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I. Introduction structures and procedures needed to solve
— it.

This report summarizes five related research
projects that have been sponsored by the Readers who wish to dig deeper should see
Defense Advanced Research Projects A gency. the references at the end of each section.

A ppendices list dissertations, films, and ocher
• Basic res.ar ch in artificial intelligence and recent reports as well as external publications

formal reasonin g addresses fundamental by the staff.
problems in the representation of
knowledge and reasoning processes applied
to this knowledge. Solution of these
problems will make possible the
development of analytical applications of
computers with large and complex data
bases , where current systems can handle
only a very restricted set of data structures
and queries.

• Mathematical theory of com putation and
progra m syn Mes is studies the properties of
computer programs. The goal is to
provide a sound theoretical basis for
proving correctness or equivalence of
designs and to automaticlly synthsize
programs having certain properties.

• Pro gram ye ificatlon is a closely related
projec t whose goal is to improve the
reliability of important classes of programs
such as compilers, operating systems and
realtime control systems, and to
standardize techniques for program
construct ion, documentation and
maintenance .

• lmag understand ing is aimed at
mechanizing visual perception of three-
dimensional objects either from
photographs or from passive imaging
sensors. Advances in this field are
expected to lead to much more efficient
photointerpretation capabilities as well as
automatic visual guidance systems.

• Knowledge based pro gramming is an
interactive approach to programming in
which the computer assists the user in
formulating the specifications of his
problem and in designing the data

~iiAi5-.. - -. - ~~~~~~~~~ —.
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2. Bas ic Research in Artificial Intelligence deal with by entries in a data base . This,
and Formal Reasoning however , in not the only kind of know’edge

that is needed to effectively access this data.
Persoiiiiel: John McCarthy, For example, few existing systems represent

Richard Weyhrauch . Student Rej earch general facts by entries in the data base.
Assist a nts .  Juan Bulnes, Robert Fitman, Instead they represent general facts by
Andrew Robinson, Carolyn Takot t. programs or by semi—programs like
David Wilkins. productions. This works very well for

applying the general facts to particular cases,
Applied research requires basic research to but it doesn’t work well if in order to
replenish the stoc k of of ideas on which its effectivel y use the data base you need to figure
progress depends. The long range goals of out some consequence of these general facts.
work in basic A I and formal reasoning are to In this case you need two things: first, an
make computers carry out the reasoning explicit representation of the general facts
required to solve problems . These problems themselves; and second, the ability to deduce
may be intellectual , e.g. doing mathematics , new general facts from old ones.
playing games or solving puzzles . or they may
be of the pract ical sort necessary to carry out W hat kind of facilities do you need to
everyday even t s like getting to the grocery represent these general facts? One important
store on time. Recent discoveries have made it tool in our research is first order logic.
clearer how to apply our main tool, first order Current fashion in Al research questions the
logic, both to Al and to reasoning about rigidity of this approach . One reason for
programs. This brings application nearer , being interested in first order logic is that
especially to proving programs and hardware dealing with first order sentences is in some
correct , and has changed the direction of some sense a minimal requirement for any
of our research. reasoning system. Consider the list of

properties a reasoning system must have:
This report begins with a brief discussion of
the general problem of representing 1) it must have the ability to name objects:
knowledge. We discuss a var iety of problems John and Richard.
in this class that need to be solved in order to
make progress towards the above mentioned 2) it must be able to specify the parts and
long range goals. We then discuss the properties of the objects that it can name: the
particular areas of interest to our group and color of the hair of Richard.
our recent accomplishments in these areas.
Finally we review the FOL reasoning system 3) ii must have ways of building up a
and describe recent developments and complicated object from its parts: a poker
applications of this system. FOL is one of our hand is built out of five playing cards.
basic research tools and has been used in
much of the work described below. 4) it must be able to speak about the relation

between things: John is taller than Richard.
2.1 Fundamental problems of Al aiid form al

reasoning 5) it must have ways of building up
complicated relations between objects in terms

• Imagine that you want to implement a system of simpler ones: (x is the uncle of y) means (y
that is expected to do some reasoning. One is the brother of a) and (a is a parent of x).
basic problem that must be solved as that of
knowledge representation. Many existing Any system that can express ideas like these
systems represent the particular facts that they contains as a subpart what is called by



2.1 Fundam ental problem s of Al and form al reasoning $

logicians “quantifier free first order logic”. If are undoubtedly other phenomena essential
in addition you believe that it is reasonable to for intelligence which have yet to be
be able to say sentences like “all the chairs in discovered. Eefore such facts can be
this room are red”, and “there is a pirate in incorporated in data bases and question—
the cave ” then you must have full first order answering programs in a general way, basic
predicate logic. Thus, in order to represent research must determine the logical structure
general assertion s such as those mentioned of these concepts .
above one needs quantifiers and the most
developed logical system with quantifiers is Our object in raising these problems is not to
first order logic. Within first order logic, show that present database efforts are
there are many possible ways of representing a misdirected . In our opinion, the problems
particular kind of fact , and much further being ex plored are entirely appropriate.
study is required. However , It Is necessary to look further ahead

and provide the basic research foundation for
Many applications of “intelligent ” programs more advanced database work . The same
will require that decisions be made based on basic research will also support other
information obtained in a variety of ways. Intelligent system and program verification
For data bases to include the many types of advances, but we haven’t time or space to
information that decision makers really need elaborate these here.
will requite additional major advances in
representation theory. As mentioned above 2.2 Recent research interests and
current data base technology at best allows accomplishments
simple relations to be represented - e.g. “Smith
is the supervisor of Jones.” Additions from We now discuss the areas of particular
current Al techniques would allow simple research interest of members of the Formal
generalizations of relations (“Every employee Reasoning group and give some details of
has a supervisor except the director.”), but this recent results and accomplishments. At a
leaves a tremendous range of representation detailed level there is a diversity of problems
problems untreated: studied. The problem of knowledge

representation is a common underlying theme.
I. Mental states - what a person or group

believes, knows, wants, fears, etc. Knowledge and belief
2. Modalities - what may happen, what must

happen, what ought to be done, what The solution of real world problems
can be done, etc. frequently requires the ability to reason about

S. Counterfactual conditionals - if something other peoples knowledge and beliefs. The
were true what else would be the case. problems of reasoning about knowledge are

4. Causality - how does one event follow more difficult than reasoning about things.
because of another . The
preconditions of events and the Suppose we have the sentences Pat know s
consequences of events. Mike’s telephone number and Mike ’s
Concurrent events and their laws of telephon e number Is the same as Mar y ’s. A
interaction and non—interaction, computerized deduction system that uses the

5. Actions and their modifiers, e.g. “slowly”, rule that equals may be substituted for equals
Ability - conditions under which a might conclude Pat knows Mary ’s telephone
person or group can do something. number. This is not a legitimate deduction,

even though It would be legitimate to deduce
Facts of these kinds cannot be adequately that Pat dialed Mary’s telephone number from
represented in data bases at present, and there the fact that he dialed Mike’s number and the

fact that the numbers are the same. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•
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The fact that substiwt ion of equals for equals developed into a study of conjectural
is legitimate in some contexts and not in reasoning. the first results of which were
others has been well known for a very long included in (McCarthy 1977b]. The method,
time. Correc t logical laws for handling such now called circumscri ption, seems to be present
cases have been proposed, but the presently in informal human reasoning and may be the
known solutions do not seem adequate. most important logical difference between

informal human reasoning and the formal
• McCarthy has continued his study of the reasoning of mathematical logic. (McCarthy
formalization of facts about knowledge. 1978d ) gives an axiom schema of first order
There have been two important results logic called the ci rcumscri ption Induction
recently. First he has shown how to express schema which can be used to represent in a
the assumption that a person knows nothing flexible way the conjecture that the entities
more about a subject than knowled ge that can be shown to exist on the basis of the
explicitly ascribed to him. This permits information in a certain data base are all the
deducing that he doesn’t know something. relevant entities that exist. The flexibility
Second he has shown how to ex press the effect comes from the fact that the set of information
of learning a fact on a person’s state of conjectured to be all the relevant information
knowledge. Third, he has shown how to is readily changed.
express joint knowledge of several people, and
finally he has shown how to axiomatize Circumscription is a fully formal mode of
“knowing what ” rather than merely the reasoning and can be programmed for aF “knowing that ” treated by Harmtikka and other computer. On the other hand, it is not valid ,
philosophers. i.e. it sometimes leads to wrong conclusions.

This is to be expected, because
Conjectures mathematicians have proved the completeness

of the rules of inference of first order logic;
It has long been recognized that standard logic admitting any g.~neral laws that generate
does not represent the many kinds of conclusions not attainable by the old laws
reasoning that people use in forming makes the system inconsistent. Therefore,
conjectures. It now appears that much human programs that use circumscri ption cannot be
reasoning involves conjecturing that the certain that their results are correc t and must
known facts about a phenomenon are all the be made capable of withdrawing applications
relevant facts. of circumscri ption that lead to wrong results.

This will make them more like humans —

Strict logical deduction does not permit getting increased power at the price of’
drawing a conclusion from certain facts that fallibility. Its further development is essential

• would be changed if additional facts , for progress in Al.
supplementing but not contradicting them,
were discovered . In logic, if a c.onclusion Reasoning with observation
follows, it will still follow when more facts are
added. Humans, on the other hand, are Many human reasoning processes Involve
always drawing this kind of conclusion. We interspersing observations of the xternal
now think that machines must also reason this world with the use of logical inj.r ~nce. We
wa y, and that programs confined to strict believe that intelligent machinei must also do
logical reasoning must either be unable to this.
draw conclusions or they must use axioms so
unqualified that they are false. • Bob Filman has completed his thesis

research (Filman 1978) where he demonstrates
• McCarthy’s minimization schema work has that the chain of reasoning involved in a 

- . .:j ‘-m~~~-- rrr ~~~~~~~ - - - ~~~~~~~~~~~~~~~~~ - -~~~~~~~~~
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2.2 Recent research interests and acco m plishments

comp lex chess problem requires programs that • McCarthy found Cartwright ’s thesis
observe a chess board as well as perform (Cartwright 1977] the key to implementing his
deductions if the solution is to be considered long term goal of expressing recursive
feasible. The point of this research was not to program definitions as sentences of logic.
solve chess problems, but to explore how the While McCarthy ’s older approach required
ability to make direct observations of the using a logic of partial functions and
world, in this case a chessboard, can be predicates which introduces many
interspersed with deduction to better solve complications, Cartwright ’s approach uses
problems. This work was facilitated by what ordinary first order logic. Using it permitted
we have called the semantic attachment McCarthy to simplify his earlier Ideas and
feature of FOL. His experience with apply them to moderately complicated
observational reasoning shows that we still programs. Besides an exposition of
have only begun to understand it. Cartwright ’s formal ideas separated from his

proof-checker, (McCarthy 1978b) contains a
Reasoning about programs minimization scheme that characterizes a

recursive program as the minimal solution of
Researchers in mathematical theory of the Cartwr ight functional equation, a
computation have deve loped a number of characterization of the verificat ion methods of
techniques for analyzing and proving inductive assertions (Floyd) and subgoal
properties of programs. These techniques induction (Manna-Pnuelm and Wegbreit—
have proved useful but are typically capable Morris) as axiom schemata , and a greatly
of treatin g a limited class of problems. We simplified analog of the Goedel—Kleene
feel that it is important to develop techniques method of representing recursive functions in
that are capable of handling a wide variet y of first order logic.
questions about programs in a uniform
manner. The following is a collection of S Richard Weyhrauch has ~ssed reflection to
examples of properties that we would like to implement the Mccarthy minimization schema
ex press and questions that we would like to be (McCarthy 1978b) for proving the correctness
able to answer: of LISP programs. This is a step toward our

I. Parsing — is p a well formed program, is s goal of constructing a system for reasoning
an acceptable specification? about the correctness of LISP programs.

2. Correctness — does a program, p. satisfy
some specification . s? • A program solving the samefringe problem

3. Equivalence — do two programs meet the is given in (McCarthy 1977). Proving the
saii~e specificat ions? correctness of this program involves a non—

4. Classes c~ programs — can we express the trivial Induction step. It was formalized using
fact that a program contains some two different first order axiomatizations of
particular construct such as “while loop” LISP, (once by Richard Weyhrauch and once
or “go ~~~~~~ by Carolyn Talcott) based on theoretical ideas

5. Properties of such classes — can we state of McCarthy (l978b). The proofs were
properties of programs of some such constructed and checked using FOL.
class , for example that the equivalence of
two programs of a particular class Is We believe that these recent results are the
decidable? basis for developing a system for reasoning

6. Lemmas - can such facts be applied to about programs that will have the properties
particular programs? mentioned above. And we are beginning

7. Resources - how much storage does a work on such a system using the FOL
particular program require? reasoning system.

~ 
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6 Bas ic Research iii Artificial Intelligen ce amid Form al Reasoning

Patterns can be formulated , tested and developed. in
or .Ier to check that some line of reasoning is

Many of the patterns that an “mtelligent va lid, we need a formal and mec hanizable
program will have to recognize do not fall into notion of proo f A program that can decide
the iareg o rmes so far t reated in Al woi k For whether or not a piooi is valid is called a
exam ple . e~p1aining an unknown act iv ity of p r c~’f cfru cket and forms the basis of a system
an adv e r sar y  requ ires con~~ tur ing a goal and for testing theories arid modes of reasoning
its relation to other goals. a beliel str ucture The (acts we are studying are general facts
that makes the goal seem desirable arid about situations. events , actions and goals, the
atta inable . and a means of attaining the goal effects of actions that manipulate physical
that gives r ise to the observation s Present Al object s. and the (acts about sources of
patte r n rec ognition programs find patte ins in information such as books, computer files,
observed d.u.t rather than introduce new people and obse rvation that are necessary in
ent it ies in order to ex plain the data. order for a piogi am to obtain the information
MtCai thy is developing a general notion of required to solve problems In addition to its
patter n, and W ilkins is using chess to develop applications to AL , we are using FOL to
some advanced notions of strate gic pattern develop techniques to verify that computer

programs meet their specifications and to
• P.u~e W ilkins is studying the problem of study other properties of programs
applying knowledge in a problem solving
5Vst t ’nll He is developing the s~stem FO E. can be thought of as a con versat ional
PAR aiIHSF PAtte rn Recognition A pplied to r eas onin g sys 1e~’i Together . FOL and a user
Ditettimig SEatthl  which finds the best move establish the language they will use , decide on
iii t a t  tica lly sharp middle game positions (toni the objects they are discussing. and agree
the games ot chess masters His system about their basic pro perties . i. e axioms.
emp loys a knowledge-ba sed approach where Then they discuss interactively the reasons
much chess knowled ge is stored as patterns why certain facts about these things can be
and u~ed as productions. He has developed a concluded from others There latter can be
ptod ut.tion language and methods of forming viewed as a form of proof checking or
plans to guide a search theorem proving.

2 3  TIme FOL reasoning system The proof checking aspect of FOL is based on
a natural deduction formulation of first order

The study of representation of (acts *nd logic as described in (Piawitz 19653. Formal
modes of reasoning has an experimental as proofs carried out in a pure natural deduction
wel l as a theoretical aspect. The long run test system are generally extremely long, because
of the usefulness of a means of representation the usual logical systems do not incorporate as
or a mode of reasoning is its contribution to primitives all the modes of reasoning actually
the success of question answering and used. FOL contains many features that allow
problem-solving programs However , more natural and efficient ex pression of facts
building such systems is a slow way of testing and reasoning. One of the most important is
newly developed reasoning concepts. because it semantic atta chment This feature of FOL
often requires the creation of a whole new allows the user to create a LISP model of the
data base format . New concepts can be object that he is wants to reason about. This
studied much more quick ly if we can test their allows him to conclude some facts simply by
consequences directly in relative isolation. examining them, rather than doing some

complicated reasoning about them. In
The FOL reasoning system (Weyhrauch 1977) everyday life even the weather man looks out
provides an environment in which new ideas the window to see if it is raining. He does not

~ 
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conclude it is raining by some complicated mechanisms , and the ability to replace some
reasoning based on his knowledge of weather parts of a proof by computation.
We call the data structure representing the
combination of formal reasoning ability and • ‘The semantic attachment mechanism,
observation an L/S pair (or including the use of representations , was
language/simulation structure pair) In this completed
environment proofs can be carried out by the
usual method s of deduction, by computation • The rewritin g system was finished . This is
in the model, or by combInations of both a syntactic simplifier capable of using a user—

specified collection of equalities and logical
Frequently the obje cts we reason about are equivalences to simplify a term or formula.
themselves theories , ie L/S pairs This
reasoning about theories is called metatheory. • The semantic and syntactic simplification
in fact we do meta reasoning all the time For mechanisms were combined to produce a
example, when we think about what questions general first order expression evaluator. This
we should ask a data base, we are reasoning turns out to be a very powerfu l theorem
about our theory of what is stored in the data proving tool, particularly in the applications
base , not about the facts that are stored there. involving the use of metatheory.
A formalization of the reasoning about
theories provides (I) a formal description of • The semantic attachment mechanism was
FOL and (2) a theory in which to carry out augmented by the implementation of the LET
proofs of statements about theories. An initial command , providing the ability to attach to an
axiomatizauon, META . of the roetatheory of individual constant the result of evaluating a
FOL has been made and has been used in term.
several projects

• The many-sorted aspect of FOL was
META is just an ordinary first—order theory, improved to allow the declaration of
antI as such is represented as a data structure polymorphic functions
in FOL. This provides FOL with a certain
amount of ability to reason about itself. The • Data structures were developed to allow the
ability of programs to manipulate pointers and presence of several L1S pairs and for multip le
the ability of FOL to view the structure proofs within an L!S pair environment.
representing an 1/S pair as a part of a Commands were implemented for switching
simulation struct u re makes FOL in some sense attention to a particular proof or L/S pair
self—reflexive. This kind of self—ref lexive (context switching).
system is completely new . (Further elaboration
is given in tWeyhrauch 19’78b)). • Reflection principles can be used to express

the connection between statements in a theory
FOL software and its metatheory Several reflection principles

were implemented in the form of a REFLECT
Summer 1978 closes a period of intense FOL command.
software development. The coding was done
under the direction of Richard Weybrauch Application s of FOL to problems of
who was helped by Andrew Robinson, Chris reasoning arid representation.
Goad. Carolyn Talcott, Juan Bulnes and Dan
Blom. The extensions and improvements More details about the FOL system and Its
described allow facts and proofs to be applications can be found in (Weyhrauth
ex pressed more naturally, and make shorter 1978a,b)
proofs possible by provIding simplification 
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• A primitive goal structure mechanism has of Observation and Inference , PhD
been implemented in FOL by Juan Bulnes. Thesis , forthcoming.
He has carried out various experiments using
the new goal structure. In particular a version [Kelley 1955) John Kelley, General Topology,
of Ramsey ’s theorem was proved in about one D. van Nostrand Company, Inc., 1955.
fifth the number of steps previously required .
This is a substantial improvement , although it [McCarthy 1959) John McCarthy, Programs
is still somewhat longer than an informal w ith Common Sense, Proc . m t .  Conf. on
proof would be. (Ramsey ’s theorem can be Mechanzsation of Thought Processes ,
described as follows: given an infinite set of Teddington, England, National Physical
points such that for every pair there is either Laboratory, 1959.
a black line or a red line connecting them;
there is either an infinite subset of those (McCarthy 1963a) John McCarthy, A Basis
points such that every pair is connected by a for a Mathematical Theory of
black line, or there is an infinite subset such Computation , in Braffort , P. and
that every pair is connected by a red line.) Herschberg, D. (eds.), Computer

Pro gramming and Formal Systems ,
• Weyhrauch and Talcott axiomatized D. North-Holland, Amsterdam , 1963.
Michie s blind robot problem as an example
of reasoning about actions and moving. This (McCarthy 1963b] John McCarthy, Towards
work incor porates a new idea of the notion of a Mathematical Science of Computation,

I situation. The working system has the ability in Popplewell, C.M. (ed ), information
to answer most reasonable questions about the processing : Proce~’dings of iF/ P Congress

F robot situations in a single step. 62, North Holland, Amsterdam , 1963.

• We have begun using the FOL formalism (McCarthy 1961) John McCarthy, A Formal
to re present reasoning about asynchronous Description of a Subset of ALGOL, in
actions and time and to study the question of Steel, T B., Jr. (ed ), Formal Language
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3. MathematIcal Theory of Computation conventional approach requires two separate
and Program Synthesis proofs to establish partial correctness and

termination. This intermittent assertion
Personnel: Zohar Manna, Student Research method, introduced by Burstall (1974].

Assistants : Nachum Dershowltz, Martin promises to provide a valuable complement to
Brooks, Chris Goad. the more conventional methods.

3.1 New Verification Techniques Manna and Waldinger use the phrase
Nachum Dershow itz & Zohar Manna

sometime Q at 1.
The goal of this research is to find more
pow erful verification techniques that will help to denote that ~ is an intermittent assertion at
make program verification a more practical label L (i.e. that sometime control will pass
tool for programmers and more readily through L with assertion Q satisfied). If the
amenable to automation. entr ance of a program is labelled start and its

exit is labelled finish , one can ex press Its total
In the course of recent ARPA supported correctness with respec t to an Input
research, we have found two techniques of specification P and an output specification R
wides pread interest that will undoubtably by
have an impact on future work in program Theorem: if sometime P at start
verification. They are the use of then sometime R at finish
intermittent—ass ertions to prove the total
correctness of programs, and the use of This theorem entails the termination as well as
multiset orderings to prove the termination of the partial correctness of the program, because
programs. We have also begun investigating it implies that control must eventually reach
the verification of production systems. the programs exit , and satisfy the desired

output specification.
3.1.1 1 nterin ittent Assertion Method

Generally, to prove the total correctness of a
Manna and Waldinger (1978) explored a program, one must affix intermittent assertions
technique for proving the correctness and to some of the program’s Internal points, and
termination of programs simultaneously. This supply lemmas to relate these assertions.
approach, which they call the Typically, one will need a lemma for each of
intermittent —assertion method , involves the program’s loops, to describe the intended
affixing comments to points in the program behavior of that loop. The proofs of the
but with the intention that only sometime will lemmas often involve complete induction over
control p-a~s through the point and satisfy the a well-founded ordering. In proving such a
attached assertIon. Consequently, control may lemma, we assume that the lemma holds for all
pass through a point many times without elements of the well-founded set smaller (in
satisf ying the assertion, but control must pass the ordering) than a given element, and show
through the point at least once with the that the lemma then holds for the given
assertion satisfied; therefore they term these element as well.
comments Intermittent assertions . If one
proves the output specification as an In their paper, Manna and Waldinger present
Intermittent assertion at the program’s exit, and illustrate the IntermIttent—assertion
then he has simultaneously shown that the method with a variety of examples for
program must halt and satisfy the proving total correctness. Some of their proofs
specification. This establishes the program’s are markedly simpler than their conventional
total correctness in a single proof, while the counterparts. On the other hand, the

________ -. — -if  _— —
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intermittent —assert ion method is at least as natural numbers under the lexicographic
powerful as the conventional invariant- ordering.
assertion method and the well-founded
ordering method, In addition to the more All too often, the termination functions
recent subgoal-assertion method for proving required are difficult to find and are of a
partial correctness. complexity out of proportion to the program

under consideration. However , by providing
The intermittent -assertion method not only more sophisticated well—founded sets, the
serves as a valuable tool, but also provides a corresponding termination functions can be
general framework encompassing a wide simplified. The goal of this research is to
variety of techniques for the logical analysis of discover and apply suitable well—founded sets
programs. Diverse methods for establishing to the problem of termination.
partial correctness, termination, and
equivalence fit easily within this framework. Dershowitz and Manna [1978] have defined a
Further more, some proofs, naturally expressed class of well-founded orderings on mukisets.
wit h intermittent assertions, are not as easily Multisets , sometimes called bags , are like sets,
conveyed by the more conventional methods. but allow multiple occurrences of identical
For example, the method can be applied to elements. For example, {3, 3, 8, 4, 0, 0) is a
establish the validity of program multiset of natural numbers; It is identical to
transformations, and to prove the correctness the multiset {0, 3, 3, 0, 4, 3), but is distinct
of continuously operating programs, programs from (3, 4, 0~.
that are intended never to terminate .

The ordering on any given well-founded set
• This new method has begun to attract a good S can be extended to form a well—founded

deal of attention . Different approaches to its ordering on the finite multisets over S . In
formalization hav e been attempted, using this multiset orderin g, a finite multiset M
predicate calculus. Hoare—style axiomatization, over S is greater than a mukiset M’ , if
modal logic, and the Lucid formalism. It is M’ may be obtained from M by the removal
believed that the intermittent —assercion of at least one element from M andlor by the
method will have a practical impact on replacement of one or more elements in
program verificatici, because it allows one to M with any finite number of elements taken
incorporate his intuitive understanding about from S . each of which is smaller than one of
the way a program works into a proof of its the replaced elements. Thus, if S is the set of
correctness. natural numbers 0, 1,2 , . . . under the usual

“greater—than ” ordering, then the multiset (3,
3.1.2 Multiset Ordering Technique 3, 4, 0) is greater than each of- the three

multisets (3, 4), (3, 2, 2. I, I, I, 4, 01, and (3, 3,
A common tool for proving the termination of 3, 3, 2, 2). In the first case, two elements have
programs is the well—founded set, a set been removed; in the second case, an
ordered in such a way as to admit no infinite occurrence of 3 has been replaced by two
decreasing sequences. The basic approach is occurrences of 2 and three occurrences of I;
to find a termination function that maps the and in the third case , the element 4 has been
elements of the program into some replaced by two occurrences each of S and 2.
well-founded set , such that the value of the and In addition the element C has been
termination function is continually reduced removed. , -

throughout the computation. The
well—founded sets most frequently used for this As an example of the use of a multiset
purpose are the natural numbers under the ordering for a proof of termination, consider

• greater-than” ordering and n-tuples of the following trivial program to empty *
shunting yard of all trains:
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12 Mathemat Ica l Theory of Comp utation and Program Synthesis

loop until the shunting yard Is empty The value of the multiset ordering Is that It
select a train permits the use of relatively simple and
if the train consists of only a single car intuitive termination functions in otherwise

then remove it from the yard difficult termination proofs. In practice, using
else split it Into two shorter trains the more conventional orderings often leads to
fi complex termination functions that are

repeat . difficult to discover. For example, the
termination proofs of programs involving

This program is nondeterministic , as it does stacks are often quite complicated and require
not indicate which tr ain is to be selected nor much more subtle orderings and termination
how the train is to be split, functions. Finding an appropriate ordering

and termination function for such programs Is
Let Y donote the set of trains in the yard, and a well-known challenge among researchers in
trai ns (Y) be the number of trains In the yard. the field of program verification. It is in this
For any train UY , let cars(t) be the number respect that the multiset ordering is of great
of cars it contains. We present two proofs of help. We have, for example. used a multiset
termination ordering to prove the termination of an

iterative program to compute Ackermann ’s
If we take the set of natural numbers as our function. That proof is the most intuitive one
well—founded set, then we are led to the known to us. Further research along these
selection of the termination function lines is under way.

