parking lot
scenes, edges of cars, pavement markings and
shadow edges are all parallel and are easily
confused. Direction, brightness, colors, and
contrast measurements extracted by the edge
operator can guide the matching but are not
strong conditions. If an edge has continuity in
three dimensions, then adjacent, matching
edgels along that edge should be continuous in
both direction and disparity. Edge continuity
and consistency are strong conditions that
significantly affect ambiguity. The context of
the ground surface is also important in this
matching process. A priori constraints may be
used during matching to limit the disparity
range to that of objects above the ground
within a reasonable height.

The next step is to raster-scan the Hueckel
edge operator over the two pictures; Xx-y
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position, angle of edge, and brightness
measures of edge elements are retained.
About 1200 edge elements (edgels) are
produced from a 128x 128 picture in about 18
seconds. Only edge information is used in
subsequent stages. Edges from the left and
right pictures are transformed into standard
coordinate system with the stereo axis in the x
direction and disparity shifts due to the tilt of
the ground plane cancelled. Thus all points
lying on the ground plane will have identical
x-y coordinates in the two views.

Edges in the left image are matched with all
candidates in the right image. A grid of 8x8
cells is set up for the left and right pictures,
each cell being the head of a linked list.
Candidates lie in a narrow band vertically,
with disparity between the ground plane (zero
disparity) and the a priori disparity limit in
the x direction. Very loose tests on brightness
and angle are made to reject some potential
matches. If the match is accepted, a disparity
is calculated by projecting the right edgel to
the y coordinate of the left edgel. On the
average, this search produces 8 ambiguous
matches for each edgel, that is, 8 edgels that
agree in position, angle and brightness. Most
of these ambiguous matches are actually
multiple edgels from different positions along
the same scene edge.

Edge elements in the left image are linked if
continuous 1n X and vy, if their angles match
within 90 degrees and they are colinear, and if
brightnesses are consistent on at least one side
of the edgels. Typically, this produces 3 or 4
links per edgel, and linked edgels tend to
follow edges of low to moderate curvature.
Time for the matching and linking is 33
seconds.

Each edgel in the left picture has a list of
linked edgels and a list of possible matches.
An ad hoc "voting" scheme was implemented
to establish a consensus for disparities of
possible matches of the edgel and those of
linked neighbors. Let E be an edgel and L an
edgel linked to E. Let dL be a disparity on
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L's disparity hst and dE a disparity on E's
disparity hist. If dL and dE are equal or
nearly equal (within .125 pixel disparity) then
dE gets two votes. If dL and dE are close
(within 375 pixel disparity) then dE gets |
vote. Otherwise, there are no votes. A bell-
shaped distribution usually results about the
best dispanity, with wild or inconsistent
matches out on the tails of the curve. The
maximum of the distribution 1s taken as the
disparity for E. This processing takes 8
seconds. A file of edgels with their three
dimensional lacations results.

Results of stereo edge maps for a passenger
terminal at San Francisco airport are shown in
Figure 2. The matches are sufficiently accurate
that the dihedral angle of the wings 1s
noticeable. A small percentage of errors are
noticeable in areas with repetitive patterns.
The matching 1s expected to be improved
significantly by incorporating the context of
surfaces.

Results of stereo edge maps are now being
used for awcraft recognition in the
ACRONYM system. They have been used
with routines aimed toward recognition of
vehicles. A rectangle finder has been used to
describe the outline of cars in aerial photos.
Measurement of the length of a vehicle was
accurate to 5%.

The method outlined above suffers from some
serious problems. It relies heavily on the
Hueckel edge operator. While it may be one of
the best available, it is weak at slow intensity
gradients, where 1t finds a multitude of
parallel edges that tend to match at every
possible disparity. Second, it is a least squares
process, and so is easily led astray near corners
and in textured areas.

Work on stereo region-growing [Hannah) and
motion sequences [Nevatia B) preceded this
research. A curve matching program matched
parts of images by a coarse-to-fine strategy of
matching long curves first [(Bolles) That
approach has potential for cruise missile

Image Understanding

navigation and is being pursued further. The
amount of information required by these
curve features 1s quite small, permitting
flexible flight paths with reasonable memory
requirements.
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Figure 2c.

Matched edges near the ground.

Figure 2d.

Matched edges above the ground.
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5.3.1 Stereo mapping using area
correlation

Stereo mapping with area correlation has been
extended to make complete stereo maps of a
variety of images, aerial photos and ground
level, with a completely automated system.
The system estimates measurement accuracy
for each point. The stereo mapping program
has been combined with the ground surface
finder to determine ob jects which stand above
the ground. A plane finder has been used to
locate planes above the ground, eg. finding
the roof in aerial photos of an apartment
house.

The stereo camera model and determination
of the stereo calibration are described in the
section on stereo edge mapping. The Interest
Operator and the Binary Search Correlator
are used. Once the stereo camera model is
known, the search for matching points is
constrained. A match for a given point must
lie along a ray in space which projects as a
straight line in the other view. Because
images are primarily composed of regions
corresponding to extended surfaces, areas
have matches at approximately the same
stereo disparity as neighboring points. For
many areas, the search can be eliminated by
using this neighborhood context.

The program divides one picture of the pair
into square areas, typically 8x8. It selects a
starting area and proceeds column by column
through the picture. It tries areas ad jacent to
areas already matched and searches for
matches with disparity approximately the
same as its neighbors. Previous work here at
SAIL [Hannah] used a region growing
process. The current approach has an
advantage in that with some changes the
process requires only portions of the image to
be in memory at any one time. That sort of
locality is not possible with a region oriented
approach.

A high resolution correlator was developed
which has several advantages for this purpose.

Image Understanding

It has increased accuracy of matching. It
estimates a probability estimate of the
correctness of the match. In the matching
sequence, matches are accepted based on the
probability estimate. Even in areas of low
information content, the noise suppression
ability often allows useful results to be
obtained. The correlator also produces a
measure of the precision of the match. If the
information content is too low, the match is
not well localized, and the correlator estimates
large values for the standard deviations of the
position. The standard deviations of match
positions are the basis for estimating errors in
spatial position measurements. When errors
are large, searching can be terminated if
desired. In many cases, one standard
deviation 1s large (for example, along a
straight edge) but an accurate measurement
can still be made unless the eigenvector with
large standard deviation lies almost parallel to
the stereo axis.

The ground surface finder is used to estimate
the ground level. Figure 3 shows a sequence
of steps in the operation of the system on a
pair of pictures taken from ground level. The
final picture shows the heights of image areas
which are more than two feet above the
ground. Heights are shown by arrows which
extend downward from the selected point to
the ground directly beneath. It is apparent
that the routine succeeds in isolating ob jects
from the ground.




Figure 3a

Figure 3b
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6. Knowledge Based Programming

Personnel: Cordell Green, Jerrold Ginsparg,
Student Research Assistants:
Philippe Cadiou, Richard Gabriel,
Elaine Kant, Juan Ludiow,
Brian McCune, Jorge Philips,
Thomas Pressburger, Louis Steinberg,
Steve Tappel, Stephen Westfold

This section summarizes progress made on the
PSI program synthesis system during the past
two years. (Green-76B] is an overview of
prior work.

A summary of the scope and design of PS] is
given, followed by a discussion of its present
capabilities. Then a number of examples of
PSI in operation are given. Finally
publications by the Knowledge Based
Programming Group are listed.

6.1 Summary of the PSI Program Synthesis
System

The PSI program synthesis system is a
computer program that acquires high level
descriptions of programs and produces
efficient implementations of these programs.
Simple symbolic computation programs are
specified through dialogues that inciude
natural language, input-output pairs, and
partial traces. The programs produced are in
LISP, but experiments have shown that the
system can be extended to produce code in a
block structured language such as PASCAL.

PSI is organized as a collection of interacting
modules or programmed experts. The overall
design is a group effort, with one individual
having responsibility for each module as
follows: parser/interpreter, Jerrold Ginsparg;
trace and example inference expert, Jorge
Phillips; dialogue moderator, Louis Steinberg;
explainer, Richard Gabriel; domain expert,
Jorge Phillips; program model builder, Brian
McCune; coder, Juan Ludlow; and efficiency
expert, Elaine Kant. The block diagram in
Figure 1 shows these modules. Additional
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personnel have been working on various
projects within these experts. Steve Tappel
wrote the rule expander for the program
model builder; Stephen Westfold enhanced the
examples component of the inference expert;
Philippe Cadiou worked on rules for coding
procedures; and Thomas Pressburger wrote
programs to generate understandable program
models and complete handwritten program
models.

Personnel previously with the PSI GCroup
made many important contributions. David
Barstow developed the coder; Ronny van den
Heuvel worked on explication of knowledge
about concept formation for the domain
expert; Bruce Nelson wrote the program model
interpreter; Richard Pattis wrote a general
input parser for this interpreter; and Avra
Cohn laid a groundwork of domain expertise
and general programming knowledge.

The major data paths and modules of the PSI
system are shown in Figure 2. There is one
data path for each specification method.
Currently these are English, input-output
examples, and partial traces. A more
conventional method, that of a very high level
language, is a planned addition to PSI as
shown in the diagram. These specifications
are integrated in the program net and model.

PSI's operation may be conveniently factored
into two parts: the acquisition phase (those
modules shown above the program model),
which acquires the model, and the syntkesis
phase (those modules shown below the
program model), which produces a program
from the model.

o e
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Figure I: Block Diagram of the PSI Program Synthesis System
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Figure 2: Ma jor Paths of Information Flow in PSI
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In the acquisition phase, sentences are first
parsed, then interpreted and stored in the
program net (also referred to as the “program
specification” in [Ginsparg-78)). The parser
is a general parser which limits search by
incorporating considerable knowledge of
English usage. The interpreter 1s more
specific to program synthesis, using program
description knowledge as well as knowledge
about the question asked and the current topic
to facilitate interpretation into the program
net.

The dialogue moderator guides the dialogue
by selecting or suppressing questions for the
user. It attempts to keep PSI and the user in
agreement on the current topic, provides a
review and preview of topics when the tapic
changes, helps the user who gets lost, and
allows imtiative to shift between PSI and the
user.

A new module 1s the explainer, which
generates in English reasonably clear questions
about and descriptions of program models as
they are acquired, in order to help verify that
the inferred program description is the one
desired. It will also be able to explain the
how and why of the acquisition and synthesis
process to the interested user.

Another input specification method is a
partial trace (Phillips-77]. A trace includes as
a special case an example input-output pair.
Examples are useful for inferring data
structures and simple spatial transformations.
Partial traces of states of internal and [/O
variables allow the inductive inference of
control structures. The trace and example
inference expert infers a loose description of a
program in the form of a program net, rather
than a program model or other true algorithm.
This technique allows domain support to
disambiguate possible inferences and also
separates the issue of efficient implementation
from the inference of the user's intention.

Various types of programming knowledge are
distributed throughout the modules of the
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acquisition phase. In contrast, knowledge
specific to one particular application domain
(eg. knowledge about learning programs) is
concentrated in the domain expert, which
supphies domain support by communicating
with other acquisition modules through the
program net.

The program net and the program model are
two of the major interfaces within PSI. Both
are high level program and data structure
description languages. The program model
includes complete, consistent, and interpretable
very high level algorithm and information
structures. The program net, on the other
hand, forms a looser program description.
Fragments of the program net can be visited
in the order of occurrence of the dialogue,
rather than in execution order, and allow less
detailed, local, and only partial specification of
the program.  Since these fragments
correspond rather closely to what the user says,
they ease the burden of the parser/interpreter
as well as the trace and example inference
module.

The program model builder [McCune-77]
applies knowledge of correct program models
to convert the fragments into a model. The
model builder processes fragments, checking
for completeness and correctness, fills in detail,
corrects minor inconsistencies, and adds cross-
references. It also generalizes the program
description, converting it into a form that
aliows the coder to look for good
implementations. The completed program
model may be interpreted by the model
interpreter to check that it performs as desired
by the user and also to gather information
needed by the efficiency expert, such as
statistics on set sizes and probabilities of the
outcome of tests.

After the acquisition phase is complete, the
synthesis phase begins. This phase may be
viewed as a series of refinements of the
program model into an efficient program, or as
a heuristic search for an efficient program that
satisfies the program model. The coder




(Barstow-77C] has a body of program
synthesis rules [Green & Barstow-75, Green &
Barstow-77A] which are applied to gradually
transform the program model from abstract
into more detailed constructs until it is in the
target language. The algorithm and data
structures are refined interdependently. The
coder deals primarily with the notions of set
and correspondence operations and can
synthesize programs involving sequences,
loops, simple input and output, linked lsts,
arrays, and hash tables.

The refinement tree effectively forms a
planning space that proposes only legal, but
possibly inefficient, programs. This tree
structure is shared by the coder and the
efficiency expert [Kant-77). When the coder
proposes more than one refinement or
implementation, the efficiency expert reduces
the search by estimating the time-space cost
product of each proposed refinement. The
better path is followed, and there is no backup
unless the estimate later proves to be very bad.
An additional method to reduce the size of the
search space is the factorization of the
program into relatively independent parts so
that all combinations of implementations are
not considered. An analysis for bottlenecks
allows the synthesis effort to concentrate on the
more critical parts of the program.

In summary, we have formulated a framework
for an automatic program synthesis system
and have a start on the kinds of programming
knowledge that must be embedded therein.

6.2 Recent Progress on and Present
Capabilities of PSI

The entire PSI system can now be used by a
knowledgeable user. A number of tests of the
entire system have been made. PSI
successfully produced LISP code which
implements the specifications given in English
dialogues for four variants of CLASS, a
simple  pattern  classification  program
(discussed in detail in the section on "Writing
CLASS"). In addition, ten other dialogues
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have been understood by the
parserfinterpreter. About three versions of
each of five other programs have been coded
(some, but not all, of these corresponding to
dialogues processed by the parser/interpreter).

The basic system design has remained stable,
but many new ideas have been incorporated.
The individual capabilities of the modules
have been improved and made more robust.
An explanation system and one domain
module have been added. The interfaces
between the modules have been smoothed out
so that the entire PSI system can be used
without manual intervention.

Work on PSI has been described in two Ph.D.
theses, six M.S. projects, six conference papers,
and numerous other conference presentations.
A journal article on codification of
programming knowledge has also been
accepted. A complete bibliography is listed
under "Publications”.

