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ABSTRACT

This report describes the analytical method and numerical
procedure for the c;lculation of the wave pressure distribution
and resulting induced forces and moments acting on large displace-
ment bodies in the sea. The added mass and damping coefficients

for the structure oscillating in all six degrees of freedom are

computed. Then, the hydrodynamic coefficients associated with
both the wave/structure interaction and the oscillation of the
structure are determined by use of a Green's function method
using quadralateral elements of constant source strength which
applies to large structures of rather general shape. The analysis
is based on linear theory and viscous effects are neglected on
the basis that the size of the structure is large in relation to
the amplitude of the incident wave. Also, the equations of
motion for a free-floating body are developed which yields the
dynamic response of a floating body with linear mooring line
forces. Finally, the computer program capable of carrying out

the numerical calculations is outlined and the input/output is

discussed in some detail.
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I. INTRODUCTION

Ocean Thermal Energy Conversion (OTEC) plants will be
either moored or dynamically positioned in the ocean and,
accordingly, will be subject to ;ind. wave and current load-
ing. This report deals with the motion of a floating body
of arbitrary shape subject to wave motion. The interaction
of the waves with the floating body is based on the inviscid
(potential flow) theory. This assumption appears to be
valid as long as the body involved is large compared to the
amplitude of the relative fluid motion.

This report describes the first phase of a project to
analytically determine the dynamic response of large float-.
ing OTEC plants to ocean waves. The long range goal of the
project is to develop analysis and computer code for compu-
tation of the dynamic response and structural loading of
OTEC structures of rather general configuration. Such
configurations are considered to be composed of a large
displacement parts where diffraction theory will be required
and/or small appendages or members which can be dealt with
by use of a Morison equation type analysis. This phase of
the work deals with the analysis of large displacement
bodies of arbitrary shape. The analysis is based on the
use of a surface distribution of sources using quadralateral

source patches or panels. The source strengths over each
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panel is assumed constant in this phase of the project. The
next phase of the work will investigate the use of triangular
panels where the source strength varies linearly between the
values at the corner node points. A comparison of the tri-
angular patch method will be made with the quadralateral
source patch method with constant source strengths over the
patch. The better of the two methods will be used in the
future phases of this work.
In particular, this report deals with the analytical

evaluation of the wave forces and overturning moment acting

‘on a large bodyof arbitrary shapewithout appendages in water

of finite depth. The same structure is also considered to

oscillate in surge, heave, sway, roll, yaw and pitch and for

such motion the added mass and damping coefficients are deter-

mined. Then, the equations of motion for a free-floating
body are developed, and using the computed wave excitation
forces and moments and added mass and damping coefficients
the response of the floating structure is evaluated.
Although the problems of wave interaction with a fixed
body and the oscillation of the same body in otherwise
still fluid appear to be physically distinct, they are
mathematically similar and as a result are dealt with
simultaneously herein. The primary mathematical difference

in these problems is the kinematic boundary condition which

is applied on the immersed surface. In all cases, however,




the velocity of the fluid in the normal direction relative
to the immersed surface must be zero but this statement takes
a different form in each case.

The method used to c:scribe the fluid motion involves
the use of a Green's function or source distribution. The
rigid, immersed surface of the structure is represented by a
surface distribution of sources which is assumed to be con-
stant over quadralateral panels and the zero relative normal
velocity condition is applied in order to determine the
strengths of the sources. Once the source strength distri-
bution is, known the velocity potential at some point in the
fluid region is determined by summing the effect of all of
the sources at the point in question.

Several authors have computed hydrodynamic coefficients
associated with specific shapes. The added mass and damping
coefficients for a semi-immersed floating sphere undergoing
heaving motion has been obtained by Havelock (2). The vertical
wave excitation force was not calculated by lHdavelock but
using the Haskind's Relations [Ref.3] this quantity may be
determined from the damping coefficient. Kim (4) determined
the added-mass and damping coefficients for this same'config-
uration to wave excitation in heave and surge. Although
calculated for the infinite depth case, these results pro-
vide an important comparison for establishing confidence in
the mathematical validity of the response calculations based

on the present analysis.

10
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Several authors have also considered the wave interaction
with large displacement fixed and floating bodies. In the
case of _arge North Sea Gravity platform [Refs. 10 and 20]
the agreement between the theory and experimant is almost exact.
In such structures the caisson was well-submerged and the
superstructure only pierced the free-surface. Thus, nonlinear
effects which tend to be most pronounced near the free surface
were absent. Additional experimental data and comparisons
with the linear theory for the case of fixed bodies which
are considered to be significant include those presented by
Garrison and Seetharama Rao (6) for the case of a bottom
mounted hemisphere. Unfortunately, the wave amplitudez were
rather small. Also, Garrison and Chow (7) have presented a
comparison of the theoretical results based on the distributed
source theory similar to that developed herein with two slightly
different submerged oil storage tank models. Unfortunately,
the vertical force part of this data was rather poor because
the vertical model supports had very low spring rates making
the natural frequency of the model support system too close to
the wave excitation frequency. It is significant, however,
that these tests represented North Sea design conditions and
in the case of the horizontal force quite good agreement was
obtained between the linear theory and experimental results.

A third experimental study involving a short vertical circular

cylinder (1.16 cylinder radii water depth) extending from the

11
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bottom through the free surface should be noted. Chakrabarti (8)

has made measurements of the horizontal force and overturning
moment for this configuration and found the results to compare
well with MacCamy and Fuch's (1) corresponding theoretical re-
sults. However, Chakrabarti gives no indication of the wave
height involved in Ref. (8). It is noted that the MacCamy and
Fuchs solution is simply a special case of the present more
general method so that agreement with this solution implies
agreement with the present method.

A series of tests have been conducted by Hogben and
Standing (9) of the National Physical Laboratory, London,
England with fixed vertical cylinders of square and circular
cross-section. They also made calculations using Q computer
program based on diffraction theory similar to the one pre-
sented here and good agreement between theory and experiment
has been observed.

Only limited experimental dat# has been presentéd in the
literature for the dynamic response of three-dimensional
floating structures to waves. Among these the results of
Faltinsen and Michelsen (11) are the most complete. They
compared calculations of diffraction theory with the heave
response of a floating box and the agreement obtained was
quite good. Also Garrison (12) showed excellent agreement
between the results of diffraction theory and the heave and

pitch response of a disc buoy. However, as a general assess-

ment of the experimental data available in the literature,




for the hydrodynamic coefficients and dynamic response of

floating bodies, it appears that the amount is very small and
the understanding of viscous effects and differences or sim-
ilarities of the experimental results with the theory is non-
existent. This is an area where additional work is needed.

2. FORMULATION OF PROBLEM

Consider a rigid object of arbitrary shape and having
characteristic lineal dimension a with center of gravity
submerged to a depth d beneath the free surface in water of
depth h as shown in Fig. 1. The structure is considered to
bg smooth to the extent that its unit normal vector is a
continuous function and it may or may not intersect the bottom
or free surface. Two coordinate systems are identified, X,y,z

coordinates with origin fixed at the free surface and the body
L] ] \J

coordinates Xx,y,z coordinates located at depth y = -d. The
bars over the symbols denote dimensional quantities.

The mathematical problem which is now established is that
associated with the fluid motion, pressures and resulting forces
induced by the small amplitude oscillation of the object in
its six degrees of freedom as well as the fluid motion asso-
ciated with the interaction of the fixed object with a train
of regular wave;. The small amplitude oscillatory motion of

the structure about its equilibrium position with frequency o

is described by the relationship,

t
ic 3,

ii(c) = :‘c; Re[e‘ i =1,2,3 (2.1a)

13
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2 (2.1b)
0,(t) = N R, [e 40t 4 » 4.5.8

where the subscript i = 1,2,3 denotes lineal oscillation in

s lalal
the x,y,z directions, respectively, and i = 4,5,6 denote angular

oscillation about the x,y,z axes, respectively. The real

-

numbers i; and O; denote the amplitudes of the motton. The

displacements, il' iz and 23 are normally refefré& to as surge,

~

heave and sway, respectively, while the angular;compoﬁ:hts 64, 65

—

and 06 are called roll, vaw and pitch, respectively. The second

r

problem dealt with simultaneously is the interaction of a train

"

of regular gufface waves with the object fixed in space. The

regular incident waves of wave-height- 27,° = H and wave length
s - - : *

L are assumed to progress in the positive x~direction and

it
interact with the fixed structure.

i >'lhe:£}uidmis_assumed Eb‘be_;héompresglh_g, and the motion
irrotational and harmonic with time_dependence g:i?t in all

cases. It follows, thé}efore,’that a vélocity potential exists

such that the fluid GElocify vector may be defined as-

-~

->

e
1 - xemj(;,;,ae‘i"l, 3 = A 3.8 (2.2)
-iot

where Re[¢je ] denotes the velocity potential associated

B o I 13 0 e —— .
T e S Sy et AN e T 5 -

P ——

with the motion induced by oscillations in the six degreeévbf

-’
freedom and V = 1 2: + 3 3: + ﬁ 2: » the symbols I,j,i denoting
Ix oy 02

the unit vectors in the X,y,z directions, respectively.
For the case of regular wave interaction with the fixed

structure, the velocity potential may be written as the sum

o' = ¢, + ¢7 (2.3)

15
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where ¢, denotes the potential-eseociated with the 1nc1dent.

wave 1n the absence of the structure and 07 denotes the

scattering potential which ;e;niteafrom :B;“}};senc}“}}'ine ’

structute in the-wave ttain,.A}n this ce;e, cn; finid velocity e :

vector is given by : 2% :_ ““:-_ ---L—-.i..- ey %
el g : --.-’-. CRE RETLITU0E BL. mbe WMeToeT . =
Sirpleciniiigle B [BC0e 4+ 70 HOE) Lo reteriic s @200

: The continuity equation shows ‘that oj, (j = O e -

s = - 5 ) SN o . -

must satisfy the Laplace equation L SR E s
v ¢j(x»Y9z) = 0 (2.5)
LI TEEUIET BUTITEL - = BE SRISCL ZX2ZE8CL I8 STacte =
and from the linearized form of Bernoulli's equation, which

is ‘applied throughout, the dynamic fluid pressure is given by,

- @ a® e s = ewa . - - - = - ;-—' - .
T RS g 6 6 “‘r; 3= 2.8 (2.6)
--For the second problem inyclv{ng‘wege;¥ntecaction with
the fixed object, the pressure is given by = . _____ _ _ _
AR ey P =R, [1 1 T )“é“‘"] T o e
The velocity potentials must.satisfy'certain boundary con-
ditions in addition to Eq. (2.5). These include the linearized
free surface boundary condition, . s fe had b e S
3¢ ) 02 - T — : S wn
_:j(;(’O,E) L '8' ¢j(x,0,z) = 0, j = 0,1,2,...7 (2.8)
3y

D i ———
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Equation (2.8) is familiar from linear wave theory. Also, °3
must satisfy the kinematic boundary condition on the bottom in
all cases,

ggj(i.-ﬁ.z) B, 0,3, 2050:7 (2.9)
3y

The surface of the structure in its mean position is

described by

s(x,y,z) = 0 (2.10)
When the structure oscillates, the velocity of the fluid in
the direction normal to the immersed surface must equal the
velocity of the surface normal to itself. Also, for the case
‘of wave interaction with the fixed body it is necessary that
the normal velocity component be zero. These conditions are

stated mathematically as

3 - iokin ()

B2 - _10%yn, (b) .

24 . -1ai;nz (e)

20u . -106;[(3+§)nz—;ny] (d) (2.11)
45 = _i00, (20, - n] (e)

%%5 = -106;[§ny - (3+§)nx] (f)

%%7 - -%%° (8)

17




where o= Inx + ]n& + inz denotes the unit normal vector on

the surface of the object directed outward into the fluid and
d denotes the depth of submergence of the x!y!z'coordinate
. origin. Finally, the velocity potentials must satisfy the

radiation condition which allows only outgoing waves,

cosh(kﬁ) *o,r1+~, i=1,2,..7

2

where ?1 = [x° + 52]Lj and 0 = tan (z/x) The wave number is

defined as k = 2x/L where L~ “dendtes the wive length and

is telated to the frequency of the motion according to the

well- kc;;ﬁ—relationship, RN AN S A L
:: e V= ;:I:f"léz. S 2 z z f:....'_. B &
s A L e e e e CRERE (kh) B e (2.13)

The-velocity potential of the incident wave alone progres-
1 sing in the positive x direction which satisfies Eqs. (2.5),

. (2.8) and t2.9) is éiven by

=0 - - ik(x cos ¥ + z sin V)
g R cosh[k(h+y)]e
¢ (x,y) o *_ cosh (kh) s

where as indicated in figure 1, V ‘denotes the angle of the
incident wave measured clockwise from the x-axis and ﬁ:’- H/2
denotes the amplitude of the incident wave, H being the wave
height. Moreover, from the linearized form of Bernoulli's

equation, the ftee surface of the incident wave alone is

evaluated from

= - -;= & {R [¢oe 1‘"‘]} =k (2.15)

oi(ile,;)fxi(e)gf cosh[k(y+ﬁ)1e - - (2.12)




e

w: < Using (2.14) this gives,

LRE SSTIs e s a2k s g R < § Wy i ey B Y X RN Bz
LU A A cos(kx cos ¢ + kz sin ¢) Eiae i (P
ok €T-. -Thus, -for purposes of reckoning phase angle it is noted that

Tii--gt t = 0 the crest of the incident wave is just passing the

°
) - coordinate origin. . P
- o For coﬂ&enienééuzh‘é;;fying out the solution for the seven ;L
{ = e ot s At | 3
| ¥“:" potentials, ¢y and to show clearly the dependence of the ‘
1 A - ey B i
i “*i-"solution on the parameter, -a = 2n7a/L = ka, the relative water
i
é -: T“~depth, h = h/a-and the relative depth:of submergence, d = d/a, |
»<---the space variables and amplitudes are first made dimensionless
i with the characteristic linear dimension of the object, a,
| 'y g 2
I 3 _ -
' E -te Yitiix = xfa,-y-=y/a, z =2f/a, r =r/a ... “Toczo:-
f g i mod] s s A o _O-_ o o
| : AR S e e “‘xi - Xi/a;~(1 ->1.2;3)3 xi“.'elv-(i'- a9516) |
; Nng = n/a = H/2a, r, = rlla, v =o0"alg (2.17) i
3 “. and thbﬁ'fhe'dtﬁéﬁsionless‘potential functions uj are introduced %
! as, ;
it % - -t - - CERC- e S : S R s i % z E-
._1o¢j(x.y,z)/gaxj = a tanh(ah) uj(},y,z), - 1,2,.26: (2.18a) |
- a8 : 5
'1007(x,y,z)/ga|3 = -a u7(x,y,z) - Ev e (2.18b) :
1 T A o o : i
‘ io0¢o(x,y)/gan, = -a uo(x,y) e (2.18c) |

The complex dynamic pressure amplitude can now be written

by use of the linearized form of Bernouli's equation (2.6) and

L' 3 ‘2-7); as




\
|
B
{
!
f
!
1
|

pj = a tanh(ah) uj(x,y.z), 4 ™ 1,2,0046 (2.19a)
R ct’sh|agh-|»12|e:la(x cos¥+z Sineb-a u7(x,y.z) (2.19b)
P cosh(ah)
where the complex amplitudes of the pressure, pj,are defined as
Py -0t
psaxj = Re[pj(x.y,z)e B o= 35200 .06 (2.20a)
S L - "(x,ysz)e 10F 2.20b)
psan; Re[P (x’y’z)e ] (2.

