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ABSTRACT

Dispersion and impedance properties in various structural wave-

guides, including non-uniform rods and beams were examined. Here are

some conclusions: (1) Even though both a dilatational and a shear

J potential are required to express longitudinal wave motion in 3-

dimensional cylinders, the axial modal impedance equals pc., where pJis density and c the modal phase velocity. (2) At cut-off the axial

modal and radial modal impedances respectively diverge and vanish.

(3) Except for torsional waveguides, whose wave motion is expressible

in terms of a single potential the drivepoint impedance can not be

calculated as an eigenmode series, as these do not form a complete

A orthogonal set. (4) In non-uniform longitudinal waveguides, increasing

density and Young's modulus give rise to attenuation by backscattering.

Whether these parameters vary exponentially or as a power of the axial

coordinate, their contribution to the attenuation is precisely half the

spreading loss due to a similarly varying cross section. (5) Cut-off

behavior of the fundamental longitudinal mode exists for exponentially

varying parameters if Young's modulus and density are identical

functions of the ax'ial coordinate; when these parameters vary as powers

of the coordinate, certain powers lead to non-propagating deflections

or exponentially decaying waves; wedges or cones undergoing flexural

vibrations d-isplay a cut-off frequency when supported on continuous

springs.

I! ~iii
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LIST OF SYMBOLS

I r,z cylindrical coordinates

y axial wavenumber

I C,C phase velocity

IV- LameI s constants

cd1c tc° dilatational, shear, and bar velocity, respectively

k 0 longitudinal wavenumber w/co

p density

E Young' s modulus

S cross sectional area

I cross sectional moment of inertia

rg cross sectional racius of gyration

u,w axial and transverse displacements of the fundamental

mode of non-uniform waveguides

A,B,C,a,E:,S coefficients describing the variation of parameters

in non-uniform waveguides (p. 22)

iv



CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

I* DISPERSION AND CUT-OF1F PHENOMENA IN RO)DS AND BEAMS

A. [ntroduction and Principal Results of this Study

SI • This study was proposed to ONR Structural Mechanics Program as a

result of in-house research which led to the conclusion that uniform struc-

j Itural waveguides of small transverse dimensions (1) display a vanishing

impedance at every modal cut-off frequency; (2) that each cut-off frequency

coincides with the natural frequency of the corresponding standing-wave

rmde of the cross section, the modal configuration being independent of

the z-coordinate defined here as the coordinate along the waveguide axis.A"

The preliminary study was restricted to homogeneous waveguides whose cross-

I section and material properties are z-independent. Furthermore, as already

stated the analysis was limited to waveguides whose transverse dimension

was small enough to eliminate thickness vibrations, e.g. Euler beams on

i j distributed springs, simply-supported strips, and thin cylindrical shells.

In other words, three-dimensional elasticity theory was not required. In
the next section, we shall r-view the current .tatus of the theory of

uniform three-dimensional solid elastic waveguides. In Section 3, new

theoretical results generated from the present study will be stated for

three-dimensional semi-infinite z-independent waveguides. In Section 4,

1 1 the properties of the fundamental mode of propagation in semi-infinite wave-

guides with z-dependent parameters are discussed. Starting with a

review of the existing literature, we proceed to analyze non-uniform wave-

guides which have apparently not been analyzed, particularly waveguides

with rapidly varying physical constants and cross sections.

SI Results generated in this study and solutions to problems which have

to our knowledge not been published are:

III 1. In three-dimensional elastic cylinders conducting longi-

tudinal axi-symmetric waves, the axial modal impedance defined as the ratio

of the axial stress averaged over the cross section, divided by the similarly

averaged axial velocity equals pcz, where cz is the modal phase velocity.

• .The simplicity of this result, reminiscent of acoustic waveguides, is

surprising, because both a dilatational and a shear potential are required

to describe the wave motion.
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2. For the same waveguide, an expression was obtained for the

radial modal impedance, defined as the ratio of the radial shear stre.:s

averaged over the cross section divided by the radial velocity of the

' ~cylindrical surface.

3. At cut-off, the radial modal impedance, and consequently

3 the resultant r±dial drive-point impedance vanishes. Simultaneously, the

axial modal impedance diverges.I
it4. In non-uniform waveguides located in the region z > 0, whose

properties change either exponentially or as a power of z, the effect, on

I the decay of the fundamental mode with increasing z, of a change in cross

section has precisely twice the magnitude of a change in density or in the

Young's modulus (see Table 1).