The parser/interpreter now understands over
seventy programming concepts and has a
vocabulary of more than 175 words. Its
programming concepts include data structures
(eg., sets, records), primitive operations (e.g.,
input, membership), control structures (eg.
loops, conditionals, procedures), and more
complicated algorithmic ideas (e.g., user-
program interchanges, set  construction,
quantification). The parser/interpreter is
capable of understanding most dialogues
which lie within the scope of its concepts and
vocabulary. User syntax is not an issue
because the parser efficiently parses a very
large grammar. The system can sometimes
determine the meaning of unknown words
(eg. what concept they represent) from the
context in which they appear. The dialogues
which the system has understood include those
specifying many variants of CLASS, several
variants of NEWS (a news story retrieval
program), TF (a learning program that uses
CLASS as a subroutine) and graph
reachability.
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The dialogue moderator is capable of
choosing which question posed by the
parser/interpreter to ask. It has mechanisms
(not yet interfaced to the rest of PSI) to
answer the question, "Where are we?", and
most of the mechanism exists to handle a
request to change topic. The moderator has
handled dialogues for NEWS and variants of
CLASS.

The questions which are asked of the user are
now quite readable and coherent. Questions
use the same terms as the user did in previous
sentences of the dialogue. For example, rather
than asking for the definition of "A0018", PSI
now asks what it means for "a scene to fit a
concept”. This new question generation
system has been used in the dialogues for
CLASS, NEWS, TF, and RECIPE (a recipe
retrieval program similar to NEWS but easier
to understand). It has produced about twenty
substantially different sentence types. The
current version should be able to handle all
foreseeable dialogues with only minor
additions. The question generator is being
expanded into a more general explainer which
will explain PSI's understanding of the
program specification given by the user.

PSI will allow programs to be specified by the
use of traces and examples. A version of the
trace component of the inference expert was
completed which handles simple loop and data
structure inference such as that needed for the
CLASS and TF dialogues (see the section on
"Algorithm Inference from a Trace”). The
interface with the parser via the program net
has been designed. Implementation is
complete except for recognition of when the
user is giving a trace rather than continuing
the dialogue. The examples component has
been greatly improved, and an initial version
incorporating our subsetting theories has been
implemented. This determines (from an
example input-output pair for a certain data
ob ject) a suitable program transformation that
could have carried the object from its initial
to its final state.
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An initial version of a domain expert for
information retrieval has been implemented.
Interfaces with the rest of the system are
clearly defined, and a common
representational base with the
parser/  ~crpreter has been completed. This
base, d the program net, has been used by
the parser for all the dialogues currently done
by the system. The program net has also been
used in conjunction with the domain expert
for the generation of a variant of NEWS.

A second version of the program model
builder has been implemented. Its rule base
has increased to 350 rules. The new rules
incorporate knowledge of correspondences (or
mappings) and primitive operations for
accessing them, of procedures and procedure
invocations, and of type coercion. The model
builder also resolves type-token ambiguities
and transforms expressions to canonical forms.
A number of program models which are
variations on CLASS have been built as part
of the entire PSI system. Separately the model
builder has successfully constructed the more
compiex model for RECIPE.

The knowledge base of the coding module has
grown to about 450 rules. These rules have
been used to code a variety of programs
involving graph reachability and prime
number finding. The sets and
correspondences used in these programs can
be represented as lists, arrays, Boolean
mappings, or property lists. Several versions
of CLASS, RECIPE, NEWS, and TF have
been coded. Insertion and selection sorts have
also been coded. Rules about reusing the
space in arrays have been written and used to
synthesize in-place selection and insertion
sorts (see the section on "Coding an In-Place
Insertion Sort”). Some unnecessary variables
in the target code are now eliminated by
recomputing previously stored results. This
can reduce the number of program variables
by a factor of two.

The efficiency expert was used with the coder
to write five variants of CLASS, to write
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RECIPE, and to write a part of TF. In all
cases different implementations are selected
when different data structure sizes (for
example) are assumed. More than one
representation for the same data structure can
be used in a program. There are now rules
that suggest the circumstances under which
various representations are plausible or
implausible. This greatly reduces the search
space from the original space of all legal
programs. Space-time cost estimates are used
to compare alternative plausible alternatives.
Cost estimates are also used to identify the
decisions that may have the greatest impact on
the global program cost; the decision making
resources are allocated accordingly.

A number of simulated dialogues have been
gathered, with a member of the PSI Group
playing the role of PSI and people not part of
the group as users. The question choosing

disambiguate  possible inferences and also

currently being tested by comparing its
behavior with the data from these dialogues.

Preliminary designs have been completed for
an additional program specification technique.
It 1s a formal system with the flavor of a very
high level programming language. The
language allows manipulation of abstract
algebraic structures such as mappings and sets.
The semantic support available through the
domain expert will allow the use of domain
specific  jargon in  this language. This
language will allow the user to specity quickly
and precisely program descriptions that have
already been well thought out.

A system has been written which prints
concise, understandable versions of program
models in a PASCAL-like notation. The
internal representation of the model s
designed for programming efficiency and is
hard for people to understand. Listings in the
concise notation are thus extremely valuable
for debugging. Any or all of the parts of a
model may be printed, and cross-reference
tables are available to index the concise listing
and the original model. Listings may be

generated for online viewing or printed out
for use in documents.

The program model interpreter, which
executes models interpretively as  an
alternative to coding them and running the
target program, has been brought completely
up to date with the changes to the program
modelling  language. It has  correctly
interpreted the ten program models available.
The interpreter can now handle the general
case of an input statement in which the datum
to be input may be of any type occurring in a
tree of legal types.

A comparison was made of the running times
of interpreted program models versus
corresponding compiled LISP functions coded
by the PSI synthesis phase. The functions
coded by PSI ran up to eleven times faster
than the interpreted models for very simple
programs. We expect that time savings will
grow more than linearly with program
complexity.

A rule expander for model building rules is
complete, making it easier to write new rules
for the program model builder. Rule
preconditions are written inh  a  concise
declarative language; then the rule expander
translates the declarative form into the
required fetch and test operations, taking into
account any ordering constraints which the
preconditions may have and avoiding
retesting preconditions unnecessarily.

6.3 Examples of PSI

This section illustrates the performance of the
PSI system in uoing a number of different
tasks. The first example shows a complete
run of PSI, from the interactive dialogue to
the LISP target code produced, along with
output from intermediate stages. The second
example is a trace which is input to the
inference expert and the program information
which is inferred. The final example shows a
hand-coded program model for an in-place
insertion sort and the LISP program produced
by the synthesis phase.
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Writing CLASS

This section documents the performance of
PSI in writing a program called CLASS. A
brief description of the program is followed by
listings of the four major forms which its
specification  assumes during its  journey
through PSI: an Enghsh dialogue between
the user and PSI, the program net produced
by the parser/interpreter, the program model
from the model builder, and the final LISP
program generated by the coder.

Description of the Program

CLASS 1s a simple program that includes
many programming constructs necessary for
more complex programs. The program
specified first inputs a sample set of items (e.gA.

~a hst of job qualifications). Then the

program repeatedly inputs a trial set (e.g., the
qualifications of an applicant), tests whether
the sample set (required qualifications) is a
subset of the trial set (applicant qualifications),
and prints  "FIT" or "DIDN'T FIT"
accordingly. The program is exited if the
word "QUIT" is typed instead of a trial set.

Dialogue
The following dialogue was held with PSI to
specify CLASS.
PSI: What is the name of the program you
want to write?

USER: CLASS.

PSI: Does CLASS have a special program
type?

USER: Classification.
PSI: Please describe CLASS.

USER: CLASS first inputs a concept. Then
it repeatedly accepts an input scene from
the user, classifies it based on whether or
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not it fits the concept, and outputs this
classification to the user.

PSI: What is the structure of the concept?

USER: A concept is a collection of relations.
Each relation is just a string.

PSI: What 1s the exit test of the loop?

USER: Stop when the user types "QUIT"
instead of a scene.

PSI: What is the structure of the scene?
USER: The same as the concept.

PSI: Please define what it means for a scene
to fit a concept.

USER: A scene fits a concept if all the
relations in the concept are in the scene.

PSI: What is the format of the classification
output?

USER: OQutput “FIT" if the scene fit,
"DIDN'T FIT" if it didn't.

PSI: Are we finished?
USER: Yes.
Program Net

A program net 1s produced by the
parser/interpreter, based upon its
understanding of the dialogue. The following
description 8 a summary of this net, the
algorithmic  part being printed in an
ALGOL-like notation.

A2 1s either a set whose generic element
is a string or & string whose value
1s "QUIT".

Al is a set whose generic element is a
string.

A4 1s the generic element of Al.

A3 1s either TRUE or FALSE.
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6.3 Examples of PSI

Bl 1s a variable bound to A2.
B2 1s a variable bound to Al.
B3 is a variable bound to A4.

CLASS
PRINT( "Ready for the CONCEPT")
Al « READ()
LOOPI:
PRINT("Ready for the SCENE")
A2 « READ()
IF EQUAL(A2,"QUIT") THEN GO_TO EXITI
A3 « FIT(A2,Al)
CASES: 1F A3 THEN PRINT("FIT")
ELSE 1F NOT(A3) THEN PRINT(“DION‘Y
FIT")
GO_TO LOOP1
EXITL:

FIT(B1,B2)
FOR_ALL B3
IMPLIES(MEMBER(B3,82) ,MEMBER(83,B1))

Program Model

The program model builder uses the program
net produced by the parser/interpreter to
construct a complete model of the program.
From the internal representation of the
resulting program model, the understandable
model printer produces the readable form
shown on the next page. The actual model
also  includes  much  cross-referencing
information.

Alternate Implementations

The program model is refined into target
language code by the coder and efficiency
expert. Dividing PSI into two separate phases
allows programs to be optimized by taking
different runtime environments into account.
The program can be specified once and a
program model built. Then by giving
different size estimates, probabilities, or cost
functions, different target language programs
can be produced. The programs will of course
have the same input-output behavior, but the
code will be optimized differently based on the
data structure sizes or other such parameters.

S

Recall that CLASS reads a sample set of
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items, then repeatedly inputs a trial set and
tests whether the sample set is a subset of the
trial set. Since the universe of the sets is not
known, a subset test using a bit map, which
would be very fast, 1s not possible. So the
subset test is implemented as an enumeration
through the elements of the sample set, testing
each element for membership in the trial set.
When the trial set is small, a simple list (the
same as the input format) is a good choice of
representation for the sets. The resulting
program is the second one shown below.

When the trial set is large, however, it may
prove more efficient to convert its represention
to a hash table format so that the membership
test is much faster. PSI must check whether
such savings outweigh the cost of the
representation conversion. The resulting
program for this case is the third program
shown below.

h_'—-—'-'-'—~--'_——-
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Knowledge Based Programming

Readable form
program CLASS ;

type
a0032 : set of string ,
a0053 : alternative of (string = "QuIT" , a0032) ;

vars

a00l1l,a0014 , a0035 , a0036 : 0032 ,
a0055 , m0080 : a0053 ,

mO0095 : string = "DIDN‘T FIT" ,
mO092 : string = “FIT",

mQ0091! : Boolean ,

mO081 : string = "QuUIT" ;

procedure a0067(a0036 , a0035 : a0032) : Boolean ;
a0035 ¢ 20036 ;

procedure a0065(a0055 : a0053) : Boolean ;
a0055 = "QuIT" ;

begin

aQQll «~ inpur(a0O32 , user , "READY FOR CONCEPT" ,

“Illeqal input. Input again: )
until 40051

repeat

begin
m0080 « input(a0053 , user , “READY" , “I11egal 1nput.
if a0065(m0080) then assert exit_condition(A40051) ;
a0014 « m0080 ;
m0091 « a0067(a0014 , a0011) B
case

= m0091 : inform_user("0DION'T FIT") ;

mO091 :  inform_user("FIT") ;
endcase
end
finally
A005] :
endloop
end ;

Input again:

“2;

ks
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Here is CLASS using a list representation.

(CLASS
[LAMBDA NIL
(PROG (USER/M0025/C0025)
(SETQ USER/M0025/C0025 (PROGN sPRINl ')'READY FOR THE CONCEPT")
TERPRI

algorithm of the dialogue moderator is
(PROG NIL
RPT/C0059
[PROG (USER/M0028/C0029 USER/M0021/C0030 USER/M0020/C0032)
(SETQ USER/M0020/C0032 (PROGN (PRIN1
“READY FOR THE SCENE")
(TERPRI)
(READ)))
(COND
((EQ USER/M0020/C0032 (QUOTE QUIT))
(GO L0040)))
(SETQ USER/M0021/C0030 USER/M0020/C0032)
[SETQ USER/M0028/C0023
(NOT (PROG (60049 G0042)
(SETQ 60049 USER/M0025/C0025)
RPT/C0060
(COND
((NULL G0049)
(6O L0050)))
(SETQ 60042 (CAR G0048))
(COND
((NOT (MEMBER G0042 USER/M0021/C0030))
(GO L0046)))
(SETQ 60043 (COR G0049))
(GO RPT/C0060)

0050
(RETURN NIL)
L0046
(RETURN T)
(COND
((NOT USER/M0028/C0029)
(PROGN (PRIN1 "DIDN'T FIT")
(TERPRI)))
(USER/M0028/C0029 (PROGN (PRINI "FIT")
(TERPR1)
(GO RPT/C0059)
L0040
(RETURN])




il

56 Knowledge Based Programming

The following version is more efficient for larger sets because the input list is converted to a hash
table for processing.

(CLASS
{LAMBDA NIL
(PROG (USER/M0025/C0025)
(SETQ USER/M0025/C0025 (PROGN (PRIN1 "READY FOR THE CONCEPT")
( TERPR1)
(READ)))
(PROG NIL
RPT/C0065
[PROG (USER/M0028/C0029 USER/M0021/C0030 USER/M0020/C0032)
(SETQ USER/M0020/C0032 (PROGN (PRIN1
"READY FOR THE SCENE")
(TERPR])
(READ)))
(COND
((EQ USER/M0020/C0032 (QUOTE QUIT))
(GO L0040)))
(SETQ USER/M0021/C0030 (PROG (G0063 GOOSI G0052)
(SETQ G00S2 (HARRAY 100))
(SETQ 60063 USER/M0020/C0032)
RPT/C0067
(COND
((NULL 60063)
(60 L0064)))
(SETQ GOOS51 (CAR G0063))
(PUTHASH 60051 T G0052)
(SETQ G0063 (COR G0063))
(GO RPT/C0067)

L0064
(RETURN 60052)))

[SETQ USER/M0028/C0029
(PROG (USER/T653700/C0036)
(SETQ USER/T653700/C0036 USER/M0021/C0030)
(RETURN (NOT (PROG (G0049 G0042)
(SETQ 60049 USER/M0025/C0025)
RPT/C0066
(COND
({NULL 60049)
(G0 L0050)))
(SETQ 60042 (CAR G0049))
(CoND
((NOT (GETHASH 60042
USER/T653700/C0036))
(60 L0046)))
(SETQ 60049 (COR 60049))
(60 RPT/C0066)
L0050
(RETURN NIL)
6

04
(RETURN T
(CoND
((NOT USER/M0028/C0029)
(PROGN (PRIN1 "DION'T FIT*)
(TERPRI)))

(USER/M0028/C0029 (PROGN (PRINI "FIT®) s

(TERPKIY

(GO RPT/C0065)
L0040
(RETURN])




The following is an example run of the
CLASS program above.

