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VALUE THEORY WITHOUT EFFICIENCY*

by

Pradeep Dubey,1 Abraham Neyman2 and Robert James Weber1

0. Introduction

Recently attention has been focused on generalizations and analogues
of the Shapley value that do not enjoy the efficiency, or Pareto optimality,
property ([7]), [9]). This has stemmed from the search for value functions
that describe the prospects of playing different roles in a game (instead
of describing fair division, in which case efficiency is a natural require-
ment). The purpose of this paper is to treat the subject from an axioma-
tic viewpoint, i.e., to characterize the class of operators that is obtained
by omitting the efficiencyiaxioﬁ from the axioms defining the Shapley §alue.
We consider both finite-player and nonatomic games. In the finite case,
a complete solution is given; in the nonatomic case, a complete solution

is given for the important space pNA .

1. The Finite Case

Let U be an infinite set, the universe of players. A game on
U is a set function v : 2U > R with v(f) = 0 . We interpret the mem-

bers of U as players and the members of 2u as coalitions. A set NCU

*The results presented here are the intersection of work done independently
by A. Neyman on the one hand, and P. Dubey and R. J. Weber on the other.
This research was supported in part by grants from the National Science
Foundation and the Office of Naval Research.

1Cowles Foundation for Research in Economics, Yale University.

2Department of Mathematics, University of California at Berkeley.
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is a support of v if, for each SCU, v(S) =v(SMAN) . A finite

game is a game which has a finite support. We denote by G the vector

space of all finite games, and by GN the subspace of G consisting of
i games with support N . Let AG (respectively, AGN ) be the subspace
- ! of G (respectively, & ) of additive games. (Note that for N finite,

AGY is isomorphic to RY , the Euclidean space of dimension |N| whose

i’ j axes are indexed by the elements of N . For convenience we shall often

use RN

for AGN =)
2 Given a permutation 6 of U (i.e., a 1-1 mapping from U onto

itself) define the game 6*v by (6*v)(S) = v(8S) . Finally define v

.-

to be monotonic if v(S) > v(T) whenever S OT .
A semivalue on G 1is a function Y : G » AG such that:
E | (1) ¥ is linear,
(2) Nok & B8y for each permutation 6 of U,

; (3) if v 1is monotonic, then VYv is monotonic,

i e

(4) if v € AG, then VYv =v .
These are the linearity, symmetry, monotonicity and projection axioms

([1], pp. 15-16). The projection axiom is an easy consequence of the more

ﬁ'}' familiar dummy axiom, which says that if 1 1is a dummy player in v

| (i.e., v(S u i) = v(S) + v(i) whenever i ¢ S ) then (¥v)(i) = v(i) .
(We conventionally omit the braces when indicating one-element sets.)

The quantity (¥v)(i) , for i € U, is a measure (according to VY )

of the prospect of having role i in the game v .

Let & be a probability measure on [0,1] . For any i € U and

any v € G with finite support N , define ng e AG by

(1.1) (4@ = ] pglv(sU 1) - v(s)) ,
seN\i

R
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where
n 1 s‘ n-s-1
R =) t7(1-t) aEle) .
0

(The symbols n and s generically denote the cardinalities of the sets
N and S .) Note that the right-hand side of (1.1) is independent of
the choice of N, so the definition makes sense.

We now come to our characterization of semivalues on G .

Theorem la. For each probability measure £ on [0,1] , WE is a semi-

value. Moreover, every semivalue on G 1is of this form, and the mapping

E > WE is 1-1.

To prove this theorem we first characterize the semivalues on the
vector space of games on a fixed finite-player set. This characterization
has appeared elsewhere (see, for example, [9]). For the sake of complete-
ness, we present an alternative derivation here. Then we proceed with

two different proofs which shed light on Theorem la from different view-

points., Let NCU be a finite set. A semivalue on GN is a function
™ s 6N o ac® satisfying (1), (ZN), (3), (4), where (ZN) requires that
N N

v'6* = g%y for every N-preserving permutation 6 of U .

n-1|n-1
Let pn = (pg, ey p:_l) be a vector such that Z p: =]
s=0( s
and p" > 0 . Define WNn $ GN + AG by
ASCESSION
N n F;;;yﬂ White Secites
(1.2) v = sqzq\ip,{ws Uy - vl | g,
X BNANREUNCED a

for all 1 e N and v ¢ cN . :
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Lemma. For each vector pn - WNn is a semivalue on GN . Moreover,
P

every semivalue on GN is of this form, and the mapping pn > VNn is

1-1.