5. The phase velocity of tie fundamental mode equals the local

j "bar" velocity.

6. Exceptionally, viz. for a constant phase velocity, the

I fundamental mode of non-uniform waveguides with exponentially varying

"parameters displays a cut-off frequency. This is a generalization of the

SI well known property of acoustic horns.

For the non-uniform waveguides conducting longitudinal waves, analytical

Ii solutions have been constructed in the long wavelength limit, for th3

following situations (see Table 1):

I a. The density, Young's modulus, and cross sectional area

vary exponentially with the axial coordinate z at different rates, no

Srestriction being placed on the rate of change with z excep: in so far as

radial displacement are not accounted for. This applies to subsequent

~ Iconfigurations as we] 1.

b. 1-he density, foung's modulus, and cross sectional area

each vary as a different arbitrary power of z.

* This conclusion is based on the asymptotic large-argument or far-field form
Sof the solutions ! n Eqs. 29 and 36. It was pointed out to the authors that

this asymptotic expression is tantamount to the WKB approximation which does
place some restriction on the rate of variation of the waveguide parameters.
Our conclusions regarding the respective effects of E, p, and S are not
restricted to the two analytically tractable classes of waveguides analyzed
here but can be generalized to other waveguides to which the WKB approximation

his applicable.•. -2-



SCAMiSRIDGE ACOUSTICAL ASSOCIATES, INC.

7. For flexural w-veguides for which the product of bar

velocity (E/p)1/2 times radius of gyration (I/S)1/2 varies parabolically or

linearly with z, e.g. a cone or a wedge, the long-wavelength solution for

the fundamental antisymmetric (i.e. flexural) mode was constructed, both for

the free waveguide and the waveguide spported on a distributed spring whose

stiffness varies like the cross sectional area. The spring-supported wave-

guide displays a cut-off frequency at the natural frequency corresponding to

rigid-body translational vibration.

B. Dispersion and Cut-off Characteristics of Three-dimensional

Elastic Waveguides

1. Torsional Waveguides

The theory of torsional wave motions in cylindrical wave-

guides, as well as that of compressional and flexural waveguides, is

presented in a number of classical texts. 2 ' 3 ' 4  It need therefore not be

paraphrased here. The torsional waveguide differs from the latter two in

that it requires only one potential to describe its dynami: behavior. In

contrast, compressional and flexural waveguides require both a dilatational

and a shear potential as will be illustrated in Section C.

The solution of the torsional waveguide is as straight-forward as

that of an acoustic waveguide, the single potential required to describe

its response being the solution of the wave equation or, for the harmonic

conditions assumed, of the Helmholtz equation. It is therefore a simple

matter to match an excitation, viz. an oscillatory torque, to the modal

series describing the prescribed shear stress distribution over the cros.-
5

section being excited. Onoe was thus able to construct the drivrig• point

impedance or, in his formulation, its reciprocal, the admittance, as a

I4 3 modal series, in the same simple form arrived at for the elementary

structural waveguides analyzed in Ref. 1. As in the latter study, Onoe's

"Ij drive-point admittance, defined as the angular velocity divided by the

oscillatory torque, becomes infinite at every cut-off frequency. As

explained in Ref. 1, the reason is that the admittance is a modal series

-
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I
whose terms have a denominator proportional to the axial wavenumber of

the various modes. By definition, this wavenumber vanishes at the cut-

off frequency of a given mode. This is apparent if one examines Onoe's

5 Eq. 29, and notes that I m is an axial wavenumber. The reason the resultant

impedance vanishe-s (i.e. the resultant admittance becomes infinite) is

i amply discussed in Ref. 1 and need not be repeated here.

2. Compressional and Flexural Waveguides

I For these waveguides dispersion curves have been plotted and

impedances have occasionally been computed numerically. This may be an

opportune place for correcting an error perpetuated in a familiar mono-1 6
graph, which erroneously states that the characteristic equation of

flexural waves in cylindrical waveguides admits only one root corresponding

to a single modal dispersion curve.