; Tbe boundary value problem which describes the fluid motion
arisi;g from the oscillation of the rigid object in its six
degrees of freedom as well as the scattering of the incident
wave may now be written concisely in terms of dimensionless

parameters. The potentials ui(x,y,z), i=1,2,...7, continuous

in the fluid region is sought such that:

Vzuj(g,y,z) =0 (2.21a)
ggj(x,o,z)-a tanh(ah) uj(x,o,z) = 0 (2.21b)
9y

du,(x,-h,z) =0

ggj(x;y,z) = gj(x,y,z) on S(x,y,z) =0 (2.214d)
an

iar
3. =% cosh[a(h+y)]e 1 i

uj(r,e,y) Ai(e)t1 cosh{ah) >0,r; > (2.21e)

=

e

Ay T

o i
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The gi(x.y.z) functions represent the prescribed functions which
depend on the mode of oscillation (j = 1,2,...6), and j = 7
corresponds to scattering. These functions represent the dimen-

sionless form of (2.11) and are given by

gy " n,, 8 = 0., g3 =n ; (2.21€)

B, = (d+y)nz-zny, g = 2zn_-xn_, g, = xny—(d+y)nx

g, = m%aT) [n, sinhla(h+y) ]+ i coshla(h+y)]

-(n_cos ¥+ n_ sin 9 1ela(x cos ¥+ - sin¥)

Equations (2.21) define seven boundary-value problems which

'cérrespond to oscillation of the immersed surface in each of

the six degrees of freedom and to scattering of the incfdent
wave by the fixed body. The problem statement for each of the
potentials is the same; the only difference lies in the form of

the boundary condition to be applied on the immersed surface.

3. REPRESENTATION OF THE POTENTIAL

The boundary value problem for oscillation in the six degrees
of freedom and scattering of the incident wave is specified in
(2.21). The solution., (i.e.), the function lﬁ(x,y,z). may be
represented by use of a Green's function having the physical
interpretation of a point wave source of unit strength. These

sources are distributed over the surface of the object according

to the source strength function,f, so that the potential at




some point (x,y,z) within the fluid region is given by the

surface integral

pe o i N
uj(x)Y)z) » l”'fs fj(&.“’;) G(X.Y.Z.E.n.C) ds

(3.1)

where (£,n,%Z) represents a point on the surface of the struc-

ture, G denotes the Green's function (or source potential) and

dsS = d§/§2 denotes the dimensionloss surface area element. The

Green'S«function is defined, therefore,  as the function which

satisfies T RS- ia .1 ze: N

v G(x.y.z E.n.c) = 6(x-£) §(y-n) &§(z-2)

Bgacr Sap EET N e mEige s e TR e

as well as che boundary conditions (2 215 c, and e).

R . = —

a function is given by Wehausen and Laitone (13) as

where G* = %.

(3.2)

Such

(3.3a)

- ~ 5 -uh ) Y
P T jfu (utv)e*coshu(n+h)] coshluly+h)] ; (. van  (3.3p)

# sinh (uh) -v cosh (uh)

21(a®-v?) cosh[a(n+h)] cosh [a(y+h)] jo(ar)

+ 1
Sl :';7,azh - vzh + v " > N

R = {(x-8)2 + (y-m?% + (z-0)21¥

R'= [(x..ag)2 + (y+2h+n)2 + (z-c)zlk

r= [(x-0)% + (z-0)2)"

v - oza/g = a tanh(ah)

(3.3¢c)

(3.3d)

(3.3e)
(3.3f)
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and P.V. indicates principal value of the integral. An alter-
nate series form of the Green's function is also given by
Wehausen and Laitone (13) as
27 vz-az
G(x,y,2z;&,n,C) = cosh[a(h+y)lcosh[a(h+n) ][Y (ar)-iJ (ar)]

azh-v h+v

: (3.4a)

(uk + v
67 s cos[u, (y+h) Jcos[u, (n+h) JK (u, r)
Z; ueht v Theu % * i

where Jo and Yo denote, respectively, Bessel functions of the
first and second kind of order zero and Ko denotes the modified
¢t - Bessel function of the second kind of order zero. The quanti-

- “-‘ties U, are the real positive roots of the equation

k

M tan(ukh) +v =0 (3.4b)
The Green's functions specified in (3.3) and (3.4) are
.equivalent. However, for purposes of numerical evaluation it
is found that the series formulation given in (3.4) can be
evai&éted more accurately and with much less expenditure of
.computer time than the integral form when (ar) is not too small.
On the other hand, for small and zero values of (ar) the integral
f;rm given in (3.3) is necessary. The integral form of the
Green's function as given in Eq. (3.3) may be integrated

directly or, it may be rearranged as in Appendix C so as to be

somewhat better conditioned for numerical evaluation. In the




computer program when the integral form of the Green's function
is required, the form given in Appendix C is actually used for
numerical evaluation. It appears that it is somewhat less time
. consuming to evaluate than the form given by Eq. (3.3). The ,
potentials “j are represented by (3.1) and with the introduc-

tion of the Green's functions (3.3) and (3.4)(or equivalent form

given in Appendix C) the only unknown in (3.1) is the source
strength function fj' To evaluate this it is necessary to

take the derivative of (3.1) in the direction normal to the

)]

immersed surface and then apply the boundary condition (2.21d).

This results in the following integral equation from which f

h

: is to be determined:
|
k _1_, _?_Q,(x,)',z;ﬁ,n t)ds = g, .(x,y,2z), § =1,2...7 (3.5) g
1 lﬂ'-/:/; fj(ﬁ;ﬂ»‘) an 3 j
|
H where 3/ 3 is obtained using the form V6.0 where VG is deter- 5
fi mined by straightforward differentiation of (3.3) or (3.4).
% The normal derivative of (3.3) is
- = - [ (x-6) + 0 (y=n) + 0, (z-0) ]

- g3l (x=8) + n_(y+2n+n) + n_(2-0)]

¥ o p(u+v)e Meosh[y (u+h)]

- P'V'J( u sinh(uh) - v cosh(uh) (3.6)
[cosh[u(y+h)] J, (ur)
- [y (x=E)+n, (z=C)-n, sinh[u(y+h) 13, (ur)] au

24




-1

2 2
2na(a " -v Jcosh[a(n+h) ] [cosh[a(h+y)]Jl(iz)(nx(x_£)+“z(z_C))

.azh.f.“zh L ¥

--ny sinh [a(h+y) ]Jo(ar)]

and the normal derivative of the alternate rearranged form of

Eq. (3.3) is given-iﬁ-Appendix C. The normal derivative of

the series form given.iﬁ (3.4) 1is

22 :
3G 2n(v -a“)a coshfa(h+n)] [sinh[a(h+ _
. y)1[7_(ar)-iJ _(ar)]n
? azh_- yzh,+_v 0 o y

“wi',Ta;(x;g)4nz(z-;ﬂ cosh [a(h+Y)]% [yl(ar)-iJl(ar)]]

R R e (3.7)
® 2 s
i (u2 +v-)cos([u, (n+h) ]
# ,A>E Kk - [sin[u (y+h) JK_(u, t)n
S k=1 uih i_vzh -V 5 k e y
= .Kl(ukr)

o+ cos[uk(&+ﬁ)]

. o (x-8) + nz(z-c)]]

where n s ny and n, denote the components of the outward unit
nér;al vector on the imme;sed surface.

- Returning to the integral equation (3.5), it is evident
that the ac/an ocgqf;{gg therein as given by (3.6) is singular
like 1/R3 as the point (£,n,Z) approaches the point (x,y,2).
Thus, -special care must be taken when integrating this term
of (3.6) over the siﬁgularity. Moreover, the kernel of (3.1)

is singular like 1/R at this same point and likewise special

attention must be given to this situation. Taking the integral




over the complete surface of the object-as the sum of two parts,

one bért being a small circle of radius r, about the point

(x,y,2), as indicated in Figure 2, and the second part being

the remainder, S', of the surface, we may write (3.1) as

A TORI T A e e e (e (e

i—‘u a—G- (XDY9Z;€"\’;) dS o S W iy
;”,_[/Z-fj(ign,C)_an s e V e e B S e S e

';' %_."'.[[v fj(&:nsC) 'g_g' (x,y,z; &,n,z) ds = gj(x,y,Z)

where:Z denotes the area inside the small circle of radius r

o’

Now, using the expression for 8G/3n .as obtained from (3.3a)

and keeping in mind that fj(€.n.4) is a well behaved function,

we may -take the limiting case as I, or equivalently, r, tends

to zerod to obtain

. lim 1 e Wl | A [Sp e
1+0 4m £3(%¥22) )T ( i e ;
linm 3G* (3.9)
¥ 2.9 lm j(x L z)./]z'
lim 1 3G (x.y.z E,n.c) dS - g (x y.Z) Fi
I+0 4 S'f (E,n,t) e L Vo 3

Letting the point (x,y,z) lie along the normal at a distance
€ above the surface as indicated in Figure 2, it is evident

that the first integral in (3.8) can be expressed as




{ -
3
i
4
-

paBL e 82 e s Bl

O A ——————— e ——

FIG.2 SINGULAR POINT
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lim 1 f TR R - _a_Jfo 2nrdr
. 4'4fj(x,y,z) zan(R)dS lim = fj(x,y,z)a L AR

r +0 YrZ+e?
e+ 0
lim A : (3.10)
- ro*O [z; fj(x,y,z) 2n (—— ~-1)] = - 2 fj(x.y,z)

e+0 € +%

provided L is chosen to be small enough that the surface area
inside r, may be considered to be plane. Moreover, since G*
occurring in (3.9) is regular; the second integral vanishes

in the limit as I+0 giving the integral equation

-fj(X:Y:Z) + ‘;— sfj(E:“sC) 'g% (x’y’z; E'n’t)ds e gj(x.y.z) (3.11)

-In (3.11) the singular point at (x,y,2) is considered to be

excluded from the surface S.

As ;;Eed, in (3.1) the Green's function is also singular

and special consideration is needed. However, using a procedure
similar to the above, it can be shown that this 1/R singularity
contributes nothing to the surface integral in (3.1). Thus,
(3.1) may stand as is without modification and the point (x,y,2z)
considered to be excluded from the surface S.

However, the integral of 1/R over.the facet of area AS

outside the singular point is not zero. This will be discussed

in detail in Appendix B.
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4. - HYDRODYNAMIC FORCES AND MOMENTS = ——

The forces and moments caused by the dynamic fluid pressure

- - acting upon the immersed surface of the structure m;y be ob-

A "" tained from the integrals,

. P+ ¢ 4 “..1 (,t)_ - ;_.'(.1>.0 or ;)./:/;Pngi d'i,g.i'j - 1,2,..;..62".';-. ST 8E (601‘)

3
sCcuTT ;F-i(t;)_ - 150 o h)‘[/s'P"sidg’- T Ei2ecs-8 vanistes (4.1b)

-3 - < -- e - - - - . L g

where Fij(t) denotes the i-th component of load arising from

the j-fh.ébmponent of motion and Fi(t) denotes the i-th compon-

.2r ...ent of wave force (or moment). The coefficient 1.0 is to be

ex:. -.used in the case of a force (i =1,2,3) while a is to be used
g ~s when F denotes a moment (i = 4,5,6). .The sign convention of
zv: -:-.the forces, moments, displacements, velocities, etc. follow
¢.z:.--the right hand rule.. . ... __.. __._ - . .. _ ..
c:-.v: - It is convenient and conventional to place the forces and
-moments in dimensiogless_;oeff@cient»iorm. Accordingly, the
c=-- -:following complex wave force (and moment) coefficients are
...defined using (4.1b): 2
5 ® Fi m:a’-‘ -eiﬁi LE RS TRt e S Bt : CERTT
»Ci = ——53—:1— AR G R -(force) (4.2a)
pPga n
*
FiSmaxzemi
Wt » 1 =4,5,6 (moment) (4.2b)
pga n
~ *
f




The symbol Fi(max) denotes the maximum value of the oscillatory

force (or moment) and is taken as positive. The wave force
may, therefore, be defined by the complex number C1 or by the

magnitude of C, and the phase angle §,. Once Icil and &, are: .

i

known, the wave force (or moment) is expressed as a function

of ti-e as

cos (61 - ot) (4.3)

F,(t) = (1.0 or 3)pga’(ii/23)|c,|

where the coefficient (1:0) is applicable in the case of a

force (i = 1,2,3) and (a) is applied when (i = 4,5,6) and F, (t)

dénoéés a moment. The dimensionless wave amplitude is defined

as n:r; fi/2a. It is further recalled that all phase angles

are measured in relation to the incident wave; at t = 0 ch;

cresgréf the undisturbed incident wave is located at the coor-
dinaéé'origin. =

gcéording to the definitions (4.2), C, may be expressed,

i
using (4.1b) with (2.20b) and 2.19a), as

oy _ cosh[a(h+y)] _ia(x cosy +z siny)
4 f/;[a e b f e cosh (ah) e !

(4.4)
.ci(x.y.z) 8, 4w 3.2....8

Thus, oncé u7(x,y,z) at all points on the immersed surface is
determined, the complex wave force (or moment) coefficient C1

may be evaluated by evaluating the surface integral indicated

in (4.4). -
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Turning now to the force (or moment) produced by oscilla-

tions in the various degrees of freedom, (2.19a) and (2.20a)

may be used in conjunction with (4.1la) to obtain

Fij(:)--(l.o or ;)p313x3 vRe[e-iat_[/; uy(x,y,z)g, (x,y,2)ds],

1,§ = 1,2..6

where as previously noted (1.0) corresponds to the case of a

force (1 = 1,2,3) and (a) corresponds to the moment (i = 4,5,6).

Furthermore, if the tﬁo dimensionless real numbers M

are defined as

Mij = -Re/];uj(x,y,z)gi(x,y,z) ds

Nij = -Imj]s.uj(x,y.Z)si(x.y.Z) ds

where Re and Im denote real part and imaginary part, respectively,

then (4.5) may be written as,

Fij(t)-(l.o or a) 0883){;\)Re‘[(Mij.'.inij)e‘iot]‘

where, as in (4.5), the coefficient (1.0) corresponds to i=1,2,3

and (a) corresponds to i=4,5,6.

1,§=1,2,..6

and N

ij

(4.6)

(4.7)

Equation (4.8) may be further rearranged by defining the

dimensionless parameters,

F,.(t)
C,,(c) = A fe1,2,3; §=1,2,...6
3 pga’

and
F,.(t)
Cyy(e) = Al 4 e 4,5,65 9 =1,2,...6
J pga’

i1

(4.9a)

(4.9b)

(4.8)

(4.5)

IR R R SRR



With (4.9) and using the definition v -02;/3,(4.8) may be

written,
i . < gé o : 2
c“(t) = -suijxj(t) s Nijxj(t), 1,4 X, 2. iin6 (4.10)

Hij and Nij (i, = 1,2,...6) represent the inertia and
damping tensors, respectively, having 36 elements each. The
first index denotes the direction of the force or moment and
the second index is associated with the component of the motion.

It can be shown, moreover, that these tensors are symmetrical

so that
Bys ™ “j;_ (4.11a)
and o
Nig = V51 (4.11b)

Except for the diagonal terms it is rather difficult to
give simple definitions for the dimensionless added mass and

damping tensors, M and Nij’ respectively. They are best

ij
defined by expressing the force (or moment) acting on the immersed
surface associated with the dynamic response in terms of these

parameters. Equation (4.10) gives:

i=1,2,3

Fij o {léo}[‘ﬂl' Mij;(j+po54 Nijij]’ {1-4,5,6} s §3=1,2,...6 (4.12)

where when (i = 1,2,3) Fij represents a force and when (i = 4,5,6)
Fij represents a moment. The parameters ij and kj denote the

first and second time derivatives of the dimensionless dis-

placements:

e

T

pemrr e e




.

X. = %./a and ij = % la, j =1,2,3 (4.13a)

a¥ T T 3 N
xj 0j and xj e 3 4,5,6 ( b)

S. NUMERICAL SOLUTION

The primary objective at this juncture is to solve the
integral equation (3.11) which has been established for the
source strength funection, fi(E,n,;). Once this function is
obtained, u, can be determined from (3.1) by evaluating the
surface integral. Then, all other physical quantities such
-as pressure and resulting forces and moments may be determined.

A numerical procedure can be devised by approximating the
actual immersed surface of the structure by a contour composed
of a large but finite number of facets. 1In the limit as the
number of facets increases and the size decreases, the approx;
imate contour approaches the actual contour. Thus, we may assume
that in the limit as the number of facets approaches infinity,
the numerical scheme converges.

To begin, the immersed surface is subdivided as indicated
in Figure 3 and an index is assigned to the nodal point (centroid
point) of each of the small facets. It is required that (3.11)
be satisfied at each of these nodal points. This is a relax-
ation of the requirement implicit in (3.11) that the equation

be satisfied at every point on the immersed surface.

