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SUMMARY

Deschamps' matrix relations for the curvature of short-
wavelength electromagnetic rays when specularly reflected
from smooth conducting surfaces are reviewed and applica-
tions of these relations to double-bounce radar cross
section estimation are discussed.
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1. INTRODUCTION

This note outlines methods which are described in detail in reference 1, for
calculating the curvature characteristics of a reflected electromagnetic wave,
given the curvature characteristics of the incident wave and a geometrical
description of the reflecting surface at the point of reflection. The methods
are based on geometrical optics and are of particular use in estimating double-
bounce radar cross sections, for which individual radii of curvature of reflected
waves are required, when the radii of curvature of the incident wave for the
second reflecting surface are finite. This work has application in the calcula-
tion of the radar cross section of an aircraft.

Since the standard textbooks on radar cross section estimation were published,
simpler methods than Fock's tensor method, (ref.3,6) have been presented for
determining the curvature characteristics of reflected waves for the general
case,(ref.1,7,8). The prime reference for the simpler method is that of
Deschamps, (ref.1) with application of the formulae for specific situations being
outlined by Kouyoumjian and Pathak(ref.7), and Lee, (ref.8).

Although simple examples of Deschamps general "mirror" relations, (which are
the basis of the method outlined below), appear in other references, either
explicitly, (ref.9) or implicitly,(ref.5), it was felt that their usefulness and
applicability were not widely enough appreciated. This document aims to widen
this appreciation.

Use of the "mirror" relations of Deschamps requires knowledge of the prineipal
radii of curvature of the reflecting surface at the reflection point and of the
orientation of the principal directions. In specific instances, such as
surfaces of revolution, these may be readily determined sometimes by inspection
(ref.2). However for a general point on a general body such as an ellipsoid
(which is frequently employed for the local representation of aircraft surfaces),
use of relations from three dimensional co-ordinate geometry is required(ref.10).
Appropriate formulae which are set down below, have been programmed on a digital
computer(ref.11), for ease of solution of the magnitude of the principal radii of
curvature and principal directions for a specified point on a given ellipsoid.

The methods outlined below have been verified in part(ref.2) by applying them
to a number of double-bounce situations considered in the textbooks(ref.3), (viz.
two adjacent spheres, and two adjacent paraboloids).

2. OUTLINE OF METHODS

2.1 Radii of curvature of the reflected wave for simple shapes

It is convenient to describe the curvature characteristics of a wave-
front by its curvature matrix QF, which describes the way in which the
total wavefront curvature is divided with respect to a specified axial
system. For example, when the two principal directions of curvature of
a wavefront are parallel to two lateral axes of the specified axial
system, the curvature matrix is diagonal, with the diagonal elements
being the inverse of the principal radii of curvature of the wavefront.

In a similar way, the curvature matrix, C, for a reflecting surface,

for a given reflection point, is also diagonal when referred to its
principal directions, with the diagonal elements being the inverse of the
local principal radii of curvature of the surface. :

Clearly, the way in which the components of curvature of an incident
wave are modified on reflection by the curvature properties of the
reflecting surface must depend on the relative orientation of the
respective principal directions of the incident wavefront and of the
reflecting surface.
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Deschamps showed that the curvature matrix Q" of a reflected wave is
related(ref.1) to the curvature matrix Qoi of the incident wave and to the
curvature matrix Co of the local reflecting surface, to the angle of
incidence Oi and to the axial transformation matrix G as follows:

¢ = o+ 26" ' C, G cos 0,

; 1/t 0 :|
i a /
B * [ o 1/t ]’
i

PR being the principal radii of curvature of the incident wave,
1/Ry 0
e [o 1/R,:|
Ri, Ry being the principal radii of curvature of the local reflecting

surface, and where
L [H7 . U .oy
*Tiet.n 3.8l

Xgi. 591 being the principal directions of the incident wave and U;, U,

where

>

being the principal directions of the local reflecting surface. The
principal radii of curvature cplr. p;r) of the reflected wave are the
reciprocals of the principal values of Q.

2.1.1 Application when the matrices are diagonal

In the case of a wave incident on a surface with incidence
angle Oi and with one of the surface's local principal directions

lying in the plane of incidence, figure 1, as in two double-bounce
examples of reference 3, then matrix G becomes as follows:

w3 0
0 cos 0i

If the local principal radii of curvature of the surface are
Ri, Rg, then .

