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The general single-period optimal portfolio selection problem is
the following: An investor wishes to invest his wealth in certain risky
assets, each of which has a constant scale of return that is a random
variable. He could also borrow or lend and the interest rates for borrowing
and lending are assumed to be the same and fixed. The latter is referred
to as the risk-free (or safe) asset. The objective of the investor is to
maximize his expected utility of wealth subject to his budget constraint
and certain federal or other personal restrictioms.
In Lintner [ 13 ] and Ziemba et al. [ 18 ], it was shown that the
problem can be solved by a two-stage procedure, provided that the investor
has a concave utility function and that the asset returns have a multinormal
distribution. In stage 1, one solves a certain fractional program having as
variables the proportions invested in the risky assets. 1In stage 2, one
uses the optimal solution obtained in stage 1 to solve a certain stochastic
program having one single variable which represents the proportion invested E
in the safe asset.
In a recent paper, by making certain special assumptions about the
covariances of the risky assets, Elton, Gruber and Padberg [ 7 ] have : }
derived some procedures for the solution of the fractional program.

Unfortunately, their derivation was based on a wrong set of necessary and

sufficient conditions for the program.

Our objective in this paper is to develop an efficient method for the
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numerical solution of the fractional program arising in the first stage of L
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the portfolio problem. The second stage is often very easy to solve.

See [ 18 ]. /[@§;A : :Tﬁ\
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that the fractional program can be reformulated as a certain equivalent
linear complementarity problem which forms the Kuhn-Tucker necessary and
sufficient conditions of optimality for a certain (strictly) convex
quadratic program. Then, by establishing a theorem which shows how the
complementarity problem can be effectively solved by a simplified version
of the parametric principal pivoting algorithm as described in Pang [ 14 ],
we derive an efficient algorithm for solving the problem. We shall also
outline how the proposed algorithm can be profitably applied to a specific
model with upper bounds. Finally we shall report some computational
results including a brief comparison of our proposed algorithm and Lemke's

(see Lemke [ 12 1).

1. IHE LINEAR COMPLEMENTARITY EQUIVALENCE

As the case where short selling is allowed is computationally much
easier to handle, this paper treats only the case where short selling is

prohibited.

The fractional program under consideration can then be stated as:
maximize p.'rx' / (x'T Vx')i m
subject to eTx' =1 y, Cx'<d and x'>0.

Here V is the n x n symmetric covariance matrix of the (stochastic) returns
of the risky assets and is assumed to be nonsingular (or equivalently,
poucivi definite), u is the n-vector of expected asset returns in excess
of the risk-free return, x' is the n-vector of proportions of wealth
invested in each asset, e is the vector of 1's and n is the total number

of risky assets under consideration. The matrix C is m by n.
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The theorem below shows that the program is equivalent to a linear
complementarity problem. It is an extension of a result established in

[ 18 ] for the special case where the constraints Cx' < d are not present.

Theorem 1.  Suppose that problem (1) is feasible and that p'x' > 0 for

some feasible x'. Then problem (1) is equivalent to the linear

complementarity problem
T T
u=-p+Vx+(C -ed)y>0 x>0 (2)
T
vas-(C-de)x >0 y>0
uTx-va-O

in the sense that there is a one-to-one correspondence between the

optimal solutions to (1) and the complementary solutions to (2).

Remark 1. The assumption (prx' > 0) has the interpretation that the

total expected return is positive for some feasible portfolios x'.

Remark 2. The feasibility of (1) is important for the equivalence to

hold. In fact, simple examples can be constructed so that (2) has a

complementazry solution but (1) is infeasible.

‘Proof of the theorem. Since the objective function in (1) is

homogeneous in x', the problem is equivalent to

maximize “rxll / (x"tvxll)i (1 ' )

subject to Cx" < deTx" , xV 20 and x" #0
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under the transformation x' = x"/ .‘1".. . We show that this latter program

is equivalent to the convex quadratic program below

minimize }xth - urx subject Cx < dch and x > 0 . 2"

Indeed, let x" be an optimal solutiom to (1'). We observe that
T

b x" > 0 so that the vector x = ( prx“/ x"rv::")x” is feasible for (2').
Moreover, we have

}:':Tvi - uri - - (1.4.17::")2 ! "z < 0 .

