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1. INTRODUCTION

This note outlines methods which are described in detail in reference 1, for
calculating the curvature characteristics of a reflected electromagnetic wave,
given the curvature characteristics of the incident wave and a geometrical
description of the reflecting surface at the point of reflection. The methods
are based on geometrical optics and are of particular use in estimating double-
bounce radar cross sections, for which individual radii of curvature of reflected
waves are required, when the radii of curvature of the incident wave for the
second reflecting surface are finite. This work has application in the calcula-
tion of the radar cross section of an aircraft.

Since the standard textbooks on radar cross section estimation were published,
simpler methods than Pock’s tensor method,(ref.3,6) have been presented for
determining the curvature characteristics of reflected waves for the general
case,(ref.1,7,8). The prime reference for the simpler method is that of
Deschamps,(ref.1) with application of the formulae for specific situations being
outlined by Kouyoumj ian and Pathak (ref.7) , and Lee , (ref. 8).

Although simple examples of Deschamps general “mirror” relat ions, (which are
the basis of the method outlined below), appear in other references, either
explicitly,(ref.9) or implicitly,(ref.5), it was felt that their usefulness and
applicability were not widely enough appreciated. This document aims to widen
this appreciation.

Use of the “mirror” relations of Deschamps requires knowledge of the principal
radii of curvature of the reflecting surface at the reflection point and of the
orientation of the principal directions. In specific instances, such as
surfaces of revolution , these may be readily determined sometimes by inspection
(ref.2). However for a general point on a general body such as an ellipsoid

• (which is frequently employed for the local representation of aircraft surfaces) ,
use of relat ions from three dimensional co-ordinate geometry is required(ref.l0).
Appropriate formulae which are set down below , have been prog-ramaed on a digital
co.nputer(ref.l1), for ease of solution of the magnitude of the principal radii of
curvature and principal directions for a specified point on a given ellipsoid.

The methods outlined below have been verified in part(ref.2) by applying them
to a number of double-bounce situations considered in the textbooks(ref.3), (viz.
two adjacent spheres, and two adjacent paraboloids) .

2. OUTLINE OF METHODS

2.1 Radii of curvature of the reflected wave for simple shapes
It is convenient to describe the curvature characteristics of a wave-

front by its curvature matrix Q~, which describes the way in which the
total wavefront curvature is divided with respect to a specified axial
system. For example, when the two principal directions of curvature of
a wavefrcmt are parallel to two lateral axes of the specified axial
system, the curvature matrix is diagonal, with the diagonal elements
being the inverse of the principa l radii of curvature of the wavefront.

In a similar way, the curvature matrix, C0 for a reflecting surface,
for a given reflection point, is also diagonal when referred to its
principal directions, with the diagonal elements being the inverse of the
local principal radii of curvature of the surface.

Clearly, the way in which the components of curvature of an incident
wave are modified on reflection by the curvature properties of the
reflecting surface must depend on the relative orientation of the
respective principal directions of the incident wavefront and of the
r f  l.cting surface.
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Deschamps showed that the curvature matrix Qr of a reflected wave is
related(ref.1) to the curvature matrix of the incident wave and to the
curvature matrix C0 of the local reflecting surface, to the angle of
incidence 0. and to the axial transformation matrix G as follows :

Qr = Q~
l 

+ 2(G_1)T C0 G
’ cos

where

- n /ph 0 —]

~ L o

p1 3 
P2~ being the principal radii of curva ture of the incident wave,

~ r1”~ 
o

C
0 — Lo

R1, R2 being the principal radii of curvature of the local reflecting
surface, and where

i ix1 .

G = L x i U

X1 ~~~
, X3 ~ being the princ ipal directions of the incident wave and U 5 ,  U1

being the principal directions of the local reflecting surface. The
principal radii of curvature (p~t , p2

T
) of the reflected wave are the

reciprocals of the principal values of Q1.
2.1.1 Application when the matrices are diagonal

In the case of a wave incident on a surface with incidence
angle O~ and with one of the surface ’s local principal directions
lying in the plane of incidence , figure 1, as in two double-bounce
examples of reference 3, then matrix G becomes as follows :

0 1
Lo ~o s O~J

If the local principal radii of curvature of the surface are
R 1, R3, then

QI’ [UP* 0 1 + 2 cos ~ 
0 o ir’ ~~ i

L 0 i/p2 t
J ‘ Lo 1/cos O~JL 0 1/R .J L o 1/cos 01J

_ _  _ _  _ _ _  
H



w ~~~~~~~~ 
- --

— 3 ~ WSRL-0030-TR

• 1/p i 
0 2 cos O1 0

= + R1
0 l/p~~ 2

R2 cos O .
1

where

0
Q
r 

~ 
when Qr is diagonal

L

i.e.

