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ABSTRACT

A prescribed salinity field is inserted into a 1l0-level primitive
equation ocean circulation model. The model has been developed and is
being improved in order to study large-scale thermal anomalies observed
in the Central North Pacific Ocean by the North Pacific Experiment (NOR-
PAX). The salinity field, based on observations along 160 W longitude,
is independent of longitude and time, and is smoothed in the north-south
direction to remove small-scale variations. A new equation of state
which is a function of temperature, salinity and depth is used to deter-
mine density in the calculation of pressure from the hydrostatic equation.
The parameterization of vertical mixing is changed to account for the
stabilizing effect of salinity and the supercooling of the surface layers
at high latitudes during winter.

The addition of salinity induced changes in the currents at high
latitudes when compared to the model without salinity. A Rossby wave
was excited in the middle latitudes which produced transient changes.

The convective adjustment process enabled significantly colder water to
overlie warmer water in the regions where salinity increases with depth.
Supercooled surface temperatures, encountered during winter at high lati-
tudes, are handled through convective mixing, but further investigation
into the dynamics of sub-grid scale vertical convecticn at near freezing

temperatures is recommended.
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I. INTRODUCTION

The ocean and atmosphere behave as a coupled system with anomalies
in one medium inducing anomalies in the other. Bjerknes (1966, 1969,
1972) and Namias (1959, 1969, 1972) have investigated this interaction by
relating observed sea-surface temperature (SST) anomalies to anomalous
behavior in the atmosphere. Other investigations have been conducted
with numerical simulations to test the response of the atmosphere to a
prescribed ocean (Rowntree, 1972), the response of the ocean to a pre-
scribed atmosphere (Haney, 1974) or the simultaneous effects of a coupled
system (Manabe, 1969; Bryan, 1969; Wetherald and Manabe, 1972). Through
observations and numerical simulations a greater understanding of the
air-sea system is sought with improved forecasting of the atmospheric and
oceanic variability an ultimate goal.

The numerical model used in this investigation is that of Haney (1974)
with subsequent improvements involving seasonal atmospheric forcing, para-
meterization of convective mixing and surface wind stirring (Haney and
Davies, 1976) and nonlinear eddy viscosity (Haney and Wright, 1975). The
goal of this investigation is to further improve this model by introducing
salinity as a new variable. The model, based on the hydrostatic and
Boussinesq approximation, is a l0-level primitive equation model in a
closed rectangular basin with uniform depth of 4 kilometers. The basin
which extends from the equator to 65°N and spans 90° of longitude is an
idealized representation of the North Pacific Ocean. The horizontal re-
solution of approximately 2° of latitude and 3° of longitude is provided

by 33 uniformly spaced grid points in the north-south and east-west
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directions. In the vertical, the ten levels are located at 10, 32.5,
: ; 62.5, 102.5, 162.5, 462.5, 900, 1700 and 3100 meters below the surface.
Wind and differential heating which drive the ocean circulation are de-

rived from prescribed but time varying climatological values of solar

radiation, cloudiness, surface air temperature, surface specific humid-
ity and winds. Until the present study, the density in the model was

assumed to be a linear function of temperature only.

The model has been develcoped and is being improved in order to study
large-scale thermal anomalies observed in the Central North Pacific
Ocean by the North Pacific Experiment (NORPAX).

During a "spin-up" phase, the model is integrated for approximately 3
240 years of simulated time to produce a "model climatology". The result-
ing circulation and temperature patterns adequately represent the large-
scale north-south temperature variations and the major ocean gyres;
however, the Alaskan gyre is not depicted. Once the model climatc’ogy ;
has been established, temperature anomalies are injected into the model
which is then integrated forward in time with or without ancmalous atmo-
spheric forcing. The evolution and migration of these anomalies can be
related to their horizontal or vertical extent and atmospheric conditions
to determine the controlling processes. Investigations by Hunt (1975)
and Shiver (1977) detail the use of this model in such studies of large-
scale ocean variability and the major conclusions of these works are pub-

lished in Haney, Shiver and Hunt (1978).

The motivation for this investigation is to determine the effects

of adding a prescribed salinity cross section to the model. The salinity
cross section is steady state and independent of longitude. This new

salinity field modifies the density field through a newly introduced

11




equation of state.

