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of a clou d (o r fo g ) However , ev idence ex i sts that it va ries from one clo ud
(or fog) to another with different slopes . This paper reexamines this
relationship and its ramifications .

Thirty synthetic cloud/fog models were generated by using the gamma and
lognormal di st ri but ion funct ions , and their optical properties in the 0,55pm ,
1 06pm , 335pm , and 10 5pm , calculated accord ing to M i e theo ry. These 30
models whose l iqui d wate r contents ranged from 0.02 to ‘.80 g m 3 and whose mean
radii ranged from 3pm to 12pm should cover, on the average , a w id e var iety of
natural clouds and fogs. The relationship between the visibl e exti nction
coefficients and the liquid water contents derived from the model s was examined
a nd so were the relat ionsh ip s between the v i sib le an d the infrare d wavelengths ,
us i ng ava i Lab e data ii~ the l iterature and considering sampling errors, Some
of th~ raore irtportant findings are given below.

In the case of unimodal or quasi-unimodal drop—size spectra, as can be we ll—
• represented by the gama or the lognormal distribution : (1) visibl e extinction

appears to correlate wel l with liquid water content and with infrared extinction
except when the drop—size spectra are relatively narrow; (2) the consistency of
observed microphysical and spectral measurements may be judged by the degree of
agreementlw ith the regression lines of the models; (3) by simply increasing
or decreasing the liquid water content (or alternately, droplet number concen-
tration), a correspond ing change in optical property may be effected wi thout
regard to spectral shapes ; and (4) sampling errors would cause a much greater
error in the calculation of extinction coefficients when large droplets are
missing than when small droplets are.
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INTRODUCTION

The primary objective of the Electro—Optical At!nospheric Effects Library
(EO SAEL) is to provide the Army with an extensive collection of well-
conceived and well-documented atmospheric models , which can be used with
confidence in predi cting atmospheric effects on the performances of a
variety of electro—opti cal weapons and coninunications systems either in
computer simulation or under battlefield conditions . One of the models
considered is the well—known inverse relationship between visibility and
liquid water content.

The inverse relationship between visibility and the liquid water content
of a cloud (or fog), discovered by Trabert [1] and scrutinized by aufm Kampe
and Weickmann (2], has been shown to be valid by Houghton and Radford [3]
through field measurements and by Eldridge [4:1 through a “resurrection” of
Arnulf and Bricard 1 s [5] haze and fog data. However, as Platt [6] observed ,
such a relationship is not consistent because its position in a log—log
plot shifts in these two studies. The same can also be said of K anai ’s
[7) data. Reexamini ng Arnul f and Bricard l s [5] measurements in conjunction
with Houghton and Radford ’s [3], Eldridge [4] attributed such inconsistency
to the incapability of sampling instruments to depict the complete drop—size
spectra.

To measure the complete drop—size distribution Is often quite di fficult,
and two clouds (or fogs) which produce the same visibility may vary in
droplet characteristics , depending on their origin , history, and proximity
to sources of pollution. These factors serve to mitigate against the
formulation of an exact relationship between liquid water content and
visibility . As Eldridge [4) pointed out, this relationship will be approx-
imate. Nevertheless, this paper examines thi s relationship by adopting a
different approach in the light of our present knowledge of cloud physics.
Instead of using experimental data to elicit such relations , generalized
statistical cloud/fog drop dis~rlbutions shall be constructed encompass-
ing di fferent spectral widths and mean radii so that their liquid water
contents and spectral properties at O.55pm, l.06j.im, 3.75jim , and lO.5pm
wavelengths may be calculated exactly. Then experimental data will be
used to test the relationship derived between liquid water and spectral
extinction. Through this test, the investigation may be abl e to deduce
where the Inverse relationship stands in theory, to determine whether
visibility can be related to other wavelengths In the infrared , and to
clarify factors which may cause this relationship to vary.

GENERATIO N OF STATISTICAL CLOUD/FOG MODELS

Cloud and fog models have been formulated on the basis of the shapes of
drop—size distributions (Carrier et al. [8]; Deirmendiian [9]) and their
optical properties Investigated . From the cloud physics literature
(Fle tcher (10]; Borovikov et al. [11]; Jiusto [12]; Mason [13]), apparently
liquid water content and mean radius can be used as the central parameters
In cloud/fog modeling. From past cloud/fog studies reported in these
publ ica tions , the following tabl e (table 1) of representative properties
may be constructed.