Let y be a feasible solution to (2') with inVy - p.Ty <0. Theny #0
is feasible for (1') and we have ury > inVy >0 . Thus

By - w2 - 262 vy > - 36T /e = 335 - TR

Therefore x is optimal for (2').

to (2'). We claim p'x > 0.

Conversely, let x be an optimal solution

Indeed, if u.T;: <0 and if x is a feasible

solution for (2') such that u.Tx > 0 , then since the vector y = (u.Tx/xTVx)x

is also feasible for (2'), we have
0< 3z - uTx <#yVy - ply = - &(urx)zlxxv:: <0

which is impossible. Therefore u.r;: >0 . Similarly, we may deduce that

pX = XVE . Now let x" be a feasible solution to (1') with plx" > 0.

Then the vector x = (urx" / x"IVx")x“ is feasible to (2'). Hence, we have

- 360?38 = 1V - TR < 3xTVx - 0Tx = - 367002/ 0T
which implies

u.ri / (i'rVi)‘i > prx" / (anqu)i‘
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Therefore x is optimal for (1'). The proof can now be completed by noting
that the problem (2) is precisely the set of Kuhn-Tucker necessary and

sufficient conditions of optimality for the quadratic program (2').

2. THE PARAMETRIC APPROACH

Among the various algorithms which can be used to solve the linear
complementarity problem (2) is the parametric version of Graves'
principal pivoting algorithm (see Graves[ 9 ] for the original non-parametric
version and Cottle [ 2 ] for the parametric version). A typical pivot
step of the algorithm is outlined as follows: Given a parametric linear

complementarity problem in the canonical form

Ww=7r+4)s + Mz

where A 1is currently of some positive value X such that r + As > 0 and
T, + isk = 0 for some k, we first pivot z_ into the basis and w, out of
the basis if Mk # 0 (known as a 1x 1 diagonal pivot). Else we increase z,
to a value until some T, + s L becomes zero, in which case we pivot
onm and ™ (a 2x2 block pivot).

It is a rather well-known fact that if the diagonal pivot entry is
positive in each step and if each pivot is nondegenerate (see [ 9 ] for
the handling of degeneracy), the algorithm always terminates with a solution

to the linear complementarity problem

w=r+M2>0,2z2>0 and zlw = 0

in a finite number of steps (when A reaches zero). A sufficient condition

e e~ —— S M R
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for the diagonal pivot entries to be positive is that the original matrix M

should have all principal minors positive,

The matrix M in problem (2) which is given by

M= 3)

where A = C - deT, certainly does not satisfy this sufficient condition.
Nevertheless, as the next theorem shows, the same assertion about the
diagonal pivot entries remains valid for the problem. The proof of the

theorem is given in the Appendix.

Theorem 2. Consider the solution of the linear complementarity problem

(2) by the parametric algorithm described above, where the parametric vector s

is chosen as s = (8) . Then the diagonal pivot entry in each pivot step is
positive. In other words, the problem can be solved by performing the 1x1

diagonal pivots exclusively.

Remark. The positive definiteness of V is important for the theorem to
hold. 1In fact Graves [ 9 ] showed that all the pivots are 2x2 if V is
the zero matrix.

As explained in [ 14 ], the only information one needs to have in grder
to execute the 1x 1 diagonal pivots consists of (i) the index set of the
currently basic z-variables, (ii) the current constant (r - ) column and
(i11) the current parametric (s - ) column. The update of the matrix M is
entirely unnecessary.

Applying this idea to the problem (2), we may formulate the algorithm




e

below. (See the Appendix for the explanation of the notations and

recall that A = C - deT with C being m by n.)

Algorithm for solving problem (2).
Step O (Initialization) Set B =8 =f, a= {1,...,n} and v = {1,...,m}.

Step 1 (Main computation) Solve the system of linear equations for EB

b'

8
\' (A )T ; e\ =) e
1 L] B B B )
1 2 (4a)
“Asg R e e RS
and compute :
~ T ~
By e\ = [ Mo e\ - vaﬁ (Asar) ps eB
1 2 (o%)
1 2 0 0 ~A 0 b b
bY bY Y8 8 8
Step 2 (Ratio test) Determine
x-mx{mx{ﬁi/;1:31>o iEa},max{Ej/Ej:'éj<0,j€B},
max { bl/bf:bf>1ey}, max { b;/b?:bi <0, j€8}} .