The resulting modifications to the density field

affect the hydrostatic pressure, and hence the horizontal pressure gra-

dient, as well as the vertical stability.

This introduction of a prescribed salinity cross section is expected
to improve the model in several ways. First, as noted above, the present
model climatology (without salinity) does not depict an Alaskan gyre.

Part of this model's deficiency may be due to the somewhat idealized

PG Y

form of the wind forcing at high latitudes; however, temperature varia-
tions are small and salinity can play an important role in the density b
structure and hence, the geostrophic flow. Thus it is expected that
salinity may improve the model's circulation at high latitudes. The de-
sirability of adequately simulating the Alaskan gyre in this meteorologi- 4
cally significant area is apparent.

In his work using the model in which density depended on temperature
only, Hunt (1975) noted that cold SST anomalies could not be maintained
in the winter at high latitudes but were immediately convectively mixed
downward. Cold SST anomalies are a physically realizable condition dur-
ing winter in high latitudes. Surface cooling occurs but the increasing
salinity with depth provides stability and maintains the cold surface
anomaly. However, free convection occurs and must be modeled whenever
the surface layers become mare dense than the underlying layers. The
model previously determined stability solely from the temperature profile.
If the temperature decreases with depth (positive profile), the profile
is stable and convection does not occur. On the other hand, an unstable
profile (produced for example by a cold surface anomaly) is instanta-

neously adjusted to neutral thereby destroying any cold surface anomalies

which produced the instability.

In reality, density, and therefore
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stability, is a complex function of temperature, salinity and depth and

a negative temperature profile can be stabilized by a positive salinity
profile. In this manner, cold SST anomalies can be formed and maintained
and one of the goals of this study is to make the model more realistic

in this regard. Similarly, but with less apparent significance, a warm
anomaly can be maintained below the surface layers. The inclusion of
salinity in the model can play an important role in the study of large-
scale thermal anomalies by improving the climatological circulation pat-

tern and altering the vertical stability, and hence, the convective

adjustment parameterization.

13
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II. DATA COMPILATION AND HANDLING

The salinity cross section used in the model is steady state and in-

dependent of longitude. The steady state assumption was necessitated

oo

by the lack of data. A seasonal variation in surface salinity tied to
the variation in evaporation is known to exist in several geographical
areas. Other temporal variations in surface salinity exist at high lati-

tudes where ice formation or melting alters the salinity profile. How=-

ever, the extent, both wvertically and horizontally, to which these

variations influence the open ocean are not known and can not be ade-

quately modeled (Sverdrup et al., 1942). |
Allowing salinity to vary only latitudinally was dictated primarily 13

by simplicity and economy; however, the dependence in Y alone is justi-

fiable. The significant gradients in salinity are north-south and ap-

preciable deviations from this pattern are found only at the boundaries

where land runoff and boundary currents become important (Figure 1)

(Riley and Skirrow, 1975). $in® the model is primarily concerned with

open ocean circulation, the assumption of longitudinal independence in

salinity seems reasonable. An anticipated result of the inclusion of

salinity into the model is the formation of an improved and more realis-

tic subarctic gyre. This gyre could be created by the geostrophic flow

induced by a north-south salinity gradient.
The salinity cross section prescribed in the model was derived from

actual measurements from research vessels. The series, Oceanic Observa- |

tions of the Pacific: (Year) (Scripps Institution, 1960; 1963a and b;




1965a,b,c and d) compiled by Scripps Institution of Oceanography was
the source of the measurements. Salinity profiles were selected to ap-
proximate a cross section along 160°W longitude and at the model's grid
point spacing of 2.03° latitude. Due to the sparseness of data in some
areas, a common time of year could not be selected; however, 75% of the
measurements lie between late spring and early fall. Because the Pacific
Ocean narrows and shoals above 60°N, data in this area are limited in
both horizontal and vertical extent. To overcome the data insufficien-
cies the profile at 60°§ was duplicated for the grid points between 60°N
and the model's boundary which is located at 65°N.

Figure 2 shows the latitude-height cross section, taken from the
/Ebove data sources, plotted and analyzed at the model's grid points.

