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U. ~~~~. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteration
A~~ A ~ A , a P p P p  R , r
L b 5 4 8, b C c C c ~~~~ s

B .  V , v T i  T m  T, t
r r  r s Y y  y y U , u

J7 D D, d ~ 4) 0 F , f
E e  f r i  Ye , y e ; E , c~ X x  X x  lth , kh

Lh , ~h U 11 - Ts , ts
3 3  3 ,  ~, z Ch , ch

H 1 , .1 W w Sh , sh
R ~ \‘

, y L4 u~ Shch , shch
K IC x K , k b ~

f l A  L , l Y , y
M ~ ~4 , m b ~
H H N , n 3 a  ~ E , e

U o 0 o 0, 0 hJ ~o Yu , yu
f l n  f i n  P , p  A R  H a  Ya , y a

*~~~ i n i t i a l l y, a f t e r  vowels , and a f t e r  ~~~, ~ ; e elsewhere .
When w r i t t e n  as L in Russian , transliterate as y~ or ë.

RUSSIAN AND ENG LISH TRIGONOMETRIC FUNCTIONS

Russian English Russian English Russian English

• sin sin sh slnh arc sh s1nh~~
cos cos ch cosh arc ch cosh 1tg tan th tanh arc th tanh 1ctg cot cth coth arc cth coth 1sec sec sch sech arc sch sech 1cosec csc csch csch arc csch csch

Russian English

• ro t cur l
ig log
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A t t ~ :;t ~t t ed ~~~ ~~~~~~~~~~~~ c~ ~~~~ ~ j~~ L C n ~ ro~ t .itch — ;c it~~o , ~l i c ~ i:.

C C CU~~j C ( 1  b y t h ~- yu~i n t i  t~it rcot ot  ~:c 1u t .io~ .s I. :i i l l  i~~ l~~ (~~‘ h.

goa l—d ir~~ct .~ 1 hu i ia  ~ i c !  lv i  t y.

In ~~~~ ~ O0K a u ~.: • .I~~ i n C t ~ L~~ 51C CC i~c 0 L ts  ~nn~1 t 1~~ rn~’t:i~~ io1o ucj J

prin (:i~ le~ o~ o r t ~ c):~ r~~~.irc h , th~ aat~ u~~t ici I Qet ~~J I s  01

Cp t i in i z t t i o n  ( i i i ~~’ a i , ~y n d t r i c  ~~~~~~~~~~~~~~~~~ t i~c 1 .~ ~~) r y  o~ ~~~~~~~ . i : )~~

• s t a t i s t i c~~1 ~~~1u ~~i on ~.) , ~i nd i l S o  t~ ,C ~ t oi. c r o~ Ifl~~~f j

S i l E U l a t l o n  )t  O~~~ L~~~t L o l i~~. C c i  ~ io~~L 3 D 1 ’ ?  i t t  , t I C n  1~ i •~~~V 0U t o  t l . ~

) 1l i~~~ t h r. ?Ory oL t h . ~ ~~~ k c v i .~ n j ’ r c cc s : Es  ( 0 i t  h

a~’~~I ica~ i o n/ d p~~~n dj c * :~ in t ~~
.- r a n ’ J~ of th~ j u~~u~~i:l y t h ~~ ) r j  , t h . - c~ y ~~i

• rel iabj lj t  y) dna t o  tho U j  t n e n )  i t  i~~ol dc~~cr i~ r .~c n j t  t~ ie

ih ic~ take place i n  co ii~ 1~~x , n i1~ i uiJ~ ~~~~ 
us ( r n e t ~~o3 o: ~~~

d y n a m i c s  of  d v Q r a g ~~) •~ r c  x~~m i n ~~ t I u ~ m~~t h u d s  o~ t h~ ~ t t t i ~~t i c~t1

si m u l a t i o n  of oj ~~r a ~~i on ~ ~y I - i ~ ;V 1 [d~~.ji tai. L o n ~j u t o L ] ~ nd t h ~ b , i o t ~~; ~~i

the m e t h o d  of s ta t  i~~t i c a ]  ~ ii~’i1dt icn. ~ he L o o k  coat u i n ~ ~~~~ n u n i b~ r ~~

t h e  ii~-~’a matt~ria150 wo~ k~-o  o u t  L ~ t h e  ~n u t h o t  i n  r o~~o i i t  ~~~ tL ’ s on  o t ho:

n o w n ~~ro • ‘ir l ier  pu~~l.~~;h c d .

Pre~;en t a t i o n  is c o n d u c t ~-~t at ~ c o r p a r o t i v ~~Iy elc i n o i i t a u y  1cv ~~l ,

com~ bteIy ava i1abl~’ to L.-ad~ t , f . i ~~i Ii at with tho u s u a l  aiqLer

- -~~~~~~~~~ -- -~~~~~~~~~~~ . -- - -~~~~~~~~~~~~~~ —- • . -- - • - _ _ _
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~ro~~a~’i l i ty  t~~k-~o L -y .  !:t ~ ~~
. t i C L t n  ) L . t f l C i ;  .iL~ All ;

~~~L 1 ’• t ~~ l i v  o ~ .iV

~i u a n r i 4 y c~~ . X b~ ) 1 k . .  L C IU ‘ i —  ~11 t r t L ~~ r 1t  ~~~~~~~ (_~~~ ~~i d (~t l~~0.

T:. t~ ..;~~ok i~ . in ’ no~ d tc t L i . w ; d . ’ . irc1~. c~ to.. i~~a i~~r~ —

c n~j i necu~~, .~cO nOai j~~;t ~ ;, c~ t h~ ~:ci~~,t if j(~ w ’~~K~~rs m l  o C u i I o wj c

w h~ ~~~~ i i i t •~~.’., t -  i i n  t ho  i~~~1:co t~~on ju s .~ of ~a t h ~ ’n it  ic.~; tu

t h e  ~~~~~~~~~~ ot  o~~t i m  urn  s c iu t  i cn . ; .

Fi:o . — 2mi t , T a l l e . ;  — ~~~ t~ U~~ c~ s — 2~~.
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T h i s  book is ~ t C c i  t h~- na~ l~~ C~ 1. Ct ~~~~~ Ofl ~~~~~ 1un~ ;

r~~st~d r c z , r .~ ~ i hy rh . t u t  i~~ t iv  ~ u u . n ~~~~ ~~ y~ i~~ . iri ~~~ i h i ~~h~~:

~ t ucd t i Ona 1 l f lS~ it  U~ 1. ) n , .1 : 1 1 a 1 io  c r1  t h~ ~~~~~ u L  n ~~x ~~~~ r i ni .~ n I

t h e sci .~n t i f i c  x~.” , i t c i  -.oj . is . ; l f l  .1i~ L o .L C f l t ~~~ 1 1 , .

I.
By aurhor ’~; t a ; k w i .  ~~~V -  ~~~~; U l U c h  is ~~~~~~~~ ji le ~~I. UI (’ •j n 3  t h ~-

c lea r  ~- u . ’5en t~~t i on ci  id. uS O f l -~ T l O t  h c  or  O~~C U at 10115 ~

wi t h o u t  u~;in . ;  l :uLk~ I t ~~h m . -It icJ i  ~~~~~~~~~ I i  ~~~ r.~lation of

rr c t t h o m o t i c a l  r.~~ .t r ~it ~on  c t  L. a) It? r is  i•~~~j u i i - ’ .~ c;; L y • j C  1 U m i I t d n c ~ W i ! ~ i

the usua ~. V T U 7 .  C~.)U I. 5’- 0 ) ) i - , L. ~~ U l i t  l . C f l ) U t I C I . , r d t i s o  ~ i~~-~

cf t l e  ce1 1,’~~1e m e nt o  0 ~~~~~~ I ,~t , 1 1) i 1i t ~ t h t U L ~~~. r i 1  t h ’  ~ u r ~~os~’ of

clarity }r~~~ nt at  ion is ~icccm ~ -in t e i l  b y  ~~m n ~ o x a ~~~1es. Th o  ~-ook  is

i n t~~n d € ~i t o  t h e  w i d ~ c i r ~: 1. Cl t r i o L .~~d d E L ’S — . u o i n  L~ , ~~~~~~~~~~~~~ •i iid

sCientir ic workers , who o i —  i r.  ~t .~~ ’.’ -I in ~~~ t c i ;~~~~i o~ ~ oo r oc~ or

so m t  icns in d iflo i .~~i t  L~ I .J t  C~ j t c i C t  1C~~.

Th~ author expr~ ; s& .IC k~~ ; ra t i t u d ~ tc  i .  Ya . ai : ior , I.. ~~~.

C v c h a r o v  a n d  A. D. V~ n~~’-~~~1’, coflih or it ior w i t h wti ich iid ~ -J i t  j~
the development of the materials , presented in the book .

The book contains the number of the new materials, worked out be

the author in recent years and than no’~~ere earlier published.

Moscow , 1970 Ye. Venttsel’.
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INTRODUCTION .

I n ~ t ’~~t ’1l t y ’ .x r  ~~~~ . 1 .  C. ’ ~‘ .I y I I l c  I ‘ .I~ ; i n ’j i t  t o l i  t 1011 t C

t~U est 1 CI ~ of or ‘~~.1 n i i on  a c ~ i: t j u l  ; t h j  
~, i S (‘ it i~o’d 1 y a w h o m  o

o l  r.~~~;o n . . h.t I 1.i .i . ’v ~ i cj  l~ ’r t  a i  a t h ~ cLr l ioo~ io:i or

t t ’C l U I O l t )  ly  ; a r t  1f lC I~~’ .i .~ or ~o i  l o s  ~i i ) ¼ I C C S t / V . l l U e : ;  01 t n o  C n i U C t C ~

meas u re s ; t r i o  wi~
j
~’~~~~e.t.l i n t i  o . l u ot  l C f l  ct , l U t C . ) i . I t i J l l  I 1 l t~~~. L I t ’ ~, t - h t  10

cf c ofl t IO ] .  — al 1 1_ . I ~. S • C Ii’.’ l I T  C c  () I t ht .  SC 1 ‘ ‘C t i t  iC .1 liii 1 y~.i

of t t , ~~ c o m I 1 L ’ x  .j. ~ m l — o ~~r t ’e t t  d roe.  • s .~~ at t~~i t -  v i s i o l a t :  ; i t ?  ) t  t h o ~~r

t ruct u~ o in .1 o: d it 1 t 1 0 1 .  • 01 501 l O t  t lt~ ~ U - ‘ - jU  i .1

[~~COD a € l t . t a t iO n ~~~ . 1111  I~ ~; t hC o ‘st ( C  t I ~ U n ’ C ol :  t U )  i C t  530

~ rcc~~s~;~

Thost~ I: .~et ’ss i t ~ . of ~‘ t a~ t i~~. • ca u :- ~d t t .. I i ~.: t h~ .~. ~~~~~~~ Li I

sc ic nt if io ;nc t ho  Is h io h  it  i ..oco t o  d t o  ~oi t h o  U un

“6~ &~r a t ion ~ re i aea rc l ; ” . t ; n d . L  t t;~~~; u~ ; j ;:~ ’lj t . t t h t ~ i p~~1 i c i t j o n ,” ti~~- ’ ~

iath t~m~ ti eal , qu .tntitat i v ’  i i .  t ()d ~ to~ t~io . ~ oo~ )~ .~o 1u t~ .o t ’ s i n  ~iU

fi c l t t h  or t n e  ~o a l — d i t o c t ~~d h U U . I U a ot  iv i ty .

Th o n e.’d t or ma ~ i t ;  ~ I c c  i~ - .1. ’ i: ; s o j:~: o lu ~~~ S u~U . i l I  i t y li t ’ L 5 & ’  it.

F r om t i .  x~~m c m o r i  al 0 e o r , t U i y  F ’O p l . ’ , b t ’ .J in l : l fl .l t h.’ i ‘ml i.~at io~ o:

t h ~ i t  tro t S ~ r~ , Ct) 1)5 I t ’ 1.~ .1 u ! o v . t ho i t  ~ - 1 Ii 1 c C 31; 50 1 Ut ’ I C 05 I I I  l~ . t  S C

¼1~~Cj s t C n: - , C h0 0~~L f l . l i n  s c m t ’  way or e t n i  j  t t ’ t l t j t ’ ; t O i f l t l  Oil t h o t U

_ _  
_ _  LA
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p a t c m i ~tt ’r s  — wet i t o I s  o t  O~~~~j d 1 . 1 ~ iri y t h€  a~~ur&.  ~:• t3 u t  tint ii a c.:’.a it

t i m e  of . ioIu ~~ior.  w e  c ou l o  LC a c o o j~t . ’i u i t h c u t  s t - ~ei a l  w a t n ~~m~~t ical  F

anal ysis , it is si m~~le C:. t k : ¼ 0 1 5 1 .  :1 ¼ ’X ~
)
~.L . ~ :!c. Pt m d  t:i~~ c o m m o n

sens ?. This metho ;l of in ~k i n o  . i oc i s  ic r .~ dj1~ , ‘)t losi. its v~ lu~-, ali~o,

in our  t i i e .

Lot us take t ho ox.i irp lc : ~an 1 ~t t i:y t . , t  f lcr : t i n.~ t~ h u u s~ in

orde r  to ~j o  to w o r k ,  o n  c o u i . .~-~ ~ c V € L t S  tc i .  i t  is noc~~ss a ry  to

t a k e  a w h o l e  ser ie s ot  t I c  rolurio:s : tc  t j r ~o w i t s  i t s e l f  uwbr rll a?

In w h i c h  p l tc e  t o  puss str - t t? whien i c t t n  ci. t r a n s t oLt  to use?  i r.d so

CR .

I t •jo ’-~s w i t h o u t . s i y i r . y  t n d t  all ~Lt~-~ e u~ cIsions of ~~~~~~~~ ar o  rn a .io

w i t h o u t spec ia l  c a l cu l a t i cu s , s in i~.l y r e ] ,y i n ~ on  t h i ~ available h~ ha s

e x p er i m € ’n t  and  on t h c  con ~m c r  ~~~~~~~ icr  t h €  i r c c f  of sUcri solution s,

no sc i€nce  is necessurv , yes scarc~ ly it will LE i o qu i r e d

subseqw�ntly.

H o w e v e r , let us tako anctner ~xam~ le. Let  i~s assum.~ that j~;

organized tne work Cf u z k  in transport. Avai lable is somo ~ju~ nt ity of

conveying deviccs. I~ is necessary tc take a seri.~ of t i-te s o l u t i on s ,

f o r  e x am p l e :  w h i c h  ‘j n a n t ~~~~y a n i  of  w n i c h  c c n v e y i n j  d e Vj ~~is to (tirec~

a l cn c j  cne  or the o t h e r  r cu t ~- ? A s  t c  cki a ny C tin e Ee:~otitjon frey uor:c y

‘~~ of m a c h i n e s  dep~ n I i n cj  Cu  t h e  t i n o  of Li d ys? w h o r e  to  ~lac~ ces s at i on s ?
and so on.
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T O .- ’ , .  so l  ‘z ~ ~~~ns ;~~~. .1110. 1 -“ ~ it ’d 1, t ::i;. • no sol 1.

• I I C V I O U S  . ‘ x .m r~~l’.

P i . .~t’ ~~.

l . C , t U S t  of t t iC ( ) J F  i x  V C ~ iC I t  1011 ~~L l3 I  ) I  
~~~,, ‘ ¼ ’O f l S t’ ~~5 t t i C t

P1
c h o t l i ’  ‘t t i  0 C o  + 51  /~ Ut ’ C I I ; I t: c v u ; 1.1 11 :o ~~~~ ~

• con :-, ~u . : i c~ ’. ; , ~ ~~~ ‘:‘‘C~~._ i~~y ~~- ‘ ‘ , i . i  c i i o o ~~. . t i c ’ . ;. ‘lt  .i .~~i f l , on

t ne~~-~ 50 111 t cus  ;~u ~~~.. n or e .. : .: ~~~. I l i  t;~~ 1 1 L C’ •~~,i  .‘1~ 10 h i n  C C L L  ‘C t

ia : ’  c t  s O l o t i c~ w i l l  ~~~~~~~~~~ t O ’  i t t . ’~~~~s~~~s ~~~ ,) i 1~ 0 50 1 i  :- :

— it  ca: ~.. i .  t 1 .~~~ t i  ~~:; h .  :‘tIi’ i:;. : .  l i i  o t  ‘~ n L

I * 
~~.

. • ¼ U  ~ 111 , in s  ~ n t 0 ... ~~~‘ ‘ U~~~ S C x i ;;~ 1 ’ h ’ s  1 ‘o 1 i It : C

~o l u t i c i ,  i t  is ~~is s i; 1o ‘C  ~ U I ; C ~ L o t :  1I~~ u i r i v . ’l ~~, i~~l~~i~~ ; o: :

~~~~~~~~~~~~ o:: .I t n -  Co L i C t :  S t T . . C .  , F U t 5 C 1 U t  1 0 : 5  w i l l  ro i~ ~~~~~~~~~~~ f l U , , 1

P o L o  r o i s o n a l l e , i t  ~ .io y ~ i 11  ;‘~~ ~sIj ~~ C~~~o l  ~; 
j U n n ’ t  t~

p a t h e m at i c a l  ( ‘ 3 1 c u 1 t t i c T 1 ~ . i I ~~ s. ) 1 ’ l i L l t n .1 t ; c . i l o i i i , i t  t.o:, ; ~~ l 1

av o i . I  t h o  p : o l o n j~~h s n . i  u x 1 ,  t I s I V O  1 C i  O~~ ~~~~~~ C ) i I ’ ~~C~~ s 1u’ l o t  “h~~
cr m i s s ” .

Mc ’ .;t i : o mp l ~~ci ‘ . •~ 1y  i - ~ a a t  t ’ r  w i t h  t h o  . I 0 C C~~~: , I ; ; C .’ o t  t I’ ’

EO 1 U t  i Cu  w i  Cfl ~~: ‘  ~ 0 . ii; .~ I out  ho n~’ a i i i  ~~~, .~ ~ ~ ‘. r i .n :I • 
~

L4
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i:~~ a rr o l : t s  t . i O U t  ~~ I ’ll O t t .  t ~~~~~ t ’ :- . ‘ •C ~~t , ~~~l l  t o  :. .t ~‘x ~~si , t i  I . ’

j IL) X : ~ r 1 - F ,  t ~ F .  ~ u .  ( os  • .i~ n ‘. .4:  i is; i ~ i i / S n n  : r

is 1:- ’C s. t r y  t o : . ’  i . .~ i ~ n l i r ; t  S U s : . t i t 1 o :  .j t •  I , ~~~~~i t  j - ? 1 . i t t -

¶ 50 I l I ’ l t F S  t O  1) t S t  C~~~ 1 0 1 1  it  : t , .5 t O  t O C ’ , U  :oJ t ’l i  ~ u t u i . . 1 s . s  s - i

~o l U 1cn ~;j ~~S 1 l I , : t ,  t i  : u ~~~ I .  : i :  i $ ~F ~~- 1 , i :~~~~: t.~~~.: L,  : 1 s t  t F I t  “ t r o :,~,

Co ti n c t .  ‘
~ 
j  

~ h 1 1 1 0 ( 1  • : t F , : ’ ’. , 11, 5 t o  1 .. 511 f .: 1 ‘ 11 •

€ f t i c i o n  t o i  t L ~ • : i~~ e~~.c1 .  o :  U t d . , t~~ U) n — . i - C t  ‘ n  :o ooi .  ~~~~ 
‘~~~~~~~~~

~o 1 u t  i cn , i s  .~~~I - ’!, 1L ) : 0 1  1 5  t . ~~~’ C~~~Iit . l À  ,~ ,‘ s t ’flt ‘O :n,i:. ~ .~~:::j ,’~~ o . t l

Ca icu  lat : ‘ f l ; , y .-~~. o t  : .  t ~ i ..~~~ .: 1 J 0 Oi : .  St it U .~~~~ : . . : : o  .1 t 10 ~~I r:

so hit  i cu , i~ i t  ~ i 11 : t o  t o t  it  ¼: • i : ,  I ~ S t  .1 V i ’

C J f l~ - — ~~ U.~ f l C ’~S.‘I,

;t ’rI . ’I- t h y ,  t h o  1 1) 0 1 ’-  0 ~~~ I t  x1 1’ ti L5; a r : 1 . ’~~. I r.. : , a s 1 z  ‘, t : t ’ U ’ ) t — ’ :5

~a c k ~~i i i i t c  it s U L : 1 : , - ~~, t n .  w : . o r t b -  ~~n s c t r u tr  S C I t . .  ; L i S~~~t ’ j o

c o ns - ’ iu i ’r . o o . ; , t b c  1’L :~ ~i .  U J l 1 : I . 1 l  I -  t ’ 1 • ‘ i — c . i l I .  .i
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the~’= ~xam~ lcs, the .I u t i i c - : :  ~t c~~~ 1. .~ i i c m  s y s t~~~w 1 F i c  CO:  ; L - i - ’ ra 1tI::~ i ,

~o $- h ~i t  t h o s e  niat~t t j u I S  i n  r c -  cdl ; ,  C an n o t  1 t  I I S L O , . 11 .  U C 0 ~~~L~~~ S C ~~~.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1. BASIC CONCEPTS OF OPERATIONS RESEARCH .

1. () j ’€ r at i O f l .  E f f i c i e n c y  C i  o 1~~L d t i c n .

U r , d .~r o p e r at i u r .  w e  w I l l  u n u e r ~~t a n d  a n y  t n c a s u r € -  ( o r  i ct i o n

¶ s y s t e m ) ,  u n i t e d  t y  sir. -;1F- l i o l c u t  ar , d d ir e c tc -d t o w a r d  à C i ! L C V 1 T I ~~ of

tht~ s p € c i fi c  ~oa1. 
I 

-

E xIll u p les of O j t L o l z i Cf l s.

1. S y s t e m  of h n o o s u r ~- ; , s~~ ro~c to U t c~~ar . )  1 I I C L - 2 J s e  of :-~ lia t - i l i t y

of te c h n i c a l  e q u i p t l e n t / i t  v i co .

2. E~e fl ec tio n en a i r  r a i s  cy d i r  c t ~f e ~~~c- ~cdpon S .

3. J~r r a n g e m en  t/~ os it i o r of Ot c i l t s  to [O d u c t i o n  of ~~, j U i p h l i 0 I l t .

4. ~l~ co nn aiss a n c~ se a r c h  cf y r o u p ~ of  u~~r cr - i i t i l l  t e ar  of c-t te ln~~.

5. St a r t in g / l o un c h i r - ~ ci :jr ou p  cf . ir t l lL c l i i  L i a r t h  .~itel litt s

for establ ishment of S y J t O t f l  Ci ~e l.visicn ccal lnunication/Conne ctlolu .