& .I:m,i A sl R 0 l:l/k. 0 :“:1 0 :]
0 I/Pzi] s I:O 1/cos 0, 0 1/R 0 1/cos 6,
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1 i
/Py 0 2 cos Gi 0
= " + __RI_
0 1/p2 0 2
R, cos Oi
¥
where
s & UM 0 :
Q = when Q is diagonal
0 1/p, T
i.e
- 6.
1/p!r % 1/,,‘1 . 2 cos i
Ri
and
i 2
1/2" = 1/p2*"

+—
R; cos Bi

2.1.2 Application when the matrices are non-diagonal

In the more general case when the various principal directions
are not either coplanar with or normal to one another, the
principal radii of the reflected wave are derived from the
reciprocals of the eigen values of QF. Specific algebraic

formulae for p; Y, and ng and for the associated principal
directions are given by Kouyoumjian and Pathak(ref.7).

Radii of curvature of the local surface of an ellipsoid
Let the ellipsoid be described by the equaticn

'y zf_ z?
e e Y

and the point on the surface where the radii of curvature are required
be (xg, ¥s, zg).

The following relations are taken from Bell(ref.10). If the length
of the perpendicular from the origin to the tangent plane at (xs. Yo zs)
is p, where

then the direction cosines of the normal to the ellipsoid at (xs, ys, zs)
are

L - pxs/az ¥
m = py/b’’
n = pzs/c’
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The square of the lengths (r;,r;) of the semi-axes of section through
the origin parallel to the tangent plane at (xs, ) zs) are found from

the roots r;?, r;? of the following equation(ref.10):

The principal radii of curvature R; , Rz of the surface of the ellipsoid
are(ref.10):

Ri = r,?/p and R, - = 1,°/p

The direction cosines describing the two principal directions (A1 ,#;,v2)
and (A2 ,42,v2) are found by substituting 112 and r,? in turn in the follow-
ing relations(ref.10):

; (iz :- 1>
cz

ReigEs %

S |<

where

2.3 Calculation of reflected electric fields

Once the two principal radii of curvature of a reflected wave (p;r-, P2 r-)
are known, the relative value Er of the electric field voltage at a

distance R from the reflection point in free space for unity value of the
indicent electric field voltage is obtained(ref.3,4,5) from:

{ pl bt }35 .
E, @15 +R) (P2t +R) s with E, = 1.

2.3.1 Use in RCS calculation
The above relation for ‘Er / Bi‘ can be used to obtain the
resultant radar cross section (0) as R > % from

2 .
o Limit  op El_'_
R+ o Bi
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2.3.2 Double bounce situations

—

Alternatively, if double reflections are involved, the
above relation for lEr/Ei‘ enables determination of the

magnitude of the field voltage incident at the second
reflection point by substituting the appropriate range R in
the above expression.

For use of Deschamps' relations for the curvature matrix at
the second reflection point, it is clearly necessary to increase
the calculated radii of curvature of the first reflected ray by
the separation of the two reflection points to obtain the radii
of curvature of the second incident ray at the second reflection
point, (ref.2).

3. DISCUSSION

In most scattering problems utilizing geometric optics, a basic computation
step is the determination of the reflected field for a specified point of
reflection on a given conducting surface, knowing the characteristics of the
incident wavefront.

In the general case, (i.e. when the principal directions of the scattering
surface are not necessarily either coplanar with or normal to the plane of
incidence), the standard textbooks on radar scattering from simple shapes
(ref.3,4,5), fall back on Fock's method(ref.6) which uses tensor notation and
was originally published in 1950. Reference 3 gives a detailed description
and examples of the method. However, the required calculation in the general
case is more readily handled by Deschamps' relations(ref.1), using the more
familiar matrix notation, as it is indeed in some simple situations now to be
discussed.