The reason the impedances (or admittances) of compressional and flexural

waveguideE have not been formulated rigorously as modal series is that the

normal modes of propagation do not yield o.fthogonality relations suitable

for expressing a prescribed end loading as a modal series. Furthermore,

tlhe Pochhammer-Chree frequency equation which governs the dispersion curves

of cylindrical waveguides and the Rayleigh-Lamb equation which governs the

dispersion curves of plates, admit roots in the form of complex wave numbers

I. extending down to vanishing frequencies. Other roots are as for torsional

or acoustic waveguides, imaginary below cut-off and real above. The

existence of complex roots was first pointed out by Adem for cylindrical

waveguides conducting compressional waves. We will see in subsection C.4

1 that the values of drive-point admittance he computed from a modal series

appear to be incorrect because the modes do not form a complete orthogonal

set. The existence of complex wavenumbers has been exhaustively stadied

by Onoe et al. for plates. His results are reproduced in Ref. 4, page 137.

1 This figure shows, in particular, the existence of a large number of higher-

-i_ order modes which, even though exponentially damped, display a complex

wavenumber, i.e. a finite phase velocity at vanishing frequency, incompatible

with the cut-off phenomenon. Several other authors, such as Mindlin and

-4-
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McNiven have obtained similar results both for cylinders and plates, but

there is no need here for an exhaustive bibliography. The interested

reader is referrel to Miklowitz's excellent even t.hough somewhat dated
review paper.8

Both these characteristics, i.e. the unsuitability of the normal

modes for constructing a series expression of the admittance, and the

absence of true cut-off frequencies for a number of modes, prevent theL I analytical formulation of the drive-point impedance (see subsection C.4).

This defeats a portion of the original purpose of this study. We can,

i however, formulate some interesting results concerning modal impedances

not formulated by earlier authors by limiting ourselves to modes displaying

cut-off frequencies, i.e. imaginary or real rather than complex wave

numbers. Even though the drive-point admittance is intractable as a nv.dal

series, its behavior at a modal cut-off frequency, being governed by a

single mode, is tractable.

C. Axial and Radial Nodal Impedances of Longitudinal Wave Modes in

I Solid Cylinders

1. Statement of the Characteristic Lquation, Stresses, and

Displacements

The purpose of this section is to derive some novel proper-

ties of the modal impedances of the higher modes of propagation of solid

structural waveguides conducting compressional waves. For the purpose

J •Iof this analysis, we have selected the axisyimetric wave motions of a

semi-infinite cylindrical waveguide. We shall start from the equations
3 9of motion as formulated by Redwood, page 137, and in Davies' monograph.

For longitudinal excitation the results will be expressed in the form of

two modal impedances. The axial modal impedance is defined as the ratio

of the axial stress averaged over the cross section divided by the similarily

averaged axial velocity. The radial impedance is the space-averaged

-' I axially synmetric, radially oriented shear stress divided by the radial

velocity of the cylindrical surface.
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The displacements are derived from a dilatational potential * and a

j shear potential *. For axisymmetric wave motions, both potentials axe

governed by the two-dimensional Helmholtz equation in z and r:

2 =0
c d

2 2
V2* + • = 0

c t

Here cd and ct are respectively the velocity of dilatational and transverse

waves in the elastic medium. If X and U are Lame' s constants and p the

• I density, the former velocity equals [(X + 2p)/p]I 2 and the latter (p/p)i/ 2 .

Selecting solutions of the form

1b = 0(r)exp(iyz-iwt)

i and similarly for *0 , one finds that 0o and *o are Bessel functions

A 0 0 0h~x~y-w)
2

c2 d

(2)

au 2
*(r) = C J (kr)exp(iyz-iwt), k = Y 2So 2•

t

Note that * and A have units of length squared, while ' and C have units of

length cubed. The corresponding radial and axial displacements are

+2Ur Dr araz

(3)

2

z az ar2 r ar

-6- 1
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1
The stresses are then obtained from the generalized form of Hooke's law,

•'• • •u u aUz r ur

+--+ + 2r -- (4a)
*rr r 3z ar

(au u au a (u
=A • +r + ) + Z2 ( 4b)

z 7r \-- r D-- 3z

a r1
T = z 2 7/ (4c)

• 3
The notation used for stresses is Redwood's. The boundary conditions are

Trr = T = 0 at r=a. One thus obtains a characteristic equation whose
roots yield the dispersion curves:

"2 (ka) 2 22 J (ha)
0 1 2 =0 (5)UX + -ka c hJ1 (ha)

i• •Jl(ka) 2ac2t

The boundary conditions can also be used to express the coefficient A in

Eq. 2 in terms of the coefficient C, or vice versa
-2h Jl (ha)

SC -2ihy 1

A k (y2 -k 2 ) J 1 (ka) (6)

This ratio has units of length as anticipated fr .• the statement after

Eqs. 2. At cut-off where y=0, this ratio, and hence the shear potential

vanishes.