~~~~~~~~~~~~ 
~~ 

~~~~~ .~~~~~~. ~ :,-: ~~~~~~~~~~~ 
_ _



t.

t ) CC = 7~~~i t i i i lO 1  i ’Al ~;~ .34 ’ , -

6. Sy~;t.~ui c~ i t i  t~ .o~~o r t , ~ li~~c -h t - f l S U L e~ ; ~. U j ~~~~)’ t)~~ S t ’ L L . t S  ~) t

F o in t / i t e m s  Of ~;p o c 1 t~~c ~c i l t  w i r i t  -i ~ cd~ .

C~ - t~r i t i o t i  ~ I- i l s . t y : ;  ~~I : -  t . c1 . t~~ ’ ) 1  i t - c- 1 1 1 0 , 1 1  U 1 1_ ,  j . t . ,  U S  I I I .  , l ’ i ’ ~ 1155

to  S0 l(C t  ~n U i.; CL S c - l i e  c t h t  ~ w a y  S O n C  l ) a U a m e ~~t ’Ls  of it s

ch a ra ct .~i:i st it: me t  t , o - i  U t  o~~-J a It 1~1-I t io n .  ‘U r . j u I t i ~‘dt LOt ’. ” h er o  is

u n t h~r st o o.I i n  t h e -  br ; ,u 1 ~~~~~~~~~~~ I sd U I  i r . ;  th .. s~ l c c- t i o n  of t h o

t~’chni c -t1 *~~l 1 U j E t t l l 0 I , t , U : - t t ;  1 5 1 C~~~e~~~~u h ” L C E I . Fol.  .- x a n p i t ’ , O L ’ J l i t l F i l - S  ‘i l, .~

ref l .-ction or tL. ’ 1 i t  i t . i  -~ I:y t ho air d~~~f t i I I L t u  w~- .~~Ons , u-~ can ,

on si t ua ’ I on , t : i i c c s t -  t y ~ :c - ar i a t h t ’ P L ’ c l - ’ t t i c — : ;  ) t  t i ’ C t t I ij C ~

c~q U i j) tD .-’IIt usod (L -U C~~’ - t  J , i f l 1 t . t l ld t i O l l L3 ) or , w i t h  t b ’  .lss i - J t . ”d

t e c h n i c a l  equipul~ rI t , t o  ~ -. i lvo o1 - l y  l t d  . lem C L  t b  ~~V i t  iOlI 1 1,

organizaticn of t i t O v c - r y  l .rcce-uurt ? of L t t l e c tj o i i  it  iS o Ut  UI !

F (distribution of tic  t aru ;0 4 n u i ~ oSt~’s j ’ € t w e~~I, in s t . .illa~ io ;i s , a

q u a n t i t y  of rock~’t s , d ± i o c t ~~d to  o ac h  t a r . j ct / p u r os~~, •‘t c . ) .

A n y  s [ :ecific  5t. l l l i C t i C t ,  011 U s ( It  th  p d L d I I I € t t - i~1; t1o~~s?I id  i r ~~ wo w i l l

ca ll  solu t  loll.

Solut  ions  cJtl ‘Ot ’ sue ;ce ’~~ ; I U i  u u d  u n s u c c o~;s t I l l , i t ’  , l S J f l . t  l 1  - d l t t 5

unrcasonablo. (u -t i m U I I I  JL ’ L c~i l l € ~1 t b  SC lu t  l C f l s  w i t  icL i c c- o rd : nq  C

• or t h e  o t her  corisi d~~1~ i t i o i t s , Jip m c t €  ~ L e t ~~1~ t L - l €  u t h t ’r 1, . F

L. - ~ . ~~~~~~~~~~~~~~~~~~~~
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DCC = 7i~O b l 7 O 1  P A o r  e-t t ’

f las ic  t a s k  of O~~- ’L . t t l e 1 I ~ L . _ ; ~~~~t :  i~ — pF~ 1 :ris _ lL v ;U in t I~~t~~~vc’

f o u n d at i on  o r  o p t i m l I m  s c l u t  i L ~~.

Lot  u s  n o t c  t t i d t  V ( I L  y n u k  ~~I . i  C I  . t (C i S 1 C 0  e < C .2 - ? ; l 5 t . ’ :coj .‘

C l ’ C L lt l o I : s  r’’seaLc -Ii - t l I ,j j~ i~ l a t ’ ’s t o t h e  1CO ~~~C U I  i t ’ S [ J I I : ~ i ’ 1o i _ _ 
I

(or  t h ~- jr cit ~: 01 n 1 5 01 .0 )  , W h .  I C I .  j~ ~~ ~~ V t  .. t i ~~f l F I  1 y ~ i i .  i i  .;u~ ~~C • ~ o: •

~ay e  Lh . , 

-

- 4

Cu r i ntj t I l l s  se~i oct l U l l  1 c: i t  ica 1 L o 1  i t  ~~:‘ sc n~ c a n  con s 1.1 ~
‘L- t n i  I

t o q et  h Qr  w i t h - . t n .  u -  c - o t t ,  t i e - s  i . ~. t i c u . . ; , w h i c h  c- st. a~~c / o . i s u - .~ t r ) u n  -

m a t h  ,t t ~~cu l  - a l cu  i.t~~j - rt , a s c - t  I. . ~ 
.
~~ S C - I l t -’ .~ L I  t b .’ t h o l i si  I ‘r ~ t i O I F :

( q u a n t i t a t i v . ~ a:~ i .~ u a 1 i t . t t ~~ v . - ~ 0 t t a c t c - i )  w l t i c - l :  W c - ( I ’ I  n Ot  ~ ,t~~ -’t i  11110

~ 1Y c a l c u la  t i - ) f l .

T h u s , ore r a~~i o:: s r .  1 - C s r t - h !. -
~ I:c i i l a c t - .. t c  i s e i t  . It t ’  t t ~~ K t t ~

full/tctal/comple t e uu t c;r.i t it - I t  (l~ I- , l k i n y  de -’ c i~~i c i ~.; ,

full/tct
~il/coapI~~

t .x c c -r t i l l !/ .  ~ L~~ . h l  u t  i cs  i r o n  t I I L - i  ~~~~~~~~~ u t  l i t

ref lectin ..j, I~valu ,1tin-J h u t t u l. c - c n  s..1 i O U s l e : ~ 5. f.~~; t , t ~~ ~in . i i u ” -su l t ,

• ~olut icn is a l w a y s  r . ’ c - . i v~u d  I - ’ ~ B I d I :  ( C~ the - ’ j :-cu ~’ 31 ~ c -r s . ) l I  s) ; t 1c -

ta sk ot op e r a t i ons  U t S C O L C 1 ,  t o  t c - j . i i~ t~ uj f l t  it a t lv e  J o t i  15( 1 * S I C

L - p c o m l n F n tht t i on s , w h j t F ~; L d c i  l i t  , j t , - ~u r  I I d f l  J~~ Ct ,~~ t . i i i C~
, of solutjcn I 

•

£ 
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POOTNOTF t~~~ E V U I .  w h t ? t  ii~~kj t ! C . l e d I I - i i o r , it w o u l d  .;~~ciu , t u i l y  a u t o n t a~~e i  -

(f cr examp l.’, it ’ .  t h E  ~ L O C I ~rS  or  a U t C m d t i C  ccn t icl ~~n t - ’ L~~~ri:-;e o:

s p a c e c r a f t ) ,  t h ~ r c i - -  o t  Sai l  is a c t  L~~ U C V U t i , i~in c - , is t a .~ i sa] .

a n a l y s i s, on it .1PI . .~n . i h ;  ~~~~ s.~~1€ c t i on  c f  t i L  a 1~~o r i t n m , ~ n w h i i c l .  i~

r e a l iz € . I  t h e  c o n t r o l .  F~~1 F C ( t r N c ’ I ~ :.

To~j ot her w i t h  k o ~~ ic t j~~~ — t o ’  p rccf  c~ o j t i u u r t  s o l u t i o n s  —

a rea  C t  e x j ; l o r at l o n ul.  O T O L U t L C I S  n.cl~~—i~~s ( I t i c - :  ) L o r ) i - ~,us , suc h as

— i ccna ~~a rat i  v~ e v U l u i t i c o  u~ t h e  t i I v ~~:s~ V t L ’ i dr l t s  .)~~ ~h~-

c rg a n iz ar i cn  or  op~.- r o t i c r i

— ~‘v a lu at i o n  U t  o L f e c ~~ C l i  t h e  L e s i J l t  ct c~~QL’ lt 1o~ or  d i f f e r - r.~

Faralneters (cell/elc;U C-n t : ct scl:rt~ cFu and  t a t -  as~~iy n e d  cj n d i t i c t s) ;

— st u d y  of t h e  s o — c - i l l € O  “ 1- o t t  lOnE. c~~S ” , ‘-. - .  , e l e u o n t s  u t  t h o

con t ro l l ed  s y s t e m  t O o  i i s :u 1-t i c ; .  ot  wc~~k o f  ~ h i c o  p e c i - i l ly  s t :cn - i iv

a f f e c t s  t~ ie succes~ of c l :e r a t i c n  1t ; t ~~, E t c .

Those “ a u x i l ia r i ” t . i o k ~ of 0 1- C  rat icus ~es€~ cch asquiro th~

~p ec ia1  im p o r t a n c e  W } I C f l  ~~~~
- c x ’ur i S I c -  t h i j I  O~ l C - L 3 t  i cu  not  ii3J13~~c-U l y ,  L J U

as c om [ o n e n t  e l e me i t t of t h e -  w 11c 17 ~- y s t ~~ i o f  o p e r t t i on s .  r:i e s o— c a l l ~ 0

_ _ _ _ _ _ _ _  • - 
~~~~~~~~~~~~~ 
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“s yst .’ms ” ,I~ -j ) L O .i c-1t T C J  t I e  t’ .t .-,A . 5 o t o l t ’ L d t L c I ~.. Le ; C , I I c t i  t J - l Uj r e s  t I l l .

ac count  to i n t” r 1e :’~~n s e s c~ U n- i  t . t c -  cc n ( h i t I C n l l ~~t y o i  tn .-i  ‘l l, O I U

CO~~~le~x of m e a s ur e s . I t —~o~~s w : t h o u t  ~‘i~~ .u- ~ t h a t  i;i ~‘r x - i c i  r io a l w a y s

i t  is i o s s i l ile  t o  j o i n  t 1- e - i y s t~ -sn c f  J j C t d ~~~A O t t 1  1 ;t t o  O f t - -  c o i I t p~L ’ :~’ x

c p e rat i oz l  more “ h i - ~ h 0 1 - I t - I” , h u t  i i  F r a ct i c t  t 1 : i ;  no t  is alwa ys

c o n v e n i -~nt  ( and It Is not a l~~a y . .. ~ 1- 1 : - t i l e - ) ,  a L l  ii: a s~~r i’ i- o: t n - -

Cases  it iS o X j i o I i  P U t  ~ C SC1- ,’ct  - I S  “ c U c r a t i o n s ” t o t - s0~’ar i t t ’ e i C - , U c - f l t s

cf s y st o m , out  t h e  t : n i l  i c - c i s i o n  t o  ma ~~e t U k i r ~ ~i t o  ac,~ o i l n t ro1 ,~

an ~ p lace  of t h is  O~~~’ ’~~~-i~~~~1 C l .  ~~ t o / ~~~t e - : - m .

T h u s , let  us r- :’t i  1 1 e - r  ~~~~ i t  i t .  c j o  r a t  ion a. L~ef1ecti  ny a t O V O  F

t h e  or~j a ni  z at i on  e t  ~‘ - - ~~~~ t ’
~ i c n , w - ~ t F I t ~~~i Vt to make? it most efficit-nt .

Un de ’ r t h e -’ e f f i c i e n c y  of o l o r i t  I c - n, I S  u n d ~� rst o c r t a o  ~l c - -  j~~e-’ ot i~~s

d,~al *ai :ilit y to  t~~~e L c c ~F I r ~ : l  i s O  r ~ I I t  of  t i te  c n f  c : t : i n i y  o~ j e - c  t I V~~

1h€ b e t t o r  is orej a n i~~ . .1 u l u L i t  ~- i n , t O o  I t Ot O  4 1 1  i c i Cn t

In  or - ler  to  j u d  ie t h- ’ e- - f t  l c i e I c y  c f  oi :~~r a t  1) 11  a n d  to

e-~ u a t e/ co m par e  bet we a ~~F , C 1 1 , C - 1 V~~~S ~i t a  Les~~t~ct  to e - f f i c j e t t cv  t h u

di ftcrc-nt l y c r g a n i ze d  o~-~- r -~~ i c ns , i t  i~ :1~~c t i s s a r y  to  h a v a  cur t  a i r

n u m e r i c a l ev a l u a t i c s  c s i ~~er i ~ Ct i l l l C - X  Ct t l ;C  C f I L C i . u f lC~ ( i t ’  s u m ~’

It-lnagernerl t /rlanu ais t h u  i n d e x  O f  • ‘ i l j C i f f l C y  ( a i l s  “ oI) lt ’ Ct l V C

f u n c t i o n ”)

L~•t us ;ub s *~~u o t ;t l y .I. ’1,i’ 1 i I s~~Q t o o  in dcx ci e~ ficien~ y Ly lc tt - -’L —

I . , ,.



7 d O h - -3 7 () 1 ! \ t  -.

~ay e  13.

Th ~- c o l t c L e - t~~/ Sr c 1 l~~c/ a c 1u ,~1 t C l ut cf  ~~.u j r - t x of : f :~~-- nc~ ~ ,

w h i c s  C I t e  s a cu l d  U S C  U I  : I I - j  r h ~ f l U . i i t - I  Ic ii vi l  u a t i o n t  of  o t  i c- i~~ n c y

-~~~~~ r en d s  U~~ ~l~c- C it  ~~3 C a l L  , iC r  ~~I C L ~ F~ o ~e-- - r a t  1 ) 1 1  01 its L - u r h , c ~~. f  u i

d i r e c t i o n a l i ty  in - j u t  ,;t :c n , a~~0 a l s o on  t h c -  t a s k  of r~~se- - i r ch ~~h i c~,

can  ~-e p lace i iL O S t ~- C L  I n c  C~~~l. t I t o r m .

~ a n y  op r ~:at~~’J s s  ~r u  ~~~~~ u s  i o t  c c r l : t i c i : s , 4 , I I C I .  co ot ~~~in  t h ’~

E l c I t -~r l t  c- f  chance  ( f a r  ~ x~i r ~~lt  , t h u  o~ - .- : at i c n s , c-o i~au ct ~~.I ~~i tl .  ~~i h t ’

tiuctuatio jis 01 S U c - t i ’~ a s d  d~- a t a i . -,I , w i t  1 t h e -- i f i O t i o n  31 ~~O~~ U i ’ t t~~ CII ,

m orbidity, m orta liry, ~n (t c - h o  ~ li  ; r i l i t a r y  0~~~t i I d t i O f l S ). in  t h C ;.-

cases the issue of o l c - r a t j c l h , t v - -n or-~ariz c a t I c  s t r i Ct l y  d c - f  i n e , i

t o r m , i t  c a n n o t  ue accoi ,*t c - l y LL~~ d iC~~u d , t e - I I L o i r s  t a I 1 - ~ ) f l .  i f  ‘ h is

t h e n , as t h u  I n a u X  o f  ~ f f l c i c - I F c y  ~ is  c i i U l ~E Li sot s i : aj i y  t

c h ar ict -~r ist i c  01 t n t ~’ i s su c  Or  Oc- ’-’t a t : C n . , L u t  i ts  ~ ve r~ j~~ va luc-

i ( m a th e w a t i c a l exp e c ta ~ i c n )  - i-’or -nc - i t t 1 ic , i t  t h e  t i~~k o t  J p~~’r a  l ) ’ i —

o b t a i n in -j  sr a x i m u . n  -j am , ‘h o r  iS  t~~i c  ifl c - t X  C L  c f t i C i~- - n l cy  :,s ~~~i~~~- : - r .

a v € r a q ~ j a m . I n  o t h o r  ca ses  wh o : i  t h e  t o s k  ci o~- -- r a~ L U ! ,  iS  5

r e a l i z a t i o n  of t h - . O C o l Ip i t t e  ly  s~- e c i t i c  ( V € f l t , as t i c  ~~it d - -~x ot

e f f i c i en c y , is t a k e n  t h u  1t c ~~a f - i l i t y  ~~f t L t i~~ 4 V ( I l l t (1 )1 .i r n i ’ l e ,

~:r o b ab i l it y  t ha~ a s  a t u s o l t  o~ t h .— a i r  r t i i a  ~ h i , ;  I d t c j O t  C Ohu ~~l o X  W 1 i l

be struck).

_______________ - - 
_
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C or r e c t  se1~ -c t I l l :  ot  t h c -  i t i C  X U ~ L f  i~ i e a c y  — t . - - . - s s a r y

ç O f l d j t j~~~ or t h ~ U s ~~I U I i t * - -~ ,5 t ’ t  t h ~ i~~t : e - - t r C ~~ , U 5 ~ : - l I >1 t ,c- I~ c-c-i ) L

s o l u ti c n .

L e --t u i ;  c on s i d e r  a se~~~i e - i, t~~~ t h e -  e - X d.~~ ~~~ j O  ‘ l C l t  j L  w h i t - I ,  t b ’

i n d e x  c - f  e f f  j C i (  OC Y W 15 Sc I - l e t  * i t  a t  C U L  J u 2 C ~ ~ 11 0 0 .? ~ U I 0 E~~ u l

dir ect i~ i-a l it y of 01. - L I t  ic  n F

F x a . i t I ’ l . ’ 1_ Is  .- x a 3 i t - ’ i  t L ~ w o r k  or  i n u u s t ri t l  c - f l t è L~L) C 1 S 4  at  *0 .

Vj i-1. , 1t. J l .~ Of i ts  r r o : i t~ i t i n l t - ~~~, m o i e o v e - - L 15 C ) : I i u c t c - 1  t h e  ti t i n b e t - -

It  m~’ a s t L e -’s t o ’,. t a r .~- - t / . u [I c s e  t o t  ~ u r ~~c’s.-’ o~ t 5 t ’ I f l C L e i S~ O X  t h j ~

~ :ct i t a f - l e n u .;s. In  o c x  a t  t ’ t f i e -  i e - ’ n c e -- — -Jaill (ot  d V c ’Z ~~I .-j e i - a m ) , y i~-i n . i

t-y ~— s t e r l t I  :su I c - I  f I s c  i i  ~~~~~

Ex .nkpl *- ’  ~~~ 2. T he i c - u~ u t  c - * - i t  EO~~e I S  a c - d V cS j f l~~~ ~~~ ~ OL ~ I i *

i n t e r c €j t i c n  of t O e  s i r t ; l e  o i t t - r a r ~ o f c o u n t y .  la :  , t t / pu : 1 os. - o f

c p e r a t i on  — to  b r i n - ;  d c w n  a j I c L d t t  - l r i d c x  ci  e t i L c i o l i cy  — kill

Froba bil it j ( k i i l i n - j )  or  i i r c r i I t .