3



TABLE 1. CLOUD/FOG LIQUID WATER CONTENTS AND MEAN DROPLET RADII

Type Liquid Water Content (g rn 3) Mean Radius (pm)

Fogs 0,05 - 0,50 3 - 10
Stratiform Clouds 0,10 - 1.20 4 - 10
Cumuliform Clouds 0.30 — 2.00 5 — 12

In this table , the ranges of liquid water content and mean radius are
given for the three general types of clouds (fogs being ground- based
clouds). Fogs may vary from radiation through radiation—advection to
advection fogs , and stratiform clouds from stra tus through stratocumulus
to nimbostratus , but in the cumuliform clouds cumulonimbus is excluded
because of its inordinately high l iq ui d water content . These ranges are
arbitrary and overlappi ng. Both Borovikov et al . [11] and Mason [13]
indicate that statisti cally the microphysics of these clouds and fogs
may well be represented by either a gamma distribution or a lognormal
distribution , As will become obvious later , the selection of the d istri-
bution function has little bearing on the ultimate spectral properties
of clouds .

As a start , synthetic gamma and lognormal distri butions were generated
so that they span a broad range of spectral widths in term s of thei r
original dispersions , thereby covering l i q u i d  water content from about
0.02 g m 3 to 1 ,80 g rn-3 and mean radii from 3,Oji m through 12 ,O~im, Further-
more , since not all cloud drop—size spectra share the same size ranges ,
these syntheti c distri butions are cut off at different maximum radii.

The probability density function of the gama distri bution is given below:

f(r ) = 
1
+1 r

ae v’
~’~ (1)

a! B”

where f(r) is the frequency of occurrence of radius r from r — (1/2) t~r to
r + (1/2) E~r, and a and B are the distribution parameters with a > — 1 and
B > 0. Its principal moments p .  are

= B(a + 1) (2a)

(2b)

= B3(a + l )( a + 2)( c* + 3) (2c)
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The mean radius of the distribution Rm~ 
the root—mean—square radius

the mean—volum e radius Rv~ 
and the variance a2 are given , respectively, by

(3a )

R5 =~~i~ (3b)

R
~~

= 3 j
~i 

(3c )

= P2 — (
~~
)2 (3d)

Given the mean radi us Rm and the liquid water content W = 4/3(rrR~) for a
spherical water droplet of density equal to 1 g car3 the distribution
parameters a and $ can be readily found. But the maximum radius or upper
limit of the distribution cannot be specified beforehand since (1) is
integrabl e from 0 to ~~. For the upper limit to be set at a desired value ,
the frequency of occurrence f(r) at the maximum radius Rmax must be spec-
Ifled. Noting that the mass of liquid water contained in a 10pm cloud
droplet is equivalent to that in 1000 1pm droplets , the following cutoff
frequencies are adopted so that there would be little loss of water:

f(r) < lO~ for Rmax l 5um and 2Opm ,

and

f(r) < iO~ for Rmax = 3Opm , 4Opm , and 5Opm.

Now that both R,~ and f(r) are known , (1) can be solved by means of succes-

sive approximation simul taneously with (3a) for a and B. putting r = maximum
radius.

The probability density function of the lognormal distri bution Is given
by

f(r) • 1 exp [_ (log~r — log~r )2/2log
2a ] (4 )

r1og~aglf~~
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where r9 and ag are the geometric mean and geometric standard deviation ,
respectively. Let 11x = log erg and = lo9 eag ; then , the principal  mo-
ments of the distri bution are :

= exp(p,~ + a~/2) (5a )

P2 = exp(2p~ + 2a~) (5b)

P3 = eXp (31t x + 9a~/2) (5c)

Again , the mean radius , the root—mean—square radius , the mean—volume radius ,
and the variance are given •by (3a) — (3d) through (5a) — (5c). Instead
of us ing  (4), the following two equations ,

lO9eRm = + a~/2 (6)

log eRmax = + 4a~ (7)

are solved simultaneously for and ax and hence rg and a9
.

Altogether 30 complete synthetic distributions with mi crometer interval
resolution were generated. Note that even within each size range, standard
deviations are somewhat different, signifyi ng different spectral wi dths
within a size range, The distribution parameters together wi th standard
deviation a, mean radius Rm~ 

and liquid water content W (of 100 droplets cur3)

for each case are shown in tabl e 2, The tabl e as a whol e should be adequate
to encompass most clouds and fogs when their drop—size spectra are unimodal
or quasi—unimodal.