~r(Y) - 2• cars( :) — tralns (Y) . We have found multiset orderings to be a
This solution uses the fact that “splitting” particularly effective tool for proving the
conserves the number of cars In the yard, termination of iterative programs derived
E ca,s (t) . Thus, splitting a train increases the from recursive definitions, and for
number of trains in the yard, tralns(Y) , by I, nondeterministic programs.
thereby decreasing the current value of the
termination function T by I. Removing a 3.1.3 Verification of Production

- 
-

. one-car train from the yard reduces Systems
2•E cars (t) by 2 and Increases —trains(Y) by
1, thereby decreasing ‘r by I. Programs are sometimes written in the form of

a production system • There has been much
If we use multisets of natural numbers as our recent interest in such systems for constructing
well—founded set , then the function symbolic simplifiers and theorem provers , and

the problem of guaranteeing their correctness
• ‘T(Y) — l c ars( t) : UY} and termination is an actual one.

demonstrates the termination of the shunting Consider the following production system,
program. That is, for any configuration of consisting of nine rewrite rules, intended to
the yard )~ , i ’(Y) denotes the multiset symbolically differentiates an expression with

• containing the size of each of the trains in Y . respect to r :
Each iteration of the program loop clearly
decrease s the value of ‘T(Y) under the multiset Dr ~ I
ordering: removing a train from the yard Dy ~ 0
reduces the multiset by removing one element; D(u+Ø) ~ (Do  + Dj3 )
splitting a train replaces one element with two D(a.jI ) * ( (13•Da) + (u.DØ))
smaller ones, corresponding to the two shorter D(—a) ~ ( —Do )
trains. D(a—j ) 

~~~‘ 
(D o  — D Ø)

- .— ~— ——~ — —‘ —-  ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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D(a/Ø ) ~ 
( (Da/Ø) — ((u.DC)/ (0t2)) ) difficult , since some productions (the first two)

D(ln a) * (Do I a)  may decrease the size of an expression, while
D(atØ) ~ ( ( D ~ (p’(at(~— 1))) ) + other productions (the rest) may increase its

(((in a).DØ).(utj )) ) , size. Furthermore, a production (e.g. the
fourth) may actually duplicate occurrences of

where y can be any constant or any variable subexpressions. (Manna and Ness (19,0) •

other than x .  Consider the expression describe a general method of proving the
termination of production systems.)

D(D(x.x)+y) -

An intuitive proof of termination of this
We could either apply the third production to system, using multisets , is based on the
the outer D • or else we could apply the fourth observation that the arguments to the operator
production to the Inner D .  In the latter case, D are reduced in size by each production.
we obtain But since most of the productions increase the

size of the expression as a whole, we need a
b(((x.Dr) +(x.Dx)) +y) , termination function that takes the nested

structure of the expression into consideration.
which now contains three occurrences of D .  We can do this by a natural extension of the

- 
‘
~ At this point, we can still apply the third multiset ordering to nested mul tisets. A nested

production to the outer D , or we could apply multiset is either an element of some base set
the first production to either one of the inner S , or else it is a finite multiset of nested

A D’s . Applying the third production yields multisets over S . For example,

(D( (x ~Dx) +(x .Dx)) +Dy) . ((I , I), ((0). I, 2), 0)

In general. at each stage in the computation is a nested multiset. The nested multiset
there are many ways to proceed, and the ordering is a recursive version of the simple
choice is made nondeterministically. In our multiset ordering: two elements of the base set
case, all choices eventually lead to the S are compared using the ordering on S ; any
ex pression multiset is greater than any element of the

base set; and two multisets are compared as in
((((1 • I )+(x.0))+(( I I)+(x.O)))+0) , the simple multiset ordering.

for which no further application of a So we let the well-founded set be the nested
production is possible. multisets over the natura l numbers, and let the

termination function yield the size of u for
The difficulty in proving the correctness of each occurrence of Do , while preserving the
production systems stems from the fact that nested structure of the ex pression. For
applying a production to a subexpression, not example, the arguments of the six occurrences
only affects the structure of that subexpression, of D in the expression D(D(Dx ’Dy)+Dy) !Dx
but also changes the structure of its are D(Dx.Dy) +Dy , Dx•Dy , x , y , y , and x.
superexpressions, Including the top—level They are of sizes 9, 5, I, I, I, and I,
expression. And a proof must take into respectively. Thus, for
consideration the many different possible
sequences. generated by the nondeterministic e - D( D( Dx • Dy ) + Dy ) / D x)
choice of productions and subexpresslons.

we have
Proving the termination of a production
system such as this one for differentiation is ‘T(e) — ( (9 , (5, (I), (I)), (1)), (I) }
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3.1.4 References can compute a corresponding y by
“unwindmn( the proof of the theorem in the

~urstaIl, R.M. [Aug. 1974], Program proving obvious way — the number we get is
as hand simulation with a little induction, x— I factorial.
Proc. IFIP Congress 7i, Stockholm, pp.
~08-3I2. This kind of phenomenon was studied in

detail by the mathematical logician Gentzen in
Dershowitz N. and Z. Manna (Mar. the nineteen-thirties. He developed a

1978), Proving termination with muitiset mechanical method, which he called
orderin gs , Memo AIM-Sb , Stanford normalization , for unwinding proofs.
A rtifmcial Intelligence Laboratory, Normalization has the important characteristic
Stanford, CA . that, when applied to a “constructive” proof of

the existence of a number having a certain
Manna, Z. and S. Ness (Jan. 1970], On the property, it gives explicitly a particular

termination of Markou algorithms , Proc. number satisfying that property. Further, if
~rd Hawaii Intl. Conf. on System Sciences, the theorem proved has the form, “for all
Honolulu. HI, pp. 789—792. x there exists a y such that the property

a(x,y) holds”, then for each given number
Manna, Z. and R.J. Waldinger (Feb. 19781 Is x normalization computes a number

SOMETIME sometimes better than y satisf ying o(x ,y) . it is in this sense that
ALWAYS? Intermittent assertions in normalization allows one to treat proofs as
provin g program correctness , CACM, vol. programs. The class of proofs of formulas of
21, no. 2, pp. 159- 172. the appropriate form can be regarded as the

set of programs of a programming language,
3.2 Proofs as Programs where normalization serves as the interpreter .

Chris Goad
One can envision two possible applications to

It often happens in mathematics that practical computing of the ability to treat a
examination of a proof that a concrete proof as a program: (I) direct application —

mathematical object (e.g. a number) exists the use of proofs as a programming language
allows the exp licit construction of that object. by humans, and (2) the use of a theorem
As an example, consider the following trivial prover for the automatic synthesis of computer
theorem concerning the positive integers, programs. The first application depends for

its usefulness on the differences between
For each x there exists a y such that y is proofs and computer programs of the usual
divisible by each z which is less than x. kind as expressions of computation. The

second depends on the development of
We prove the theorem by induction on x. powerful automatic theorem provers. The
For x— I. any choice of y will satisfy the work of Chris Goad, while relevant to (2), is
theorem, since there Is no positive integer less motivated and directed primarily by (I).
than I of which y must be a multiple. To be Specifically, he is investigating the nature and
definite, we will take y— I . For the induction efficiency of proofs as expressions of
step, we assume the theorem holds at x , and computation, using both theoretical methods
prove that it holds for x+ I. So assume there and computational experiments.
is a y divisible by each z less than x. Then
y.x is divisible by each 2 less than x +l , so
that the theorem holds for x+l .

If we have a particular value of x in mind, we

—
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3.3 Program Testing and Debugging are debuggable errors , then correct outputs on
Martin Brooks the tests imply that his program is correct. If

he has committed some debugable errors, his
The primary goal of Martin Brooks’ (graduate programs actual output will differ from its
student) research is to develop a theory of intended output on at least one of the
program testing. Such a theory tells one what automatically generated test inputs, and the
inferences can be made from the observation debugging algorithm will correct the errors.
that a program produces correct outputs on
some finite set of Inputs. Once such a theory This theory of program testing leads to the
is established its results wilt be used to build possibility of a valuable programming tool: an
practical debugging tools to aid working automatic test case generator and debugger.
programmers. This tool would have well understood

properties and would be capable of
Program testing is the usual method by which demonstrating program correctness. It would
programmers obtain confidence in the be programmed to catch all instances of a
correctness of’ their programs. It is hoped finite number of kinds of debuggable errors.
among mathematicians and computer scientists A programmer would use this tool as follows:
that this will be replaced by automatic First he writes his program and gives it to the
program verification. Programmers face two debugger. The debugger analyzes the
difficulties using the verification approach: program, computes the appropriate inputs to
(I) The programmer must be able to precisely test the program on, and then asks the

and correctl y specify his program’s intended programmer what the output should be on
behavior, and perhaps annotate his each of these inputs. The debugger compares
program, in some specification language. the programmer ’s responses to the program’s

(2) There is not much theory relating program actual outputs. If they are the same then his
incorrectness to difficulties in finding program is guaranteed to be free of the sorts
correctness proofs; verification theory does of bugs that the debugger is programmed to
not address itself to debugging incorrect uncover. If some of his program’s actual
programs. outputs are not corree, then the debugger uses

them, sometimes after asking the programmer
The goal is to tell how to automatically choose about some more test cases, to correct the
test examples; all the programmer must know programming errors which caused the bad

• 
-

~ Is what his program’s output should be can outputs. Finally, the debugger returns the
these examples. corrected version of the program to the

programmer.
This research reveals that for programs
within certain general classes, called 3.4 Program Synthesis
debuggable classes , there are algorithms, called Zoltar Manna
debugging algorithms , which use program
testing to either find or guarantee the 3.4.1 Overview
nonexistence of certain types of programming
errors, called debug-gable errors. The theory Program synthesis is the automatic
allows for automatic construction of test construction of programs to meet given
inputs, so that a programmer need only be specifications. These specifications constitute
able to supply the correct outputs a high—level description of’ the desired
corresponding to the test inputs in order for program, which expresses the purpose of the
the debugging algorithm to debug his program, without indicating the method by
program. If the programmer knows that the which that purpose is to be achieved.
only possible errors he may have committed
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The specifications are expressed in terms of languages; a few rules correspond to basic
many constructs , which are endemic to the programming principles, which are
particular subjec t domain of the desired independent of the particular subject domain
program, (e.g. numbers, sets, lists). Because or programming language.
these constructs are only intended to describe
the purpose of the program and need not be Some of the principles we have identified so
computed, they can be of a much higher level far are:
than the constructs of any programming
language (i.e., they can include logical • Conditional formation — This principles
quantifiers, set constructors , and other causes a case analysis to be Introduced into
noncomputable operations). Thus, the the derivation, yielding a conditional test
specification language can correspond closely in the ultimate program.
with the concepts a programmer actually uses

• in thinking about the problem. • Recursion formation — This principle
introduces a recursive call into the ultimate

The techniques we are developing are program by observing when a subgoal to
independent of the choice of a target be achieved is actually an instance of the
programming ‘anguage. The particular desired top-level goal.
language we use in our ex amples and in our
experimental system is a simple LISP-like • Well—founded orderin g — The termination
language containing only basic numerical and of the recursive programs formed by the
list -processing operations, conditional above technique is ensured by constructing
expressions. and recursion. In considering the a well—founded ordering with the property
formation of programs with side-effects, we that the arguments of the program’s
extend the language to include assignments to recursive calls are all strictly less than the
variables , array elements, and other data- program’s inputs .
structure components.

S Procedure formation — A subsidiary
Our basic approach is to transform the procedure is formed when a subgoal Is
specifications repeatedly according to certain found to be an instance, not of the top—
rules; each rule replaces one segment of a level goal, but of a previously generated
program description by another, equivalent subgoal.
segment. The process continues until a
description is obtained that is entirely in terms I Generalization — A generalized procedure

- • of the primitive constructs of the target Is formed when two subgoals are found to
language; this description Is the desired be an instance of a third expression, which
program. The entire sequence of descriptions is somewhat more general than both.
leading from the specifications to the final
program Is called a program derivation. The I Siinukvieous goals — In constructing a

• method guarantees that the final program will ps ogram to achieve two or more goals
Indeed satisfy the original specifications. simultaneously, we first construct a

program to achieve one goal, then modify
The transformation rules are guided by that program to achieve the others as well,
certain strategic controls which ensure that while protecting the condition that was
they are applied only at the appropriate time. already achieved.
Many of the transformation rules represent
knowledge about the program’s subject Further discussion of the same topics, at a
domain; some explicate the meaning of the more leisurely pace, along with bibliographical

• ‘ constructs of the specification and target remarks and references, appears in the recent •

paper 
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Z. Manna and R. Waldinger, Synthesis: above, into an equivalent description that
Dreams .> Programs, Technical employs only primitive constructs of the target
Report. Artificial Intelligence Lab., language .
Stanford University, Stanford, CA
(Nov. 1977). To appear In the CACM. Transformation Rules

3.4.2 Basic Program Synthesi s We use the notation
Techniques

t - t ’ ifP
Specifications

to denote that a subexpression of form I may
In designing the specification language, we be replaced by the corresponding expression¶ have adopted many constructs (e.g., the set 1’, provided that the condition P Is true.
constructor or the logical quanuflers) that
facilitate the description of a program but that For example, the rule
cannot be included in the target programming
language. We present below examples of Q and true -. Q
specifications for simple programs using some
of these high—level constructs. denotes the basic lo%ical principle that an

ex pression of form Q and true may be
A program lessall(r 1) , to test if a number x is replaced by the simpler expression Q”. This
less than every element of’ a list I of numbers, rule has no conditions; it can always be
Is specified as follows; applied.

lessall( x 1) compute x < all(1) The rule
where is a number and

I is a list of numbers . P (all(l)) -. P(head (1)) and P(all(tail(I)))
• if not empty (l)

In general, the specification construct P( all (l))
denotes that the property P holds for every expresses the fact that a property P holds for
element of the list 1. every element of a nonempty list 1, If it holds

for the first element head(l) and for every
• The specification for a program to compute element of the list ai?(l) of the other elements.

the greatest common division gcd(x y) of two This rule imposes the condition that the list I
nonnegative integers x and y is be nonempty.

gcd(x y) ~- compute mar (z : zix and z~~) Derivation Trees
where x and y are nonnegative

integers and x — 0 or y 0. In developing a program whose specification
• are

The set constructor (u P(u) ) denotes the set
of all elements u satisfying the property P. fix) .- compute P(x)

where Q(x),
The all construct P(atl(l)) and the set construct
(u P(u)) are nonprimitive specification we establish the output description as a goal to
constructs (I.e., they are not In the target be achieved, viz.,
programming language). The synthesis task Is
to transform a description of’ the desired Goal: compute P(x).
program, such as the specifications presented 
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Subgoals are derived from this goal by 
• 

Our research so far has emphasized the
application of the relevant transformation identification and codification of the basic
rules. For example, in deriving the gcd programming principles, those techniques that
program, we form the top-level goal are applied again and again in the formation

of a program, regardless of the particular
Goal 1: compute mar{ z : z~x and x~ }. subject domain. In the next few sections we

discuss several of the basic programming
By applying a transformation rule principles which have been considered so far.

y lv and uIw -. ulv and u$w—v Conditional Formation

we obtain the subgoal Many of the transformation rules Impose
conditions (e.g.. 1 is nonempty, x is

Goa l 2: compute marl z : z~x and z~y—r ) . nonnegative) that must be satisfied for the
rule to be applied. Suppose that in attempting

If a transformation rule imposes a condition to apply a particular rule, we fail to prove or
P , which must be true for the rule to be disprove a condition P . where P is expressed
applied, a subgoal of the form entirely in terms of the primitive constructs of

the programming language; in such a
Goal: prove P situation, the conditional-formation rule is

Invoked . This rule allows us to introduce a
must be achieved before the rule can be case analysis, and consider separately the case
applied. For example, in developing the in which P is true and P is false. Suppose we

— program lessall (x I) to test if a number r Is succeed in constructing a program segment S~less than every element of a list I of numbers, that solves our problem under the assumption
we have the top-level goal that P is true, and another program segment

S2 that solves the problem under the
com pute x < alI(I), assumption that P is false. Then the

conditional-formation principle puts these two
which is obtained directly from the program segments together into a conditional
specification; in attempting to apply the rule expression

P(all (l)) .- true if empty (l) if P then S 1 else S2.

to this goal. we are led to the subgoal which solves our problem regardless of
• whether P is true or false.

Goal: prove em pry (I).
If we happen to generate the program segment

From each subgoal that is derived, further S2. say , without using the case assumption that
subgoals are generated by the application of P is false, then 

~ 2 solves our problem
more transformar iori rules. We thus construct regardless of whether P is true or false. In
a tree of goals and subgoals. which we will call this case, no conditional expression is formed,
a pro gram derivation tree. and the program constructed is simply S?.

Thus, conditional expressions are generated
A subgoal “com pute 5” is already achieved if only for truly relevant conditions.
S consists entirely of primitive constructs of
the target language. A subgoal TM

frrove P” is The conditional-formation rule Is among the
achieved if P is the logical constant true. best-understood of our basic programming

• Such goals are terminal nodes of the principles.
derivation tree

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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Recurs ion -Formation and Well-Founded the Input I replaced by tazl(I)-, therefore, the
Ordering recursion-formation principle proposes that

we achieve the subgoal by introducing a
Suppose, in constructing a program whose recursive call lessa ll(x tail(1)). To ensure that
specifications are this step is valid, the rule establishes an input

fix) .- compute P(x) condition, that
where Q(x)

x is a number and
we encounter a subgoal tail(!) is a list of numbers ,

compute P(t) and a termination-condition that the
argument pair (x tali W) is less than the input

which is an instance of our output pair (x I) in some well—founded ordering.
specification, “compute P(x).” Because the This termination condition holds because
program fix) is intended to compute P(x) for tail (I) is a proper sublist of I.
any x satisfying its input specification Q(x), • -

the recursion-formation rule proposes The recursion-formation principle is well—
achieving the subgoal by computing P(t) with understood and has been applied together
a recursive call fit) . For this step to be valid, with the conditional—formation principle in
it must ensure that the in put condition Q(t) the synthesis of many complete programs.
holds when the proposed recursive call is
executed. To ensure that the new recursive Procedure Formation
call will not cause the program to loop
indefinitely, the rule must also establish a Suppose in developing a program whose
termination condition , showing chat the specifications are of’ the form
argument I is strictly less than the input x in
some well-founded ordering. (A well—founded fix) ~ com pute P(x)
ordering is one in which no infinite strictly where Q(x)
decreasing sequences can exist.) This
condition precludes the possibility that an we encounter a subgoal
infinite sequence of recursive calls might occur
during the execution of the program. Goal B: compute R( t),

For ex ample, the program lessali(x I), which which is an instance, not of the output
tests whether a given number x is less than description “com pute P(x) ,” but of some
every element of a given list I of numbers, was previously generated subgoal
specified as follows:

Goal A: compute R(r).
lessall(x 1) compute x .c all(I)

where x Is a number and The procedure-formation principle proposes
I Is a List of numbers , that we introduce a new procedure g(x) whose

• output specification Is
- • In deriving this program, we develop a

subgoal g(x) compute R(ic).

compute x .c all(taiJ(l)) In this way, we can achieve both Goals A and
B by calls g(x) and g(t) to a single procedure.

in the case that u s  nonempty. This subgoal is In the case that Goal B has been derived from
- 

an Instance of our output specification, with Goal A , the call to g(:) will be a recursive call;
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otherwise, both calls will be simple procedure neither of which is an instance of the other,
calls, but both of which are instances of the more

general expression
For example, in constructing a program
cart( s t) to compute the Cartesian product of conipu e R(y) . Then the extended
two sets, we are given the specification procedure-formation rule proposes that we

introduce a new procedure, whose output
car t (s t) compute (r y) x i s  and y t} specification is

where s and I are finite sets .
g (y) .- com pute R(,y) ,

• In deriving the program, we obtain a subgoal
• so that we will be able to satisfy Goal A by a

Goal A: com pute { (r y) : x • head(s) and procedure call g(a(x)) and Goal B by a
y e I ) procedure call g(b(x)) .

in the case that s is nonempty. Developing For example, in constructing a program to
Goal A further , we derive the subgoal reverse a list, we derive two subgoals

Goal B: com pute (x y) : x - head(s) and Goal A: compute append(r everse(tail (O)
y e tail (t) } cons(head(l) nil))

in the case that t is nonempty. Goal B is an Goal B: compute append (reverse(tail (tail( l)))
instance of Goal A ; therefore, the procedure— cons(head(taiI(l))
formation rule proposes introducing a new cons(head(I) nil))).
procedure cart head(s t) whose output
specification is Each of these goals is an instance of the more

general expression
ccr t/iead(s r) .- compute ( (r y) : x • head(s)

and y I) compute appen d(reverse(tail (I))
• cons(head(l) m))

so that we can achieve Goal A with a
j  

• 
procedure call carthead(s O and Goal B with a therefore, the extended procedure—formation
(recursive) call cart head( s taIi(t)). rule proposes introducing a new procedure

rsverssgen(l in), whose output specification Is
Our method for proving the terminatior~ of
ordinary recursive calls does not always extend reversegen(I m) .- compute
to the multiple-procedure case. append(r.verse(taU(l))

cons(head(l) m))
J Generaliutio n

This procedure reverses a nonempty list 1 and
Suppose in deriving a program we obtain two appends the result to in A lthough the

• subgoals procedure solves a more general problem than
the rever se program we actually require, it

Goal A: com pute R(a(x)) turns out that the reversegen procedure is
actually easier to construct.

and

Goal B: compute R(b(x)) ,

_____________________________ .=-t.:——- - — —. 



3.4 Program Synthesis 21

3.4.3 Structure-changIng Programs ach ieve P 1 and P 2,

In the discussion so far, we have been first construct a program F to achieve P~,
concerned with structure-maintaining (i.e., then modify F to achieve P2 while protecting
“sIde-effect-free”) programs, which produce no the truth of P at the end of F. The
permanent change in the data objects of the program-modif ication technique we employ is
programming environment. The same based on the “weakest -precondition operator.”
principles apply to the development of A special “protect ion mechanism” ensures that
structure—changing programs. which can no modification is permitted that destroys the
produce such changes. However, certain new truth of the protected condition P~ at the end
problems arise in the synthesis of structure — of the program.
changing programs; among these is the
simu ltaneous—goal problem . To apply this princip le to the goal

In constructing a program to achieve two achieve x 
~ 

y and y ~ z
conditions P 1 and P 2 , it is not sufficient to
decompose the problem by constructing two in the sorting problem, we first construct the
independent programs to achieve P~ and P 2, program segment sor :2(x y) that achieves the
respectivel y. The program that achieves P 2 first condition- We then modify this program
may in the process make Pi false, and vice to achieve the second condition y s z. We
versa . Thus, the concatenation of the two cannot achieve this condition by inserting the
programs will not achieve both conditions. instruction sorc2(.y z) at the end of the

program, because (as. we have seen) this
For examp le, suppose we want to construct a modification violates the condition x � y,
program to sort the values of three variables which we must protect.
x , y ,  and z; in other words, we want to
permute the values of the variables to achieve However , our program-modification technique
the two conditions x 

~ 
y and y ~ z allows us to ath:eve a goal by inserting

simultaneously. A ssume that we are given the modifications at any point in the program, not
- 

primitive instruction sort2(u v), which sorts merely at the end. In this case, the technique
the values of its input variables u and v. causes us to introduce the two instructions
Then we can achieve each of our desired
conditions independently by executing the if y < x then sort2(r z)
program segment sore 2(x y) and sorr2(y z),
respectively . However , the concatenation and

-

- sorc2(x y) if x 
~ 

y then sor:2(y z)
- -

- 

sort2(y z)
at the beginning of the program segment.

of these two segments will not achieve both The modified program
conditions simultaneously; in sorting y and r,
the second segment sort2(, z) may make the if y < x then sort2(r z)
first condition x 

~ 
y false. if x 

~ 
y then sort2(y r)

sort2(x y)
To circumvent difficulties of this sort, we have
introduced the following simultaneous-goal will achieve both conditions x 

~ 
y and y ~ z

principle: simultaneously.

To satisfy a goal of form The derivation of straight—line programs with

- ..-~~~~=-—-----—
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simple side -effects is now fairly well language. All the synthesis techniques we
understood ; much work needs to be done on have developed can be app lied to program
the derivation of structure—changing programs transformation as well.
with conditional ex pressions and loops, and
the derivation of programs that alter list Data Abstract ion — In .riis approach, the
structures and other complex data objects . programmer expresses his program in terms of

abstract data ty pes . objects such as sets,
3.4.4 Applications to Programming queues, or graphs whose properties are well—

Methodology defined but whose precise machine
representation is left unspecified. When this

Although the develo pment of a practical program is complete, representations for its
program—synthesis system requires abstract data types are chosen and the

F considerable research effort , certain program is transformed to replace the
app lications of program—synthesis techniques operations on the abstract data types by the
to more restricted problems will be of more corresponding concrete operations on the
immediate practical value. Let us consider chosen representation. Program—synthesis
several of these areas , to see where program— techniques can be applied to perform this
synthesis techniques may be applicable, transformation process.

Structured Progra mming — Like program Program M odification — It is often observed
synthesis , structured programming presents that programmers spend more of their time
princip les for deriving a program extending programs that already perform
systematically from given specifications. some task correctly than they do in deve loping
However , the principles of structured new programs. This process is particularly
programming are intended to guide a human fraught with error , because in modifying a
programmer , whereas the principles of program, the programmer is likely to make
program synthesis are meant to direct a some change that interferes with the program’s
computer system. Nevertheless , we have original functioning. We have remarked that
found that some of the techniques we have a program-modification technique was
developed for a program—synthesis system developed to support the simultaneous—goal
could well be employed by a human principle. This technique can also be applied
programmer. In particular , we show that the to perform independent program-modification
recursion—formation principle is a better tasks. The protection mechanism ensures that
motivated guide for introducing a loop than the modified program must still perform the
the conventional structured— programming task for which it was originally intended.
method for the same task.

3.4 .5 Related Publications
Program Transformation — In this approach,
the programmer constructs a transparent Our work on program synthesis , which was

- 
- program for his task , which is likely to be partially supported by the ARPA Contract to

correct but whic h may be inefficient. This the Stanford Artificial Intelligence Laboratory,
program is then transformed into an efficient resulted in the following publications:
equivalent program, which may be more
difficult to understand. This transformation
process is guaranteed to produce a program 1. Z. Manna and R. Waldinger , Towards
equivalent to the original. Program automatic program synthesis , CACM, Vol.
transformation may be regarded as a synthesis 14 , No. 3 (March 1971), pp. 151—165 ,
tas k in which the specifications are given in
the form of a clear program in the target 2. Z. Manna and R. Waldinger , Knowledge

~ 
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and reasonin g In program synthesis , hO. Z. Manna and R. Waldinger, The
Artificial Intelligence, Vol. 6, No.2, pp. DEDALUS system , Proceedings of
175—208, the ACM - National Computer

Conference, Anaheim, CA (June
3. N. Dershowitz and Z. Manna, The evolution 1978).

of programs: A system for automatic
program modification, IEEE Transactions

- 

- on Software Engineering, Vol. 3, No. 5
(Nov. 1977), pp. 377—38 5,

4. Z. Manna and R. Waldinger , The logic of
computer programming, IEEE
Transactions on Software Engineering,
Vol. SE-4, No. 5 (May 1978),

5. Z. Manna and R. Waldinger , Synthesis:
Dreams -> programs , CACM (to appear),

and in the following conference presentations:

6. N. Dershowitz and Z. Manna, On( . automating structured programming,
Proceedings of the International
Symposium on Proving and
Improving Programs, Arc-et-
Senans, France (July 1975), pp. 167—
193,

7. Z. Manna and R. Waldinger, The automatic
synthesis of recursive programs,
Proceedings of the Symposium on

~I A rtificial Intelligence and
Programming Languages, Rochester,
NY (A ug. 1977), pp. 29-36,

8. Z. Manna and R. Waldinger , The automatic
synthesis of systems of recursive
programs , Proceedings of the Fifth
International Joint Conference on
Artificial Intelligence, Cambridge,
MA (Aug. 1977) pp. 405-411,

9. Z. Manna and R. Waldinger, The synthesis
of structure—chan ging programs ,
Proceedings of the Third
International Conference on
Software Engineering, Atlanta, GA

• (May 1978),
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4. Program Ver ification problems, Including adequacy of
documentation, efficiency of code, and

Personnel: David Luckham, Derek Oppen. adaptability of ex isting code to new
Fried rich vonHenke, Student Research specifications.
Assistants:  Richard Karp, Wolfgang
Polak , William Scherlis. Currently the group is working towards

applying analysis based on verification
The research of the Program Verification techniques to a very wide range of programs.
Group is directed towards the development of These include:
new programming methods and automated (i). new kinds of programs previously
programming aids. The goal is efficient considered to be beyond the limits of our
production of very reliable systems programs techniques; e.g., complicated pointer
including compilers and operating systems, manipulating programs , and large programs
and efficient maintenance of such programs. such as a compiler.

(ii) . programs using new language constructs
The group is active ly pursuing three main such as Modules and Concurrent Processes.
reseai’ch areas

This has required a research effort In design
I. Design and implementation of Interact ive of programming languages and documentation

program analyzers. languages, and in programming methods,
particularly in the area of concurrent

2. Design of a high level programming processes . This effort has been carried out
l?nguage and associated documentation with ver y careful attention to the DoD
language for concurrent processing. Common High Level Programming Language

specifications (31.
3. A pplicaiion of program analyzers , and

particularly verif iers, to such programming The references contain some of the group’s
problems a’ debugging, documentation, earlier work in areas I and S (above) which
proof of correctness , and analysis of has been published (e.g., (2. 7, 10, II, 15, 18,
modifications to code and specifications. 19, 27)). An overview of this work is

contained in [16).
Systems chat automate or partially automate
the analysis of properties of programs may be 4.1 Accompiishmneiits
collectively named ‘program analyzers”. The
group has implemented two analyzers, the I. The group has imp lemented a verifier for
Stanford Verifier and the Riinchec k system. almost the full Pascal language (exclusions
The current Stanford Verifier automates mainly concern floating point arithmetic). The
method s for analysing the consistency of a user manual [26) contains an Introduction to
program with its documentation. It is alread y program verification and many examples
a ’ useful debugging tool. The Runcheck illustrating the use of the verifier as an aid in
vem’sion of our verif ier , is designed to analyze debugging, documentation and structured
a program for possible common runtIme programming. The verifier is currently being
errors. It automates some simple methods for introduced at two other AR PAnet sites to test
improving documentation and analysing why Us portabilty and to obtain some preliminary
verifications fail. feedback from other user groups. Distribution

on a limited basis is planned for Fall 1978. A
Our experiments with these analyzers have library of documented and verified programs
made it clear that verification methods can be is being built and is available over the
applied to analysis of other programming AR PAnet from SAiL on the directory

(EX,VER3
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2. A special version of this ver if ier for Verification of documented modules has
- - 

automatic detection of runtime errors in already been successful on some substantial
programs has been implemented. This is examples. One exam ple is a module
called the Runcheck system. Results with an implementing Pascal pointer and memory
early version of Runchec k have been allocation operations within a subset of Pascal
published (German, (6)), and are the most whose only complex data ty pe is Arrays.
impressive in the area of completely automatic

— ana~y:is of programs so far. Work on 5. It is proposed that the programming
improvements to this system and on automatic language accepted by the verif ier include
documentation of Pascal programs is features for concurrent processing. A specific
continuing, design based on previous work of Kahn

(13,14), Brinch Hansen [I), and Wirth (28], is
3 . The success of this verif ier depends on being considered. This design satisfies most
recent advances made by this group in the of the DoD Ironman design specifications for
theory and implementation of cooperating paraljel processes ([3] section 9). A simple
special purpose decision procedures (Nelson operating system has been written in our
and Oppen (20, 21), Opperi (22)). This new language and is being studied . A theory of
approach to implementing theorem provers is semantics of concurrent processes and methods
the best method found to date. It will of documenting them is being worked out and
doubtless play an important role in the tested on parts of t he operating system.
Implementation of sophisticated analysis and

-~~ decision programs in application areas other 4.2 References
t han program verificat ion.

( I) Brinch-Hansen , P., “The Solo Operating
In developing an underlying theorem proving System: A Concurrent Pascal Program”.
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5. Image Understanding range data matched against terrain elevation
data . Stereo and motion parallax ranging Is

Personnel: Thomas Binford, Studvu attractive for guidance because it is passive.
Res earc h Assist ants: Donald Cennery, Stereo ranging can be very accurate and has
Reginald Arnold, Rodney Brooks, high spatial resolution. It makes use of well-
Russell Creiner developed sensors. Results of this program of

research would facilitate greater survivability
The objective of this research is to solve through use of passive sensing. At low
scientific problems that are crucial in altitude where cruise missiles and tactical
accoii~plishing certain tasks in missiles operate, the world appears
photointerpretatson and guidance. The two intrinsically three-dimensional; this research
areas of research considered here are should lead to useful capabilities In three—
algorithms for shape representation and shape dimensional sensing, navigation, and terrain
matching and algorithms for stereo mapping. modeling.
A further obj ective is to incorporate these
algorithms in computer systems which monitor The major objective of this research is to
airfields and buildings, and which locate solve scientific problems which stand in the
airfields, aircraft , and vehicles in aerial way of solution of practical problems in P1
photos. and guidance. A part of their solution is

implementation of algorithms and systems
5.1 Introduction which provide new image understanding

ca pabilities and which are generalizable in the
A photointerpreter typically works with a following sense: algorithms should solve well—
seq uence of images taken from an aircraft or defined subproblems which are common to
satell ite. He solves a puzzle by piecing typical tasks; systems for different tasks should
together selected and multiple clues from be assembled from a core of common modules
current images, back ground information , and and a few modules which are specific to the
previous images. In doing so, he relies heavi ly task. This objective has been approached by
on spatial interpretation from stereo imaging carrying out sample tasks in P1 and guidance
and shadows , and spatial knowledge about in designing and implementing the model—
structures. Cartographers produce contour based system. Instead of using special—
maps from stereo images and maps of special purpose routines, the general purpose
features (e.g. roads) and incorporate them in modeling and matching system will be used.
digital data bases. Photointerpretation (P1) The same system should be useful for vehicles,
and cartography production systems are being aircraft , and airfields.
increasing ly automated using computers . The
payoff is quicker response, higher throughput, The following scenarios indicate potential uses
and increased availability of resulting data . of these capabilities:

The results of this research are expected to Scenario 1
provide for automated systems the spatial
interpretation and effective stereo mapping Interactive aids to measurement: a P1 system
capabilities which are important for human measures capacity of oil tanks , cargo capacity
performance. These facilities will help to of truck traffic, and sizes of buildings
enhance the power of interactive aids in indicated by an interpreter.
measuring, counting, and recording, and in
screening and monitoring.

• Cruise missile guidance systems rely on radar

___________ -~~~~~-~~~~~--. ‘~~~~~~ —--
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Scenario II a. stereo mapping and segmented description,
b. shape matching and modeling, and

An Inter preter instructs a Pt system to monitor c. a system for programming Pt tasks.
aircraft on selected airfields. The system has
a library containing generic models of classes Spatial Understanding
of aircraft and specific aircraft models. For
exam ple, it has a model of the class of The approach of this research is based on a
commercial jet passenger aircraft , and models few observations.
of Lockheed L-l0I I, Douglas DC-tO , and
Boeing 747. The interpreter builds models of Typical data which are desired in P1 tasks
the airfields by indicating runwa ys, tax iways, are identification of objects, measurement of
parking areas and passenger terminals. The their location and orientation, and
interactive system helps by grouping edges description of their spatial structure and
and surfaces and making measurements. spatial relations.
Airfield models go into a library for future
use. As images come in, the system locates the Most forms of collateral knowledge, a priori
airfield, uses stei eo to map the airfield, pick knowledge, and world knowledge are
out objects on the field, and identify those knowledge about objects , surfaces, and
which are aircraft by class and type if known. spatial relations

Scenario Ill A natural means for photointerpreters to
specify P1 asks is in terms of spatial models

A building complex is monitored for changes. of objects and relations.
The system gives notice when new structures
are found, or roads or nearb y airfields are Most low levei constraints on stereo
changed. The interpreter makes an mapping and segmentation are geometric
assessment. The system aids him in updating relations in image and spatial domains.
and recording the model of the complex .

Recognition is most simple and most general
Scenario IV when image elements are interpreted as

t three—dimensional spatial structures.
An area is monitored for new buildings, new
airfields, and new roads. The approach adopted here was to perform

most inter pretation in the spatial (three—
The tasks in these scenarios require operations dimensional) structural domain, to build
of counting. measuring, and comparing. To powerful generic internal modeling capabilities
count requires identification. To measure for shape and spatial relations, and to build
requires segmenting features. For example , effective stereo si~at ial perception. This
measuring the volume of an oil tank requires approach to image understanding has been
separating out the top, measuring its diameter, called spatial und r stand ing.
separating the vertical cylinder and measuring
its height. To compare and to identify require 5.1.1 Stereo Mapping and Segm entation
a mechanism to build models of the buildings
or objects to be compared and descriptions of Research has been directed toward doing
meaningful differences. Programming new stereo mapping better and doing it faster.
tasks should be feasible for photointerpreters The mapping operation produces a three—
and not require months of effort by experts in dimensional map of visible surfaces of
computer vision. Carrying out the tasks in buildings and terrain , together with a
these scenarios makes use of three Image segmentation and symbolic description of
understanding abilities:

-~
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30 Im age Understanding

surfaces and their relations. One form of the problems to be solved are: (I) automating the
map is a table z(x ,y) of height as a function of matching of corresponding parts of images at
m~age coordinates , with a symbolic data base surface discontmnuities; (2) resolvIng
of surfaces described as plane or cylindrical, ambiguities by using global correspondence;
with orientations horizontal, vertical, or and (3) designing algorithms and machine
otherwise , and with parallel and orthogonal architectures to meet time objectives.
relations between surfaces . The ground
surface may be delineated and there may be This research program has taken the
additional terrain modeling, following approaches to solving those

problems: (a) development of edge—based
Consider what is desired of the stereo stereo which deals with the problem of surface
mapping process. It should be possible to discontinuity and provides increased accuracy ,
make measurements and segmentations of resolution and speed; (b) analyses of stereo
surfaces which are as accurate as the image matching which provide a fundamental basis
data permits . over selected parts of Images. It for algorithms for mapping; (c) interpretation
is not necessarily desirable to do so for entire in terms of surfaces which aids in cutting
images. The mapping algorithm should be computation and resolving ambiguities. The
efficient; that is it should perform in near - research would contribute to measurement by
minimum time for a given level of segmenung surfaces regardless of surface
performance and given level of hardware markings and camouflage. Intrinsic three—

F technology, dimensional measurements enable accurate
measurement of non-planar objects.

It should be possible to choose a good tradeoff
of performance and system complexity. To do The current level of performance of stereo

— so, it is important to characterize and mapping systems here is described in the
parameterize classes of mapping algorithms proceedings of recent Image Understanding
and to eva luate their performance and Workshops (A rnold. Cennery). Stereo systems
complexity. A U of this requires a produce depth maps which appear adequate
comprehensive analysis of stereo mapping, an for interpretation by the model—based P1
objective of this research. system. Both area-based and edge—based

stereo systems have been implemented. The
In cartograp hy. a ty pical function is mapping output of these programs is a three—
elevation contours. Several systems have dimensional map of small areas in one case,
partial success with the simple case of edges in the other. The ground plane and
ma pping smooth terrain. However , they have large planes are described and their
problems at buildings and with thin objects boundaries are crudely delineated.
(surface discontmnuities), over waler and
pavement which are uniform or surfaces with Existing change monitoring systems use
repetitive markings (ambiguity problem), and differencing of pairs of images after extensive
in trees w here there are a range of elevations, registration and warping. In radar images,
The systems have to be star ted r,ianually, The differencing may be effective if the images are
most success in dealing with these problems taken from the same viewpoint. In the visible
has been achieved here at SAIL and at CDC. part of the spectrum, changes in sun angle
These programs are complementary and still and shadows, rain or snow, and clouds cause
in progress. Fundamental work on analysis of intensity differences but these are not
stereo has been carried out at MIT Al Lab. Interesting changes. Meaningful changes are

changes In spatial structures , e.g. new
Research on advanced stereo mapping systems buildings.
Is progressing rapidly. The chief scientific

_ _ _ _ _ _ _ _ _ _ _  
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In the approach used here, a three- and service vehicles. Further , such techniques
dimensional structural description of the site Is are not capable of generic matching. That is,
constructed with the aid of existing knowledge an aircraft with external pods cannot be
of the site . Structural differences are reported. recognized as a variant of the unmodified
The model-based system and the stereo craft .
mapping system are used together in this case.

Severa l systems are relevant to counting and
5.1.2 Model-Based P1 Systeim i recording in tntei acuve Pt systems. SRI has

demonstrated a module which counts railroad
The second topic of this research is the design boxcars and another which could potentially
and implementation of a model-based P1 be used for counting vehicles on a road.
system. An interactive P1 system should aid Rochester has shown how ships at piers can
an interpreter by automating routine tasks like be counted. In this approach, little shape
counting oil tanks, measuring their volume, information is used. The systems make use of
and recording the results, and by taking over the restricted context of a road or rails or a
low priority screening and monitoring tasks. pier. On rails , only railroad cars are ex pected ,
To perform these casks , the system must be and it is only necessary to measure the
able to discriminate the objects to count or beginning and ends of cars. If it is necessary
monitor , and must delineate boundaries of to determine ty pes of vehicles on roads or cars
surfaces whose dimensions are to be measured . on rails, then more detailed shape
In simple cases, objects can be discriminated discrimination is essential. In the tasks - -

primarily by position obtained frcm maps; described in the preceding scenarios, powerful
trains run on rai ls; ships are found at piers. shape description and matching mechanisms

1 However , a ty pical P1 task is to monitor traffic are important.
of manpower, arms, and supply in one area.
To carry out this task , the P1 system needs to The approach used here has the capability for
identif y tanks and military vehicles, truc ks, generic interpretation and for detailed shape
gasoline trucks , and personnel carriers and to discrimination. It is a three—dimensional
identify types of railroad cars and ships with approach. The proposed approach does not
their cargos. These tasks require an ability to need a complete or perfect segmentation. It
describe shape and discriminate on the basis integrates segmentation with identification and
of shape. uses local shape elements for cues to further

detailed matching. It can thus tolerate many
Shape Matching errors, as long as there are significant local

features correctly described . Use is made of
Previous research here at SAIL has three-dimensional data and cues , including
demonstrated effective three-dimensional internal edges and markings and stereo maps.
matching of complex shapes (Nevatia). Its representation of shape is superior , which
A lternative techniques using the matching of means that it can make better discrimination,
moments of orthogonal polynomials [McGhee) w ith more compact representations. It has a
identify aircraft from complete and perfect three—dimensional part/whole representation
si lhouettes of Isolated aircraft. This is a two- which allows more accurate description of
dimensional approach. An exhaustive set of parts than other techniques.
projected views of each aircraft is recorded,
and the best match is found. That approach For examp le, this representation includes the
has only limited utility. It Is not now feasible knowledge that wings and tail are laminar,
to get perfec t silhouettes of’ isolated objects while the two—dimensional silhouette matching
reliably. For instance, aircraft are often not technique has no separate concept of wing or
isolated, but are connected to passenger ramps tail and no notion of three-dimensional shape. 
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The representation enables the description of A system like ACRONYM is the missing link.
objects by generic parts , which makes possible That is, natural language is useful only when
generic interpretation. it is very high level language. Using natural

language to program at the level of
Program m ing P1 tasks FORTRAN, LISP, or SAIL is of little help.

The hard part in writing vision programs is
Three systems represent the state of the art . programming vision-specific problems, not
The first , the Verification Vision system, was writing FORTRAN. Using natural language
built in research here at SAIL (Bolles). It interfaced to ACRONYM may be interesting.
depends on matching parts of a training
image to the test image. The orientation of 5.2 Progress in Model-Based Interpretation
objects in the test image must be
approximately the same as in the training The design criteria for the model—based
Image. It has the ability to order the sequence system are: the same system should be used for
of operations in a cost-effective wa y. It would several different tasks with minor
be effective for many problems, but not in the modifications; the system should be capable of
scenarios being investigated here. For generic interpretation . e.g. identifying an
example, we do not know in advance how object as an aircraft without necessarily
aircraft will be oriented. It has no capability identifying it as an L— lO II  or DC—IO; an
for generic matching and generic models. Its interpreter should find it easy to specify a new
only primitives are matching correlation task . The system is being built with airfields,
patches and curve matching. otitanks, aircraft , buildings, and vehicles as

r examples for interpretation and measurement.
The second , the Hawkeye system of SRI The system uses models in a more powerful
(Barrow). addresses tasks which can be way than other approaches and is expected to
simplified by use of a digital terrain map and lead to more powerful and more robust
a road map. It uses a detailed map data base performance in monitoring, measuring, and
of digital elevation data and a road data base. counting. The design and much of the
The system provides ca pabilities for implementation are completed . The following
registering images with the digital terrain map paragraphs indicate how these design
and localization of points of interest. With objectives were met.
these facilities, it has carried out several road
and rail monitoring tasks which are tightly A natural way for an interpreter to specify a
constrained to one-dimensional searches along task is in terms of object models, rather than
rails or road. programs. The system was designed with a

high level modeling language. A convenient
The third, the ACRONYM system, is being common language for interpreter and system is
built here at SAIL to deal with the issues based on object models.
raised in programming P1 tasks. One of these
key requirements is generic modeling and The criterion of generic interpretation forces
inter pretation. A nother key issue is encoding an approach different from other recognition
and using knowledge of P1 ex perts. P1 tasks systems which are oriented toward recognizing

- - typically require the integration of knowledge specific instances, not class interpretation . The
from structural interpretations of images with solution which was chosen was to use a
knowledge from collateral sources. part/whole representation in terms of generic

parts. The generalized-cone representation
Ultimately, interpreters should program in was originally designed to make this possible.
natural language. There are rudimentary The key design requirement was that the
natural language systems which could be used. primitives in the volume representation must

-:-:-‘- - —-
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aid in generic description of parts of objects.
For examp le. the representation should lead to USER
description of a fuselage as a circular cylinder
and wings as planar surfaces.

The interpretation process chosen was to
match elements of generalized cones with
elements of line drawings or surface elements HIGH LEVEL OBJECT

GRAPHof surface maps, and to match relations
between generalized cones with relations
between elements of line drawings or surfaces .
That process could go either top-down or
bottom-up. That is. it could also match
elements of line drawings or surface maps
with elements of generalized cones. An PREDICTOR OBSERVAB ILITY

NNER GRAPHoriginal intention of the generalized-cone
representation was that three—dimensional
cones map in a natural way to two—
dimensional cones (ribbons), and that two-
dimensional cones have a natural

cones.
interpretation in terms of’ three-dimensional

GRAPH
A subsystem was designed for predicting
appearances of parts of objects and one for
planning the strategy of matching. If the 1 1predictor were intended to predict appearances
for specific objects from specific viewpoints
with gray scale output . it could be done by STEREO 

j
~~~~~~~~~ T~~E