F x a m ~ Ic ~~~ 3. h~ ~ - i  I L  sLc-~ i~ r c u  led y tic- mai a t - ‘n t  nc. - et

, a ch i ne s ;  i t s  p r o t  i t a b l , — r e ~~s i~ - Ic - t e r :u i ne d ..y a - j L a n t l  y o r  W d C F l I f l -  ~~ ,

s er v ic€j  du i  i n - ;  il a y .  T o e ’  i fl O E X  O f  e t  t i c  ie - -?flC~ — d V t ’ L , t - ~~~’ t i O f i  bet ot  - 
-

— . 
~~~~~~~~~~
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DO ’ 7t ~Ot ~d 7 O 1  r~~e- ;~ : ~—-
~

m a c h i n e s , serv ~~cu-l ic - :  t I l t -  1 - t~ ( “  ~~~ l i- t V ~ L - t - t  “ U c - C i U S t  t h ’ -  ic-

n u u k l - e r  i s  r a n d o m )

~~~ 4 . I~ -c  - ; L C U ~~ o~ L d O , t t ~ra’ iu :. s  i t  t O .  5c -C5~~~ ic- I ’ 1 I , ’~~,

c b ser ve s  a r t e -r  a i r  ~; c c- .  r t ~ t , r : , K  C l  ~ L C U ~ — t C - i L S C - V e I  a :r ~
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was, it was required t o  c o n v er t  i n t o  m a x i m u m  (“ t b - n  mo te  t o e  l- E- t~-~~r ”)

G e n e r a l l y ,  th is  not  is c o m p u l s o r y :  is C~ e r a t i o n s  r esear ch , t h e y

frequently use f-he indices whicu i t  is r e qu i r e d  to  convert ~~ Ot into

laximum , b ut into the min imunt ( “ t h e  fc’wc -r, tOe better”). For example - .,

in example ~~ 4 it woul d be 1o s s ib l e  as t h e  in JEx of efficie ncy to

take “ [robahility t h a t  ~h e  appeari ng aircralt will not~discoveued ” —

this m dcx it is d e zi ra ~~le tc ¶ n ake  as s ma l l  as ~ossihle. In examph - ~
for the index of efficiency it  w o ul d be pos~~~le to take- thi-’ “avc ra-i’-’

number  of short duraticn tailu r€ s f o r  days ”, w hic ri it is desiraale to

m i n i m i z e .  If is cons ide red  some sy ste l i l , w h i c h  e nsures  th -~ gu i~ia nce cf

p ro jec ti l e  to t a r g e t/ p u r p c s € , t h e n as t h e  1~ dc x of e f f i c i e nc y j t  j 5

~oss ih le  tc  select the a v e r a g e  v a lu e  of t h e  “e r r o r ” of p r o j e c t ile

(d istance ti-cm tra j ec to ry  tc t h e  cen t e r  of t ar g €t / ~ urpos~ ) , w h i c h  ±~
-

is des i rab le to do as less as ~oss iL le .  T1i~ de t a i l  of t ri o n - c ans ,

isolated on c a r r y i n g  o u t  a n y  t a sk , i t is aleo des i rab le  to  m a k e

m i n i m u m , j ust as the cost/value of the launch ed s y s t e m  of m e a su r e s .

Thus, in m a n y  task s of o ç er a t i cn s  re searc h r e - a s o na a l e  s o lu t i o n  t ius t

ensure not the m a x i m u m , 1- u t  t h e  m i l t i n i u u  of c e r t a i n  in d e x .

I

It is obvious that the case , whe n the isd~ x ot e f f i c ien c y ~ W m us~

be convert ed into the minimum , easily is r e au ce d  to the task of the

maximization (for tnis it su f t i ces , foi . e x a ~ ple , to c h a nj e  t h e  sig n

cf value V). Therefore subsequentl y, examin in g in general form ~ Or

task of oper ations research , we will f c r  s imp l i c i ty  s p e a k  o n l y  a I ~o ut

___ ____  ____-
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operation) oy some to: m i t  i:; c-~~n~~1i ti ~~d , it  ic -  ~~S L t e ? i l 1 t t j~~~~~~~ I t o -i
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c o m p a r a t i v a l y  c -w a l l  ~Ua t i t i t ~~ or  t i c -  in - I c r t ~n t .t , ~i tm ~I t h e  ) O t d i I l e - i

p a t t e r n  is d e -s c r ib e l  w i t h  ~ I c  I t , . 1C ~~~ c n e  c~ - t u e  or h e r  m i t h .  na~ I~- ; ~
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probleir ).
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‘ I - t . , - t c l s  — l i t .  i t  , t c - c - O ’ n i  I

comj ’ 1~~cat t i s r n a t h ; e r n a t  i c - i l  .~;t a I y~~i .~ t i l l I ta~~. t O t  ~. - ; . ‘ i 1t s  -~~~ L e : - - c - U c - ; .

y l i f t  1, eU it  l y I at- . - : . . . - i i  I a .

I I *. W~it - d , tit..’ c i  t $ .1 1 0111 1 1  I i i  U c t  I t ’  :11 ,1 1 j .~~ t 1 t i c - t I c - I .. ~~t . ‘ t ’ I ; -
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S ta t i s t i c a l  nn - i i ’ i s  n n ~~. i . ~ L c - L s  i! ; a l yt  i c - i l ‘- I l  - i - l v a n t n - i ’  t I n ’-

t h e y D a k e  it  [ o s s i o l -  t c  ~~ n ) c ~ - i n t o  0 c c-cl i S t L i i .? l 1 L ~ 4 - - U l U L I U t U  a t .

fac t o rs a n t  Jo n o t  c - i -  j U 1 C -  L o u  j O . ‘ i n l l  i t i c a t i o n - c -  L I .  I j : c - - O I n  ~ i c - s .

rh ~~n t h e  r esu l ts  of  - ; t - i t I ~~tic,i 1 - i n ; iil.i t~~ o n  w i t h  : t ) L ~- -  t i l t  i t - iI 1~~y y i 1 1

to a n a l y sis a n d c~~ln i . i .- h € ~- c i . i c u - ~~ # :- a r i i 1 1 t i C , i L i a - I l.. n -  c - c - r i ,’

p h e n o m e n o n  c - r n l y  a p l ; r o x i l r a t l  l~~, t i  - ‘ I  r . - i ~u I t c -  d i c  I T I J L .  1 C , l J t i : I t l i t l v e

a nd mor e  d i s t i n c t  t e f l  e c t  ho c - .  I c -  ~ n h . . - r a n t  ~~t . ~- U , - ‘ ; t~ - L a 5  i c - i c -  1-i w : - .

r-est- r e su l ts  at- e C i t a  n~~d 1 ur  i n-~ t c - -  c c in b i lit _ il a p _ i l  iC,i t 1 , ) , i / ’ l - ’  c - I  I -

a n a l y t i c a l  and t t a j :~t i c - a l  m o d e l s : c - i t n~ 10 - i t i t i  ti e,d  t a l c - i  n t a k e -  i t

- I 
- 

p oss ible  t o  be d i s m _ i n t  1 /5.- i ’  et. 1 I i  t i ; c  t c u j l t  0~ ‘- 1;..- h o c - i c  l a w s

- 

- go v e r -n i n y  çh e n O m . ? n o I i , t e  ~ 1an  i .t s  si l l; c u t  1~~n - s , i n - i  a f l~ t u r t h . - n

r e f i n e m e n t  can it cc-n L e  ~~~ i i i.  -I t y t~ t m i . t i c - i l  ~~ l a t n . c - n .
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3. C om m o n/ g en e r a l / to t  i i  L c L -  n u  L i t  i on  ot  t h e  L o t  Ic - it  of o 1~- ’r  ) t j , ) l : :

u e s e a r - c h  t h~ d~~t~~u n n i i ; - - .1 cac -~~.

Let u s  CO 1;S1,1~~~L t ic--  t~~ s~ c- :  o~~t r 1 t i ) n l  r~~~€ i c - c h  i t

Co mul on / - J t ? n e r i l / t o t  a 1 c -c ’-  t i u.j , L f - ~ ,. l i t -  ? . ~ U t  ‘ I: C’ )L t m i  t L - -

t a r p~t /pu r 1cc-Cat O f  O L . ’ r n t  i c - I : .

Let  t i t t - r e  ha cci  t i n  o t . 1  t i o n  0, i. e., t i~.. co i t ~~r o L n ~u t i - i c -t I c -

to issue o r w h i c h  ~-c  C i a  t o  a c~~rt a in  de -j r€ e  at  t a c t , C l )  i s i s- :  i i .  ~is

cr some ot h er  w a y  on u s  t h c -  ~- t : , t i n e t ~~rc - i c p c - . i i r~~. T n - ~ c - r t i C i c - n t-y  o r

cpe r at  ion i:; chat - a c t - - ’u~~s- - l  t - y  :-c~r c n oni ,- L i C d l  c r t t  r iot :  c- c - ~ t i ~ x w ,

w h i c h  is r t ’ q u i L ’ .i to C C n V t : L t i n t o  l i . l X i l m U t R  ( c - a c - c  ~~~~~~~ it * is

te j u i r e d  t o  c on v . - r t  i t : to  t i -  n n i : . i i ’n u a; , it  i~ L C d U C -’ I t  ~~O ~~~~e V ~~~c-U S m l

se [at at c l y i t  is n o t  ~~x~~i~i c - c - I ) .

Le t  u s  a s s u me  t h a t  in  cu e  I t  ~h c  c th . - i  n d r l i e C  t h s  m i t i - . ; i , t tj c a~

m o d e l  of o per a t i o n  is c c n , c - t r -j c t .  1; :t n a k e s  m~ lo t a l ij ic- t o  -a t r ~ - n i t - -

t h e  i n de x  of e f f i c ie n c y  w I u r i n . ~ a n y  c - c h i t  I~~ It 0C C  1— t - c - , I , L ) t  a n Y ~~~
of t h e  co n d i t i o n s , u n d e r  w h i c h  is ma I . - t O . -’ ç t C t , i t  l op .

- - Let  u s c o n s i d er  t he f i t - s r  . ; i w j  ic-i-i t c - a c - c -: a l l  t - t r t o r i i’: w i - l i -h

de~~er .ds  t h e  sur c .c- ;s  U t  O l t - L ~~i t I C I , , t i - t  y a r t  mj i v i 1 a 1 1  i n t o  t w c  - i t c u  IS :

— iss i t n e d , p r e v i o u s l y  ~~ c - w I n  t a c t  c:t; ( c ond  ~ ion: - ;  of c o n d u c -  c-n
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t h e  Oper a t i o n )  a 1, i c - s ,  ...,  ov er  w h i c h  w e can h a v c -  no i a L I u t ’ n u c e ;

— on us t h e  f a c t or s  (Cc-ll/t leirents of th~ solutiont.) il -’n ) c - n ~Ij n . ;

x 1,  x 2, ..., w h i c h  wc - , -~ i t h i n  K I . O W P  l i m i t s , c c - n  crioos .~ a t  ou t -

d i s c r e t i o n .

This case, in whic h t O t -  factors , inti ut~ncin g the isc-ue of

cp~~ration, ei t her  a r t -  ~zc- v i c us 1y k t ; c w n  cr t ia~ -y  dc’~~c - n I  on us, wa wi ii

call  d e te r m in e d.

ii
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Page 17.

Let us note that hearth by the “assigned conditions” of

op eration .~~, a~ , .. .. can be understood not only usual nn .ber s , but

al so f uncti9us, in detail—li.itatio ns , superiap ised to the

ceU/ele me nt s of the solution. Equ ally , the cel l/elenent s of solution
I i,  1~~, ... , also can be not only numbers , b ut also functions.

The i ndex of efficiency ii depend s an both groups of the facto rs:

bot h on the assigned conditions and on the cell/elements of the

solution. Let us r egister this dependence in the form of the

com•oia/general/tot al symbolic formula:

U’~ =W (ct ,, o , - . 1  x1, x1,...). (3, 1)

Since mathematical model is constructed , let us consider that

de pendence (3 .1)  to us is know n, a nd for any e~~, a~ , ... 11, 12,

we we can find W

The n the pr oble. of operation s research can be mathem atically

form ul ated thus :

- i .A



-niT ,—.----
~~~~‘—~

-i._,.--_~~

DOC = 78068702 PAGE 32

Under given :onditions 
~~~, a~~, ... to find such cell/elements of

A solutions x~, X~~, ... , which conver t inde x W into maximum .

Befor e us — t he t ypically ma t hemat ical problem , vhi :h relates to

the class of the so—called variat ional problems. The methods of the

solutiou of such problems are worked out in detai l in mathematics.

t Pr ototoa of these methods (“ proble m to the maximu m and the m i n i m u m ”)

are veil known to each engineer .. For the determination of m aximum or

th . minimu m (it is shorter , extremum) function it is necessary to

differentiat e it the argument (or arguments , if them several) , to

equate derivative s to zero and to solve the obtained system of

eq uations.

However , thi s simple method in the problems of oper a tions

research being of limited usef ulness. Reasons to th is several.

Il~
1. When arguments x~ , x2, ... much (but this is typical for

problems of operat ions research) , joint solutio s of system of

equa tions , obtained by differentiation of basic dependence , of ten i -

proves to be not simpler, but it is mor e complex than direct search

of extremum.

— —
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2. In the case when to cell/elements of solution x 1, z 1. ... are

superimpos ed limit ations (i.e., region of their chan ge is limited) ,

fr .q uemt ly extremu m is obsetved not at poi nt wher e derivat ives are

conver ted into zero , but on boundary of the regio n of possible P
solutions. Appears the specific for operation s research mathematical

pr oblem of the “search of extremu m in th . prese nce of l imitat ions ” ,

wh ich is not place d in the diagram of cla~~sical variational method s.

1. Final ly ,  ~erivativ us , under discussion , it can compl et ely not

ex ist , for exampl e , if arguments z 1, x ,, ~~ .. are changed not

continuously, but it is discrete , or functio n itself V has special

feature/pe culiarit ies.

The gen eral mathematical method s of the determi nati3n of the

ex trema of the functions of any form in the presence of irbitrary

limitations do not exist. H cvever , for the cases when funct ion and

li mitation s posses s the specific properties , contemp orary mathematics

proposes n series of special methods. ?or example , if the index of

efficiency W depends on the cell/e le ments of solution x 1, x2, ... it
is linear and the restrictions place d on x 1, x 1, ..., also take the

form of linear eqia lities (or inequalities) , the maximum of funct ion

V is 1ocat d with the help of the special apparatus , the so—calle d

li~.ar prog r ammin ; (see Chapt er 2) ..

hk~~ 1A 
--
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Page 18.

If these f unctions possess other properties (for example , are convex

or quadratic), is applied the apparatus of “convex ” or “qua dra t ic” P —

programmin g (21, mor e mor e complex in com parison wi th linear

pr ogramming, bu t all the same mak ing it possible within acceptable

period s to f ind solution. If operation naturally is dismembered to a

series of “step/pitches ” or of “stages ” ~for example , economic

years) , and an index of e f f ic ienc y U is expressed in the form of the

sum of the indices u’,, reached for var iou s stages , for the

- 
- determinat ion of solution , which ensures maximum e f f ic iency,  can be

used the method of the dyna .ic pr ogra .min~g (see Chapter 3)’.

I f  operation is described by ordinary diff r entia l eguations ,

and the control , w hic h varies in the course of ti me , re presents b y

itself certain function z ( t ) , then for the determination of optimum
- k

control can render/show useful L. S. Pcnt ryat in ’s specially worked

out method (3 ) .

Thus, in the determine d case in question the problem of finding

the optimum solution is reduced to the mathematical  prob lem of

finding the extrem um of funct ion U ; this problem can be very complex

(especiall y with many arguments) , but , af t er all , is compu tational

pr oblem, which , es pecially in the presence of hig h speed ET5VII

— --~~- --- ~~~~ --—-- - - ---—--- - -- -__-~~~~~~~e~~~-~~~
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(3UBM. — digital computer), it succeeds one way or another to solve

to end. The diffi:ulties, which appear in this case, are calcu lated,

but not fundamental.

4. General formulation of problem of operatio ns research.

Optimiza ti on of the solution under conditions of

in determinancy /uncertainty.

In the previous paragraph we conside red idle time itself,

-i completely determi ned the case when all conditions of operation m~,

a~ , ... we re known , and any select ion of solution x 1, x2, ... leads
to the completely specific value of the index of efficiency V.

Un fc~r tuna tel y , this simplest case not too frequently is

encountered in practice. Is much more typical the case when not all

conditions under which will be carried out the operation , are known

previo usly, but so me of them contain the cell/element of

indetermina ncy/unc ertai nty. For example , the success of operation can

de pend on the meteorological conditions which are prev iously unknown ,

either from the oscillation/vibrations of supply and demand ,

previously difficult ly foreseen, connecte d wit h whims Naud , or from

the behavi or of the re asonable enemy whos e action s are pr eviously

un knowm.
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In similar cases the efficie ncy of operation depends no longer

on two , but from three categor ies of t he  f actors:

— con dition 3f the execut ion of oper ation •1, a~~, ... which a re P -

known previously and are ch an g ed be they cannot ;

— unknown coa ditions or f acto rs Y,, T~ . ... ;

— cell/elements of solut ions z5, x5, ... , which for us one mus t

select.

Pa ge 19.

Let the efficiency of operation be characterized by certa in

in dex V, which depend on all, t hree groups of factors. This we will

register in the f3 rm of the common/genera l/total formula:

= U (Q~~, ~~2’ •.. Y1, 1’,, ,.. ; x1, x~, ...). (4 .1)

it co~ diti ong TI, T 5, ... were kno wn ~, we could previously count

index V and select suc h solution x~~, x2, ..., dur ing whic h it is

.a zimised. Il isfort une in the fact that parameters T~ , T1, ... to us

are sa kiow n, and that means that is unknown depe nding on them inde x

of efficie ncy V during any solution. liever the less the problem of th e

selection of solut ion stands as before before us. I t it is possible

_____ -
~~~~~
- --

--
~~~ 

-
~~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~ 

--
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to formulate thus:

Under given conditions 
~ &,  a2, .., t aking into account the

un known factors Ta, , Ta. ... to fin d such cell/elements of solution s

x1, x 1, ... , whic h as far as possible would convert into max imum the

in de x of efficienc y v.

This — alread y other, not the purely mathematical of the

problems (is not without reason in its formulation done stipulation

“as far as possibl e” ).  The presence of the unk nown factors ~ t,
I ..~~ translates our problem into an other category it it is converte d

into the problem of the selection of solution u$er conditions of

indeterainancy /uncertainty.

Give let us be honest : indeterminancy /unce r taint y is an

in determinancy/unc ert aint y. If the condit ions of the execution of

operation are unknown , we do not have the capa bility then to

successfully organize it , as we this would do , if they would dispose

of larger information. Therefore any solution , accepted undet
- i conditions of ind a termina ncy/uncertainty, is wors e than the so luti on,

accepted in the completely specific situation . Our matter — to

commun icate to its solution in the greatest possible measu re of the

feature of soundness. The solution, accepted unde r conditions of

indeterminancy/uncertainty, but on the basis of mathematical

— -~--~-~ t
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I
calculations, will be all the same better than the solution, selec ted

at random. Not without reason one of the prominent foreign

Specialist s — T. L . Saati in the book “ ma t hemat ical meth ods of

operation s resear ch” ( -‘4 ] gives to its object /subject the following

ironic def inition: ‘ - -

“Operations r esearch represents by itself the art to give poor

¶ answer/responses to those practical questions, to which are gi ven

even worse answer/responses by other methods”.

The prob l ems of the selection of solution und er cond ition s of

indeterminancy /uncertainty are encountere d to us in life at each

step/ p itch. Let , for example , we be collected to go into temperi ng,

after ta ki ng with ourselves the trunk of the liR ited volume , moreover

the weight of trun k must not exceed that by which we can bear it - 

-

wi th out oxtr aneous aid (condition •t~ a~, ...). Weather in the ‘ - 
-

jour n.y re gions is previo usly unknown (co~~ditio m 
~~i .  

T~ , . . . ) .  It

does ask itself, which object/subjects of clothin g (z~ , *2,  . . . )  one

should take with i tself?

This proble. we, it goes withou t saying, solve with out amy

ma thematical appar atus , although, appar e~t ly. not witho ut seppor t to

soi numer ical dat a (at least on the proba bility of frost or rainy

weathe r im)tb. jou rney in this season regions.
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Ho wsv•r , if it is necessar y to make the more serious and more

cr itical decision (for example , about the characteristics of the

design/pro jecte d dam in possible region it is f lood , either about a

select ion of the t ype of landing equipment for landing /fitting on

plane t with the un know n surface proper t ies , or about of the samp ling

of arma ment for dealin g with the enemy who se characteristics are

pre viously unknown) ,  then to the seiectlo j i of solution in nece ssary

order must be presupposed the mathematica l calculations , w hich

facilitat , this se lection and the communicating to it , in available

measure , teat ~ar es of soundness.