«(CLASS)

READY FOR THE CONCEPT
(MATH ENGLISH BIOLOGY RUSSIAN)

READY FOR THE SCENE
(MATH PHYSICS CHEMISTRY)
DIDN'T FIT

READY FOR THE SCENE
(FRENCH ENGLISH MATH RUSSIAN)
DIDNT FIT

READY FOR THE SCENE

(BIOLOGY FRENCH RUSSIAN MATH ENGLISH
CHEMISTRY)

FIT

READY FOR THE SCENE
QuUIT
NIL

Algorithm Inference from a Trace

The trace example in this section shaws part
of the desired behavior of a program called
TF. TF (for "Theory Formation") is a
simplified version of Pat Winston's concept
formation program. Its goal is to form an
internal model of a concept which
discriminates between “scenes” which are and
are not part of the concept. TF builds up its
internal model by repeatedly reading in a
scene which may or may not be an instance of
the concept. For each scene, TF determines
whether it fits the internal model of the
concept and verifies this guess with the user.
The internal model is then updated based on
whether or not the guess was correct. The
internal model consists of a set of relations,
each marked as being "must” or "may”. A
scene fits the model if all of the "must”
relations are in the instance; "may” relations
are optional.

#_—wm‘*““ meen—r— o ——
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Shown below is a partial trace excerpted from
a larger dialogue specifying TF. This excerpt
shows the process of updating the concept,
given a scene and a fit result.

Concept: ()

Scene: {(block a)(block b)(on
ab))

Result of fit: True

Updated concept: {((block a) may)((block
b) may)((on a b)
may))

Concept: {((block a) may)((block
b) may)((on a b)
may) }

Scene: {(block a){block b))}

Result of fit: False
Updated concept: (((block a) may)((block
s b) may){((on a b)

must)}

Concept: {((block a) may)((block
b) may)((on a b)
must))

Scene: {{block a)(block

b)(block c)(on & b))
Result of fit: True
Updated concept: {((block a) may)((block
b) may)((block ¢)
may)((on a b) must)}

From this example sequence the inference
expert generates the following explanation: If
the scene fits the concept, then add all
relations in the scene but not present in the
concept to the concept and mark them with
"may”. Otherwise, if the scene doesn't fit the
concept, then change the marking of all
relations marked "may” in the concept and not
appearing in the scene from "may" to "must”.

Coding an In-Place Insertion Sort

Programmers commoanly use many tricks for
saving storage space by reusing space that is
no longer needed. The following program
illustrates space reutilization in an in-place
sort (Green & Barstow-77B). In this case
both the source and target are arrays of size n,
and the source may be destroyed. Items are to
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be taken one at a time from the source and

placed in the target in ascending order. Thus,
1 the source is shrinking at the same rate as the
i target is growing, and it becomes possible to

reduce the total space used from 2n to n. The
model below for this sort was handwritten.

i type : .
source_set : set of integer destructible ,
I target_set : ordered set of integer ;

vars
source : source._set ,
target : target_set reusing source ;

procedure sort(source : source_set) :
target_set ;
begin
target « target_set{} ;
V item € source do
begin
delete(item , source) ;
insert(item , target)
end ;
return(target)
end ;

Coding rules indicate that the space reduction
is possible if both the deletion and addition
can be done in place, that is, by always
deleting or adding at the same end of the
source or target. Other coding rules are then
applied to find methods of in-place deletion
and insertion. In the resulting program a
single array is used, initialized to the source
array. The target, initially empty. grows
downward from the upper end of the array.
The target is kept sorted. Repeatedly the
source element at the boundary between source
and target is deleted, and a linear scan of the
target is used to find where to insert it. All
target elements below this point are shifted
down one location, and the source element is
inserted.

A further improvement of the algorithm,
which in this case the coder did not make, is
to combine the two scan and shift
enumerations into a single enumeration.

Knowledge Based Programming
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Here 1s one possible implementation, as generated by the coder. Passing the source array as a
parameter to the function has been omitted.

(SORT
[LAMBDA NIL
(PROG (USER_SOURCE_SET_C0118 USER_TARGET_SET_C0120)
(USER_SOURCE_SET_C0118 « C(ARRAY 100) 1 ! 100> )
(USER_TARGET_SET_C0120 « < USER_SOURCE_SET_CO0118 :1
USER_SOURCE_SET_C0118 ::2 + 1
| USER_SOURCE_SET_CO118 ::2 > )
(PROG (60128 60127 G0124)
(60128« USER_SOURCE_SET_C0118)
RPT_C0130 ;
(60127 « 60128::2) ]
(7f G0128:2 GY G0128::2 then (GO L0129)) g 3
(60124 « (ELT USER_SOURCE_SET_CO118 :1 G0127))
(PROG (60132)
(60132+(PROG (G0142)
(60142 « USER_TARGET_SET_C0120 :2)
RPT_C0144
(17 60142 GT USER_TARGET_SET_C0120 ::2 then (GO L0143))
(17 (ELT USER_TARGET_SET_C0120 :1 GO142) GT GOl24
then (GO L0143))
(60142 « GO142.+ 1)
(GO RPT_C0144) .

L0143
(READ))) :
(USER_TARGET_SET_C0120 :2 « (USER_TARGET_SET_C0120 :2 - 1))
(PROG (60136)
(60136 + USER_TARGET_SET_C0120 :2 + 1)
RPT_C0138
(if G0136 GT (60132 - 1) then (60 L0137))
((ELT USER_TARGET_SET_C0120 :1 (G0136 - 1))
« (ELT USER_TARGET_SET_C0120 :1 60136))
(6013660136 + 1)
(60 RPT_C0138)
L0137
(RETURN))
((ELT USER_TARGET_SET_C0120 :1 (60132 - 1)) « G0124))
(RPLACD (CDR 60128)
((COR (COR 60128)) - 1))
(GO RPT_C0130)
L0129
(RETURN))
(RETURN USER_TARGET_SET_C0120])

% .
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Appendix A
Theses

Theses that have been published by this
laboratory are listed here. Several earned
degrees at institutions other than Stanford, as
noted. This hist is kept in diskfile THESES
(BIB.DOC] eSU-AL

D. Raj Reddy, AIM-43
An Approach to Computer Speech
Recognition by Direct Analysis of the
Speech Wave,

Ph.D. in Computer Science,

September 1966.

S. Persson, AIM-46
Some Sequence Extrapolating Programs: a
Study of Representation and Modeling in
Inquiring Systems,

Ph.D. in Computer Science, University of
California, Berkeley,

September 1966.

Bruce Buchanan, AIM-47
Logics of Scientific Discovery,

Ph.D. in Philosophy, University of
California, Berkeley,

December 1966.

James Painter, AIM-44
Semantic Correctness of a Compiler for an
Algol-like Language,

Ph.D. in Computer Science,

March 1967.

William Wichman, AIM-5
Use of Optical Feedback in the Computer
Control of an Arm,

Eng. in Electrical Engineering,

August 1967.

Monte Callero, AIM-58
An Adaptive Command and Control System
Utilizing Heuristic Learning Processes,
Ph.D. in Operations Research,

December 1967.

Donald Kaplan, AIM-60
The Formal Theoretic Analysis of Strong
Equivalence for Elemental Properties,

Ph.D. in Computer Science,

July 1968.

Barbara Huberman, AIM-65
A Program to Play Chess End Games,

Ph.D. in Computer Science,

August 1968.

Donald Pieper, AIM-72
The Kinematics of Manipulators under
Computer Control,

Ph.D. in Mechanical Engineering,

October 1968.

Donald Waterman, AIM-74
Machine Learning of Heuristics,

Ph.D. in Computer Science,

December 1968.

Roger Schank, AIM-83

(RETURN G0142)))

for a Computer Oriented Semantics,
Ph.D. in Linguistics, University of Texas,
March 1969.

Pierre Vicens, AIM-85
Aspects of Speech Recognition by

Computer,

Ph.D. in Computer Science,

March 1969.

Victor D. Scheinman, AIM-92
Design of Computer Controlied Manipulator,
Eng. in Mechanical Engineering,

June 1969.

Claude Cordell Green, AIM-96
The Application of Theorem Proving to
Question-answering Systems,

Ph.D. in Electrical Engineering,

August 1969.

James J. Horning, AIM-98
A Study of Grammatical Inference,

PA.D. in Computer Science,

August 1969.
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Michael E. Kahn, AIM-106
The Near-minimum-time Control of Open-
loop Articulated Kinematic Chains,

Ph.D. in Mechanical Engineering,
December 1969.

Joseph Becker, AIM-119
An Information-processing Model of
Intermediate-Level Cognition,

Ph.D. in Computer Science,

May 1972.

Irwin Sobel, AIM-121
Camera Models and Machine Perception,
Ph.D. in Electrical Engineering,

May 1970.

Michael D. Kelly, AIM-130
Visual Identification of People by
Computer,

Ph.D. in Computer Science,

July 1970.

Gilbert Falk, AIM-132
Computer luterpretation of Imperfect Line
Data as a Three-dimensional Scene,

Ph.D. in Electrical Engineering,

August 1970.

Jay Martin Tenenbaum, AIM-134
Accommodation in Computer Vision,

Ph.D. in Electrical Engineering,

September 1970.

Lynn H. Quam, AIM-144
Computer Comparison of Pictures,

Ph.D. in Computer Science,

May 1971.

Robert E. Kling, AIM-147
Reasoning by Analogy with Applications to
Heuristic Problem Solving: a Case Study,
Ph.D. in Computer Science,

August 1971.

Rodney Albert Schmidt Jr., AIM-149
A Study of the Real-time Control of a
Computer-driven Vehicle,

Ph.D. in Electrical Engineering,

August 1971.
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Jonathan Leonard Ryder, AIM-155
Heuristic Analysis of Large Trees as
Generated in the Game of Go,
PA.D. in Computer Science,
December 1971.
Jean M. Cadiou, AIM-163

Recursive Definitions of Partial Functions
and their Computations,

Ph.D. in Computer Science,

April 1972.

Gerald Jacob Agin, AIM-173
Representation and Description of Curved
Ob jects,

Ph.D. in Computer Science,

October 1972.

Francis Lockwood Morris,
Correctness of Translations of
Programming Languages - an Algebraic
Approach,

Ph.D. in Computer Science,

August 1972,

AIM-174

Richard Paul, AIM-177
Modelling, Tra jectory Calculation and
Servoing of a Computer Controlled Arm,
Ph.D. in Computer Science,

November 1972,

Aharon Gill, AIM-178
Visual Feedback and Related Problems in
Computer Controlled Hand Eye

Coordination,

PA.D. in Electrical Engineering,

October 1972.

Ruzena Bacsy, AIM-180
Computer Identification of Textured

Visiual Scenes,

Ph.D. in Computer Science,

October 1972.

Ashok Chandra, AIM-188

On the Properties and Applications of
Programming Schemas,

Ph.D. in Computer Science,

March 1973,




64

Gunnar Rutger Grape, AIM-201
Model Based (Interimediate Level) Computer
Vision,

Ph.D. in Computer Science,

May 1973,

Yoram Yakimovsky, AIM-209
Scene Analysis Using a Semantic Base for
_ Region Growing,
Ph.D. in Computer Science,
July 1973,

Jean E. Vuillemin, AIM-218
Proof Techniques for Recursive Programs,
Ph.D. in Computer Science,

October 1973

Daniel C. Swinehart, AIM-230
COPILOT: A Multiple Process Approach to
Interactive Programming Systems,
Ph.D. in Computer Science,

May 1974.

James Gips, AIM-231
Shape Grammars and their Uses
Ph.D. in Computer Science,
May 1974

Charles J. Rieger III, AIM-233
Conceptual Memory: A Theory and
Computer Program for Processing the
Meaning Content of Natural Language
Utterances,

Ph.D. in Computer Science,

June 1974.

Christopher K. Riesbeck, AIM-238
Computational Understanding: Analysis of
Sentences and Context,

Ph.D. in Computer Science,

June 1974

Marsha Jo Hannah, AIM-239
Computer Matching of Areas in Stereo
Images,

Ph.D. in Computer Science,

July 1974.
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James R. Low, AIM-242
Automatic Coding: Choice of Data
Structures,

Ph.D. in Computer Science,

August 1974

Jack Buchanan, AIM-245
A Study in Automatic Programming

Ph.D. in Computer Science,

May 1974.

Neil Goldman, AIM-247
Computer Generation of Natural Language
From a Deep Conceptual Base

Ph.D. in Computer Science,

January 1974.

Bruce Baumgart, AIM-249
Geometric Modeling for Computer Vision
Ph.D. in Computer Science,

October 1974.

Ramakant Nevatia, AIM-250
Structured Descriptions of Complex Curved

Ob jects for Recognition and Visual Memory
PRh.D. in Electrical Engineen‘ng,

October 1974.

Edward H. Shortliffe, AIM-251
MYCIN: A Rule-Based Computer Program
for Advising Physicians Regarding
Antimicrobial Therapy Selection

Ph.D. in Medical Information Sciences,
October 1974.
Malcolm C. Newey, AIM-257
Formal Semantics of LISP With

Applications to Program Correctness

Ph.D. in Computer Science,

January 1975.

Hanan Samet, AIM-259

Automatically Proving the Correctness of
Translations Involving Optimized Coded
PAD in Computer Science,

May 1975.
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David Canfield Smith, AIM-260
PYGMALION: A Creative Programming
Environment

PARD in Computer Science,

June 1975.

Sundaram Ganapathy, AIM-272
Reconstruction of Scenes Containing
Polyhedra From Stereo Pair of Views

Ph.D. in Computer Science,

December 1975.

Linda Gail Hemphill, AIM-273
A Conceptual Approach to Automated
Language Understanding and Belief
Structures: with Disambiguation of the
Word ‘For’

Ph.D. in Linguistics,

May 1975.

Norihsa Suzuki, AIM-279
Automatic Verification of Programs with
Complex Data Structures

Ph.D. in Computer Science,

February 1976.

Russell Taylor, AIM-282
Synthesis of Manipulator Control Programs
From Task-Level Specifications

PAD in Computer Science,

July 1976.

Randall Davis, AIM-283
Applications of Meta Level Knowledge to
the Construction, Maintenance

and Use of Large Knowledge Bases

Ph.D. in Computer Science,

July 1976.