33
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Recognizing that the source strength, £j(E,n.;), is a regular

well-behaved function, we may approximate (3.11) by

N
1 3G ]
-fn(xioyi)zi) + 21' zfn(xjiyj’zj)‘[/A'sj an (xi’yi!ziﬁ x)Y’z) ds

- 2gn(xi'yi)zi) (5.1)

vhere-ASj denotes the area of the j-th facet and N denotes the
total number of facets. In shorthand notation, (5.1) may be written
-f A o = 2g (5.2)
n, nj ij n,

-

where n = 1, 2, ...7 corresponds to the six degrees of freedom and
scattering, the repeated index indicates summation as usual and aij

is defined as

1 36 : >
aij iy -2—'ﬂ'_/‘_/A‘S:j on (xj_’yi’zi’ x'y’z) ds (5.3)

Eq. (5.2) is a complex matrix equation which may be solved using a

digital computer to obtain the source strength fn once the elements
i
of the square matrix o are calculated.

ij
As an approximation, the matrix aij may be evaluated by using
the-“value of 3G/3n at the nodal point to represent the mean-value
over the elemental surface area of the facet and thereby further

approximate (5.3) by

1l 3¢
aij 2T oan (xi’yi’zi’ X,¥,2) ASj (5.4)

where 3G/3n may be evaluated by use of either (3.6) or (3.7). The
choice between the two forms depends on the value of r. When r is

small, the infinite integral occurring in (3.6) is fairly rapidly

convergent while many terms of the series indicated in (3.7) are




Y

T T ey,

required. However, when r is large, the series occurring in (3.7)
converged rather rapidly and, consequently, only a few terms are

needed. 2 o

The pofential'funéfion uj-ﬁay be obtained from (3.1) once the

source strength fj is determined at the nodal points. In a manner

similar to that used to solve the integral equation (3.11), the

source strength is taken outside the surface integral and (3.1) is

—_.«._- N = - e - - - ---: -

written as

-"1 N.

un(xiiyiﬂzi) - 7.—"' f (xjvyj’z )/]‘ G(xiﬁyi’zit ’Y!z) ds
: 2 ot iy 8 (5.5)

CNEES “S I - . - -

where as 1a (5.1) n:;Ti:2;'.::7: and the integer N denotes the total

number of nodal points on the immersed surface. In indicial notation

(5.5) becomes =it e

u = f <]
. "1 N

(5.6)

where the square matrix 8 jmis_def;ned>as the integral over the

panel of area AS as

PR L - ;
81 o -4_ ff G(xi,yi’zi, ’Y’z) ds (507)

Taking the value of G at the nodal point to represent the mean-value
over the facet, (5.7) may be approximated for large R as
1
Bij l."'[ G(xi’yi.zi’ xj’y:’,zj) ASJ (508)
where G is evaluated by use of either (3.3) or (3.4), depending on
the value of r. When R is not large (5.7) must be used and the

integration of 1/R term in G is discussed in Appendix B.

The first step in the numerical solution to the problem is to

evaluate the matrices, a

13 and Bij' For example, the point (x,y,z)

NS

e



on the immersed surface is denoted by 1 and the point where the
source is located (£,n,%) 1s denoted by j. Thus, using the series
form of the Green's function given in (3.4) or its derivative given

in (3.7), there is no difficulty in numerical evaluation once the

location of the point i and j are specified. However, the integral

* form of G and its derivatives as specified by (3.3) and (3.6) re-

quires some special consideration. The infinite integral which
occurs in both of these expressions poses two difficulties with
respect to numerical evaluation; the integral has an infinite
upper limit and the integrand is singular at u=u where M, is the

root of

M, tanh(uoh) - v = 0 (5.9)

The root is simply equal to "a" in view of (3.3f). However, these

. difficulties can be overcome by recognizing that the integrand is

singular like ll(u-po), subtracting the singularity out of the
s integral and carrying out its integration analytically. The re-

mainder of the integral is then carried out numerically and the

upper limit is replaced by a suitable large number such that con-

vergence is assured.

For purposes of illustration let the infinite integral in

(3.3) be denoted by I so that

& Q(u)du
1 P.V. o Chi% = (5.10)
; where :
| P(u) (U‘Uo) 1 3
i - Q) (5.11)

o p tanh (ph) - v




e

and in the case of (3.3) the function P(u) 1is defined as

TR} (ui-vle czz:ﬂig;’n)lcosh[p(hi-z)l J_(ur) (5.12)

The'integral in (5.10) ma§ be rearrange& and written in the

form

- - zu - e
2y Q(u) Q(u ) 4 o :
u + Q(u JP.V. 1 du (5.13)
f (u- ¥ ) fo -,("-_"o)_"

iagEatl g f Q).
e i e mo u-u) £l
where the principal value of the second integral can easily

be shown to be zero and the other_ two integrals are proper

and easily evaluated by numerical integration._ Thus, I may

be evaluated by numerical integration of

Lon o= e o - s -~

gggg -Q(ug)) g(u)du i (5.14)
‘[ Cu=u, dv+f2 (uu

B

hé%é'Q(u ) represents the limit of (5 11) as uru where

uo‘;'a. The result of this limiting process results in the

following expressioni

Q) = Blua) s
o tanh(u h)[l u h tanh (u h)]+p h (5.15)
or, using (3.3f) and the fact that Ho=as (5.15) becomes

ORI T (5.16)

For the case of deep water (h*» ) we find v+a so that

Q(uo) = P(a) (5.17)
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- other cases but can easily be determined by a comparison of
2¢5.10) and (5.11) with the particular infinite integral tc be

eva}uated.

'aij'

The same method of integration may be used to evaluate the

infinite integral in the detivatives of G as well as in G itself.

The only difference is that P(u) is defined differently for the

- s

- An atternate method of evaluating the.integtal form of

the Green's function may also be used. This procedure as

described in Appendix c involves converting the infinite upper

2 limits and appears to be particularly useful when the wave

g period is large. The computer program actually uses this form

for numerical calculation.

There is one further significant difficulty in evaluating

and Bij When point i is distant from the source located

e - |

at i point j it is adequate to use approximates such as Eq. (5.4),

and (5.8). However, when ¥ =y o point i is near point j the

singular term in the Green s function which is of the form 1/R

does not vary slowly over the panel of area ASj Thus, when

the node point designated\xp the index i is rather close to
the j-th node point the llR\term in G and derivatives of 1/R

which occurs in o must be integrated over ASj rather than

ij’
approximated. This integration is described in detail in

Appendix B.

Specification of the Subdivision Scheme

The numerical scheme starts with specifying panel corner

points on the immersed surface. Each corner node point is

assigned an index and then a correspondence table is introduced
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which specifies which four corner node points make-up a given
panel. Thus, an index is assigned to each panel.

Given the coordinates of the four corners of a given panel
it is rather easy to compute its area by breaking it up into
two triangular areas. Using the areas and centroids of the
two triangular portions of the polygon the centroid of the
polygon is computed. Finally, the unit normal vector for the
panel is determined by taking the cross-product of vectors
running across the two diagonals of the polygon panel. These

calculations are described in detail in Appendix A.

6.l DYNAMIC RESPONSE FOR A FLOATING BODY

In this section the equations of motion for a floating
body in waves are developed. These equations are then applied
using hydrodynamic coefficients, which include the wave excita-
tion forces and moments as well as added mass and damping co-
efficients, in order to compute the dynamic response.

The problem under consideration is represented schematically
in Figure 1. In the following, the equations of motion are
written with respect to the center of gravity. Thus, the origin
of the body coordinates is assumed to be located at the center
of gravity of the floating structure and d is defined as the
dimensionless depth to that point.

The small amplitude displacement of the body center of
mass with respect to its mean position in the inertial reference
frame is described by the three coordinates il(t), iz(t) and
ia(t) which are referred to as surge, heave, and sway, respec-

tively. The small angular displacements of the body about the

PRPPR——




x', y' and z' axes are denoted by 04+ Og» O, and are referred

to as roll, yaw and pitch, respectively.
The equations of motion linearized with respect to the

small angular displacements of the body may now be written as

follows:
F.T(t) = =X, (t) (6.1a)
1 1 E
T -
Pz (t) mxz(t) (6.1b)
r3T(:) = BX,(t) (6.1¢)
T & = =
.Fk (t) Ix'x' 64 - I‘,y. 95 - Ix;'66 (6.14d)
P T(e) = 1 8. « Yare, ~ %08 .1
5 y'y' 75 yz 6 yx' "4 %
T - .. - . -~ oo

where FlT(t), Fzr(t) and FBT(t) denote the three components of
the total external force acting on the body and Far(t), FST(t)

and F T(t) denote the three components of the total external

6
moment. The symbol m denotes the body mass which equals the
displaced mass. The moments of inertia are defined, typically,
as

I = I = - -'-' m

Ix'y' Iy'z' ,/1; x'y' dm (6.2)
where the integration is to be carried out over the complete

mass of the body. For bodies having symmetry with respect to

the (x'-y') and (y'-z') planes, all of the products of inertia
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vanish. Although this type of symmetry is common to most ocean
structures, there is no need to apply the limitation at this

point since the inclusion of the product of inertia terms do

not, in principle, complicate the development. ;

At this juncture it is convenient to place the equations

of motion in dimensionless form and replace the x, y, z sub-
script system with a less cumbersome indicial system. We may

define the following dimensionless parameters for this purpose:
3

» 22 " W33 " ®/ea, m, =my; =my Tmyg Tmy, mm,, =0

A

W 5 _5

Mg = Trxrfea s mysmKag /ea , mec=L1z1 /pa :
Ras™ms4" "y /p8%, mgmmgI-Rrze foa7, mgommg m-Tage Joa
X, (£)=X, () /a, X,(t)=X,(tVa, X,(t)=X,(t)/a

X,(t)=0,(t), Xs(t;-es(t), x6(t)-96(t; .
£,7(e)=F T (t) /pgd, £,7(6)=F, (0) /pga, £,T(6)=F,T(t) /pga

-4 -4 -
£,7 ()-8, (22 /0ga , £5T ()BT (e /g, £,T(e)mE T (2)/pgi

where, as previously given, a denotes the characteristic dimen-

sion of the body, P denotes the fluid density and g denotes

the gravitational constant.




Using these definitions, (6.1) may be condensed to the

.-. form

,r i .
£, (¢) = s ™14 Xj(t) (6.4)

""" where ij takes on values 1,2,...6, and the repeated index denotes

bﬁmﬁation as usual.

i Equation (6.4) represents the six equations of motion with

;;r'fir(t) dénbting the dimensionless total external force or moment

" coefficients as defined by (6.3). For free-floating bodies these

"I coefficients represent the contributions from the surrounding

-

Lf‘ =fl'ﬁia'on'l'y aﬁd';fe generally considered to be composed of three

(a) the wave excitation forces and moments, (b) the

A T
~- parts:

% éﬁdaﬁic'fofceé Jﬁd moments caused by the motion of the_ body,

g s and (c) the hfdrostatic forces and moments caused ey the dis-

:;_ 'piacgméntvdf the-body. For moored bodies the forces and moments

o ‘associated ;ith the mooring lines must be included and for the
linear problem these contributions may be determined separately
and superimposed.

In accordance with this idea the three contributions to

the force (or moment) coefficient fiT(t) may be expressed as

the linear combination:

6
£,708) = eg(e) + Y ley (6) 4k 00) & by, (D)) (6.5)
3=1




where

'ci(t) = force or moment coefficient.associated with wave
excitation, F;(t5[;353 (1-1,2.3); Fi(t)/0354(1-4,5.6)
Fij(t)'- force or moment coefficient associated with the
_____ dynamic response of the body, see Eqs. (4.8-4.10).
kij(;)" force or moment coefficient associated with linear
c.or angular displacement which results from hydro-
. static pressures.
kﬂij(j) = force or moment coefficient associated with linear
_____ -- or angular displacement resulting from elastic
cavies constraints (mooring lines).
The.  force or moment: coefficient ci(t) may be expressed
as .- _ - Sl e SR it e S L

ié e
L 20k s w3.2,..6 (6.6)

wherzbi =1,2,3 fefefs to the three components of the force

and i_Q;l;S,é refers £6 tﬁevthree components of the moment.
The aime;;ioﬁless coefficients ci(t) are defined according to
the definition of fiT(t) as the force made dimensionless with

9333.(1 = 1,2,3) or the moment made dimensionless with pgah

(1 -'4,5,65. The freqﬁency of the wave excitation is denoted

by o, and 61 denotes the phase shift angle of the i-th component
of excitation force or momgﬁt in rélationship to the incident
wave. (All phase shift angles are measured as lag positive

and in relation to the time that the crest of the undisturbed

incident wave is at the coordinate origin.)
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The magnitude of the complex excitation force or moment

coefficient occurring in (6.6) is defined, as in Section 4,

as
F : F
| = Lmax) . ya1,2,3; e, | - 2220 L 4a,5.6 6.7)
pga°n° pgd n®
* *

where n® = H/2a denotes the dimensionless wave amplitude, H

*
being the wave height and a the characteristic body dimension.
The amplitude of the excitation forces and moments are denoted

by F where 1 = 1,2,3 refers to the three components of

i(max)
force, and 1 = 4,5,6 refers to the moment.
As the body responds to the wave excitation, dynamic

pressures arise due to the motion which may be resolved into

two components of force (or moment), one component in phase and
proportional to the acceleration of the bod& and a second in
phase and proportional to the velocity. Equation (4.10) defines
this dimensionless force (or moment) which is due to the motion

of the body. The dimensionless parameter cy (t) is defined

]
in (4.10) as the force (i=1,2,3) or moment (i=4,5,6) which
is caused by the j-th component of motion. The dimensionless
parameters Mij and Nij denote tﬁe added mass and damping coeffic-
ients which are calculated by use of (4.6) and (4.7).

The final contribution to the force (or moment) resulting

from the surrounding fluid comes from the hydrostatic pressure.

As the body is displaced from its equilibrium position, forces

and moments arise which are proportional to the body displace-

b L i e e

ment.




The hydrostatic pressure increases with depth according
to P = -Dg§ and, consequently, the i-th component of hydro-
; static force or moment resulting from this pressure variation

and acting on the body is given by the integral

H 3 H 4
¥, = Pga ‘[/s.ygidS, i 1,2,3; F,” =pg3 /Zygids. i=4,5,6 (6.8)

where y = ;/; denotes the dimensionless y coordinate of a

point on the immersed surface, and dS-d§/52, dS being an i

elemental surface area.. The functions 8y occurring in Eq. (6.8)

are defined as follows: |

B ~ By & * ny 3 © 7,
: Y % (6-9)
= -t - 1] e | - ] i

g, y'n -2 L g, z'n_-x'n_, g6 x n-y'n

where the dimensionless body coordinates are defined as

x' = x'/a, y' = y'/a, z' = 2'/a, d = d/a
and the unit normal vector on the immersed surface is defined
as ;(x',y',z'; xl,Xz,X X4,X X6) = In + In + kn . Eq. (6.9) is

the same definition of g given in (2.21f), the only difference

s b AL 1

being that (2.21f) is written in terms of the fixed (x,y,z)
coordinate system while (6.9) is expressed in terms of the body
axes.

The following linearized relationships exist between the
coorainates of the fixed reference frame and the body coordinates
for a given point on the immersed surface at x',y',z':

= ' ' -
x x' + XSz x y' + Xl .

y--d+y'+x6x'-x,..-,'+x2

(6.10)

- ' ¥ - '
z 2’ + xay sz + x3




Equation (6.7) represents the hydrostatic fbrce (or moment)
acting on the immersed surface including the buoyant force
which must, of course, just balance the weight. It is desired,
however, to determine the i-th component of force associated
with a j-th (j = 1,2,...6) component of displacement of the
body, j = 1,2,3 denoting linear displacement in the x',y',z'
directions, respectively, and j = 4,5,6 denoting angular dis-

placement about x',y',z'

axes, respectively. For the linearized
problem this force (or moment) may be written, using Eq. (6.8),

H
oF = =3
Fiju » a__;li; xj = (1 or a) pga Xj -3%3,/.73;81 ds (6.11)

(The factor 1.0 in brackets in 6.11) is applied when i=1,2,3 and

a 1is appropriate when F denotes a moment (i.e.), i=4,5,6.)

ij
Defining, further, the dimensionless parameter Kij as
Ryy = ’»@ %—ij(ygi)ds (6.12)
the dimensionless force (or moment) coefficient kij(t) may be
written, in view of (6.11), as
kij(t) = -Kij Xj(t) (no sum) (6.13)

Equation (6.13) represents a form appropriate to Eq. (6.5) for
the dimensionless force in the i-th direction caused by a dis-

placement in the j-th degree of freedom.