standard graphics techniques. Instead, it is I NAP
intended to predict appearances for classes of
objects over ~ range of viewpoints with
symbolic output. The predictor is intended to Figure ii Node -Based P1 Stje tem
choose quasm —Invarian ts (those features which
are approximately constant over a wide range In a typical scenar io, a photointerpreter gives
of viewpoints and parts variation), a brief symbolic description of a typical

airfield and shows examp les of some airfields,
Thus, there are three parts to the model-based from which specific and generic properties are
P1 system: the high level modeling subsystem, inferred. Initially, the most profound
whose output is an Object Graph; the inferences must be made by the user. That is,
predictor and planner whose output is an he must specify initially which properties and
Observability Graph; and the matcher whose dimensions are criteria l, that is, necessary, and
output is an Interpretation Graph. A intrinsic, and not just an accident of the
schematic of’ the system Is shown in figure 1. examples. It is expected that some of these

inferences can be made automatically, but
usually a broad knowledge base of functional
design is required to make such inferences
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automaticall y. For a simple example. to infer The motivation to build a modeling system
an approximate value for the length of can be appreciated by comparison with
runways for jet aircraft requires knowledge previous modeling systems. Briefly, they do
about their function for takeoff and landing of not provide symbolic results which are
aircraft and requires knowledge of distances necessary for reasoning about generic object
required for these operations for specific classes and generic viewing conditions, and
aircraft. This example appears practical to they are not general enough. They can be
mechanize. For others, it is more economical classified as those based on a few primitives
to make use of human k nowledge and such as cylinders and blocks (Braid) and those
inference. - based on polyhedra (Baumgart). Those based —

on simple primitives were not general enough
In order to use this ability of interpreters , to represent the ob ject s that were considered.
facilities for communicating this knowledge Those based on polyhedra did not have the
are required. Two sorts of communication are relationships and the part/whole
provided: object models; and rules for decomposition needed for reasoning about the
reasoning about models. For object modeling, models. Previous systems were aimed at
a high level modeling language has been built, hidden surface graphics; in the ACRONYM
with advanced ca pabilities. It is described system, symbolic information about edges and
below. For reasoning about models, some of surfaces was needed which was not available
the experience of the Mycin group is being in those systems. A previous modeling system
tapped to aid in encoding the knowledge of P1 based on generalized cones (Miyamoto and
ex perts. The knowledge is encoded in the Binford) provided a background for the
form of rules which are used in a backward— design of the new system.
chaining system for reasoning about models.
The rules are used to predict observables and The object models are embedded in an Object
will be used to suggest matching rules and to Graph. From the Object Graph, the system
make inference from examples. It may be predicts an A ppearance Graph and an
necessar y to redesign this reasoning system as Observability Graph. The relationships of
practical requirements make increasingly these graphs are shown in figure 1. The
sophisticated demands on the formal basis of’ Appearance Grap h is primarily for the user to

t the reasoning system. Prediction and visualize the internal models of the system. It
matching elements are described below, is also useful for reasoning about scenes where

L I the viewrng conditions are known and specific
5.2.1 The Modeling System object models are known. The Appearance