If A < 0, terminate with the solution

xa = u.a and Siad |
1
Yy b5 YY

Otherwise, let k be a maximizing index and continue.

o N

o
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Step 3 (Updating the index socsj Let '
BU{k} if ratio occurs at first maximum
B=<p\(k} if ratio occurs at second maximum
P otherwise

and o = {1,...,n}\B. Update y and § in a similar fashion. Go to Step 1.
We point out tﬁa: the major computational effort required by the

algorithm is contained in Step 1. In general, this step should best be

implemented by using an adaptive procedure (such as those described in

Gill et al. [ 8 ]) to take advantage of the change of the index set BUS.

3. A MODEL WITH UPPER BOUNDS
In[ 7 ], by making certain assumptions about the covariance matrix V,

Elton et al. studied several special cases of the following model

maximize p.Tx' / (x'er')é subject to e’x' = 1 and 0 <x'<d (5
which of course is equivalent to the complementarity problem (2) with C being
the identify matrix of order n. We remark here that the linear complementarity
formulation used by the authors of the aforementioned reference is not the
correct ome. Our purpose in this section is to outline how Step 1 of the
proposed algorithm can be greatly simplified by taking advantage of the fact
that C is the identity matrix, In fact, the entire algorithm can be carried
out by operating on the matrix V and t:l;e vectors i and d only.

Referring to the notations of the algorithm, we state the following

result,

Theorem 3. Throughout the solution procedure, § € B .

The idea of the proof is in fact quite simple. By making an inductive
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assumption that the assertion is true before a certain pivot and then by

deriving an explicit expression for the current constant and parametric
columns, it can be observed easily that the maximum ratio (in Step 2 of the
algorithm) will not occur at those rows corresponding to the basic variables
xy and L2 in the current canonical tableau of the complementarity system
(c£. (7) in the Appendix). Consequently, the next pivot will not occur in’
these rows, thereby establishing the claim for this (and thus all subsequent)
pivot step(s).

Results similar to this one have ippeared in the study of quadratic programs
with only upper and lower bounds on the variables (see [14]) and in that of a
certain piecewise linear complementarity problem (see Kaneko [11]). Roughly

speaking, 8§ and a consist of those indices whose corresponding variables xg

and xc'. are at tihéir upper and lower bounds réspect:ively, and B\ 8§ those that are

between the bounds. The theorem then says that a variable which is at ome

extreme can not immediately reach the other extreme without attaining some

intermediate values. Intuitively, this is quite obvious. The theorem also

. permits one to 1gn§re certain rows in the ratio test. This certainly is a

computational saving. For more discussion, see the above two references.
Consider now the solution of the system of linear equat:ions (4a).

According to Theorem 3, we may write p = 8UT with MN86 = @ . Defining

T
B(B,8) = [ Vgg  (Ayp)

-A” 0
as in the proof of Theorem 2 and recalling A = I - deT, we may write
T
v v - e d
m ne N8
T
BB,8) = | Yy Ves - e dy +1,
0

e

e o
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where I, denotes the identity matrix of order | 8]. By defining
v,
m V,“° 0 0 -.'ﬂ e_n 0

B@®,8) -' v‘ﬂ v‘ﬁ Ia ’ E‘G,G) - 0 -‘5 3 Ez(aa‘) " ‘6 Y

" -IG 0 dg 0 0 cla
it is obvious that
B®.8) = 5@®,8) +£,@,8) E,6,8)"
which shows that B(B,8) differs from B(B,8) by a rank-two matrix. By
an easy calculation, we may deduce
-9 -1
vV
m . ™ e
gg,)'= | o 0 -1,
el ot S v gy
& m L) 88 sm MM M
Hence, accordihg to the Sherman-Morrison-Woodbury formula (see "
Householder [10, p.124] e.g.) we have |
g, JE -1 _ = -1= T
] B(B,&) - BG ’6) b E‘ (9,5)3(3,5) Ez(BJ) |
|
: where {
vy, .4 - vile |
m nss men |
£,6,5 = 56,8 ',@,8) = - 4 0
: VoV, Vv _)d, v, Vile -e
? 88 sq MM e &M nMn &




e'l"v.1 0 erv"vm ":

nTm mm
£,6.0" =£,6,0%6,0" - : ; 1
= - T i
-dfvmvm 4y 450y VgnnVne

G®,8) = 1,+E,(®,8)5(®,8) 'E, 3,8

-1 T i3 -1 |3
(i s e ) ?
T -1 T -1
cl6 (V“ - Vanvnnvna)da 1 +d6 (Vanv,'men - ea) 2 | 4