>




The following expressions are obtained for the hydrostatic

force coefficients Kij:

Ky, = -j]s-ny as = A /a* (6 .14a) §
N = -f_/;z'nyds (6 .14b) :
o -f/;(y'z'nz » z'zny)ds (6 .14c)
s * B -fj;x‘z'nyds (6 .14d)
Kye = ¥z = -ffs x'n, 45 )

k| ~ -_[72x'y'nx - gt n,) s (6.14F)

‘ in which Aw denotes the waterplane area in the equilibrium

'positidn. For floating bodies having symmetry with respect to

the x'-y' and y'-z' planes the coefficients, 124 = sz = x66 = ‘64 S

Kyg = Kg2 = 0-

It is noted here that the expressions, Eqs. (6.14), for the

hydrostatic force coefficients are in rather convenient forms
for evaluation as a part of the same numerical scheme discussed

in Chapter 5 which involves representation of the immersed sur-

face by a large number of nodal points. At each nodal point it

is necessary to specify the three coordinates of its location,

the three components of the unit vector normal to the surface,

and the elemental area of the facet. This information is, there-
fore, available in convenient forms for use in the evaluation

i of the integrals in Eq. (6.14) in the computer program.




If the mooring lines can be approximated by linear elastic

constraints then the force or moment coefficient may be expressed

in terms of a spring constant K'ij and displacement xj in a form

similar to Eq. (6.12) as
= =K'
k'ij(t) K ijxj(t) (no sum) (6.15)
LI where
£t =3,2,3; ¥ = 1,2,...6;: forece in 1-ditection/pg§3
k'ij(t) -

i =4,5,6; j =1,2,...6: moment in i—direction/pgi4

and K'ij denotes a spring constant matrix which depends on the

mooring line configuration, stiffness and tension. K'ij is
i defined as
I
' oF
; ¥oia g 29 Awi, 2.3 :
! K13 axj] /088 » 4a1.2....6 e 26a)
i 9F _4 i=4,5,6
| ' - i s
t K13 E;{J FoBE .  5al,2,...6 WL

in which F

the mooring 1i

parameters X

3

Eq. (6.3). That is, when i=1,2,3, X

| displacements

and when i=4,5

nes when i=1,2,3 and F'i

g the force in the positive i-th direction caused by

= the moment about the

i-th body axis due to the mooring lines when i=4,5,6. The

denote dimensionless displacements as defined by

X; = iils, i=1,2,3

,6 angular displacements,

Xi = 01,

i=4,5,6

i denotes dimensionless linear

4 matiai s,

.
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The equations of motion for a free floating body may now
be obtained by use of Eqs. (6.4), (6.5), (6.6), (4.10), and

(6.13) as follows:

- " ao ¢ i i6; -iot
% (mij + u“)xj + Nij . xj + (Kij-o-x'ij)xj n Re[lcile ie ]
(6.17)

Furthermore, the body response in the j-th degree of freedom may

be expressed in the form

= o iw -idt
xj(t) xj Re[e b e ] (6.18)
which, when substituted into Eq. (6.17), yields the complex
equations of motion,
X Cc g
X 5 ' oAby LX) 184 (6.19)
[ (mij+uij) 1Nij+(xij+x 1j)/“]n; b ala

where the frequency parameter v= 023/g.
Equation (6.19) represents six equations corresponding to
i=1,2,3...6. The repeated j index denotes, as usual, the summa-
tion over the six degrees of freedom. The amplitude ratio
x;/n; denotes the ratio of the amplitude of the motion to the
amplitude of the incident wave and wj denotes the phase angle of
the motion (displacement) in relation to the reference condition
of the crest of the incident wave being located at the coordinate
origin.
It will be recalled that for bodies possessing x'-y' and
y'-2' plane symmetry, mij-o for i#j in Eq. (6.17). Also, M

ij
and N denote the thirty-six element added mass and damping

13

tensors.
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It can be shown, however, that

Beg = Fyas Mgy " Mg By = By (6.20)

so that only 21 different vilues exist in the general six degrees

of freedom problem.

To further simplify the notation, we may define the complex

matrix,
Aij = -(m“-mij)+(1cij+1<'“)/v-mij (6.21)
the complex response ;ector,
o
s :—.4 .« (6.2)
*

and, in addition, the vector,

C 16
B --L—-i_l. e i

i v
Then, Eq. (6.19may be written very simply as

Aij Yj - Bi. s = 15506 : (6.23)

Equation (6.2 ) may be solved by matrix inversion. Once the
solution to Eq; (6.21) for Yj is obtained, the problem is

solved. The amplitude and phase angle of the response can

be extracted from the definition of YJ given in Eq. (6.22;.
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7. HASKINDS RELATIONS AND ENERGY BALANCE

Even though it may be supposed that the numerical
solution proposed here will converge upon increasing the
number of partitions, it is important to keep the partition
size large (and number of partitions as small) as accuracy
considerations will permit in order to reduce computer time
and storage requirements. It is, for this reason, impor-
tant to determine the effect of the partition size on accuracy
so that practical limits may be established.

One method of verifying the accuracy is to compare the
numerical results with analytical results where closed form
solutions exist. Although valid, this approach is limited
to a few simple shapes; for more general shapes no such cﬁeck.
of course, exists.

A second method of checking the validity of the numerical
results involves the use of an energy balance as well as the
use of the so-called Haskind's relations. Conservation of
energy requires that a balance must exist between the energy
required to oscillate the object, and the wave energy trans-
mitted across some control volume-surrounding the object but
at a large radial distance. Using the asymptotic form of
the Green's function given in (3.4a) for large values of r,
along with (3.1) the following relationship for the damping

coefficient is so obtained.
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where p; = VEZ+n? and B = tan-l(C/E). This relationship
expresses the damping coefficient in terms of the far field
behavior of the solution.

A relationship somewhat similar to (7.1) known as Haskind's
relations, may be obtained for the wave force (or moment)
coefficient. That is, the i-th component wave force (or
moment) coefficient is related to the waves produced at

infinity by the body oscillating in the i-th mode such that

1 -iap,cos(B-1-Y)
Ci = oy 3 .[7; fi(g,n,;)cosh [a(h+p)] e 1 ds
(7.2)

where y denotes the incidence angle as indicated in Figure 1.
A form of this relationship between the wave force and the
waves produced at infinity by the same body oscillating in
otherwise still water was first derived by Haskind (14) and

later reiterated and discussed by Newman (3). Equation (7.2)

may be considered to represent a form of the Haskind's !
relations as extended to the finite depth case. The details
of this extension which involves integration by method of

stationary phase are given by Rao and Garrison (15).
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Equations (7.1) and (7.2) represent relationships for the
damping and wave force (or moment) coefficient based on the
behavior of the far field solution. A comparison of these
results with Nii and Ci obtained from an integration of the
pressure over the immersed surface, i.e., as obtained from

(4.2) and (4.7), provides a convenient and valuable self-

| check on the accuracy of numerical results. These results

are not limited to special configurations and may be applied
; to arbitrary shapes. Equafion (7.2) is, however, limited to
symmetry with respect to the x-y plane, a condition which is
satisfied by most practical shapes.

| : It may be noted, moreover, that for the special case of

the vertical force on an axisymmetric body a very simple

relationship between C2 and N22 may be obtained from Eqs. (7.1)

and (7.2). That is, in view of the axisymmetry the integrand -
in Eq. (7.1) must be independent of 8. Accordingly, the

integration with 6 may be accomplished by evaluating the

integrands at any value of 6, say 6= and multiplying by 2m.

The right hand sides of Eqs. (7.1) and (7.2) then become
similar and the following relationship may be derived between

the wave force and damping coefficient in heave:

a sinh (2 ah) |02|2 (7.3)

22 © 2 2ah + sinh (2ah)




For the case of infinite depth, Egq. (7 .3) reduces to the

special case presented by Newman (3)

- /2N22
|€2| : (7.4)

a

The numerical evaluation of Eqs. (7.1) and (7.2) cam be
easily carried out using the same numerical scheme outlined
in Chapter 5. The numerical integrations over the immersed
surfaces are converted to summations and evaluated using the

source strength function obtained from solution of (5.2).

8. COMPUTER PROGRAM

The theoretical development outlined in Chapters 1-7 has

been coded for digital computer calculations and a description

of that program is presented in this chapter. The general

arrangement of the numerical procedure, a computational flow-

chart and the input-output format are discussed.
The basic requirements established for the program were
considered to be as follows:
(a) The program must work for floating bodies of
completely arbitrary shape, but when either one
or two vertical planes of symmetry exist the pro-
gram should take advantage of this so as to reduce
the input data and calculations.
(b) Run time must be kept as small as possible but

without losing accuracy.
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(c) Computer core requirements must be kept to a
reasonable value even for very complex shapes
where a large number of panels are required.
Flow Chart

The flow chart for the computer program is given in Table 1.
It should be noted that the total program is divided into two
parts, a very small MAIN program which is uséd only for dimen-
sioning, inputing parameter and calling the first subroutine'
DYNRES . This arrangement allows all of the subroutines which
have variable dimensioning to be placed on files if desired
and .only the small MAIN program need be altered.

The subroutine OTECPR controls the flow of the calculations
and calls essentially all of the other subroutines. It first
calls the subroutine GDATA which in turn calls the subroutine
CONFIG. This subroutine reads data cards describing the
immersed surface and computes the unit normals, areas and
centroid locations of each panel. GDATA then calls the sub-
routine PLT which plots the panels on a calcomp plotter. The
CPU time requirement to this point in the program is small,
and therefore the program could be terminated at this point
so that the plot output could be checked. Once it is deter-
mined that the input data is correct a complete run could
then be made.

Next the subroutine WAVLIN is called by OTECPR . The

purpose of this subroutine is to compute the value of "a"




R

TABLE I

OTECPRIN |

> Dimensions

* PLT
0 naPcF
T
bonsgunt
maLras
GDATA
CONFIG
WAVLIN
GCOET
NCINV2
[ OCINV. |
SCAT
R:]ds
wave
inci-
dence
ann]e.

'COMPUTER PROGRAM FLOY CHART - OTECPRI

<— [nput narameters

Plots the immersed surface on a
Calcomp plotter. Input: ALT and
BET, the azimuth and elevation
angle of observer and R the dis-
tance of the observer.

Reads data cards describing

the coordinates of the corners
of the nanels on the immersed
surface. Comnutes the components

of the unit normal vectors,
areas of the panels and coordin-

ates of the centroids of the
nanels.

Computes the value of a using
the water denth and wave neriod
in Eq.(3.3f).

Computes parameters used in
GREENS including the trial
and error solution of Eq.(3.4b).

Inverts (X-matrix out of core.
(when NSS8=2)

Inverts \-matrix out of core
(when NSS=1)

Computes (X, 8 ,A,. q,,cyz matrices
and stores them on ‘direct access
files or in core denending on the
value of the parameter, NS.

Green's function: series form.

Green's function: intesral form.
Comnutes the 1/R term in G.

See Apnendix B.




Reads

wave
inci-
dence
angle.

s

GCOLTF

L

LI VRS B BRI RPY R U A S | | wedon

GREENS including the trial
and error solution of Eq.(3.4b).

NCINV2 or ‘nverts (X-matrix out of core.

(when NSS=2)

Inverts \-matrix out of core
(when NSS=1)

Comnutes (X, 8 . ,. Qy X matrices

SCAT

and stores them on ‘direct access
files or in core denending on the

GRELEN

GSING

AVEVAL

value of the parameter, NS.

Green's function: series form.

Green's function: integral form.
Computes the 1/R term in G.

See Apnendix B.

VELNOR

Comnutes gy as given by Eq.(2.21f)

SOURCE
COMAT

NDut of core solution of Eq.(5.2)

In core solution of Eq.(5.2)

Computes the notential at the
node points and prints the
pressure and velocity dist.

——-{HBASPR

BASCOE |

Using the nressure distribution
BASCOE computes the excitation
forces and moments, added mass

and damning coefficients.
Comnutes the value of the excita-

HAS!

tion forces and moments and added
mass and damping coefficients by

use of Haskind's relations and
enerpy balance.

REGPON

folves the equations of motion of
the floating body,(i.e.), solves

Eq.(§.2b).

Loons through “NYWAVES' times. Each time through the loon a new
wave incidence angle is read at the same neriod and denth.




by trial and error solution of the equation:
V= a ;anh (ah)
The subroutine GCOEF is next called by OTECPR. The func-
tion of this subroutine is to compute certain functions which

. are used repeatedly in the series form of the Green's function.

The first fifty values of Mi given by (3.4b) are computed and
these values are used to compute the first fifty values of

‘ cos[uk(h+y)] and sin[uk(h+y)] for the various different values
i of y corresponding to the node points at the centroids of the
;

-panels on the caisson. The values of these functions are

stored and are used by the subroutine GREENS for use in eval-

uating the series form of the Green's function. .
The subroutine SCAT is next called by OTECPR. This sub-

routine evaluates the elements of the a and B matrices and

stores them on FILE #10 and 14, respectively. SCAT calls the

subroutine GREEN and GSING or GREENS to evaluate these matrices.

GSING calls AVEVAL to evaluate the 1/R and 3(1/R)/3n term in

the integral form of the Green's function.

The program has, in general, two options for solving the
matrix equation (5.2) either by inversion of (a-I) through
OCINV or OCINV2 out of core, or by solution through COMAT in
core. When the inversion out of core option is selected,
SCAT calls OCINV or OCINV2 to invert (a-1I) stores (m-l).1 in

the file space originally occupied by (a-I).
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In addition to the calculation of a and B matrices and the
storing of these matrices out of core, SCAT also generates the
derivatives of a (i.e., the matriges a s ay and a, and stores
them on Files 11, 12, and 13).

At this juncture in the flow of calculations OTECPR reads
the first of a series of data cards which specifies the incidence
angle, ¢ , of the incident wave relative to the body coordinates.
All of the computations made heretofore are dependent on the
period and wave height but‘are independent of the incidence angle.
Thus, computations may be made for a series of incidence angles

at little additional expenditure of CPU time. The remainder of

the program is, therefore, "looped" NWAVES times with different

values for the incidence angle.

The next subroutine called by OTECPR is VELNOR. This sub-
routine computes the velocity induced normal to the caisson by
the incident wave. More specifically, VELNOR computes the vector
given by (2.21f). This vector represents the right hand side
of Equation (5.2) so that the equation can be solved for the
source strength.

Depending on the particular option selected for sclving
(5.2) either SOURCE or COMAT is called next in OTECPR. The
function of SOURCE is to multiply (cz-I)-1 on g 1in order to
evaluate the source strength through (5.2). 1In the case that
(G-I)-l has not been determined through OCINV or OCINV2, the

subroutine COMAT is called which solves (5.2) by elimination.
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The subroutine BASPR is called next by OTECPR. The purpose

of this subroutine is to compute the value of the potentials,
(“0 + u7), Ujs Uys Ugy U, Ug and u, at the node points on the
immersed surface. Using these values of the potentials BASPR
computes the pressure distribution on the immersed surface.

This subroutine also reads the FILES #11, 12, and 13 which store
a s a and a, and with this information computes the three
components of velocities in body coordinates at the node points
on the immersed surface. It should be noted that the velocities
are used only for a check on the solution and are not actually
needed in the computation of the loads and response of the floating
bo&y. The computation of velocity can be surpressed by simply
setting the parameter NBA = 1 in the MAIN program; when NBA = 2
the velocities are computed. When NBA = 1 the FILES #11, 12 and
13 are not used at all.

The subroutine BASCOE is next called by OTECPR. The function
of this subroutine is to re-compute the excitation forces and
moments by use of the Haskind's relations (Eq. 7Z2) and re-compute
the damping coefficients, Nii'
These results which are computed on the basis of the far-field
potential are compared with the same results computed by use of
the surface (near-field) pressure distribution as a check on the
validity of the solution.