OPTICAL PROPERTIES AND SPECTRAL CORRELATIONS

The vol ume extinction coefficients Bext at a wavelength is related to the

drop—size distribution (van de Hulst [14]; DeIrmendjian [9]) by

r max
8ext t

~
11f

Qext(A~m A t’)r2 f(r)dr (8)

r mm

6
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or

Bext = Nir 
~ 

Qext~~,m ,t’i ) f~r~ (per unit interval) , (9)

where next (X,m ,r) is the efficiency factor for extinction , a function of
wavelength A , complex refractive index m , and radius r; f(r) or f. the
distri bution frequency ; and N the total number density taken to be 100 per
unit volume for ease of scaling . Calcu lations of the volume extinction
coefficients were made at four wavelengths (0,55pm , l.O6pm , 3.75pm , and
1O.5pm ) without consider ing water vapor absorption , which is negli gi ble
in comparison with scattering and absorption by water droplets in a
cloudy atmosphere.

Fi gure 1 is a plot of the liquid water contents in g rn— 3 of all 30 di~ Lr~butions against the corresponding extinction coefficients in km— 1 at C,55pm .
The regression line was drawn on the basis of a least—square fit which
gives a correlation coefficient of 0,997. The regression equation is

0 638
B0 5 5  

= 93.2 14 km’1 . (10)

Then the volume extinction coefficients at U,55pm were plotted versus
those at 3.75 pm and at lO.5pm, as shown in figs. 2 and 3, respectivel y.
The former has a correlation coefficient of 0.999, and the regression
equation is

— I A f l I  0~~928 
~p3 ~~~ 

— ‘.‘.o’ B0 km ,

The latter has a correlation coefficient of 0.997, and the regression
equation is

1 378
B 1 0 5  

= 0.211 km 1 . (12)

Correlation between the two wavelengths of O,55pm and 1,O6pm was not
considered since in all cases examined the extinction coefficients at
l .O6pm are always larger than those at O,55pm , but never by more than 4
percent, This may be Inferred from fig. 4 which Is a plot of extinction
coefficients as a function of individual droplet radii , which cover the
range of Interest. The positive (or inverse) relationshi p between extinc-
tion (or visibility ) and liquid water appears to be independent of the
shape of a unimodal drop—size distribution.

8
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Figure 1. Relationshi p between visible extinction and liquid water
content derived from the gama and the lognormal distributions
given in table 2. The line is a least-square fit.
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FIgure 2. Relationship between 0.55~un and 3.75pm extinction.
The line is a least—square fit.
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Figure 4. Voltane extinction at O.55~in, l.06 .un, 3.751in, and lO,5pm
wavelengths as a function of droplet radius .
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THEORY AND APPLICATIONS

There Is excellent correlation between liquid water and extinction for
the gamma and lognormal droplet distributions . It is customary to set
next 

= 2 for the visible region in a cloudy or foggy environment (Johnson

[15]). Then (9) becomes

8ext 
= 2Nirr~ (13)

where r5, as already defined, is the root—mean—square radius . To express
the extinction coefficient as a function of liquid water content , simply
divide (13) by 4/3(Nirr~) and multiply it by the same quantity W to y ield

8ext = 1.50 (r~/r~) W (14)

where rv, as already noted, is the mean—volume radius. Equation (14)
when substituted into the~ Koschmieder expression (V = 3.912/B) yields
the well—known Trabert formulation,

In view of fig. 1 , the factor (r~/r~) will correlate just as well with the
extinction coefficient. Instead , let X = r~/r,~ for the gamma distribution
and Y = r~/r~ for the lognormal distribution , and determine if X and Y are
correlated. To do so, we find

X = l/B (cz + 3) (15)

from (2b) and (2c), and

Y = exp[_ (IJ
~ 

+ 5a~/2)] (16)

from (5b) and (5c). The relationship of their r~ciproca1s, usually referredto as effective radii, Is shown in fig. 5, and ~ e correlation coefficient Is
0.987. When the spectra are nnrrow , there Is a greater scatter, In fact,
as the drop—size spectrum broadens, the gamma distribution approaches the
lognormal distribution, or vice versa, as Levin [16] has shown. Since X
and Y appear to behave in a reasona bly or derly manner , it is not difficult
to Infer that the same approach may be used to demonstrate the correlation
of the extinction coefficients at 3.75~im and at lO.5um with liquid watercontent and hence wi th the extinction coefficients at O.55~im.