The salinity cross section (Figure 3) found in Intermediate Waters of the

Pacific Ocean (Reid, 1965) was used to verify the representativeness of

the compiled cross section. Major features such as the low salinity
tongue penetrating equatorward from the high latitudes and the high
salinity central water mass are adequately represented. Areas of sharp
horizontal gradients at 35°N and 45°N are also reasonably depicted.
Although the major features of the salinity cross section were well
represented, a smoothing technique was employed to remove the small-scale
irregularities and improve horizontal consistency. A repeated, three

point weighted average given by

*

S.

5
3,k 5 s 25 S (1

= ,25 sj-l,k S

j.k j+l,k
was sglected. Boundary values remained unchanged. This smoothing pro-
cess was performed up to five times and the resulting cross sections

analyzed. Four repetitions of this averaging scheme removed small-scale
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4 irregularities (less than two grid lengths) but retained the major fea-

tures of the salinity structure (Figure 4). The central water mass re-

mains intact and the low salinity tongue is still identifiable. Hori-

zontal gradients have been smoothed but maintain their location and a
portion of their intensity. Since the cross section was composed of
actual soundings, vertical consistency was assured and vertical smoothing

was not considered necessary.

5 A g
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III. EQUATION OF STATE AND CONVECTIVE ADJUSTMENT

The density of sea water as a function of temperature, salinity and
pressure is usually computed using the Knudsen formula. Although the
Knudsen formula is quite accurate, it is generally considered too inef-
ficient for inclusion in numerical models. This inefficiency arises due
to the wide range of temperature and salinity for which the Knudsen for-
mula holds. Since the actual variation of temperature and salinity in
the open ocean is known to be limited, several researchers have developed
empirical formulas which are accurate and efficient but apply only to
open ocean temperature and salinity ranges. Two such empirical formulas
were considered for inclusion in the model.

Bryan and Cox (1972) solved an overdetermined, simultaneous system
of equations whicn related departures from the mean of temperature and
salinity to the departure from the mean density at a given depth. That

is:

— — o — o —_

; 22
o'rl Gsl <S'rl Gsl G'rlsl X5 01 = Pox
6T2 Gsz R Xop Qz = pOk
; E i = g (2)
LGTm Gsm =3 v L’_‘nlg_ fm 5 o015__ m>n

where : 6Tk = (0 =T ]

k Ok
Gsk = (Sk - SOk)
TOk' pOk and SOk are the mean values at a given depth.
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The density is given by:

2 2 3
xlksT + kaSS + x3k(6T) + x4k(55) + xSkGTGS = [D(T,S,Zk)-00k]x 10

(3)
The constant coefficients, X, were computed at each depth by Bryan and
Cox using an iterative process. Acceptable accuracy was obtained with
as few as three coefficients (n=3) and 50 temperature, salinity and den-
sity combinations (m=50). A significant improvement in accuracy was ob-
tained with nine coefficients (n=9, m=50). Figure 5 illustrates the
accuracy of this method as compared to the Knudsen formula. The errors
are always largest near the surface where the widest range of tempera-
tures and salinities exist.

Another empirical formula for the equation of state of sea water was
developed by Friedrich and Levitus (1972). This formula is similar to
the Bryan and Cox formula in that it fits a polynomial in temperature
and salinity to computed values of density determined by the Knudsen for-
mula; however, the coefficients are continuous, rather than discrete,
functions of depth.

A quadratic equation given by

2
o(T,s,2) = cl + cz'r + c3s + c4'r + csrs (4)

is highly efficient but is not sufficiently accurate over the expected
range of temperature and salinity. Further expansion of the polynomial

to

+ C.,T+C_,S+C T2 + C_ST + C T3 + C ST2 (S5)

18
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yields acceptable accuracy while expansion to more terms does not im-
prove accuracy appreciably.

The coefficients are themselves quadratic polynomials in -Z (depth)
which fit a smoothed curve to the pressure dependency of density. Due
to the reduced range of temperature and salinity with depth, the coeffi-~
cients more accurately represent the pressure dependence at increased
depth. Figure 6 shows the pressure dependence of the coefficients and
the rms error of equation (5) with respect to the Knudsen formula. In-
creased efficiency without a decrease in accuracy can be accomplished
by reverting to equation (4) at depths of two kilometers and below. The
values for the coefficients used in equations (4) and (5) are given in
Tables I and II, respectively. Note that Z is in kilometers and defined
positive downward.