11~~r = 1,~~ i 
+ 
2 cos

R1

and

= 1/P2~ + Ri cos

2.1.2 Application when the matrices are non-diagonal

In the more general case when the various principal directions
are not either coplanar with or normal to one another, the
principal radii of the reflected wave are derived from the

• reciprocals of the eigen values of Q’. Specific algebraic

formulae for Pi 1
~ and 

~2
r and for the associated principal

directions are given by Jcouyotanjian and Pathak(ref.7).

2.2 Radii of curvature of the local surface of an ellipsoid

Let the ellipsoid be described by the equation

xl y2 z2

~~~~~~~~~~~ 
+

~~~~ 
= 1

and the point on the surface where the radii of curvature are required
be (x5, y5, z5).

The following relations are taken from Bell(ref.10). If the length
of the perpendicular from the origin to the tangent plane at (x5, y , z5)
is p, where S

f x 2 + y 2 + z 2 
~~

then the direction cosines of the normal to the ellipsoid at (x5, y , z5)are S

t = px5/a
2

1~ - PY~/b
2

n a pz5/c
2
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The square of the lengths (ri ,ri) of the semi-axes of section through
the origin parallel to the tangent plane at (x5, y5, z~) are found from

the roots r12., ri2 of the following equation(ref.1O):

r4(~~~~~+~~~~~~+±
\bl c2 a2 c2 a2 b2

-r~1 (1 + ~ + (! + !\ + (~ +

~. ~b
2 

C
2 ) 

~\C
2 all \ a2 • b2J

+ t 2 + i n 2 + n 2 = 0

The principal radii of curvature R1, R2 of the surface of the ellipsoid
are(ref.10) :

R1 = r1 2Jp and R2 = r2 ’./p

The direction cosines describing the two principal directions (X1 ,~L1 ,V 2 )
and (A2 ,p~ ,v3) are found by substituting ri~ and r22 in turn in the follow-
ing relations(ref.1O):

=
I \. a~ I a ~b3 • ) n \~c2 •

where

A 2
2 ,~~ •

+ V
1

2 = 1 , i = 1,2.

2.3 Calculation of reflected electric fields
Once the two principal radii of curvature of a reflected wave (ft1~~, P~~)

are known , the relative value Er of the electric field voltage at a
distance R from the reflection point in free space for unity value of the
indicent electric field voltage is obtained(ref.3 4,5) from:

E I Pc T Pl r
= 1(~a ’~ + R) (p2 D 

+ R)J ~ with E~ = 1.

2.3.1 Use in RCS calculation
The above relation for ~Er / can be used to obtain the

resultant radar cross section (a) as R + from

o - Limit 4~~2 Er
2

_ _ _  
_ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _
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2.3. 2 Double bounce situations
Alternatively, if double reflections are involved , the

above relation for 
~
Er/E

~ 
enables determination of the

magnitude of the field voltage incident at the second
reflection point by substitut ing the appropriate range R in
the above expression .

For use of Deschamps’ relations for the curvature matrix at
the second reflection point, it is clearly necessary to increase

• the calculated radii of curvature of the first reflected ray by
the separation of the two reflection points to obtain the radii
of curvature of the second incident ray at the second reflection
point, (ref.2).

3. DISCUSSION

In most scattering problems utilizing geometric optics, a basic computation
step is the determination of the reflected field for a specified point of
reflection on a given conducting surface , knowing the characteristics of the
incident wavefront.

In the general case, (i.e. when the principal directions of the scattering
surface are not necessarily either coplanar with or normal to the plane of
incidence), the standard textbooks on radar scattering from simple shapes
(ref.3,4,5), fall back on Pock’s method(ref.6) which uses tensor notation and
was originally published in 1950. Reference 3 gives a detailed description
and examples of the method. However, the required calculation in the general
case is more readily handled by Deschainps’ relations(ref.1), using the more
familiar matrix notation, as it is indeed in some simple situations now to be
discussed.