2. The Axial Modal Impedance Zz

eCombining Eqs. 6 with 4b, we obtain the axial stress

2 2 J(h(ha)

2 iu iAy w~r + 2Yhk 1 J (kr)

PUt 2"iUz= A1(h + 2hk 2  Jl(ka) Jo (kr) ]

: --7--

_ 1
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This impedance governs the axial modal response to an axial excitation.

I It is defined here as

a
0 T zz (r) rdr

Sz a (8)

I fz (r)rdr
S~0

The integrals are readily evaluated by wting that

a
f Jo(hr)rdr = a Jl(ha) (9)

and similarly for J (kr). Consequently, the integral in the numerator

yields

a Apc 2a 2
ht T [( 22 + j J (ha) (10)0 zz h2-k2

0t
2

Multiplying through by ct, reducing the terms in brackets to the same

- denominator, and noting that, from Eq. 2,

22 wi "Ct= (lOa)
ct =2 2(1a' - k2+y2

i

Eq. 10 becomes

a Apw2aj (ha) 2 2 2

-ft rdr 212 y-k +2h) (11)
0 h(-k2)

The denominator of Eq. 8 similarly yields

u rdr + -- Jl(ha)0 rz h 2 2_ 1
0 (l (Y-k) )

Awya J (ha) 2_2 (12)

2 2 (y-k+2h)
h(y -k

-8-
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Substituting Eqs. 11 and 12 in Eq. 8, the impedance now takes the simple

S I form

z = p,/Y (13)

Referring to Eq. 2, we note that the axial wavenumber is related to the

j phase velocity as

Y - /cz

I The impedance thus reduces to

Zz = (14)

The axial modal impedance of the compressional waveguide is in the form of

S] the plane-wave impedance. This result is zemarkable by its simplicity if

one considers that two potentials characterized by two different charac-

teristic velocities c and c are required to formulate the modal impedance.

Even though Davies9 evaluates this impedance his expression is lengthy and

involved, being expressed in terms of auxiliary functions. He therefore

did not realize the potential compactness and the physical meaning of this

impedance. Since cut-off is characterized by y=O, c =-, Eqs. 13 and 14

indicate that the axial modal impedance becomes infinite at cut-off.

3. The Radial Modal Impedance

This impedance is defined here as the radially-oriented

shear stress averaged over the cross sectional area divided by the radial

velocity ur (a) on rhe cylinder surface.

a
S~ 2f T rdr
~zr

2. (15)
a ur (a)

The radial velocity is readily constructed from Eqs. 2 and 3,
Ur 222 =iJhA-ha)

k(r)2 jl (ka) 1 J(kr) -1(hr] (16)

-9-
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I
Setting r=a, this reduces to

r(a) i 2hA(+k2) • 1l(ha) 1 2-_k (17)I7-k2 c2(2-k2)

where use has been made of Eq. 10a. The shear stress is, from Eq. 4c,

= -i2pc2tyhA J (hr) -Jlka J (kr) (13)
z Jl 7(ha) 1

The integrals in Eq. 15 can be evaluated by means of the relation10

a
fJ(hrlrdr -! [Jl(ha) L1 (ha) - H1 (halJo(ha)]

Where H is the Struve function. Substituting this, and the equivalent

expression for the integral of Jl(kr), the numerator in Eq. 15 becomes

2a 2 F hJ (ka)H (ka)I
h o -120 Trrdr i2rpcýAay Jl(ha) [io(ha) H- (ka) ( J0(ha 1 k k0(ka)+S0 J1 (a

J- (ha) 1 (ha) (19)

The radial impedance finally becomes

21rpc y(Y 1-k2 J (ka)H1 (ka)
Z r ab 3  

H 0 (ha) + H 0 - Jl(ka)

"Jo(ha)gH (ha)
"+ Jl(ha• (20)

At cut-off, the modal radial impedance vanishes, since y=0. The cut-off

frequency is therefore seen once again to represent a resonance of the two-

dimensional z-independent standing wave system of the waveguide cross

section. It was shown in Ref. J. that the divergence of a single mode is

sufficient to cause the drive-point admittance to diverge.