The Friedrich and Levitus equation of state was selected for inclu-
sion in the model since computation of density at the model's irregular
depths is facilitated by the continuous depth dependence. Aanother advan-
tage over equation (3) of this formulation is that the equation of state
would not have to be changed if the location of the levels in the model
were ever changed. The explicit depth, temperature and salinity depen-
dence of density as set forth by equation (5) aids in the remodeling of
the convective adjustment process as discussed below.

Without salinity the model had convectively adjusted whenever the
profile was slightly positive, neutral or negative. The incorporation
of salinity into the model enables a negative temperature profile to be
convectively stable when coupled with a stabilizing salinity profile. To

determine the relationship between depth, temperature, salinity and den-

sity, the total derivative was expanded into its components.

R ——
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where Z increases upward. For stability, %%'5.0, the temperature pro-
file must satisfy

oT 90 30 3s,, 30

zi( Tz -b—s-a—z')/‘ﬁ- (7)

(1) (2)  (3) (4) (5)

The right hand side of equation (7) gives the temperature lapse rate
which renders the density profile neutral (g%-a 0). Terms (1) and (4)
are known from the temperature and salinity profiles computed in the
model. Terms (2), (3) and (5) are computed from the equation of state
[equation (5)]. For efficiency, terms (2) and (3) can be simplified
through scale analysis; however, all components of term (5) can be of
simil#r magnitude and must therefore be retained. The expansion of the
terms in equation (7) and the scale analysis is detailed in Appendix A.
If the inequality is violated (as calculated using finite differencing

between two levels), then the temperature profile is convectively ad-

justed. The adjustment is accomplished by
1) the heat present in the two layers

2) the new temperature profile equals
lapse rate, the right hand side of

additional stabilizing lapse rate.

satisfying two constraints:
remains constant; and
the neutral temperature

equation (7), plus a small

In this manner, cold water may overlie warm water provided the proper

salinity structure exists.
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IV. RESULTS

A "spin up" of 246 years of simulated time without salinity (Haney
et al., 1978) was used as initial conditions. The salinity cross section
and equation of state discussed above were inserted into the model and
the integration continued for seven years. Streamlines and temperature
contours at various depths for summer (mid-July) and winter (mid-January)
of the model climatology, year 246 (without salinity) and the years 249
through 253 (with salinity) were plotted, analyzed and compared. During
the first seven year integration period, "neutral stability" was still
defined as % = 0. That is, the stabilizing effect of salinity in the |4
parameterization of vertical convection (convective adjustment) was not ?.j
included. This effect was adéed after year 253 (see below). It was
handled in this manner in order to study the effects of one change at a
time. The model climatology, without salinity, Figures 7 through 11, ;
depict the features previously discussed. In these and subsequent stream- ‘
line figures, the lengths of the small arrows are indicative of the rela-
tive magnitude of the current at the grid point, while the long continuous
lines are streamlines which help display the flow direction. In both the
winter and summer the Equatorial Counter Current, North Equatorial Cur-
rent, Kuroshio Current and North Pacific Current are well represented.

At high latitudes a cyclonic turning is apparent but a closed Alaskan
gyre is not formed. The temperature contours, Figures 12 through 16,
illustrate the baroclinic zone formed by the North Pacific Current and

the northward displacement of this baroclinic zone by the Kuroshio Current.

The contour interval is 3°C at all levels except at level 9 where the
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interval is 0.3°C. The North Pacific Central Water Mass is well defined
in horizontal and vertical extent by the 21°C isotherm.

After seven years of integration with salinity included, several
changes in the streamline and temperature contours are visible. Compar-
ing Figures 17 through 26 to their counterparts in the model climatology
reveals a lessening of the cyclonic tendencies of the surface layers at
high latitudes in the model with salinity included. Since this is
directly opposed to the anticipated results, it mnrits further investi-
gation.