As noted in para 2.1.1 above, when one of the surface's principal directions
is coplanar with the plane of incidence which also contains a principal
direction of the incident wavefront the relevant matrix becomes diagonal and
the curvatures of the reflected waves are given by:

. 0.
AR T R i B
: R .
and
o i 2
] llpi b 0 e llpz .+ R, cOS oi

From para 2.3 above, at a distance R from the point of reflection, the
, relative magnitude of the reflected field voltage to the incident field voltage
at the reflection point is equal to:

Plr Pzr
{(p.’- +R) (" + R)}

- [ @+RBT) 1+ R/BTY

%
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. Substitution of the above relations for 1/p, %, 1/p " gives:

| {<1+B—i+2RC°soi><l+R—i+ 2R >'~’i
' P11 Ry . P2+ Ry cos oi
In the case of a point source located at distance d from the reflecting point,

p;l = p,l = d and the above expression then becomes identical in form, (but with
different notation), to that quoted by Bowman et al(ref.5, pg 24). This

b latter relation is used extensively, but without derivation in reference 5,
since many of the scattering examples considered there relate to surfaces of

) revolution with the plane of incidence containing the axis of revolution and
hence containing a principal direction of the surface at the reflection point.
It is seen that Deschamps' relations readily provide the necessary relations for
such simple situations, as in fact they do for more complex situations.

The geometrical description of common scattering surfaces also differs some-
what between authors when utilizing methods of geometrical optics for the
solution of scattering problems. Thus Bowman et al(ref.5) utilize oblate
spheroidal co-ordinates rather than Cartesian co-ordinates when describing high
frequency scattering from a conducting oblate spheroid, (an ellipsoid of
revolution). The choice of such co-ordinates enables the high frequency
solution to be considered as a special case of the solution for an arbitrary
frequency. However, when prime jnterest is in a geometrical optics solution,
the use of Cartesian co-ordinates and the standard methods of co-ordinate
geometry(ref.10) would appear to provide the simplest methods for most people.

Although the techniques outlined above, based on Deschamps' relations, are
satisfactory for smooth conductors of finite (but non-zero) radii of curvature,
there is also a need in practice for similar simple techniques by which to
describe specular reflections from bodies such as finite cylinders of length L,
having one infinite radius of curvature.

4. CONCLUSIONS

Deschamps(ref.1) has provided a simple matrix relation by which to compute
the components of curvature of short electromagnetic waves following their
reflection from conductors of simple shape.

Such information directly enables calculation of the relative magnitude of

k the specularly reflected field at a given distance from a simple conductor,

b provided its principal radii of curvature at the reflection point are finite
but non-zero. The relation used twice in sequence readily enables the
calculation of double-bounce radar cross sections for two adjacent simple shape
conductors.

" Deschamps' relations were published subseguent to the standard books on radar
cross section estimation(ref.3,4,5) which quote the more complicated tensor
relations published by Fock in 1950 to meet the same requirement(ref.6).

Because of the generally greater familiarity with matrices than tensors,
Deschamps' relations present a significant advance in means of estimating the
characteristics of reflected waves.
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NOTATION
Curvature matrix of a local reflecting surface
Voltage of incident field
Voltage of reflected field

Transformation matrix connecting the principal directions
of the reflecting surface and those of the incident wavefront

Length of cylinder

Matrix describing the components of curvature of an incident
wavefront

Matrix describing the components of curvature of a reflected
wavefront

Range from reflecting point
Radii of curvature of a local reflecting surface

Unit vectors describing the principal directions of the local
reflecting surface

Unit vectors describing the principal directions of the
incident wavefront

Lengths of semi-axes of an ellipsoid

Separation of two reflection points, or distance of a point
source from a reflection point

Direction cosines of local normal to an ellipsoid

Length of perpendicular from the origin to a tangent plane

Lengths of semi axes of an elliptical section

General Cartesian co-ordinates f

Co-ordinates of a point of reflection

S— . __~.— - , T T —————————— -
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f ’s
A A
A,
1
By
v

Angle of incidence

Wavelength of electromagnetic radiation

Direction cosines of the principal directions of a
local reflecting surface, i = 1, 2

Principal radii of curvature of an incident wavefront

Principal radii of curvature of a reflected wavefront

Radar cross section
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Figure 1

Rz and Ry are principal radii of curvature of
surfaces 1 and 2 respectively and lie in the
common plane of incidence.
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Figure 1. Typical double-bounce reflection geometry
assicuated with diagonal matrices
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