As noted in para 2.1.1 above, when one of the surface’s principal directions
is coplanar with the plane of incidence which also contains a principal
direction of the incident wavefront the relevant matrix becomes diagonal and
the curvatures of the reflected waves are given by:

l/ p 1 ”. = in1~
-. + 

2 C05

Ri
and 

l/P~~ = 1/p2
1. + 

~~ .
~~~~~~~ 0~

From para 2.3 above, at a distance R from the point of reflection , the
relative magnitude of the reflected field voltage to the incident field voltage
at the reflection point is equal to:

~~r~~~r

L~~~
T + R  (Pi r +R) J

= ~ (1 + R/p11) (1 + R/P2T)1 
—½
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Substitution of the above relations for l/pi~~, ,,~2
r gives:

( i +~~—. ~~~~~~~~~~~~~~~~~~~ 2R

~ Pi 
1 R1 t~ Ps

1 R2 cos o .)  j
In the case of a point source located at distance d from the reflecting point,

= P2 1 = d and the aoove expression then becomes identical in form, (but with
different notation), to that quoted by Bowman et al(ref.5, pg 24). This
latter relation is used extensively, but without derivation in reference 5,
since many of the scattering examples considered there relate to surfaces of
revolution with the plane of incidence containing the axis of revolutior~ and
hence containing a principal direction of the surface at the reflection point.
It is seen that Deschamps’ relations readily provide the necessary relations for
such simple situations, as in fact they do for more complex situations.

The geometrical description of common scattering surfaces also differs some-
what between authors when utilizing methods of geometrical optics for the
solution of scattering problems. Thus Bowman et al(ref.5) utilize oblate
spheroidal co-ordinates rather than Cartesian co-ordinates when describing high
frequency scattering from a conducting oblate spheroid, (an ellipsoid of
revolution). The choice of such co-ordinates enables the high frequency
solution to be considered as a special case of the solution for an arbitrary
frequency. However, when prime irterest is in a geometrical optics solution,
the use of Cartesian co-ordinat~ , and the standard methods of co-ordinate
geometry(ref.10) would appear to provide the simplest methods for most people.

Although the techniques outlined above, based on Deschansps ’ relations, are
satisfactory for smooth conductors of finite (but non-zero) radii of curvature,
there is also a need in practice for similar simple techniques by which to
describe specular reflections from bodies such as finite cylinders of length L,
having one infinite radius of curvature.

4. CONCLUSIONS

Deschamps (ref .1) has provided a simple matrix relation by which to compute
the components of curvature of short electromagnetic waves following their
reflection from conductors of simple shape.

Such information directly enables calculation of the relative magnitude of
the specularly reflected field at a given distance from a simple conductor,
provided its principal radii of curvature at the reflection point are finite
but non-zero. The relation used twice in sequence readily enables the
calculation of double-bounce radar cross sections for two adjacent simple shape
conductors.

Deschamps’ relations were published subsequent to the standard books on radar
cross section estimation(ref.3,4 ,5) which qu~~e the more complicated tensor
relations publi shed by Pock in 1950 to meet the same requirement(ref.6).

Because of the generally greater familiarity with matrices than tensors ,
Deschamps’ relations present a significant advance in means of estimating the
characteristics of reflected waves.

_ _ _  -- ~~
—

---.-—-- •: -~~~~_~~~- - ~--- .
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NOTATION

C0 Curvature matrix of a local reflecting surface

E1 Voltage of incident field

Er Voltage of reflected field

C Transformation matrix connecting the principal directions
of the reflecting surface and those of the incident wavefront

L Length of cylinder

Matrix describing the components of curvature of an incident
wavefront

Qr Matrix describing the components of curvature of a reflected
wavefront

R Range from reflecting point

~~~ 

} Radii of curvature of a local reflecting surface

U1 
‘

~ Unit vectors describing the principal directions of the local
U2 f 

reflecting surface

Unit vectors describing the principal directions of the
if incident wavefront

a \
b ~ Lengths of semi-axes of an ellipsoid
c J

d Separation of two reflection points , or distance of a point
source from a reflection point

In Direction cosines of local normal to an ellipsoid
n )

p Length of perpendicular from the origin to a tangent plane

~~

‘ } Lengths of semi axes of an elliptical section

x ”
y ) General Cartesian co-ordinates
z )

x~~\
Co-ordinates of a point of reflection

zs)

__________________ - —.•. — - -•  ~— ---—•-- - ---—- — • • .  • •—~ 0
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81 Angle of incidence

A Wavelength of electromagnetic radiation

A. \
Direction cosines of the principal directions of a

i f local reflecting surface , i = 1, 2
V .

1

1
ph

P2 1 Principal radii of curvature of an incident wavefront

r\
Principal radii of curvature of a reflected wavefront

P2 )
0 Radar cross section

___________ ________________________________________ 
_______________ 
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Figure 1

R3 and R. are principal radii of curvature of
surfaces 1 and 2 respectively and lie in the
coimnon plane of incidence.

\
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\ \ /

Surface 2~~~~~~~~~~~ } /

/ \ Surface 2
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‘ /
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J
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ray

Figure 1. Typical double-bounce reflection geometry
assicuated with diagonal matrices
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