In this case the methods used depend substantially on which

na tur . of the unknown factors Y 1, Y ,, ... and which tentative

information about the m we avail.

Simplest and favorable for calcu lations is the case, wh en the

un knoep fa ctors !
~~
, Y 1. ... represent by themselves random vari abl es

(or the rn ndom functions) • about which there are statistical data ,

which characterize their distribution.
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Let, for example , we examin e operation of railroad sorting

station , attempting to optimize the process of •a inta ia/..rvice ing

the arriving to th is station freight t rai ns. Are previousl y unknown

neither precise torque /moments of the arrival of trains nor quantity P
of cars in each tr ain nor addresses with  w hich are directed the cars.

All t hese char acterist ics represent by themselves random variables ,

the law of the distribution of eac h of which (and their set) can be

determined by the available data by the usual methods of •athe matic al

statistics.

It is analoy us, in each military operation are present the

random factors , connected with scattering of projectiles , with th e

chance of the torq ue/moments of the target detection , etc. In

pr inciple all thes e factors can be stu died by the methods of the

probabilit y theory , and for them can be obtained the laws of

distribution (or , at least , numerical characteristics) .

in the case when the unknown factors , which figure in operation

- - 
— 

~ *. Y~ , ... — are usual random variables (or the random

fuz!cti ons) whose distribution , at least tentativel y, is known , for the

optim ization of solution , can be used one of the two methods:

— art ificial information to the determined diagram;
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— “optimization on the average ”.

- -
~ Let us pause in more detail at each of t hese methods.

The first method is reduced to the fact that the indefini te ,

probabilis tic pict ure of phenomenon is approximat ely substit uted that

determined . For this , nil the partic ipati -~g in problem random fact ors

T $,  Ye,: are approximately substituted not ran dom (as a rule, by

their mathematical expectat ions) .

This method is applied to advantag e in the rough , tentative

ca lculatio ns wh en the ran ge of random changes in values 1 , ,  T~ .

is compara tively small , i.e., the y with ou t larg . tension can be

considered as not random. Let us note tha t the same meth od of the

replacemen t of random variables by their mathematical expectations

can successfully be applied also in cases whe n values T~, Y,,

possess la rge spre ad , but the index of efficiency V depend s on them

linearly (or almost it is linear) .

Page 21.

The second method (“ opti iizatio n on the average ” ) ,  more complex ,

is applied , wh en the chance of value s 7 ,, 
~~~~ ... is very essential

and the replacement of each of th em by its mathematical •xpectation

L~~.
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can lead to large errors.

- -
~ Let us consiler this case in more detail. Let the index of

efficiency V depen d substantially on the random factors (let us for

- simplicity copsid.r them random variable.) ~~~ ~~~ ...; le t us assum e

that to us is know n the distribution of t hese factors, l~t us say,

that density of distribution f(y 1 , y~, .. -..). Let us assume tha t the

L 
~ operation is imple mented many times , moreover conditions 1,. ~~1.

- vary from one time to the next randomly. W hich solution x ,, , *2,  ... ,

It sb~ould be selected ? It is obvious, then , with which the operation on

tk. averag e will be most efficient , i.e., the mathemat ical

f 

expect ation of the index of efficienc y V viii be maximal. Thus , it is

- necessary to choos e such solution x1, Z~, ..., during whic h is

coqvert.d into maximum the mat ke.atical expectation of the index of

the efficiency:

I —- U--  =~ iIW - I~~

S Ii(~~, ~~! ~l . ~~~~~~~~~~~~~ 
•..)J (y~

, ~~~~~~~~~ ~Ii/. ... (4.2)

This optimization we will call “optimization on the avera ge”.

But as with the cell/element of indet ermina n cy/uncertainty? It
- is certain , in which that measure it is retained. The success of each

separate operation , realized at the r aido m . pre viously u nknown val ues

___
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Ta. T~ . ... , can strongly d iffer from the expecte d average as into

greater, so, unfortunately and to- smaller side. During the repeated

realization of ope rat ion , these differ ences, on the average, are

smoothed out ; however , the fre q uently this method of the optimization P
of solution, after the lack of the better/best, is applied and the n,

when operation is realized a total of several times or eves one time.

Then it jS necessary to consider the possibility of unpleasant

unexpected coatingencie s in each individual case. As comfort us can

serve thought abou t the fact tha t the “optimization on the average ”

all the same is be tter than the select ioi of solution without any

pr oofs. Ap plying this method to numerous (at least and different)

cperations , all, the same we on the average wis more than if they in

no way use d calculation.

In order to comprise to itself the representatio n of that how we

risk in each individual case, it is desirable , except the

ma thematical expectation of the index of efficiency, to consider a lso

its dispersion (or root—mean—square deviation).

~ost difficult for research is that case of

indet .riinancy/unc.rtainty when the un known factors T,. !~~. ...
cannot be studied and are described with th. help of the statistical

•ethods: their law s of distribution or cannot be obtained

(Corresp onding statistical data are absent ) , or, that still worse ,

I- i-- - -~~~~
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such laws of d istr ibution completely do not exist. This occurs, when

the phenomenon, under discussion , does not j~ossess the propert y of

statistica l re gularity.

Pa ge 22.

For example , we kn ow , that on Mars is possible the presence of

or ganic life, and some scientists even are considered it ver y

probable , but comp letely it is not possible to count this probability

on the bas is of any sta tistical da ta. another example : let us assu•e

that the efficienc y of the design/projected armament strongly does

depend on that, will the predicted enemy up  to the torque/ moment of

the beginning of combat operations dispose of means of defense , and

if yes , then by wh ich precisely? It is obvious , there is no

possibilit y to count the probabilities of these hy potheses — large r,

it is possible to assign them arbitrarily which will stron gly dama ge

the objectivit y of research.

In similar cases, instead of the arbitrary and subjective

designatio n/purpose of proba bilities with further “opt imiza t ion on

the averag e” , is recommende d to consider enti re range of the possi ble

conditions T,, T2, ... and the compr ising of the representation of

wh ich the efficiency of operat ion in this range and as it affect

unknow n conditions. W ith this problem of operations research it

—-~~~~~~~~-~~~~~~~- - _______________________-

~~~~~~~

- ~~~~~~---
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acquires new metho dologica l special feature/peculiari ties.

It is real /actua l, let us consider the case when the efficiency

of operation V depends , besides the assigned co;dit ions n~~, m~ ,

and the cell/elements of solution z~, x 1, ..., even from a series of

the unkno w n factor s T i. T 1,, ... the nonstatjstical nature about wh ich

there are no specific informatio n, and it is possib le to make only

assumption. Let us try all the same to solve problem. Let us fix - 
-

me ntally parameters T i,  Y 2. ... , let us give to the m completely

spscitic values T,~ Ti’ T~ = Ta. •... and let us transfer thereby

into the category of the assigned conditions a 1, a~, .... rot these

co~ditions we in principle can sol ve the  prob lem of operations

research and find the appropriate optimum solution x1, *~~, .... Its
cell/eleme nts, besides the assigned condi~tions •1, a~ ,

ob viously, will depend even on which particular values we gave to

co~dLt ions T~. Va,
Xl =~XI (as , a~ Yi, y~, ...);
x2 — x e (a s, a g 

~~~ Y~. ...).

This solution , optimum for this set of conditions y~. y,, •..

(&~d only for it), is cal led local—optimum . This solution, as a rule,

no longer is optimal for other values T~. T~. .~~~.. Tb. set of
local—optimum solu tioms for entire range of condition s T~, V 1. ...
gives to us Uis r.presentation of how we must ent •r, if the unknow n

condit ions T~, !,, ... were to us in accurac y kiown. Ther.fore

_ _  _ _
_-J
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local—optimum solution on obtaining of wh~ich often are expende d •any

effort /f orces , has in the case of indeter minancy /un certai sty

especially limited value. Is completely ob vious that in this case one

should pre fer not the solution , strictly optimum for some specified P
co~ditions, but the compromise solutiop , which, being perhaps

strictly optimum for which conditions. proves to be acceptable in the

whole range of con ditions.

Page 23.

‘9

The at present full—valued mathem atica l “theor ies of a

compromise ” still does not exist , althoug h in the theory of solutions

- 

- 

are some atte .pts in this dir ection (for example, see § 13 chapter of - -

9 this books) . Usually the fin al select io p of com promise solution is

realized by man wh o, relying on calculations, can consider and

compar . the pq vert ul mmd weak sides of each version of solution un der

different conditio ns also on the basis of this do a f inal selection ..

In this case, it is not necessarily (although sometim es it is

inte resting) to know a precise local optimum for each set of

conditions Ti.  Ta . •.. . Thus, the classical variati on and newest

optimi zati on methods of mathematics step back in this case to

backgr ound .

Lastl y let us consider the peculiar case, which appe a rs in the

- -
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so—c&llid conflicting situation s when the unknown paramete rs Y 1, V 2.

..-. depend not on objective facts, but on actively counter acting to

us enemy. Such sit uations are characteristic for combat operat ions,

partly for sport competitions , in capitalist societ y — for a

concurrent fight. etc. 
-

When selecting of solutions in the similar cases, can

re~dex/sho w useful the mathematica l apparatus of the so—called theor y

of games — mathematical theor y of the coa~flict i~g situat ions ( see

‘9 Chapter 10). The m odels of conflicting situatio qs, studied in the

theory of games, based on the assumption tha t we deal with reasonable

and farsighted enemy, who always chooses his behavior in the worst

for us (and best for ourselves) •anner. This idealization of

coaflicting situation in certain cases can prompt to us the least

risky, “re insurance ” solution which to not necessarily accept , but in

any case is useful to keep in mind.

1’
Let us finall y do one a gener ality. With the proof of sol ution

under conditions of indeterminancy/unc ertainty,, that we not made , the

cell/ele..nt of indeterminancy/uncertaint y remains. Therefore it is

unwise to present to the accuracy of such solutions of too hig h a

requirement. Instead of after scrupulous calculations unambiguousl y

indicating of only one , in accuracy optimu m (in some sense) solution,

it is alwa ys better to isolate the domain of the acceptable solutions

L ~~ -
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which prov e to be unessentially worse tha n others, wha tever point we

used. In limits of this domain can produc e their rinal selection the

cr itical for it pe rsons_

5. Estimation of o peration ~y severa l indices.

Above we considered the problem of operation s researc h where it -

was required so to select solution in order to maximize (or to

minimize) the one and only index of efficienc y W. In practice

frequently is encountere d the case, when the efficiency of operation

is necessa ry to consider not according to one , but immediately

accord ing to several indices: W1, W1, ... , U?,,; some of these indice s

desirable to do more , others — are less.

As a rule , efficiency of lar ge in vo lume , comple x ope rations

ca nnot be in a com prehensive manner described wit h the help of one

in dex; to aid for it is necessary to draw cther~, further .

Pa ge 24.

For e xample, during the estimatio ; of the activity of industr ial

enterprise is nece ssar y to consider a whole series of indices as

that : - -

— -—---- ---- -—
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—gain,

—t he full/tota l/complete Volume of production (“shaft”).

— prime cost, etc.

Durin g the analysis of combat operation , besides the basic

index, which chara cterizes its- eff iciency (for example , the

ma thematic al expectation that  caused to the  enemy of damage) , is

necess ar y to consider a series of furt her as th at :

-its own losses,

-t he operation time ,

- 
- -the amm unitio n consumption , etc.

- 4 This mu ltitu i e of the indices of efficiencies from which some it

is des irable to ma x imize, and others — to minimize , is characteristic
for a ny of any complex problem of oper at ions research. Does arise the
quest ion: how to be?

It is first of all necessary to emphasize that th. ad vanced

re quire men ts , generally speaking, are imoompat ible. The solution,

J~~4
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turnin g into maximum some ope index W~, as a rule, converts either

into maximum or into the minimum other indices 1~, W,, .... Therefore
- - widesprea d formulation the “achievemen t of maximu m effect with

mi nimum expenditur es” for scientific research does not approach.

Correct is any of the formulations the “achie vement of maximum eff ect

with the assigned expenditures” or “achievement of the assigned

effect wit h minimu m expenditures”.

In the general case there is no sciutions. which would convert

into maximum one index W 1 and it is simultaneous into maximum (or the

minimum) another index W 2; all the more, this solution does not exist

fo
~ 

severa l ii~dicás. However , the quantitative analysis of eff icienc y

can rendec/show highly useful, also, in the case of several in dices

of efficie nc y.

First of all, it makes it possible to previously reject/throw

clearl y the irr ational versions of solutions, which are inferior to

the best versions accordin g to all indices.

- 

, 
Let us illustra te the afores aid based on example. Let be

analyzed t he comba t operation 0, evaluated according to two indices:

V — pro babi lity of the execution of combat mission

“efficienc y”);

S — cost/value of the spent mesas.
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i. ~~1’

•~?I~~ •~~~~~~ i f.r~p
S •‘t

Z,• Xzp ~

V W

r ig. 1.1.

Page 25.

It is- obvious , the first index it i. desirable to con vert int o

the ma ximu m, and the second — into the mi ;imum. Let us assume for

simplicity that is proposed to selection the finite number — 20

diverse variants of solution ; let us designat e them 11. Ii, ... ,

Pot each of th en , are known the values of bot h indice s W and S.

Let us des-cr ib, for clarity each ver sion of solution in the f orm

of point on plane with coordinates V and S (Fig.  1.1) ‘.

POOTIOTE & • In the boo k figures are uuabsred on cha pter. , and

formulas and tab is. — on paragraphs. EVDPOC TWOTE.

Examining fi; ur e, we s-se that some v ersion. of solut i on “ ate

- - ----— --- - -~~-
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no~compe titive” and previously must be r eject/thr ow n. It is

real /actua l, thosa versions which have above other version s with the

same cost/value S advantage on efficiency V . they must lie/test on

the righ t boundary of the region of possible versions. The same P

versions , which with an equal efficiency possess sm aller cost/value , p

must lie/rest on the lower boundary of the region of possi ble

versions.

Which version s one should prefer during the evaluation of

ef ficiency according to two indices? Obviously, those that lie/rest

simultaneo usly bot h on the right and on lover boundary of the region

(see dotte d line in Fig. 1. 1) . It is rea l/actua l , for each of the

versions, which do not lie on this sect io.a of bou ndary, always will

be located another version, wh ich is not inferior to it on

efficiency , but cheape r or, on the contrary, not being inferior to it

on cheapness, but more efficient. Thus, of 20 advanced versions

majori ty d rop. out from competitio n , and to us there rena ins only to

analyze the remain ing four versions: X,~, Ii,, Ii,. ~~~ From t hem

— most efficie nt, but comparatively by road; X1~ 
— cheapes t , but

not so/such efficient. The matter of that m aking decision — to be I -
dismantle/selected at by which value we are concordant to pay the

known increase of efficiency or, on the contra ry, by which

portion /fraction of efficiency we are con~cor dant to endow in order

not to carry too g reat material losses.

A
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The analogous prelimina ry survey of versio s (although without

this demonst rativ e geometric interp retation) can be produced a lso in

the case of many indices: U?1, U?1, ..., W~.

This procedur e of the prelimi nary reject of the noncompetitive

versions of solution must always precede the solution of the problem

of operations research with severa l indices. This, although does not

re move/tak e the need for a compromise , substa ntiall y reduces the

solut ion set withi n limits of which is realized the select ion.

In view of the fact that the composite estimation of operation

is immediately according to se vera l indices difficult and requ ires

spec ulations, in p ractice frequently they attempt to artificially

join several indices into one gene ralized index (or criterion) .

Fr eque ntly as this generali zed (co mp ound /composite) criterion is

ta ken fractioD; in numerator place those indices U - 1 , . . . ,  W’~~ which it

is 4~~~j rable to in crease , and in de nomina tor, those which it is

desirable to decre ase:

U ~~~~~~~~~~ - . (5 I )
U--

,n+ I

Page 26.

iA
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For example , if speech occurs about combat operation , in

numerator place such values as “the probability of the fulfi l lment of

combat mission ” or the “losses of enemy ”; in denominator — “his own

loss-es”, “ammunition consumption ”, the “operation time”, etc.

An overall deficiency/lack in the “compound/composite criteria”

of type (5.1) it is, the fact that a deficiency/lack in the

effic~iency according to one index always it is possible to com pensate

for because of another (for era s-pie, smal l probability of the

fulf illment of combat m ission — becaus e o,f the low ammun ition

co su.ption and , stc.).  Similar cr iteria call to mind into joke

proposed to Leo Tolstoy “evaluation criteria of man ” in the form of

the fraction where the numerator — true advantages of man, and

de nomi nator — its opinion about itself. The groundlessness of ~~~
criter ion is obvious : if we take it in earnest , then man, almost

withou t ad vantages , but entire ly without conceit , will ha ve infinite

va lue I

Frequently “compound/composite criteria ” are proposed not in the

form of fraction , but in the form of the “weighted sum” of the

separate indices of the efficiency :

LI_—~ 1 W’1+a, U” 2 -j_ ...~~a~ 
U_ u, (5.2)

wb~re a~, a~, .-, a~ — positive or negati ve coefficients. positive are

— —
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placed with those indices which it is desirable to maximize; negative

— with those which it is desirable to minimize.  The absolute values

of coefficients (“ weight”) correspond to the degree of the importa nce

of indices .

It is not difficult to ascertain tha t the compound /compos ite

criterion of form (5.2) actually in no way differs from the criter ion

of for m (5.1) and possesses the sa me def i~cie nc y/lacks (po ssibility of

the mutual com pensation hetero geneous ind ices). Therefore the

nopcritic a l use of any for m of “compoun d/compos it e” criteria fraught

with dangers can lead to incorrect recommendations. However , in

certain ca ses when “weights” are not chosen arbitrarily, and they are

select ed so that the compound /composite criterion would implement in

the best way its function , it is possi b le to obtain wi t h its a id some

result s of the limited value.

In certain ca ses problem with severa l indices can be reduced to

problem with some- only index , if we isciat e only one (main) index of

efficiency V 1 and to attempt it to conver t into maximum , but to the

remainin g, auxiliary indices V~, U3, ... to superiapose only some

limita ti on s of the form:

~ 
w-~; ... ~ ~~

‘
~“‘ ~ ~

‘
~~+ ‘~~ ...; U k ~~ 

uk.

These lim itat ions, it goes without  sa ying,  will enter into the
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set of the assigned co nditicus a~, ~~~~ ..~.:.

For e xample, during the optimi zation of the j ob sched ule of

industrial enterprise it is possible to require so that the gain P
wou ld be maximum , plan /layout with respec t to assortm ent was

fulfilled, but the prime cost of production — not highur tha n give n

one. During gliding/plannin g of the bombin g raid, it is possible to

requi r e so th at the replaced to the enemy damage wou ld be ma ximum,

but in thi s case, their own losses and the cost/value of operation

did not ex ceed known limits.

P age 27.

U pon this for mulation of the problem, all indices of efficiency,

except one , main , are translated into tbe dischar ge of the assigned

coiditions of oper ation. The versions of solution, which are not

pLaced in the assigned boundaries, imme dia tely are reject/thrown as

noncom petitive. The obtained recommendations , obviously, will depend

on that, as are selected limitations for auxiliar y indices . In ord er

to deter mine, how this affect s the fina l recommendat ions by choice of

solution, it is useful to var y im it ation within reasonable limits.

Finally, is feasible one additional way of the construction of

compromise solution , which can be nam e d the “ meth od of consecutive
concess ions ” .
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Let us assume that the indices of ef f icie ncy are arrange/located

in the order of the decreasing im portance : f i r st basic U 1, the n

others, auxiliary: U2, U3, .... For simplicit y let us consid er tha t

each of them must be converted into the maximum (if th is not t hen, it

suffices t o change the sign of index) . The procedure of the

cos-struction of compromis e solution is reduced to following. First is

oeght the solution , which rotates into maximum the main index of

efficiency W~. The n it is assigned, on the basis of practical

coi~siderations and accuracy, from which are known initial data (but

frequently it is small) , certain “concession” LV , which we are

concordant to allo w in order to convert into max imum the second index

I~ . We assig n on index U , limitation so that it would be not less

than V* ,—A W ,, wher e W * , — maximally possible value U,, an d during

th is limit at ion vs seek the solution, which rotates into ma x imu m V 2.

Further again is assigned the “concession ” in index W~, by value of

wh ich it is- possible to maximize U ,, and so forth.

I

This method of the construction of compromise solution is good

in tha t it is hers immedia te ly  evident , by the value of which

“ooncession” in one index is acquire d gain in other.

Let us note that the freedom of choic e of solution , acq ui red by
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the value even of insignificant “concessions”, can render/show

essential , since in ma ximum region usuall y the efficiency of solution

varies ver y weakly .