Graph is made by computer graphics
~~~~~~~ Objects are modeled in a high level language techniques. Some innovations in graphics

based on a generalized cone representation of were possible because of the generalized cone
primitives in a part/whole graph (Bmnfordi. representation. The predictor and planner
The represent itions of most objects are very has been implemented for a broad class of

4 compact; they are segmented into volume parts objects. Several analytic problems were
which seem natural to the user . This formulated whose solutions have resulted in
modeling system provides graphic aids for the efficient and general algorithms which are
user for modeling generic objects and expected to be useful in many tasks. Analytic
relations. The representation also seems solutions have been found for symbolic
natural for machine reasoning because display of generalized cones of’ two classes: the
important relationships between surfaces are first class has polygonal cross sections with
simply represented in the generalized cone linear scaling along a circular spine; the
models, second class has circular cross sections with

linear scaling along a straight spine. These
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analytic solutions are very fast , of order 20 These are properties which are stable over a
milliseconds. These are two elements of a broad range of variants of obj ects within the
scheme for a complete analytic solution for model class and stable over a broad range of
prediction for the most interesting subclass of viewing conditions- They are also selected for
generalized cones. There is reasonable hope visibi lity, that is easil y found by available
that the rest of the analytic solution will be operators The p~~dictor which builds the
found. Observability Graph is being implemented in

the form of a system of rules in a backward —
Analytic solutions are crucial for generation of chaining reasonir~’ s~,stem, in consultation
the Observa hil ity Graph which requires with members c~ the Mycin group Nodes of
symbolic relations. They are useful even for the Ob~er ,ihiiit. C:~ph corres pond to
t he Appearance Grap h. In most modeling features which c~ti ~~

. obtained from images,
systems , curved surfaces are displayed by that is . S u r t a c . ’ ¼ lines , and “ribbons , which
plane faces , with spurious edges, which are are generalized con’ s specialized to two
suppressed in some systems. In this system , dimensions Sin~.e obj ects are made up of
curved sui’faces are represented and disp layed cone primitives . observab les for cones and
as such , which contributes greatly to the relations bet w een cones are sufficient to
compactness and to the quality of the disp lay. generate the comp lete Observabilit y Graph
Consider the analogy with representing curves for all object models
in two dimensions. To represent a circular arc
by straight segments requires many segments 5.2.3 Matching
for high fidelity, while only a single circular
arc is required. or a few segments of a The matcher first makes a coarse selection of
polynomial spline. It is expected that match candidates based on nodes and arcs of
important contributions will be made to the Observabi lity Gra ph. It then makes a
cuetrng the combinatarics of hidden surface detailed march based on the Object Graph.
display because the representations are very Each primitive node in an Observability
compact. That is, in this system, Graph corresponds to a class of ribbons, or a
combinatorics are based on the number of surface; it may be viewed as a predicate which
objects rather t han on the number of accepts a ribbon or surface with a certain set
approximating planar facets , as in other of attributes. Contextual information
systems. The symbolic display module is provided by related parts or objects of the
incomplete. It does back surface elimination scene is encoded in arcs between these nodes.
for a fairly general class of objects, but does The matcher establishes a Linking Graph
not yet do complete hidden surface which has tentative links from nodes of the
elimination; other capabilities have higher Observability Grap h to t hose nodes of the
priority. Several designs are being considered. Picture Graph which satisfy necessary

conditions attached to the nodes of the
5.2.2 Prediction: The Observability Observab ility Graph. It then examines arcs

Graph of the Observabi lity Graph to determine
consistenc y between nodes.

The Observability Graph contains generic
and specific predictions about shape elements Two problems are encountered in matching
and relations which are observable. When programs. Errors are made on decisions based
specific objects and viewing conditions are on evidence which is too local, and
known, predictions about them are included, combinatorial search is prohibitive for global
The heart of the prediction mechanism is the decisions. The matcher uses the Observability
facility for generic predictions. These Graph in several mechanisms for efficiency:
predictions are in terms of quasi—invar iants. first , it uses shape and structure in a powerfu l 
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way in obtaining candidates for detailed ribbons. Because there are detailed
matching; second, it uses global information in expectat ions for each interpretation , it is
a coarse to fine matching strategy, matching useful to consider each. Locating taxiways .
coarse features from the Observability Graph storage areas , and aircraft , nearb y large fiat
and detailed features from the Object Graph; areas , and clear flight path along alleged
and third . it will match nodes in order of their runways supports an airfield interpretation.
cost—effectiveness for achieving the match. The On the other hand , locating connecting
matching will incorporate the structuring of highways , car traffic , buildings and
Observabi lity Gra phs which was introduced obstructions along the path , supports a
in previous research here at SAIL (Nevatia]. highway interpretation
That structuring reduces match combinatorics
drastically by imposing a attsce structure on A simplified version of an Airport serves as
matches- Of these efficienc y measures , the an example. Its Ob ject Gra ph can be briefly
effective use of sha pe prediction and described as a collect ion of several runways
structuring of graph matching are the most and taxiways . close to some te rminal and
powerful. Effective use of shape prediction is hanger buildings There will probably be
a majo r contribution of this research. air planes in the vicinity as well. The system

of runwa ys and ta x iways should be connected
Each match of a subgraph of 00, the and all these const ituent parts of an airport
Observabi lity Gra ph, with a subgraph of PC, should be in close proximity.
the Picture Grap h, corresponds to an
Inter pretation of that Observabi licy subgraph There are both parallel and intersection arcs

between runways in the Air port Object
inter pretation by mapping from Observability Graph. Intersect ions are usually planar . not
Graph to Picture Gra ph. Typically, there will overpass intersections. Several runways may
be multi ple spatial relations between edgEs be parallel. There will usually be runways in
and ribbons in the Picture Graph, only some several directions to accomodate wind changes.
of which are consistent wit h the Observability Further , there is often an underlying
subgraph. It is, however, a local mapping. equilateral triangle pattern dating back to the
Ttm e goal then is to determine the best overall time before jets , when runways were much
inter pretation , one which uses the full model. shorter. The glide path will be free of
Consider matches between nodes ON of the obstructions. Runways are connected by
Observability Gra ph and nodes PN of the taxiways to terminals or storage areas. A
Picture Gra ph. Global considerations, taxiwa y may be curved , relativel y short or
‘particula rly structural or spatial relations,) are hard—to —see.
used to determine whether a pair of ON-~PN
mappings is consistent. The consistency— At the next lower level, t hese parts must be

- 
. finding algorithm now invoked regards each defined . Runways must be straight , long,

ON-PN correspondence as a node in the level, narrow and visible. In addition , they
- 

‘
~ “Pairing Gra ph”. Its first task is to use the commonly have markings and a dotted line

arcs and relat ions of the OG to link together running down their center , and appear as
consistent pairs of these pairing nodes. It then roads which lead nowhere. (That is, they do
removes the more isolated nodes from this not connect into the highway system.) The
graph, to leave a large and self—consistent runway node is itself a graph. with two nodes,
sub-graph. the “outline” of the runway, a long straight

ribbon with high co itrast , and the dotted line
In the airfield example, the global context down the center of the runway. The range of
primarily involves distinguishing runways lengths and widths are approximately known.
from portions of highways among candidate The sole arc in the runway graph specifies

—,—- --- - ~~~~~~~~~~~ ~~-~~~~L
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that the dotted-line ribbon must be contained Thus far , the edge detection and subsequent
in the main ribbon and that their axes ribbon finding process , have been simulated
coincide, by hand. Also , the interfaces between the

Matcher and the Knowled ge Base are still
Ai rcraf t  are described in terms of grap hs being built. The matching process sketched
whose nodes are volume parts (fuselage, win gs, above refers to the driver routines — the real
tail , engines) and whose primitives are work will be done by the observability
generalized cones . functions; that is the node, arc , and relation

predicates.
There are two t ypes of nodes in the Airport
Observa hility Gra ph, runwa ys and aircraft. Past research contributed to these results. The
From almost any angle, runwa ys appear as formulation of “generalized translational
long, strai ght ribbons with constant width. invariance ” provided the generalized cone
They usuall y have markin gs and boundaries representation (Binford]. A symbolic display
with high contrast. Thus their boundaries or program based on generalized cones preceded
markings are likely to be found by edge this system [Miyamoto). A program of
finding routines. Runways are more easily research led to recognition of a doll, a toy
found than aircraft for this reason , as well as horse, and other complex objects [Nevatia],
their length and simple shape. Thus, based on data from a laser ranging system
strate gies derived from the Observability [Agin). Concepts and algorithms for
Gra ph are ex pected to focus attention on description of depth maps and for the
runwa ys. matching process were demonstrated in that

research.
In typical examp les, t here will be accurate
observer altitude, location and orientation and 5.3 Progress in Stereo Mapping
ground elevation. This will enable good
approximate estimates for length and width to New results in stereo mapping contribute to
be made directl y from the image. Under these showing the potential of accurate passive
circumstances , t ypical length and width are ranging. Passive ranging has a survivability
observab les. In many cases , the images could advantage over active ranging systems for
be registered with familiar observables. For cruise missiles in hostile environments. Stereo
exam ple, in photos of the San Francisco Bay mapping using edge matching has produced
A rea, the shore can be registered, to provide a stereo maps with a quality adequate for
measurement scale over the whole image. subsequent recognition. Several analytic
Even in other situations, when these quantities results have been obtained which will lead to
could not be included in the Observabihty faster and more accunte stereo mapping. The
Graph, the length to width ratio could be beginnings of a model for stereo mapping
used, as it would be large in almost any systems are beginning to emerge.
viewing situation; and this qualifies it as an
observable. In stereo viewing, measurements Edge-Based Stereo
can be made of flatness and levelness. They
would not be observables in monocular Results of depth maps of edges were obtained
viewing. With accurate observer location and with photos of San Francisco Airport , an
information, parallelism is accurately apartment building, and a parking lot
determined. Otherwise, In almost all cases [Arnold]. The system requires about two
parallelism is near ly preserved. Intersection is minutes of machine time to make a depth map
invariant. In stereo images, planar of edges of surfaces. The edge map appears
intersection can be determined, otherwise it adequate for identification. Edge maps are
can sometimes be inferred, relativel y continuous with few errors. The



~~
—

~~~
-“

~~~~~~~~ ~~~~~~~~~~~~~~ - .. --—
~~~~~~~~~ .

38 Image Understanding

depth resolution Is sufficiently good that It is surfaces (clouds, trees , hills), on the other
possible to tell that the wingtips are higher hand. are often curved with strong texture
tha n the wirigroots (dihedral). Some of the and indistinct or irregular boundaries. A
weaknesses of current edge operators ~how up general purpose vision system would need to
under the close scrutiny of image matching. employ both types of techniques.
The system has been rebuilt , with memory
management to work with very large images. An essential part of the research is the use of
and Is now being tested. context in matching. The system currently

uses local context of edge continuity, and the
This reseaich aims at high resolution of context of the ground plane. The system is
surface boundaries to make measurement of being extended to use context of locally planar
dimensions and angles. Typically, edge—based surfaces , with succe ssive approximation
techniques offer a factor of 10 improvement in modeling.
accuracy of determination of sur face
boundaries ove r area correlation methods. In If necessary. a model of the tr ansform from
cor relation , accurac y near a boundary is one image to the other can be obtained
limited to a fraction of the width of the automatically from the two images, with no
correlation window (typically 8x8). The knowledge of guidance parameters . an estimate
Hueckel edge operator , however , provides of velocity and ume between pictures is useful
measurements to a fraction of a pixel, even for to estimate the baseline between pictures
weak or noisy edges. Edge—based systems also (Gennery]. Imagine an aircraft approaching a
have an advantage with small objects. Poles runway. As it moves , objects on both sides
arid other long, thin objects are promin~nt appear to move radially outward from a
features , but are too small for correlation center , the fixed point. The center is the
windows , instantaneous direction of motion. The pilot

knows that the point which appears stationary
A serious deficiency of area correlation is is where he will touch down , unless he
failure at surface discontinuities. Simple area changes direction. If guidance information
correlation techniques inherently fail in the about the two images is available, that can be
vicinity of surface discontinuities because the used to eliminate the process of obtaining the
edge of an object appears against a different camera model. An Interest Operator
back ground area in each view of the stereo [Moravec) is applied to the left view to select
pair. It is important to locate surface approximately 50 “interestin g” points. A point

,\ discont inuities. since it is precisely the is “interesting” if it promises to be easil y
boundaries of objects where accurate locatable in two dinwnsions (ie. corners and
measui’ements are most important. However , intersections). A fast binar y search correlator

- 

- - edge oper ators are ineffective in the presence [Moravec) produces an initial match for each
of texture and most edge operators have point , searchin g the entire right image. The

— problems wi t h smooth shading. In those cases . corre lator uses a binary search strategy to
edge-based techni ques encounter problems, match points efficiently.
while corielat ion is effect ive. Thus, edge—
based and area-cor relation approaches are These matches are refined with a high
complementary. The edge—based system will resolution area coi relator [Gennery) and
work well in scenes of man— made objects and passed to a camei a model solver [Gennery].
poorly in natural scenes. For area correlation, This camera model program solves for four
the situation is just the opposite. The reason parameters~ I) direction of the stereo axis; 2)
is that man—made objects (cars , buildings) tend relative rotation between left and right views;
to have planar sur faces of uniform intensity 3) scale factor between left and right views; 4)
and well defined linear edges. Natural in the picture. It is useful to make the

_ _  ~~~~~~~~~~~~
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The usual camera solver determines S position. angle of edge, and brightness
parameters . Thus form is useful in the measures of edge elements are retained .
degenerate case in which scene heights are About 1200 edge elements (edgels) are
small with res pect to distance from the camera. produced from a 128x 128 picture in about 18
The relative positions (disparities) of each seconds. Only edge information is used in
matched pair along the stereo axis provide subsequent stag -es Edges from the left and
information on heights relative to the film right pictures are ii ansformed into standard
plane. At  this stage, about half the original coordinate system with the stereo axis in the x
50 points have been automaticall y rejected for direction and disparity shifts due to the tilt of
various reasons. The points and their heights the ground plane cancelled . Thus all points
are given to a ground plane finder [Genner y] lying on the ground plane will have identical
which fits a plane to a subset of them such x—y coordinates in the two views.
that few points are assigned heights below the
plane, some may be above the plane, and as Edges in the left image are matched with all
many as possible lie on the p lane. Total candidates in the right image. A grid of 8x8
processing for camera model and ground cells is set up for the left and right pictures ,
plane is about 8 seconds. each cell being the head of a linked list.

Candidates lie in a narrow band verticall y.
The camera transform provides the with disparity between the ground plane (zero
infoi-matson necessar y to measure distance of disparity) and the a priori disparity limit in
corres ponding points. It also determines the the x direction. Very loose tests on brightness
stereo axis. Search for matches can then be and angle are made to reject some potential
restricted to one-dimensional searches along matches. If the match is accepted , a disparity
the stereo axis , with a great saving in is calculated by proj ecting the right edgel to
computation, the y coordinate of the left edgel. On the

avera ge, this search produces 8 ambiguous
Iii ~ny stereo system , ambiguity is a major matches for each edgel. that is, 8 edgels that
problem. Edge elements in one view may agree in position , ang le and brightness. Most

t match with multip le edge elements in the of these ambiguous matches are actually
other view . For examp le, in the parking lot multiple edgels from different positions along
scenes , edges of cars , pavement markings and the same scene edge.
shadow edges are all parallel and are easily

- 
confused . Direction, brightness, colors, and Edge elements in the left image are linked if
contrast measurements extracted by the edge continuous in x and y, if t heir angles match
operator can guide the matching but are not wit hin 90 degrees and they are colinear , and If
strong conditions. If an edge has continuity in brighinesses are consistent on at least one side
t hree dimensions, then adjacent , matching of the edgels. Typically, t his produces S or 4
edgels along that edge should be continuous in links per edgel, and linked edgels tend to
both direction and disparity. Edge continuity follow edges of low to moderate curvature.
and consistenc y are strong conditions that Time for the matching and linking is 35
significantly affect ambiguity. The context of seconds.
t he ground surface is also important in this
matching process. A priori constraints may be Each edgel in the left picture has a list of
used during matching to limit the disparity linked edgels and a list of possible matches.
range to that of objects above the ground An ad hoc “voting” scheme was implemented
within a reasonable height, to establish a consensus for disparities of

possible matches of the edgel and those of
The next step is to raster-scan the Hueckel linked neighbors. Let E be an edgel and L an
edge operator over the two pictures; x-y edgel linked to E. Let dL be a disparity on