-10-
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4. Discussion of the Drive-point Impedance

If the stresses and displacements given above were functions

of a single potential, the boundary condition prescribed over the driven

cross section, e.g. T' (r) could be simply computed by expanding it as a

series of Bessel functions, and using the orthogonality relation of Bessel

functions to compute the modal coetficients. more generally, this method

can be used when the boundary condition takes the form

J (ka) +AJ (ka) = 0 (21)n n

where A is a consta-nt and k a wavenumber. The fact that Tzz, Eq. 7 contains

two Bessel functions, one for each potential, eliminates this approach even

though each potential separately, being a solution of the Sturm-Liouville equa-
tion can be expanded in an orthogonal set of eigen functions. Because their

stresses are expressible with a single potential satisfying that equation,

torsional waveguides are the one 3-dimensional elastic waveguide whose impedance

is analytically tractable.5 The coupling of eigen modes in thick cylindrical

shells rigorously analyzed as a problem in three-dimensional elasticity is

noted by Armenakas et al. 12 We must be uneasy about the manner in which

"Adem7 formulates the forced response of a cylindrical waveguide in terms of

its eigen functions: "If we know only some of the roots (of the character-

istic equation), then for the other roots we can take B(Cq) = 0," where
B(E ) is the amplitude of the eigen mode of order q. Quite clearly the

q
fact that one can arbitrarily eliminate some eigen functions, shows that

they do not form a complete orthogonal set.

The orthogonality of the modes in infinite or semi-infinite places
13

(Lamb waves) was examined by Lyon. He was apparently the first worker

to point out that these modes do not form an orthogonal set with respect

to the plate thickness. This problem has been receiving some attention in

the Russian literature. 1 4' 1 5 Even though the latter two papers construct

some orthogonality relations, they are not suitable for the series

expansion of applied loads, i.e. for the construction of the drive-point

impedance as a modal series.

S~-11-



I CAMBRIDGIC ACOUSTICAL ASSOCIATES, INC.

i
D. The Fundamental Mode of Non-uniform Waveguides Conducting

m Longitudinal and Transverse Waves

1. General Discussion

The motions in axisymmetric wavequides of exponentially

varying cross section, i.e. in solid horns, have been studied by means of

an approximate theory valid when the transverse dimension is small in
16terms of wavelengths, thus automatically eliminating three-dimensional

I cut-off phenomena.

Keller and one of his students constructed an asymptotic WKB-type

solution for higher modes including flexural, torsional, and longitudinal

wave motions, restricted to solid waveguides with a slowly varying cross

section.17 This restriction results in a solution which predicts local

z-dependent cut-off frequencies equal to those of the uniform cylinder

Swhose local cross section equals that of the non-uniform waveguide cross

section at z. In view of the difficulties mentioned in the preceeding

section, it is not surprising that the authors made no attempt to evaluate

drive-point impedances.

We can however, draw certain conclusions from Ref. 17. We have seen

that the axial modal impedance becomes infinite at cut-off. Consequently,

if we consider acoustic energy propagating in the direction of decreasing

i cross sections, all modes but the plane-wave mode will gradually be

reflected back, thus giving rise to standing waves. A similar conclusion
I is reached for acoustic waveguides of slowly varying cross section.18

We shall examine some specific non-uniform waveguides which admit an

analytical solution but which have not yet been treated in the literature.

We shall obtain dispersion relations for the fundamental modes of longi-

tudinal and flexural waveguides, but shall not construct the Green's

influence functions.