Proof. It is straightforward to verify that each VNn is indeed a semi-
P

value. Without loss of generality take N = {1, ..., n} , and let WN

be a semivalue on GN . Consider the vector space F of symmetric linear

N N

functions from C and AG . For any nonempty S C N , define the game

vg € G by v(T) =1 1f SCT, vg(T) =0 otherwise. It is well-

known (see, for example, Appendix A of [1]) that {vs : P #SCN} is

a basis for GN ; therefore, every element f ¢ F is uniquely determined
by its values on the games in this basis. From the symmetry axiom (2),

it is in fact sufficient to specify £(v) for every v ¢ {VS(k) : 1 <k <n)

where S(k) = {1, ..., k} . Hence the dimension of F is at most n .

N

For each 0 < k < n-1 let VY = Wp , as defined by (1.2) when

(k)

-1
P, - [nkl) and Py = 0 for all 2 # k . It is clear that each

Yoo € F and {W(O)’ e w(n-l)} is linearly independent in F . Thus

this set is a basis for F .

Consider WN ¢ F . It can be uniquely written as

N
¥ co¥w) * **° * Ca-1¥m-1) ° Therefore we must only show that

n-1
Z e %1 and ¢ (Eay vuep € ) >0 ; the desired result will then
.- s 0 n-1° —

-1
follow upon taking p: = [n;l) Cg s yielding WN -WNn . Suppose some
P
¢, < 0. Consider we 6" defined by w(T) =1 4if |T| >k, w(T) =0

otherwise. Then for any 1 ¢ N, (WNw)(i) = ck(v(k)w)(i) =e ¢ 0;

this contradicts the monotonicity axiom (3). Next consider v{I} € GN .
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1
e » v{l}(l) =1 .11

n-
By the projection axiom (4), we must have (WNv{l})(l) = Z
s=0

Proof of Theorem la. It is straightforward to verify that each Wg is
Y

a semivalue. Consider any semivalue V¥ . For each finite NC U ,

|
;5 | induces a semivalue WN on GN . From the preceding lemma we know that

each WN has the form

(WNV)(i) = U pﬁ[v(s U i) - v(s)] {
sen\i {

E: | n-1l, _
S where all P§.l 0 and z [nsl]pg = 1 . Furthermore, it is a simple con- i
f . s=0 :

E | sequence of the symmetry axiom that there is a collection of constants

{pn :5=0, sy n=l; n=1, 2, ... } such that for all i e NCU and

s
N n
SCNi, Pg = Pg

Consider the collection of games {Gg} » Where Gg in GV is

defined for any SCNCU by ¥g(T) =1 if TS, and O othervise.

R | For any { ¢ N\ﬁ N

i D (1) = py = oD . ;.

the game N can be viewed as a game

For any given player d ¢ U\N y S | |

in ™. 1t 1s easily shown that for any 1 ¢ N\S ,

ud AN Nud Nud n+l n+l
a Wi s g ¥ =R, Y

| Since YN and VNUd are restrictions of the same operator Y , it fol-

lows that for any 1 e N\S ,

ntl | n+l | Nud oN

E | N -N n_
| (1.3) ¥ (vs)(i) "Nty Thea 4 (Vs)(i) .
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For notational ease, set o p2+1 (foxr '‘n = 0,1, 2, sas ¥
Obviously, p: determines {an}:_o . Moreover, using (1.3) it can be

shown by induction that for any 0 < s < n,

n+l n-s n-s n-s n-s
e 0l = (o [T o 0,

n-s, n-s
A a

= -1 -

where A 1is the standard "backwards difference" operator. Consequently,
we see that every sequence {un} of real numbers uniquely defines a col-

lection {p:} . It can be shown by direct summation that, for each n ,

n-1
the numbers [[n;l)pz] add to ag - Therefore, the collection {pg}
s=0

will define a semivalue if and only if «y =1 and all pz =0 .

It is well-known (for example, Theorem 4.6 of [3]) that a sequence
{an} (with ay =1 ) and the successive differences (-l)k'Akan of all
orders are nonnegative if and only if @y g, ... are the moments of a

uniquely-determined probability distribution £ on [0,1] . 1In this case,

1
since each o f tndz(t) , it follows that each
0

1
,:*1 - {:‘ - [";']:‘*1 + oo+ (1) 5" |dE(D)
0

1
- joz'u-:)“"sdg(:) &
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Alternative Proof of Theorem la.