In the previous model with the equation of state represented by a
linear function of temperature, the north-south gradients of temperature
near 0°C, although small, generated significant geostrophic currents.
Wind generated currents provided the cyclonic tendencies in the surface
layers. The present equation of state is only weakly affected by the
temperature fluctuations at low temperatures. The salinity gradients
at high latitudes are very weak (recall, there is no horizontal salinity
gradient from 60°N to 65°N) with the resulting current primarily induced
by the wind fields (Figure 27). A strongly zonal forcing during winter
generates meridional surface currents at high latitudes with the converse
applying during summer. Below the surface, zonal currents resulting
from the north-south temperature and salinity gradients are encountered
but their magnitudes are small.

Another feature of interest, which appears during winter (Figures
17a through 2la) when salinity is included, is the southward directed
current along the western boundary near 45°N. This current is physically
located in the region of the Oyashio Current. It appears only in winter,

and since salinity is constant all year, atmospheric forcing is the
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logical cause. The transport stream function (the vertically integrated

mass transport is nondivergent and therefore represented by a stream
function in this "rigid 1id" model) for winter as campared to summer
(Figure 28) explains the seasonal dependence of this gyre. A strong cy-
clonic stream function is located in this region in the winter while the
value of the stream function in this area is small during summer. The
salinity cross section (Figure 4) below 125 meters enhances the cyclonic
shear due to a local salinity maximum coincident with the axis of the
stream function minimum. The resulting streamlines depict a geostrophic
gyre below 100 meters and a wind induced gyre above 100 meters. When the
cyclonic atmospheric forcing diminishes in the summer, the upper levels
revert to a zonal flow and the gyre disappears except at the lower levels.
A third change noted with the inclusion of salinity is a rather large
cyclonic vortex in the eastern portion of the domain at about 35°N. A
time series of streamlines from July 248 through July 251 (Fiqures 29
through 32) show that the vortex is propagating westward at a rate of
approximately 1.6 cm/sec. The vortex is present both winter and summer
and penetrates from the surface to approximately 350 meters. The charac-
teristics of this vortex point to an intermal Rossby wave. The phase

speed of an internal Rossby wave is given by

)

c=0U - (8)

12 + 1%

where U = speed of the mean current

1, k and m are the wave numbers in the x, y and z directions
and 1 = 2m/L

fo = average value for the Coriolis parameter

i
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B8 = change in £ with latitude

N = (ag %;)& the Brunt-Vaisala frequency

This equation is based on a constant mean flow, U, and a Brunt-Vaisala
frequency, N, which is qualitatively applicable to the region in question.
Values for the above equation were determined from the streamline plots,
temperature profiles and velocity fields. The following values were

selected:

£ = 20 sing = 20 sin 35.5 = 8.4 x 107 e

B = f36 - 535 =1.9 x 10‘13 sec"l cmfl

lllxloscm

1 = 27/1000 km

k = 2m/3000 km

m = 2m/800 m

N° = 2x10% x 980 x 8/2250 cm = 7x10™% sec”!

U= 1.5 ca/sec
Inserting these values into equation (8) yields a value for the phase
speed of -1.5 cm/sec which compares favorably with the observed speed.
At this speed the wave would propagate across the domain of the model in
12 years.

The effects of the Rossby wave are well illustrated by the changes
in the temperaturs contours (Figures 33 through 36). With the approach
of the wave from the east, the baroclinic zone is displaced southward.
While the baroclinic zone nearly returns to its original location after
the wave passes, the temperature structure of the high latitudes is al-
tered for a more extensive period. The high latitude isotherms are dis-
placed southward and eastward; however the streamlines indicate flow from
the south which should aid in returning the isotherms to their previous

configuration.
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The Rossby wave is therefore considered to be a transient feature
due to the sudden insertion of salinity into the model anu the salinity's
dynamical effects on the currents. As the wave slowly propagates across
the basin, its amplitude decreases due to the lateral eddy diffusion in
the model. The e-folding time scale for damping is of the order of

[(k2 + 12) Aul-l, where A is the lateral eddy diffusion for heat. With

H
AH & lo7 cmz/sec, the time scale for damping is of the order cf 5-10 years.