One way or an othes . with any method of formalization , the

problem of the qua ntitative proo f of solu t ion by several ind ices

remain s not to end dete rmined , and the final selection of solution is
determined “commander ’s volit ional event/report ” (so we condit ionall y

will call the cri tical for selection face) . Researcher ’s matter — to
let into commande r ’s orde c a sufficient quantity of dat a, th at permit
for i~ to thoroughly consider adva ntages and deficiency/lacks in each
ve rsio n of solut ion and , relying on them , to do a final se lect ion.
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Page 28.

2. LINEAR PROGRAMIvL [NG.

1. Problems of l i n ea r  p r o g r a m m i n g .

I
In many regions of practice , at - p ea r  t h e  p e c uli a r  p ru b l em s  of

optimization of t h e  s o l u t i o n s, fo r  w h i c h  a re  c h a r a c t e r i s t i c  t h c~

— 
follovintj fea tures :

I — index  of e f f i c i e n c y  W r e p r es er .t s  b y  i tself  l i n e a r  f u n c t ion

- from the ce l l/ e lem ents  of solut ion x 1, x 2 ,  ••~~~~;

— lim i t ing  C ) f l d i t i O f l s, assigned for  the possib 1~ s~ L u t i o n s , t a k e

th e form of l inear equal i t ies  or i nequa l i t i e s .

Such problems is conventionally designated a~ th4~ problems of

- l inear programming  1 
-

- -~~~ ~~~~~~~~~~~
-

~~~~~~~~
- ---

~~
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FOOTNOTE 1~~ Word “ p r o g r a m m i n g ” bor rowed  f r o m  f o r e i g n  l i t- r a tu r ~ and

in this  case ind i:a tes  n o t h i ng  else but  “ g l i d i n q/ p l an n i n ” .

EN DFCOTNOT B.

Let us  g ive  s eve ra l  e x amp l es  of t h e  problems of l i nea r

programmin g of the  d i f f e r e n t  reg ions  of practice.

1. Proble. of food ration. There are four forms of food

prod ucts: -

fl1, fl ,, fl ,, 114.
Is know n the cos t/value  of u n i t y  of each product:

Of these pro~~ucts it is necessary to compr i s e food r a t i o n  w h i c h

must contain:
cI, c1.c$, c4.

-
‘ 

— proteins is not less tha n b, uni ty ,

— :arboh ydrates are not loss than b2 uni ty,

— grease are not less than b3 unity.

Unity of product 11, contains a 11 unity of proteins, a 12 Unity of

carboh ydrates, a~, uni ty of greas e , etc. The cont~ n t of ~ell/ e 1em e n t s

in uni ty of each p roduc t  is assigned by t ab l e  (Table 1.1~~.

:‘ 
- 

_ _ _ _
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It is requi red  so to comprise food ra t ion  in order  t~ ensure

assigned conditions (1. 1) with the minimu m cost/value of ration.

Let us write the formulated verbal conditions of problem in the

form of mathematical formulas. Let us designate

Xb Z,,X,,X4

quantities of products n~, n,, ri,, ji,, entering the rati n.

Page 29.

It iS obvious , t h e  common/general/total  cost/value of the r a tion

- : will be
L = C 2X1+C ,X,+C sX , +CqX4

or it is shor ter 
-

-

~~~ L —~~~c,x1. (1.2)

Let us regist er mathemat ically conditions (1.1). In one unity of

4 

product fl, is contained a1, unity of protein, which means , tha t in x 1

unit y — a11x 1; in x2 unit y of product 11,-is contained a21 x 2 uni ty of

protein, etc. The total quantity of proteins, which is z ontained i~

ration, must not be less than b1; we hence obt a in the  f i r s t

- 
- condition— inequal i ty :

(~~3)

-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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Record/wr i t ing  analogous  condi t ions  for  c a r b o h y d r a t e s  and fa t s ,

we wi ll  obtain, including (1.3), three condition—ineguality:

a~ x1+a~ x,+a,1x,+a~
i.~~

b,,
a,Sx,+a,,x$+a..xI + a d x.>b a. (1.4)

/ 
a,,x1÷ a ~~x,÷a~~x,+a~~x,~~~b,.

These conditions represent by themselves the limitations,

superimposed on the solution.

Appears the  f o l l o w i n g  task:

to select such nonnegative values of variables 
~~1. ~~ ~,, x~,

that satis fy linear inequalities (1.4), with which the linear

fu nction o f these varia bles

L = 4X3 + 4x1 + + 0X

would be converted into minimum.

Stated problem represents by itself t he  t y p i c a l  task of l i near

programming. W i t h ou t  being stoppe d as far  as on the meth ods of its

solution (a bout th is speech it wi l l  go su b s e q u e n t l y ) ,  let us place

- - st ill seve ral s imi lar  tasks.

i~.
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Table 1. 1.
(,ImmuI.UT

- - — -~~~~~~ L~)6~ H~I. ~~ rA -.O~ bI ~~~~~~ ItIs p~

(SP) I 
_____

I1~ a2, _______________________

a ~~, C~~ C~~

fl a4, 
—

_
0a 

— 
~~43

Key: (1) . CelL/element.  (2) . proteins. (3) . c ar b o h y d r at -’ . (4) .

grease. (5). Product.

Page 30.
-1

2. Task of loading of machine tools. Weavin~j factory has

available N 1 machine tools of type 1 a n d  N 2 machin e to ls of type 2.

Nachine tools can prod uce four forms of the fabrics:

T1* T,, T3~ T4.

Each t y p e  of mach ine  tool Can p ro duc e any  Of th e  f o r m s  of

fa brics, but in uniden -ical q u a n t i t y .  A m a c h i n e  tool  of t y p e  1 is

produced in month a13 of the met~ rs of fabric T3, a l ?  meter s of

f abr ic T 2, a ,3 meter r  of fabric r 3,  a1, meters of fabric r ,. The

correspond ing numbers for a machine t ad of t ype  2 viii be a21, a22,

a13, a 24. Thus, the productivit y of machin e tools in the production

of each form of fa bric are assigned to Table 1.2.

- 
-
. Each meter of fabric T1 yields to factory income c1, tabrics T2

-- J A
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— income c2, fabrics T3 — income c 3 and fabLics T, — income c,. To

factor y is prescri bed , tht ~ian/layout according to which it is due

to produce for the month:

is not less than b 1 meters of fabric T,, is not less than b2

meters of fabric r 2, is no t  less than b 3 meters of fabric T3 and is

not less than b, meters of fabric T,, i.e., planned target is

expressed by numbers b ,, b~~, b3, b ,..

.0 It is required ~~O to distribute loading machine tools by the

Erod uction of the fabrics of different form so that the plan/layout

would be carried out and in this case monthly gain would ~e maximu m .

Let us register the conditions of tasi mathematically. Let us

desigm ate x 11 — number of machine tools of type 1, occupied with the

production of fabr ic T 1, x 1,2 — n u m b e r  Cf  machine tools or t ype  1 ,

occupied with the product ion of fabric I~ , and geueraU.y XU— a

number of machine tools ot the type i, cccu~ ieu with the production

• of fabric 7’s. The first index corresponds to the type or machine

tool, the secon d — to a form of fabric (i 1, 2, j = 1, 2 , 3, 4) .

Thus appear eight variables — cell/elements of the solution:
x,1, x11, x11, x14; 

1 (j  5)
• X1~, X~~, ~~~~ X~~~,

wh ich we th ey must s-elect, so tflat the montnly gain woull be maximum.
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Let us reg ister formula for calculating this gain. Each meter of

fa br ic T1 yields gain C1; x 11 meters of fabric r1 they will bring

gain c 1x 11; in all fabric 1 v i i i  b r in g  gains c~ (x1 ~ 
+ x2~ ) and so

forth. Common/general/total gain will be equal to:
L ~ c1(x 11 ± X,,) +C, (X ~ + x~) +c ,(x1, +Xt,) +c. (x11 -I- x,~). ( 1 .6)

Xt is reguir3d to select such nonnegative values of variables

(1.5),so that the linea r function from the m (1.6) would be converted

into maxim -in .

I
~~I
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Table 1.2.
___ --________ _ _ _ _ _ _ _ _ _ _ _ _

CTaHk . - I I

- •- I a , a1,
a ,, a 2~ - a,4

Ke y: ( 1) . Type of mach ine  tool . ( 2 ) .  Form 01 fabr i c .  - - -

Page 31.

In this case, must be i i rp letu e~n tc d the tcllowing limiting conditions:

1) Resource/lifetimes on machine tools mu st not be exceed ed,

i.e. , the sum of q u a n t i t ie s  ot each t y p e  m a c h i n e  tools, o c c u p ie l  w i t n

the prod uction of all f a b r i c s, mus t  not  ex c 4 e d  the  a v ai l ib l e  stock ot

th e  machin e tools:

(1.7)
x~~+x 41+x ,,±x ~~~~N,.

2) ~ssignmemt s with respect to assortment must be carried out

(or are exceeded) , With account of the data of table. 1.2 these

conditions will be reqis t ered in the  fc r m of the inequalities:
ai1 xii -t-a~~x,1~~~b1,

(1.8)a1 xi,+ a, x,,~~~b,,

~~ 
x1, +a,4 x,~ ~~ b4.

Thus , is formulated the task:

ro select such non—ne gative values of variables x i , ,  ~~~~~ ...,

..., x 24, that sat isfy linear inequalities ( 1 .1)  and (1.-a ) • by whi ck1
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the  linear f u n c t i o n ot these  v a r i a Q i es  (1.6) w c u l u  be c on v e r t e d  i n t o

ma ximum.

3. Task of distributio n of re~ourcc/1jietjmes. There ate some 
- 

-

resource/ljf€tines (raw material, w or .~ for ce, e qu i p m e n t ) :

R,, R,, ... , R~,

in quantit ies respectiv ely

b1, b,, ..., bM 
- 

-

un its. Wit h the heL~- of these resource/lifetimes can be produced t h ’

f 
goods:

TI, T,, ..• , T,,.

Vor t he p roductio n of one unity of goods T1 it is necessary

•, to amity of resource/lif~~tiae R1 (i = 1, 2, ... , i n ;  j  = 1 , 2,

..~~~, a). !ach unit y of resource/ l ifetime R1 costs a1 rubles (i =

2, ... , a). EACh u n i t y  of goods ~ can be r ea l i zed  on v a l u e
C,~~j  I. 2. . . m)-

In each form of goods a q u a n t i t y of p roduced  u n i t y  is limited to

t h e  Jea and * it is known that the market cannot absorb more than k,
u n i t y  of g oods T, (j — I,2, ..., n).

It does ask itself: which quantity of unit y of whicii good s must

-
, be produced, in order to realize m aximum gain?

- - - -- --~~~ --~~ ~j
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Let us  regis ter  th e  condi t ions  of t a sk .  Let  us d e si gn a te

X 1, X1, .•• X,r,

quant i t i e s  of good s T 1, T 2, ... , T,,, w h i ch we w i l l  p lan to

pr oduction . The c~~a dit ic n s  cf d e m a n d  a s s i g n  on these va lu e s  of t he

limitati on :

x, ~~k1; x, ~ k1; ... ; x fl~~~k I.. ( 1. 9,

Page 32.

Resource/ lifetimes must su f fi ce , h ence a D ie ar  the l im i t a t i ons :

+a1~ x~

a~ 1 x, +O ,nt XI+ ~~~~~~~~~~~
These conditions it is possible to write more br i e tl.y in t he

form:  
‘I

— I

- (1.10) 

~
‘ a ,,J xg~~~’m.

It is expressed gain t depending on the cell/elenents of the solution
XI. X1, ... , X ,,.

Prim. cost 
~ of unit y of goods ~, is equal to

5, a1~ d1 + a11 d1 + ... -~- a,,~ dm,
or , it is shorter,

s,—~~’ a11d, (J~~J , 2,... , n~ (1.11)

After comput ing according to t h i s  f or m u l a  the  p r ime  c ost of

i. J 
— 

- 
— -

~~~~~~~~ 

- - - 
__ _ J~



_ _ _ _  —~~~~~ ~~~~~~~~~ - ~ - - -~ --~ - --__ --—-—-— -,w--~~~~___ ..
_ _._

,.,!

DOC = 78068703 PAGE 6~

u n i t y  of each goods , we wi l l ob ta in  a series of the  va lues :
S~, S~ , ..., S,,.

~ute/c]ean gain  q1, ob ta ined  f rom the t ea l i z - i tion or one u n i t y

of gopds T,. is equal to the  d i t f e ren c e  be t,een  its  s e l l i n g — p r ice

and pr ime cost sj :

q1~~ c,—s, (j—i , 2, ... , n). (1.12)

On this f ormula  we obtain pure/clean gains per unit for all
-
~~~ goods:

q1. q,, ... , qft .

t Commo n/general/total pure/clean gain f~~ w the reali~ a-t ion of all

• goads sill be 
-

or , it is shorter,
‘I

L=~~’ q,x,. (1.13)

Page -33.

T ask is reduced to f o l l o w i n g :

I 
10 select such n o n n e ga t i v e  v a l u e s  of the  va r i ab l e s  

~~~, x~, ...,

X,~ which satisfy l inear inequalities (1.9), (1. 10) and con vert into - 
-

- 
. 

ma x i m um  the linear function of these variables (1.13). 
-

l~. Transport problem. There are m of the storages:



- -  
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and n of the  point/ i tems of the consun ~ t ion:

ni, n., ... ,
(see Pig. 2.1).

Speec h occurs about the composition of the plan/lay3ut of

transport  f rom storages C 1, C 2, •..
~~ t~~ into point/items fl,,fl,,...,fl~

ce r t a in  goods. On storages C , C 2 ,  ... , Cm are suppl ies of

good s in the quantities
a1, a,,..., am

of uni ty. The point/items of consuipticn 
~~ ~ ~., fed the

claims respectivel y to

b1, b,,..., b,,

of un i t y  of goods. Claim s are feas ib le, i.e., the  sum of a l l  c l a ims

does not exceed the  sun  of all ava i l ab le  suppl ies:

Stora ges C 1, ... , C,,, are connected w i t h  the  p o in t / i tem s  of

comsusption ni, ..., Fl,, by some grid/network of roads w i t h  t h e

specific tariffs on transport. The cost/value ct the transport of one

unity cf goods from storage C1 into pc in t , i tem 11, is equal to ~

- - 
(i 1 , 2, ... , m ; j = 1, 2 , ..., n ) .  —

- -  14
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li zci
I. n.y

C4 flj

CL I,.

n fl

C.

¶ Pig. 2.1.

Paqe 34.

I t  is r e qu i r e d  to conipri . .~e t h e  p l a n/ l a y o u t  of t r a n sp o r t , i.e.,

to indicat e that f r o m  whic h storage into which point/items and which

quan t it y  of goods must he d ir ec ted  so t h a t t h e  c laims w o u l d  be

carr ied ou t, and o v e r a l l  e xp e nd i tu r e/ c c nsuiu~ tj ons to a l l  t r a n s p or t

we re m in imum .

Let us designate Xjj— the quantity of unity of good s, directed -

from storage C1 in point/item l1~ (if from this storage for this 
-

point/item goods are not directed, x1, —IJ).

The solution (plan/laycut of transport) consists of Mn ot the

numbers:
X,,, X~~, ... ,
Z~~p 

~~~
‘ : ‘

~
‘
~~

Xmi, Xml, •.. ~~~~

14
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forming r. ctaagula r a r ray  (t r a t r i x/ d i e ) . Let us in a b b r e v ia t e d  f o r m

de signate it (xu). It is required to select such nonnegative values of

variables x1j (i = 1, 2, ... , i n ;  j = 1, 2, ..., a ) s o  t hat  w o u l d  be

satisfied the following conditions: -l

1. The c a pac i t a n c e/ c a p a c i t y  of s to rages  mus t  not be exceeded ,

i.e., the total gu - an t i t y  of goou s, u n d e r t a k e n  f r o m  each sto rage , m u st

not exceed the available on it supplies:

or, i t  is shorter, 
-

‘I

(1.14)

2. Cl aims , subject b y point/ i tems of ccn sumption , mus t  be

- 

I 

catried out: —

XI. + Xu + ... +X1pj = b,, - -

either it is short er or , it is shorter,
m

- I

(1.15) ~

-

-

— b,,, I
‘— I

- -
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Page 35.

- 
The coalao n/y enera l/ to ta l  cos t/va lue  of transport L will be equa l 

-

to L
~~ci, xi, +c,,xj i+...+C,,x,,,+
+~ iz X~ +C,, Xe -f- ... +4,, X1 +

• or , it is mich shorter,

L — c,g x1~. 
(1.16)

s_i _ I
-
- 

- 

It is required so to select the plan/layout of transport (x,~) (i

= 1, 2 , ..., m ; j = 1, 2, ... , n)in order cost/value L of these

transport to convert into the minimum .

Again arises the pr oblem, analogous examined earlier: to select

non—negative values of variables (Xe) ’ so that during satisfact ion of

conditions (1.14), (1.15) the linear function of these variables

(1.16) wou ld reach the irinimum .

Certain special f e a t u r e/ p e c u l i a r i t y  of this problem , in

comparison wi th  those p rev ious ly  examined , lies in the  tac t  t h a t  not

-~~~~~~~~~~~~~~~~~~~~
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all restrictions p lace d on var ia bles are l inear  ine qual ities; nam ely ,

coqditions (1.15) are registered in t h e  f o r m  of l inea r e jua l i t i e s .

In the future we will meet the prchlems of tue linea r

programming in which limiting conditions taxe botn the  f o r m  of l inear

inequalities and equalities, and will learn with lightness/ease to

pass from some to others and vice versa.

Let us note that u p o n  certain setting of transport proble m all

limiting conditions of problem become equalities. Namely, if the sum

• of all cla im s equa l to the sum of all supplies

Z b ,—~~~as.

then each storage will be unavoidably f r om exported everything which

on it is, and inequality (1.14), just as (1.15) , a f t e r  be ing

converted into equali t ies.

— 
this problem about transport is called transport prob lem, and it 

-

we will  be specially occup ied subsequentl y (see §~ — 14 this chapters).

5. Pr oblem of producticn of comp lex  equ i pment . Plan /gl ides  the  
-

pr od uction of the complex equi pmen t whcse each assembl y co n sists of n

of the cell/elements:

~~~ 
es,..., a,.



• 
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Order s to the p r odu c t i c n  of t hese cell/elements c-an be placed on

• the different enterprises:

U1, Ii,,..., fl,,,.

During preset time 1’ in enterprise fl, it is possible to prepare 
-

a41 cell/elements of type  3, (i = 1, ._ .,  i n ;  j = 1, ..., n ) .  -

To del ivery a re  s u b j e ct  o n l y  fu l l/ to ta l/ comple te  assemblies of 
I

-
~~ equipment , which cons is t  of t h e  set of all cell/elements - -3,.3,,...,3,,

It is required to distribute order s  on en te rp r i s e s  so tha t the

number of f u l l/t o t a l/ comple te  assembl ies  of equ i p m e nt , pre pa re d f or

L time T, wo uld be maximal. Plan/gliding the production of equipme nt,

we must for each en te rp r i se  ~fl 1 indicate, wh a t  part  of the a v a i l a b le  
• —

is its or d er time it must return to th€ prouuctioa of cell/elements i I -

3, ( i  1, ... , m ;  j  = 1 , ..., i i ) .

Let us designate X11 the fractiol !  of time T which enterprise

fl, it wil l give to the production of cell/element 3, (if this

~~ll/e1e..nt in this enterprise not at all is Iroduced, x51~~U).

Dur ing  g l i d i n g/ p l a n n i ng  we must  observe the  tofl .owing l i m i ti n g

- - - - LA
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conditions: the quantity or time which each enterprise spe nds on the

preduction of all cell/elements, must not exceed the overall supply

of ti me T (but “fraction ” — unity) :

~ ad + XMl + + XM, ~~~ 1’
or 

— 
- 

-

(1.17)

al

‘-I

• Let us determine a quantity of full/total/complete isseabljes of
the equipment whic h for tiu~e T will p lace all enterprises together.

The total  q u a n t i t y  of cell/ e lements  which will produce all 3,,

enterprises together , will  be equal
~~~~~~~~~~~~~~~~~~~~~~~~

cr

(1.18)

Page 37.

Thu s, with the assigned plan/ layout  of t h e  d i s t r i bu ti on  of
or ders, i. e. , with given ones 

~
,, (i = 1, .. .. i; i = 1, .... fl) w ill

be pro duce d:
—N, ~I&MflJI~~O8 9JleMeHT$ 3,
—N, ~K~~M1LThPOD 9JIeMeHTa 3,

—N , 3c~~snJuupo ewein~ 3,,.

Key : (1). The copies of cell/element . 

- - -- ~•
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a
How many complete asseublies o~ equi pment it is possible to

gather f r o m  these e lements?  Is obvious  so m a n y ,  how m i n i m u m  of al l

numbers  N 1, N~~, •~~~., N ,,. j t  is real/actual, if, for e xa mp l e , e l emen t s

of the type ~ is produced by 100 ~cs., and cell/elements of t h e  t y p e

3,— a tot al of of 10 pcs., then we in any w a y  c-an g~i t h er  of these

cell/elements of more than 10 Lull/t otal/comp lete assemblies.