Since fig. 1 indicates a posi tive relationship between cloud extinction and
cioud liquid water content independent of the shapes of drop-size spectra,
it would be of great Interest to examine If such a relationship is appli-
cable to real microphysical and visibility data, mindfu l that not all

11
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cloud drop—size spectra are unimodal and that such data may not represent
the complete spectra , Unfortunately’. few authors presented a tabulation
of their data in the literature and even fewer measured liquid water
content independently, After a careful surv~y of the drop—size spectra
in the literature, it was decided to take those from Hou ghton and Ra dford
[3] and the tabulated values of Eldridge [4], Garland [17], and Mack and
Pili~ [18]. Vis ib i l i ty  values were converted to extinction coefficients
by means of the well—known Koschmieder formula , as given by Middleton [19]:

Bext = 3.91 2/V (17)

Where V in kilometers is the meteorological range or simply visibility .

Among the authors referenced , only Houghton and Radford [3] made independent
measurement of the liquid water contents in their fogs . Their investiga-
tions represent the earliest known attempt to veri fy the inverse relation-
ship between visibility and liquid water content. Only the values labeled
with the symbol “ +“ were extracted from thei r fig. 9. Tabulation is not the
reason for choosing Eldri dge ’s ~4] reconstructed data ; the real reason was
his imaginative interpretation [20] of the discrepancies between his regres-
sion line and Houghton and Radford~s [31. Garland [20] presented both ob-
served and calculated visual ranges in his tabl e, and his observed values
were used,,, The usual practi ce in the literature to fi nd visibility is by
means of (9) and (17) where next is approximated by 2. Instead of follow-
ing this practice , Mack and Pi1i~ [18] used the following expression:

N

(18)
V N

~ ~~~

given by aufm Kampe and Weickmann [2], to derive liquid water contents from
independent visibility measurements .

Those data were plotted in fig. 6, over which the theoretical or generalized
regression line from fig. 1 was reproduced. However, because of their
close proximi ty, quite a few data points clustering around the line were
ignored. The two light lines on either side of the regression line re —

resent 15 percent and 50 percent deviations , Except for Eldridge ’s [4
and some of Garland’s [17] data , most points lie wi thin the 50 percent
boundaries ,

Optical measurements at several wavelengths in cloud or fog conditions are
difficult to make successfully, Even more diffi cult is the determination
of the degree of agreement between optical and other mi .crophysical mea-
surements. Arnulf and Bricard [5] merely noted such agreement in their
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lines on either side of the line show 15 percent and 50
percent deviations.
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paper with hardly any more comment. Furthermore, their data were presented
in such a manner that there is no way for any interested readers to accu-
rately reproduce their results . Thus Eldridge [4] expended a great deal
of effort to resurrect these results . But it is interesting to note the
discrepancies between his drop—size spectra and theirs . Nonetheless , the
spectra l values from Eldridge [43 were used, These values together wi th
those of Carrier et al , [8] were plotted in figs. 2 and 3 to produce figs. 7
and 8, respectively. Nearly all of the values fall within 50 percent of
the model fog curves and more than half withi n 15 percent. The implica-
tions of these and other figures will be discussed in the following section.

DISCUSSION

The knowledge deduced from figs. 1 to 3 is quite gratifyi ng , and the infor—
mation gained from figs. 6 to 8 is highl y interesting . To further exploit
such knowl edge and information , the discussions will be separated into
three areas.

Equivalent Drop—Size Spectra and Spectral Properties

Although a number of the data points in fig. 6 may have come from bimodal
or multimoda l distri butions and the drop—size spectra may have been impre-
cise, an overwhelmi ng majori ty of them cluster around the regression line
at the 50 percent intervals and more than hal f at 15 percent intervals.
This clustering seemingly indicates that the regression line derived from
the combined gamma and lognormal distributions having a number density of
100 particles cnr3 may serve as a standard to gauge the characteristics
of observed drop—size spectra. The further the data point is away from
the line , the more the distribution seems to deviate from a unimodal

• distri bution or the more questionabl e the quality of data becomes,

Many of the points lyi ng outside the 15 percent boundaries can be readily
explained . According to El dridge ’s [20] analysis , while his data under-
estimated the visibility and the liquid water content by 14 percent and
35 percent, respectively, Houghton and Radford ’s [3] underestimated the
visibility by 42 percent and the liquid water content by 12 percent. It
Is thus not surprising that all of Eldridge ’s points lie above the line
and all of Houghton and Radf6rd~s below it. Figure 6 shows that Houghton
and Radford ’s data fare somewhat better than Eldridge ’s In that most of
the former’s data points fall wi thin 50 percent of the generalized regres-
sion line of ours,