Finally OTECPR calls the subroutine RESPON. This subroutine

takes as inputs the excitation forces and moments, added mass and
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damping coefficients, mass and spring constant information and
then solves Equation (6.24) for the dynamic response of the body.

Input Data

The input data for the program describes the geometry of
the immersed surface up to the mean waterline, specifies the
water depth and wave conditions as well as the mass and mooring
line spring constant parameters. Some of the data is input
through data cards and some through constants in the DATA
statements in the MAIN program.

The 36 values of mass m and mass moments of inertia of the
floating body, I;.;., etc., are input through six data cards;
each card containing six values.

The spring constants which account for the effect of the
mooring lines are next input. Here again, there are, in general,
36 values which are input through six data cards, each card
containing six values.

The immersed surface of the body is described through a
set of data cards which give the three coordinates of the corners
of the panels. These coordinates are measured with respect to
a special coordinate system used for inputing the data only.
These special "input axes" allow the user of the program to
measure the coordinates of the panel corners in any convenient
reference frame and then the subroutines GDATA and CONFIG shift
the origin of this special input coordinate system to any desired
location by use of the inputs XREF, YREF, ZREF and rotates it

by the angle ANGREF.
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Another set of data cards following the ones specifying

the location of the corner points is used to specify which four

corners constitute a given panel. Each data card in this set J
contains five integers, the first represents the panel number

or index and the following four integers specify the indices

assocliated with the corners.
The last set of data cards specify the different values

of the incidence angle of the wave. There are "NWAVES" of

these cards.

i ' Coordinate Systems

1 : It is important to understand the coordinate systems used
. in order to input the program properly and, therefore,‘these

are defined in the following. It is convenient to define

; three coordinate systems:

o (x", y", 2z"): Input axes

| (x', y', z'): Body axes

: (%, ¥, 2) : Inertial axes

The input axes are used to input the location of the corners

of the panels. This set of axes may be located at any convenient

point and orientation with respect to the hull but the y"-axis

is set vertical with positive y" measured upward. The second

two coordinate systems also have their y-axes pointing upwards
and the location of their origins and orientation is specified

by the five parameters, XREF, YREF, ZREF, ANGREF and ECG.

T e




The inertial axes is located such that the x'-z' plane

represents the mean water level. It 1is located at the point
x" = XREF, y" = YREF and z" = ZREF in the input reference frame
such that the center of gravity of the body is on a vertical
line passing through the origin. The body axes is considered to
be aligned with the inertial axes when the body is in its equili-
brium position except that it is shifted to the point (0, ECG, 0)
in the (x,y,z) reference frame. When the center of gravity lies
above the mean waterline ECG represents a positive number and
when the center of gravity lies below the mean water level ECG
will be negative.

Figure 4 shows the three coordinate systems and their
relationship one to another. The reason for the introduction

of the input coordinate system is strictly for convenience in

inputing data. In the case of certain configuration it may be
convenient to measure the location of the corners of the panels
in a coordinate system attached to the hull at a reference
point which may differ from either the mean waterline or the
center of gravity.

Positive values of XREF, YREF, ZREF and ANGREF are shown in
Figure 4. The wave incidence angle, y , is also shown in the
figure and is defined relative to the body.and inertial axes
as indicated.

Corner Node Point Inputs - No Symmetry:

It would be unusual that a floating structure would possess
no symmetry whatsoever but the program has the capability of
dealing with such general cases. When no symmetry is present
fhe complete immersed surface of the hull must be covered with

panels.
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Corner Node Point Input - One Plane of Symmetry:
When the immersed surface has one vertical plane of

symmetry and the center of gravity lies in this plane, then only

half of surface must be represented by panels. In such a case

the input axes may be placed in any desired manner relative to

the immersed surface but the parameters XREF, YREF, ZREF and

ANGREF must be selected such that the plane of symmetry is coin-

cident with the x' - y' and x - y planes and such that O(x',y',2")

is coincident with the cenfer of gravity. The single symmetry

case is depicted in Figure 5.

Corner Node Point Inputs - Double Symmetry:

I} the hull possesses two planes of symmetry it is necessary

to input data cards specifying the panel corners on one quarter

of the hull only. Here again the input coordinate system is

used to input the coordinates of the corners of the panels and
it may be positioned arbitrarily with respect to the hull.
However, XREF, YREF, ZREF, ANGREF have to be input such that
0(x,y,2z) and 6(x',y',z') lie on the intersection of the two
planes of symmetry and ECG must be such that O0(x',y',z') is
coincident with the center of gravity. The result is that the
(x,y,¥) and (x',y',z') are placed relative to the floating body
as shown in Figure 6. The portion of the immersed surface input

falls in the positive x-z quadrant in the body and inertial

axes as indicated in the figure.
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Although in the above two cases where the bédy possesses
oue or two planes of symmetry the input axis was defined such
that XREF, YREF, ZREF, and ANGREF were non-zero, the usual case
would be to input the data with input coordinate axes aligned
with the body and 1inertial axes. This is generally convenient.

However, it is not usually convenient to place the origin of :

the input axes at either the mean water level or center of

gravity. It is generally more convenient to set the origin at

e S AAAIL

the level of the bottom if the hull has a flat bottom so that
YREF is normally non-zero.

Input Format

The inputs to the computer program are of three types:
(1) specifying certain constants, (2) specifying the dimensions
of the arrays, and (3) specifying the geometry of the immersed
surface. These inputs and their format are discussed in the
following:
Input Constants:

The constants which are input by way of DATA statement

cards are defined in terms of both the metric and English system

in the following. It is noted, however, that either one system

or the other may be selected but no mixing of systems is allowable.

PER......Wave period and period of the motion of the body(sec.)

NP PRI W | PRI e Py

H........Mean water depth (ft. or meters)
ABAR.....Reference dimension of the hull. Any value will

do but normally the radius of the hull or the
half-length is used (ft. or meters).
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RHO......Density of the water (slugs/ft3 or kg/m3).

GeeeessssAcceleration of gravity (32.174 ft/sec2 or
9.8m/sec?).

XREF.....x" coordinate of the origin of the body axes
(measnred in the input axes)(ft. or meters).
(See Figure 4).

YREF.....y" coordinate of the origin of the body axes
(measured in the input axes)(ft or meters)
(See Figure 4).

ZREF.....2" coordinate of the origin of the body axes
(measured in the input axes) (ft or meters)
(See Figure 4).

ANGREF...Clockwise rotation angle of the body axes
(as viewed from above) (Degrees) See Figure 4.

ECG......Elevation of the center of gravity of the body
(y) meazsured in the inertial axes located with
x-2z plane on the mean waterline.

ARMIN....Two different forms of the Green's function have
been defined, an integral form as given by
Equation (3.3) and a series form given by Equation
(3.4). The series form requires much less CPU
time to evaluate but the modified Bessel function
of the second kind K (ar) becomes infinite as
(ar)>0. Thus, when Car) is less than or equal to
the value of ARMIN the integral form of the Green's
function_is used. The parameter (ar) is given by
ar = (2ma/L)(r/a) where L = wave length, a = ABAR
= characteristic length scale of the hull and r
denotes the horizontal distance between node points.
A value of ARMIN = 0.01 is a reasonable choice. As
ARMIN is increased the CPU time increases rapidly.

RMIN.....The value of RMIN is used for two different tests
of the distance between panels i and j in computing
the values of a and € The use of RMIN as well

as ARMIN is bes%j demon%érated by the following
flow chart:




R < RMIN
R > RMIN
ar < ARMIN
ar > ARMIN | CREEN
GREENS l
GSING
<RMIN
@50 By ag5 Byy @g30 By

The value of RMIN is used to test R for purposes
of selecting GREEN or GREENS. 1In subroutine GSING
it is used to determine whether or not AVEVAL will
be called to integrate the 1/R and derivative of
1/R in the integral form of the Green's function.

The value of RMIN should be kept as small as
possible consistent with adequate accuracy. Figure Bl
in Appendix B indicates that RMIN 32/K§ (where AS
represents the area of a typical panel) represents
a reasonable value fo RMIN. (ft or meters).

NC.......Integer denoting the number of panel corner points
on the portion of the hull which is input. This
integer represents the actual number of data cards
read by CONFIG which describe the location of the
corner nodes on the hull.

NB.......Integer denoting the total number of panels on
the complete hull. The panels are assigned indices
running 1 through NB. Figure 7 shows the numbering
system when the hull has either single or double
symmetry.

NBA......Integer having the value of either 1 or 2. If
NBA = 1 the velocity components at the node points
on the hull are not computed and direct access
files #11, 12 and 13 are not used. If NBA = 2 the
velocity components on the immersed surface are
computed. It should be noted that the velocities
are not actually used in the calculations of the
pressures, excitation forces and moments, added
mass and damping coefficients or the resulting
dynamic response.
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NA.......Number of panels defined by the NC corner nodes
on: (a) the complete hull for the no symmetry
case, (b) half of the hull when the hull has one
plane of symmetry, (c) one quarter of the hull
when the hull has two planes of symmetry. In the
case of (a), (b) and (c) NA will have the values

. NB, NB/2 and NB/4, respectively.

NEQ......The (a-I) matrix as indicated in Eq. (5.2) is a
square matrix of size NB x NB in all cases except
when NSS = 2, in which case it is NB/2 x NB/2.

In all cases, however, the matrix is placed
on direct access FILE #14 and is brought into core
one piece at a time. The size of the block that
is brought in is always NEQ (number of equations)
by NB. Thus, it is most efficient to make NEQ as
large as possible. However, the block size is
limited (about 7200 bytes on an IBM 360) so NEQ
may have to be small when NB is large so that the
block size remains within the limits for the direct
access device used.

In general, NEQ may have any value equal to
or greater than unity. The general rule is to make
NEQ as large as possible consistent with the maximum
block size allowable.

B I

NWAVES...Integer denoting the number of wave directions
which will be considered in the run. There must

P be NWAVES data cards giving the incidence angle
. (in degrees) of the particular cases to be calcu-
lated.

NSS......Integer having either the value of 1 or 2. The
normal value for NSS is 1 but under the special
case where the wave direction is aligned with the
x'-y' plane (0 or 180 degrees) and this plane
represents a plane of symmetry, then NSS may be

‘ set to 2. The program will then take advantage

; of the fact that the source strength function on

the positive z'-half of the hull is the same as

at the corresponding points on the negative z'-

half. Accordingly, the (a-I) matrix will be only

(NB/2) x (NB/2) rather than NB x NB and, therefore,

a savings in CPU time will be realized during inversion.

NS.......Integer which is normally set to 1. However,
under the special case where NSS is set to 2 the
(a-I) matrix may be small enough to store in core.
= If this is the case, NS may be set equal to the
integer NB/2. The (a-I) matrix will then be stored in
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the ALS matrix and inverted through subroutine
COMAT. It is always less time consuming to take
the NS = NB/2 option when possible provided the
storage requirements do not exceed that available
since the in-core inversion is faster than the
out-of-core inversion.

Direct Access Files:

The DEFINE FILE statements in the MAIN program specify the

block size and number of records on the direct access files #10-14

as follows:
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE

FILE

FILE

FILE

FILE

FILE

10 (a,b,U,LK)
11 (a,b,U,LK)
12 (a,b,U,LK)
13 (a,b,U,LK)

14 (c¢,d,U,LK)

where, for example, in #10, a = number of records and b = number

of words in the record. The values of a and b must be input for

a given set of data and conditions as follows:

Number of records -

Block size

c-

b =

d =

NA
NB/NEQ (rounded upwards to the nearest integer)
(in number of words)

2xNB The factor of 2 accounts for the

2xNEQxNB fact that the words are complex.

For the special case when NSS = 2:

c = (§B/2)/NEQ (rounded upwards to the nearest integer)

In addition to the DEFINE FILE statements it is necessary

to specify adequate and consistent disk space on JCL input.

ot Lok s e



For efficient operation it is important that the five files
( #10-14 be placed on separate units when all are being used because
these five files are written upon simultaneously in the same
DO LOOP.
When NBA = 1 files #11, 12 and 13 are not used. In this
o special case it is possible to set the file space required for

#11-13 to some nominal value.

Summary of Program Options

In view of the fact that the program has several optioauns
depending on the incidence angle and symmetry of the immersed
surface, these are summarized in the following. The various
options are completely independent of the values of NBA and NEQ.
I. Hull has no planeg of symmetry: -

NA = NB

NS =1

NSS = 1

The (a-I) matrix stored on file #14 will be NBxNB. The
matrix will be inverted by use of an elimination scheme
through subroutine OCINV. This option represents the
most CPU time consuming method and would be used only

if the hull had no planes of symmetry with respect to

the body axes. The wave incidence angle may be arbitrary.

II. Hull has either one or two planes of symmetry:

NA = NB/2 (input data for +z' half of the immersed surface
when hull has one plane of symmetry.)

NA = NB/4 (irput data for +x' and +2z' quarter of the hull
when the hull has two planes of symmetry).

R X R e v




(a)

(b)

(c)

NS = 1

NSS = 1

The program will take advantage of the symmetry in
computing the matrices but the (a-I) matrix will

be NB x NB and will be inverted in OCINV. The wave
incidence angle may be arbitrary.

NS = 1

NSS = 2

The program will take advantage of the symmetry in
computing the large matrices. The incidence angle
must be set to either O or 180 degrees so that the
wave is aligned with the x'-y' plane. The assumption
is made that for this case the source strength on
the -z' -half of the hull is the same as on the +z'
-half. Accordingly, the ma;rix stored on FILE #14 -
will be NB/2 x NB/2 and will be inverted out of core
by OCINV2.

NS = NB/2

NSS = 2

The (a-I) matrix stored on FILE #14 will be of size
NB/2 x NB/2. This matrix is eventually placed in
core in the array ALS(NS,NS) which for this option
has been dimensioned NS x NS, i.e., the size of the
(a-I) matrix. The fact that NS is other than unity

signals the computer to solve Eq. (5.2) in core by =

use of the subroutine COMAT. For this option Q
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(NSS = 2) the incidence angle,y , must be 0 and/or
180 degrees so that the wave direction is aligned
with the plane of symmetry.

Dimensioning

The general principle to be followed in the dimension
statements in the MAIN program is to make the dimensions exactly

equal to the size of the array. In the case of two-dimensional

arrays it is absolutely necessary that they be dimensioned
exactly correctly. The dimensions cannot be either larger or
smaller than the actual array. Even in the case of several of
the one-dimensional arrays this is essential and, therefore,

as a general principle the arrays should always be dimensioned
to exacﬁly the size of the array as given in the following with
the exception of SH, CH, SINAMU and COSAMU arrays.

The MAIN program contains all of the dimension statements
which must be altered. It is unnecessary to make any changes
in fhe subroutines because all arrays are variable dimensioned.
The arrays in the MAIN program have the following dimensions:

ALPHA (NEQ,NB)

ALS (NS, NS)

AV(NB), BV(NB), CV(NB), DV(NB), EV(NB)

F(NB,7), HH(NB,7), U(NB,7)

XB(NA), YB(NA), ZB(NA), XNB(NA), YNB(NA), ZNB(NA), DSB(NA)

XC(NC), YC(NC), ZC(NC)

XP(NC), YP(NC), ZP(NC)

NODM(NA, 4)

ICOM(NS, 3)

SH(a), CH(a), SINAMU(b), COSAMU(b), where

s .
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a > number of different levels of node points on the

immersed surface. That is, "a" should be greater than

the largest number printed under the column labeled LEVEL
NO. on the output. A value of, say 20, would cover essen-
tially all conceivable cases.

b > 50 x a (for example, b = 1000 1if a = 20)

(Note: In the case of SH, CH, SINAMU and COSAMU the

dimensions may be greater than or equal to the actual array

size).

Input Data Cards

Mass Matrix:

_The first set of data cards are used to input the mass
matrix. There are six cards in this set; each card contains
six numbers. The format for each card is 6F10.1 and the units
are slugs and slug-ft2 when the English system is used or kg

and kg-mz when metric units are used.