- ._
~~~~~~~ . - A
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40 Jrnage Understanding

L’s disparity list and dE a disparity on E’s navigation and is being pursued further. The
disparity list - If dL and dE are equal or amount of information required by these
nearly equal (within .125 pixel disparity) then curve features is quite small, permitting
dE gets two votes. 1’ dL and dE are close flexible flight paths with reasonable memory
(within .~tTh pixel disparity) then dE gets I requirements.
vote. Otherwise , there are no votes. A bell-
shaped distribution usually results about the

- 

- 

best disparity, with wild or inconsistent
matches out on the tails of the curve. The
maximum of the distribution is taken as the
disparity for F.. This processing takes 8
seconds. A file of edgels with their three
dimensional locations results .

Results of stereo edge maps for a passenger
terminal at San Francisco airport are shown in
Figure 2. The matches are sufficiently accurate
that the dihedral angle of the wings is
noticeable . A small percentage of errors are
noticeable in areas with repetitive patterns.
The matching is expected to be improved
significantly by incorporating the context of
surfaces.

Results of stereo edge maps are now being
used for aircraft recognition in the , -

ACRONYM system. They have been used
with routines aimed toward recognition of

• vehicles. A rectangle finder has been used to
describe the outline of cars in aerial photos.
Measui’ement of the length of a vehicle was
accurate to 5~.

The method outlined above suffers from some
serious problems. It relies heavily on the
Hueckel edge operator. While it may be one of
the best available , it is weak at slow intensity
gradients, where it finds a multitude of
parallel edges that tend to match at ever y
possible disparity. Second, it is a least squares
process, and so is easi ly led astray near corners
and in textured areas .

Woi k on sic, eo i’eglon-growlng [Hannah) and
motion sequences (Nevatia B) preceded this
research . A curve matching program matched
parts of images by a coarse-to—fine strategy of
matching long curves first [Bolles). That
approach has potential for cruise missile
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Figure 2a,b. Edge elem ents from a stereo pair at San Francisco Airport.
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Figure 2c. Matched edges near the ground. Figure 2d. Matched edges above the ground.
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42 Im age Understanding

5.3.1 Stereo mapping using area It has increased accuracy of matching. It
correlation estimates a probability estimate of the

correctness of the match. In the matching
Stereo mapping with area correlation has been sequence, matches are accepted based on the
extended to make complete stereo maps of a probability estimate. Even in areas of low
variety of images, aerial photos and ground information content , the noise suppression
level, with a completely automated system. ability often allows useful results to be
The system eStimates measurement accuracy obtained. The correlator also produces a
for each point The stereo mapping program measure of the precision of the match. If the
has been coiiibined with the ground surface information content is too low, the matc h is
finder to determine objects which stand above not well localized , and the correlator esti mates
the ground A plane finder has been used to large values for the standard deviations of the
locate planes above the ground, e.g. finding position. The standard deviations of match
the roof in aerial photos of an apartment positions are the basis for estimating errors in
house. spatia l position measurements. When errors

are large, searching can be terminated if
The stereo camera model and determination desired. In many cases , one standard
of the stem-co calibration are described in the deviation is large (for example, along a
section on stereo edge mapping. The Interest straight edge) but an accurate measurement
Operator and the Binary Search Correlator can still be made unless the eigenvector with
are used. Once the stereo camera model is large standard deviation lies almost parallel to
known , the search for matching points is the stereo axis.
constrained . A match for a given point must
lie along a ray in space which projects as a The ground surface finder is used to estimate
straight line in the other view. Because the ground level. Figure 3 shows a sequence
images are primarily composed of regions of steps in the operation of the system on a
corres ponding to extended surfaces , areas pair of pictures taken from ground level. The
have matches at approximately the same final picture shows the heights of image areas
stereo dis parity as neighboring points. For which are more than two feet above the
many areas , the search can be eliminated by ground. Heights are shown by arrows which

I :- using this neighborhood context. extend downward from the selected point to
1 the ground directl y beneath. It is apparent

The program divides one picture of the pair that the routine succeeds in isolating objects
Into square areas , typically 8x8. It selects a from the ground.
starting area and proceeds column by column
through the picture. It tries areas adjacent to
areas already matched and searches for
matches with disparity approximately the
same as its neighbors. Previous work here at
SAIL (Hannah) used a region growing
process. The current approach has an
advantage in that with some changes the
process requires only portions of the image to
be in memor y at any one time. That sort of
locality is not possible with a region oriented
approach.

A high resolution correlator was developed
- 4 which has several advantages for this purpose.
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6. Knowledge Based Programming personnel have been working on various
projects within these experts. Steve Tappel

Personnel: Cordell Green, Jerrold Ginsparg, wrote the rule expander for the program
Student Research Assistants: model builder; Step hen Westfold enhanced the
Philippe Cadiou, Richard Gabriel, examp les component of the inference expert;
Elaine Kant, Juan Ludlow, Philippe Cadiou worked on rules for coding
Brian McCune, Jorge Philips, - procedures; and Thomas Pressburger wrote
Thomas Pressburger , Louis Steinberg, programs to generate understandable program
Steve Tappet , Stephen Westfo ld models and complete handwritten program

models.
This section summarizes progress made on the
PSI program synthesis system during the past Personnel prev iously with the PSI Group
two years . (Creen—76B] is an overview of made many Important contributions. David
prior work. Barstow developed the coder; Ronny van den

Heuvel worked on explication of knowledge
A summary of the scope and design of PSI is about concept formation for the domain
given, followed by a discussion of its present expert; Bruce Nelson wrote the program model
capabilities. Then a number of examples of interpreter; Richard Pattis wrote a general
PSI in operation are given. Finally input parser for this interpreter; and Avra
publications by the Knowledge Based Cohn laid a groundwork of domain expertise
Programming Group are listed. and general programming knowledge.

-
. 6.1 Summary of time PSI Program Synth esis The major data paths and modules of the PSI -

System system are shown in Figure 2. There is one
data path for each specification method.

The PSI program synthesis system is a Currently these are English, input—output
computer program that acquires high level examples , and partial traces. A more
descri ptions of programs and produces conventional method, that of a very high level
efficient implementations of these programs. language, is a planned addition to PSI as
Simple symbolic computation programs are shown in the diagram. These specifications

— specified through dialogues that include are integrated in the program net and model.
natural language, input-output pairs, and
partial traces. The programs produced are in PSI’s operation may be conveniently factored

- 
‘-: LISP, but experiments have shown that the into two parts: the acquisition phase (those

system can be extended to produce code in a modules shown above the program model),
block structured language such as PASCAL . which acquires the model, and the synthesis

phase (those modules shown below the
PSI is organized as a collection of interacting program model), which produces a program
modules or programmed experts. The overall from the model.
design is a group effort , with one individual

- - having responsibility for each module as
follows: parser/interpreter , Jerrold Ginsparg;
trace and example inference expert , Jorge
Phillips; dialogue moderator , Louis Steinberg;
explainer, R ichard Gabriel; domain expert ,
Jorge Phillips; program model builder, Brian
McCune; coder, Juan Ludlow; and efficiency
ex pert, Elaine Kant. The block diagram in
Figure I shows these modules. Additional
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Figure Ii Block Diagram of the PSI Program Synthesis System
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Figure 2: MaJor Paths of Information Flow in PSI
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In the acquisition phase, sentences are first acquisition phase In contrast, knowledge
parsed. then interpreted and stored in the specific to one particular application domain
program net (also referred to as the “program (e.g., knowledge about learning programs) is
specification ” in [Ginsparg—78D. The parser concentrated in the domain expert , which
is a gene: al parser which limits search by supplies domain support by communicating
incor porating considerable knowledge of with other acquisition modules through the
English usage The interpreter is more program net.
specific to program synthesis , using program
descri ption knowledge as well as knowledge The program net and the program model are
about the question asked and the current topic two of the major interfaces within PSI. Both
to facilitate inter pretation into the program are high level plogra.n and data structure
net, description languages The program model

includes complete, consistent , and interpretable
The dialogue moderator guides the dialogue very high level algorithm and information
by selectin g or suppressing questions for the structures. The program net, on the other
user. It attem pts to keep PSI and the user in hand, forms a looser program description.
agreement on the current topic, provides a Fragments of the program net can be visited
review and preview of topics when the topic in the order of occurrence of the dialogue,
changes, helps the user who gets lost , and rather than in execution order, and allow less
allows mn niat ive to shift between PSI and the detailed , local, and only partial specification of
user. the program. Since these fragments

correspond rather closely to what the user says,
A new module is the ex plainer , which the y ease the burden of the parser/interpreter
generates in English reasonably clear questions as well as the trace and example inference

-
. about and descriptions of program models as module.

they a re acquired , in order to help verify that
the inferred program description is the one The program model builder [McCune—771
desired. It will also be able to explain the app lies knowledge of correc t program models
how and why of the acquisition and synthesis to Convert the fragments into a model. The
process to the interested user. model builder processes fragments, checkrng

for completeness and correctness, fills in detail,
An other input specification method is a corrects minor inconsistencies , and adds cross—
partial trace (Phiilips.-77]. A trace includes as references. It also generalizes the program
a special case an example input—output pair. description , converting it into a form that
Examples are useful for inferring data allows the coder to look for good
structures and simple spatial transformat ions. implementations. The completed program
Partial traces of states of internal and I/O model may be interpreted by the model
variables allow the inductive inference of interpreter to check that it performs as desired
control structures. The trace and exam ple by the user and also to gather information
inference ex pert infers a loose description of a needed by the efficiency expert , such as
program in the form of a program net, rather statistics on set sizes and probabilities of the
than a program model or other true algorithm, outcome of tests.
This technique allows domain support to
disambiguate possible inferences and also A fter the acquisition phase is complete, the
separates the issue of efficient implementation synthesis phase begins. This phase may be
from the inference of the user’s intention , viewed as a series of refinements of the

program model into an efficient program, or as
Various types of programming knowledge are a heuristic search for an efficient program that
distributed throughout the modules of the satisfies the program model. The coder 
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(Barstow—77C) has a body of program have been understood by the
synthesis rules (Green & Barstow-75, Green & parser/interpreter. A bout three versions of
Barstow- 7’7A ] which are applied to gradually each of five other programs have been coded
transform the program model from abstract (some, but not all , of these corresponding to
into more detailed constructs until it is in the dialogues processed by the parser/interpreter).
target language. The algorithm and data
structures are refined interdependently. The The basic system design has remained stable,
coder deals primarily with the notions of set but many new ideas have been incorporated.
and coriespondence operations and can The individual capabilities of the modules
synthesize programs involving sequences, have been improv ed and made more robust.
loops, simp le input and output, linked lists, An exp lanation system and one domain
arrays , and hash tables. module have been added. The interfaces

between the modules have been smoothed out
The refinement tree effectively forms a so that the entir e PSI system can be used
planning space that proposes only legal, but without manual intervention.
possibly inefficient, programs. This tree
structure is shared by the coder and the Work on PSI has been described in two Ph.D.
efficiency expert [Kant—77]. When the coder theses, six MS . projects , six conference papers,
proposes more than one refinement or and numerous other conference presentations.
imp lementation , the efficiency expert reduces A journal article on codification of
the search by estimating the time-space cost programming knowledge has also been
product of each proposed refinement. The accepted. A comp lete bibliography is listed

• better path is followed, and there is no backup under “Publications”.
unless the estimate later proves to be very bad.
An additional method to reduce the size of the The parserltnterpreter now understands over
search space is the factorization of the seventy programming concepts and has a
program into relatively independent parts so vocabulary of mor e than 175 words. Its
that all combinations of implementations are programming concepts include data structures
not considered. An analysis for bottlenecks (e.g., sets, records), primitive operations (e.g.,
allows the synthesis effort to concentrate on the input , membership), control structures (e.g.,
more critical parts of the program. loops, conditionals, procedures), and more

complicated algorithmic ideas (e.g., user —
In summary, we have formula ted a framework program interchanges, set construction,
for an automatic program synthesis system quantification). The parser/interpreter is
and have a start on the kinds of programming capable of understanding most dialogues
knowledge that must be embedded therein, which lie within the scope of its concepts and

vocabulary. User syntax is not an issue
6.2 Recent Progress on and Present because the parser efficiently parses a very

4 
Capabilities of PSI large grammar. The system can sometimes

determine the meaning of unknown words
The entire PSI system can now be used by a (e.g., what concept they represent) from the
knowledgeable user . A number of tests of the context in which they appear. The dialogues
entire system have been made. PSI which the system has understood include those
successfull y produced LISP code which specifying many variants of CLASS, several
implements the specifications given in English variants of NEWS (a news story retrieval
dialogues for four variants of CLASS, a program), TF (a learning program that uses
simple pattern classification program CLASS as a subroutine), and graph
(discussed in detail in the section on “Writing reachability.
CLASS”). In addition, ten other dialogues
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The dialogue moderator is capable of An initial version of a domain expert for
choosing which question posed by the information retrieval has been implemented.
parser/interpreter to ask. It has mechanisms Interfaces with the rest of the system are
(not yet interfaced to the rest of PSI) to clearly defined, and a common
answer the question, “Where are we?”, and representational base with the
most of the mechanism exists to handle a parser! ‘rpreter has been completed. This
request to change topic. The moderator has base, d the program net , has been used by
handled dialogues for NEWS and var iants of the parser for all the dialogues currently done
CLASS. by the system. The program net has also been

used in conjunction with the domain expert
The questions which are asked of the user are for the generation of a variant of NEWS.
now quite readable and coherent. Questions
use the same terms as the user did in previous A second version of the program model
sentences of the dialogue. For example, rather builder has been implemented . Its rule base
than asking for the definition of ~AOO l8 ”, PSI has increased to 350 rules. The new rules
now asks what it means for TMa scene to fit a incorporate knowled ge of correspondences (or
concept ”. This new question generation mappings) and primitive operations for
system has been used in t he dialogues for accessing them, of procedures and procedure
CLASS, NEWS , TF, and RECIPE (a recipe invocations , and of t ype coercion. The model
retrieval program similar to NEWS but easier builder also resolves type—token ambiguities
to understand). It has produced about twenty and transforms expressions to canonical forms.
substa ntially different sentence types. The A number of program models which are
current version shou ld be able to handle all variations on CLASS have been built as part
foreseeable dialogues with only minor of the entire PSI system. Separately the model
additions. The question generator is being builder has successfully constructed the more
expanded into a more general explainer which complex model for RECIPE.
will exp lain PSI’s understanding of the
program specification given by the user. The knowledge base of the coding module has

grown to about 450 rules. These rules have
PSI will allow programs to be specified by the been used to code a variety of programs
use of traces and examples. A version of the involving graph reachability and prime
trace component of the inference expert was number finding. The sets and
completed which handles simple loop and data correspondences used in these programs can
structure inference suc h as that needed for the be represented as lists , arrays, Boolean
CLASS and TF dialogues (see the section on mappings, or property lists. Several versions
“A lgorithm Inference from a Trace ”). The of CLASS, RECIPE, NEWS , and TF have
interface with the parser via the program net been coded. Insertion and selection sorts have
has been designed. Implementation is also been coded. Rules about reusing the
complete except for recognition of when the space in arrays have been written and used to
user is giving a trace rather than continuing synthesize in—p lace selection and tnsert~on
the dialogue. The examples component has sorts (see the section on “Coding an In—Place
been greatly improved, and an initial version Insertion Sort ”). Some unnecessary variables
incorporating our subsetting theories has been in the target code are now eliminated by
implemented. This determines (from an recomputing previously stored results. This
examp le input-output pair for a certain data can reduce the number of program variables
object) a suitable program transformation that by a factor of two.
could have carried the object from its initial
to its final state. The efficiency expert was used with the coder

to write five variants of CLASS, to write
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6.2 Recent Progress on and Present Capabilit ies of PSI SI

RECIPE, and to write a part of TF. In all generated for online viewing or printed out
cases different Imp lementations are selected for use in documents.
when difl’ei’ent data structure sues (for
exam ple) are assumed . More than one The program model Interpreter , which
representation for the same data structure can executes models interpretivel y as an
be used in a program. There are now rules alternative to coding them and running the
t hat suggest the circumstances under which target program, has been brought completely
various representations are plausible or up to date with the changes to the program
itiiplausible. This greatly reduces the search modelling language. It has correctly
space from the original space of all legal interpreted the ten program models available.
programs. Space-time cost estimates are used The Interpreter can now handle the general
to compare alternative plausible alternative s, case of an input statement in which the datum
Cost estimates are also used to identif y the to be input may be of any type occurring in a
decisions t hat may have the greatest Impact on tree of legal types.
the global program cost; the decision making
resources are allocated accordingly. A comparison was made of the running times

of interpreted program models versus
A nurnbe,’ of simulated dialogues have been corresponding compiled LISP functions coded
gathered , with a member of the PSI Group by the PSI synthesis phase. The functions

- playing the role of PSI and people not part of coded by PSI ran up to eleven times faster
the group as users. The question choosing than the interpreted models for very simple
disambiguate possible Inferences and also programs. We expect that time savings will
cur ient ly being tested by comparing Its grow more than linearly with program
behavior with the data from these dialogues, complexity.

Preliminar y designs have been completed for A rule expander for model building rules Is
an additiona l program specification technique, complete , making it easier to write new rules
It is a formal system with the flavor of a very for the program model builder. Rule
high level programming language. The preconditions arc written in a concise
l angu age allows manipulation of abstract declarative language, then the rule expander
algebraic sti-uctui’es such as mappings and sets. ti’anslates the declarative form Into the
The semantic support available through the required fetch and test operations, tak lrtg into
domain expert will allow the use of domain account any ordering constra ints which the
specific j argon in this language. This preconditions may have and avoiding
language will allow the user to specify quickl y relestung preconditions unnecessarily.
and precisely program descriptions that have
already been well thought out. 6.S Examp les of PSi

A system has been written w hich prints This section illustrates the performance of the
concise , understandab le versions of program PSI system in ooing a number of different
models in a PASCA L-like notation . The tasks. The first examp le shows a complete
internal representation of the model is run of PSI, from the Interactive dialogue to
designed for pi’ogramming efficiency and is the LISP target code produced, along with
hard for 1’eop le to understand. Listings in the output from intermediate stages. The second
concise notation are thus extremely valuable example is a ti’ace which is Input to the
for debugging. Any or all of the parts of a inference expert and the program information
model may be printed, and cross—refei’ence which is Inferred The final example shows a
tables are avai lable to index the concise listing hand-coded program model for an In-place
and the original model. Listings may be Insertion sort and the LISP program produced

by the synthesis phase.

t
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:4
Writing CLASS not it fits the concept, and outputs this

classification to the user .
This section documents the performance of
PSI in writin g a program called CLASS. A PSI: What is the structure of the concept?
brief description of the program is followed by
listings of the four major forms which its USER: A concept is a collection of relations.
spe ification assumes during its journey Each relation is just a string.
through PSI: an English dialogue between
the user and PSI, the program net produced PSI: What is the exit test of the loop?
by the parser/interpreter, the program model
from the model builder , and the final LISP USER: Stop when the user types “Q_UIT ”
program generated by the coder. instead of a scene.

Description of the Program PSI: What Is the structure of the scene?

CLASS is a simple program that includes USER: The same as the concept.
man y piogrammung constructs necessary for
more complex programs. The program PSI: Please define what it means for a scene
specified first inputs a samp le set of items (e.g., to fit a concept.
a list of job qualifications). Then the
program repeatedly inputs a trial set (e.g., th e USER: A scene fits a concept If all the

- - qualit ’ications of an applicant), tests whether relations in the concept are in the scene.
the sample set (required qualifications) is a

-‘ subset of the trial set (applicant qualifications), PSI: What is the format of the classification
and prints “FIT” or “DIDN’T FIT” output?
accordingly. The program is exited if the
word “QUIT” is ty ped instead of a trial set. USER: Output “FIT” If the scene fit,

“DIDN’T FIT” if it didn’t.
Dialogue

PSI: Are we finished?
The following dialogue was held with PSI to
specify CLASS. USER: Yes.

Program Net
PSI: What is the name of the program you

want to w rite? A program net is produced by the
parser/interpreter , based upon its

USER: CLASS. understanding of the dialogue. The following
description Is a summary of this net, the

PSI: Does CLASS have a special program algorIthmic part being printed in an
type? ALGOL-like notation.

USER: Classif ication. A2 is either a set whose gener ic element
is a str ing or a str ing whose value

PSI: Please describe CLASS. is “QUIT” .
Al is & set whose gener ic element Is a

USER’ CLASS first inputs a concept . Then str ing .
it repeatedly accepts an Input scene from A4 Is the generic element of Al.
the user, classif ies It based on whether or A3 is either TRUE or FALSE .

Ir. ,.,gi~JuuIIIIL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Bi is a va riable bound to A? items, then repeatedly inputs a trial set and
B2 is a va riable bound to A l. tests whether the sample set Is a subset of the
B3 is a va riable bound to A4. trial set . Since the universe of the sets is not

known , a subset test using a bit map, which
CLASS would be very fast , is not possible. So the

PRINT( ”Ready for the CONCEPT” ) subset test is implemented as an enumeration
Al REAO ( ) through the elements of the sample set, testing

LOOPI : each element for membership In the trial set.
PR1NT( “Ready for the SCENE”) When the trial set is small, a simple list (the
A2 REAU( ) same as the input format) Is a good choice of
IF EQUAL(A2 ,”Q UIT’ ) THEN GOJO EX1T1 representation for the sets. The resulting
A3 . F IT (A2 ,A l) program Is the second one shown below.
CASES: IF A3 THEN PR INT ( ” F IT ’ )

ELSE IF NOT(A3) THEN PRINT(”DION’T When the trial set is large, however , it may
FIT ” )  prove more efficient to convert Its represention
GO_TO LOOP 1 to a hash table format so that the membership

EXIT 1: test is much faster. PSI must check whether
such savings outweigh the cost of the

F I T ( B l , B2) representation conversion. The resulting
FOR_ALL B3 program for this case is the third program
IPIPL IES(PI EMBER(B3 ,B2), MEM&ER (B3,B1)) shown below.

Program Model

The program model builder uses the program
net produced by the parser/inteip~reter to
construct a complete model of the program.
From the internal representation of the
resulting program model, the understanda ble
model printer produces the readable form
shown on the next page. The actual model
also includes much cross-referencing

- 
- information.

A he rui ate Imp lementations

The program model is refined into target
- j language code by the coder and efficiency

expert . Dividing PSI into two separate phases
allows programs to be optimIzed by tak ing -

different runtime environments into account.
The program can be specified once and a
program model built. Then by giving
different size estimates, probabilities, or cost
functions, different target language programs
can be produced. The programs will of course
have the same input-output behavior , but the
code will be optimized differently based on the

• data structure sizes or other such parameters

Recall that CLASS reads a sample set of
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Readab le form
program CLASS ;

type
a0032 : set of’ string ,
a0053 alteri,atlve of (string a “QUIT” , a0032) ;

vera )aOOl I , aOOIj , aO0~5 ,a0036 a0032 ,
a0Of~5 ,~ L0O8O a0053 ,

• m0095 string a “DIDN’T FIT” ,
m0092 string “F IT” ,
mOO9l Boolean ,
m0081 : string a “QUIT ”

procedu re a0067(a0036 , a0035 : a0032) Boojea,i
a0O~5 c a0036

procedure 00065(a0055 : a0053) Boolean
a0055 ~ “QUIT”

begin
aQO l I inpist(aOO~2 , user , “READY FOR CONCEPT” ,

“I l le g a l input. Input again: “)
un ti l A0O~,l
repeat

beg in
niOO8O 

~
. inp ut(a0053 ,user , “READY” , ‘ I l le g a l Input. In put again: “) ;if 00065(wiOO8O) then assert exit condigio~(4OO51)

aO OI4 m0080;
m0091 — 40067(40014 ,aOOll)
case

—‘ ‘nOO9l : info rm us ’r ( ”OION’T F IT ”)
,n0091 inform . usser (”FIT” )

euidcase
end

finally
4005 1

endloop
end ;
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Here is CLASS using a list representation.

(CLASS
- (LAMBDA NIL

(PROG ( USER/M0025/C0025 )
(SETQ USER/M0025/C0025 (PROGN (PRINZ “READY FOR THE CONCEPT”)

(TERPR I)
algorithm of the dialogue moderator is

( PROG NIL
RPT/C0059

(PROG (USER/M0028/C0029 USER/M0021/C0030 USER/M0020/C0032)
(SETQ USER/P40020/C0032 (PROGN (PRIN1

“READY FOR THE SCENE”)
(TERP R I )
(RE AD)) )

(COND
((EQ USER/M0020/C0032 (QUOTE QUIT))
(GO L0040)))

(SETQ USER/M0021/C0030 USER/M0020/C0032)
(SET Q USERIMOO28 /C0029

(NOT (PROG (60049 60042 )
(SETQ 60049 USER/M0025/C0025)

RPT/C0060
( COND

• ((NULL 60049)
(GO 10050)))

(SETQ 60042 (CAR 60049))
(COND

((NOT (MEMBER 60042 USER/M0021/C0030))
- (GO 10046)))

(SETQ G0049 (COR 60049 ))
(GO RPT/C0060)

- I 10050
(RETURN Nil.)

L0046
( RETURN 1)

(COND
((NOT USER/M0028/C0029)
(PROGN (PRIN1 “DIDN’T FIT”)

(TER PR I ) ) )
(USER/M0028/C0029 (PROG N (PRINI “FIT”)

4 (TERPRI)
(GO RPT/C0059)

10040
(RETURN))

‘I

_________________ 
_ _ _  
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The following version is more efficient for larger sets because the input list is converted to a hash
table for processing.

(C LASS
CLAM8DA NIL

(PROG (USER/140025/C0025)
(S (TQ US (R/N0025/C0025 (PROG N (PRINI “READY FOR THE CONCEPT ”)

( IERPRI)
(RE AD) ))

(PROG Nit.
RPT /C0065

(PROG ( USER/M0028 /C0029 USER/M0021/C0030 USER/II0020/C0032)
(S(TQ IJSER/N0020/C0032 (PROGN (PR 1N I

READY FOR THE SCENE ”)
(TERP RI )
(READ)))

(CONO
((E Q U$(R/M0020/C0032 (QUOTE QU IT))

(GO 10040) ) )
(5(10 USER /M0021 /C0030 (PROG (60063 6005 1 60052)

(5110 60052 (HARRAY 100))
(SIlO 60063 USER /Pi0020/C0032)

RPT/C0067
(COND

((NULL 60063 )
(GO 10064)))

(S E TQ 600 51 (CAR 60063))
(PUTHASH 60051 T 60052)
(S ETQ 60063 (CUR 60063))
(GO RPT/C 0067)

10064
(RETUR N 60052)) )

(SETQ uSER/M 0028/C0029
(PROG (USER/T6 53?00/C 0036 )

(SETO USER /T653700/C0036 USIR/M0021/C0030 )
(RETURN (NOT (PROG (60049 60042)

(SETQ 60049 USER /110025/C0025)
RPT/C0066

(CON O
((NULL 60049)

(60 10050)))
(SETQ 60042 (CAR 60049))
(COND

((NOT (G ET HASH 60042
USER/T6 53700/C 0036))

(60 10046)))
(SETQ 60049 (CUR 60049))
(60 RPT/C0066)

10050
( R E T U R N  N IL )

10046
(RETURN T )

(COND
((NOT USER/M0026/C0029)

(PROG N (PRINt “DIDN ’T FIT”)
(TERPRI)))

(USER/P10028/C0029 (PROG N (PRIM ‘FIT s )
(TERPk :’I

(GO RPT/C0063)
10040

(RETURN) ) 

-- --------- - ------~~~~~~~~~~
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The following is an exa mp le run of the Shown below is a partial trace excerpted from
CLASS program above, a larger dialogue specifying TF. This excerpt

shows the process of updating the concept.
given a scene and a fit result.

.-(CLASS )
Concept: ()

READY FOR THE CONCEPT Scene : (( block a)( block b)(on
(MATH ENGLISH BIOLOGY RUSSIAN) a b))

R~~ult of fit: True
READY FOR THE SCENE Updated concept: (((block a) may)((block
(MATH PHYSICS CHEMISTRY ) b) may)((on a b)
DIDN’T FIT may))

READY FOR THE SCENE Concept: (((block a) may) ( ( b l ock
(FR ENCH ENGLISH MATH RUSSIAN) b) m ay) ( ( on  a b)
DIDN’T FIT may))

Scene: ( (b lock a)(b~ock b))
READY FOR THE SCENE Result of f i t :  False
(BIOLOG Y FRENCH RUSSIAN MATH ENGLISH Updated concept : (((block a) may)((b~ock

CHEMISTRY) b) may)((on a b)
FIT must ) )

• READY FOR THE SCENE Concept : ((( block a) may)((b loc k
QUIT b) may)((gn a b)
NIL must ))
I. Scene: {(block a)(b)ock

b)( block c)( on a b))
Algorithuii Inference from a Trace Result of fit: True

Updated concept: (((block a) may)((block
The trace example in this section shows part b) may)((block c)
of the desired behavior of a program called may)(( on a b) must))
TF. TF (for “Theory Formation”) is a
simplified version of Pat Winston’s concept From this examp le sequence the inference
formation program. Its goal is to form an expert generates the following explanation: If
internal model of a concept which the scene f its the concept, then add all
discriminates between “scenes” w hich are and relations In the scene but not present in the
are not part of the concept. TF builds up its concept to the concept and mark them with
internal mode) by repeatedly reading in a “may”. Otherwise, if the scene doesn’t fit the

-
- 

scene which may or may not be an instance of concept, then change the marking of all
the concept. For each scene, TF determines relations marked “may” in the concept and not

- - whethei it fits the internal model of the appearing in the scene from “may” to “must”.
concept and verifies this guess with the user.
The internal model is then updated based on Coding au In-Place Insertion Sort
whether or not the guess was correct. The
internal model consists of a set of relations, Programmers commonly use many tricks for

• each marked as being “must” or “may”. A saving storage space by reusing space that is
scene fits the model If all of the “must ” no longer needed. The following program
relations are in the instance; “may” relations illustrates space reutilization in an In—place
are optional. sort (Green & Barstow-77&). In this case

• both the source and target are arrays of size n,
arid the source may be destroyed, Items are to 

-
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be taken one at a time from the source and
placed in the target in ascending order. Thus,
the source is shrinking at the same rate as the
target is growing, and it becomes possible to
reduce the tota l space used from 2n to n. The
model below for this sort was handwritten.

type
source _ set : set of integer destruct ible ,
tar get_set : ordered set of integer ;

vars
source : 5OUTC~ Set
tar g et : target set reusin g source

procedure sor t(source : source _set)
target set ;

begin
target .— target .. se t{)
V item € source do 

- 

-

begin
delete(item , source) ;
inser t (itera , target)

end ;
ret urn (tar ge t)

-
~~ end ;

Coding rules indicate that the space reduction
is possible if both the deletion and addition
can be done in place, that is, by always
deleting or adding at the same end of the
source or target . Other coding rules are then
applied to find methods of In-place deletion
and insertion. In the resulting program a
single array is used, initialized to the source

• array . The target, Initially empty, grows
downward from the upper end of the array.
The target is kept sorted. Repeatedly the
source element at the boundary between source
and target is deleted, and a linear scan of the
target is used to find where to insert it. All
target elements below this point are shifted
down one location, and the source element Is

- 

• Inserted.

A fur ther improvemen t of the algorithm,
which in this case the coder did not make, is
to combine the two scan and shift

~ 

‘

~~ 

enumerations into a single enumeration.
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- Here is one possible implementation, as generated by the coder. Passing the source array as a
parameter to the function has been omitted.

- (SORT
(LAMBDA NIL

(PROG (USER _ S0URCE _S(T ,,,C0111 USER _ TARG L T _SET _CO1ZO)
(US ER SOURC E_SET_C0116 ((ARRAY 100) 1 I 100)
(USIR_TARG (T,..SET...C0120 • ( USER_SOURCE SE1’_COll$ :1

A US(R_SOURCI,,SET,..C0118 ::2 + 1
I USER,SOURC( SET_COI1I ::Z )

(PROG (60126 60127 60124)
(60126.’ USER,.,SOURC(_SET_C0116)

RPT _C0130
(60127 • 60128 : 2)
( i f  60128:2 61 60128 : :2 thin (GO L0129 ))
(60 124 • ( E LT USER ,,SOURCE_SET,.,CO116 :1 60127))
(PROG (60 132)

(G0 132.’(PROG (60142)
(60142 • US ER _ TARGE T ,..SET ,.~C0 120 :2 )

RPT ,C0144
(If G0142 GT US(R_TARGET,.,SET,.,C0120 ::2 thin (GO 1.0143))

~
j 

( If  ( ELI US(R_TARGET,SCT_C0120 :1 60142) 6T 60124
thi n (GO 1.0143))

(60142 G014 2.+ 1)
(GO RP T _C0144 ) ~~~-

1.0 143
( READ))) - -

(USER ,_ TA RG ET ,,.SET _C0120 :2 .‘ (US(R_ TARG ET _ SET ,..C0120 :2 - 1))
- •  ( PROG (60 136)

( 60136 US ER TARG ET ,,SET _C0120 :2 + 1)
RPT CO 138

(if 60136 61 (60 132 • 1) then (GO L0 137 ))
( ( ( IT  USER _ TA RGET _ SET , C0120 :1 (60136 • 1))

• (( IT US(R _ TARG E T,SE T C0 120 :1 60136))
(60 136.60136 + 1)
(GO RPI ...C0138)

L0137
(RETURN))

( (( IT USER .TARG ET , SET,..C0120 :1 (60132 • 1) )  • 60124))
(RPLACO (CDR 60126 )

((CDR (CDR 60126)) - 1))
(60 RPT , C0 130)

L01 29
(RETURN))

(RE TURN US(R,.,TA RGET,,SET,..C0120])



Knowledge Based Programming

6.4 Publications [Green-75) Green , Cordell, “Whither
Automatic Programming”, invited

(Barstow —77A ) Barstow , David , A tutorial lecture , Fourth International
K nowledge Base Organization for Rules Joint Conference on Artificial
about Programming”, Proceedings of Intelligence, Tbilisi, USSR, September
the Workshop on Pattern Directed 1975.
Inference Systems , S1GART
NewsI ~fte r , Number 63, June 1977, (Green-76A ) Green , Cordell, “The PSI
pages 18-22. Program Synthesis System , 1976”, ACM

‘76: Procadings of Mv Annual
(Barscow -77B) Barstow , David R.. “A - 

- Conference , Association for Computing
K nowledge Based Sys tem for A utomatic Machinery, New York , New York ,
Program Construction”, Proceedings of October 1976, pages 74—75.

• t h e  F zf t /i Inte rnationa l J oin: Conf~’rence
on ~4~tificial Intelligence— 1977 , Volume (Creen-76B) Green , Cordell, “The Design of
I, Department of Computer Science, the PSI Prograni Synthesis System”,
Carnegie—Mellon University, Pittsburgh , Proceedin gs Second International
Pennsylvania , August 1977, pages 382— Conference on Sof tware Engineering,
388. Computer Society, Institute of Electrical

and Electronics Engineers , Inc., Long
-_ [Barstow-77C ) Barstow, David R., Automatic Beach, California, October 1976, pages

Construction of Algorithms and Data 4-18.
Str uctures Usin g a Knowled ge Base of
Pro granimin ~’ Rules , Ph.D. thesis , Memo (Creen-76C] Green, Cordell , “A n Informal
A IM_ 308, Re port STAN-CS-77-64 1, Talk on Recent Progress in Au~omatic
Art i f ic ial Intelligence Laboratory, Programming ”, Lectures on Automat ic
Computer Science Department , Stanford Programming and List Proc essin g,
University, Stanford , California, P1 PS-R -12. Electrotechnical Laboratory,
November 1977. Tokyo, Japan, November 1976, pages 1—

69.
(Barscow & Ka nt—7 6 J Barstow, David R., and

Kant , Elaine, “Observations on the (Green-77] Green , Cordell, “A Summary of
Interaction Between Coding and the PSI Program Synthesis System”,
Efficiency Knowledge in the PSI Proceedin gs of the Fifth International
Program Synthesis System”, Proceedings Joint Conference on Arti ficial
Second in ternatio nal Conference on intelli genc e— 197 7, Volume I,
Software Engineering, Computer Department of Computer Science,
Society, Institute of Electrical and Carnegie-Mellon University, Pittsburgh,
Electronics Engineers, Inc., Long Beach, Pennsylvania , Augus t 1977, pages 380—
California , October 1976, pages 19—3 1. 381.

[Osnsparg-78J Gsnsparg, Jerrold M., Natural [Creen-78] Green, Cordell, “The PSI
Language Processing in an Automatic Program Synthesis System, 1978: An
P rog ramming Domain , Ph.D. thesis, Abstract ”, in Chosh , Saktt P., and Liu,
Memo A IM -316, Report STAN-CS-78- Leonard V., editors, AFIPS Conference
671, Artificial Intelligence Laboratory, Proceedings: 1978 National Computer
Computer Science Department , Stanford Conference, Volume 47, AFIPS Press,
University, Stanford, CalifornIa, June Montva)e, New Jersey, June 1978, pages
1978. 673-674 .



—— --- .- .- -
~ 

—•---
~ 

------ —.-. “-- — - ----•—--- ----- 