-12-
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2. Longitudinal Waves in Waveguides with Density, Young's modulus,

and Cross-section Varying Exponentially at Arbitrary Rates

V2 These quantities vary as

az
PPoe

E=E 0 e (22)0

6zS=S e

SIThe constants a, e, and 6 are not restricted in magnitude. For the long-

wavelength situation exclusively considered throughout this Section D, radial

Smotion associated with the fundamental mode can be neglected. The steady-

state equation of motion of a non-uniform waveguide is therefore an ordinary

S1D.E. formulated in terms of the axial displacement, which need no longer be

identified by the subscript z:

d du 2
(ES ) + w pSu= 0 (23)

Differentiating, and dividing through by E S, one obtains the equation

2 2du ( z + 1 dl + u= (24)

IF 2 E dz Sdz dz E

T For the parameters described in Eq. 22

2
d u du 22 + (-16) k 0 exp[(a-e)z] u= 0 (25)

ST d o

where we have used the bar velocity and wavenumber

1/2c (E /P )I/2 c(z) = c exp[(e-a)z/2] (26)

0 0 0c - y(Z) = k exp[(a-1)z/2]

i -13-
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We now make the transformation of variables

u = a exp(- z)

du du- •.) exp e-162(27)

I I
d6 U-u u] e2 z)

i Substituting in Eq. 25, one obtains the equation governing u:

1~~ 2- 24.)1
2 k k2 exp(ao-e) z 1-4 0

I We now perform a transformation in the independent variable

Z = 2-

The equation now becomes

d2 u 4k 2  2d2 + 0 2z (e-6U)L22 e 2 19z ae (a- e)

"This in the form of Bessel's equation. The transformed variable u is

T obtained in the form of a cylinder function C of order (C-56)/(a-c) and

argument 2k el/(a-c). Transforming back to the original variables, we
0

I finally have

- u(z) = U exp _16 )/(a) [2k exp k-- z (29)

The particular cylinder function selected must be well behaved in the region

of z relevant to the situation being investigated. We shall construct

general solutions but shall not illustrate the matching of linear combinations

of cylinder functions to particular excitations. We shall merely concern

ourselves with the dispersion characteristics of the phase velocity. For this

"purpose, we consider waves propagating in the positive z-direction. Assuming,

-14-
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I
e + 6 > 0, a - > > 0, a suitable zolution, i.e. one which converges as

z-*-, is the Hankel function of the first kind.. For large argument

~1/2 rZ
Swhere (eS)/(a-e:) k--

0

(30)

where v is the order of the Hankel function. When this is substituted in

Eq. 29, the solution becomes

1 u(z't) = u -" 1/2 exp ( +C+5 a+25 e' (31)
u~~)= (• eU 4 "•.

where
2k

2- exp z - it - • (2v+l) (32)

The variation of the amplitude of the solution with increasing z is embodied

•]. in the real exponential term. The change in cross sectional has twice the

effect of either the density or the Young's modulus for comparable exponential

SI coefficients. Signal attenuation by the increase in cross section is in the

nature of a spreading loss. The attenuation associated with the increase

T in Young's modulus and density embodies gradual backscattering as the signal

penetrates into a region of ever increasing characteristic impedance. For

negative powers of the exponentials in Eq. 22, the signal increases, as

anticipated. The solution displays z-dependence on the coefficient deter-

mining the cross sectional area variation that is precisely twice that of

either modulus of density coefficients. The phase velocity is obtained from

the phase angle

c = - az (33)a~t 9)€

where

"" = = ko exp z (33)

- 0-15--
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We can solve for a dispersive phase velocity which equals the local bar

3 velocity, Eq. 26.

When a-*, i.e. when the bar velocity is z-independent, the order of

I the Hankel function diverges, as does its argument. Returning to the

original differential , Eq. 25, we note that the coefficient of

Sthe linear term becomes z-independent. The solution is an exponential,

say exp(Nz), where N is a solution of the characteristic equation

2 2N + (6)N + k2 = 0

I This is a quadratic equation with two roots. The axial displacement now

becomes

u(z) = U exp + -9 -t6 )[ 2 -k 21 z a=c (34)2 Pe 4 o0 • (

This is an exponentially damped solution which admits damped propagating

waves in the frequency range where the square root is imaginary, i.e. above

the cut-off frequency.

f0 0 a = e (35)T CO 4r '

If a = c = C. this cut-off frequency reduces, as anticipated, to the

familiar result obtained for the exponential horn.