Rafael Finkel, AIM-284
Constructing and Debugging Manipulator
Programs

Ph.D. in Computer Science,
August 1976.

Douglas Lenat, AIM-286
AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic
Search

Ph.D. in Computer Science,
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July 1976.

Michael Roderick, AIM-287
Discrete Control of a Robot Arm

Engineer in Electrical Engineering,

August 1976.

Robert C. Bolles, AIM-295
Verification Vision Within a Programmable
Assembly System

Ph.D. in Computer Science,

December 1976.

Robert Cartwright, AIM-296
Practical Forinal Semantic Definition and
Verification Systems

Ph.D. in Computer Science,

December 1976.

Todd Wagner, AIM-304
Hardware Verification

PhD in Computer Science,

September 1977.

William Faught, AIM-305
Motivation and Intensionality in a

Computer Simulation Model

Ph.D. in Computer Science,

September 1977.

David Barstow, AIM-308
A Conceptual Dependency Representation
Ph.D. in Computer Science,

December 1977.

B o T




Appendix B
Film Reports

Prints of the following films are available for
distribution.  This list is kept in diskfile
FILMS (BIB,DOC] eSU-AL

1. Art Eisenson and Gary Feldman, Ellis
D. Kroptechev and Zeus, his Marvelous
Time-sharing System, 16mm B&W with
sound, 15 minutes, March 1967.

The advantages of time-sharing over
standard batch processing are revealed
through the good offices of the Zeus time-
sharing system on a PDP-1 computer. Our
hero, Ellis, 1s saved from a fate warse than
death. Recommended for mature audiences
only.

2. Gary Feldman, Butterfinger, 16mm color
with sound, 8 minutes, March 1968.

Describes the state of the hand-eye system at
the Artificial Intelligence Project in the fall of
1967. The PDP-6 computer getting visual
information from a television camera and
controlling an electrical-mechanical arm solves
simple tasks involving stacking blocks. The
techniques of recognizing the blocks and their
positions as well as controlling the arm are
briefly presented. Rated “G".

3. Raj Reddy, Dave Espar and Art
Eisenson, Hear Here, 16mm color with
sound, 15 minutes, March 1969.

Describes the state of the speech recognition
project as of Spring, 1969. A discussion of
the problems of speech recognition is followed
by two real time demonstrations of the current
system. The first shows the computer learning
to recognize phrases and second shows how
the hand-eye system may be controlled by
voice commands. Commands as complicated
as ‘Pick up the small block in the lower
lefthand corner’, are recognized and the tasks
are carried out by the computer controlled
arm.

4. Gary Feldman and Donald Peiper,
Avoid, 16mm color, silent, 5 minutes,
March 1969.

An illustration of Peiper’s Ph.D. thesis. The
problem is to move the computer controlled
mechanical arm through a space fiiled with
one or more known obstacles. The film shows

the arm as it moving through various
cluttered environments with fairly good
success.

5. Richard Paul and Karl Pingle, Instant
Insanity, I6mm color, silent, 6 minutes,
August, 1971.

Shows the hand/eye system solving the puzzle
Instant Insanity. Sequences include finding
and recognizing cubes, color recognition and
ob ject manipulation. [Made to accompany a
paper presented at the 1971 1JCAI. May be
hard to understand without a narrator.)

6. Suzanne Kandra, Motion and Vision,
16mm color, sound, 22 minutes,
November 1972.

A technical presentation of three research
projects completed in 1972: advanced arm
control by R. P. Paul [(AIM-177), visual
feedback control by A. Gill [AIM-178), and
representation and description of curved
ob jects by G. Agin [AIM-173]). Drags a bit.

7. Larry Ward, Computer Interactive
Picture Processing, (MARS Pro ject),
16mm color, sound, 8 min., Fall 1972.

This  film describes an automated picture
differencing technique for analyzing the

variable surface features on Mars using data
returned by the Mariner 9 spacecraft. The
system uses a time-shared, terminal oriented
PDP-10 computer. The film proceeds at a
breathless pace. Don't blink, or you will miss
an entire scene.
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8. D.. Okhotsimsky, et al, Display
Simulations of 6-Legged Walking,
Institute of Applied Mathematics — USSR
Academy of Science, (titles transiated by
Stanford Al Lab and edited by Suzanne
Kandra), 16mm black and white, silent, 10
minutes, 1972.

A display simulation of a 6-legged ant-like
walker getting over various obstacles. The
research is aimed at a planetary rover that
would get around by walking. This cartoon
favorite beats Mickey Mouse hands down. Or
rather, feet down.

9. Richard Paul, Karl Pingle, and Bob
Bolles, Autoinated Pump Assembly,
16mm color, silent (runs at sound speed!),
7 minutes, April, 1973.

Shows the hand-eye system assembling a
simple pump, using Vision to locate the pump
body and to check for errors. The parts are
assembled and screws inserted, using some
special tools designed for the arm. Some titles
are included to help explain the film.

10. Terry Winograd, Dialog with a robot,
MIT A. I Lab, I16mm black and white,
silent, 20 minutes, 1971.

Presents a natural language dialog with a
simulated robot block-manipulation system.
The dialog is substantially the same as that in
Understanding ~ Natural  Language (T.
Winograd, Academic Press, 1972). No
explanatory or narrative material is on the
film.

11. Karl Pingle, Lou Paul, and Bob Bolles,
Programmable Assembly, Three Short
Examples, 16mm color, sound, 8 minutes,
October 1974.

The first segment demonstrates the arm's
ability to dynamically adjust for position and
orientation changes. The task is to mount a
bearing and seal on a crankshaft. Next, the
arm is shown changing tools and recovering
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from a run-time error. Finally, a cinematic
first: two arms cooperating to assemble a
hinge.

12. Brian Harvey, Display Terminals at
Stanford, 16mm B&W, sound, 13 minutes,
May 1975.

Although there are many effective programs to
use display terminals for special graphics
applications, very few general purpose
timesharing systems provide good support for
using display terminals in normal text display
applications. This film shows a session using
the display system at the Stanford Al Lab,
explaining how the display support features in
the Stanford monitor enhance the user’s
control over his job and facilitate the writing
of display-effective user programs.




Appendix C
External Publications

Articles and books by project members

that have appeared since July 1973 are listed

here alphabetically by lead author.
ublications are given in our ten-year report

Earlier

Memo AIM-228] and in diskfile PUBS.OLD
[(BIB.DOC] @SU-AIL The list below is kept
in PUBS (BIB,DOC]) eSU-AI

Agin, Gerald ., Thomas O. Binford,
Computer Description of Curved

Ob jects, Proceedings of the T hird
International Joint Conference on Artificial
Intelligence, Stanford University, August
1973,

Agin, G.J, T.O. Binford; Representation
and Description of Curved Ob jects,
IEEE Transactions on Computers, Voi C-
25, 440, April 1976.

Aiello, Mario, Richard Weyhrauch,
Checking Proofs in the
Metamathematics of First Order Logic,
Adv. Papers of 4th Int. Joint Conference
on Artificial Intelligence, Vol. |, pp. 1-8,
September 1975.

Arnold, R.D., Local Context in Matching
Edges for Stereo Vision, Proc. Image
Understanding Workshop, Boston, May
1978.

Ashcroft, Edward, Zohar Manna, Amir
Pnueli, Decidable Properties of Monodic
Functional Schemas, /. ACM, Vol. 20,
No. 3, pp. 489-499, July 1973.

Ashcroft, Edward, Zohar Manna,
Translating Program Schemas to While-
schemas, SIAM Journal on Computing,
Vol. 4, No. 2, pp. 125-146, June 1975.

Ba jcsy, Ruzena, Computer Description of
Textured Scenes, Proc. Third Int. Joint
Conf. on Artificial Intelligence, Stanford

" U, 1973,

10.

1L

14.

15.

Barstow, David, Elaine Kant, Observations
on the Ineraction between Coding and
Efficiency Knowledge in the PSI
Program Synthesis System, Proc. 2nd
Int. Conf. on Software Engineering, IEEE
Computer Society, Long Beach, California,
October 1976.

Barstow, David, A Knowledge-Based
System for Automatic Program
Construction, Proc. Int. Joint Conf. on
A.l., August 1977.

Biermann, A. W, R.I. Baum, F.E. Petry,
Speeding Up the Synthesis of Programs
from Traces, /EEE Trans. Computers,
February 1975.

Bobrow, Daniel, Terry Winograd, An
Overview of KRL, a Knowledge
Representation Language, /. Cognitive
Science, Vol. 1, No. 1, 1977.

. Bobrow, Dan, Terry Winograd, & KRL

Research Group, Experience with KRL-0:
One Cycle of a Knowledge
Representation Language, Proc. Int.
Joint Conf. on A.l., August 1977.

. Bolles, Rabert C. Verification Vision for

Programmable Assembly, Proc. Int.
Joint Conf. on A.l., August 1977.

Brooks, R., R. Greiner, and T.O. Binford,
A Model-Based Vision System; Proc.
Image Understanding Workshop, Boston,
May 1978.

Cartwright, Robert S, Derek C. Oppen,
Unrestricted Procedure Calls in Hoare's
Logic, Proc. Fifth ACM Symposium on
Principles of Programming Languages,
January 1978.

. Chandra, Ashok, Zohar Manna, On the

Power of Programming Features,
Computer Languages, Vol. 1, No. $, pp.
219-232, September 1975.
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External Publications

17. Chowning, John M., The Synthesis of
Complex Audio Spectra by means of
Frequency Modulation, /. Audio
Engineering Society, September 1973,

18. Clark, Douglas, and Green, C. Cordell, An
Empirical Study of List Structure in
LISP, Communications of the ACM,
Volume 20, Number 2, February 1977,

19. Colby, Kenneth M., Artificial Paranoia: A
Computer Simulation of the Paranoid
Mode, Pergamon Press, N.Y., 1974.

20. Colby, K.M. and Parkison, R.C. Pattern-
matching rules for the Recognition of
Natural Language Dialogue Expressions,
American Journal of Computational
Linguistics, |, September 1974.

21. Dershowitz, Nachum, Zohar Manna, On
Automating Structural Pregramming,
Colloques IRIA on Proving and Improving
Programs, Arc-et-Senans, France, pp. 167-
193, July 1975.

22. Dershowitz, Nachum, Zohar Manna, The
Evolution of Programs: a system for
automatic program modification, /EEE
Trans. Software Eng., Vol 3, No. 5, pp.
377-385, November 1977.

23. Dershowitz, Nachum, Zohar Manna,
Inference Rules for Program Annotation,

Automatic Construction of Algorithims
Engineering, Atlanta, Ga., pp. 158-167,
May 1978.

24. Dobrotin, Boris M., Victor D. Scheinman,
Design of a Computer Controlled
Manipulator for Robot Research, Proc.
Third Int. Joint Conf. on Artificial
Intelligence, Stanford U., 1973.

25. Enea, Horace, Kenneth Mark Colby,
Idiolectic Language-Analysis for
Understanding Doctor-Patient Dialogues,
Proceedings of the T hird International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

26.

21.

28.

29.

30.

3L

32

33.

3.
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Faught, Wiliam S., Affect as Motivation
for Cognitive and Conative Processes,
Adv. Papers of 4th Int. Joint Conference
on Artificial Intelligence, Vol. 2, pp. 893-
899, September 1975.

Feldman, jerome A., James R. Low,
Comment on Brent's Scatter Storage
Algorithm, Comm. ACM, November 1973.

Feldman, Jerome A., Yoram Yakimovsky,
Decision Theory and Artificial
Intelligence: I A Semantics-based
Region Analyzer, Artificial Intelligence
J. Yol 5 No. 4, Winter 1974.

Finkel, Raphael, Russell Taylor, Robert
Bolles, Richard Paul, Jerome Feldman,
An Overview of AL, a Programming
System for Automation, Adv. Papers of
4th int Joi Conference or Artificial

Intellig. "0l. 2, pp. 7158-765,
Septembe
Floyd, Rc uis Steinberg, An

Adaptive Alg orithm for Spatial
Greyscale, Proc. Society for Information
Display, Volume 17, Number 2, pp. 75-77,
Second Quarter 1976.

Fuller, Samuel H., Forest Baskett, An
Analysis of Drum Storage Units, /.
ACM, Vol 22, No. |, January 1975.

Funt, Brian, WHISPER: A Problem-
solving System utilizing Diagrams and a
Parallel Processing Retina, Proc. Int.
Joint Conf. on A.1., August 1977.

Gennery, Don A Stereo Vision Systemn
for an Autonomous Vehicle, Proc. Int.
Joint Conf. on A.1., August 1977.

Gennery, D.B., A Stereo Vision System
for Autonomous Vehicles, Proc. Image
Understanding Workshop, Palo Alto, Oct
1977.

P —
oy v




I — ‘ . | PO _ ‘

70

35. German, Steven, Automating Proofs of

" 36.

10.

41

12.

37.

38.

39.

the Absence of Common Runtime Errors,
Proc. Fifth ACM Symposium on
Principles of Programming Languages,
January 1978,

Goldman, Neil M., Sentence
Paraphrasing from a Conceptual Base,
Comm. ACM, February 1975

Goldman, Ron, Recent Work with the
AL System, Proc. Int. Joint Conf. on
A.l., August 1977,

Green, Cordell, David Barstow, Some
Rules for the Automatic Synthesis of
Programs, Adv. Papers of 4th Int. Joint
Conference on Artificial Intelligence, Vol.
I, pp. 232-239, September 1975.

Green, Cordell, and Barstow, David,
Some Rules for the Automatic Synthesis
of Programs, davance Papers of the
Fourth International Joint Conference on
Artificial Intelligence, Volume 1, Artificial
Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge,
Massachusetts, September 1975, pages 232-
239,

Green, Cordell, The Design of the PSI
Program Synthesis System, Proc. 2nd
Int. Conf. on Software Engineering, IEEE
Computer Society, Long Beach, California,
October 1976.

Green, Cordell, The PSI Program
Synthesis System, 1976, ACM 76
Proceedings of the Annual Conference,
Association for Computing Machinery,
New York, New York, October 1976, pages
74-75.

Green, C. C, and Barstow, D. R, A
Hypothetical Dialogue Exhibiting a
Knowledge Base for a Program
Understanding System, in Elcock, E. W.,
and Michie, D, editors, Machine
Intelligence 8: Machine Representations of

Appendix C

Knowledge, Ellis Horwood, Ltd., and John
Wiley and Sons, Inc, New York, New
York, 1976.