Thus it appears that another 5-10 years of model integration will perhaps
be necessary in order to allow the large-scale geostrophic currents to
completely adjust to the new dynamical constraints imposed by the salinity
f field. This is not considered a serious problem.

i With the dynamical effects of the salinity reasonably well defined,
4 g the convective adjustment parameterization discussed in the prior section

: was inserted into the model. Within 40 days of simulated time the tempera-
,E ‘ tures exceeded the F6.2 format. The individual terms of equation (7) were
| rechecked to insure their magnitudes and signs were correct. All terms
produced appropriate values for realistic salinities, depths and tempera-
tures; however, in the presence of strong surface cooling at high latitudes
during the winter of year 253-254, unrealistic sea temperatures were
generated. Temperatures below -3°C caused %%-to become positive which
forced the neutral value of %; to become large and positive. The para-
meterization of convection permitted temperatures below -3°C; however,

the equation of state does not hold for temperatures below -3°C and does

P

not mod=l the change of phase from water to ice which occurs at subzero

temperatures.

While distilled water reaches maximum density before freezing, sea

water with salinities greater than 25% exhibit increasing density with :

T e e,
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decreasing temperature throughout the cooling process; therefore, super-
cooled water continues to be convectively mixed (Sverdrup et al., 1942).
should the water column become supercooled through its entire depth, an
ice cover would form insulating the column against further heat loss.

The convective adjustment parameterization was altered to prevent
the instabilities previously encountered. Water cooled below -2°C was
convectively mixed so as to conserve heat but maintain minimum tempera-
tures at or above -2°C. Should the entire column cool to -2°C no further
cooling would occur. With these changes inserted, the model was run
through a simulated winter. Surface temperatures rapidly dropped to
-2°C at the higher latitudes and were consistently cooler than the under-
lying layers, the stratification being provided by the imposed salinity.
Because low temperatures have little effect on density, changes in the
circulation patterns were not noted. The inclusion of a convective ad-
justment process dependent on depth and salinity as well as temperature
allows cold anomalies to exist and more accurately mcdels the physical

(convective) processes observed in the high latitude ocean ‘during winter.
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V. CONCLUSIONS

The inclusion of a prescribed salinity cross section into the model

produced limited changes in the large-scale ocean circulation patterns.
The most significant change was the appearance of a cyclonic gyre in the
northwest portion of the domain. While its seasonal fluctuation at the E
surface is due to atmospheric forcing, the local salinity maximum below {
125 meters induced cyclonic shear at this latitude. No cyclonic gyre
was formed in the region of the Gulf of Alaska presumably due to the
reduced magnitude of the cyclonic atmospheric forcing in the northeast
portion of the domain. The lack of bottom topography and of irregular
boundaries may also impede the formation of an Alaskan gyre since all cy-
clonic vorticity, which is put into that region by the wind, is free to
propagate westward all the way to the western boundary.

The propagation of an internal Rossby wave across the mid-latitudes
altered circulation and isotherm patterns; however, these changes were
of a nonpermanent nature. The effect of dissipative forces were apparent

after six years. Based on the prescribed value of the lateral eddy dif-

7
fusion coefficient of 5x10 cmz/sec, the Rossby wave will be dissipated
in approximately 10 years.

The convective adjustment parameterization allows negative tempera-

ture profiles to exist when balanced by a stabilizing salinity profile.

To prevent supercooling of the surface layers, a simplistic mixing and

ice formation parameterization was required. Although reasonable results
were obtained, a more thorough investigation of the process of vertical

convective mixing at freezing temperatures is recommended.
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Several problems were encountered because the model extends to 65°N.

Geographically, the Pacific Ocean above 60°N can not be realistically

represented by a basin 4 kilometers deep with a width of 90° longitude.

Salinity data above 60°N are sparse and highly variable since land runoff
and ice formation or melting significantly alters the salinity profile
there. For these reasons, 60°N would be a more appropriate northern
boundary for the model.

While the inclusion of salinity in the model did not generate all
the desired results, it has improved the model in specific areas. The
inclusion of salinity and the improved convective adjustment process
are logical progressions in the formulation of realistic ocean models

which can be effectively used in the study of large-scale ocean dynamics.
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APPENDIX A

DETAILS OF THE CONVECTIVE
ADJUSTMENT PARAMETERIZATION

The empirical equation of state formulated by Friedrich and Levitus
(1972) is given by:

3 2
o(s,T,2) = c1 + c2T + C3s + C4T2+ CSST + c6T + C7ST :

The values for the coefficients, which are polynomials in -Z {(depth),
are given in Table I. Note that Z is in kilometers and defined as posi-
tive downward. Changing Z to positive upward and taking the partial

derivative of sigma with respect to Z yields:

30 Bcl Bcz 8C3 3C4 5 BCS 3C6 3 oC

3
. St WML GANE ahaeh el gttt nd ‘*:z-s‘z-

Inserting the values for the cocefficients and performing a scale analysis

on the equation yields:

3z = -5.1215 + .1Z + .0363T - .00162T + .0086S - .0002sZ

-.0006'1‘2 - .0002ST + . .