The first card contains the values of myys Myps My, mlA’

and m the second card contains values of My Wyys m23, Wyys

16

etc. where

s

Bass Mage

m, = My, = M3 = m = mass of the structure (slugs or kg)

Byg S Mgy T Mg e YWy TR T Y
n,, = I;,;,- moment ofzinertia about the x' axis (slugs-ft2
or kg - m")

m = [-,-, = moment Qf inertia about the y' axis (slugs-—ft2
or kg-m")
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matrix is as follows:

- I;.-. = moment of intertia about the z' axis (slugs - ft
or kg - m2)

(Note, the x', y' and z' axes are centroidal axes by definition)

m,. = m_, = -I-,-, = negative product of inertia (slugs =-
45 34 3 ft-5 or kg = mz)

@, =m,,6 = -I-,-, = negative produgt of inertia (slugs -
46 64 x'z £¢2 or kg - mﬁ)

m =m,  ==I-,-, = negative prodyct of inertia (slugs -
e L t o ki —ah

Spring Constant Matrix:

The second set of data cards are used to describe the

elastic constraints of the body due to mooring lines. In the

' most general case, for displacement in each of the six degrees

of freedom a force (i = 1,2,3) and moments (i = 4,5,6) can occur.
Thus, in general, there can be 36 elastic coefficients t& describe
the effect of the mooring lines.

The definition of the elements of the spring constant

aF!
R'yy = - 3%
. 3
where
F ' = Force in the i-direction (i=1,2,3)(1b or N)
i Moment about i-axis (i=4,5,6) (ft-1b or N-m)
Linear displacement in the j-direction(j=1,2,3)
- (ft or meters)
Xj =< Angular displacement about j-axis (j-4,5,6)
(radians)
Example:

The case of a simple spring restraint is indicated in the

following sketch: 2
6Z*L"1 l—-vvvw::w——-?
1

|

R k2

Neam L L. -

|2 | 1]
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It is possible to derive expressions for the values of E'ij by f

starting with the expressions for the two components of force
and moment:

W X -X

2-x2°+ %1%6)

] - X
F', kz(x

-k3(x2-x2° = LyXg) i

' S ¥ % X
¥ ky2, (X, xzo 1%

where the subscript "o" denotes the equilibrium position of the
body. By differentiation, the spring constant coefficients

=, : X
K 14 are defined as: .

K',,. =K,.'"=0

K = K =0

=
L}
=

2 ¥ Bah “Nita
where kl’ kz, and k3 denote the spring constants of the three

springs defined in the usual manner in terms of force/displacement. -




Hull Geometry:

The next set of data cards to be read are the ones which
describe the immersed surface of the hull. This set of cards
gives the coordinates of the four corners of the panels and there
will be NC of these cards. When there is no symmetry in the
immersed surface, the complete hull must be described; when the
hull has a single plane of symmetry (x'-y' plane), then half the
surface must be described, and when the immersed surface has two
planes of symmetry one quarter of the hull must be described.
When inputing half the immersed surface, the x'-y' plane must
represent the plane of symmetry and when inputing one quarter of
the hull, the x'-y' plane and y'-z' planes must represent planes
of symmetry. In the case of single symmetry the +z' p;rt of the
immersed surface is input,and in the case of double symmetry

the +x' and +z' quadrant is input.

|

An example of a subdivided surface with two planes of symmetry

is shown in Figure 8. On the quarter of the hull to be described
there are 60 corner node points denoted and, therefore, for this
example, NC = 60. It should be noted that all panels must have
four sides; however, the lengtﬁ of the sides and orientation may
be arbitrary, i.e., the panels nced not be rectangular or square.
The coordinates of the NC (60 in the example) panel corner
points must be input by use of NC data cards punched in the fol-

lowing format:

Bkt AV

Cols: 1-10: The corner node index (1-60 in the example) (Integer,

right adjusted).

—







Cols: 11-20: x" coordinate of the node (ft or m).

Cols: 21-30: y" coordinate of the node (ft or m).

Y

Cols: 31-40: z" coordinate of the node (ft or m).

Correspondence Table:
The next set of data cards will define the sequence of four
corner nodes which make up a given panel. There are five integers

on each of these data cards, the first represents the panel index

e

and the next four integers correspond to the four cormers of the
given panel.

There will be NA of these data cards where NA denotes the
number of panels on the portion of the immersed surface described
by data cards. NA will have the value:

NA = NB (no symmetry)

NA = NB/2 (single symmetry)

NA = NB/4 (double symmetry)
where NB denotes the total number of panels on the complete
immersed surface. In the example described in Figure 8:

NC = 60

NB = 188

NA = 47

In this case the hull has double symmetry so NA = NB/4 = 188/4 = 47.

Each of the NA cards will specify which of the four points

compose a given panel and are punched according to the following

format (all right adjusted integers):




Cols: 1-10: Panel number (1 through 47 in the example)

Cols: 11-20: First corner node index

Cols: 21-30: Second corner node index

Cols: 31-40: Third corner node index 4

Cols: 41-50: Fourth corner node index 3

The four corner nodes are specified in sequence as encountered

in "walking" around the panel on the water side in such a way

that the interior of the panel area remains on the right hand side.

e e
S e T e, ot T um e o T, 1

| Another equivalent way of stating this is to number in sequence

moving around the panel clockwise as viewed from the water side

of the hull surface. The starting cormner point is arbitrary.

Wave Incidence Angle Data Cards:
The final set of data cards are those specifying the different .
wave directions to be considered in the run. Since the (a-I)

matrix needs to be constructed and inverted only once, it requires

little additional CPU time to consider several values of incidence

angle in addition to the initial one. It should be remembered,

however, that when NSS = 2 the wave must be aligned with the x'

axis so the incidence angle can only.be 0 and/or 180 degrees only.

The format for the cards are:

Cols: 1-10: Incidence angle, ¥y , in degrees.

Computer Print-Out

The computer print-out contains some of the input data as

well as the computed results. . q 1




The coordinates of the corner nodes are pfinted as read-in

except that they are shifted to the inertial axes (x,y,z) with
origin at the mean water level on a vertical passing through the
c.g. of the body. The units are the same as input.

The correspondence table is also printed as read in for
purposes of double checking.

The centroids (node points) on the panels are computed as
well as the components of the unit normal vectors and 5reas of
the NA panels input.. These results are printed under the heading,
"COORDINATES OF CENTROIDS OF PANELS, COMPONENTS OF N AND PANEL
AREAS."

The displacement of the immersed surface is computed by

three different methods: .

4 -.lyﬁxn ds
s..x

v-j] n_ dS
§ 7

V-ﬂznds
S z

The results for the volume computed in the three different manners
represents a good quick check on the accuracy of the input data.
If the input data is correct, the three results should be the same.
In a similar fashion the total surface area as well as the
area projected in both the x and z directions are computed as a
quick check on the input data.
Next the program goes through the NA panel node points and

assigns an index to each different elevation. All of the node

points at elevation -10.0, for example, may be assigned the index

Pr——
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1 and all at -5.0 would be assigned 2, etc. The panel node point
index and its corresponding "level number" is, therefore, printed.
Caution: largest number printed under "LEVEL NO." should not
exceed the dimension of the arrafs SH and CH. The maximum value
would typically be 3 to 10. A dimension of 20 to 30 should
include all cases.

The "WAVE NUMBER" is next printed. This is simply an index
which indicates that a new wave direction is being considered.
The number printed here will range from 1 through "NWAVES."

The next block of information in the print-out is the
following:

a = 2rma/L = 2n. hull radius/wave length.

(2n/1)%3/8

<
"

= water depth (ft or m)
wave period (sec)

= wave incidence angle (degrees) See Figure 1

€ 3 o
"

NB = total number of panels on total hull surface.

The next block of data printed represents the pressure dis-
tribution associated with the motion of the body in its six degrees
of freedom: surge (1), heave (2), 'sway (3), roll (4), yaw (5),
and piteh (6). The subscript (7) denotes wave interaction with
the fixed body. : S

For each mode (six degrees of freedom 1-6 and 7 wave inter-
action with the fixed hull) the dimensionless pressure amplitude

coefficient P1, P2, etc. and pressure phase angle PH1l, PH2, etc.
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are printed.

The definition of the dimensionless amplitude and

phase angles are given on the print-out and will be given here

also for completeness:

Pl = pressure (half) amplitude in height of water
amplitude of the motion in surge.

P2 = pressure (half) amplitude in height of water
amplitude of the moiion in heave.

P3 = pressure (half) amplitude in height of water
(half) amplitude of the motion in sway.

P4 = pressure (half) amplitude in height of water

(half) amplitude of the motion in roll times

column/(half)

column/ (half)

column/

column/

ABAR.

_P5 = pressure (half) amplitude in height of water column/

(half) amplitude of the motion in yaw times ABAR.

P6 = pressure (half) amplitude in height of water column/

(half) amplitude of the motion in pitch times ABAR.

These definitions are the same as stated in Egs.

(2.20).

The actual pressures at any given node point could be

expressed as:

B = Pl pgxl

P, = PZngz

Py = P3pgX,

= P4 p.gx4

= P5 pgxs

= P6 p gX

6
= P7pg (H/2) cos (PH7 - ot)

(o]

o

o

o

(o]

(]
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cos

cos

cos

cos

cos

cos

(PH1
(PH2
(PH3
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(PH6
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where x1° denote the dimensionless half amplitudes of the motion
as defined in Eq. (2.1) where

x°, = %.%a

Since the motion of fhe body is defined by
xi(t) = Koi cos(si-ot)
it is clear the positive phase angles represent a lag of the
pressﬁre with respect to the displacement in any given degree of
freedom.

The next block of output represents the three components of
fluid velocity (in body axes) associated with motiom in the six
degrees of freedom (1-6), and wave interaction with the fixed hull,
(7),corresponding to each node on the complete immersed surface.
(Note: 1if NBA = 1 this information is not computed and the
output is suppressed).

The velocity component dimensionless amplitudes are defined,
for example, as

VX = velocity (half) amplitude in the x'~direction/
velocity (half) amplitude of the body.

The phase angles are defined with respect to the displacement
of the body (positive lag). The x'-component of velocity could

be expressed, for example, as
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surge (1) v, =vx X°1 ag cos(PXl- ot)

o -
heave (2) vx-vx x2 aoc cos(PX2- ot)

etc.
The MASS MATRIX is next printed exactly as read-in through
data cards. The units are slugs and slugs-ftz, or kg and kg-mz.
The SPRING CONSTANT MATRIX is printed next also as it was
read in through the six data cards. Note that for a free-floating
body all of the values in this array are zero.
The next set of data represents the dimensionless wave load

coefficients. The x,y,z subscripts represent body axes so FX, for

example, represents the dimensionless excitation force in the

x' direction. The definition of the coefficients and.phase
angles are given on the print-out. The actual wave force and
moments can be expressed as a function of time as:
F_ = FX ng3 (H/2a)cos (PHASE FX-ot)
= FY pga3(ﬁ/2§) cos (PHASE FY-ot)
= FZ pga>(fi/23) cos (PHASE FZ-ot)

F
F

M_ = MX ng“(ﬁ/zE) cos (PHASE MX-ot)
M_ = MY ng“(ﬁlzs) cos (PHASE MY-ot)
M

= MZ pga“(ﬁlza) cos (PHASE MZ-ot)

Note: the wave crest passes the origin of the coordinate system
at t = 0. Thus, a positive phase angle represents a lag with
respect to the time the wave crest passes the origin.

The HYDRODYNAMIC ADDED MASS COEFFICIENT MATRIX is next

printed followed by the HYDRODYNAMIC DAMPING COEFFICIENT MATRIX.
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These parameters are defined through Eqs. (4.9 - 4.13). However,

i to emphasize their relationship to the velocity and acceleration

their definitions will be given here again.
The force (or moment) in the i-direction (in body axes) due .

to motion in the j-direction is defined as F and is given in

1]
terms of the added mass and damping coefficients, Mij and Nij’ as

: 7% -4 . -4 .
Fij = -(1.0 or a) {pa Mij xj +poa Nij xj}

where 1.0 is used when Fij represents a force (i = 1,2,3) and

i a is used when F denotes a moment (i = 4,5,6). In the above

ij
% expression
j ij = acceleration in j-direction (Note, Xy = ijlﬁ
| : for J = 1,2,3 and X, = 0, for § = 4,5,6). :
ij = velocity in j~direction :

¢ The next block of output is labeled HASKINDS RELATIONS.
Here the excitation forces, moments, phase angles are computed

by use of:

(1) the near field pressure distribution

(2) the far field (radiation) potential by use of Haskind's

relations

and the damping coefficients are computed by
(1) the near field pressure distribution
(2) the energy radiated at infinity.

The results computed by (1) and (2) are then compared and a

percent difference computed.
| The use of the Haskind's relations and energy balance

represents a self-check on the‘accuracy of the results computed




by the pressure distribution. The results computed by use of the
pressure distribution should be more accurate than those computed
from the far field behavior of the potential but the two Tesults
should be fairly close. Large percentage differences indicate
that there may be some problem and the solution may not be valid.
. However, if the values of the parameters being compared are very

small,large percentage differences should be expected and should

T

.cause no significant error in the final results.
Finally the DYNAMIC RESPONSE results are printed. The
response amplitude and phase angle in the six degrees of freedom

are printed. The amplitudes are defined as:

Surge: Half amplitude of the :surge motion/wave (half) amplitude

‘Heave: Half amplitude of the heave motion/wave (half) amplitude

Sway: Half amplitude of the sway motion/wave (half) amplitude

Roll: Half amplitude of the roll motion in radians x ABAR/wave
(half) amplitude.

Yaw: Half amplitude of the yaw motion in radians x ABAR/wave

(half) amplitude.

e

Pitch: Half amplitude of the pitch motion in radians x ABAR/wave
(half) amplitude.
The phase angles of the dynamic response are defined with
respect to the crest of the incident wave in radians. The crest
0f the incident wave passes the origin at t=0 so a positive phase

angle indicates that the displacement of the body lags the crest.
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9. EXAMPLE COMPUTATIONS
In this chapter a simple example calculation is carried out
for a rectuangular barge (box) which is 90 x 90 meters in plan

with a draft of 40 meters. Results are computed for a series of

different wave periods.

Hull Corner Node Points

In Figure 9 is shown the subdivision of the hull; gince the
immersed surface possesses double symmetry it is necessary to
describe only one quarter of it by use of data cards.

The subdivision indicated in Figure 9 is rather coarse.
There.are 12 panels on the quarter-body and 48 panels all together
on the total immersed surface. The quarter-body is described by
use of the 19 corner node'points so,

NC = 19
NA = 12
NB = 48
for the immersed surface described in Figure 9.

The immersed surface was input with an input coordinate

system placed relative to the body as indicated in Figure 9
with the bottom represented by the y" = 0 plane. Since the draft
was 40.0 m the inertial coordinate system was placed with origin

at the position x" = 2"

= 0 and y" = 40.0. This is input to the
computer program by use of a data statement specifying the

parameters as follows:

XREF = 0.0
YREF = 40.0
ZREF = 0.0
ANGREF = 0.0

T
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The coordinates of the corners of the panels are printed

under the heading: COORDINATE OF PANEL CORNERS. A comparison

of the numbers listed here can be seen to agree with the location

o of the corners (in the inertial reference frame) shown in Figure 9.

Next, under the heading CORRESPONDENCE TABLE can be found
the information which describes the given panels (numbered 1-12)
in terms of the corner node point indices. Under NODE 1, NODE 2,
etc. are listed the four corner node points which go to make up
] a given panel listed‘in clockwise order when observing from the
“"watesr side" of the panel. A comparison of these resuits with
Figure 9 will confirm this.
- Table 3 gives the computer print-out of the location of the

panel node points, the components of the outward unit normal

vectors at the immersed surface (in body axes) and the areas of
the panels. The node points are calculated by the computer, as
described in Appendix A, and represent the centroids of the
panels.

In Table 4 is printed the volume and surface area of the
immersed surface as computed on the basis of the information given
in Table 3. The volume is computed by three different methods,

i.e., by

(x_proj) ‘i =1

v Ao
(y-proj) = 2 y, n, 88,
i=1 Yi
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n
¥ = ) z,. n_ AS
(z-proj) {=1 Ry z, i

The volume calculations in this way use all of the information
in Table 3 and if the volumes computed by the different methods
are equal to, say, 5 or 6 decimal places, it is quite likely
that the input data is correct. This represents a simple quick
verification of the input data but cannot replace the Calcomp
plot for ease and reliability.