~~~~~~~~~~~~~~~~~~ —- —- -- -•- -- —-——---- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

— - - - - - —  - —- - — -— - - —-- - —••——--— •— —•—•---••—-——.-- ——--•--—- —-- - - — -  _ •._ ___j_ .•_____•__ _ •_ _ ___ __ _ __ _
- -  - - - 

~~~~ 
•1

6.4 Publications 61

(Green & Barstow—75] Green, Cordell, and Efficient Implementations for a High
Barstow , David, “Some Rules for the Level Language”, Proceedings of the
Automatic Synthesis of Programs”, Symposium on Artificial Intelligence
Advance Papers of the Fourth and Programming Languages,
International Joint Conference on S1GPL,AN Notices, Volume 12, Number
Arti ficial Intelligence , Volume I, 8, S1OART Newsletter , Number 64,
Artificial Intelligence Laboratory, August 1977, pages 140—146.
Massachusetts Institute of Technology,
Cambridge. Massachusetts, September (Kan t—7 8] Kan t, Elaine, “Efficiency
3975 , pages 232-239. Estimation: Controlling Search in

Program Synthesis”, in Chosh, Sakti P.,
(Green & Barstow-77A 1 Green, C. C., and and Liu, Leonard V., editors, AFIPS

Barstow , D. R., “A Hypothetical Conference Proceedingt. 1978 Nationai
Dialogue Exhibiting a Knowledge Base Computer Conference, Volume 47,
for a Program Understanding System”, AFIPS Press, Montvale, New Jersey,
in Elcock, E. W., and Michie, D., editors, June 1978, page 703.
Machine IntellI gence 8: Machine
Representations of Knowled ge, Ellis (McCune-77) McCune, Br ian P., “The PSI
Horwood, Ltd., and John Wiley and Program Model Builder: Synthesis of
Sons, Inc., New York, New York , 1977, Very High Level Programs”,
pages 335—359. Proceedings of the Symposium on

Artificial Intelligence and
[Green & Barstow —77B) Green, Cordell, and Programming Languages, SIOPLAN

Barstow, Dav id , On Program Synthesis Notices , Volume 12, Number 8,
Knowledge , Memo AIM-306, Report SIGART Newsletter , Number 64,

- STAN —CS—7 7—6 3 9 , Ar tificial August 1977, pages 330— 139.
Intelligence Laboratory, Computer
Science Department, Stanford (Phillips—77] Phillips, Jorge V., “Program
University, Stanford, Californ ia, Inference from Traces Using Multiple
November 1977. Knowledge Sources”, Proceedi ngs of the

Fifth International Joint Conference on
(Green & Barstow—78) Green, Cordell, and Arti ficial Intelligence—. 1977, Volume 2,

Bars tow , David, “On Program Synthesis Department of Computer Science,
Knowledge”, Arti ficial Intelli gence, to Carnegie—Mellon University, Pittsburgh ,
appear. Pennsylvania, August 1977, page 812.

(Green et aI.-74) Green, C. Cordell, (Shaw et al.-75] Shaw, David E., Swar tou t,
Waldinger, Richard J., Barstow , David William R., and Green, C. Cordefl,
R., Elschlager, Robert, Lenat, Douglas “Inferring LISP Programs from
B., McCune, Brian P., Shaw, David E., Examples”, Advance Papers of the
and Steinberg, Louis 1 , Progress Report Fourth international Joint Conference
on Program Understanding Systems , on Artificial Intelligence, Volume 1,
Memo A IM-240, Report STAN-CS-74— Artificial intelligence Laboratory,
444, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Computer Science Department, Stanford Cambridge, Massachusetts, September

• University, Stanford , California. August 1975, pages 260-267.
1974.

• (Kant—77] Kant, Elaine, “The Selection of



-- .-.

~~~~~~~~~

-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

62

Appendix A Donald Kap lan, AIM—60
• Theses The Formal Theoretic Analysis of Strong

Equivalence for Elemental Properties,
Ph. D. in Computer Science ,

Theses that have been published by this July 1968.
laboratory are listed here. Several earned
degrees at institutions other than Stanford , as Barbara Huberman, A IM—65
noted . This list is kept in diskfile THESES A Program to Play Chess End Games,
[BIB,DOC] eSU-A l. Ph.D. in Computer Science ,

August 1968.
D. Raj. Reddy, AIM-IS
An Approach to Computer Speech Donald Pieper, AIM—72
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Speech Wave , Computer Control,
Ph.D .  in Computer Science , Ph. D. in Mechanical Engineering,
September 1966. October 1968.

S. Persson , A IM-46 Donald Waterman , A IM—74
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Ph . 1) . in Comput er Science , University of
California, Berkeley, Roger Schank , A IM—83
September 3966. (RETuRN 60142)) )

for a Computer Oriented Semantics ,
Bruce Buchanan, A IM-47 Ph.D. in Linguistics , University of Texas,
Logics of Scientific Discovery, March 1969.
Ph.D.  in Philosop hy , University of
California, Berkeley, Pierre Vicens , A IM—85
December 3 966. Aspects of Speech Recognition by

Computer ,
James Painter , A IM-44 Ph.D. in Computer Science ,
Semantic Correctness of a Compiler for an March 3969.
Algol-like Language,
Ph.D.  in Computer Science , Victor D. Scheinman, A IM—92
March 396 7. Design of Computer Controlled Manipulator,

Eng . in Mechanical Engineering,
William Wichman , A IM-56 June 3969.
Use of Optical Feedback in the Computer
Control of an Arm , Claude Cordell Green, AIM—96
Eng. in Electrical Engineering, The Application of Theorem Provin g to
August 3967. Question-answering Systems,

Ph.D. in Electrical Engineerin g,
Monte Callero, AIM-58 August 3969.
An Adaptive Command and Control System
Utilizing Heuristic Learning Processes, James J. Horning, AIM—98
Ph .D. in Operations Research , A Stud y of Grammatical Inference ,
December 3967. Ph.D. In Computer Science ,

August 3969.
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Michael E. Kahn , A IM-l06 Jonathan Leonard Ryder , A IM—155
The Near -m inimum -t Im e Control of Open. Heuristic Anal ysis of Large Trees as
loop Articulated Kinemati c Chains , Generated In the Caine of Go,
P h . D .  in Mechanical Engineering, P/I D. in Computer Science ,
December 1969. December 1971.

Joseph Becker, AIM-1l9 Jean M. Cadiou , AIM- 163
An Information - processing Model of Recursive Definitions of Partial Functions
Intermediate-Leve l Cognition , and their Com putations ,
Ph.D.  in Compute r Science , Ph.D. in Compute r Science ,
May 3972. April 1972.

Irwin Sobel, AIM-121 Gerald Jacob Ag mn , A IM-l7S
Camera Models and Machine Perception , Representation and Descript ion of Curved
Ph. 1) . in Electrical Engineering, Objects,
May 1970. Ph.D. in Compute r Science ,

October 3972.
Michael D. Kelly, AIM—IS O
Visual Identif ication of People by Francis Lockwood Morris, AIM—174
Computer , Correctness of Transla tions of
Ph. D. in Computer Science , Programmin g Languages — an Algebraic
July 1970. A pproach ,

Ph.D. in Computer Science ,
Gilbert Falk, AIM-132 August 1972.
Computer Interpre atIoi~ of Imperfect Uric
Data as a Three -dimensio na l Scene , Richard Paul , A I M— 1~~Ph .D. in Electrical Engineering, Modelling, Trajectory Calculation and
Augus t 1970. Servoing of a Computer Controlled Arm,

Ph.D. in Computer Science ,
Jay Martin Tenenbaum, AIM-ISI November 1972.
Acco m modat ion in Computer Vision,
Ph.D.  in Electrical Engineering, Aharon Gill , A IM—l 78
September 3970. Visual Feedback and Related Problem s In

Computer Controlled Hand Eye
Lynn H. Quam, AIM-Ill Coordination,
Computer Comparison of Pictures, Ph.D. in Electrical Engineering,
Ph. D .  in Computer Science , October 1972.
May 1971.

Ruzena Bajcsy . AIM- 180
Robert E. Kling, A IM—l17 Computer Identification of Textured
Reasoning by Analogy with A pplications to Vis lual Scenes,
Heuristic Problem Solvin g : a Case Stud y , Ph.D . in Compute r Science ,
Ph.D.  in Computer Science , October 1972.
August 1971.

Ashok Chandra , AIM—188
Rodney A lbert Schmidt Jr., A(M-l49 On the Properties and A pplications of
A Stu dy of the Real-time Control of a Programming Scliemimas ,
Computer-driven Vehicle, Ph.D. in Computer Science ,
Ph .D. in Electrica l Engineerin g, March 1973.
August 1971 .
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Cunnar Rurger Grape , A IM-201 James R. Low, AIM-242• Model Based (liuter immed late Level) Computer Auto matic Coding: Choice of Data
Vision, Structures ,
Ph .D.  in Computer Science , Ph. D. In Compute r Science ,
May 1973. August 1974.

Yoram Yakimovsky, AIM-209 Jack Buchanan , AI M—245Scene Analysis Using a Sem antic Base for A Stud y in Auto m atic Programming
Region Growing, Ph.D. in Compute ? Science ,
Ph 1). in Computer Science , May 1971.
July 1973.

• Neil Goldman, A IM-247Jean E. Vuullernmn, A IM-238 Comimputer Generatio n of Natural Language
Proof Techni ques for Recursive Programs , From a Deep Conceptual Base
P/I D. in Computer Science , Ph.D. in Computer Science ,
October 1973. Januar y 1974.

Daniel C. Swinehart , AIM-230 Bruce Baumgart , AIM-.249
COPILOT: A Multiple Process Ap proach to Geom etric Modelin g for Computer Vision
Interactive Programming Systems, Ph.D. in Computer Science ,
Ph .D .  in Computer Science , October 3974.
May 3974.

Ramakarit Nevat ia , A IM—250
-
, James Gips. AIM-.231 Structure4 Descri ptions of Complex Curved

Shape Grammars and their Uses Objects for Recognition and Visual Memory
Ph.  1) . in Computer Science , Ph .D. in Electrical Engineerin g,
May 3974. October 1971.

Cha rles J. Rieger III, A IM— 233 Edward H. Shortliffe, AIM-.25l
Conceptual Meuimory : A Theory and MYCIN: A Rule-Based Com puter Program
Coin puter Program for Proces sing the for Advisin g Physicians Regardi ng
Meaning Content of Natural Language Antimicrobial Therapy Selectio n
Ut tera uices , Ph. D. in Medical Information Sciences ,
Ph.D. in Comp uter Science , October 1974.

• . June 1974.
Malcolm C. Newey, AIM-257Christopher K. Riesbeck , AIM—238 Formal Semantics of LISP With

Computational Understanding: Analysis of Applications to Program Correctness
Sentences and Context , Ph.D. in Computer Science ,
P/I D . in Computer Science , January 3975.
June 3974.

Hanan Samet, AIM—259Marsha Jo Hannah, AIM-239 Auto m atically Proving the Correctness of
Comnputer Matching of Areas In Stereo Translations Involving Optim ized Coded
Im ages, PhD in Computer Science ,
Ph.D.  in Computer Science , May 3975.
July 1974.
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David Canuield Smith, AIM-260 July 1976.
PYGMALION: A Creative Programming
Environment Michael Roderick , AIM— 287
PhD in Computer Science , Discrete Control of a Robot Arm

June 1975 . Engineer in Electrical Engineering,
August 1976.

Sundaram Ganapathy, AIM-272
Reconstruction of Scenes ContaIning Robert C. Bolles, AIM—295
Polyhedra Fromn Stereo Pair of Views Verification Vision Within a Programmable
Ph.D. In Computer Science , Assem bly System
December 1975. Ph.D. In Computer Science ,

December 1976.
Linda Gail Hemphill, AIM-273
A Conceptual Ap proach to Auto m ated Robert Cartwright , AIM—296
Language Understanding and Belief Practical Formmial Semantic Definition and
Structures: with Disam ubiguat lon of t Ime Verification Syste m s

Word ‘For ’ Ph.D. in Computer Science ,
Ph .D. in LinguIstics , December 1976.
May 19’5.

• Tod d Wagner , AIM.-304
Nor ihsa Suzuki , A IM—279 Hardware Verification
Automatic Verification of Programs with PhD in Computer Science ,

• Comp lex Data Structures September 1977.
Ph.D. in Computer Science ,
February 1976. William Faught, AIM—SOS

Motivation amid Intenslonality in a
Russell Taylor , AIM— 282 Com puter Si m ulation Model
Synthesis of Manipulator Control Programs Ph.D. in Com puter Science ,
From Task-Level Specifications September 1977.
P/I D in Computer Science ,
July 1976. David Barstow, AIM—508

A Conceptual Dependency Representation
Randall Davis , AIM-283 Ph.D. in Computer Science ,
A pplications of Meta Level Knowledge to December 1977.
the Construction, Maintenance
amid Use of Large Knowledge Bases

Ph .D. in Computer Science ,
July 1976.

Rafael Finkel, AIM—284
Constructing amid Debugging Manipulator
Programs
Ph. 1) . in Computer Science ,
August 1976.

Douglas Lenat, AIM-286
AM: Ai m Artificial Intelligence Approach to
Discovery in Mathem atics as Heuristic
Search
P/i D. in Computer Science,
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Appendix B 4. Gary Feldman and Donald Peiper,
• Film Re ports Avoid , 16mm color , silent, 5 minutes,

March 1 969.

Prints of the following films are available for An illustration of Peiper’s Ph.D. thesis. The
distribution. This list is kept in duskf ule problem is to move the computer controlled
FILMS [BIB,00C) eSU-Al. mechanical arm through a space filled with

one or more known obstacles . The film shows
1. A m i Eisemmson and Gary Feldman, Ellis the arm as it moving through various

D. K roptec lmev amid Zeus, his Marvelous cluttered environments with fairly good
• Tiine-sliariumg Systemmi , 16mm B&W with success.

sound, tE~ minutes, March 1967.
5. Richard Paul and Karl Pingle, Instant

— 
The advant ages of time—sharing over Insanity, 36mm color , silent , 6 minutes,
standard batch processing are revealed August, 1971.
thiough the good offices of the Zeus time-
sharing sys tem on a PDP-1 computer. Our Shows the hand/eye system solving the puzzle -

•hero, Ellis, is saved from a fate worse than Instant Insanity. Sequences include finding
• I death. Recommended for mature audiences and recognizing cube s, color recognition and
- 

• only. object manipulation. [Made to accompany a
- paper presented a the 1973 IJCAI. May be

2. Gary Feldman , Butterfinger , 36mm color hard to understand withou t a narrator.)
- I with sound, 8 minutes, March 1968.

6. Suzanne Kandra , Motion and Vision,
Describes the state of the hand—eye system at 16mm color, sound, 22 minutes,
the Art ificial Intelligence Project in the fall of November 1972.
3967. The PDP-6 computer getting visual
inform ation from a television camera and A technical presentation of three research
controlling an electrical—mechanical arm solves projects comp leted in 3972: advanced arm
simple tasks involving stacking blocks. The control by R. P. Paul [AIM—177], v isual
techniques of recognizing the blocks and their feedback control by A. Gill [AIM-l78), and
positions as well as controlling the arm are representation and description of curved
briefly presented . Rated AG”. objects by C. Agin [A IM-175] . Drags a bit.

3. Raj Reddy, Dave Espar and Art 7. Larry Ward , Com puter Interactive
Eusenson , Hear Here, 16mm color with Picture Processing, (MARS Project),
sound , 15 minu tes, March 1969. 36mm color, sound, 8 mm ., Fall 1972.

• Describes the state of the speech recognition This film describes an automated picture
project as of Spring, 3969. A discussion of differencing technique for analyzing the
the problems of speech recognition is followed variable surface features on Mars using data

- . 
by two real time demonstrations of the current returned by the Mariner 9 spacecraft. The
system. The first shows the computer learning system uses a time-shared , terminal orterited
to recognize phrases and second shows how PDP-lO computer. The film proceeds at a
the hand—eye system may be controfled by breathless pace. Don’t blink, or you will miss
voice commands. Comma nds as complicated an entire scene.
as ‘Pick up the small block in the lower
Iefthand corner’, are recognized and the tasks
are carried out by the com puter controlled
ar m.

9 ~- ,
—
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8. D.I. Okhocsimsky, ci al, Display from a run—time error . Finally, a cinematic
Simulations of 6-Legged Walk ing, first: two arms cooperating to assemble a
Institute of App lied Mathematics — USSR hinge.

• Academy of Science, (titles translated by
Stanford Al Lab and edited by Suzanne 12. Brian Harvey, Display Terminals at
Kandra), 16mm black and white, silent, 10 Stanford, 16mm B&W, sound, IS minutes,
minutes, 1972. May 3975 .

A display simulation of a 6—legged ant—like Although there are many effective programs to
walker getting over various obstacles. The use display terminals for special graphics
research is aimed at a planetary rover that applications, very few general purpose
would get around by walking. This cartoon timesharing systems provide good support for

4 favorite beats Mickey Mouse hands down. Or using display terminals in normal text display
rather , feet down. applications. This film shows a session using

the display system at the Stanford A ! Lab,
9. Richard Paul, Karl Pingle, and Bob explaining how the display support features in

Bolles, Automated Pump Assemb ly, the Stanford monitor enhance the user’s
16mm color, silent (runs at sound speed!), control over his job and facilitate the writing
7 minutes, April, (973. of display—effective user programs.

.1

Shows the hand—eye system assembling a
simple pump, using vision to locate the pump
body and to check for errors. The parts are
assembled and screws inserted, using some
special tools designed for the arm. Some titles

- ,  . are included to help explain the film.

10. Terry Winograd, Dialog with a robot,
MiT A . I. Lab., 36mm black and white,
silent, 20 minutes , 1971.

Presents a natural language dialog with a
simulated robot block—manipulation system.
The dialog is substantially the same as that in
Understan ding Natural Language (T.
Winograd, Academ ic Press, 1972). No
exp lanatory or narrative material is on the
film.

II. Karl Pingle, Lou Paul, and Bob Bolles,
Programmable Assembly , Three Short

• Exa m ples, 16mm color, sound, 8 minutes,
October 1974 .

The firti segment demonstrates the arm’s
ability to dynamically adjust for position and
orientation changes. The task is to mount a
bearing and seal on a crankshaft. Next, the
arm is shown changing tools and recovering
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A ppendix C 8. Barstow, Dav id , Elaine Kant, Observations . -

Externa l Publications on the Ineraction between Coding and
Efficiency Knowledge In the PSI
Program Synthesis System , Proc . 2nd

Articles and books by project members in!. Conf . on Software Engineerin g, IEEE
that have appeared since July 19’7 3 are listed Computer Society, Long Beach, California,
here alphabeticall y by lead author. Earlier October 3976 .
publications are given in our ten—year report
(Memo AIM-228) and in diskfile PUBS.OLD 9. Barstow , David, A Knowledge-Based
[BIB.DOCJ ,SU-Al. The list below is kept System for Automatic Program
in PUBS (BIB,DOC] .SU-AI. Construction , Proc . m t .  Joi n: Conf. on

4. !., August 3977.
I. A gin, Gerald J., Thomas 0. Binford,

Computer Description of Curved 10. Biermann, A. W. , R.I. Baum, F.E. Petry,
Objects, Proceedings of the Third Speeding Up the Synthesis of Programs
Internationa l Joint Conference ,n Arti ficial from Traces, IEEE Trans . Compu ters , —

Intelligence , Stanford University, August February 1975.
1973.

II. Bobrow, Daniel. Terry Wtnograd, An
2. Agin, G.J., TO. Binford; Representation Overview of KRL, a Knowledge

and Description of’ Curved Objects , Representation Language, J. Cognitive
IEEE Transactions on Computers , Vol C— Science, Vol . 1, No. 1, 3977 .
25, 440, A pril 3976.

12. Bobrow, Dan, Terry W inograd , & KRL
~~ . Aiello, Mario, Richard Weyhrauch, Research Group, Exper ience wi th KRL-O:

• Ch ecking Proofs in time One Cycle of a Knowledge
Metam athem atics of First Order Logic, Representation Language, Proc . In:. —

Ads ’. Pape rs of 4th In: . Joint Conference Joint Conf . on 4. 1., A ugust 3977.
on Arti ficial Intelligence , Vol. I, pp. 1—8,
September 1975. IS. Bolles, Robert C. Verification Vision for

Programnmnable Asse m bly, Proc . In!.
4. A rnold, R D., Local Context in Matching Joint Conf. on A . ! . ,  August 1977.

• Edges for Stereo Vision , Proc . Image
tinders tandin g Wor kshop, Boston, May 14. Brooks, R., R. Gremner, and T.O. Binford,

• 1978. A Model-Based Vision System ; Proc.
Image Unders tanding Workshop, Boston,

5. Ashcroft, Edward , Zohar Manna, Amir May 1978.
Pnueli, Decidable Properties of Moimodic
Functional Schemas, J. ACM , Vol. 20, 15. Cartwright , Robert S., Derek C~Oppen,
No. 3, pp. 189—499 , July 1973. Unrestricted Procedure Calls in Hoare’s

Logic, Proc . Fifth ACM Symposium on
6. Ashcroft, Edward , Zohar Manna, Princi ples of Programming Languages,

Translat ing Program Schemnas to While . January 1978.
schemas, SIAM Journal on Computing ,
Vol. 4, No. 2, pp. 32 5—346 , June 1975. 16. Chandra, Ashok , Zohar Manna, On the

Power of Programming Features,
7. Bajcsy, Ruzena, Computer Description of Computer Languages , Vol. 1, No. 3, pp.

Textured Scenes, Proc . Third in:. Joint 219-232, September 1975.
Conf. on Arti ficial Intelligence , Stanford

. U., 3973.

- ———s. ~~~~~~~~~~~~~; 1~~~~~~~~~~r ; .r_~
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• 37 . Chowning, John M., The Synthesis of 26. Faught , William S., Affect as Motivation
• Comnp lex Audio Spectra by mneans of for Cognitive and Comiative Processes,
fl Frequency Modulation, J. Audio Ad s ’. Pape rs of 4th m t .  Joint Conference

• Engineering Society, September 3973. on Arti ficial Intelligence , Vol. 2, pp. 898—
899, September 1975.

18. Clark , Douglas, and Green, C. Cordell, An
Em pirical Study of List Structure in 27. Feldman, Jerome A., James R. Low,
LISP , Communications of the ACM , Comnmnemit on Bre.mt ’s Scatter Storage
Volume 20, Number 2, February 1977. Algorithm, Comm. ACM , November 1973.

19. Colby, Kenneth M., Artificial Paranoia: 4 28. Feldman, Jerome A ., Yoram Yaktmovsky,
Computer Simulation of the Paranoi d Decision Theory and Artificial
M ode, Pergamon Press, N.Y., 3974. Intelligence: I A Semantics-based

• Region Alma lyzer, Arhficlal m id/i genes
20. Colby, KM. and Parkison, R.C. Pattern. J., Vol. 5, No. 4, Winter 1974 .

matching rules for the Recognition of
- 
1 

Natural Language Dialogue Expressions, 29. Finkel, Raphael , Russell Taylor , Robert
American Journal of Computat ional Bolles, P a: 

- ratil , Jerome Feldman,
Linguistics , 1, September 3974. An Overview of AL, a Programming

System u for Aut o m ation, Ads ’. Papers of
21. Dershowitz, Nachum , Zohar Manna , On 4th in! T c onference o~ A~taficial

Autom nat ing Structural Program m ing, Intellig .~~‘ - I. 2, pp. 758—765,
Cdlloques IRIA on Proving and Improv4ng Septembe
Programs, Arc-et -Senans, France, pp. 367—
193 , July 3975. 30. Floyd, Ri IUiS Steinberg, An

Adaptive A i~,,I ithin for Spatial
• 22. Dei shows tz , Nachum, Zohar Manna, The Greyscale, Proc . Society for Information

Evolution of Programs: a system for Display, Volume 1 7, Number 2, pp. 75—77,
auto m atic progra m modification, IEEE Second Quarter 1976.
Trans. Software Eng. , Vol. 3, No. 5, pp.
377—3 85, November 3977. 31. Fuller, Samuel H.. Forest Baskett , An

Analysis of Drum Storage Units, J.
k 

23. Dershowitz , Nachum, Zohar Manna, ACM, Vol. 22, No. 3 , January 3975.
Inference Rules for Program Annotation,

Automatic Construction of Algorithms 32. Furm t, Brian, WHISPE R: A Problem-
• Engineering, Atlanta , Ga., pp. 158—3 67 , solving Syste m utilizing Diagrams and a

May 3978, Parallel Processing Retina , Proc . In: .
Joint Conf. on A . ! . ,  A ugust 3977 .

24. Dobrotmn , Boris M., Victor D. Schelnman,
Design of a Computer Controlled 33. Gennery, Don A Stereo Vision System
Manipulator for Robot Research , Proc . far an Autonomous Vehic le, Proc . Irn’ .