3. Longitudinal Waveguide Whose Density, Young's Modulus, and

Cross Sectional Area Vary as Arbitrary Powers of z

The density, Young's modulus, and cross sectional area,
vary as

nP Az

E = BZm

S =Cz r

c =(B/A) 1/2 z(m-n)/2
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E
* Eq. 24 becomes

2 2
d u + m+r du W A zn-m u =0 (35)iz2 z dz B
ds2

This is a form of Bessel's equation. 2 0  Its solution is proportional to a

cylinder function of fractional order:

Su(z) = Uz(l-m-r)/2 ~[ 2jA 1 / 2 z (n-m+2)/2
C(l-m-r)/(n-m+2) 1/(nm 2)l----- (6

1' ~~(n-m+2) B11

As in the discussion of Eq. 29, a Hankel function of the first kind is

selected to represent waves propagating in the positive z-direction. The

resulting phase angle, when substituted in Eq. 33, leads to the usual

I conclusion that the phase velocity equals the local bar velocity, Eq. 34.
-(n-m+2)/4

In this same region, the cylinder function converges as z The
-(n+m1-2r) /4

amplitude of the plane wave therefore converges as z-. We note
that as for exponentially varying waveguide parameters, Eq. 31 an increase

Sin density and in Young's modulus bring about a comparable acceleration in

convergence of the solution with increasing z, and that a change in cross

1 section has an effect of precisely twice this magnitude. Negative powers

• of z in Eq. 34 produce, as anticipated, an enhancement of the signal. The

k •solution in Eq. 36 -s expressible in terms of familiar cylinder functions

I for specified z-dependences of the waveguide parameters. The results are

listed on Table 1. Ahe cases which admit a solution in form of Airy

functions are related to similar solutions for acoustic waveguides with18
variable cross sections and for acoustic waveguides with sound velocity

1 gradients and absorptive boundaries.2l Both these analyses of acoustic

waveguides were carried through in sufficient depth to include higher modes

and cut-off frequencies. The greater complexity of the solid elastic wave-

guide requires a laborious analysis probably not justified by the limited

practical interest of this waveguide configuration. When m=n-0, the solution

reduces to the familiar solution for acoustical horns. The most widely used

is the conical horn (r=2), which does not display a cut-off frequency in

contrast to the exponential horn mentioned in the preceding section.

-17-
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When (m-. )=2, Eq. 36 becomes indeterminate. The differential equation

of motion becomes
SI d2u 2 - -=

d m+r du w2A
dz2 z dz Bz2

MSThe solution is in the form of U/z . Substituting in Eq. 37, one constructs

the characteristic equation

M-M(m+r-l) + w 2 (A/B) = 0 , m-n=2

Solving this quadratic equation, one obtains a solution in the form

x (m+r-1) T (m+r-l) u2 l 1/2
u (z) = e2 --l2 z) , m-n = 2 (38)

This deformation is in the form of a non-propagating near-field at small

frequencies where the exponent is real. The response is a damped propagating

wave when the power is complex, i.e., in the frequency range
f 21 (B) 1/2 m+r-i

To conclude this section, we turn our attention to the fundamental

mode of non-uniform flexural waveguides.

4. Non-uniform Flexural Waveguides

In the low-frequency limit, the Bernoulli-Euler equation

which governs the steady-state flexural vibrations of non-uniform beams is
dw d2(9

EI 4w + - (EI) d!w pS 2w = 0 (39)
dz-' dz -dz 2

This takes the ivire explicit form

wfl.1d, _LE2 d w pw 0 (40)Sz4 dz2 E dz2 EI dz dz) 2 EI

"For a uniform beam, the coefficient of the second derivative vanishes, and

that of the linear term is constant. The solution takes on the familiar

form

-18-
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I
w(z) = W eiYz (41)

I where y is the flexural wavenumber

Y (ko/rg9) 1/2

where

!c O

r = (I/S) 
1 /2

g

Eq. 40 reduces to Bessel's equation if the d2w/dz -term vanishes and if-2
the coefficient of the linear term is proportional to z . Both these

conditions are satisfied if the product pS varies as z , E and I being

constant. This is of course an unrealistic assumption. We can however

I construct a meaningful mathematical model by taking E, p, and hence c

constant, and

r Bz , = (k /Bz) 1 / 2  (42)
Sg o

This condition is satisfied by a wedge, for which

2S = I = AB2z3 (43a)

and a cone or pyramid, for which

2 2 4S = Az2, I = AB z (43b)

Furthermore, to make the D.E. tractable, the coefficient of the second
derivative in Eq. 40 must be negligible. The solution thus obtained will

be shown to be in the form of a cylinder function. In the large argument

limit, this solution yields the second derivative
• 2
- dw _ 2

dz2  -47 w yz >>l
222

The second derivatives can be ignored if y z << 24 for the wedge, or << 48

for the cone, conditions obviously not satisfied in the region adjoining the

waveguide apex, where z is small in terms of wavelengths.