Let us d e s ign a t e  ~ — qu a n t i t y  of f u ll ,’t o t al/ complet a  assembl ies

of the  e q u i p m en t  w h i c h  cam be gathered wit h this plan/layout of the

arrangement/position of otders (x,,).

- 
- We ha ve:

2~~rnin Nh (1.19)

where by s ign  aLa is designateu m inim um from the numbers , whic h s t and

under  this s ign , f o r  - a l l  ~cssible j.

Taking  into a ccount (1 .18) ,  c o n di t i on ( 1.19)  can be r e wr i t t e n  in

th. form
( 1• 20)Z— m l n L’ a1g ;1.

Thus , we come to the following mathematical formulation
of the problem :
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To find such nonnegative values of variables x41, so tha t would

be implemented inequalities (1.17) and in this case was converted

into maxim um the f unction of these va r i a bles
Ut

Zat.min~~~aux~.i t — P

The difference for this problem from all those previously

examined l ies in the fact tha t he re aaxi*i z~ d f u n c t i o n  ~ is not

linear function from variables x41 and , thus, çroblezu, strictly, is

not the  proble m of l inear  progra .ming . However , it it is easy to

reduce to the problem of linear programming by following reasonings.

at
Since value Z is m inimum of all values N,-=Y auxj,, then it is

possible to write a s~rjes of t_h e j~~g ua1ities

~
‘ a42 x42~~ Z; 

(1.21) 
•

a,,, i,,, ~~Z.

- 
P.g. 38. •

I
Value Z can be considered as new nonnegative variable and to

solve following problem.

To find such non—negative values Ct the variables x11, x11, ••~~~~

A



TI~~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

nbC = 78068703 PAGE 19

To find such nonnegative values of variables x~1, so tha t would

be implemented inequalities (1.17) and in this case was converted

into maxim um the f unction of these var iables

Z=i min~~~aUxd.
‘ ‘— P

~The difference for this problem frcm all those previously

examined l ies in the fact that here maxim ized function ~ is not

linear f u n c tion f r om var iables  x,1 and, thus, problem , strictly, is

not the problem of linear programming. However, it it is easy to

• reduce to the problem of linear pro grauming by following reasonings.

Sin ce value Z is m in i m u m  of all values ~~~~~~~~~~ then it is

possible to write a series of tji~ .jj~~.q.uaJ.i ties

,~
‘

1
a,2 x12~~~Z; (1.21)

a,,, i,,, ~~ Z.

Page 38. -

Value Z can be considered as new nonnegative variable and to

.øl~. f o l l o w i n g  prob lem.

Ta t~~md such n o n — n eg a t i v e  va lues  Ct  t h e  variables X 1 p ,  X 1 2,  “
~~~~~ X,1,,,
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an d Z, so that the y would satisfy linear inequalities (1.17) and

(1.21) and with this value Z it was ccnverted into maximum.

Since value Z is a linEar tunction of the new variables x 11 ,

x12, ~~... XMfl,Z.

Z=O•Xii+O•Xit+...+0•Xmn+1•Z,

the prcblem is reduced to the usual prcbletn of linear programming, by

in trod uction “excess” alternat ing/variabl e Z vnic n in tae initia l

formulatio n of the problem did not figuze.

Problems of such type where it is required to convert into

ma ximum the min im u m  va lu e of some value (or, on tne Contrary, in to

minimu m— maximum ), fairly often the y are encountered in practice and

are called “problems to minitnax ”. With such prc~iems we iill be still

— 

- 

- met in Chapter 10.

Thus, we considered a w h o l e  series of the pr-~bleins of operations

research from the different regions of ~racticE; these problems are

characterized by some common/general/total features. In each of them

the cell/e lements of soluticu represent b y themselves a series of the

nonnegative variables x 1, x 2, .... Is required so to selec t the

va lues of these varia b les, so that

I) wo uld be implemented some limitaticns, hav ing the form of

- -  _
~~~~~~~~4
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liqear inequalities or equalities relative to the variables x 1, x2,

2) certain linear function L the same variables it was converted

into max imum ( m i n i m u m )

The mathematical apparatus of the linear programmin g

pr esentation of w h i c h we be g in , is intended specially for the

EOlUtiOfl of such problems.

Can arise the question: a is necessary this special a pparatus?

It is cannot wheth er , as is customar y in mathematics, it is simple to

differentiate L arguments x 1, x2, .~~~., to mak e derived e~jual to zero

and to solve the obtained system of eguaticns?

so, it turns out that it is not possible to do this 1 Since

function I. is linear, derivatives of it on all arguments are constant

and nowher e into zero they are converted. The maximum (or the

minimum) of funct ion  L , if it exists, it is reached always somewhe re

on the boundary of the region of the pcssi~~ e va lu es x 1, x 2,

i.e. , where come into actio n limit ations.

Page 39.

, -~~~~-
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I

• The mathemat ica l ,  a p p a r a t u s  at linear programming allows for us

consecutivel y, within the shortest periods , to examine the boundaries

of the reg ion of possible sclutions and to find on these boundaries

1 the soluti on , whic h is op t i m u m , i.e., suc h v a lue  par t x~, x2,

with which the lin ear function L is ccnvert€d into naximun or into

the minimum.

¶ 2. Basic pro blem of linear programming..

Above we considered different practical prcbiems, which were 
-

- being reduced to the diagram of linear prog ramming. In some of these

problems linear limitaticns took the form of ineq uality, in others —

equalities, in the third — those and otber~ .

-

- Here we will examine the problem ci linear programm ing with

l imi ta t ion—equal i t ies — the so—called basic problem ot linear

programming (OZLP)

I

In the f u t u r e  we w i l l  s h o w  h o w  fr c i t  p rc bl e i  w i th

lim itation—inequalities it is possible to pass to OZLP, m d  vice

ve rsa.

The basic problem of linear programming is placed as follows.
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There is a series of variables

X1, Xe, .... X~.

It is required to f in d such non negative values of taese

va riables which wo uld satisf y the syste, of the  linear egua t ions :  I ’
a,1 x2 ÷ a,, x, + ... + a,,, x,, — b,; (2 1) . .
a,,,3 x1 + a,,,, x, + ... +aMN x,, ~~b,,,,

• and , fur thermore. woul d be con verted into minimum the liasar f unc tion

L — c1 x, + C, x, + ... ~ c,, x,,. (2.2)

It is obvioum , th e case when l inear fu n c t i c n  must be converted

not into t he m i n i m u m , b u t in to m a x i m u m , easily it is reduced to -

previ ous , if we change the sign of function and to consider instead

of it the function

L’ —L — —c, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2.3)

Let us agree to call the permissible solution of OZLP any
- 

aggregate of variables 
—

satis f ying egmations ‘2. 1) .

Optimum solut ion let us call, that of the permissible solutions.

with which linear function (2.2) is conver t ed  into the m i n i m u m .

Page ‘4 0.

- - -~~~~-~~~~ -
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The basic problem cf linear programm ing not necessarily must

have solut ion. It can seem t h a t  egu a t i cn s  (2 .1 )  c o n t r a d i c t  eac h

other; it can seem that they have solution, but not in tac range of

the nonn eg ativ e va lues x 1, x2, ... , x~ . Then O Z L P  ioes not have  the

permissible solutions. Finally, it can seem that permissible - •

solutions of OZLP exis t , b u t  a m o n g  them n o  o p t i m um :  f u n c t i o n  L in the

domain of the perm issible sciutions is not limited from below.

- 1
With examples of such features of CZLP we wi l l  be i n t roduced

subsequent ly.

Let us consi~~er , f i rst  at al l , a question concerning the

existence of the  p e r m i s s i b l e  s o l u ti o n s  cf OZLP .

During the solution cf this guestion , we can exclude from

examinat io n the l inear  f u n c t i o n  L whic h is required to minimize — the

presence of the permissible sclutions it is determined only by

eq uat~.ons (2.1).

Thus, let there be system of equations (2.1). Are there the

noin—negati ve value s x1, x2, ... , x,,, s a t i s f y i n g  this  s y s te m?  This

q uestion is examined  in th e special section of mathe matic s — linea r

algebra. •

_ 
~i4
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Let us g ive  b r i e f l y  some posi t ions  ot l inear  al geb ri , not

stopp ing on the p roofs  ci the  c o r r e s p o n d i n g  theorems 1_

~COTNOTE ‘. The elementary presentation of linear algebra see, for -
-

ex ample , in work 
C 5) . E N D F O O T N O T E .

The matrix/die of the  system of the linear equations
a1, x1 + a,, x, + ... +a,,, x,, = b,;
a,, + a,, x, ...-~. a,,, = b,;

-
~ is called the tabl e, ccmprised of the  coeff icient s of x ,, x,...., x,,:

a,, a,, ...

a a ,,,, ... a_,,,,,
The augmented matrix of the system of A.inear equations is called

the same matrix/die, supplemented by th~ coluso of the amsolute - 

-

terms: a,, a,, ... a~ b,

a,,,1 a,,,, ... a,,1,, b,,
The rank of matrix/die is called the gi-eatest order of different

from zero def in i t ions  wnich can be obtained , deleting from matrix/die

some rows and some columns.

In linear algebra is proven , whic h for the consistency of the

• system of linear equations (2. 1) is ncc€ssa~y and it is suffic ient so

that the rank of the matrix/die of system would be equal to the rank

-~~ ---- -
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of its augmented matrix.

Page 41.

E x a m p le 1. Is given the system of three equations wit h four

un knowns:

- 
- - x ,— x ,= 2;

- 
- 

x ,—2 z ,= 3.

~ o determine, is this system of ccmb ined?

Solution. Matrix/die at the system :

2 I — S I
I — )  0 0 .
1 0 — 2 0

The augmen ted m a t r i x :

2 I — 1  I — I

1 — 1  0 0  2 .

I 0 — 2 0 3

Let us determine the rank of the first matrix/die. It cannot be 
-~

more than 3 (since the n u m b e r  of t ows  is equa l  to 3). Let us compr ise

- 
I 

any defini tion, eliminating from the matr ix/die any column , for

example , the latter. We will obtain

2 I — i
A— I —I 0 .

I 0 — 2

• Compu ting this determinant according to k n c w u  rule, w e wi l l

obtaim :
A—2.(—I).(—2).(- 1.0.(—1)4 ~.

— (—I).(—-I).1 —2.0.0—(—2). I .l~~4 — I +2~~5.
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This d e t e r m i n a n t  is not  e q u a l  tc zero, which means, that the

rank of the matrix /die of systcin is egual to 3. Obviously, the ran k

of aug mented matri x is also egual to 3, situ:e of the cell/elements of -

augmented matrix it is possible to comprise the sane determinant . -

From equality the ranks ot matrix/dies, it tolJ.cus that the system of

— equations is combined .

~1

Exa mp le 2. To trace to consistenc y the system of two

equations with thr ee unknowns ~a. x~, x3:
— x, + x, —

4z,—2i,+2~, —I.

Solut ion. The augmented matrix of the system :
12 — I I— 4

14 —2 2 I

(her left sid e — matrix/die of system).

Let us find the rank of the matrix/die of system, com prising all

the possible deter•inants of the second order:

A,_ 1 ~ —4— 4=0 ;

Page £42. £._ I~ ~~~~
Thus all the possible de terminan t s  of the  second order , t h e

comprised of matrix elements of system are equal to zero; that P

means the rank of this mitrix/die of system r0
]c2.

_ _  -



t1 
-

~

Let us find the rank of augmented matrix. Determinant
2 — 4  0A,— 4 I

Hence th e ran k of au gmented •at r iz ‘~~— 2 . it  is not eq~&al to the

ra nk of the matrix/die of system; ~~~~~~~ Consequently, sys tem of

equations is incom patible/inconsistent1.

Example 3. To trace to consistenc y the system of three

equa tions with fou r  un k nown s:

X j + X ,+ ‘a ’i 2,
x, —x ,+ X ,+X , = — 1,

• Sx,—x ,+3x 8+x .= 0

Solution. The augmente d matri x of system (together with the

matri~./die of the system):

1 l I — I  2 -

I —I I I —‘I .

3 —I :~ I 0

Let us f i nd  t h e  r a n k  of t he  m a t r i x/ d i e  of system. Let us take

the determinant of the third order, comprised of its cell/elements,

to r exam pi.: I I I

~—~: ::
It is known that if any row of the determinant is

the 13.. ar cosbiaation other of its other rows, then determinant is

equal to zero. In our case the third rcw is linear combination the

fitet two: ii ord e r it to obta ia th a t is sut ficj am t to sum the first -

row fr om that doublsd the second Ther. fcr e A~ — 0,
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Is not diffic u lt to ascertain that th€ same property it

possesses and any deteriinant cf the third order, comprised of the

matrix elements of system. Consequently, the rank of matrix/die

system ‘<3 .~

1-
Since t here is nOnzerO determinant of the second order , for

example.

t.t
~
_I j_ _ 2 ,

that the ran k of the matrix /die of system is equal to rç 2.

With the help of the same reasonings let us ascertain tha t and

the rank of augmen ted matrix is equa l tc t wos; r~~=2. Consequently,

system of equations is combined.

Let us note that three equations at this example are not

independen t variables: the thi rd can be obtained of the first two , if

~~ multipl y the second ty two and to adjoin to the first. That means

that the third equation is a simple corcllary the first two .

- 
Independen t equations in system only dv: this is also reflected by -

the fact that the rank of the matrix /die of system r, =2 .

Thus, if the system of equat ion—limitations of OZLP is combined , -

then the matrix/die of system and its augmented matrix have one and I 
-

IP
~

the  same r a n k .
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Page ‘43.

This commo n/general/total rank r is calle d the rank of system; it

represents by itsa lf nothing else but the number of linearly

independen t equations among the superiir poseu limitations.

it is obvious , the rank of system r cannot be more than the

number  of equation s m :

r<m .

It is obvious , also that the rank of sys tem cannot be more than

the total number of variables n:

r -< n.

It is real/actual, the rank of the matrix/die ~f system is defined as -

grea test order of the deterzn1.nan l~, comprised of matrix elements ; since

- the number of its rows is equal to m , the r .~ m ; since the number of 
- -

its columns is equal to ii , the r ..~< n.

The structure of the problem of linear programming depend s

substantially on the rank of the system of limitations (2.1).

Let us consider, f i rst of all, the case when r a, i.e., whe n

the number of the linearl y independent equations, entering system

t.

LL



_ _ _ _ _ _ _

DOC 7806d703 PAGE qo

(2.1), equal to number of variables a. Let i~s reject/thr3w the

~excess” equations , which are tl~e linear ccmbinations of others. The

system of equation—limitaticns of OZLP takEs tb e  form:

a , .  (2.4)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since r = n, then the definition, co m piled from coeff ic ients ,

a,1 a,, ... a~4 ... a1
A a,, a~ ... a,1 •..
L1

a~, a,1, ... a~, ... 0,1,1
is not equal to zero. F t o m  algebra it is known that in th is  ca se 

-

system (2. li) has uni que solutica. In oLder to find value x,, it

suffices in determinant A tc replace t k ~E i col umn — by col u m n of

absolute terms and to divide into A-

Thu s, with r = a the system of equat ion—limitations of OZLP has

onl y the sol ution:
x1, x,, ..., x~.

If in this  s o l u t i o n  at  least one of va lue s  x 1, x~ , ..., x1. is

negative, this means t h a t  t~ e cbtained solu t ion  is inadmissible and ,

which mean s, tnat OZLP does not have sclutjcn.

If all  valu es x ,, X~~, •••~~ X~ are nonz&egativ~ , then the

obtained solution is p ermismible .  It is obiLous it is and optimum

(because the re  are no others)  -
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It is obvious , this trivial case cannot us interest. Therefore

subsequently we will examine only case when r < n, i.e., when the

number  of independ ent equa t ions, by whjch they must satisfy t h e

variables x 1, x 2, ... , x,,, lesser than the nutnter of variioles

themselves . Then , if s y s t e m  is c o m b i n e d , of  it  there  is ~ count less

solution set. With this a — i a lt e rn a t i n y/ v a r i aU e  we can ass ign

a rb i t r a ry  values  ( t h e  s o — c a l l e d  u n r e s t r i c t e d  var iables) , a n d  t h e

others r of var iab les  w i l l  be expressed  by t h e m  ( t hese  r of  v a r i a b l e s

we wi l l  call base) -

Example  4~ Is ex a m i n e d  t h e  sys tem at t w c  ‘~~q u a t i o ns  w i t h  fo ur

u n k n o w n s :
2x,—.x2 -f X 3 X~~~ ~
x j +x a 2x :+x .

~~
2. J

The ran k of this system is equal r = 2 ( e q u a t i o n s  are l i n e a r l y  
-

independent) . Let us select as unrestricted vatiamles, e g., x 3 and

-
~~ x,, and as basic — x 1 and x 2. Let ‘is express the oasic viriables in

terms of the unrestricted ones. W. have f r om equations (2.  5 ) :

2x, — z ~~~l — x ,+x ,.
—z1 + x~ 2 -4~ 2x , —

Store/adding up these equations, we w i l l  ob ta in

; — 3  + x .

I~ultiplying the second equation tc 2 and store/addiflg up with

the f i rst, we will obtain

— 5 + 3x, —;.
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Th us, the base variablEs x 1, x2 are expressed through the tree

x3, x,. By unrestricte d variable x ,~, x 4 it is pcssible to give any

values ; in this case, we will always ottain the value part x 1, K 2,

x3. x,, which satisfies system of equations (2.5). For example ,

set/assumi ng x 3 = = 0, we will obtain x 1 3, x2 = 5; these values

satisfy system (2.5). Set/assuming x3 = 1 , x4 = 2. we will obtain x1

= ~, x 2 6; these values also satisty equations (~.5).

Generally, if the rank ot system of equations of OZLP (i.e. the

nu m ber of the line arly in de~endent equations, Entering limitat ion

system) is equal r , then always it i~ ~ossiøle to express some r of

the base alternating/variable through r~ — r others (free) an d, givin g

tc unre stric ted v a r i ab le any values , to obtain the countle ss solution

set of system.

Xn the future for simplicity, record/writing the eg~ia tions of

OZIP, we will cons ider them th e l inearl y independent; in this case,

the rank of system r will be equal to the number of equations •.

Thus , if the number of equations of OZLP r = a is less than the

number of varia bles n, then the system of linear e~ uatioas has

countless solution set, i.e., value parts x1, x1, ... , 
~ 

are
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no~ n e q at i v e , t h e n t h i s  mt~~ns t h a t  OZL P does not hive t h o  p e L m i s ~ ibie

iolu tjon.

I
But if there crc soic aolutio:is ot systems (2. 1), tor which

ev.rytbinj x 1, x 1, •.., x,~ arc aoanthjat ive (d ie  .~horter,

“nonnoyati ve solut ions”), then t~ach of them is ddeissibL3. Appetrs

~roblea — to find aaon j thi s permissiL~l€ solutior~s the optimum , i.e.,

this solution
“I. ~~iI • • •  ‘

for which the iine4L Lunction

is con verted into the aini.uu.

Pagw 145.

In order to more distinct visualize th~ s~~c~.al

teature/peculiarities of th~ solu tion of O~ A.P and diffeL-~ nt cases

wk ich can in this case be act , it is ccnven~ent to use ~uom etric

interpretation.

3. Geo•wtric inter pretation of the basic ptoblem of linear

~rojraasing.

Let us considei the case when the nuaL~ r o f variabl es n to two

—_ _ _ _ _  --- —~
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is more than the number of independent equations m, by waich the y

must satisfy:

n—rn—2 .

Then as we al ready know that it is possible two of ii of

vatiables, let us say x 1 and x 2 to ~elect as fr€~ , and the others m

to make base and to express then through free. Let us a.isume that

this js dose. We will obtain a a — 2 equations of the form :

z’ (3.1)

Let us give to the proble m of linear programming geom etric

interpretation. Alon g the axes Ox 1 and Ox 2, it will plot/deposit the

values of unrestricted variables x~ x2 (Fig. 2.2).

Since the var iables x 1, x2 must be nonnegative , the allowed

values of unrestricted variables lie/rest onl y higher tha n the axis

Ox 1 and more to the rig ht axis Ox 2; let us note tLlis by the shading,

wh ich desi gnates the “permissible side ” of tach coordinate ax is.

!
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Page 146.

The rema ining v.tL ’i1bl&~s x 3, x, ... , x~ a lso suat be

nonnegat ive, i.e.., must be iaFlemeDt ,d the conditions :

— a•1 x1 + a,, x, + ~, ~~ it 0, (3.2)
— a,,~ x 1 + u,,~ x1 + ~,, >0.

Let us look how to depict these conditions geometrically. Let us

take one of them , for exam ple, the f irst:

xi x1 +a,, + ~~, 0.