• Third m i ’ . Joint Conf. on Art ificial Joint Conf. on 4. 1., August 39 77.
in telligence, Stanford U., 3973.

34. Gennery, D R., A Stereo Vision System
25. Enea, Horace, Kenneth Mark Colby, for Autonomnous Vehicles, Proc . image

Idioleclic Language-Analysis for Understanding Workshop, Palo Alto, Oct
Lliidcrstanding Doctor-Patient Dialogues, 1977.
Procadings of the Third International
Joint Conference on Artificial Intelligence,
Stan ford Univers i ty, August 1973.

~
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35. German, Steven , Automat ing Proofs of Knowledge, Ellis Horwood , Ltd., and Johntime Absence of Comnmnon Runtime Errors, Wiley and Sons, Inc., New York, NewProc . Fifth ACM Sym posium on York , 3976.Princi ple s of Programming Languages,
January 3978. 43. Green, C. C., A Sumnmary of the PSI

Program Synthesis System, Proc. m t .36. Goldman, Neil M., Sentence Joint Conf. on 4.!. , August 1977.Parapimrasiug Irons a Conceptual Base,
Comm . ACM , February 1975. 44. Harvey, Brian, lmmcrea s i .mg Programnmner

Power at Stanford with Display37. Goldman , Ron , Recent Work with the Termi.mals, Minutes of the DECsyst,m—1OAL Systemim , Proc . m t .  Joint Conf. on Sp r ing—75 DECCI S M eeting, Digital4.I ., August 1977. Equipment Computer Users Society,
Maynard, Mass., 1975.38. Green, Cordell, David Barstow , Some

Rules for time Au tosmma t ic Synth esis of 45. Hieronymus, J. L , N. I Miller, A. L.Programs, Adv. Pap ers of 4th in:. joint Samuel, The Amanuensis SpeechConference on Arti ficial Intelligence , Vol. Recognition System , Proc . IEEEI, pp. 2~2-239, September 1975. Symposium on Speech Recognit ion , April
1974.39. Green, Cor deil, and Barstow , David,

Som e Rules for the Automati c Synthesis 46. Hieronymus, J. L., Pitch Synchronousof Programs , Aas ’ance Papers of the Acoustic Segmentation , Proc . iEEEFourth International Joint Conference on Symposium on Speech Recognition , A prilArti ficial Intelligence, Volume I, Art ificial 1971.
Intelligence Laboratory, Massachusetts

• Institute of Technology, Cambridge, 47. Hilf, Franklin, Use of ComnputerMassachusetts , September 1975, pages 232— Assistan ce in Enhancing Dialog Based239. Social Welfare, Public Health, and
Educational Services in Developing40. Green, Cordell, The Design of t ime PSI Countries, Proc . 2nd Jerusalem Conf. onProgram Synthesis System , Proc. 2nd Info. Technology, July 1974.Int. Conf. on Software Engineer ing, IEEE-, - Computer Society, Long Beach, California, 48. Hill, Franklin, Dynamic Content

-; October 1976. Analys is, 4rchiu~s of General Psychiatry ,
January 3975.4 3 . Green, Cordel), The PSI Progra m

Syimthesis Systemim , 1976, ACM ‘76: 19. Hueckel, Manfred H., A Local VisualProceedings of the Annual Conference, Operator which Recognizes Edges andAssociat ion for Computing Machinery, Lines, J. ACM , October 1973.New York , New York, October 1976, pages
74-75. 50. Igarash i, S., R. L. London, D. C.

Luckham, Automatic Program42. Green, C. C., and Barstow, D. R., A Verification I: Logical Basis and ItsHypothetical Dialogue Exhibiting a Implementatiomi , Acta informatica,, Vol.Knowledge Base for a Prograimi 4, pp.145-182, March 1975.Uiiderstasmding System, in Elcock, E. W.,
and Michie, D., edm tor~, Machine
Inulligence 8: Machine Representations of
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External Publications 71

51 Ishida , Tatsuzo, Force Control iii 60. Luckham, David C., Jack R. Buchanan,
Coordination of Two Arms , Proc . m t .  Auto m atic Generation of Programs
Joint Conf. on A. ! . ,  August 1977. Containing Conditional Statements ,

Proc . A!SB Summer Conference, U. Sussex,
52. Kant , Elaine, The Selection of’ Efficient July 1974.

Imimplementat ions for a High-level
Language, Proc . SICA RT—SIOPLAN 61. Luckham , David C., Non Suzuki, Proof
Symp . on 4. 1. & Prog . Lang., August of Termination wi thin a Weak Logic of
197 7. Program s, Acta Informatica, Vol 8, No. I,

pp. 2 3-36, March 19 77.
53. Karp, Richard A., David C Luckham,

Verification of Fairness in au 62. Luckham , David C., Program
lnmpleuueumtatio n of Monitors, Proc . 2nd Verification and Verification-oriented
Intnl. Conf. on Software Engineering, PP. Programmning, Proc . I .F . l .P .  Congress
40—46, October 3976. ‘77, August 1977.

54. Katz , Shmuel, Zohar Manna, A Heuristic 63. Manna, Zohar , Programmi Schemas, in
A pproach to Program Verification , Proc . Currents in the Theory of Computing (A.
Third m t .  Joint Conf. on Arti ficial V. Aho, Ed.), Prentice-Hall, Englewood
Intelligence , Stanford University, pp. 500— Cliffs, N. J., l97~.
512, August 1973.

64. Manna, Zohar, Stephen Ness, Jean
55. Katz , Shmuel, Zohar Manna, Towards Vuillemin, Inductive Methods for

Au tomatic Debugging of Programns, Proving Propert ies of Program s, Comm .
Proc . m t .  Conf. on Reliable Software, Los ACM, Vol. 16, No. 8, pp. 49 3-502, August
Angel es, April 1975. 1973.

56. Katz , Shmuel, Zohar Manna, Logical 65. Manna, Zohar , Autom natic Programming,
Analysis of Program s, Comm. AC M , Vol. Proceedings of the Third International
39 , No. 4, pp. 188-206, A pril 3976. Joint Conference on Arti ficial Intelligence ,

Stanford University, August 3973.
57. Katz , Shmuel, Zohar Manna, A Closer

Look at Termniiiatioui, A d a  Informatica, 66. Manna , Zoha r, Mathematical Theory of
Vol. 5, pp. 333-352, A pril 1977. Computation , McGraw— Hill , New York ,

. 1971.
58. Lenat , Douglas B., BEINGS: Knowledge

as Interacting Experts , Adv. Papers of 67. Manna , Zohar , Amir Pneuli, Axio m atic
4th Int . Joint Conference on Arti ficial Approach to Total Correctness, Acta
Intelligence , Vol. I, pp. 326—133, Informatica, Vol. 3, pp. 243—263, 1974.
September 1975.

68. Manna, Zohar , Richard Waldinger,
59. Luckham, David C., Auto m atic Problem Knowledge amid Reasoning in Program

Solving, Proceedings of the Third Synthesis, Arti f icial Intelligence , Vol. 6,
International Joint Conference on Arti ficial pp. 175— 208, 3975.
Int~’lli gence, Stanford University, A ugust
1973. 69. Manna , Zohar, Ad i Shamir, The

Theoretical As pects of the Optimal
Fixpoint , SIAM Journal of Computing,
Vol. 5, No. 3, pp.4 31-426, September 1976.

L



_ _ _  ~~~Tiir ~ ~~~~ _ _ _ _

72 Appendix C

70. Manna. ‘ uiiar , Richard Waldinger , The 79. McCarthy, John, Mechanical Servants
Automat ic Synthesis of Recursive for Mankind, Britannica Yearboo k of
Programs, Proc . SIGART—SIGPLAN Science and tim e Future , 1973.
Symp. on 4.1. & Prog. Lang., August
1977. Pro c . 3rd m t .  Conf. on Software

Intelligence: A General Survey by Sir
71. Manna , Zohar , Richard Waldinger, Time James Lughthilh , Autficial Intelligence , Vol.

Auto matic Synthesis of Systems of 5, No. 3, Fall 1974.
Recursive Programs , Proc . m t .  Joint
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nnn”, where “yy ” is the last two digits of the

Abstracts are given here for Artific ial year of publication.
Intelligence Memos published since 1976 . For

4 earlier years. see our ten—year report (Memo Memos that are also Ph.D. theses are so
AIM-228) or diskfile AIMS.OLD (BIB ,DOC] marked below and may be ordered from:
oSU—A 1. The abstracts below are kept in University Microfilm
dms kfm)e AIMS [BIB,DOC) uSU-Al and the P. 0. Box 3316
title s of both earlier and more recent A . 1. Ann Arbor , Mmchigan 48306
Memos are in AIMLST(BIB,DOC) .SU-A1.

For people with access to the ARPA Network ,
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number on the left , a “CS” (Computer Science) file. These are designated below by “Diskfile:
number Er, the middle, and a NTIS stock <file name> ” appearing itt the header.
number (often beginning “A D...”) on the right.
Special symbols preceding the “AIM” number • A IM-2’7 7 CS-542 ADA027454
indicate avai lability at this writing, as follows: Zohar Manna , Ad i Shamir ,

+ hard copy or microfiche, The Theoretical As pects of the Optimal
o microfiche only, Fixedpoint,

* out-of—stock. 24 pages, March 1976.
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available iii hard copy only. Reports that are In this paper we define a new type of —

in stock niay be requested from: fixedpoiri t of recursive definitions and
Documentation Services investigate some of its properties. This
A rt ific ia l Intelligence Laboratory optimal f ixedpoint (which always uniquely
Stanford University exists) contains , in some sense, the maximal
Stanford , California 94305 amount of “interesting ” information which can

be extracted from the recursive definition, and
Rising costs and restrictions on the use of it may be strict ly more defined than the

- 1- research funds for printing reports have made program’s least ftxed poin t. This fixedpoint
it necessar y to charge for reports at their can be the basis for assigning a new semantics
replacement cost. By doing so, we will be able to recursive programs .
to reprint popular reports rather than simply
declaring them “out of print”. + AIM-278 CS-549 ADA027455
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4 
David Luckham , Norihisa Suzuki,

J Alternate Sources Automatic Program Verification Vt
Verification-Or iented Proof Rules for

A lterna tively, reports may be ordered (for a Arrays , Records and Poi,iters ,
nominal fee) in either hard copy or microfiche 48 pages , March l~t ’76. Cost: S3.O5
from:

Nation al Technical Information Service A practical mcthod is presented for
P. 0. Box 3553 automating in a uniform way the verification
Spr ing field , Virginia 22363 of Pascal programs that operate on the
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If there is no NTIS number given, then they RECORD , and POINTER. New assertion
may or may not have the report. In language primitives are introduced for

1 



Pr,, . -. .