Notice that this last matrix G(B,8) is 2x2. Hence, we obtain

A R 37 . 2. T- |

b e.n E, (B,8)G(B,8) (‘Tl""ﬂ e.ne.n ) 1
T- %

4 1 ks ags,

;6 ;6

where
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Gy r &) = Gy s 0g) = Yy Gip 2 3p) - -

Consequently, the solution of (4a) can be achieved by the following

| steps:

E 1. Solve the system of linear equations for <an B ;11 e ;n)

g . e i

v‘rm(d\n s l&n s ..n) (vnada s Phn ’ e'ﬂ) (6e) !

: and compute .'
g sing s 8g) = (yudo Ly 00 - Van @ » b » & (6b)

2. Solve the 2x2 system of linear equations for (E’; 57)

A

R4

¥ - dfia - .;:n ( E;) - ( ef'iﬂ ‘%‘n)
d':aa ! - d':;a ?; E; dfﬁa df&a

BNl A\ [ AVEE
0 0

1 -e
5% ~dy & & |
s % St % 1
We point out that the major computational effort required to solve |

(4a) has now been reduced to the solution of (6a) and the computation of

(6b). This reduction is significant because (6) involves only the matrix V

whose size is one half that of M (cf. (3)).

Finally, we mention that similar savings can be achieved in computing (4b). .
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4. COMPUTATIONAL RESULTS

In order to numerically test the proposed parametric approach, we have

implemented it for solving some randomly generated problems of the type (5).

There are two families of problems being solved. Each of them is chamtéri.zed
by a certain form of the covariance matrix. The reason that we have chosen these
particular families in the experimentation is because they are among the most
commonly used models in portfolio analysis. In the first family, the

matrix has the form

V=Z +L LT

3 where £ is an n x n diagonal matrix with positive diagomal entries
and L i{s an n x m matrix with m much less than n. This structure arises

from an m-index model ([14] and Sharpe [17]). The case m = 1 corresponds

to the single-index model (Sharpe [16]). The constant correlation
coefficient model studied in Elton, Gruber and Padberg (5, 7] also gives
rise to a covariance matrix having the above structure with m = 1.

In the second family of problems solved, the covariance matrix is given

in partitioned form V = (vij) where for i, j = 1....N,

c, ftehT

1] 14]

ij
i L8 T
8+cnf(£) i=3

f vhere C = (ci j) is an arbitrary N x N symmetric matrix of scalars, f" is

; : , an Ni-vcccor and Z" is an N1 x Ni. diagonal matrix v'ich positive diagonal
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entries. For N = 1, this structure reduces to that arising from the single-
index model. In general, it assumes that the risky assets are divided into
groups so that members in each group satisfy the assumptions of a single-

index model. The multi-group model discussed in Elton and Gruber [4] and Elton,

s s

Gruber and Padberg [ 6 ] gives rise to a covariance matrix having this : |

structure.

In many practical applications, both m (the number of indices) and N
(the number of groups) are fairly small compared to n (the number of risky
assets). Advantage can be taken of this fact to further reduce the
computational effort (and in fact the computer storage as well) required by
E‘ the proposed approach in solving problems with these structures. To avoid

complicated notations, we choose not to present the technical details.

Two sets of experiments were performed on a DEC-20 computer at the
computation center in Carnegie-Mellon University. The computations were
done in double precision to reduce round off-errors. The computer codes
were written in FORTRAN and the timings reported are exclusive of inputs
and- outputs.

The first set of experiments was concerned with the implementation of

the proposed method for treating an m-index model and an N-group model. The

objective was to test the capability and efficiency of the method for solving

problems of considerably large size. The data were generated as follows:
Each component of the vector d was the same and equal to 1.75/n. The number
1.75 was used as a control of the total number of pivots and the total number

of variables at their upper bounds so that these numbers would not become too

small. For an m-index model, the diagonal entries of T were set equal to 2.0.

The entries of the matrix L were generated randomly in (-1.0,1.0) and the




components of the vector p in (0,1).
the vector 4 were generated randomly in (0,10) and those of £* im (-1,1).
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For an N-group model, the components of

The diagonal entries of l:" were equal to 2 ran + | vhere ran was a random

nunber between O and 1.