It suffices to establish that Y is of the form Wg for a unique

probability measure £ on [0,1] . Let i e U be fixed. For each finite

_f;f subset N of U\i, V¥ induces a semivalue on GNUi , and hence, by
] §
{ ] Lemma 1, induces a probability measure cy on the subsets of N such
i 73 that cN(S) = p2+1 . If NCN, then by considering the natural embedding
| N N

of G into G , we have cN(S) = ZCK(T) , where the summation runs

E | over all T for which SCTCN and TNAN=S . Let {Nk} be an increas-

sing sequence of finite subsets of U\i . The measures on the subsets of

the various N, are '"consistent," and therefore by Kolmogorov's consistency

k
theorem ([5], p. 94), there is a sequence of (0,1)-valued random variables
{Y, : je UN } such that c, (S) = Prob({j : Y, =1} =8) . Thus {Y,}

3 k N 3 3
is an exchangeable sequence of random variables. De Finetti's theorem
([4], sec. 9.6.1) asserts that the distribution of every exchangeable in-
finite sequence of random variables is a unique mixture of distributions

of sequences of independent identically-distributed random variables.

As Prob(Yj =0 or 1) =1, there exists a unique probability measure
i ® on [0,1] such that for every finite sequence {eJ : e N of O0's
' 1 Zej n-ZeJ
and 1's , Prob(Yj = Ej for all jeN) = [t “(1-t) de(t)
0
= cN({J : ej w 15 .

It is obvious from the axiom of symmetry that the mixing measure
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depends neither on the particular player i , nor on the sequence Nk g

and thus £ is uniquely determined by Y alone. [:]

This alternative proof provides another view of the theorem. Let
(2,B,P) be a probability space, and {Xi : i e U} a family of independent
identicallv-distributed random variable distributed uniformly on [O,1] .
If veG and t e [0,1], define the random variable Av(t) by
Av(t) = v({i : xi~i t}) - v({i : Xi < t}) . We then have the following

restatement of Theorem la:

Theorem la'. For each probability measure £ on [0,1] there is a semi-

value Wi on G defined by
1
(v (1) = jn(zw(:)|xi = t).de(t) .
0 .

Moreover, every semivalue on G is of this form and the mapping £ - WE

is 1-1 .

The Shapley value [8] is defined as ¢ = W) , where ) denotes

the Lebesque measure on [0,1] . This is the only semivalue which has
the efficiency property: for every N CU and v ¢ N s ®V(N) = v(N) .

Define the bounded-variation norm of a game v € G with support N ,

as ||v|| = inf(V+(N) + v_(N)) , where the infimum is taken over all pairs

Wy Vo of monotonic games for which v = W =¥ With respect to this

norm on G , the Shapley value is a continuous linear operator of norm

N such that v=v, = v ,

1. (For any monotonic Ve V_ € G + 5

svll = JTlov(d)| < Z(¢V+(i) + ¢v_(1)) = v (N) + v_(N) ; hence
llev]| < |lv]l - But for any momotonic v e G , ||ov]|| = v(N) = ||v|| .)

We shall characterize the class of continuous semivalues on G .

st e




Proof. Consider any g €¢ W and define ¢ = fgd). . By Theorem la',

Let W be the subset of L_(0,1) of all nonnegative functions g with

1

[ g(t)dt =1 .
0

Theorem 1lb. For each g e W, the operator \‘x‘g : G > AG defined by

1

8 wid) = / E(Av(t)|X; = t)-g(t)dt

0

is a continuous semivalue. Moreover, every continuous semivalue on G
is of this form. The map g -+ \Vg is a linear isometry (that is,

gl = llelly > -

\Pg =Y {s a semivalue. For any v € GN , and monotonic games v_, v_ with

+9
vev -v o, eyl = Ly < Ty | +1lvv ] <
”8”'(2|¢V+(1)|+2|¢V_(i)|) = HgH-(v+(N) +v_(N)) ; therefore,
H\l‘gv” < |lgll*]lv]] . Hence T is continuous, and H\l’gll < |lsll -

Next, consider any continuous semivalue ¥, . Select any (rela-

Z
tively) open interval JC [0,1] , and assume that £(J) = M-A(J) . Fix

a player i ¢ U, and for each k > 0 , select NkC U such that 1 € Nk

N.

and [N | =k. Let ve GY bedefined by v, (S) = MI0, £1n 1)

k
By the law of large numbers, 1lim inf ‘l’gvk(i) _>_;1{-£(J) = %' »(J) . There-

fore ||v vkll = Zl\l'gvk(i)l > MeA(J) , while each |[lv |l =2(J) . Hence.