Let us place value x 3 equal ~ OUL extreme value — Zero. We viii .

obtain the equation

This — the eq uation of straight line , on this straight line x 3 =

~ 0 (see Fig. 2..2) ; along one side frcm ~ t x~ 
) U, on another x 3 ( 0

(on wh ich — this depends on the coetticients of eguation). Let us

note by shading TU the side of the straig ht line x, = 0, along
which x

3
)O.
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I
Analogously let us con~ttuct everythin g remaining lim iting

lines: x 4 = 0, ... , x,,...0 will not e at each of them by shading the

“permissible side” , where the corresponding variable is more than

zero (Fig. 2.3).

Thus, we will obtain n of straight lines; two axes of

coordinate s (Z~ 0, x 1 = 0) and or a — 2 strai gat lines (x 3 = 0,

I 
.. ., x~~~O). Each of them determines the “permissible half—plane”, wh ich

lies along its one side. the par t of plan e ~,0x2, which belongs

simultaneously to all ha 1t—~.lanes, forms the domain of the

permissible solutions (CD1~). In Fig. 2.3 dcwain of the permissible

solutions always represents by itself ccnvex polygon.

-~
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H Pig. 2.3.

Page 147.

As is know n, con ve x figure (Fig. 2 .4 )  is caaied the figure , which

possesses the following property: if twc pcints A and B belong to

4 this figure, then also ent ire segment A~ a lso belongs to it.

Let us demonstrate that OD~ is always convex figuce. Let us

assume the co;trary; points A and D belcag to CDR , but some point C

between then does not belong (see Fig. .4). Then between point A,

which belongs to ODR , an d the poi n t, belon yi~ng to it, without fail

mus t pass some one of lines x1=0: along OflE sidc of this

direct/straight point satisfy condition x,~~~0, o~ another — they do

not satisf y. Let this straight line intersect segment LB at some

point 0. Then points A and B, which lie along different sides from

line, cannot simul taneously belong to OCR (for it aU x~, are

noqnegative) , whic h contradicts conditicn.

—
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Figures 2,3 shows such ezamp lc wh en oDh exists, i.e., system of

4 equations of OZLP has nonnegative solutions of system there does not

exist. An example of this case is shown OLI n y .  2.5. it is

real/actua l, there is no doma ins, whic h lies along one and the same

(shaded) s ide f rom all s t ra ight  lines; x , 0, x 2 = 0, x ,~ = 0, x ,

0. z 5 0; i.e. the c~ nJiticns of the nonnegative character  of

va riables contradict each other and the permissible solutions of OZLP

do not exist.

Examp le 1. The problem ot linedy prog rdmm in y with famil y

alternating/variable has ti = ~ eguat/ior— limi tat~ions:

S~ 
X~. Z~. ~ , L. Xe. Zp

we have m ~ 5 equations—1imitations~
a,—z,+l, 4;

k,— z,—z,—a,~~—5;
F z1 -f-z1—~~~ —4; 

~3.~1)
X,+Xe ~

It is required to give its geom etric interpretation and toconstruct ODR, if it exists.

L~.i Id
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Solut ion. Let us select as unrestricted variables • for example ,

x~ and z~ is expressed by them the remaining (base) varia b les: x3,

i,~ x 5, z~ x,. Fr om the first equatiop me have :

• Pro. the third :

Prom the fourth:

(3.5)

Substititiag (3.6) in second equa t ion (3.3) and (3.5) — in the

latter and solving relati ve to z,, x, we have:

4 ~~~~ 2~~+l
X~ — —x 1.f 34x,-4- 6.

Th. geometric intetpretation Of proble. is represented in rig.

2.~ (straigh t lines x 1 0, x, 0 — coordinate axis ; the

remaining limiting straight lines x3 0, x, = 0, Z~ 0, x~ 0

and x~ 0; short shading marked the perm issible half—planes).

I



— 

— 
-

~

DOC • 78068704 PAGE /91/

As can be see n fro . th. location of the direct/straight and
noted half—planes, the permissib le solutioms for the exa .ined problem

exist; the y fill

Th us, we considered a question concerning the existence of the
domain of the permissible solutions of OILP and (for case of i = n—2)

gave to it geometric inter pretation.

Nov arises the questicn concerning determination from the numbe r

permissible of the opt iuu u solution , i.e., such, which convert s into

the minimum the linear function

(3.6J

_
~~~~~~~~~~~~~~~~ 

~~~~~~~~~ 
_
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Pa ge 49.

Let us give to  this problem geomet r ic interpretation , moreover

again for the case when • n-2 (i.e. numb er free variables is equal

to 2, and number b ase m) .

Let us assume that unrestricted vari~abl.s they are again x 1, x 1,

and baa. x 3. x ,, .... x~, the expr essed t hrough free by formulas

(.3~2). Let us suhstitmt ei~~~ssiona (3.2) into formela (3.6), let us

give similar terms and is expressed the linear fenction I. all n of

vsviabl.s as linea r functio~ only of of two unrestricted variables:

z~ an d x~. Ee will obtain: ; 
-

L y. + y~ 
x1 + y, x1,

_ _  —
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ii
where 70 — absolute term wh ich in initial form of function L W~~8 not ;

now, during transition to the variables x1, x~, it could appear.

it is obvious, linear function p.7) reaches the minimu, at the

same values x1, x1, that also the function

L’—’y1 x1+ y1;

without absolute teim (linear form). Is real/actual, L L —

where 
~~ 

does not depe nd on x, and x,, and, obviously, the minimums

of that and other of functions, that di f fer  on 
~~~~~ 

are reached at one

and the sa me values i~~, x1.

Let us find these values, using geosetric interpretation. Let us

give L. certain constant value of C:

L’ =y1 x1+~1x1—’C;

we wil l ob tain equation of straight line on plane x 1Ox , (Pig. 2. 7) .

The angula r coefficient of this straight line is equal — ~‘ 1/p,, and

the segment, intercept/detache d by it op axis Ox~ (initial ordinate) ,

is eqeal to C/j 5. It is obvious, if we replace the constant C for

certain ot her C~, the angular coefficient of straight line will not

-~~



~~~~1 I I T T i~~~~-
- a

DOC 780687014 PAGE

be changed; will be changed only initial ordinate, and straight Une

will sove by is parallel to itself to the new position L’ C1 (see

rig. 2.7).

Thus, to different values 1.’ correspond different straight lines

O~ plane but they all are parallel between themselves.
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Page 50.

It is obvious, instead of all these straight lines suffic ient to

depict on plane one basic stra ight line, for e xample, L’ • 0, and

then it is possible to meatally move it ~tn parallel to itself. During

transferring of th is straight line to on. side L’, it will grow, into

anot her — to de~~ease.

Let is construct the basic straight line L’ ~ 0 on plane

x10x5 (Pig. ~.8). We know that its angula r coefficient i~ equa l —

~~~~~ in orde r to construct stra i9ht lisa, passing through the

origia of coordinates with angular cost f~~ ieat y
~/y~

, let us plot

along th, axis of the abscissas of cutti*gs off y1. and along the

axis of th. ordina tes of cuttings off 
~h. and through point A with

L -- • ~
• -- Id
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such coordinates let as draw straight line. This there will be the

basic straight line L’ • 0.

Now there remains only to explain that to which side (in P
parallel itself) it is necessary to •ove this straight line so that

va lue L’ wo uld d•crease. In the case, shown on rig. 2.8 (both

coefficient y
~ 

and y, are ç oiit ive ) the direction of decrease L’ —

downward and to the left (this is shown b~ rifleman /pointers ,

direc$ed from basic straight line to the side of decrease L’). Wit h

ot her signs of coefficients 7&. 7,, th. direction of decrease varies.

The cases of different direct ions of decreas e ar. shown on rig. 2.9.

2.10 and 2.11.

Thus, and direct io~ th. basic straight line L’ • 0, and the

direction of the decrease of the linea r form L’ are determined by

v.m .s and the signs of the coefficients y~. y , of unrestricted

variables x~, x, in expression L’.

Let us give now the geometric int erpretation of the

determination of the optimum solutio n of OWL? amon g permissible.

Let there be the donain of the per missibl. solut ions ODR (Pig.

2.12) and the basic straight line L’ • 0; know n (is shown by

ri f l.san/pointers~ the direction of th e decrea s. of the li near form

L ’ .
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lurin g trans f errin g basic straig ht lii. ii the direction ,
indicated by rifleman/pointers , the linear form L’ will decrease. it
is obvious, th . smallest valu, it will achieve, when stra ight ii..
will pass through th. extreme point 00W, outermost from t ke origin of

coordinate s in direction riflema n/gunne r (in our case, point A). The

coordinates of this point x~~, ~~ determine the opt imum soluti on of

OILP.

I

t

IIhl:I: _____________- - --- —----_ _ _ _ _ _ _ _ _  --- - _ _ _ _ _
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Page 51.

Knowing the optimum values of unrestricted variables x~~ , x 5~ , it is
possib le to find, substituting them in eluations (3.2) • aad the
optimu, values of the base variables:

~~~ 
X~’ + ~~ ~ + ~~X~ = C x ~ + ~~~~~ + ~,,

and also the optia ns (aiai.na ) value of the linear function I. :

(3.8 )

Thus if the number of indepemdemt ~~uatioe-liuitations, by wh ich
they must satisfy the variables x~, x,, ..., 

~~, t o two is less than
tk. number of variables a (i.e. into 0U~ Ltgure tio unrestricted

variables and any number of baa.), the solution of OZLP can be
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obtained by simple geometric construction.

Example 2. Under conditions of example ~ to find the

optimum solution of OZLP, w hich rotates in the minimum th. linear

function of seven unknowns:

L x &. — x.+2x,_z.—3x1+x._ 2x,.
(3.9)

Equat ion—limitation — the same as in example 1.

Solution. In example I of an equat ion—limitation (3.3) we re

solved relative to the base variables Z 3~ z~ , x 5, X~ , x, which were

ex pressed through the free x~ and x~ :

x.——xz+ £i+4;
3x1— 2.,+I;

x~— x~-$- x.+ 4; (3.10)
—z1+5,

substituting these expressions in (3’.9) and giving similar

t.r.s, we have:

L~ —5x~-—2~,—t2. (3.11)

Let us reprod ace the doma in of the peraisodkl. sol.t Less, that
previously constructed in Pig. 2.6 (see rig. 2. 13) .

le ject/throving absolu te ter , in (3.11) , we have

V — —k 1 —2x,.

Is cs~atract the basic ~~uiØt lime I’ • 0.
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Fig. 2.12.

Page 52.

For this, we plot~ deposit segments 
~~ 

a —2 along the axis of

ab scissas and —y~ a S along the axis of ordinates, we c a r ry  out

through point B with coordinates (—2. 5) the straight line L’ = 0

end note by rifleman/pointers the direction of decrease L’ . Noving

basic straight line in parallel to itself to the side of decrease L’,

the small value L’ we will cbt ain at poii~t A (outermost from

beginning of coordinates in direction of arrow). The coordinat es of

th is pcint ~~~~ x~* give the optimum solution of OZLP. In point A

intersect two limiting straight lines: x • 0 and x, — 0. Equalising

zero expressions for z. and x,, we will obtain two equations:

—s~4 !~z,+6—O.

~~~- 14
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Solvi ng them together , let us find x~~- 8.5; ~~~ 5.

Substit uting these values in (3.11), let us find the optimum

va lues of the base variables :

— 0,6 x4 — 16,5; x~’ — 17,6.

As concerns x~ and x ,, their optimes values are equa l to zero:
0; z 0.

Substituting the obtained optimum values z’ and x,~ In lin ear

fuiction (3. 11), let us find the minimum value (optimum) of the

1i~ear function L:

L— —5.8,5—2.5—12— —64,5.

Thul, we lear ned to solve OZLP in tke particular case of a • a -

2 -with the help of geometric constructiow.

• in spite of the fact that this copstr uct io~ is related to a

special case, from it escape /ensue some overall considerations, which

relate generally to the properties of the solution of OZLP.

Let us note noticed by us laws for case of a — m • 2.

- ~~~ -~~ -- ~~~ -~~-
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1. Solution of OWL?, if it exists, cannot lie/rest at inside of
- domain of permissi ble solutions, but only on it; boundary.

2. Solution of OZLP can be and not only (see Pig. 2.1*). It is

real/actual, if basic straight line is parallel to that side of the 
-

polygon of the permissible solutions where is reached minimum L’, -

4 them it is achieve d not at one point, but on an entire this side. -
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x,(z,.D1
x,.S

r rig. 2.13.

Pa ge S3.

- :  In this case OZLP has a countless mult itude of optimum solut ions.

.3. OZLP can not have solution even iq the case when there is ODE
— (Pig. 2.15). This occurs when in direction ri~ leman/gunaer ODE it is

not limite d, i.e. . in the domain of the permissible SolUtion.’, the

linear function I. is not limited from below. Movi ng basic straight

lime in direction rifleman/gunner, we will obtain increasi ngly

smaller and smalle r values L’, and also, therefore, L.

• 14. Soluti on of OILP, which minimizes funct ion L (optimum
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solution), always is achieved in one of apex/vertexes of polygon of

permissible solutions (if it is reached on whole side, then it is

achieved, also, in each of apex/vertexes throug)~ which  passes this

side) . The solution, which lies at one of the ape x/vertexes ODE, is P
called suppo rt ing/reference solution, and apex/vertex itself — by

data points.

S. In order to find optimum solution, in principle is sufficient

to sort out all the apex/vertexes 0DM (data points) and to select of
thei rJth,.t,)

them fu nction L reaches minimum.

6. If number of unrestricted variables into OZLP is equal to 2,

and number of base — m and solution of OZLP exists, then it al ways is

reached in point where at least two of variables x~. z5, ... , x,, are

converted into zero. It is real/actual, at any data points intersect

at least two of the limiting stra iqht li nen; can in it intersect more

than two (see rig. 2.16) .

The case when in optimu, solution they are converted into zero

not two, but is more variables, it is called degenerated. Figures

2.16 shows the degenerate case when at point A , which corresponds to

optisum soluti on. are converted into zero thre. var iables: x 1, z, and

‘SI;

After oossidsriag in detsU gme.stric isterpr.taties for case of

e • n — 3, let tire to the ceae she. te. su.her .1 ver iabl•s

en sIs by 3 nu~~~ r. of independent gu* Los’-~ liai tat i.sss s • n—A.

- _ _
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Pig. 2.114. Pig. 2.13.

r
Page 5*.

In this case unrestricted variables proves to be no loage r two,

bet three (this will be x 1, x 1, x ,), and remaining a = n— 3 of base

variables they can be express e d through free:

(3.12)

it is required to find such nonnegabive values z~. x, r~, which.

satisfying eqeations (3.12), would simulta neously convert into the

minimum the linear function of these variables:

L— C ixi+C,xi+...+~~.~~.. (3.13)

H
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The geometric interpretation of this proble, it is necessary to

coqstrust o longer on plane, but in spese (Pig. 2. 17) • Each

co;ditlos ; ‘— 0 for oae of base variables x~ (h • 1$, ... , n) will

be qe~ssstrically depicted so longer straight lime, but plane. Alon g

one s ide from this plane x,>o, on another z <o .  Tb. coordinate

pl an es x1013, x~Ox~ and 1~0*~ represent conditions z~ • 0, x~ = 0, x3

• 0 respectively. The domain of the permissible solutions (if it

exist.) it represents by itself the copvex po lyhedron, l imited by

these planes, i.e., the part of the space, for wh ich are satisfied

all conditions:

~~~~~ x,~iO, x,~ iO,..., x~~i0.

tole “basic straight line” in this case will play “reference

plane” whose equation L’ 0, where

L’~~L— y,; L~~~,+y1 x1+ y,x,+y3 x,.

During transferring of this plane in parallel to itse lf to one

side I.’ it will decrease, into another — to grow.
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rig. 2.16. rig. 2.17.

• Page 55. -

Point A, nt which it is reached t he optimum solution (if it ex ists) ,

represents by itself W the a pex/verte x 0DM which it is located

fu rther an ything from the origin of coordinates, count ing in the

direction of decrease I.’. Can render/show as with n - m = 2, t hat

OZLP has countless solution set, either f i l l i ng  whole f in /edge or —

whole face of polyhedron of the permissible solutions. The optiau.

solution z~~ , x 51, xj (if it exists) coincides from one of data

points, i.e., the apex/vertexes of polyhedron, in which at lea st

three variables ~~~ , ~ , ~ they are converte d int o zero.

To use geometric interpretation for the direct finding of

solution even with n — a = 3 is difficult; with u — m • k > 3 this
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will generally deduce us beyond the framework of three—dimensional

space and geometric interpretation will lose clarity. However, the

corresponding term inology can render/shoe convenient: it is possible

to speak ubo ut the domain of the permissible solutions as to certain -
•

“super—polyhedron” in space k of measurements, limited m by

“hyperplanes”; to optim um solution — as t o  one of the “apex/vertexes”
of this polyhedron , to each “apex/vertex” — as to “data points”, etc.

By this ge ometric terminology it is possible, at will, to use or not

to use. By us geometric interpretation was required for Justifying

the of following properties of the solution of OZLP at any values of

the number of variables n and of the number of equations m < n:

1. Optimum solution, if it exists, iie,rests not inside, but on

• boundary of the domain of the permissible solutions, in one of dat a

points, in each of which at least k of variables are converted into

zero.

2. In order to find optimum solutiou~, it is necessary, passing

fr ’oa one data points to another, to move in direction of decrease of

linear function L, which it is required to minimize.

on these principles will be based the methods of the solution of

• . OZLP chick V. is presented subsequently.
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4. Problem of linear programming with limitat ion—inequalities.

Transition to OZLP and conversely.

In practice of limitation in the problem of the linea r

programmin g frequently are given not by equations, but inequal ities.

Let as show how it is possible to pass fro. problem with

limitation—i nequal itiss to the basic pro~l.m of linear programming .

Let ther. be the problem of linear programm ing with n by

• variable. x1, x,, ... , ~~~~ , is which the rest rict ions placed on variables,

take the for m of linea r inequalities. In some of then ineguality sign

can be ), and others .~~ (second form is reduced to the first by a

simple cha nge in the sign of both parts).

~1 Pa ge 56.

Therefore let us a ssign all limit ation —iwequ alities in the sta ndard

form :

let us consider that all these ine~ .-alâtiea are linearly

independent (i.e. any of them it cannot be represented in the form of

the linear combination of others) .

~~ 
+h1~~~4,+ . . .+ ( à,,, ~, +b,~~0: (41)

x$ + 4 x1 + •.. ~
- ~~ ç + b~ >0. I

JA
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It is required to find such set of nonnegative values

x
~ x,, ..., x~, which would satisfy inequalities (4. 1) • and, furthermore,

would be converted into the minimum the Li  near function:

L~~ c1 x1+c ,x.+...+c~x,,. (4.2)

From stated thus problem easily tc pass to the basic problem of

linear programming. It is real/actual, let us introduce the

designations:
a1, •.. +

y, — a ,~x~ ‘.~~~~
“: “: 

(4.3)

a,, ... + a,$ b,,

her. 
~~~~ ~~~ ,, - some new variables vh~ch we will call

“additiona l”. Ac~~rdiaq to conditions (4.1), these additional

variables just as x1, x,. ... , ~ they must be nonnegative.