T

Finally, the matrix C was equal to GG~ where G

was an N by N random matrix whose entries were random numbers between -1

and 1. The results are summarized in Tables 1 - 4 below.
- m # of pi.;on # of variables # of variables totsl CPU CPU time/pivot
between bds, at upper bds, time (in sec.) (in sec.)
5 410 120 49 21.1867 0.0516
10 402 80 72 30.3223 0.0753
15 416 42 92 41.8303 0.1010
20 432 34 99 56.261 0.1303
25 418 27 100 67.2163 0.161
30 438 26 102 85.852 0.1962
s
Table 1: Multiple-index model n = 200
m # of pivots # of variables # of variables total CPU CPU time/pivot
between bds, at upper bds, time (in sec,) (in sec.)
5 1230 380 143 192.4927 0.1565
10 1258 264 209 279.7347 0.2223
15 1259 105 289 364.0687 0.2891
20 1348 56 315 485,9643 0.3604
25 1321 36 326 574,019 0.4344
30 1290 29 330 673.5277 0.522

Table 2: Multiple-index model n = 600
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T———

e commssamn
# members # of pivots # variables # variables total CPU CPU time/pivot
in each grp. between bds. at upper bds. time (in sec.) (in sec.)

20 197 79 15 2.839 0.0144
40 428 164 33 11.685 0.0273 :
60 607 243 47 24,418 0.0402
80 805 321 n . 42.842 0.0532
100 1026 410 81 68.307 0.0666
et ————m————t—— .
Table 3: Multiple-group model N = 5
# members # of pivots # variables # variables total CPU CPU time/pivot
in each grp. between bds, at upper bds, time (in sec) (in sec)
20 811 317 73 S1.799 0.0639
40 1656 628 141 188,314 0.1137
60 2639 955 216 399.642 0.1228
80 ; 3251 1233 300 721,251 0.2218
100 4163 1579 353 1,088.565 0.2615

, Table 4: Multiple-group model N = 20

The objective of the second set of experiments was to compare the proposed

method with Lemke's algorithm for solving problems of the above type. The

code that we used for the latter algorithm was called LCPBIG and was writtea

at the Systems Optimization Laboratory of the Department of Operations Research

at Stanford University.

(The author is grateful to Professor R. W. Cottle

for making this code available.) The data were generated exactly as above,

except that the upper bounds di were equal to 1.35/n. The comparison is




summarized in Tables 5 and 6 below.
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n wm # of pivots # variables # variables total CPU time (in sec.)
between bds. at upper bds. proposed method Lemke
20 2 39 11 8 .185 1.107
20 14 40 10 9 777 1.110
30 2 63 17 13 .384 3.930
30 18 56 6 19 2,025 3.073
30 20 65 7 18 2.352 4,027
40 2 89 27 13 .766 9.877
40 10 88 14 21 1.763 9.850
40 20 98 12 21 4.067 11.364
Table 5: Comparison for an m-index model
N # members # of # variables # variables total CPU time (in sec.)
in each grp. pivots between bds. at upper bds. proposed method Lemke
2 5 23 7 3 .0535 .275
2 10 40 10 10 .128 1.243
2 20 81 23 16 417 8.400
3 2 1 3 3 .024 A1
3 10 61 15 14 An 3.678
4 10 87 23 16 .564 9.080
5 8 89 23 17 .632 9.612
Table 6: Comparison for an N-group model

o ol s it it ks

|
|
|
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We point out four remarks.
1. The numbers of pivots shown in the last two tables are the same for
both algorithms.
2. In all cases, the numbers m and N are kept fairly small in order to
be consistent with the smallest of the ratios m/n and N/n in many practical
applications of these models.
3. The data in all the problems solved are extremely dense. In fact, this
is an essential reason why we have compared the two algorithms only on
small problems. (The code LCPBIG was written for solving linear complementarity
problems with matrix having six thousand or less nonzero entries.)
4. The proposed algorithm is rather sensitive on the size of m and N
(whereas Lemke's algorithm is not).

From these experiments, we may draw the following two conclusions:
1. In terms of computation times, the proposed algorithm is consistently
superior to Lemke's. In most cases (when m/n or N/n is small) the former
is several times faster than the latter. The reader is referred to Pang et al.
[15] for a brief explanation based on operation counts of the algorithms.
2. The proposed algorithm is capable of solving large problems in a fairly
efficient manner.