»
-
>

H\PEH > M. The continuity of ¥, implies that “"’g“ is finite. Con-

E
sequently, M = sup{£(J)/A(J) : J 4is an interval in [0,1)} <= , and

the Radon-Nikodym derivative dg/dA =g is in W . Therefore ‘{’g . A

and ”‘Pg" 3§' ”8“ . D

g
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2. The Infinite Case

All definitions and notation are according to [1]. Let (I,()
be a measure space isomorphic to ([0,1], B) , where B 1is the c-field
of Borel subsets of [0,1] . The members of I are called players, the
members of C coalitions, and set functions are called games. Let BV
be the space of bounded-variation set functions on (I,() . The space of
all bounded, finitely-additive set functions is denoted FA , and its sub-
space of all nonatomic measures is denoted NA . Denote by G the group
of automorphisms of (I,() . For each 6 ¢ G, 6% : BV » BV is defined
by 6*v(S) = v(8S) . If QE BV then Q+ denotes the subset of Q of
all monotonic set functions. A subset Q of BV is symmetric if for
each 6 ¢ G, 6*QC Q. An operator Y : Q » BV is called positive if
¥(Q") € BV" , and symmetric if for each 6 ¢ G, 6%y = ¥o* .

Let Q be a linear symmetric subspace of BV . A semivalue on
Q is an operator ¥ from Q into FA such that:

(1) Y 1is linear,

(2) ¥ 1is symmetric,

(3) ¥ is positive,

(4) if v e QMNFA then Yv =v .

We will characterize the semivalues on pNA , the closed sub-
space of BV spanned by all powers of NA+ measures. This space plays
an important role in the theory of nonatomic games, and contains
many games of interest. For example, pNA contains all ''vector measure
games' satisfying appropriate differentiability conditions, i.e., all set
functions of the form fou , where u = (pl, by un) is a nonatomic
finite-dimensional vector measure and f is an appropriately differentiable

real-valued function defined on the range of u , with £(0) = 0 . As
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our main theorem in this section uses notation and terminology related to
the "extension" of a game, we restate here relevant definitions and results
from [1]. 1 denotes the family of all measurable functions from (I,()

to ([0,1], B) . There is a partial order on I : f > g if f£f(s) > g(s)
for all s e€ I . A real valued function w on I with w(0) = 0 is

called an ideal set function; it is called monotonic if f > g implies

w(f) > w(g) . The characteristic function of a member S of C is de-
¥

noted xg - We will sometimes denote Xg by S and teXg by -t i ;
It is shown in [1; Theorem G] that there is a unique monotonicity- I

preserving linear mapping which associates with each v € pNA an ideal

set function v* , such that (vew)* = v*.w* for all v, w ¢ pNA , and

pA(f) = [ f+dp for all e NA and f eI .
1

Denote dv*(t,S) = (d/dr)-v*(tx1-+1~xs) By Theorem H of [1]

=0 °
we know that for each v ¢ pNA and each S € C , the derivative 3v*(t,S)
exists for almost all t in [0,1]) , and is integrable over [0,1] as

a function of ¢t .

Recall that W is the set of nonnegative functions g ¢ L _(0,1)

1
such that [ g(t)dt =1 .
0

Theorem 2. For each g € W the operator Wg : pNA » FA defined by

1
¥ v(S) = [ av*(t,S)-g(t)dt
& 0

I is a semivalue. Moreover, every semivalueon pNA is of this form. The
|
; map g - Vs of W onto the family of semivalues on pNA is a linear iso-

metry.
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Proof. let g € W be given. For v € pNA , Lemma 23.1 of [1] asserts

1l 1
that f Iav*(t,S) «dt j_livi§ . Hence Ing(S)l = |f 3V*(t,S)'8(t)dt| §.||8H"‘V” ’
0 0

this proves that ng is bounded. If S, TC€I with SNAT=@ then

vx(t, TUS) = 9v*(t,T) + 3v*(t,S) for almost all t . Therefore

wgv(SlJT) = ng(S) + Wg(T) , which proves that Wg takes pNA into FA .