By comparison , nearly all of Mack and P1ll~’s [18] data points fallwi thin the 15 percent intervals. Mack and P1114 took full account of
the liquid water content by means of (18), Their fogs belong In the radi-
ation type, and most of their fog spectra are unimodal, On the other hand ,
more than a half of Garland’ s [17] fogs are of the advection type, and
perhaps about a third bimodal , as may be Inferred from the few hi stograms
he chose to present. Moreover, as many as five fogs may contain ice
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crystals. Despite that , a majority lie within the 50 percent lines and
about a half of those within the 15 percent lines ,

Since there is an extreme paucity of data on simultaneous microphysica l
and spectra l measurements , the two examples shown in figs. 7 and 8 are not
meant to be conclus i ve , but they do seem to in di cate tha t correla tion be-
tween extinction coefficients at different wavelengths is quite respectable.

Therefore , any da ta points ly i ng wi t h in  the 15 percen t boundaries i n f i g. 6
could be regarded as coming from a gamma or lognornal distribution , and theh
spectral properties can be determined from figs. 1, 2 , and 3. Furthermore ,
an equivalent gamma or lognorma l distribution having a number concentration
of 100 dro p lets cm— 3 may be constructed and considered a satisfactory sub-
stitution for the observed unimodal drop—s ize spectrum insofar as its
optical properties are concerned. From the measured spectral extinction
values at 0, 55pm, 3.75 pm, or lO. 5pm, fig. 4 may be used to find the equiv-
alent root—mean—s quare radius. The curves in fig. 4 are onl y a smoothe d
approximation to exact valu es. If a distribution is indeed gamma or l og—
norma l , the equivalent root—mean-square radii for the different spectral
regions will lie fairly close to one another within a micrometer interval .

An Examination of Droplet Sampling Errors

A mechanical droplet impactor is inefficient in capturing small droplets
below the 1pm or 2pm radius , and an optical sampling device cannot always
count larger droplets accurately. Most of the time the sampling device
has a cutoff size that it is capable of sampling .

In the process of generating these gamma and lognormal distributions ,
provisions were made in our computer program to make it possibl e to
examine the effect on spectral properties when the measured spectrum is
truncated in the upper or lower size end due to sampling errors . At the
lower end , droplets 2pm radius and smaller were neg lected, Insofar as
the cloud or fog optical properties are concerned , only when the size
range is small and the spectrum narrow (g iven by the first three lines
in table 2) is there appreciable effect, a loss of the order of 10 to 30
percent in the total extinction coefficient in all spectral regions, When
the spectrum is relatively broad , such a sampl ing error in the l ower end
has neg li gible effects,

For the upper end, the spectrum is cut off at 5pm decrement intervals.
For example , when the full size range is Opm to 3Opm , the losses of
optical properties (extinction coefficient) and liquid water content
were examined when the drop distri bution extended to 25pm , 2Opm , l 5jjm,
and 10pm , respectively. Since the percentage loss of optica l properties
is usually within a few percent of one another at these four wavelengths ,
fig. 9 may represent any of these wavelengths. In this figure , eac h
complete curve begins at the maximum radius , hence incurring no loss,
For each additional 5pm decrement , there is an increasing loss1 Take
the Opm to 4Opm gamma distri bution as an example , the visibl e extinction
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coefficient being 84.83 km’~~. If our sampling device can pi ck up droplets
no larger than 3Opm radius , then there will be a maximum loss of about 4
percent in optical property, i.e., 81.44 km~~. If the device can go up
to l5pm only, then the maximum loss will be about 58 percent, or 35.63 km~~,When the droplet spectrum becomes narrower, for the same size range , the
loss is a few percent less, Figure 10 is presented in the same vein , except
that the loss of liquid water content was plotted versus the loss of opti-
cal property. Some uncertainties exist when the drop-size spectra are
narrow , but as the spectra broaden , a definitive correlation emerges be-
tween these losses; a 20 percent loss of liquid water means a loss of ex-
tinction by about 12 percent. The loss of liquid water content as a
result of sampling errors in the upper end can be readily deduced from
figs. 9 and 10 together, given spectral measurements .