The different 1ndiqes assigned to the different levels of
the panel node points are also given in Table 5. It may be seen
by looking over the results printed in Table 3 that the node
foigts fall at only three different levels: -10.0, -30.0 and
40.0. As indicated in Table 5, and as can be verified by Figure
9, panel nodes 1-4 are on the bottom and are located at the -40.0
level (LEVEL NO i), panel nodes 5,6,9,10 are located at the -10.0
level (LEVEL NO 2), and panel nodes 7,8,11,12 are at the‘—30.0
level (LEVEL NO 3).

The next block of computer print-out gives the WAVE NUMBER
and lists the parameters, a = 2rma/L, v = a tanh(ah), where
h = h/a, water depth, wave period, angle of incidence and the value
of NB.

Following this information, the computer print-out contains
the pressure distribution and velocity distribution as previously
described. After this an "echo check" on the MASS MATRIX and
SPRING CONSTANT MATRIX is printed in the same units as input by
way of the data cards. This information appears to be straight-

forward and will not be given here.

96




U

X AN ANATS I/NNAn

NSNS T A A S~

® 0 0000000040
A AN Nt g
AL S T LNV

DPOIOATNOCARIINN
LT ITOD AN
NANNNAT~SIEmaAD N
Vi ssereecrersee
QO QITITTTCARIIN
TTTUATASO SIS
G R T R R R R o
OO0 20
BOoOBHCIBC LS
2 >
~ 0...00..00.1-“0-
< SoonCCOCllulln
1 .
v - 202D
< 0T
w\‘ OU\MU OOQO\UQO
ot > L) 00 e 00
< ‘llluocoocco n S
o Y N
o -t N
m‘o ° [ ]
o o
e . o >
= : o >
W S o I |
- Snnoo9 N N
I T2COTTOO
- QQOQUOCUOCWQ v
™ > ® 090090000
2 T OVttt DIDD
< LI ]
v '
w < < won
m s 3 -
- = b A ]
o g g 2 c
& 0000.“0000\ =0’ Q n.Rr
() DB D ANNANATT D . m
b ) NI SN A Do~ — |
L3 ~ @ P 000000900 T x =
» NNy s AAS S > -
l.u. Eadaia s be P bs PRIC I RSO ) °
M ¥ -
2 g 3
> >
U
< ;
.h DSTENOJ0HOT N
= 0)))030J\..\v0\v
e o DD *RNSTT DT,
b | ® %o 00 00090009
x cCVLVTICTTANSD
- ST Pttt t A
- LI I A I O A O
w
P} H
@ i
o v
w
vrn. S20VCZTOODCTH0 -
-
=
—
> )
=
G
w

NCeo

NP L LD i
ot

‘L

323999.063

VIL e9Z-P0OJe =

22499.961

TITAL SURFACFE ARIA=

-8099.984

LAxEAy Y-PROJe=

1799.957

L-PR0J.=

AREA,

TABLE 5

ELEV

LEVEL NC

NODE

(ol=lelelslelelelsi=le ]
WOV VD
....Q.......
folelelelolalololslole (o)
B R Y o L Lot lad
EEEEEEEEEE N

ol ol e ,d NN Y NN V)

=N N O~D PO~
ot g

97




The next block of information on the print-out is the dimen-
sionless excitation force and moment coefficients. For the sample
run this is presented in Table 6. It may be noted that the angle
of incidence of the wave was zero so naturally Table 6 indicates
FZ = MX = MY = 0.0.

Table 7 contains the next three blocks of computer print-
out. These three blocks represent the dynamic and hydrostatic
force coefficient associated with the motion of the body. In
making this example calcuiation, NSS was set to 1 even though it
could have been set to 2 since the body is symmetrical about the
x'-y' plane and the angle of incidence was zero. Since NSS =1
all six degrees of freedom of the body were considered and, accor-
dingly, all of the added mass and damping coefficients were com-

puted. Had NSS been set to 2 only (M M and M 16) and

$1’ 12

(N and Ni6) would have been computed. The value of the

11° N2
other coefficients would be meaningless.

It may be noted that the surge and sway added mass and
damping coefficients, Mll and M33, and Nll and N33, are equal.
This is, of course, due to the fact that the body is symmetrical
in plan view.

It is also interesting to note that the roll, yaw and pitch

damping moments, 1i.e., N44’ NSS and N are quite small. This,

66°
in fact, appears to be typical of most cases, and, therefore,
must be taken into consideration when interpreting that data.
It may be recalled that the computed damping is wave damping

only and this tends to be small in the angular modes. In such

cases viscous damping may become important and it may be worthwhile

to

estimate the viscous damping.




TABLE 6

eess WAVE LUAD COEFFICIENTS AND PHASZ ANGLES FOR THE CAISSON #*ssx

Fx, FY, F! = AMPLITUDE CF FCRCE/RECRCHSABARRX] (H/2*ARAR)
PXe MY, M¢ =2 AMPLITUDE 2JF MUMENT/RRDAG*ABAR®*#4 (H/2%ABAR)

PHASE aNGLES = TN RAUIANS 4EASURIN wiTk RESPECT TO TIMS
o WAVE CREST 1S AT ORIGIN (PIRITIVE' S (4]

FX= 2.9564% PHASE FX= -1.2296¢
FYy= 1.0021 PHASE FY= =0.4524
FZ= 0,0090 PHASE FlZ= Q.50l18
MX= 0.0000 PHASE MX= 3.,1C75
MY= 0.0000° PHASE MY 2.2311
Mi= 0,0478 PHASE MZ= -1.2128

TABLE 7
*xesx HYDRODYNAMIC ADD%D MASS COEFFICIGSNT MATRIX #&*x

21645 -0.0000 -0.0020 -0.0309 -C.CCCO . C.20176
-€.0000 2.3531 =0. 0000 0.0000 C.0000 -C.0000
-6.0000 0.0000 267645 -0.2017¢ C.00C0 C.0000
-C.0C00 0. 0000 -0.2223 J.4534 C.00V0 C.0000
=C.0000 0.0000 0.0010 -0.0000 C.6559 -C.0000

0.2224 -0.0000 0. 0000 0.0000 -0.00C0 0.453%

®xkx HYDRODYNAMIC CAMP ING CCEFFICIENT MATRIX *%3#

1.9416 -0.0000 =0.0030 -J.0000 -0.0000 0.0268
=C.0000 D.4284 0.0000 9.0000 -C.0000 C.0000
-0.0000 0.0000 l.941l6 -0, 2268 0.0009 €.0000

0.0000 =0,90000 -J.0385 0.0006 €.0000 C.0000
=0.0000 J.0 =J. 0000 0.0000 J.0CC2 0.0000

0.C385 0.0000 =0.0000 V.0000 -0.00C0 C.0006

sk3x BUOYANCY RESTORATICN COEFFICIFNT MATRIX #%%x

. 0.0 0.0 0.0 0.0 C.0

. 4.0000 0.0 9.0CN0 C.C C.0

C.0 0.0 0.0 0.0 0.0 C.0

. 0.0000 0.9 0.5Ces 0.0 C.00C0O

C.0 0.0 0.0 0.0 0.0 C.0

. 0.0 0.0 0.0000 0.0 C.5C89
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The next block of information printed in Table 8 is the
Energy and Haskind's relations check on the accuracy of the
solution. Here the excitation forces, moments and phase angles
as well as the diagonal of tﬁe damping matrix is printed. The
calc ‘ation of these parameters is carried out both through a
P’ integration over the immersed surface and using the
"far-field" potential through Haskind's relations and the energy
balance. The two sets of values and the percent difference
between the two results are printed.

It should be kept in mind that in this run FZ = MX = MY = 0

" so the percent differences in these cases is meaningless. Gen-

erQlly, even for this very coarse grid the two sets of results
agree rather well, at least when the values are not extrémely
small. For instance, FX and FY differ by only 5 to 6 percent.
MZ, however, is rather small and the two results differ by about
33 percent. This is, generally, the case; the moment tends to
be rather sensitive to grid size and it requires a finer grid

to get accurate moment results.

The values of Nll’ sz and N33 differ by less than 6 percent
when computed by the two different methods. However, the damping
in pitch, yaw and roll are very small and tend to differ by a
sizable amount. The difference is, however, not too important
because such small values of the damping coefficient would not

affect the response results except at resonance.




s s P —

The dynamic response of the floating body is given in Table

9. These results indicate that the surge (half-amplitude) is

.5565(§12) where H denotes the wave height (trough to crest). In

this particular run the heave response shows a little dynamic

amplification since the dimensionless response is slightly greater

than 1.0.

The heave half-amplitude is 1.2(H/2).

The pitch half-

amplitude is .0758 x H/(23), in radians, where a = 45.0 m in this

example problem.

Surge
Heave
Sway
Roll
Yaw

Pitch

(x)
(Y)
(z2)
(xX)
(Y)
(Y)

%%

* %

* %

* %

%%

* %

DYNAMIC RESPONSE

X/ETA
Y/ETA
Z/ETA
X/ETA
Y/ETA

Y/ETA

TABLE 9

0.55650
1.19997
0.00000
0.00001
0.00000
0.04758
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PHASE

PHASE

PHASE

PHASE

PHASE

PHASE

1.51353
2.22306
-1.11987
-0.71514
0.17472
-1.61674




10. NUMERICAL RESULTS

The purpose of this chapter is to present some typical
numerical results for several simple geometric configurations
and to make comparisons with experimental results. It appears
that very little experimental data is in fact available for com-
parison with the computed results but in cases where data is
available comparisons are made. In addition, a comparison of
the effect of subdivigion size on typical results are presented.

Numerical Results for a 90m x 90m x 40 m Free-Floating Box:

Computer calculations have been carried out for the case
of the floating box, 90 meters by 90 meters in plan by 40 meters
draft, which was discussed in Chapter 10. The hydrodynamic para-
meters as well as the dynamic response to wave motion are plotted
as a function of wave period for two different grid sizes,
NB = 48 and 108.

The two different subdivisions of the floating box are
shown in Figures 10 and 11 for the NB = 48 and 108 panel layouts.
It may be noted that the figures show only one quarter of the box
because the box has two planes ﬁf symmetry and, accordingly, in
the two cases NA = 12 and 27,

Model tests were carried cut for the configuration in ques-
tion at the Vassdrags Og Havnelaboratoriet (Rivers and Harbors
Laboratory) in Trondheim, Norway. These results which were re-

ported by Faltinsen and Michelsen (11) are compared with the

numerical results presented here.
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FIGURE 10: FLOATING BOX, QOM x 90M x 40M. NB=48 PANELS




FIGURE 11: FLOATING BOX, 90M x 90M x 40M. NB=108 PANELS
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The surge and heave excitation forces are shown in Figures
12 and 13, respectively. The fact that there is very little
difference between the two sets of results corresponding to
NB = 48 and 108 indicates that the solution tends to converge
very rapidly in increasing the number of panels (or decreasing
the grid size), at least for the case of the excitation forces.
It might be noted that slower convergence should be expected at
small periods.

The pitch excitation moment was computed also. However,

as it turned out in this particular case, the moment with respect

to the body axes (i.e., the centroidal axes was very nearly zero

throughout the complete frequency range and the results were,
therefore, masked by the "noise" caused by the numerical error.)
For all practical purposes the pitch excitation moment was zero.
The surge added mass coefficient is shown in Figure 14, and
here again the results corresponding to NB = 48 and 108 indicate

that the solution has converged. The experimental results pre-

sented for comparison appear to agree rather well with the theory.

The corresponding damping coefficient in surge is shown in
Figure 15. These results are typical of most damping results.
At high-frequency and low-frequency oscillation, the wave-making
damping tends to vanish since no waves are generated at the two
extremes. In the intermediate frequency range, however, the
wave-making reaches a maximum and the damping coefficient like-
wise shows a maximum. The experimental results shown on the

figure appear to agree fairly well with the theory.
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The added mass coefficient in heave, sz. is shown in Figure

16 along with experimental values. These results show very little
frequency dependence, particularly when compared to the surge

2 damping coefficient, Nll' Tﬁis results from the fact that the
surface primarily involved in heave force is the bottom and this
surface is fairly distant from the free surface. Thus, free
surface effects which are frequency dependent are not pronounced
in the case of heave motion whereas they are much more pronounced

in the case of surge where surfaces near the free surface are

involved.

| The computed heave damping coefficient is shown in Figure 17
along with experimental values. It is interesting to note that
i compared to the surge damping coefficient the heave damping co-

\ efficient is rather small. This results from the fact that the

bottom surface which acts as the primary wave-maker in heave is
rather well removed from the free surface and is, therefore, not

too effective in generating waves and resulting damping.

It is also of interest to note that the experimental values

of N fall well above the theoretical results. This difference

22
is attributed to viscous damping and appears to be pronounced

in a relative sense because the computed wave-makihg damping is
small.
The added moment of inertia coefficient shown in Figure 18
is essentially independent of frequency (period). This appears
X to be typical of all results associated with caissons of the type
in question. Moreover, the damping coefficient in pitch, N66'

which 1is not plotted, tends to be extremely small. These two
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features result from the fact that frequency dependence and
damping is a result of wave production and very little wave gen-
eration occurs as a result of pitching motion. This is due to the
fact that the botrtom surface is far removed from the free surface
and the vertical sides do not move in the normal direction very

' much as a result of pitching motion.

The added mass coefficient in yaw, “55’ is shown in Figure
19 along with experimental results. The agreement here appears
to be generally good.

Finally, the dyn;mic response of the box free floating in
waves is shown in Figure 20. The pitch response,e6/(ﬁ/2;). is

extremely small as was expected. The natural frequency in heave

occurs at about 16.5 seconds period and, therefore, considerable
| .
% dynamic amplification occurs. In the case of the heave response
n

h several experimental values are shown which tend to agree well

with the theory.

Shallow-Draft Barge

The dynamic heave and pitch response has also been computed ;
for comparison with experimental results for a shallow-draft
barge. One quarter of the immersed surface of the barge is shown
in Figure 21 as it was subdivided for numerical computatioms. It
may be noted that since the draft was rather small the source
strength might be expected to show considerable variation in
the vertical direction and around the corner. However, in the
horizontal direction the source strength should vary rather slowly.
Accordingly, the panels were constructed with a rather large

aspect ratio as indicated in Figure 21.
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Calculations have been made to compare with the wave channel
test results of Kim, Henry and Chou (17) for a shallow draft barge
of 1.704 feet beam, by 2.558 feet length, by 0.16 feet draft.

The location of the center of gravity and pitch gyradius is shown
in Figure 22,

The theoretical heave and pitch response is compared with

the experimental values in Figure 22, The results show excellent

agreement between the theory and experiment for the case of heave

motion. This apparently'tesults from the fact that the wave-making

damping in heave for a shallow-draft barge is substantial and,
therefore, the heave results are not too sensitive to viscous
damping.

The pitch results also show fairly good agreement. éhile
there appears to be some scatter in the pitch results, it appears
that near resonance the experimental values of the response fall
below the theory. Here again this is attributed to viscous
effects which tend to be significant compared to the rather small
amount of wave-making damping.

Disc Buoy

As a further example, the dynamic heave and pitch résponse
for a rather shallow~draft disc-buoy is shown in Figure 23. Un-
like some of the previous results, the pitch response as well as
the heave response shows excellent agreement between the theory

and experiment. This is likely due to the fact that the corners

on the disc buoy configuration are beveled rather than sharp. This

probably reduces some of the separation and resulting viscous
damping. Consequently, the experimental results are in good

agreement with the calculations.
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Floating Semi-submerged Sphere

As an example showing the effect of finite depth on a floating
body, numerical results are presented for a semi-submerged sphere

floating in waves. Figures 24, 25 and 26 show the excitation

forces, added mass and damping in heave, and added mass and
damping in surge, respectively. 1In general, the effect of the
finite depth tends to be more pronounced at low-frequency than at
high-frequency. .
Using the results of Figures 24-26 the equations of motion
i for the free floating sphere give the heave and surge response

presented in Figures 27 and 28. The amplitude ratios are shown

in Figure 27 and the phase shift angles of the response measured
with respect to the phase of the wave crest at the center of the
body is shown in Figure 28. 1In general, there appears to be little

effect on the finite depth for the sphere configuration.

Floating Vertical Cylinder

The added mass and damping coefficients for the circular
caisson configuration are shown in Figure 29 as a function of

the frequency parameter cz-a/g wherein the depth ratio h = h/a,

represents a parameter. The horizontal force coefficient is shown
in Figure 30. These results for the horizontal force coefficient

agree well with the theoretical results of Garrett (18).