Linearity of Wg follows from the linearity of the extension as well as
that of the derivative. Symmetry of Wg follows from the fact that

3(e*v)*(t,S) = av*(t,0S) and thus 6%y v(S) = Javx(t,085)-g(t)dt

S

= [3(e*v)*(t,S)-g(t)dt = Wg(e*v)(S) . Let ve pNA+ . Then v* 1is also
monotonic and 3v*(t,S) > 0 ; thus ?8v is monotonic, which proves the

positivity of Wg . Finally, any u e pNAN FA is in NA (Corollary 4

5.3 of [1], and the continuity of the elements of the space AC ([1],
page 205), imply that u is countably additive). Hence du*(t,S) = u(S)
and consequently Vgu = u . This completes the proof that Wg is a semi- r
value.
Now, let Y be a semivalue on pNA . Let u be a fixed probability i

measure in NA . Each f ¢ L1 induces a game Ve defined by

u(s)
ve(s) = [ f£(e)de .

: 0

i
s

' In other words, f defines a function F : [0,1] = R by F(s) = f f(t)de , 4
0 3

1 and Ve " Fou . As £ ¢ Ll , F 1is absolutely continuous and therefore ]

ﬁs Ve € pNA . In analogy with the proof of Proposition 6.1 of [1] it follows f

_i that ?vf = C(f)*u , where C(f) 1is a constant independent ¢f u . Ob- ;

serve that Vepo = Ve v8 3 thus the linearity of Y implies that C

+g

is linear. We now proceed to show that C is continuous. Observe that | § #
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“vfll = hfilLl . Since pNA 1is internal ([1], Proposition 7.19), it is

a closed reproducing space and thus ([1], Proposition 4.3) V¥ is contin-

uous on pNA . That is, there exists a constant K with ||¥v| < k-|lv] ,

vhich in particular implies that [C(£)| = |[C(£)-u|l < R-|jv|| = R-[if]l,
X

Hence C : L1 + R 1is a continuous linear functional and therefore is of

1
the form C(f) = f f(t) g(t)dt for some g ¢ L_ . We shall show that
0

y = \Ps . As was shown in the beginning of the proof, ‘i's(pNA) C FA and

i?gv(S)l < llg

[+|lv]l , which implies that ¥, 1is continuous. For each

f e L Bv;(t,s) = f(t)*u(S) for almost all t , and thus

ngf(S) = u(S)-ff(t)g(t)dt = C(f)u(s) = va(S) and therefore ngf = va .
The linear symmetric subspace spanned by {vf i f e Ll} is dense in pNA
(it contains all powers of NA measures). The operators Y and ‘Pg are
linear and symmetric and thus céincide on this subspace; as they are also

continuous, they coincide on pNA . It remains for us to show that

geW. For ve NCFANPNA, it follows that 3dv*(t,S) = v(S) .

1 1
Thus \ng(S) = (f g(t)dt)v(S) , which shows that fg(t)dt =] . Let
0 0

B . {t : g(t) < -e} and let f be the characteristic function of B_ .

Then £ > 0 and heuce v, is monotonic. But as ‘l'gvf(I) = [f(t)g(t)dt
< -s'A(BE) ( 2 denotes the Lebesgue measure on [0,1) ) and ‘l’g =V
is positive, it must be that A(Be) = (0 . As tuis holds for any ¢ > 0 ,
g 1is nonnegative. This completes the proof that any semivalue VY is
of the form \Pg for some g e W .

Now, forany geW and € >0 there exists a nonnegative f e I.1 with

||f||L =1 and [f(t)g(t)dt=||g||-¢c. Observethat ||vf||- ||f||L =1 and that
1 1

||\l'gvf|| = ||g]l =€ ; hence ||'l"|§ > |lgll . On the other hand, for v ¢ paat ,




|

H
]
| i

1
v vll = vpv(n) = Jove(e,1)-g(t)de < |lgll+[ avx(t,1)+ae = |[g][[lv]l .
0

In the general case, when v 1is not necessarily monotonic, let € > 0
be given. Set v = u-w , where u and w are in pNA+ and

llvil + € > |lull + ||wll ; such u and w exist because pNA is internal.

A

Then [[¥ vl < [[¥gull + llvwll < llglicllull + llwly < Ilgliclivil + ¢,

A

and if we let ¢ + 0, IleV“ < llgll*llvll ; this completes the proof

of the equality vl = llgll . [J

3. Remarks

Continuous semivalues are diagonal. (The proof in [6] that contin-
uous values are diagonal does not make use of the efficiency axiom and there-
fore the same proof works here.) Furthermore, semivalues on closed repro-
ducing spaces are diagonal.

The semivalues derived axiomatically on pNA can also be obtained
from a complementary, asymptotic point of view [2] which links the finite-

player and nonatomic approaches.
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