Finally, we point out that in addition to the superiority in computation
times, the proposed algorithm also requires a substantially less amount of

computer storage than Lemke's algorithm.
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APPENDIX
Here we establish the theorem below. Before doing so, we explain the
notations to be used. Let A be an m by n matrix. If o and P are subsets
of {1,...,m} and {1,...,n} respectively, by Adﬁ we mean the submatrix of A
whose rows and columns are indexed by o and B respectively. If j€{1,...,m},
|

we denote the j-th row of A by Aj. Similar notations are used for vectors.

Theorem. Consider the solution of the parametric linear complementarity

RS ABS ios iaiF A s i e i RS

problem
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uTx-va-O ]

nxn

where FER is symmetric and positive definite, AER™™™ 1s arbitrary,

e is the vector of ones, q is arbitrary and b > 0, by the parametric version
of Graves' principal pivoting algorithm. Then all the diagonal pivot entries
are positive. In particular, in a finite number of steps, the algorithm
will terminate with A = O,

We need the following lemma whose proof is not difficult and thus omitted.

e

Lemma. Let F and A be as in the theorem. Let B and § be nonempty subsets

of {1,...,n} and {1,...,m} respectively. Then the matrix

T Ly

(’aa g ) -

B(@,8) = ]
e ﬁ

is nonsingular if and only if the matrix AGB has full row rank. In this

T Ty e
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case, the matrix A, F'

T
) (A“) is positive definite and

-1 T -1 T,-1

3@, = : :
(A F"(A”)T]' A“F;; (AggFag Ag

T,-1
88788 )]

where

L e T -1 T,-1 -1
H@,8) = Fas -Fﬂﬁ (A”) [A“Fgg“gp) 1 A”FBB

is symmetric and positive semi-definite. Moreover, det B(B,8) is positive.

Proof of the theroem. Consider any pivot step of the algorithm. Let B
and § denote, respectively, the sets of indices of the currently basic x
and y variables before the pivot. With no loss of generality, we may
assume that both B and § are nonempty. Let B(P,8) be the matrix defined

in the lemma. It is a rather well-known fact from the theory of pivotal
algebra that B(8,8) is nonsingular. Then the current canonical form of the

complementarity system can be written in partitioned form as
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where o and y are respectively the complements of B and § in {1,...,n} and
$.eeiid

~ - -1 ~ - L T -
ea B(B,8) eB . ea Faﬂ (Aba) )( ea)
2 2 2
b, 0/, \5 0 A g 0 b
and
p* . SO T -1 T
N Fw (Aya Faﬁ (AGG) B(B,8) Fﬂa (Avﬂ)
Ava ’ “Ave 0 Asy 0 ‘

We divide the proof into four cases.

1. The diagonal pivot entry occurs at a x.-row. In this case, the entry

B

is n(a,a)jj where j € is such that n(|a,e)je'a = Zj < 0. Since H(B,8) is

symmetric and positive semi-definite, the fact that H(B,a)jeB is nonzero
implies that n(s,a)jj is positive (see Cottle [1] e.g.).

2, The diagonal pivot entry occurs at a ¥ g-Tow. In this case, the entry is

-1 T,-1 -1 T,~1
[[Aaaras(Abﬁ) 1 ]jj vhere j €8. Since the matrix [AgoFoa(Azg)"1 " 1is

positive definite, the desired pivot entry is therefore positive.

3. The diagonal pivot entry occurs at a u ~Tow. In this case, the entry is

F“ - (F.‘Iﬁ (AM )T)n(a,a)" st where j€a. It is the Schur complement of

-Aaj

B(B,8) in B(BU{ 3}, 8) (see Cottle [3]). This latter matrix B(BU{ 3}, 8) is

nonsingular by the lemma. Hence the desired pivot entry is positive.

4., The diagonal pivot entry occurs at a vY-rov. In this case, the entry is

AjBH(B,G) A

3

po——

IB)T where § €y 1s such that A, H(3,8)ey > 0. If the pivot entry
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were zero, then we would have AjaH(B,a) = 0 by the symmetry and positive

semi-definiteness of H(B,8)(see [1] e.g.). But this is impossible.

r Consequently, we conclude that no matter where the next diagonal pivot

entry is, it must be positive. This completes the proof of the theorem.
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