Some Thoughts on Bimodal Distri butions

In the cloud physics literature , little attention has been paid to the
existence of bimodal droplet distri bution in clouds and fogs. One reason
is that it is not a common occurrence, as may be seen from the droplet
spectra of cl ouds displayed in cloud physics books (e.g., Fletcher [10] ;
Borovikov et al. [11]; Mason (13)), and another reason is that the usual
statistical practice in experimental work to average several i ndependent
samples serves to smooth out drop—size irregularities . Nonetheless, there
is evidence that despite the averaging process orographic clouds (e.g.,
Squires [21]) and coastal low-hanging stratus clouds and fogs (e.g., Ludwi g
and Robinson [22]) are often bimodal or multimodal . Furthermore, Eldridge
(23), using an optical sampling device to measure drop-size distributions
In an advection fog (which he called cloud) over a mountain top, showed
that In all cases the spectra were bimodal , an inordinately large number
of particles (which may not be true cloud droplets at all ? at and below
l.5pm radius. Considering the high winds of 9 to 18 m s in which the
samples were taken, such a large number of small particles may not be too
surprising.

In a polluted environment as In the Los Angeles area and other industrial
cities , the fogs or low clouds may be expected to display bimodal or
sometimes multimodal spectra. Inferences may be drawn from studies made
by Whi tby and Sverdrup (24] of California aerosols. A large number of
tiny solid and gaseous pollution particles together with haze particles
would be superimposed upon cloud or fog droplets , thereby giving rise to
bimodal or multimodal distributions.

CONCLUS IONS

On the basis of the gamma and lognorma l distributions , 30 synthetIc
cloud/fog models were analyzed optically. These 30 models cover a wide
range of spectral widths and liquid water contents , and thus embrace
most clouds and fogs In nature. These distributions are believed to
represent reasonably wel l cloud and fog data found in th_ literature.
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An excellent correlation was discovered between cloud liquid water and
visual extinction derived therefrom. This correlation appears to be
quite independent of drop—size spectral wi dth. Microphysical and visi-
bility data from several diverse sources in the literature were used
(despite thei r l imitations) in an attempt to test the utility of such
theoretical correlation. As a result , the more appropriate conclusions
are :

The regression line derived from such correlation (8 versus w) which
can be sca l ed upwar d or downward , may serve as a standard to gauge the
departure of observed drop-size spectra from a unimodal distri bution.

When a drop—size distribution is known to be unimodal or nearly so,
(I) either liquid water or spectral extinction may be estimated from the
regression line , given the other; (ii) the quality of observed mi cro-
physical and spectral data may be assessed against this line ; and (lii)
increasing or decreasing the liquid water content (or the droplet number
concentration) will produce a corresponding change of the extinction coef-
ficient without regard to spectral shapes.

The transmission characteristics of the three spectral regions in
the presence of clouds or fogs can be readily found from figs. 1 , 2, and 3
together. In general , when the liquid water content is of the order of
0.05 g m 3 (narrow drop—size spectrum), the 10.5pm region is the best
(minimum extinction) and the 3.75pm region the worst. When the liquid
water content is of the order of 0.50 g m 3 (broad), the 1O.5pm still
enjoys a slight advantage over the 3.75pm, but the visible is better than
either. When the liquid water content is of the order of 1.0 g m 3 or more
(very broad ) , the visibl e is the best and the lO.5pm the worst,

The drop—size spectra of most clouds , nearly all radiation fogs,
and many advection—radiation fogs may be considered unimoda l , and hence
the foregoing observations are appl icable.

In the case of bimodal spectra such as may be found in orographic
clouds and advection fogs, the regression line would give erroneous infor-
mation. However , the regression line apparently may be used to provide
some ball—park values If one is not averse to a 50 percent error.

Finally, while In theory there is little doubt that this convenient
regression line or the so-called uscal ing law ” as represented by (10),
( 11), or (12) is appl icable to all unlmodal drop—size spectra having the
statistica l characteristics of the gamma and lognormal distribution
functions , variations therefrom will occur in actual practice , mainly
due to sampling errors and partially due to a failure to recognize the
capricious nature of fog and cloud. Nevertheless, the fog data collected
by the Atmospheric Sciences Laboratory at Meppen, Germany , in the spring
of 1978 and at Fort Ord, California, In the fall of 1978 will be examined
in the light of this theoretical or generalized relationship between
extinction and liquid water content in order to determine the suitability
of (10), (11), and (12) for incorporation in the Electro—Optical Systems
Atmospheric Effects Library.
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