43. Green,C.C, A Summary of the PSI

Program Synthesis System, Proc. Int.
Joint Conf. on A.1., August 1977,

44. Harvey, Brian, Increasing Programmer

Power at Stanford with Display
Terminals, Minutes of the DECsystem~10
Spring-15 DECUS Meeting, Digital
Equipment Computer Users Saciety,
Maynard, Mass., 1975.

45. Hieronymus, ]. L, N. J Miller, A. L.

Samuel, The Amanuensis Speech
Recognition System, Proc. IEEE
Symposium on S peech Recognition, April
1974.

46. Hieronymus, J. L., Pitch Synchronous

Acoustic Segmentation, Proc. |EEE
Symposium on S peech Recognition, April
1974.

47. Hilf, Franklin, Use of Computer

Assistance in Enhancing Dialog Based
Social Welfare, Public Health, and
Educational Services in Developing
Countries, Proc. 2nd Jerusalem Conf. on
Info. Technology, July 1974.

48. Hilf, Franklin, Dynamic Content

Analysis, Archives of General Psychiatry,
January 1975,

49. Hueckel, Manfred H., A Local Visual

Operator which Recognizes Edges and
Lines, /. ACM, October 1973.

50. Igarashi, S, R. L. London, D. C.

Luckham, Automatic Program
Verification I: Logical Basis and its
Implementation, Acta Informatica,, Vol.
4, pp.145-182, March 1975.
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51.

52.

53.

5¢.

55.

56.

517.

58.

59.

Ishida, Tatsuzo, Force Control in
Coordination of Two Arms, Proc. Int.
Joint Conf. on A.1., August 1977.

Kant, Elaine, The Selection of Efficient
Implementations for a High-level
Language, Proc. SIGART-SIGPLAN
Symp. on A.l. & Prog. Lang., August
1977.

Karp, Richard A, David C Luckham,
Verification of Fairness in an
Implementation of Monitors, Proc. 2nd
Intnl. Conf. on Software Engineering, PP.
40-46, October 1976.

Katz, Shmuel, Zohar Manna, A Heuristic
Approach to Program Verification, Proc.
Third Int. Joint Conf. on Artificial
Intelligence, Stanford University, pp. 500-
512, August 1973.

Katz, Shmuel, Zohar Manna, Towards
Automatic Debugging of Programs,
Proc. Int. Conf. on Reliable Software, Los
Angeles, April 1975.

Katz, Shmuel, Zohar Manna, Logical
Analysis of Programs, Comm. ACM, Vol.
19, No. 4, pp. 188-206, April 1976.

Katz, Shmuel, Zohar Manna, A Closer
Look at Termination, Acta Informatica,
Vol. 5, pp. 333-352, April 1977.

Lenat, Douglas B., BEINGS: Knowledge
as Interacting Experts, Adv. Papers of
4th Int. Joint Conference on Artificial
Intelligence, Vol. |, pp. 126-133,
September 1975.

Luckham, David C., Automatic Problem
Solving, Proceedings of the T hird
International Joint Conference on Artificial
Intelligence, Stanford University, August
1973.

60.

1.

62.

63.

64.

65.

66.

67.

68.

69.

71

Luckham, David C., Jack R. Buchanan,
Automatic Generation of Programs
Containing Conditional Statements,

Proc. AISB Summer Conference, U. Sussex,
July 1974.

Luckham, David C., Nori Suzuki, Proof
of Termination within a Weak Logic of
Programs, Acta Informatica, Vol 8, No. 1,
pp- 21-36, March 1977.

Luckham, David C,, Program
Verification and Verification-oriented
Programming, Proc. 1.F.1.P. Congress
77, August 1977,

Manna, Zohar, Program Schemas, in
Currents in the T heory of Computing (A.
V. Aho, Ed)), Prentice-Hall, Englewood
Cliffs, N. ]., 1973,

Manna, Zohar, Stephen Ness, Jean
Vuillemin, Inductive Methods for
Proving Properties of Programs, Comm.
ACM, Vol. 16, No. 8, pp. 491-502, August
1978.

Manna, Zohar, Automatic Programming,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

Manna, Zohar, Mathematical T heory of
Computation, McGraw-Hill, New York,
1974.

Manna, Zohar, Amir Pneuli, Axiomatic
Approach to Total Correctness, Acta
Informatica, Vol. 3, pp. 243-263, 1974.

Manna, Zohar, Richard Waldinger,
Knowledge and Reasoning in Program
Synthesis, Artificial Intelligence, Vol. 6,
pp. 175-208, 1975.

Manna, Zohar, Adi Shamir, The
Theoretical Aspects of the Optimal
Fixpoint, S/AM Journal of Computing,
Vol. 5, No. 3, pp.414-426, September 1976.
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! 0.

| 71,

i 7.

74.

75.

76.

77.

78.

Manna. Zoiar, Richard Waldinger, The
Automatic Synthesis of Recursive
Programs, Proc. SIGART-SIGPLAN
Symp. on A.l. & Prog. Lang., August
1977.

Manna, Zohar, Richard Waldinger, The
Automatic Synthesis of Systems of
Recursive Programs, Proc. Int. Joint
Conf. on A.1., August 1977.

Manna, Zohar, Adi Shamir, The
Optimal-Fixpoint Approach to Recursive
Programs, Comm. ACM, Vol. 20, No. 11,
pp. 824-831, November 1977.

. Manna, Zohar, Richard Waldinger, (eds.),

Studies in Automatic Programming Logic,
American Elsevier, New York, NY, 1977.

Manna, Zobhar, Richard Waldinger, Is
‘Sometime’ sometimes better than
‘Always? Intermittant Assertions in
Proving Program Correctness, Comm.
ACM, Vol. 21, No. 2, pp. 159-172,
February 1978.

Manna, Zohar, Adi Shamir, The
Convergence of Functions to Fixpoints
of Recursive Definitions, T heoretical
Conputer Science J., Vol. 6, pp. 109-141,
March 1978.

Manna, Zohar, Richard Waldinger, The
Logic of Computer Programming, /EEE
Trans. Software Eng., Vol. SE-4, No. 5,
pp. 199-224, May 1978.

Manna, Zohar, Richard Waldinger, The
Synthesis of Structure-changing
Programs, Proc. 3rd Int. Conf. on
Software Eng., Atlanta, GA, May 1978.

Manna, Zohar, Richard Waldinger, The
DEDALUS System, Proc. National
Computer Conf., Anaheim, CA, June
1978.
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79. McCarthy, John, Mechanical Servants
for Mankind, Britannica Y earbook of
Science and the Future, 1973.

Proc. 3rd Int. Conf. on Software

Intelligence: A General Survey by Sir
James Lighthill, Artificial Intelligence, Vol.
5, No. 3, Fall 1974.

81. McCarthy, John, Modeling Our Minds
Science Year 1975, The World Book
Science Annual, Field Enterprises
Educational Corporation, Chicago, 1974.

82. McCarthy, John, Proposed Criterion for
a Cipher to be Probable-word-proof,
Comm. ACM, February 1975.

83. McCarthy, John, An Unreasonable Book,
a review of Computer Power and Human
Reason by Joseph Weizenbaum (W .H.
Freeman and Co, San Francisco, 1976),
SIGART Newsletter 58, June 1976.

8¢. McCarthy, John, Review: Computer Power
and Human Reason, by Joseph
Weizenbaum (W.H. Freeman and Co.,
San Francisco, 1976) in Physics Today,
1977.

85. McCarthy, John, Another
SAMEFRINGE, SIGART Newsletter No.
61, February 1977.

86. McCarthy, John, The Home Information
Terminal, T ke Grolier Encyclopedia, 1977.

87. McCarthy, John, M. Sato, T. Hayashi, S.
Igarashi, On the Model Theory of
Knowledge, Proc. Int. Joint Conf. on
A.l., August 1977.

88. McCarthy, John, Epistemological
Problems of Artificial Intelligence, Proc.
Int. Joint Conf. on A.1., August 1977,

89. McCarthy, John, History of LISP, Proc.
ACM Conf. on History of Programming
Languages, 1978.
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90. McCarthy, John, Representation of
Recursive Programs in First Order Logic,
Proc. Int. Conf. on Mathematical Studies
of Information Processing, Kyoto Japan,
1978.

91. McCarthy, John, Ascribing Mental
Qualities to Machines, Philosophical
Perspectives in Artificial Intelligence,
Martin Ringle (ed.), Humanities Press, to
appear 1978.

92. McCune, Brian, The PSI Program Model
Builder: Synthesis of Very High-level
Programs, Proc. SIGART-SIGPLAN
Symp. on A.l. & Prog. Lang., August
1977.

93. Miller, N. ], Pitch Detection by Data
Reduction, Proc. IEEE Symposium on
Speech Recognition, April 1974.

94. Moore, Robert C., Reasoning about
Knowledge and Action, Proc. Int. Joint
Conf. on A.l., August 1977.

95. Moorer, James A., The Optimum Comb
Method of Pitch Period Analysis of
Continuous Speech, IEEE Trans.
Acoustics, Speech, and Signal Processing,
Vol. ASSP-22, No. 5, October 1974.

96. Moorer, James A., On the Transcription
of Musical Sound by Computer, USA-
JAPAN Computer Conference, August
1975.

97. Morales, Jorge ]., Interactive Theorem
Proving, Proc. ACM National Conference,
August 1973

98. Moravec, Hans, Towards Automatic
Visual Obstacle Avoidance, Proc. Int.
Joint Conf. on A.l., August 1977.

99. Moravec, Hans, A Non-synchronous
Orbital Skyhook, /. Astronautical
Sciences, Vol 26, No. 1, 1978.
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100. Nelson, C. G., Oppen, D. C,, Fast
Decision Algorithms based on UNION
and FIND, Proc. 18th Annual IEEE
Symposium on Foundations of Computer
Science, October 1977.

101. Nelson, C. G., Derek Oppen, A
Simplifier based on Fast Decision
Algorithms, Proc. Fifth ACM Symposium
on Principles of Programming Languages,
January 1978.

102. Nevatia, Ramakant, Thomas O. Binford,
Structured Descriptions of Complex
Ob jects, Proceedings of the T hird
International [oint Conference on Artificial
Intelligence, Stanford University, August
1973.

103. Nevatia, R, T.O. Binford; Structured
Descriptions of Complex Ob jects;
Artificial Intelligence, 1977.

104. Newell, A, Cooper, F. S, Forgie, J. W,
Green, C. C., Klatt, D. H., Medress, M. F.,
Neuburg, E. P, O'Malley, M. H,, Reddy,
D. R, Ritea, B., Shoup, J. E,, Walker, D.
E., and Woods, W. A, Considerations for a
Follow-On ARP A Research Program for
Speech Understanding Systems,
Information Processing Techniques Office,
Advanced Research Projects Agency,
Department of Defense, Arlington,
Virginia, August 1975.

105. Oppen, Derek, S.A. Cook, Proving
Assertions about Programs that
Manipulate Data Structures, Acta
Informatica, Vol. 4, No. 2, pp. 127-144,
1975.

106. Oppen, Derek C., Reasoning about
Recursive Data Structures, Proc. Fifth
ACM Symposium on Principles of
Programming Languages, January 1978.

107. Oppen, Derek C., A Superexponential
Bound on the Complexity of Presburger
Arithwmetic, Journal of Computer and
Systems Sciences, June 1978.
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108. Phillips, Jorge, T. H. Bredt, Design and
Verification of Real-time Systems, Proc.
2nd Int. Conf. on Software Engineering,
IEEE Computer Society, Long Beach,
California, October 1976.

109. Phillips, Jorge, Program Inference from
Traces using Multiple Knowledge
Sources, Prac. Int. Joint Conf. on A.1.,
August 1977,

110. Quam, Lynn, Raobert Tucker, Botond
Eross, ]. Veverka and Carl Sagan,
Mariner 9 Picture Differencing at
Stanford, Sky and Telescape, August 1973,

111, Rubin, Jeff, Computer Communication
via the Dial-up Network, Minutes of the
DECsystem—10 Spring-75 DECUS
Meeting, Digital Equipment Computer
Users Society, Maynard, Mass., 1975.

112. Sagan, Carl, J. Veverka, P. Fox, R.
Dubisch, R. French, P. Gierasch, L. Quam,
J. Lederberg, E. Levinthal, R. Tucker, B.
Eross, ]. Pollack, Variable Features on
Mars 11: Mariner 9 Global Results, /.
Geophys. Res., 78, 4163-4196, 1973

113. Samet, Hanan, Proving the Correctness
of Heuristically Optimized Code, Comm.
ACM, July 1978.

114. Schank, Roger C., Neil Goldman,
Charles J. Rieger 111, Chris Riesbeck,
MARGIE: Memory, Analysis, Response
Generation and Inference on English,
Proceedings of the T hird International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

115. Schank, Roger C., Kenneth Colby (eds),
Computer Models of T hought and
Language, W. H. Freeman, San Francisco,
1973

116. Schank, Roger, The Conceptual
Analysis of Natural Language, in R.
Rustin (ed.), Natural Language Processing,
Algorithmics Press, New York, 1973,
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117. Schank, Roger, Charles ). Rieger 111,
Inference and Computer Understanding
of Natural Language, Artificial
Intelligence ] ., Vol.5, No. 4, Winter 1974.

118. Schank, Roger C., Neil M. Goldman,
Charles J. Rieger 111, Christopher K.
Riesbeck, Interface and Paraphrase by
Computer, /. ACM, Vol 22, No. 3, July
1975.

119. Shaw, David E, Wilhiam R. Swartout, C.
Cordell Green, Inferring LISP Programs
from Examples, Adv. Papers of 4tk Int.
Joint Conference on Artificial Intelligence,
Vol 1, pp. 260-267, September 1975.

120. Shorthffe, Edward H., Davis, Randall,
Axline, Stanton G., Buchanan, Bruce G.,
Green, C. Cordell, and Cohen, Stanley N.,
Computer-Based Consultations in
Clinical Therapeutics: Explanation and
Rule Acquisition Capabilities of the
MYCIN System, Computers and
Biomedical Research, Volume 8, Number 3,
June 1975, pages 303-320.

121. Smith, David Canfield, Horace J. Enea,
Backtracking in MLISP2, Proceedings of
the Third International Joint Conference
on Artificial Intelligence, Stanford
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Appendix D
Abstracts of Recent Reports

Abstracts are given here for Artifical
Intelligence Memos published since 1976. For
earlier years, see our ten-year report (Memo
AIM-228) or diskfile AIMS.OLD [BIB,DOC]
@SU-AL The abstracts below are kept in
diskfile AIMS [BIB,DOC) eSU-Al and the
titles of both earlier and more recent A. I
Memos are in AIMLST[BIB,DOC]) eSU-AL

In the listing below, there are up to three
numbers given for each report: an "AIM"
number on the left, a "CS" (Computer Science)
number in the middle, and a NTIS stock
number (often beginning "AD..") on the right.
Special symbols preceding the "AIM" number
indicate availability at this writing, as follows:
+ hard copy or microfiche,
e microfiche only,
x out-of-stock.
If there is no special symbol, then it is
available in hard copy only. Reports that are
in stock may be requested from:
Documentation Services
A rtificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Rising costs and restrictions on the use of
research funds for printing reports have made
it necessary to charge for reports at their
replacement cost. By doing so, we will be able
to reprint popular reports rather than simply
declaring them “out of print".