The dynamic response in surge, heave and pitch is presented
in Figures 31, 32 and 33, respectively. 1In general, the results
appear typical of deep water results and little effect of water v

depth is evident. The pitch response shown in Figure 33 shows
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the large dynamic amplification at resonance which tends to be
typical of essentially all floating caissons and, here again
results from the rather small wave-making damping. This high
resonant peak should not be expected in practice, however, due
to the fact that viscous effects are undoubtedly considerably
* larger than the pitch wave-making damping used to compute the

results shown in Figure 33.
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APPENDIX A:
DETERMINATION OF THE CENTROIDAL LOCATION, AREA AND UNIT NORMAL
VECTOR FOR A PANEL

The computer program is designed to accept the coordinates
of the corners of the facets as inputs and, in addition, a set
?f cards indicating which corners make-up a given panel. A
panel is described by the four corner indexes read
} clockwise moving around the panel in such a way that the panel
is always on the right. For example, panel 5, as indicated in

Figure 1A, is specified by a data card

L =

25 18

FIGURE 1A

of the following form:

Panel No. Corner i1 Corner #2 Corner {3 Corner {#4

5 25 31 50 18

In working with an individual panel the first corner (25) in
the above example is designated as 1, the second corner, moving
around the panel keeping the inside of the panel on the right,
is labled 2, etc. The panel is re-labled as shown in Figure 2A

with indices 1-4.

The area of the panel is computed by first dividing it into

two triangles by connecting corner 2 with the diagonal corner 4.
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The area of triangle 1-2-4 is then computed by use of a standard

formula,

Arca (124) = v 5 (S"d.s)(s‘du)cs"dm)

* where

S =4 (d+ doy + dy)

g and

d»z. = V(X:."X.>z + (H;“H,)" * (E‘-Z')z .

dea = V&=~ %T ¥ C-uJ + Co-B)
ds,

Vix, ~ % + (4,-9) + CE- Za)

The centroid of a triangle lies at the average of the.co-

ordinates describing its corners as,

5 Xc'l+ - —‘3"(x‘ + X‘_".' X4)

YC”_4 = ‘é’(yl*yz +Y4)
F 4

I S oy -~

Sy —‘3‘(2' TR *Z;)




The area and centroid location of triangle 234 is computed

in a similar manner. The total area for the panel is then simply

A = An.4- " A134~
and coordinates of the centroid of the panel is obtained from
Xe = (Xc,,_4 Anq * xt,_”, Azu—>/ CAn.a * A"*) :

Yo 7 (y"-a:.q- Apza + YC134- A 134)/(All4 +Azia)

Z, = Czcazq AlZ4 + >£¢34- Azu)/(A:u- s A"")
It is also necessary to determine the X,y,2-components of

the unit vector normal to the panel and directed outward into

the fluid. This is accomplished by defining the vectors, -’7‘;

—'
and 7;+ » Which extend from point 1 to 3 and from point 2 to 4,

respectively, as indicated in Figure 3A. The corners are numbered

FIGURE 3A

clockwise when viewed from the outside (water side) of the caisson

and, therefore, according to the right hand rule the cross product

— il .
Tig X T

represents a vector having direction perpendicular to the plane




1 -2 -3 -4 and pointing outward into the fluid. The unit
normal vector is, then, obtained by normalyzing this vector to

unit length,

-

. o= (7, T5)/ | Ta x Ts

where lﬁl =] and M=1Netd Ny+ RNy , the components Mg,

n, and N3 represent the direction cosines.
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APPENDIX B:

INTEGRATION OF 1/R AND DERIVATIVES OF 1/R OVER A PANEL

In order to evaluate the elements of the matrices (X and @
by use of the definitions given in equations ( 5.3) and>{5,7)
the necessity arises to evaluate integrals of 1/R and 'B/Cb&
?/53 and O/dZ of 1/R. In this appendix the method of

integration is outlined.

In order to carry out the integrations, a local coordinate

system is defined in such a way that the panel lies in the x-y

plane of the local coordinate system and the unit normal vector

e i

is parallel to the z axis.

For definiteness the coordinate

system is attached te the element in such a way that point 1

is located at the origin and point 4 lies on the x-axis.

Y. Poy.2)
&
;‘0’1 g"”
ds
as N

g"i gﬁ')’tq.

g’) 3. x)s

FIGURE 1B

Consider first the integral,

qb = v{- e, ciS = JdE d?
R V-5 + (y-p*+(Z-3)*
AS AS
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Following a procedure similar to Hess and Smith (16)

for the
velocity components, Faltinsen and Michelsen(11) integrated
equation (1B with respect to ? to obtain
£, ;
P= -[JE Jn[g- 3, * 1/{y-3,‘)‘+ (x-§)" + 2% }
5
3 - -
-/;,s,&'[y—;,,ﬂ’(y—;,,)‘,u (r-3)" + Z }
% (2B)
| 2% '
— |dE jn[y—zu-f ‘/(y-;“.)z'-;- (x-5)* fi.‘"}
5
' .*; /zn 1/ 2 Cx- 2 Zt
-fdg [j’—zwf (YR ¢« Co-F) ]
L
where
=, 3 » il e o
B e 55 (5-8:) (38)

The integrals in (2B) may be evaluated through numerical integ-

ration in most cases.

However, it may be noted that the integrand of the first
integral is singular when z = O %= xand y - 3". < 0. In

this case the integral may be replaced by
£,
J Do [(x-3)*+ 2*]dE
5

(4B)

foinf -1 - AT
5
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The first integral in (4B) can be integrated analytically, the

result of which is

(-8) IafCx-5)7+ 2 ] = (1-82) L fCa-5)" 2*)

(5B)

2z [ i (1E) - A28+ 2 [65)- (r-5)]

The second integral in (4B) has no singularity in the integrand
and consequently presents no difficulaties in numerical integ-
ration. Difficulties with singularities in the integrand of

the other integrals in equation (2B) are handled in a similar

manner.

- In the evaluation of (X;; as defined by equation (4.5) or

%,

TR 7;u and )gdj as given by equations (4.11) it is

necessary to evaluate integrals of the form:

#-Jf
. (68)

’ﬂAs—(‘%g‘z— ds (7B)
?‘/Z‘s—% " (88)

where

R=N @35+ Cy-7)* + =2+

Equations (6B-8B) have been integrated by Hess and Smith?®

the results of which are summarized as:
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¢= ”‘--’L’z" T, fﬂ;-dr;)+ ’J"-’gj" A+ /T -d )

du_ 7y +, +dll. d‘s T+ /Xy "'dl»,
(9B)
Z! - 72 Ry + /2 d _L T4 et R, = C/«
;o S /zJ + Ry +dy, * j" s + 2, + Cly
f 3= E. Y e -¥53 R+ Ry -y
%- %( SR q) S5 (e gasdu )
(10B)
..,..fa:_itj“ ﬁ:-f/l@—c/«-) Z.-5 SatR, ~ da,
dae s + % -d, 8 d,, jﬂ /e # R, +d, i
e ., ml - hl b 2 sl
By | b} - dant [ F £ h‘)
i M23 C, - he & - m,, &, -
+ fon (——————-z_ e= ) tan 28 h,) :
5 : (11B)
dn. m. Cq - }7 b
Pt (ugctn ). fod’ (Mg te)
dori [ e B - £ bt b
+ 7an "Z;'tq =)~ fan (mﬂzen., h, )
where ?.
dn_ - V(E'-— 3-')7-+ (il . ?l)'~ ; }
13y = 1/(;,- 5+ (3= %) i
d)4 = 'y,(s4 - g’)?.. + Ch.- 3;)1 (12B) : ;
]
d" 3 1/(5. 0 §4-)t"' (}'-31')1 | 1




in which

m = Ll!— m‘s = -—1-3;-}_"_
2 E‘_- g‘ g’_;‘
(13B)
7o - 75 7, -3 :
m & memor———— my, =
34 54."3:; -« E, s }_’. ;
and
N = “/&’gg)zf (y-13.)* =% k=12,3 4
[ 3 + ) 2 €12, (148)
Sy 5 B & O-RY , Eriae (15B)
hk - (9’7;;)CX‘§=) s le=12,3 9 (16B)

In actually evaluating these expressions 42 and ?g cauﬁe
no trouble. They become infinite on the edges of the quadrilateral,
but in practice they are never evaluated there. The component
qbz requires special handling in certain cases. As ZE —» o0,
4%.. O 1if the point P is approaching a point in the plane out-
side the boundaries of the quadrilateral. If P approaches a
point within the quadrilateral gé_—r 27r (sgn z) as Z-—»O
These facts may be verified from equation (11B). 1In the course
of this method of flow calculation it is required to evaluate
¢2 at points in the plane of the quadrilateral elements. In
particular; the centroid of each element is in the plane of that
element and within the quadrilaterﬁl. At such a point ¢% should
equal 27 , since the case of interest is that for which Z—~oO
through positive values, rather than through negative values,
i.e., the field point approaches the caisson surface from the ex-

terior flow field rather than from the interior of the caisson.
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It may also be required to evaluate induced velocity components

at points in the plane of a quadrilateral outside the bound-
aries of the quadrilateral, for example, at the null points
(centroids) of other elements if the body surface has a flat
region. Points in the plane of a quadrilateral element should
have z = 0, but, because of round-off error, they may have have

small values of z with either sign. Thus, for points inside

the quadrilateral, equation (11B) may give 27 with either sign.

To avoid this error, the absolute value of z is tested before
velocities are computed, and if it is less than some small pre-
scribed number, which is nevertheless large compared to the
expected round-off error, it is set equal t6 plus zero and each
inverse tangent of equation (11B) is set equal to T7/2 with
the sign of the numerator of its argument. This gives 4%::0
for points outside the quadrilateral and qé-r 2  for points
inside the quadrilateral. Another situation that may cause
trouble in the computing machine is when the slope of a side

of the quadrilateral is infinite, i.e., when a side is parallel
to the y-axis. It is evident from equation (11B) that in this
case the two inverse tangents corresponding to that side cancel
each other. To avoid difficulties each of the quantities

( gz-“gl), (53 -3 ), ( §4_—}_’3), and (5, - }'?) are tested
to determine whether they are zero, and if any one of them is
zero, the two inverse tangents corresponding to that side are
set equal to zero. Finally, it should be mentioned that the
inverse tangents in equation (11B) are evaluated in the normal
range -Tr/2 to +Tr/2. 1t is tempting to combine some of the
inverse tangents in this equation using the tangent addition

law, but if this is done, great care must be exercised with
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regard to the range in.which the resulting inverse téngents
should be evaluated.

When the distance R is large it is possible to approximate
integrals in Eq.(1B) and (6B-8B) by simply multiplying the integrand .
i by the area AS. Thus, in order to get some indication of how large
R must be in order for this approximation to be valid Figure (1B). .
The results shown here indicate that in the case of either the
induced velocity or the potential contributed by the panels of area
AS it is necessary that R2 Z‘TA—? in order for the approximate

expression to become valid.
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APPENDIX C: ALTERNATE FORM OF THE GREEN'S FUNCTION CONVENIENT FOR
NUMERICAL EVALUATION

Except when the point x,y,z lies close to the source
located at §,},] the series form of the Green's function given by
Eq.(3.4 ) is used for computer numerical evaluation. The series
appears to converge fairly rapidly and, therefore, the numerical
evaluation is quite efficient. However, when the point x,y,z lies
close to §;7,} the series form cannot be used because of the
singular nature of the Bessel functions Y,(ax)and i((ar)as n—~ O .
In such cases, i.e., when (@A) becomes less fhan some arbitrarily

small number, the form of the Green's function specified by Eq.(3.3)

. must be used.

However, Eq.(3.3) may not be evaluated numerically in a directc,
straightforward maaner because the 1/R term is singular as R—+ O
and the integrand of the infinite integral is singular at p =
The evaluation of the 1/R term through numerical integration was
discussed in Appendix B. In this appendix an efficient method for

the numerical evaluation of the infinite integral is discussed.

The integral form of the Green's function is given by :

Gixy,2i52,3) = | + &

(1-C)

+2 PV &1‘-72@ co. Qg(z»‘/:zz aos, éé(az )] Jo (ure) du

<t sinh uh -y cosh uh

+ [ 2 (a*=v?) coshlaci+hd] coshlacy+h)] T;(arn)
ath - »*h + ¥

b




where R= WX-S)" + (y-3)"+ (Z- )2

R'=Y(x-5 3+ (y+2ke3)+ (2-3)°
A =N(x-B)* + (-3

)).-_-.CZ.Q"_Q = a tank(ahk)

The integrand of the infinite integral can be simplified by use of

the relationships,

sinh(x) = cosh¢x) = % =3

for x larger than about 4.0. Thus, the interval may be broken into

two parts. Using, for brevity

( ) o (s p) &4 L (3tA)] qoshlu (yrhI] Ftan) o_ c)
U Snh.wh — > cosh uh

Eq.(1-C) may be written as

z/?ufzo )@:zezfu'( ) du

(3-C)
+ PVf (’”"”‘6“"’” Ttun) dn

_))

where y, = 4.0/h . The term («+¥)/(4«-») may be written

."‘._‘I——)-)z 2-))-;-/
M-y A=Y

so that the infinite integral becomes

zP.u_]:Z )aﬁu_—;zpv.fo‘(ll ) Qu

o

v [Te*rv o d
+ PV ) e Ts (MN) U (4-C)

o0
v | &Y nin g
(

This may be further rearranged by use of the relationship given

for example, by Gradsheteyn and Ryzhik (21).




) )
b Y f e“*? F(ur) du (5-C)
e ¢

where R" represents an image source with respect to the free sur-

face

R" = Y(x-E)F + Cyr P+ (Z- XY

(6-C)
The infinite integral may now be written,
20 ' u,
2Pv[( Ydu= 45 + 2PRuf( ) dn
(-] : o ~
u, e ) (7-C)
._ J e 3 uny du + PV [ 27 ST Gyum)
o '

The remaining infinite integral can now be expressed in terms of
a finite integral by use of the relationship (See Abramowitz and

Stegun(22)).
-
i {ucos &
Jolur) = .,—,.’—f@ de (8-C)

Using Eq.(8-C), the last term may, therefore, be written as

PI(/:MZ)} (Yt 7’ Jo[,ujz) ¢“ "ﬁk//ﬁf@ﬂaa”?’u/e(g -

Now, let t = g~y and dt = dy in Eq.(9-C):

Z )7 (y13rcrcos@)t Y (Yrptircase)
Pl: @ J—(A/l) du = &lf‘ /C z —< dtds(10-C)
4

t-ﬂ-v

or, simpl1fying further by use of the substitution S = t/(ul-V)
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The exponential integral as defined by Abramowitz and Stegun is
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so, the above result may be written as '
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With this, the complete expression for G may be written
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This form of the Green's function involves no infinite integrals

and, therefore, can be evaluated numerically fairly efficiently.

The integrand of the first integral is, however, singular

when . = a so a special procedure must be followed in evaluation

of that integral. Let
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i The integral in question can be written
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The first and third integrals in Eq.(16-C) are not singular and

will cause no difficulty in numerical integration provided the
integrand is not evaluated exactly at the midpoint where g4 = a.
The integration procedure uséd, therefore, is the "3/8 rule'" which
evaluates the integrand at end points and two intermediate points.
Using an odd number of subdivisions then the integrand is never

evaluated at r=

The second integral in Eq.(16-C) is singular and a special

T ————————

procedure must be followed. The integral may first be written as

du e
= 17-C
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where %

U = Qﬁ §

which indicates clearly the singular nature of the integrand at

s U= U,. The interval may be broken into three parts as
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and the first and last integral integrated in a straightforward
manner by numerical integration. The second integral is evaluated
by first expanding the denominator in a Taylor series about

and then dividing 1.0 by this series. The result of this is
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Thus, the complete integral, Eq.(17-C) may be writt
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where £ denotes some small value between 0 and ah.

ical evaluation, € has been set to 0.10.

The final form of the Green's function in the

for numerical evaluation may now be written as
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In the numer-

form appropriate
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The derivatives'of G(x,y,z;;,?,j) follow from Eq.(21-C)as:
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