= -5.1215 (10"> gm/cm’ km)

5

- =5.1215 x 10 >(10"° gm/cm’ cm).

Likewise, the differentiation and scale analysis for sigma with respect

to S is given by:

? %g't C3 + CST + C7T2

= ,8056 + .0086Z + .000122 - .0030T - .00022T + . . .

= .8056 (1073 gm/ems) ;




2
|

however, the expression for the change in sigma with respect to T can
not be simplified to a single value through scale analysis. Retaining
all terms which may be significant over the expected range of tempera-
ture, salinity and depth, the effect of temperature on density is given

by:

90
T C2 + 2C4T + CS 7

= .0498 + .0363Z + .0008Z> - .0152T - .0013ZT - .003S - .00022S

+* .0001'1‘2 + .0001ST.

s + 3c6'r2 + 2C.ST

The stable lapse rate is given by:

or (- ao_aoas)/ao
2~ 32 BT

or

oT

-5
2z > (5.1215x10

- .8056 ggl/ucl + KT + K;S + .0001T(T+S))

where
Kl = ,498 + .03632 + .000822
K2 = -,0152 - .00132

K3 = -.003 - .00022

30




TABLE I. Coefficients for the Friedrich and Levitus equation

of state, equation (5). C, = a, + b,2 + ciz2 where
2 is in kilometers and positive downward.

i a, bi Afi

1 ~7.2169x10 5 +5.1215x10_ -5.012x107%

2 +4.9762x10_l -3.6349x10_3 +7.853x10_4

3 +8.0560x10_3 -8.5540xlo_4 +1.o70x10_5

4 -7.5911x10_3 +6.4295x.10_4 -l.397x10_6

5 -3.0063x.10_5 +1.9365x10_6 -3.899x10_8

6 +3.5187x10_5 --3.974,03:10_.6 -5.695x10_7

7 +3.7297x10 -2.8108x10 +1.147x10

TABLE II. Coefficients for the Friedrich and Levitus equation

of state, equation (4). C, = a, + b.2 + ¢,2° where
2 is in kilometers and positive downward.

i ai bi ¢y

1 ~9.2163x10_, +5.1140x10 ) -4.692x10_7

2 +4.33l4xlo_l -3.5685x10_3 +7.689x10_4

3 +8.0640x10_ -8.6826x10_, +1.433x10_,

4 -6.2723x10_3 +5.l351x10_4 -l.246x10_6

C -2.7762x10 +1.7792x10 -3.985x10

. i
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Figure 2. Salinity cross section along 160°W with no horizontal
smoothing.
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Figure 7. Streamlines and velocity vectors for surface layer, year 246
(without salinity) winter (top) and summer (bottom) .
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Figure 8. Level 3 streamlines and velocity vectors
year 246 (without salinity) winter (top) and
summer (bottom)
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Figure 9. Level 5 streamlines and velocity vectors
year 246 (without salinity) winter (top) and
summer (bottom)
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Figure 10, Level 7 streamlines and velocity vectors
year 246 (without salinity) winter (top) and
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Temperature contours for surface layer, year 246 (without
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year 253 (with salinity) winter (top) and
summer (bottom)

b7

e e e —— — T
e —— i —————————




e o

f~
10

A -

Figure 18. Level 3 streamlines and velocity vectors
year 253 (with salinity) winter (top) and
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Figure 28. Transport streamfunction, winter (top)
and summer (bottom)
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Figure 37. Climatological atmospheric quantities used in the
model . (a) Solar radiation at the top of the atmosphere
(Wm™“); (b) fractional cloud cover (tenths); (c¢) surface air
temperature (°C); (d) surface vapor pressure (kPa)
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