Alternate Sources

Alternatively, reports may be ordered (for a
nominal fee) in either hard copy or microfiche
from:

National Technical Information Service

P. O. Box 1553

Springfield, Virginia 22161

If there is no NTIS number given, then they
may or may not have the report. In
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requesting copies in this case, give them both
the "AIM-" and "CS-nnn" numbers, with the
latter enlarged into the form "STAN-CS-yy-
nnn", where “yy" 1s the last two digits of the
year of publication.

Memos that are also Ph.D. theses are so
marked below and may be ordered from:
University Microfilm
P. O. Box 1346
Ann Arbor, Michigan 48106

For people with access to the ARPA Network,
the texts of some A. 1. Memos are stored
online in the Stanford A. I. Laboratory disk
file. These are designated below by "Diskfile:
<file name>" appearing in the header.

e AIM-277 CS-542 ADA027454
Zohar Manna, Adi Shamir,

The Theoretical Aspects of the Optimal
Fixedpoint,

24 pages, March 1976.

In this paper we define a new type of
fixedpoint of recursive definitions and
investigate some of its properties. This
optimal fixedpoint (which always uniquely
exists) contains, in some sense, the maximal
amount of "interesting” information which can
be extracted from the recursive definition, and
it may be strictly more defined than the
program's least fixedpoint. This fixedpoint
can be the basis for assigning a new semantics
to recursive programs.

+ AIM-278 CS-549 ADA 027455
David Luckham, Norihisa Suzuki,

Automatic Program Verification V:
Verification-Oriented Proof Rules for
Arrays, Records and Pointers,

48 pages, March 1976. Cost: $3.05

A practical method i1s presented for
automating in a uniform way the verification
of Pascal programs that operate on the
standard Pascal data structures ARRAY,
RECORD, and POINTER. New assertion
language primitives are introduced for
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describing computational effects of operations
on these data structures. Axioms defining the
semantics of the new primitives are given.
Proof rules for standard Pascal operations on
pointer variables are then defined in terms of
the extended assertion language. Similar rules
for records and arrays are special cases. An
extensible axiomatic rule for the Pascal
memory allocation operation, NEW, is also
given.

These rules have been implemented in the
Stanford Pascal program verifier. Examples
illustrating the verification, of programs which
operate on [ist structures implemented with
pointers and records are discussed. These
include programs with side-effects.

® AIM-279 CS-552

Norihsa Suzuki,

Automatic Verification of Programs with
Complex Data Structures,

T hesis: Ph.D. in Computer Science,

194 pages, February 1976.

The problem of checking whether programs
work correctly or not has been troubling
programmers since the earliest days of
computing. Studies have been conducted to
formally define semantics of programming
languages and derive proof rules for
correctness of programs.

Some experimental systems have been built to
mechanically verify programs based on these
proof rules. However, these systems are yet
far from attacking real programs in a real
environment. Many problems covering the
ranges from theory to artificial intelligence
and programming languages must be solved in
order to make program verification a practical
tool. First, we must be able to verify a
complete practical programming language.
One of the important features of real
programming languages which is not treated
in early experimental systems is complex data
structures. Next, we have to study
specification methods. In order to verify
programs we have to express what we intend
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to do by the programs. In many cases we are
not sure what we want to verify and how we
should express them. These specification
methods are not independent of the proof
rules. Third, we have to construct an efficient
prover so that we can interact with the
verification process. It is expected that
repeated verification attempts will be necessary
because programs and specifications may have
errors at first try. So the time to complete one
verification attempt is very important in real
environment.

We have chosen Pascal as the target language.
The semantics and proof rules are studied by
Hoare & Wirth and Igarashi, London &
Luckham. However, they have not treated
complex data structures obtained from arrays,
records, and pointers. In order to express the
state of the data structures concisely and
express the effects of statements we introduced
special assertion language primitives and new
proof rules. We defined new methods of
introducing functions and predicates to write
assertions so that we can express simplification
rules and proof search strategies. We
introduced a special language to document
properties of these functions and predicates.
These methods enable users to express
assertions in natural ways so that verification
becomes easier. The theorem prover is
constructed so that it will be efficient for
proving a type of formulas which appear very
often as verification conditions.

We have successfully verified many programs.
Using our new proof rules and specification
methods we have proved properties of sorting
programs such as permutation and stability
which have been thought to be hard to prove.
We see no theoretical as well as practical
problems in verifying sorting programs. We
have also verified programs which manipulate
pointers. These programs change their data
structures so that usually verification
conditions tend to be complex and hard to
read. Some study about the complexity
problem seems necessary.
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The verifier has been used extensively by
various users, and probably the most widely
used verifier implemented so far. There is yet
a great deal of research necessary in order to
fill the gap between the current verifier and
the standard programming tools like editors
and compilers.

This dissertation was submitted to the

Department of Computer Science and the
January 1974.

University in partial fulfillment of the

requirements for the degree of Doctor of

Philosophy.

+ AIM-280 CS-555

David D. Grossman,

Monte Carlo Simulation of Tolerancing in
Discrete Parts Manufacturing and Assembly,
25 pages, May 1976. Cost: $2.40

The assembly of discrete parts is strongly
affected by imprecise components, imperfect
fixtures and tools, and inexact measuremets.
It is often necessary to design higher precision
into the manufacturing and assembly process
than is functionally needed in the final
product. Production engineers must trade off
between  alternative ways of selecting
individual tolerances in order to achieve
minimum cost, while preserving product
integrity. This  paper  describes  a
comprehensive Monte Carlo method for
systematically  analysing  the  stochastic
implications of tolerancing and related forms
of imprecision. The method is illustrated by
four examples, one of which is chosen from
the field of assembly by computer controlled
manipulators.

+ AIM-281.1 CS-558 AD-A042 507
Zohar Manna, Richard Waldinger,

Is ‘sometime’ sometimes better than ‘always?
Intermittent assertions in proving program
correctness,

41 pages, June 1976, revised March 1977,
Cost: $285

T his paper explores a technique for proving
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the correctness and termination of programs
simultaneously. This approach, which we call
the [intermittent])-(assertion method), involves
documenting the program with assertions that
must be true at some time when control is
passing through the corresponding point, but
that need not be true every time. The
method, introduced by Knuth and further
developed by Burstall, promises to provide a
valuable complement to the more conventional
methods.

We first introduce and illustrate the technique
with a number of examples. We then show
that a correctness proof using the invariant
assertion method or the subgoal induction
method can always be expressed using
intermittent assertions instead, but that the
reverse 1S not always the case. The method
can aiso be used just to prove termination,
and any proof of termination wusing the
conventional well-founded sets approach can
be rephrased as a proof using intermittent
assertions. Finally, we show how the method
can be applied to prove the validity of
program transformations and the correctness
of continuously operating programs.

This is a revised and simplified version of a
pevious paper with the same title (AIM-281,
June 1976).

+ AIM-282 CS-560

Russell Taylor,

Synthesis of Manipulator Control Programs
from Task-level Specifications,

Thesis: Ph.D. in Computer Science,

229 pages, July 1976. Cost: §8.10

This research 1s directed towards automatic
generation of manipulator control programs
from task-level specifications. The central
assumption is that much manipulator-level
coding is a process of adapting known
program constructs to particular tasks, in
which coding decisions are made by well-
defined computations based on planning
information. For manipulator programming,
the principal elements of planning information

—




80

are: (l) descriptive information about the
objects being manipulated; (2) situational
information describing the execution-time
environment; and (3) action information
defining the task and the semantics of the
execution-time environment.

A standard subtask in mechanical assembly,
insertion of a pin into a hole, is used to focus
the technical issues of automating manipulator
coding decisions. This task is first analyzed
from the point of view of a human
programmer writing in the target language,
AL, to identify the specific coding decisions
required and the planning information
required to make them. Then, techniques for
representing  this  information in a
computationally useful form are developed.
Ob jects are described by attribute graphs, in
which the nodes contain shape information,
the links contain structural information, and
properties of the links contain location
information. Techniques are developed for
representing ob ject locations by parameterized
mathematical expressions in which free scalar
variables correspond to degrees of freedom
and for deriving such descriptions from

symbolic relations between object features. -

Constraints linking the remaining degrees of
freedom are derived and used to predict
maximum variations. Differential
approximations are used to predict errors in
location values. Finally, procedures are
developed  which use this planning
information  to  generate AL  code
automatically.

The AL system itself performs a number of
coding functions not normally found in
algebraic compilers. These functions and the
planning information required to support
them are also discussed.

® AIM-283 CS-552

Randall Davis,

Applications of Meta Level Knowledge to
the Construction, Maintenance and Use of
Large Knowledge Bases,

T hesis: Ph.D. in Computer Science,

304 pages, July 1976.
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The creation and management of large
knowledge bases has become a central problem
of artificial intelligence research as a result of
two recent trends: an emphasis on the use of
large stores of domain specific knowledge as a
base for high performance programs, and a
concentration on problems taken from real
world settings. Both of these mean an
emphasis on the accumulation and
management of large collections of knowledge,
and in many systems embodying these trends
much time has been spent on building and
maintaining such knowledge bases. Yet there
has been little discussion or analysis of the
concomitant problems. This thesis attempts to
define some of the issues involved, and
explores steps taken toward solving a number
of the problems encountered. It describes the
organization, implementation, and operation
of a program called TEIRESIAS, designed to
make possible the interactive transfer of
expertise from a human expert to the
knowledge base of a high performance
program, in a dialog conducted in a restricted
subset of natural language.

The two major goals set were (i) to make it
possible for an expert in the domain of
application to ‘“educate” the performance
program directly, and (i{) to ease the task of
assembling and maintaining large amounts of
knowledge.

The central theme of this work is the
exploration and use of what we have labelled
meta level knowledge. This takes several
different forms as its use is explored, but can
be summed up generally as "knowing what
you know". It makes possible a system which
has both the capacity to use its knowledge
directly, and the ability to examine it, abstract
it, and direct its application.

We report here on the full extent of the
capabilities it makes possible, and document
cases where its lack has resulted in significant
difficulties. Chapter 3 describes efforts to
enable a program to explain its actions, by
giving it a model of its control structure and
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an understanding of its representations.
Chapter 5 documents the use of abstracted
models of knowledge (rule models) as a guide
to acquisition. Chapter 6 demonstrates the
utility of describing to a program the structure
of its representations (using data structure
schemata). Chapter 7 describes the use of
strategies in the form of meta rules, which
contain  knowledge about the wuse of
knowledge.

e AIM-284 CS-567

Rafael Finkel,

Constructing and Debugging Manipulator
Programs,

T hesis: Ph.D. in Computer Science,

171 pages pages, August 1976.

This thesis presents results of work done at
the Stanford Artificial Intelligence Laboratory
in the field of robotics. The goal of the work
is to program mechanical manipulators to
accomplish a range of tasks, especially those
found in the context of automated assembly.
The thesis has three chapters describing
significant work in this domain. The first
chapter is a textbook that lays a theoretical
framework for the principal issues involved in
computer control of manipulators, including
types of manipulators, specification of
destinations, trajectory specification and
planning, methods of interpolation, force
feedback, force application, adaptive control,
collision avoidance, and simultaneous control
of several manipulators. The second chapter
is an implementation manual for the AL
manipulator programming language. The
goals of the language are discussed, the
language is defined, the compiler described,
and the execution environment detailed. The
language has special facilities for condition
monitoring, data types that represent
coordinate systems, and affixment structures
that allow coordinate systems to be linked
together. Programmable side effects play a
large role in the implementation of these
features. This chapter closes with a detailed
programming example that displays how the
constructs of the language assist in
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formulating and encoding the manipulation
task. The third chapter discusses the
problems involved in programming in the AL
language, including program preparation,
compilation, and especially debugging. A
debugger, ALAID, is designed to make use of
the complex environment of AL. Provision is
made to take advantage of the multiple-
pracessor, multiple-process, real-time,
interactive nature of the problem. The
principal conclusion is that the debugger can
fruitfully act as a uniform supervisor for the
entire process of program preparation and as
the means of communication between
cooperating processors.

@ AIM-285 CS-568 PB-259 130/3WC
T. O. Binford, D. D. Grossman, C. R. Lui, R.
C. Bolles, R. A. Finkel, M. S. Mu jtaba, M. D.
Roderick, B. E. Shimano, R. H. Taylor, R. H.
Goldman, J. P. Jarvis, V. D. Scheinman, T. A.
Gafford,

Exploratory Study of Computer Integrated
Assembly Systems, Progress Report 3,

336 pages, August 1976.

The Computer Integrated Assembly Systems
project is concerned with developing the
software  technology of  programmable
assembly  devices, including  computer
controlled manipulators and vision systems. A
complete  hardware system has  been
implemented that includes manipulators with
tactile sensors and TV cameras, tools, fixtures,
and  auxiliary devices, a  dedicated
minicomputer, and a time-shared large

Committee on Graduate Studies of Stanford

terminals. An advanced software system call
AL has been developed that can be used to
program assembly applications. Research
currently underway includes refinement of AL,
development of improved languages and
interactive  programming  techniques for
assembly and vision, extension of computer
vision to areas which are currently infeasible,
geometric modeling of objects and constraints,
assembly simulation, control algorithms, and
adaptive methods of calibration.
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+ AIM-285.4 CS-568 PB-259 130/3WC
T. O. Binford, C. R. Lui, G. Gini, M. Gini, L.
Glaser, T. Ishida, M. S. Mu jtaba, E. Nakano,
H. Nabavi, E. Panofsky, B. E. Shimano, R.
Goldman, V. D. Scheinman, D. Schmelling, T.
A. Gafford,

Exploratory Study of Computer Integrated
Assembly Systems, Progress Report 4,

255 pages, June 1977. Cost: $8.85

The Computer Integrated Assembly Systems
project is concerned with developing the
software  technology of  programmable
assembly devices. A primary part of the
research has been designing and building the
AL language for assembly. A first level
version of AL is now implemented and
debugged, with user interfaces. Some of the
steps involved in completing the system are
described. The AL parser has been completed
and is documented in this report. A
preliminary interface with vision s in
operation. Several hardware projects to
support software development have been
completed. One of the two Stanford arms has
been rebuilt. An electronic interface for the
other arm has been completed. Progress on
other hardware aspects of the AL systems is
reported.