~~

.—--- .. - - -- - - ---—-. 
- . .---— -. 

~~~~~~~~

I’ .

78 A ppendix D

describing computational effects of operauons to do by the programs. In many cases we are
on these data structures. Axioms defining the not sure what we want to verify and how we
semantics of the new primitives are given, should express them. These specification
Proof rules for standard Pascal operations on methods are not independent of the proof
poinrer variables are then defined in tei-ms of rules. Third . we have to construct an efficient
the extended assert ion language. Similar rules prover so that we can interact with the
for records and arrays are special cases . An verification process. It is expected that
extensible axiomatic rule for the Pascal repeated verificat ion attempts will be necessary
memory allocation operation, NEW , is also because programs and specifications may have

- , given, err ors at first try. So the time to complete one
verification attempt is very important in real

These rules have been implemented in the environment.
Stanford Pascal program verif ier. Examp les
illustrating the verification, of programs which We have chosen Pascal as the target language.
operate on list structures implemented with The semantics and proof rules are studied by
pointers and records are discussed . These Hoare & Wirth and Igarashi , London &

¶ include progiams with side-effects. Luckham. However , the y have not treated
complex data structures obtained from arrays,

• A I M—279 CS-552 records, and pointeis. In order to express the
Norihsa Suzuki , state of the data structures concisel y and

4’ Autom atic Verification of Programs with express the effects of statements we introduced
Complex Data Structures , special assertion language primitives and new

-
. Thesis: Ph . D .  in Computer Science , proof rules. We defined new methods of

194 pages, February 1976. introducing functions and predicates to write
asse:’tions so that we can express simplification

The problem of checking whether programs rules and proof search strategies. We
work correctly or not has been troubling introduced a special language to document
programmers since the earliest days of properties of these functions and predicates.
computing. Studies have been conducted to These methods enable users to express
formally define semantics of programming assertions in natural ways so that verification
languages and derive proof rules for becomes easier . The theorem prover is
correctness of programs. constructed so that it will be efficient for

proving a type of formulas which appear very
Some ex pei’imental systems have been built to often as verificatio n conditions.
mechanically verif y programs based on these
proof rules. However , these systems are yet We have successfull y verified many programs.

• far from attacki ng real programs in a real Using our new proof rules and specification
environment. Many problems covering the methods we have proved properties of sorting
ranges from theory to artificial intelligence programs such as permutation and stability
and programming languages must be solved in which have been thought to be hard to prove.
order to make program verification a practical We see no theoretical as well as practical
tool. First , we must be able to verif y a problems in verifying sorting programs. We
complete pi act ica l programming language. have also verified programs which manipulate
One of the important features of real pointers. These programs change their data
programming languages which is not treated structures so that usual ly verification
in early experimental systems is complex data conditions tend to be complex and hard to
structures . Next , we have to study read. Some study about the complex*ty
specification methods. In order to verify problem seems necessary.
programs we have to express what we intend

—--- ---— —— ------
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The verifier has been used extensively by the correctness and termination of programs
various users , and probably the most widely simultaneousl y. This approach , which we call
used ver if ier implemented so far. There is yet the (incermittent)- [assertion method], involves
a great deal of research necessary in order to documenting the program with assertions that
fill the gap between the current verif ier and must be true at some time when control is
the st andard programming tools like editors passing through the corresponding point, but
and compilers, that need not be true ever y time. The

met hod, introduced by Knuth and further
This dissertation was submItted to the developed by Burstall , promises to provide a
Department of Computer Science and the valuable complement to the more conventional

Januar y 3974. methods.
University in partial fulfillment of the
requirements for the degree of Doctor of We first Introduce and illustrate the technique
Philosophy, with a number of examples. We then show

that a correctness proof using the invariant
+ AIM-280 CS-555 assertion method at ’ the subgoal induction
David ID. Grossman , method can always be expressed using
Monte Carlo S imul a t ion  of Tolerancing in intermittent assertio ns instead , but that t he
Discrete Parts Manufacturing and Assembly, reverse is not always the case. The method
25 pages, May 1976. Cost: $2.40 can also be used just to prove termination,

and any proof of termination using the
The assembly of discrete parts Is strongly conventional well—founded sets approach can
affected by imprecise components, imperfect be rephrased as a proof using intermittent
fixtures and tools , and inexact measurernets. assertions . Finally, we show how the method
It is often necessary to design higher precision can be applied to prove the validity of
into the manufacturing and assembly process program transformations and the correctness
than is functiona lly needed in the final of continuously operating programs.
product. Production engineers must trade off
between a lternative ways of selecting This is a revised and simplified version of a
individual tolerances in order to achieve pevious paper with the same title (AIM—28 l ,
minimum cost , whi le preserving product June 3976).
integrity. This paper describes a
comprehensive Monte Carlo method for + AIM-282 CS-560
systematicall y analysing the stochastic Russell Taylor ,
imp lic ations of tolerancing and related forms Syn thesis of Mani pulator Control Programs
of imprecision. The method is illustrated by from Task -level Specifications ,
four exam ples, one of w hich is chosen from Thesis: Ph i) ~ (‘ np~~~ Science ,
the field of assembly by computer controlled 229 pages , July 19 76. Cost: $8.10
manipulators.

This research is diiccted towards automatic

~ A L M .281.I CS-558 AD-A 042 507 generation of manipulator control programs
Zohar Manna , Richard Wald inger , from task—level c pecit’icatlons . The central
Is ‘som etime ’ sometimes better t han ‘alwa ys’? assumption is that much m anipulator—level
Im ite r itmilteutl assertiouls in proving program coding is a process of adapting known
i o rt eCt i lC.sc. program constructs to particular tasks , in
4 I pagrs . June 1976, revised March 1977. w hich coding decisions are made by well—
Cost $285 defined computations based on planning

information. For manipulator programming,
I his p.i~iev ex plores a technique for proving the principal elements of planning information
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are: (I) descriptive information about the The creation and management of large
objects being manipulated; (2) situational knowledge bases has become a central problem
information describing the execution-time of artificial intelligence research as a result of
environment; and (3) action information two recent trends: an emphasis on the use of
defining the task and the semantics of the large stores of domain specific knowledge as a
execution-time environment, base for high performance programs, and a

concentration on problems taken from real
A standard subtask in mechanical assembly, world settings. Both of these mean an
insertion of a pin into a hole , is used to focus emphasis on the accumulation and
the technical issues of automating manipulator management of large collections of knowledge,
coding decisions. This task is first analyzed and in many systems embodying these trends
from the point of view of a human much time has been spent on building and
programmer writing in the target language, maintaining such knowledge bases. Yet there
AL , to identify the specific coding decisions has been little discussion or analysis of the
required and the plann ing information concomitant problems. This thesis attempts to
required to make them. Then, techniques for define some of the issues involved , and
repi’esenting this information in a exp lores steps taken toward solving a number
computationally useful form are developed, of the problems encountered . It describes the
Objects are described by attribute graphs, in organization, imp lementation , and operation
which the nodes contain shape information, of a program called TEIRESIAS, designed to
the links contain structural information , and make possible the interactive transfer of
properties of the links contain location expertise from a human expert to the
information. Techniques are developed for knowledge base of a high performance
representing object locations by parameterized program, in a dia log conducted in a restricted
mathematical ex pressions in which free scalar subset of natural language.
variab les correspond to degrees of freedom
and for deriving such descriptions from The two major goals set were (i) to make it
symbolic relations between object features. — possible for an expert in the domain of

= Constraints linking the remaining degrees of application to “educate ” the performance
freedom are derived and used to predict program directly, and (ii ) to ease the task of
maximum variations. Diffei’ential assembling and maintaining large amounts of
approximations are used to predict errors in knowledge.
location values. Finally, procedures are
developed which use this planning The central theme of this work is the

- 
. information to generate AL code ex ploration and use of what we have labelled

automatically. meta level knowledge. This takes several
different forms as its use is explored, but can

The AL system itself performs a number of be summed up generall y as “knowing what
coding functions not normally found in you know”. It makes possible a system which
algebraic compilers. These functions and the has both the capacity to use its knowledge
planning information required to support directly, and the ability to examine it, abstract
them are also discussed . it , and direct its application.

• A IM—283 CS-552 We report here oil the full extent of the
Randall Davis, capabilities it makes possible, and document

- 

,

, Applications of Meta Level Knowledge to cases where its lack has resulted in significant
the Construction, Maintenance and Use of diff iculties. Chapter 3 describes efforts to
Large Knowledge Bases, enable a program to explain its actions, by
Thesis: Ph .D .  in Computer Science , giving it a model of its control structure and
304 pages, July 1976. 
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an understanding of its representations. formulating and encoding the manipulation
Chapter 5 documents the use of abstracted task. The third chapter discusses the
models of knowledge (ru le models) as a guide problems involved in programming in the AL
to acquisition. Chapter 6 demonstrates the language, including program preparation,
utility of describing to a program the structure compilation , and especially debugging. A
of its representations (using data structure debugger, ALA ID, is designed to make use of
schemata). Chapter 7 describes the use of the complex environment of AL. Provision is
strategies in he form of meta rules , which made to take advantage of the multiple—
contain knowledge about the use of processor, multip le-process, real— time,
know ledge. interactive nature of the problem. The

principal conclusion is that the debugger can
• AIM—284 CS—56 7 fruitfully act as a uniform supervisor for the
Rafael Finkel, entire process of program preparation and as
Constructing and Debugging Manipulator the means of communication between
Prog rants , cooperating processors.
Thesis: P/i D. in Computer Science ,
17l pages pages , August 1976. • AJM-285 CS-568 PB-259 l3O/3WC

T. 0. Bmford , D. D. Grossman, C. R. Lui, R.
This thesis presents results of work done at C. Bolles, R. A. Finkel , M. S. Muj taba, M. ID.
the Stanford Artificial Intelligence Laboratory Roderick , B. E. Shimarm o, R. H. Taylor , R. H.
in the field of robotics. The goal of the work Goldman, J. P. Jarvis , V. ID. Scheinman, T. A.
is to program mechanical manipulators to Gafford ,
accomplish a range of tasks , especially those Exp loratory Study of Computer Integrated
found in the context of automated assembly. Assembly Systems , Progress Report 3.
The thesis has three chapters describing 336 pages, August 1976.
significant work in this domain. The first
chapter is a textbook that lays a theoretical The Computer Integrated Assembly Systems
framework for the principal issues involved in project is concerned with developing the
computer control of manipulators, including software technology of programmable
types of manipulators, specification of assembly devices , includ ing computer
destinations, trajectory specification and controlled manipulators and vision systems. A
planning, methods of interpolation, force complete hardware system has been
feedback , force applicat ion, adaptive control, implemented that includes manipulators with
coll ision avo idance , and simultaneous control tactile sensors and TV cameras, tools, fixtures,
of several manipulators. The second chapter and auxiliary devices , a dedicated
is an implementation manual for the AL minicomputer , and a time—shared large
man ipulator programming language. The Committee on Graduate Studies of Stanford
goals of the language are discussed , the terminals. An advanced software system call
language is def ined , the comp i ler descr ibed , AL has been deve loped that can be used to
and the exec ution environment detailed. The program assembly app lications. Research
language has special facilities for condition currently underway includes refinement of AL,
monitoring, data types that represent development of improved languages and
coordinate systems, and affixment structures interactive programming techniques for
that allow coordinate systems to be l inked assembly and vision, extension of computer
together. Programmable side effects play a vision to areas which are currently infeasible,
large role in the implementation of these geometric modeling of objects and constraints,

— features. This chapter closes with a detailed assembly simulation, control algorithms, and
programming example that displays how the adaptive methods of calibration.
constructs of the language assist in
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+ AIM-285.4 CS-568 P8-259 l 30/3WC Studies are described which focus on making
T. 0. Binford , C. R. Lui, C. Cm i, M. Cm i, 1. AL meet the realities of industrial research
Glaser, T. Ishida, M. S. Muj taba, E. Nakano, and production use. Results of a questionaire

- . H. Nabavi , E. Panofsky, B. E. Shimano, R. of leading industrial and research laboratores
Goldman. V . D. Scheinman, D. Schmelling, T. are presented. A summary is presented of the
A. Gafford, Workshop on Softwre for A ssembly, held
Exploratory Study of Computer Integrated immediately before the NSF—RANN
Assembly Systems, Progress Report 4, Conference at IITRI, Nov. 1976.
255 pages, June 1977. Cost: $8.85

. AIM-286 CS-570
The Computer Integrated A ssembly Systems Douglas Lenat ,
project is concerned with developing the AM: An Artific ial litlelligence Approach to
software technology of programmable Discovery in Mathematics as Heuristic
assembly devices. A primary part of the Search,
research has been designing and building the Thesis: Ph.D. in Compu ter Science ,
AL language for assembl y. A first level 350 pages, July l976.
version of AL ~s now imp lemented and
debugged , with user interfaces. Some of the A program, called “A M ’, is described which
steps involved in completing the system are models one aspect of elementary mathematics
described . The AL parser has been completed research: developing new concepts under the
and is documented in this report. A guidance of a large body of heuristic rules.
preliminary interface with vision is in “Mathematics” is considered as a type of

-

. 
operation. Several hardware projects to intelligent behavior, not as a finished product.
support software development have been
completed . One of the two Stanford arms has + AIM-287 CS-57l
been rebuilt. An electronic interface for the Michael Roderick ,
other arm has been completed. Progress on Discrete Control of a Robot Arm,
oth er hardware aspects of the AL systems is Thesis: Engineer in Electrical Engineering,
rrported . 98 pages, A ugust 1976. Cost: $4.45

Several extensions to AL are described. A The primary goal of this thesis was to
new interactive program for building models determine the feasibility of operating the
by teaching ~s running and undergoing Stanford robot arm and reduce sample rates.
furt her development. Algorithms for force A secondary goal was to reduce the effects of
compliance have been derived; a software variations in inertia and sampling rates on the
system for force compliance has been control system’s stability .
implemented and is running in the AL
runtime system. New algorithms have been A discrete arm model was Initiall y developed
derived for cooperative manipulation using to illustrate the effects of Inertia and sampling
two manipulators. Preliminary results are rate variations on the present control system.
described for parth calculation; these results Modifications were then suggested for
are steps along the way to a runtime path reducing these effects. Finally, a method was
calcula tor which will be Important in making demonstrated for reducing the arm sampling
an export version of AL. rate from its present value of 60 hertz to

approximately 45 hertz without significantly
Results are described in analysis of several effecting the arms performance.
complex assemblies . These results show that
two manipulators are necessary in a significant
fraction of assembly operations. 
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+ A IM-288 CS-572 + AIM-290 CS-575 AD-A042 494
Robert Filman , Richard Weyhrauch. Nancy W. Smith ,
An FOL Printer , SAIL Tutorial ,
36 pages , September l976 . Cost: $2.70 Si pages, November 1976. Cost: $3 .20

This primer is an introduction to FOL, an This TUTORIAL is designed for a beginning
inte ractive proof checker for first order logic, user of Sail, an ALGOL -like language for the
Its examp les can be used to learn the FOL PDPIO. The first part covers the basic
system, or read independently for a flavor of statements and expressions of the language;
our style of interactive proof checking. remaining topics include macros, records ,
Several examp le proofs are presented, conditional compilation , and input/output.
successively increasing in the complexity of the Detailed examp les of Sail programming are
FOL commands employed, included throughout . and only a minimum of

programming background is assumed .
FOL runs on the computer at the Stanford
Artificial Intelligence Laboratory. It can be e AIM—29 l CS-577 A044713
used over the ARPA net after arrangements Bruce Buchanan , Joshua Lederberg, John
have been made wit h Richard Weyhrauch McCarthy,
(network add ress RWW.SU—Al). Three Reviews of J. We izenbaum ’s

Computer Power and I-Iuinaui Reason,
+ AIM-289 CS-574 28 pages, November 1976.
John Reiser (ed ),

• SAIL, Three rev iews of Joseph Weizenbaum’s
178 pages, Au gust l976. Cost: $6.70 Computer Power anti Human Reason (W.H.

Freeman and Co., San Francisco, 1976) are
• SA IL is a high-level programming language reprinted from other sources. A reply by

for t he PDP-i0 computer. It includes an Weizenbaum to McCarth y’s review is also
extended A LGOL 60 compiler and a reprinted .
companion set of execution—time routines . In
addition to ALGOL , the language features: (I) + AIM-292 CS-580
flexible linking to hand-coded machine Terry Winograd ,
language algorithms, (2) complete access to the Towards a Procedural Understanding of
PDP— 10 1/0 facilities , (3) a complete system of Semantics ,
compile—time arithmetic and logic as well as a 30 pages, October 1976. Cost: $2.55
flexible macro system, (4) a high-level
debugger, (5) records and references, (6) sets The term “procedural semantics ” has been
and lists, (7) an associative data structure , (8) used in a varie ty of ways , not all compatible,
independent processes, (9) procedure variables, and not all comprehensible. In this paper, I
(10) user modifiable error handling, (II) have chosen to app ly the term to a broad
backtracking, and (12) interrupt facilities, paradigm for studying semantics (and in fact ,

all of linguistics) This paradigm has
This manual describes the SAIL language and developed in a context of writing computer
the execution-time routines for the ty pical programs which use natural language, but It is
SAIL user: a non-novice programmer with not a theory of computer programs or
some knowledge of ALGOL. It lies programming techniques. It is “procedural”
somewhere between being a tutorial and a because it looks at the underlying structure of
reference manual. language as fundamentall y shaped by the

nature of processes for language production
• and comprehension. It is based on the belief 

— ~~~~~~ ~._—_.. -~—.--- -- - ‘
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that there is a level of exp lanation at which to ex press the logical structure of the
there are significant similarities between the knowledge , in order to give flexibility in
psychological processes of human language use associating procedures (for memory and
and the computational processes in computer reasoning) with specific pieces of knowledge,
programs we can construct and study. Its goal and to control the relative accessibility of
is to develop a body of theory at this level, different facts and descriptions. The
This approach necessitates abandoning or formalism for declarative knowledge is based
modif ying several currently accepted doctrines , on structured concept ual objects with associated
including the wa y in which distinctions have descriptions. These objects form a network of
been drawn between “semantics ” and memory units with several different sorts of
“pragmat ics ” and between “performance ” and linkages, each havin g well—specified
“competence ”. implications for the retrieval process.

Procedures can be associated direct ly with the
The paper has three major sections. It first internal structure of a conceptual object. This
lays out the paradigm assumpt ions which procedural attachment allows the steps for a
guide the enterprise , and elaborates a model of particular operation to be determined by
cognitive processing and language use. It then characteristics of the specific entities involved.
illustrates how some specific semantic
problems might be approached fi’om a The control structure of KRL is based on the
procedural perspective , and contrasts the belief that the next generation of intelligent
procedural approach with formal structural programs will integrate data—directed and
and truth conditional approaches. Finally, it goal-directed processing by using multi—
discusses the goals of linguistic theory and the processing. It provides for a priority—ordered
nature of the linguistic explanation . multi-process agenda with explicit (user—

computer equipped with graphic display
Much of waht is presented here is a resource allocation. It provides p rocedure
speculation about the nature of a pradigm yet directories which operate along with process
to be developed . This paper is an attempt to frameworks to allow procedural
be evocative rather than definitive; to convey parameter ization of the fundamental system
intuitions rather t han to formulate crucial processes for building, comparing, and
arguments which justify this approach over retrieving memory structures. Future
others. It will be successfu l if it suggests some development of KRL will include integrating
ways of looking at language which lead to procedure definit ion with the descriptive
further understanding. formalism.

• AIM-293 CS-58 l A D-A042 508 + AIM-294 CS-586 AD-A042 516
Daniel Bobrow, Terry Winograd, Nachum Dershowitz , Zohar Manna,
An Overview of KRL, The Evolution of Programs: A Syste m for
40 pages, November 1976. Automatic Program Modification ,

45 pages, December 1976 . Cost: $2.95
This paper describes KRL, a Knowledge
Representation Language designed for use in An attempt is made to formulate techniques of
understander systems. It outlines both the program modification , whereby a program

• general concepts which underlie our research that achieves one result can be transformed
and the details of KRL—O, an experimental into a new program that uses the same
implementation of some of these concepts. principles to achieve a different goal. For
K R L  is an attempt to integrate procedural example , a program that uses the binary
knowledge with a broad base of declarative search paradigm to calculate the square—root
forms. These forms provide a variety of ways of a number may be modified to divide two

numbers in a similar manner , or vice versa.

_ _ _ _  _ _ _
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Program debugging is considered as a special consistency of a set of matches and to estimate
case of modification: if a program computes the resulting precisions about the points of
wrong results, it must be modified to achieve interest. An interactive VV system based
the Intended results. the application of upon these ideas has been implemented. it
abstract program schemata to concrete makes It possible for a person who is not an
problems is also viewed from the perspective expert in vision research to program visual
of modification techniques, feedback tasks. This system helps the

programmer select potentially useful
We have embedded this approach In a operatorlfeature pairs , provides a training
running implementation; our methods are session to gather statistics on the behavior of
illustrated with several examples that have the operators , automatically ranks the
been performed by it. operatorifeature pairs according to their

ex pected contributions, and performs the
+ AIM—295 CS-591 desired task. The VV system has also been
Robert C. Bolles , interfaced to t he AL control system for the

• Verification Vision Within a Programmable mechanical arms and has been tested on tasks
Assembly System, that involve a combination of touch, force,
Thesis: Ph .D.  in Com puter Science , and visual feedback.
245 pages, December 1976. Cost: $8.55

+A IM-296 CS-592
The long-range goal of this research is to Robert Cartwright ,
simplify visual information processing by Practical Formal Semantic Definition and

. computer. The research reported in this thesis Verification Systems ,
concentrates on a subclass of visual Thesis: Ph.D.  in Comp uter Science ,

- • information processing referred to as 158 pages, December 1976. Cost: $6.15
• verification vision (abbreviated VV). VV

includes a significant portion of the visual Despite the fact that computer scientists have
feedback tasks required within programmable developed a variety of formal methods for
assembly. There are several types of proving computer programs correct, the formal
information available in VV tasks that can verification of a non—trivial program is still a

- 

- facilitate t he solution of such tasks. The main formidable task. Moreover, the notion of
question addi’essed in this thesis is how to use proof is so imprecise in most existing
all of this information to perform the task verificat ion systems , that the v alidity of the
efficiently. Two steps are involved In proofs generated is open to question. With an
answering this question: (I) formalize the types aim toward rectifying these .problems, the

• of tasks , avai lable information, and quantities research discussed in this dissertation attempts
of interest and (2) formulate combination rules to accomplish the following objectives:
that use the available information to estimate
the quantities of interest. 1. To develop a programming language

which is sufficient ly powerful to express many
The combination rules that estimate interesting algorithms clearly and succintly, yet
confidences are based upon Bayes’ theorem. simple enough to have a tractable formal
They are general enough to handle operators semantic definition.
that are not completely reliable, i.e., operators
that may find any one of several features or a 2. To completely specif y both proof theoretic
surprise. The combination rules that estimate and model theoretic formal semantics for this
precisions are based upon a least-squares language using the simplest possible
technique. They use the expected precisions abstractions.
of the operators to check the structural

j



~~

-

~~

- 
_ _ _ _ _  -

86 Appendix D

3. To develop an interactive irogram verification system has proved a number of
verification system for the language which interesting, non-trivial theorems including the
automatically performs as many of the total correctness of an algorithm which sorts
straightforward steps in a verification as by successive merging, the tota l correctness of • 

-

possible. -.(continued next page) univ next the McCarthy-Painter compiler for
page expressions , the termination of a unification

, algorithm and the equivalence of an iterative
The first part of the dissertation decribes the algorithm and a recursive algorithm for
motivation for creating TYPED LISP, a counting the leafs of a tree. Several of these
variant of PURE LISP including a ftexible proofs are included in an appendix.

• data type definition facility allowing the
programmer to create arbitrary recursive types. • AIM—297 CS—6 10
It is argued that a powerful data type Terry Winograd ,
definition faci lity not only simplifies the task A Framework for Understanding Discourse,
of writing programs, but reduces the 24 pages, A pril 1977.
complexity of the complementar y task of
verifying those programs. There is a great deal of excitement in

linguistics, cognitive psychology, and artificial
The second part of the thesis formally defines intelligence today about the potential of
the semantics of TYPED LISP. Every understanding discourse. Researchers are
function symbol defined in a program P is studying a group of problems In natural
identified with a function symbol in a first language which have been largely ignored or
order predicate calculus language Lp. Both a finessed in the mainstream of language
standard model Mp and a natural deduction research over the past fifteen years. They are
system Np are defined for the language Lp. looking into a wide variety of phenomena,
In the standard model, each function symbol is and although results and observations are
interpreted by the least call—by—value fixed— scattered , it is apparent that there are many
point of its defining equation. An informal interrelationships. While the field s not yet at
meta—mathematica l proof of the consistency of a stage where it is possible to lay out a precise
the model Mp and the deductive system Np is unifying theory, this paper attempts to provide
given, a beginning framework for studying discourse.

Its main goal is to establish a general context
The final part of the dissertation describes an and give a feeling for the problems through

• interactive verification system implementing examp les and references. Its four sections
the natural deduction system Np. attempt to:

The verification system Includes: Delimit the range of problems covered by
the term Ndiscourse.~

j I. A subgoaler which applies rules specified
• by the user to reduce the proof of the current Characterize the basic structure of natural

goal (or theorem) to the proof of one or more language based on a notion of’
• subgoals. communication.
• 2. A powerfu l simplifier which automatically Propose a general approach to formalisms

proves many non—trivial goals by utilizing for describing the phenomena and building
user—supplied lemmas as well as the rules of theories about them
Np.

Lay out an outline of the different schemas
• With a modest amount of user guidance, the involved in generating and comprehending

language
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• AIM-298 CS-611 ADA016703 • AIM-900 CS-6I7
Zohar Manna, Richard Waldinger, • Terry Winograd,

• The Logic of Computer Programming, On sonic Contested Suppositions of
• 90 pages, June 1977. Generative Linguistics about the Scientific

Study of Language.
Techniques derived from mathematical logic 25 pages, May 1977.
promise to provide an alternative to the

• conventiona l methodology for constructing, This paper is a response to a recently
debugging, and optimizing computer published paper which asserts that current
programs. Ultimately, these techniques are work in artificia l intelligence is not relevant to
intended to lead to the automation of many of the development of theories of language. The
the facets of the programming process. authors of that paper declare that workers in

Al have misconstrued what the goals of an
In this paper, we provide a unified tutorial provided) strategies for stheduling and
exposition of the logical techniques, that there is no reason to believe that the
illustrating each with examples. We assess the development of programs which could
strengths and limitations of each technique as understand language in some domain could
a practical programming aid and report on contribute to the development of such theories .
attempts to implement these methods in This paper concentrates on the assumptions
experimental systems. underlying their view of science and language.

It draws on the notion of “scientific
+ A!M-299 CS-614 ADA049760 paradigms” as elaboi’ated by Thomas Kuhn,
Zohar Manna , Adi Shamir, pointing out the ways in which views of what
The Convergence of Functions to , a science should be are shaped by unprovable
Fixedpoints of Recursive Definitions, assumptions . It contrasts the procedural
45 pages, May 1977. Cost: 12.95 paradigm (within which artificial intelligence

research is based) to the currently dominant
The classical method for constructing the least paradigm typified by the work of Chomsky.
fixedpoint of a recursive definition is to It describes the ways in which research in
generate a sequence of functions whose initial artificial intelligence will increase our
element is the total ly undefined function and understanding of human language, and
w hich converges to the desired least through an analogy with biology, raises some
fixed point. This method, due to Kleene, questions about the plausibility of the
cannot be generalized to allow the construction Chomskian view of language and the science
of other fixedpoints. of linguistics.

In this paper we present an alternate + AIM-301 CS-624 ADA 044231
definition of convergence and a new Lester Earnest , et. al.,
[fixedpoint access) method of generating Recent Research in Computer Science,
sequences of functions for a given recursive 118 pages, June 1977. Cost: $5.00
definition. The initial function of the
sequence can be an arbitrary function, and the This report summarizes recent
sequence will always converge to a fixedpoint accomplishments in six related areas: (I) basic
that is “close” to the Initial function. This Al research and formal reasoning, (2) image
defines a monotonic mapping from the set of understanding, (3) mathematical theory of
partial functions onto the set of all fix edpoints computation, (4) program verification, (5)
of the given recursive definition, natural language understanding, and (6)

knowledge based programming. 
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+ AIM-502 CS-630 ADA 04976 I The DEDALUS system accepts specifications
• Zohar Manna, Ric hard Waldinger expressed in a high-level language, including

Synthesis: Dreams .> Programs. set notation, logical quantification, and a rich
119 pages, October 1977. Cost: $5.05 vocabular y drawn from a variet y of subject

domains. The system attempts to transform
Deductive techniques are presented for the specifications into a recursive, LISP—like
deriving programs systematically from given target program. Over one hundred rules have
specifications. The specifications express the been implemented , each ex pressed as a small
purpose of the desired program without program in the QL!SP language.
giving any hint of the algorithm to be
employed. The basic approach is to transform • AIM-SOS CS-631 ADA050806

- 

• the specifications repeatedly according to Nachum Dershowitz , Zohar Manna,
certain rules, until a satisfactory program is Inference Rules for Program Annotation ,
produced. The rules are guided by a number 46 pages, October 19 77.
of strategic controls . These techniques have
been incorporated in a running program Methods are presented whereby an Algol—like
synthesis system , called DEDALUS. program, given together with its specifications,

- may be documented automatically. This
Many of the transformation rules represent documentation expresses invariant
knowlede about the program’s subject domain relationships that hold between program
(e.g. numbers, lists, sets); some represent the variables at intermediate points in the

- - meaning of the constructs of the specification program, and ex plains the actual workings of
language and the target programming the program regardless of whether the
language; and a few rules represent basic program is correct. Thus this documentation

• programming principles. Two of these can be used for proving the correctness of the
principles, the conditional-formation rule and program, or ma y serve as an aid in the

• the recursion-formation rule, account for the debugging of an incorrect program.
• introduction of conditional expressions and of

recursive calls into the synthesized program. The annotation techniques are formulated as
The termination of the program is ensured as 1-b are-like inference rules which derive
new recursive ca lls are formed. invariants from the assignment statements ,

- 
- from the control structure of the program, or,

Two extensions of the recursion—formation heuristically, from suggested invariants. The
rule are discussed: a procedure—formation rule, application of these rules is demonstrated by
which admits the introduction of auxilliar y two examples which have run on our
subroutines in the course of the synthesis implemented system.
process, and a generalization rule, which

- 
• causes the spec i f ica tions to be extended to + AIM-304 CS-632 ADA048684

represent a more general problem that is Todd Wagner ,
nevertheless easier to solve. Hardware Verification ,

Thesis: PhD in Computer Science ,
The techniques of this paper are illustrated 102 pages, September 1977. Cost: $4.55
with a sequence of examples of increasing
complexity; programs are constructed for list Methods for detecting logical errors in
processing, numerical computation , and computer hardware designs using symbolic
sorting. These techniques are compared with manipulation instead of digital simulation are
the methods of “structured programming”, and discussed. A non-procedural register transfer

• with recent work on “program transformation”. language is proposed that is suitable for
describing how a digital circuit should
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• perform. This language can also be used to is either an action pattern (AP) or an
describe each of the components used in the interpretation pattern (IP). Both may have
design. Transformations are presented which either affect (emotion) conditions, external
should enable the designer to either prove or variables, or outputs of other patterns as
disprove that the set of interconnected their initial conditions (left—hand sides).
components correctly satisfy the specifications The PS activates all rules whose left—hand
for the overall system. sides are true, selects the one with the

highest affect, and performs the action
The problem of detecting timing anomalies specified by the right— hand side.
such as races , hazar ds, and oscillations is
addressed. Also explored are some interesting (2) A model of affects (emotions) as an
relationships between the problems of anticipation mechanism based on a small
hardware verification and program number of basic pain—pleasure factors.
verification. Finally, the results of using an Primary activation (raising an affect’s
ex isting proof checking program on some strength) occurs when the particular
digital circuits are presented. Although the condition for the affect is anticipated (e.g.,
theorem proving approach is not very efficient anticipation of pain for the fear affect).
for simple circuits , it becomes increasingly Secondary activation occurs when an
attractive as circuits become more complex. internal construct (AP , IP, belief) is used
This is because the theorem proving approach and its associated affect is processed.
can use complicated component specifications
without reducing them to the gate level. (5) A formalism for intensional behavior

(directed by internal models) requiring a
+ AIM— SOS CS-633 ADA048660 dual representation of symbol and concept.
William Faught , An intensional object (belief) can be
Mot ivation and Intensioiiality in a accessed either by sensing it in the

- 
• 

Computer Simulation Model, environment (concept) or by its name
Thesis: Ph .D. in Computer Science , (token). Similarly, an intensional action
104 pages, September 1977. Cost: $4.60 (intention) can be specified either by its

conditions in the immediate environment
This dissertation describes a computer (concept) or by its name (token).

- • simulation model of paranoia. The model
• mimics the behavior of a patient participating Issues of intelligence, psychopathological

in a psychiatric interview by answering modelling, and artificial intelligence
questions, introducing its own topics, and programming are discussed . The paranoid

• responding to negatively-valued (e.g., phenomenon is found to be ex plainable as an
threatening or shame—producing) situations. extremely skewed use of normal processes.

A pplications of these constructs are found to
The focus of this work is on the motivational be useful in Al programs dealing with error
mechanisms required to instigate and direct recovery, incompletely specified input data,
the modelled behavior, and natural language specification of tasks to

perform.
- • The major components of the model are:

+A IM-306 CS-639 ADA055175
(I) A production system (PS) formalism Cordell Green, David Barstow ,
accounting for the Instigation and guidance On Program Synthesis Knowledge,
of behavior as a function of irternal 63 pages, November 1977. Cost: $3.45
(affective) and external (real—world)

• 
- environmental factors. Each rule in the PS This paper presents a body of program

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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synthesis knowledge dealing with array explanatory theory of language should be, and
operations. space reutilization, the divide and of a program, there are innumerable
conquer paradigm, conversion from recursive conditions and functions that could be
paradigms to iterative paradigms, and ordered adopted as the invariant assertion and
set enumerations. Such knowledge can be termination function of a loop. With so many
used for the synthesis of efficient and in-place plausible candidates around, a correct selection
sorts including quicksort , mergesort, sinking requires an act of precognitive insight.
sort , and bubble sort , as well as other ordered
set operations such as set union, element As an alternative , we advocate a method of
remova l , and element addition. The loop formation in which the loop is

— knowledge is explicated to a level of detail represented as a recursive procedure rather
such that it is possib le to codif y this than as an iterative construct. A recursive
knowledge as a set of program synthesis rules procedure is formed when a subgoal in the
for use by a computer—based synthesis system. program’s derivation is found to be an
The use and content of this set of instance of a higher-level goal. The decision
programming rules is illustrated herein by the to introduce the new procedure, its purpose,
methodical synthesis of bubble sort, sinking and the choice of the termination function are

( sort, quicksort, and mergesort. all dictated by the structure of the derivation.

+ A IM—S07 CS-640 ADA055176 The directness of this recursion—formation
Zohar Manna and Richard Wa ldinger , a1iproach stems from the use of recursion
Structured Programming Without rather than iteration as a repetitive construct.
Recursion. Recursion is an ideal vehicle for systematic
iO pages. December 1977. Cost: $2.00 program construction; in avoiding its use, the

advocates of structured programming have
There is a tendency in presentations of been driven to less natural means.
structured programming to avoid the use of

— recursion as a repetitive construct , and to + AIM—3O8 CS-641 ADA053184
favor instead the iterative loop constructs. For David Barstow ,
Instance, In his recent book, “A Discipline of Automat ic Construction of Algorithms,
Programming,” Dijkstra bars recursion from Thesis: Ph.D. in Computer Science ,

- 
— his exemplary programming language, 220 pages, December 1977. Cost: $7.85

dec laring that “I don’t like to crack an egg
with a sledgehammer. no matter how effective Despite the wealth of programming knowledge
the sledgehammer is for doing so.” available in the form of textbooks and articles.

- ~- 
comparatively little effort has been applied to

In introducing an iterative loop, the advocates the codification of this knowledge into
of structured programming advise that we machine-usable form. The research reported
first find an invar iant assertion and a here has involved the explication of certain
termination function , and then construct the kinds of programming knowledge to a
body of the loop so as to reduce the value of sufficient level of detail that it can be used
the termination function while maintaining effectively by a machine in the task of
the truth of the invariant assertion. The constructing concrete implementations of
decision when to introduce a loop, and the abstract algorithms in the domain of symbolic
choice of an appropriate invariant assertion programming.
and termination function, are not dictated by
the method, but are left to the intuition of the Knowledge about several aspects of symbolic
programmer. programming has been expressed as a

- collection of four hundred refinement rules.

- - - 5= .  5- .—~~~
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The rules deal primarily with collections and of a relation on a graph and give a simple
mappings and ways of manipulating such algorithm for computing it. We then give
structures , including several enumeration, decision procedures for the quantifier—free
sorting and searching techniques. The theory of equality and the quantifier—free
principle representation techniques covered theory of LISP list structure , both based on
include the representation of sets as linked this algorithm. The procedures are fast
lists and arrays (both ordered or unordered), enough to be practical in mechanical theorem
and the representation of mappings as tables, proving: each procedure determines the
sets of pairs, property list markings, and satisfiability of a conjunction of length n of
inverted mappings (indexed by range literals in time O(n12). We also show that if
element). In addition to these general the axiomat izat ion of the theory of list
constructs , many low—level programming structure is changed slightly, the problem of
details are covered (such as the use of determining the satisfiabil ity of a conjunct ion
variables to store values), of literals becomes NP—complete. We have

implemented the decision procedures in our
To test the correctness and utility of these simplifier for the Stanford Pascal Verifier.
rules, a computer system (called PECOS) has
been designed and implemented. Algorithms An earlier version of this paper appeared in
are specified to PECOS in a high-level the Proceedings of the 18th Annual
language for symbolic programming. By Symposium on Foundations of Computer
repeatedly applying rules from its knowledge Science, Providence, October 19’? ’?.
base, PECOS gradually refines the abstract
specification into a concrete implementation in + A IM—3l0 CS—651
the target language. When several rules are Nachum Dershowitz , Zohar Manna,
applicable in the same situation, a refinement Proving Termination with Multiset
sequence can be split. Thus, PECOS can Orderings,
actually construct a variety of different 33 pages, March 1978. Cost: 12.65
implementations for the same abstract
algorithm. A common tool for proving the termination of

programs is the well-founded set, a set ordered
PECOS has successfull y implemented in such a way as to admit no infinite
algorithms in several application domains, descending sequences. The basic approach is
including sorting and concept formation, as to find a termination function rhat maps the
well as algorithms for solving the reachability elements of the program into some well—
problem in graph theory and for generating founded set, such that the value of the
prime numbers. PECOS’s ability to construct termination function is continually reduced
programs from such varied domains suggests throughout the computation. All too often,
both the generality of the rules In Its the termination functions required are difficult
knowledge base and the viability of the to find and are of a complexity out of
knowledge-based approach to automatic proportion to the program under
programming. consideration. However , by providing more

sophisticated well—founded sets, the
+ A1M-~O9 CS-646 corresponding termination functions can be
C. C. Nelson, Derek Oppen, simplified.
Efficient Decision Procedures Based on
Congruence Closure. Given a well-founded set S, we consider
15 pages, January 1978. Cost: 12.15 multisets over S. ‘sets ” that admit multiple

occurrences of elements taken from S. We
We define the notion of the congruence closure define an ordering on all finite multisets over

I
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92 Appendix D

S that is induced by the given ordering on S. conjunctions of literals (signed atomic
This mukiset ordering Is shown to be well- formulas) whose predicate and (unction
founded. symbols are in S. We give a general

procedure for combining sarlsflabllfty
The value of the multiset ordering is that it programs for sets S and T into a single
permits the use of relatively simple and satisfiability program for S u T, given certain
intuitive termination functions in otherwise conditions on S and T.
difficult termination proofs. In particular , we
apply the multiset ordering to provide simple The simplifier described in this paper is
proofs of the termination of production currently used in the Stanford Pascal Verifier.
systems, programs defined In terms of sets of
rewriting rules.

+A 1M- .~ lI CS652
Greg Nelson, Derek C. Oppen,
Simplification by Cooperating Decision
Prodcedures.
20 pages, April 1978. Cost: 12.25

We describe a simplifier for use in program
manipulation and verification. The simplifier
finds a normal form for any expression over
the language consisting of individual
variables, the usual boolean connectives,
equality, the conditional function cond
(denoting if-then—else), the numberals, the
arithmetic functions and predicates +, — and �,
the LISP constants , functions and predicates
nil, car , cdr , cons and atom, the functions store
and select for storing Into and selecting from
arrays, and uninterpreted function symbols.
Individual variables range over the union of
the reals, the set of arrays, LISP list structure
and the booleans true and false.

The simplifier is complete; that is, it simplifies
every valid formula to true. Thus ft is also a
declion procedure for the quantifier-free
theory of reals, arrays and list structure under
the above functions and predicates.

The organization of the simplifier is based on
a method for combining decision procedures
for several theories Into a single decision
procedure for a theory combining the original
theories . More precisely, given a set S of
functions and predicates over a fixed domain,

0 a satisfiability program for S Is a program
which determines the satisfiability of