-19-
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The approximate differential equation is now formally similar to

the flexural equation of motion of uniform beams, even though the coefficient-2
of the linear term varies as z :

d 4 4 2 k
-d W = = _a (44)

4 Bz
dz

This equation admits a solution in the form of a cylinder function2 2

w - WzC2 (2iqyz) - WzC2 [2iq(k0 Z/B) 1 / 2 ], q = 0, 1, 2 or 3 (45)

j It is interesting to note that Kirchhoff solved the problem of the finite

wedge in terms of cylinder functions as early as 1879.

I Eq. 45 embodies propagating waves in the form of Hankel functions of

order 2. For large argument, the function is proportional to exp(io) where

I = 2(koz/B) 1 / 2-Wt

j The corresponding phase velocity computed from Eq. 33 is

c = (wBz) 1/2 = (wc r g) 1/2

As usual, the phase velocity at z is the phase velocity which would be

J observed in a uniform waveguide whose material properties and cross section

coincide with those of cross section z.

To conclude this section we consider a non-uniform flexural waveguide
whose fundamental mode displays cut-off behavior. For a waveguide mounted

on a distributed spring, the equation of motion becomes

d4
d1 2"(EI + K -w PS) w= 0dz 41: [7~01(

[d4 2 K

-- w=0 (46)

-20-
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where K is the spring stiffness per unit length. The waveguide's z-dependence

is still governed by Eqs. 43. The spring stiffness is selected to vary

linearly with z for a wedge, Eq. 43a,

K = Dz

and parabolically for a cone or pyramid, Eq. 43b,

K = Dz2

I For either configuration the ratio K/pS is z-independent. It is in fact the

natural frequency wn of the undeformed beam undergoing translational, i.e.

z-independent vibrations. Using Eq. 44 we have

d 4 ( 1 W n) 0  2 0 (47)
[ 2

The solution of this equation in of the form of Eqs. 43 and 44, but the
flexural wave number is multiplied by (1 - w .

n

The construction of the dispersion curves proceeds as in the preceding

subsection:

1/4

c =(Wc Bz) 1 ' ( -4 (48)0\ 2

With increasing frequency, this phase velocity tends to Eq. 45. It diverges

as w"n, and is complex in the frequency range w<w . The wave therefore

attenuates exponentially as it propagates. The frequency w = Wn is

, associated with a zero drive-point impedance, a transverse force exciting

the rigid-body resonance. Like the phase velocity, the characteristic

impedance of flexural waves is infinite at this frequency.

This cut-off phenomenon is observed in uniform spring-mounted flexural

waveguides. The condition for its occurrence in a waveguide with variable

mass per unit length is that the spring stiffness and the mass of the beam

display the same z-dependence, thus permitting rigid-body translational

vibrations uncoupled from any rotational motion.

-21-
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Table 1 - Effect of Various Parameters on the Propagation of the

' I Fundamental Mode in Non-uniform "Longitudinal" Waveguides

(All Coefficients are Positive; the Waveguide Extends over the Region z>O)

Sz-Dependent Large-z
Waveguide Form of Solution Phase Velocity Convergence ofI Parameters Wave Amplitude

p p 0pe Cylinder functions 1 (-)z/2 exp1 ( a+4 z
0 Eqs. 29, 31 ne

E E ee z
0

S =S 0e

Ditto with Exponential function, (S 0/p ) 1/2; cut-off (eq
CL = C Eq. 34 0exp-

frequency, Eq. 35

p= Azn Cylinder functions 1R 1/2 (m-n)/2 -(n+m+2r)/4

E =Bz Eq. 36 A

S - CZr

Ditto with Polynominal in z, Non-propagating Negative power of
.n = m - 2 Eq. 38 z, either real or

complex

4 p = Az Airy functions 1/2

0~)
p Az Cylinder functions /2 1n/2

Sfor n even; spherical Az

E = Bzn spherical Bessel
functions for n an

S - odd integern _n
p = Azn Spherical Bessel ( z

functions for n
E = Bzn integer

S = Cz n

-22-
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