Several extensions to AL are described. A
new interactive program for building models
by teaching is running and undergoing
further deveiopment. Algorithms for force
compliance have been derived; a software
system for force compliance has been
implemented and is running in the AL
runtime system. New algorithms have been
derived for cooperative manipulation using
two manipulators. Preliminary results are
described for parth calculation; these results
are steps along the way to a runtime path
calculator which will be important in making
an export version of AL.

Results are described in analysis of several
complex assemblies. These results show that
two manipulators are necessary in a significant
fraction of assembly operations.
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Studies are described which focus on making
AL meet the realities of industrial research
and production use. Results of a questionaire
of leading industrial and research laboratores
are presented. A summary is presented of the
Workshop on Softwre for Assembly, held
immediately  before the NSF-RANN
Conference at IITRI, Nov. 1976.

e AIM-286 Cs-570

Douglas Lenat,

AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic
Search,

Thesis: Ph.D. in Computer Science,

350 pages, July 1976.

A program, called "AM", is described which
models one aspect of elementary mathematics
research: developing new concepts under the
guidance of a large body of heuristic rules.
"Mathematics” is considered as a type of
intelligent behavior, not as a finished product.

+ AIM-287 Cs-571

Michael Roderick,

Discrete Control of a Robot Arm,

Thesis: Engineer in Electrical Engineering,
98 pages, August 1976. Cost: $4.45

The primary goal of this thesis was to
determine the feasibility of operating the
Stanford robot arm and reduce sample rates.
A secondary goal was to reduce the effects of
variations in inertia and sampling rates on the
control system's stability.

A discrete arm model was initially developed
to illustrate the effects of inertia and sampling
rate variations on the present control system.
Modifications were then suggested for
reducing these effects. Finally, a method was
demonstrated for reducing the arm sampling
rate from its present value of 60 hertz to
approximately 45 hertz without significantly
effecting the arms performance.
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+ AIM-288 CS-572

Robert Filman, Richard Weyhrauch,
An FOL Primer,

36 pages, September 1976. Cost: $2.70

This primer is an introduction to FOL, an
interactive proof checker for first order logic.
Its examples can be used to learn the FOL
system, or read independently for a flavor of
our style of interactive proof checking.
Several example proofs are presented,
successively increasing in the complexity of the
FOL commands employed.

FOL runs on the computer at the Stanford
Artficial Intelligence Laboratory. It can be
used over the ARPA net after arrangements
have been made with Richard Weyhrauch
(network address RWWeSU-A]).

+ AIM-289 CS-574

John Reiser (ed)),

SAIL,

178 pages, August 1976. Cost: $6.70

SAIL is a high-level programming language
for the PDP-10 computer. It includes an
extended ALGOL 60 compiler and a
companion set of execution-time routines. In
addition to ALGOL, the language features: (1)
flexible linking to hand-coded machine
language algorithms, (2) complete access to the
PDP-10 1/O facilities, (3) a complete system of
compile-time arithmetic and logic as well as a
flexible macro system, (4) a high-level
debugger, (5) records and references, (6) sets
and lists, (7) an associative data structure, (8)
independent processes, (9) procedure variables,
(10) user modifiable error handling, (11)
backtracking, and (12) interrupt facilities.

This manual describes the SAIL language and
the execution-time routines for the typical
SAIL user: a non-novice programmer with
some knowledge of ALGOL. It lies
somewhere between being a tutorial and a
reference manual.
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+ AIM-290 CS-575 AD-A042 494
Nancy W. Smith,

SAIL Tutorial,

54 pages, November 1976. Cost: $3.20

This TUTORIAL 1s designed for a beginning
user of Sail, an ALGOL-like language for the
PDPI0. The first part covers the basic
statements and expressions of the language;
remaining topics include macros, records,
conditional compilation, and input/output.
Detailed examples of Sail programming are
included throughout, and only a minimum of
programming background is assumed.

e AIM-291 CS$-577 AO44713
Bruce Buchanan, Joshua Lederberg, John
McCarthy,

Three Reviews of |. Weizenbaum's

Computer Power and Human Reason,

28 pages, November 1976.

Three reviews of Joseph Weizenbaum's
Computer Power and Human Reason (W.H.
Freeman and Co., San Francisco, 1976) are
reprinted from other sources. A reply by
Weizenbaum to McCarthy's review is also
reprinted.

+ AIM-292 CS-580

Terry Winograd,

Towards a Procedural Understanding of
Semantics,

30 pages, October 1976. Cost: $2.55

The term “procedural semantics" has been
used in a variety of ways, not all compatible,
and not all comprehensible. In this paper, I
have chosen to apply the term to a broad
paradigm for studying semantics (and in fact,
all of linguistics) This paradigm has
developed in a context of writing computer
programs which use natural language, but it is
not a theory of computer programs or
programming techniques. It is “procedural”
because it looks at the underlying structure of
language as fundamentally shaped by the
nature of processes for language production
and comprehension. It is based on the belief
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that there is a level of explanation at which
there are significant similarities between the
psychological processes of human language use
and the computational processes in computer
programs we can construct and study. Its goal
is to develop a body of theory at this level.
This approach necessitates abandoning or
modifying several currently accepted doctrines,
including the way in which distinctions have
been drawn between “semantics" and
“pragmatics” and between "performance” and
“competence”.

The paper has three major sections. It first
lays out the paradigm assumptions which
guide the enterprise, and elaborates a model of
cognitive processing and language use. It then
illustrates how some specific semantic
problems might be approached from a
procedural perspective, and contrasts the
procedural approach with formal structural
and truth conditional approaches. Finally, it
discusses the goals of linguistic theory and the
nature of the linguistic explanation.

Much of waht is presented here is a
speculation about the nature of a pradigm yet
to be developed. This paper is an attempt to
be evocative rather than definitive; to convey
intuitions rather than to formulate crucial
arguments which justify this approach over
others. It will be successful if it suggests some
ways of looking at language which lead to
further understanding.

® ATM-293 CS-581 AD-A042 508
Daniel Bobrow, Terry Winograd,

An Overview of KRL,

40 pages, November 1976.

This paper describes KRL, a Knowledge
Representation Language designed for use in
understander systems. It outlines both the
general concepts which underlie our research
and the details of KRL-0, an experimental
implementation of some of these concepts.
KRL is an attempt to integrate procedural
knowledge with a broad base of declarative
forms. These forms provide a variety of ways
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to express the logical structure of the
knowledge, in order to give flexibility in
associating  procedures (for memory and
reasoning) with specific pieces of knowledge,
and to control the relative accessibility of
different  facts and descriptions.  The
formalism for declarative knowledge is based
on structured conceptual objects with associated
descriptions. These ob jects form a network of
memory units with several different sorts of
linkages,  each having  well-specified
implications  for the retrieval process.
Procedures can be associated directly with the
internal structure of a conceptual object. This
procedural attachment allows the steps for a
particular operation to be determined by
characteristics of the specific entities involved.

The control structure of KRL is based on the
belief that the next generation of intelligent
programs will integrate data-directed and
goal-directed processing by using multi-
processing. It provides for a priority-ordered
multi-process agenda with explicit (user-
computer equipped with graphic display
resource allocation. It provides procedure
directories which operate along with process
frameworks to allow procedural
parameterization of the fundamental system
processes for building, comparing, and
retrieving  memory  structures. Future
development of KRL will include integrating
procedure definition with the descriptive
formalism.

+ AIM-294 Cs-586 AD-A042 516
Nachum Dershowitz, Zohar Manna,

The Evolution of Programs: A System for
Automatic Program Modification,

45 pages, December 1976. Cost: $2.95

An attempt is made to formulate techniques of
program modification, whereby a program
that achieves one result can be transformed
into a new program that uses the same
principles to achieve a different goal. For
example, a program that uses the binary
search paradigm to calculate the square-root
of a number may be modified to divide two
numbers in a similar manner, or vice versa.
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Program debugging is considered as a special
case of modification: if a program computes
wrong results, it must be modified to achieve
the intended results. the application of
abstract program schemata to concrete
problems is also viewed from the perspective
of modification techniques.

We have embedded this approach in a
running implementation; our methods are
illustrated with several examples that have
been performed by it.

+ AIM-295 CS-591

Robert C. Bolles,

Verification Vision Within a Programmable
Assembly System,

T hesis: Ph.D. in Computer Science,

245 pages, December 1976. Cost: $8.55

The long-range goal of this research is to
simplify visual information processing by
computer. The research reported in this thesis
concentrates on a subclass of visual
information  processing referred to as
verification vision (abbreviated VV). VV
includes a significant portion of the visual
feedback tasks required within programmable
assembly. There are several types of
information available in VV tasks that can
facilitate the solution of such tasks. The main
question addressed in this thesis is how to use
all of this information to perform the task
efficiently. Two steps are involved in
answering this question: (1) formalize the types
of tasks, available information, and quantities
of interest and (2) formulate combination rules
that use the available information to estimate
the quantities of interest.

The combination rules that estimate
confidences are based upon Bayes' theorem.
They are general enough to handle operators
that are not completely reliable, i.e, operators
that may find any one of several features or a
surprise. The combination rules that estimate
precisions are based upon a least-squares
technique. They use the expected precisions
of the operators to check the structural
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consistency of a set of matches and to estimate
the resulting precisions about the points of
interest. An interactive VV system based
upon these ideas has been implemented. It
makes it possible for a person who is not an
expert in vision research to program visual
feedback tasks. This system helps the
programmer  select potentially useful
operator/feature pairs, provides a training
session to gather statistics on the behavior of
the operators, automaticaily ranks the
operator/feature pairs according to their
expected contributions, and performs the
desired task. The VV system has also been
interfaced to the AL control system for the
mechanical arms and has been tested on tasks
that involve a combination of touch, force,
and visual feedback.

+ AIM-296 CS-592

Robert Cartwright,

Practical Formal Semantic Definition and
Verification Systems,

Thesis: Ph.D. in Computer Science,

158 pages, December 1976. Cost: $6.15

Despite the fact that computer scientists have
developed a variety of formal methods for
proving computer programs correct, the formal
verification of a non-trivial program is still a
formidable task. Moreover, the notion of
proof is so imprecise in most existing
verification systems, that the validity of the
proofs generated is open to question. With an
aim toward rectifying these .problems, the
research discussed in this dissertation attempts
to accomplish the following ob jectives:

l. To develop a programming language
which is sufficiently powerful to express many
interesting algorithms clearly and succintly, yet
simple enough to have a tractable formal
semantic definition.

2. To completely specify both proof theoretic
and mode) theoretic formal semantics for this
language using the simplest possible
abstractions.

decas b a
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3. To develop an interactive o9rogram
verification system for the language which
automatically performs as many of the
straightforward steps in a verification as
possible. -[continued next page] .univ .next

page

The first part of the dissertation decribes the
motivation for creating TYPED LISP, a
variant of PURE LISP including a flexible
data type definition facility allowing the
programmer to create arbitrary recursive types.
It is argued that a powerful data type
definition facility not only simplifies the task
of writing programs, but reduces the
complexity of the complementary task of
verifying those programs.

The second part of the thesis formally defines
the semantics of TYPED LISP. Every
function symbol defined in a program P is
identified with a function symbol in a first
order predicate calculus language Lp. Both a
standard model Mp and a natural deduction
system Np are defined for the language Lp.
In the standard model, each function symbol is
interpreted by the least call-by~value fixed-
point of its defining equation. An informal
meta-mathematical proof of the consistency of
the model Mp and the deductive system Np is
given.

The final part of the dissertation describes an
interactive verification system implementing
the natural deduction system Np.

The verification system includes:

I. A subgoaler which applies rules specified
by the user to reduce the proof of the current
goal (or theorem) to the proof of one or more
subgoals.

2. A powerful simplifier which automatically
proves many non-trivial goals by utilizing
user-supplied lemmas as well as the rules of
Np.

With a modest amount of user guidance, the
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verification system has proved a number of
interesting, non-trivial theorems including the
total correctness of an algorithm which sorts
by successive merging, the total correctness of
the  McCarthy-Painter compiler for
expressions, the termination of a unification
algorithm and the equivalence of an iterative
algorithm and a recursive algorithm for
counting the leafs of a tree. Several of these
proofs are included in an appendix.

e AIM-297 C$-610

Terry Winograd,

A Framework for Understanding Discourse,
24 pages, April 1977.

There is a great deal of excitement in
linguistics, cognitive psychology, and artificial
intelligence today about the potential of
understanding discourse. Researchers are
studying a group of problems in natural
language which have been largely ignored or
finessed in the mainstream of language
research over the past fifteen years. They are
looking into a wide variety of phenomena,
and although results and observations are
scattered, it is apparent that there are many
interrelationships. While the field s not yet at
a stage where it is possible to lay out a precise
unifying theory, this paper attempts to provide
a beginning framework for studying discourse.
Its main goal is to establish a general context
and give a feeling for the problems through
examples and references. Its four sections
attempt to:

Delimit the range of problems covered by
the term “discourse.”

Characterize the basic structure of natural
language based on a notion of
communication.

Propose a general approach to formalisms
for describing the phenomena and building
theories about them

Lay out an outline of the different schemas
involved in generating and comprehending
language
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® AIM-298 Cs-611
Zohar Manna, Richard Waldinger,
The Logic of Computer Programming,
90 pages, June 1977.

Techniques derived from mathematical logic
promise to provide an alternative to the
conventional methodology for constructing,
debugging, and  optimizing  computer
programs. Ultimately, these techniques are
intended to lead to the automation of many of
the facets of the programming process.

In this paper, we provide a unified tutorial
exposition of the logical techniques,
illustrating each with examples. We assess the
strengths and limitations of each technique as
a practical programming aid and report on
attempts to implement these methods in
experimental systems.

+ AIM-299 Cs-614 ADA 049760
Zohar Manna, Adi Shamir,

The Convergence of Functions to p
Fixedpoints of Recursive Definitions,

45 pages, May 1977. Cost: $2.95

The classical method for constructing the least
fixedpoint of a recursive definition is to
generate a sequence of functions whose initial
element is the totally undefined function and
which converges to the desired least
fixedpoint. This method, due to Kleene,
cannot be generalized to allow the construction
of other fixedpoints.

In this paper we present an alternate
definition of convergence and a new
[fixedpoint access] method of generating
sequences of functions for a given recursive
definition. The initial function of the
sequence can be an arbitrary function, and the
sequence will always converge to a fixedpoint
that is "close” to the initial function. This
defines a monotonic mapping from the set of
partial functions onto the set of all fixedpoints
of the given recursive definition.

ADA 046703
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e AIM-300
Terry Winograd,
On some Contested Suppositions of
Generative Linguistics about the Scientific
Study of Language,

25 pages, May 1977.

Cs-617

This paper is a response to a recently
published paper which asserts that current
work in artificial intelligence is not relevant to
the development of theories of language. The
authors of that paper declare that workers in
Al have misconstrued what the goals of an
provided) strategies for scheduling and

that there is no reason to believe that the
development of programs which could
understand language in some domain could
contribute to the development of such theories.
This paper concentrates on the assumptions
underlying their view of science and language.
It draws on the nection of “scientific
paradigms” as elaborated by Thomas Kuhn,
pointing out the ways in which views of what
a science should be are shaped by unprovable
assumptions. It contrasts the procedural
paradigm (within which artificial intelligence
research is based) to the currently dominant
paradigm typified by the work of Chomsky.
It describes the ways in which research in
artificial intelligence ~ will increase our
understanding of human language, and
through an analogy with biology, raises some
questions about the plausibility of the
Chomskian view of language and the science
of linguistics.

+ AIM-301 CS-624
Lester Earnest, et. al,,
Recent Research in Computer Science,
118 pages, June 1977. Cost: $5.00

ADA 044231

This report summarizes recent
accomplishments in six related areas: (1) basic
Al research and formal reasoning, (2) image
understanding, (3) mathematical theory of
computation, (4) program verification, (5)
natural language understanding, and (6)
knowledge based programming.




s

Lht aciad.,

88

+ AIM-302 CS-630 ADA049761
Zohar Manna, Richard Waldinger
Synthesis: Dreams => Programs,

119 pages, October 1977. Cost: $5.05

Deductive techniques are presented for
deriving programs systematically from given
specifications. The specifications express the
purpose of the desired program without
giving any hint of the algorithm to be
employed. The basic approach is to transform
the specifications repeatedly according to
certain rules, until a satisfactory program is
produced. The rules are guided by a number
of strategic controls. These techniques have
been incorporated in a running program
synthesis system, called DEDALUS.

Many of the transformation rules represent
knowlede about the program’s sub ject domain
(e.g. numbers, lists, sets), some represent the
meaning of the constructs of the specification
language and the target programming
language; and a few rules represent basic
programming principles. Two of these
principles, the conditional-formation rule and
the recursion-formation rule, account for the
introduction of conditional expressions and of
recursive calls into the synthesized program.
The termination of the program is ensured as
new recursive calls are formed.

Two extensions of the recursion-formation
rule are discussed: a procedure-formation rule,
which admits the introduction of auxilliary
subroutines in the course of the synthesis
process, and a generalization rule, which
causes the specifications to be extended to
represent a more general problem that is
nevertheless easier to solve.

The techniques of this paper are illustrated
with a sequence of examples of increasing
complexity; programs are constructed for list
processing, numerical computation, and
sorting. These techniques are compared with
the methods of "structured programming”, and
with recent work on “program transformation”.
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The DEDALUS system accepts specifications
expressed in a high-level language, including
set notation, logical quantification, and a rich
vocabulary drawn from a variety of sub ject
domains. The system attempts to transform
the specifications into a recursive, LISP-like
target program. Qver one hundred rules have
been implemented, each expressed as a small
program in the QLISP language.

e AIM-303 CS-631 ADA 050806
Nachum Dershowitz, Zohar Manna,

Inference Rules for Program Annotation,

46 pages, October 1977.

Methods are presented whereby an Algol-like
program, given together with its specifications,
may be documented automatically. This
documentation expresses invariant
relationships that hold between program
variables at intermediate points in the
program, and explains the actual workings of
the program regardless of whether the
program is correct. Thus this documentation
can be used for proving the correctness of the
program, or may serve as an aid in the
debugging of an incorrect program.

The annotation techniques are formulated as
Hoare-like inference rules which derive
invariants from the assignment statements,
from the control structure of the program, or,
heuristically, from suggested invariants. The
application of these rules is demonstrated by
two examples which have run on our
implemented system.

+ AIM-304 CS-632

Todd Wagner,

Hardware Verification,

Thesis: PAD in Computer Science,
102 pages, September 1977. Cost: $4.55

ADA 048684

Methods for detecting logical errors in
computer hardware designs using symbolic
manipulation instead of digital simulation are
discussed. A non-procedural register transfer
language is proposed that is suitable for
describing how a digital circuit should
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perform. This language can also be used to
describe each of the components used in the
design. Transformations are presented which
should enable the designer to either prove or
disprove that the set of interconnected
components correctly satisfy the specifications
for the overall system.

The problem of detecting timing anomalies
such as races, hazards, and oscillations is
addressed. Also explored are some interesting
relationships  between the problems of
hardware verification and  program
verification. Finally, the results of using an
existing proof checking program on some
digital circuits are presented. Although the
theorem proving approach is not very efficient
for simple circuits, it becomes increasingly
attractive as circuits become more complex.
This is because the theorem proving approach
can use complicated companent specifications
without reducing them to the gate level.

+ AIM-305 Cs-633 ADA 048660
William Faught,

Motivation and Intensionality in a
Computer Simulation Model,

T hesis: Ph.D. in Computer Science,

104 pages, September 1977. Cost: $4.60

This dissertation describes a computer
simulation model of paranoia. The model
mimics the behavior of a patient participating
in a psychiatric interview by answering
questions, introducing its own topics, and
responding  to  negatively-valued (eg.,
threatening or shame-producing) situations.

The focus of this work is on the motivational
mechanisms required to instigate and direct
the modelled behavior.

The ma jor components of the model are:

(1) A production system (PS) formalism
accounting for the instigation and guidance
of behavior as a function of irternal
(affective) and  external (real-world)
environmental factors. Each rule in the PS
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is either an action pattern (AP) or an
interpretation pattern (IP). Both may have
either affect (emotion) conditions, external
variables, or outputs of other patterns as
their initial conditions (left-hand sides).
The PS activates all rules whose left-hand
sides are true, selects the one with the
highest affect, and performs the action
specified by the right-hand side.

(2) A model of affects (emotions) as an
anticipation mechanism based on a small
number of basic pain-pleasure factors.
Primary activation (raising an affect’s
strength) occurs  when the particular
condition for the affect is anticipated (e.g.,
anticipation of pain for the fear affect).
Secondary activation occurs when an
internal construct (AP, IP, belief) is used
and its associated affect is processed.

(3) A formalism for intensional behavior
(directed by internal models) requiring a
dual representation of symbol and concept.
An intensional object (belief) can be
accessed either by sensing it in the
environment (concept) or by its name
(token). Similarly, an intensional action
(intention) can be specified either by its
conditions in the immediate environment
(concept) or by its name (token).

Issues of intelligence, psychopathological
modelling,  and artificial intelligence
programming are discussed. The paranoid
phenomenon is found to be explainable as an
extremely skewed use of normal processes.
Applications of these constructs are found to
be useful in Al programs dealing with error
recovery, incompletely specified input data,
and natural language specification of tasks to
perform.

+ AIM-306 Cs-639 ADAO053175
Cordell Green, David Barstow,

On Program Syanthesis Knowledge,

63 pages, November 1977. Cost: $3.45

This paper presents a body of program
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synthesis knowledge dealing with array
operations, space reutilization, the divide and
conquer paradigm, conversion from recursive
paradigms to iterative paradigms, and ordered
set enumerations. Such knowledge can be
used for the synthesis of efficient and in-place
sorts including quicksort, mergesort, sinking
sort, and bubble sort, as well as other ordered
set operations such as set union, element
removal, and element addition. The
knowledge is explicated to a level of detail
such that it 1s possible to codify this
knowledge as a set of program synthesis rules
for use by a computer-based synthesis system.
The wuse and content of this set of
programming rules 1s illustrated herein by the
methodical synthesis of bubble sort, sinking
sort, quicksort, and mergesort.

+ AIM-307 CS-640 ADA053176
Zohar Manna and Richard Waldinger,
Structured Programming Withcut

Recursion,
i0 pages, December 1977. Cost: $2.00

There is a tendency in presentations of
structured programming to avoid the use of
recursion as a repetitive construct, and to
favor instead the iterative loop constructs. For
instance, in his recent book, "A Discipline of
Programming,” Dijkstra bars recursion from
his  exemplary programming  language,
declaring that "I don't like to crack an egg
with a sledgehammer, no matter how eftective
the sledgehammer is for doing so."

In introducing an iterative loop, the advocates
of structured programming advise that we
first find an invariant assertion and a
termination function, and then construct the
body of the loop so as to reduce the value of
the termination function while maintaining
the truth of the invariant assertion. The
decision when to introduce a loop, and the
choice of an appropriate invariant assertion
and termination function, are not dictated by
the method, but are left to the intuition of the
programmer.
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explanatory theory of language should be, and
of a program, there are innumerable
conditions and functions that could be
adopted as the invariant assertion and
termination function of a loop. With so many
plausible candidates around, a correct selection
requires an act of precognitive insight.

As an alternative, we advocate a method of
loop formation in  which the loop is
represented as a recursive procedure rather
than as an iterative construct. A recursive
procedure is formed when a subgoal in the
program's derivation is found to be an
instance of a higher-level goal. The decision
to introduce the new procedure, its purpose,
and the choice of the termination function are
all dictated by the structure of the derivation.

The directness of this recursion-formation
approach stems from the use of recursion
rather than iteration as a repetitive construct.
Recursion is an ideal vehicle for systematic
program construction; in avoiding its use, the
advocates of structured programming have
been driven to less natural means.

+ AIM-308 CS-641
David Barstow,

Automatic Construction of Algorithms,
Thesis: Ph.D. in Computer Science,

220 pages, December 1977. Cost: $7.85

ADAO053184

Despite the wealth of programming knowledge
available in the form of textbooks and articles,
comparatively little effort has been applied to
the codification of this knowledge into
machine-usable form. The research reported
here has involved the explication of certain
kinds of programming knowledge to a
sufficient level of detail that it can be used
effectively by a machine in the task of
constructing  concrete implementations  of
abstract algorithms in the domain of symbolic
programming.

Knowledge about several aspects of symbolic
programming has been expressed as a
collection of four hundred refinement rules.
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The rules deal primarily with collections and
mappings and ways of manipulating such
structures, including several enumeration,
sorting and searching techniques. The
principle representation techniques covered
include the representation of sets as linked
lists and arrays (both ordered or unordered),
and the representation of mappings as tables,
sets of pairs, property list markings, and
inverted mappings (indexed by range
element). In addition to these general
constructs, many low-level programming
details are covered (such as the use of
variables to store values).

To test the correctness and utility of these
rules, a computer system (called PECOS) has
been designed and implemented. Algorithms
are specified to PECOS in a high-level
language for symbolic programming. By
repeatedly applying rules from its knowledge
base, PECOS gradually refines the abstract
specification into a concrete implementation in
the target language. When several rules are
applicable in the same situation, a refinement
sequence can be split. Thus, PECOS can
actually construct a variety of different
implementations for the same abstract
algorithm.

PECOS  has  successfully  implemented
algorithms in several application domains,
including sorting and concept formation, as
well as algorithms for solving the reachability
problem in graph theory and for generating
prime numbers. PECOS’s ability to construct
programs from such varied domains suggests
both the generality of the rules in its
knowledge base and the viability of the
knowledge-based approach to automatic
programming.

+ AIM-309 Cs-646

C. G. Nelson, Derek Oppen,

Efficient Decision Procedures Based on
Congruence Closure,

15 pages, January 1978. Cost: $2.15

We define the notion of the congruence closure
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of a relation on a graph and give a simple
algorithm for computing it. We then give
decision procedures for the quantifier-free
theory of equality and the quantifier-free
theory of LISP list structure, both based on
this algorithm. The procedures are fast
enough to be practical in mechanical theorem
proving: each procedure determines the
satisfiability of a conjunction of length n of
literals in time O(n12). We also show that if
the axiomatization of the theory of list
structure is changed slightly, the problem of
determining the satisfiability of a con junction
of literals becomes NP-complete. We have
implemented the decision procedures in our
simplifier for the Stanford Pascal Verifier.

An earlier version of this paper appeared in
the Proceedings of the 18th Annual
Symposium on Foundations of Computer
Science, Providence, October 1977.

+ AIM-310 CS-651

Nachum Dershowitz, Zohar Manna,
Proving Termination with Multiset
Orderings,

33 pages, March 1978. Cost: $265

A common tool for proving the termination of
programs is the well-founded set, a set ordered
in such a way as to admit no infinite
descending sequences. The basic approach is
to find a termination function that maps the
elements of the program into some well-
founded set, such that the value of the
termination function is continually reduced
throughout the computation. All too often,
the termination functions required are difficult
to find and are of a complexity out of
proportion to the program  under
consideration. However, by providing more
sophisticated well-founded sets, the
corresponding termination functions can be
simplified.

Given a well-founded set S, we consider
multisets over S, “sets” that admit multiple
occurrences of elements taken from S. We
define an ordering on all finite multisets over
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S that is induced by the given ordering on S.
This multiset ordering is shown to be well-
founded.

The value of the multiset ordering is that it
permits the use of relatively simple and
intuitive termination functions in otherwise
difficult termination proofs. In particular, we
apply the multiset ordering to provide simple
proofs of the termination of production
systems, programs defined in terms of sets of
rewriting rules.

+ AIM-311 CS652

Greg Nelson, Derek C. Oppen,
Simplification by Cooperating Decision
Prodcedures,

20 pages, April 1978. Cost: $2.25

We describe a simplifier for use in program
manipulation and verification. The simplifier
finds a normal form for any expression over
the language consisting of individual
variables, the wusual boolean connectives,
equality, the conditional function cond
(denoting if-then-else), the numberals, the
arithmetic functions and predicates +, - and &,
the LISP constants, functions and predicates
nil, car, cdr, cons and atom, the functions store
and select for storing into and selecting from
arrays, and uninterpreted function symbols.
Individual variables range over the union of
the reals, the set of arrays, LISP list structure
and the booleans true and false.

The simplifier is complete; that is, it simplifies
every valid formula to true. Thus it is also a
deciion procedure for the quantifier-free
theory of reals, arrays and list structure under
the above functions and predicates.

The organization of the simplifier is based on
a method for combining decision procedures
for several theories into a single decision
procedure for a theory combining the original
theories. More precisely, given a set S of
functions and predicates over a fixed domain,
a satisfiability program for S is a program
which  determines the satisfiability of
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conjunctions of literals (signed atomic
formulas) whose predicate and function
symbols are in S. We give a general
procedure  for  combining  satisfiability
programs for sets S and T into a single
satisfiability program for S v T, given certain
conditions on S and T.

The simplifier described in this paper is
currently used in the Stanford Pascal Verifier.