Thus, before us appears the problem of linear programming in the

following setting: to find such nonnegati ve values of ft • m of

va siables .~,, .~,, ~~~~~~~~~~~~~~~~~~~~~~~~ 
... ,

~~~~~~~
, so that they would satisfy the syst em

of equations (4.3) and simultaneously w an ccnverted into the minimum
the linear functio n of these variables:

As in evident , before us in pure form th. basic problem of

— —~ 44
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• li4ear programming (OZLP ). Equation. (4. 3) are assigned in the form ,

already solv.d relative to base variables P~. Ms. .... V.. which are

ex pressed through unrestricted variables ~~~~~~~~~~ The total

quantity alt ernating /variable is equa l to n • m of them a “of

inkitia l” and m “of additional”. Functic~ L is expressed only through

the “initial” vari ables (coefficient s of “additional” v ariable s in it

are equal to zero)

I
Thus, the problem of linear program ing with

limitation s—inequalities have reduce d we to the basic problem of

li near programming , but with the large numbe r of variables how it was

init ially in problem.

Page 57.

Example 1. There is a problem of lln~ear programming with

limitation—inequalities: to find the ncnnegativ. values of the

va riables z~. *5 *~ x,, x,, that satisfy the conditions

(44~i,—2x , + z~
‘I— zl

~~ 
0

and r.tati ng in the minimum the linear t~~ction

L — a , — 9 ~,— $ i , (45

j t is req uired to lead th is problem to the for m of OILP.
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Solution. We lead inequalities (1$.4 to the standard form:

3z,— a,—I ~~O,
x~—2x.+ ~~~~~~~

xI— £1 ~~O.

It is introduced the further variables:
~,i— —2x1+ x,—3x,.f G,

~~~~ 
3x,— x,— I ~ (4.61

- - Va xi —2x.+z5+I.ya _ 
~~~~~~~

Problem is reduce d to to find the nonnegative values of

variables

—
‘I. X~. X5~ ; ~~~ Mi Vs. V,. V..

satisfying equations (4.6) and rot at ing into the minimum linear

funct ion (4. 5) .

We showed, as from the problem of li ~near prog ramming with

limitation—inequalities it is possible to pass to problem with

li mitation—equalit ies (OZLP) . Is always fqasible reverse trans ition -

from OZLP to problem with limitation—inequalities. If in the first

• ca se we increased the number of variables, then in the second case

let us it reduce, removing base variables and leaving only free.

- 

- Example of 2. There is a problem of ~linear programming with

limitation—equalit ies (OSLE ):

Zg+ Ii— I,
(4.7)

X,—Z,+’, I
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and by the minimized function

L— — x i —z,+;. (4 $)

It is req uired to register it as problem of linear programming

with limitation—inequalities.

Solution. Since a • 3, n * 5, n— n  • 2,, then let us select some

tvo of th. variables as free. Let us note that the variables x 1, z 5
as free ca nnot be chosen, since they are ccnnected by the first of

equat ions (4 7) : value of one of the m is completely determined by

value anot her, and unrestricted variables must be independent
• variables.

Page 58.

On the same reason it is not possible as free to select the variables

I~~g z5 (from connects the second equation (4. 7)). Let us selec t as

the unrestricted variables x~ and x, and it is expressed by them all

ctkers :

(4.9)
I~ ~x1+x,—I.
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Since x , ) 0, z~ ) 0, x~ ) 0, cosditioas (8.9) can be replaced
by tM inequalities:

—xl + I ~~~0.
— L,x,.4- 2~~O . (4.10)

hz 1+z ,—I~~ 0. I

Let us pass in the expression of the linear function L to
unrestricted variables z1, x,. Substituti ng in I. for Z~ and x5 of
their expression (8.9), we will obtain:

L_— xj+gi~~ I + x i+xg_ I l 2x1+x,_2,
L — ’,~x1+z,. (4.11)

Thus, problem is reduced to th. prçblem of linear prograanis~
uith lisitation -inegualities. Its geometric interpretation is shown

on rig. 2.18. The basic straight line L’ • 0 is parallel to

tk~~ side ODE vh.r.e L’ it reaches the minimum. Consequently, all

• poisti of section LB give optimum solution. Taking as the solution,

for example, the coordinates of point 3, we v iii obta in:

x~’—0; x,’—I; x,’—l; x~5 _% x,s_0.

At such values of variables, the linear function L reache s the

mi~ imu., equal to

~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~
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1 ‘1.0

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~

Fig. 2.18.

Page 59.

Thus, we can on arbitrariness pass from OZLP to the problem of

linear programming with limitations by inequalities and vice versa.

If we in the nuab •r of limitations of the problem Cat both the

equations and the inequalities, is recommended to produce unification

and to pass in any uniform form, for example OZLP.

Example 3. Is examine d the problem of linear programming with

the variab les x~, z5. x,, x, and the limitations of the form

X 1+Z , X,+Z,.
11—x,+x < 1, (4.12)
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Is mi nimi zed the function

(4.13)

It i. require d to qive the problem to at OIL?.

Solution. By the introductiom of th. additional variables y~, ~,

let us lead conditions (4. 12) to the form of OZLP:

2
Einimized function remains in the form (4.13).

5. Simplex method of the solution of the problem of linear

programmin g.

The geometric interpretation, which we used during the solution

of the problems of linear programming, ceases to be suitable for this

purpose so on the number  of unrest ricted variables n—n > 3, and is

• difficult already with n—n • 3. For the determi atioa of the solution

of the problem of linear programming in the general case (with the

arbitrar y number of un restricted variables ) are applied not

geem.tric, but computational methods. Prom them most universal is

so—called simplex method.

~ ~
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The idea of the s implex method is rel ative ly simple. Let there

be in proble m of linea r programming n of variables and a of the

independent linear limitations , assig ned in the I ore of equations. We

know that the optimum solution (if it exists) it is reached in one of

da ta points (apex/vertexes ODE), where at~ least t • n—m of variables

are equal to zero. Let us select some k of variables as fre. and it
is expressed by them the others a of base variables. Let, for

.a.s pIe, as free be selected f irst k • n—a alternating/variable
Xi. Xs....,Xai ,a$d the others a are ex pressed through them:

Xb+~~~
all+l.I x1 ~~~~~~~~ 

x,+...+ni÷.a xa+Pa+ ,

x,~5—~~4, x1 ~~~~è+7:2 X,+. +(’~~~~ ~
I x
.
1ItP

.
k.(
:
sI (5.1)

~~~ i Xi+U n ,t X,+...+UU.~~
Xk+~~~

.

Pa ge 60. 
• 

-

Set is try, which will be, if we plaice all unrestricted

variables x~, x,. .. ., x~ equal to zero:

~ , ~~~~. ~, ~~~~~~~~~~ ~, ~~~~.

In this case, we will obtain:

x,+I — 
~~(I, Xe÷~ ~~~ .. .,
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This solution can be permissible or that ant admitted. It is

admiss ible, if all absolute ten s 
~~~ ~~~~~~~~~ 

..., ~ are nonnegative. Let

us assume that this condition is satisfied. Then we obtained

supporting/reference solution. But is it optimum? It can be yes, P
wh ile it can be and no. In order to check this, it is expressed the

•i .isiz.d linear function I through un restricted variables
...,

L~~y,+~~x1+y, x1+...+y~;. (5.2)

It is obvious that when x1 ..x,— ....—x .. 0 L— ~.. Let us look,

cannot w e improve solutio n, i.e.. decrease function L, increasing any

of the vaniaMes x1, X1, ... , (to reduce the m we not can , sinc , they

all are equal to zero, but the negative values of variables are not

admitted). If all coeffic ients 
~~~~
, is formuLa (5.2) are

positive, then, increasing some on. of the variables .r~. ~,. . .  
~~~ over

zero, vs cannot decrease I; consequently, the found by us

suppontisg,frsference solution is optimum. But if among coeffic ients

~~~~~~~~ in formula (5. 2) there is negative, then, increasing some

.f the ,stiabl•s xi~ x,. ... x *. namely — t hos e, the coeffic ients of wh ich

are negativ . we can i9)prov. solution, i.e., decrease I.

Let, for exam ple, the coefficient ~ in formula (5.2) be

negative . That means that there is sense to increase xi, i.e., to

pa ss from this suppo rti mg/ refere nce sol utic u to other , where the 
I 

-

_ _  - • ~~~~~~~~~~~~~~~~~~~~~~~
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variab le x 1 is not equal to zero, but instead of it is equal to zero

some another. Increase x 1 “ is useful” for the linear func t ion I., it

ma kes it it is smaller. However , to increase z 1 is necessary

os fnlly, so as to would not become negnt ive ctker varia b les P
~~~~~~~~~~~~~~~~~~~~~~ 

expresse d through the usastricted variables, in

p.rti~ular, through x 1 by formulas (5. 1).

Let us look, it is dangerous for var iables ~~~ z~4., ....

increase x1, i.e., can it do them negative? Ves,, it is dangerous, if

the coefficient of x1 in the appropriate equation is negative. If

among equations (5. 1) there is no equation with the negative

coefficient of x~, then value z~ can be increased boundless, and,

which means, that the linear function L is not limited from below and

optimum solution of OILP does not exist.

Let us assume that this not so and that among equations (5.1)

there is s uch, in which the coefficient of z1 in negative. For

va riables , tha t stand in the left sides of these equations. iacreaae

*~ dangerously — it can do the m negati ve.

Page 61.

Let us take one of such variables s~ and let us look, to what

extent it i. possi ble all the same to incresse i~ until variable ‘~
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does become negative? Let us write out the ~. equation from system

(Sit):

X~ —~~~ x1 ~~~~x1 f ...+CLsk X~ ~~~~~~

Here absolute term ~~~~~~~~~~~~ and coef ficient a11 is negative. It

is eas y to compreh end that if we lea ve x, — ... —x~ — 0, then x 1 we can

increase only to the val ue equal to — ~~~~ and with further

increase X
~~
, variable x, will become negative.

let us select b’~~~~ from variables X~~~ , x,~, which earlier tha n

all will become zero w ith an increase x
~
, i.e., ~~~~, for wh ich the

- 

• vales — is smaller anything. Let such “most threatened” the

variable will be x,. Then has sense to re—solve a system of equations

(5.1) rela ti ve to other base var iables, removing from the ?unber of

unres~rict ed varia bles z 1 and aft•r tra nsferr ing instead o~ it int o

the group of unrestricted variables ~~. It is real/actual, we wish to

pass from the supporting/reference solution, given by equalities
Z X ~~~. . X 11~~ O, to the supp0tting/refete~ce solution in which already

rtC~a, 4’ 0, — — x, 0. The first supporting/reference solution

ye obt aine d, aft er placing equal to zero all previous unrestricted

variables ~~~~~~~~~ the second we we will obtain, if we wil l  turn

into sero all nes unrestricted variables x,, ... , x~, x,. Ease v riables in

this ca they will be x,. ~~ x,_~, x,.~ , .. .. x,,.

L~~~.
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Let us assume that equations of type (5.1) for the new set of

base and unrestricted variables are compr ised. Then it is possible to

express by’ new fre e variable and the linea r function L. If all

coefficients of variables in this formula are positive, then we found P -;
the optimum solution: it will be obtained, if all unrestricted

va riables are assu med equal to zero. If among the coeffic ients of

variables there is negative, then the Erocedure of an improvement in

the solution is contin ued: system agai~ is re—solved relative to

ot her base variables, and so on until is foun d the optimum solution,

which rotates function I in the minimum.

Let U~ observe the descr ibed proce dure of a gradual impro vement

in the solution of OZL P based on speci f ic example.

Example. There is a problem of linEar programming wit h

li mitation—inequal ities:

—ki—x,+2x. ~ 2,
— (5.3)

—3~i+& ,i~~7.

It is required to minimize the linear function

L— k 1 —2x ,.

Solution. Red ucing inequalities to standard form ~~0) and

introducing the additional variables y,, y1, y~
, we pass to
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condition—equalities:

y1~x,—x,—a~+5,
~

.

~~~

3ii—5X,+7.

Page 62.

Numbe r alternating/variable n = 7 by 4 exceeds the number of

eluations m = 3. That means that four variables they can be select ed

as free.

Let us try to select as unrestricted variables I j, x~ , I~~, x,

and to place then equal to zero. In this case, we will isa.diately
y
~ 
= 2;

obtain the support ing/reference soluticq: i~ = = 13 = a 0
~AYa 

•

5; y3 =7 .

At these values alternating/variable I = 0.

Let us look, is this solution optimum? NO ! Beca~ se in the

expression of the linear function I the coefficient of 13 is

negative. That mea ns increasing Z3~ it is possible to decrease L.

Let us try to increase X~. Let us observe according to equations

(5.*).~ is dangerous this for other variables? Tes, it is dangerous
for y, and Ia — in both these equations the variable X j enters with
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I
-~ negative coefficient, which means, that with increase x~, the

corresponding variables y
~ 

and y
~ can beco m. negative.

4
• Let us look, which of these variables y, or y

~ is that most ” P
threatened ”, which more earlily will become zero with increase x,. It

is obvious, y,: it will become equal to zero with x, • 1, and valu e
y, — only with x,a 5 .

- Therefore it is selected alternating/variable Yi and it is

introd uced it into the number of free instead of x,. In order “to

re—sol ve” system (5.4) relative to 13• It. 1,. let us act by the

-
, 

following manner. It is solved first equation (S.) relative to the

new base var iable ~~

Ebis expression let us substitute for x3 in the second equation ;

we will obtai~

~•

As conc erns thir d equation , it, as not not containing x1, will

not be changed. Th us, we led system (5.0) to the form:

— ~.— 3x~—k~+7

I,-
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with unrestricted variables x~, x~, y,, x, and haze x~, ra. is.

It is expressed the linear function L through the new

un restricted var iables:
I.

L~~k~—ki—J1.+Vt 2e
or L— —s,+v~—2. (5.5)

Let us place now unrestricted variables equal to zero. The

linear funct ion L will become equal to —2. This it is alread y bett er

than previous value L • 0. Rut is this solution optimum? Still no.

si nce the coefficient of z~ in expression (5. 6) is negativ e. Thus .

let us inc rease x~. Let us look, for which of variables , that stand

in tha left sides of system (5.5), this can hi. ‘dangerously ”. Only

for y
~ (in the first equation z~ it enters wit h positive coefficient.

but is the third in no way it enters).

thus, it is e xchanged by places alternating/variable x5 and y, -

the f irst let us deduc e from the numbe r of free, and the secon d — let

us intro~ ice. rot this , is -solved second equation (5. 5) relative to

i, and let us substitut, this z~ int o the first equation. Ve will

obtain one additional form of sys tem (5.0):

(5.?)

L

— -•  —~~ - -
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Is expressed L through the new unrestricted variables:

or 
L — 3~ + 2~, + ~~. — 10.

Page 63.

Set/assuming x, • a y5 — x, — 0, we will obtain

L — — 10

Ia thia solution optimum? This time — yes, since the
co.fficients of all unrestricted variables in expression (5.8) are

• nonnega tive.

Thus, the opt imum solution of OZLP is found:

~ I 
x~~—O, z,’8; z, 5; •

~~~~; Mi’—O; p~S _ Q; 
~~~~~~

At such values of variables, the linear function L takes the
minimum value:

LI
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Let us note that in the examined example of as it was not

n cessary to seek the supporting/reference solution: it immediatel y

was obtained , when we place d unrestricted variables equal to zero.

This is ex plained by the fact that in equations (5. 4) all the

absolute terms vare nonnegative and, which means, that the first

hitting solution render/showed supporting/reference. It this

render/shows not t hen, it will be possible to arrive at

SuppOrting/reference solution with the help of the same procedure of

the interc hange so me base and unrestricted variables, re—solving of

equation until absolute terms become ncnnegative. As this is made, we

• will see subsequently (see §7).

6. Tabular algorithm of the replacemen t of base variables.

The procedure of ‘re—solving” of the system of

equation—limitations OZLP of relatively qew base variables can be

substantia lly simplified, if it are formalized and are reduced to

tilli ng of standar d tables along the srecific system of the rules (it

is shorter, to algorithm) . This algorithm we will demonstrate based

on the specific example (in its val idi ty for any general case reader

may be convinced independently).

Let us consider the system of five equatiot-lisitations:
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I

4I~ 0$% X~ +a~ x.+a..x,+a..x,+b..
y, —a,, x,÷a~~r,~~a,.z,+a,,x,+ b,
— a,~ x, + a,,; + ~ ; + a,4 ; + b,,

a,1 x, 4-O~ x, -f a,, x, + a,, x, + b,

with four unrestricted variables: z~, z1, x,, z,. Let we need to

deduce fro m the number of free any variable , for example x 1, and to

transf er it into base, but instead of it to introduce into the number

of tre. some base variable , let us say y~ ; it is shorter, we wish to

interchange by the places of the variables z~ and y3. This

re placemen t us vii i sym bolicall y desi gnate

Page 1*.

Let us look, which actions must be for this carried out.

Generally,  it would be possible for each new system of eq uations

- 
• to carry out re-solving ane w, i.e., for replacement z~ ~~ y~, we would

take in third equation (6.1) ter m 5j~~I~~, containing z,, (let us na me

it the “solving term”; it goes wit hout sayin g that we assume a11 *

- 
- 0) • they would transfer it into left side,- and ys — into right ; they

would solve eq uation relativ , to I~~ and would substitute expression
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fez x~ in all the remaining equations. Procedure sufficiently bulky,

requiring the stressed attention ; during its fulfillment is easy to

be mista ken (espec ially with the large num ber of equations). However,

H since here each tine it is necessary tc make the same operations, P —

thea they is sufficient to fulfill one time in general form and to

deduce the rules of the conversions, which then can be applied

automatically. These rules, which realize “re—solving” of system, are

conveniently realized in the form of tabimlar algorithm.

So that this algorithm would be simpler and more easily it was

memorized, expedient to prel iminar ily scmevhat conver t sys tem of
equations (6.1), representing their right sides as differ ences

between the absolute te rms and the sum of the others:

y, —b,— (—-a~ x1 —a1, x,—a,, x,—a,,x,),
— b, — ( —a,, x, —a,, x, —a,,; — a,, ;),

y, — b,—( — a,,x,—a ,x,—a,,z,—a,,X,), (6.1)
y, ~ b,—(—-a,, x, —a,,; —a,,; —a,, x,),
= b, —( —a~ x, —a,, x, —a,, x, —a,, x,).

ossigmating

—a~~— a,~; —a,,—a,,; .... —a,,—a,,.

we will obtain:

y, —b ,—(a,, x, +rz11x,+~t
,,x, +~ ,.x,),

y,~~b,—(n,, ,+a,,;+u,,x.+ui.z,), (6.2)

y,~~b,—(ci,, x,+a,,;+a,,x,+usi X,).

14
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The form of writing of equations (6.2) we will call standard.

It is obvious, instead of completely recor4/vriting of equations

(6.2). it is possible to be bounded to filling if the standard table

where are shown only absolute terms and the coefficients of

variables. The fir st column of table we will weigh out under absolute

terms, the second, third , fourth and the fift h — under the

coefficients of the variables x,, *,, z~, x , in standard form (6.2).

Standard table for system (6.2) is given in Table 6.1.

Let us nov visualize that we wish to replace x 1Z > 7 3 , i.e., to

transfer th. variable x2 into the number of base, and

alternating/variable y, — into the number of free.

Page 65.

Let us isolate in the standard table th. solving cell/element .,
~

(let us encircle by its small circle); it is isolated also by heavy

lines row and column, in which stands the solving cell/element. This

—
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row and this column we will call the solving row z~nd solving column

(see Table 6.2).

Implement ing operation z~ ~ y,, we wish in the solving row to P
Place the variable y,, and in the solving column —

• altersating/variable x, (this is noted in table next to row and

colum).

Let us find the coefficient s which viii have to plac. in table

after exchange z5 (4 y,. Let us begin fro. the transformation of the

solving row. Solving third equation (6.~ relative to z~, we will

obtain:

(6.3)
“N ¼~~IU ~ as

Thus, the con verted cell/elements of the solving row are found.

- - Let us comprise the rule of the transformation of remaining rows.

LL -
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~~ble 6.1.

___ 

‘I 
_____  

~ 3 
____y

~~~bi T ~~i 1  
_ _ _

~~~~~ L~ ’ f~22 
-___

H ________ 

1 ~ a33

b, a4 a42 
- 

a4,

~~

isy: (1) • Absolut, term.

-f

Table 6.2.
- y3—.•.

— _ _ _ _ _  _ _ _  _ _ _  _ _ _

a,, a,3

b2 ~~~, a~ a23 a24

Zj~~ 113 b3 a3, (~~
) a~, a3,

144 b, a,, a~ a,, a,,
a,, a,, a,,

Icy: (1). Absolute ter m.

Page 66.

Per this, l.t us substitute into first equation (6.2) instead of x 1

—-A~~
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its •~prsssion (6. 3). After bringing of s.tailar teree, vs will obtain

it is not difficult to ascertain that by completely ana logous P
form are transformed all the remaining rows. As a result we will

obtain the converted table (see Table 6.3) • in which operation x5 &,

y, is already comp leted.

After considering Table 6.3, we can so formulate the translation

algorithm Cf the coefficients of standard table.

1. Solving cell/element is substituted by reverse to it value.

2. All remain ing cell/elements of solving row are divided int o

solviag ce ll/element.

3. All cell/elements of solving column (except most solving

cell/element) reverse sign and this is done by solving cell/element.

6. Each of remaining cell/elements u~ dergo.s following

transformation : to it is ad joined ptod uct of cell/element, which

stood in previous solving row on the same place in order (i.e. in the

same column) , to cell /element , which stan~ds in new solving column on

a~ipropriat e pl ace (i.e. in the same row, as our cell /eleme nt). I 
-

IA
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Table 6.3.

~~ 
l3~ a3~1 ~~~— — 

~~~~~~~~~~~~~~~~~ 
,,~~

_
an ~,, ~,, ,,

21? Zfl 2~~ 2~. 2j~— 111~~~~~~~~~ — —
~3I

-~~~~ 
~~~~‘3: 

— 

aj , J ~~~~~~~~~~~
_ 

a~

~~ h1 ~
,, ~~ •I2 $4, ~p3 24,

— — 
~~~~~~~~~~~ ~~~~~~~~~~

-

- 5$ 

- 

233 2N

~ 

b1 ’~~~ — ~~~ ~~~~~~~~~~ UII ~~~~~~~~a 
— 

SN

Key : (1). Absolute term .

_ _
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Page 67.

Last/latter rule can in the first reading seem not by entirel y

clear; let us show how it is used at least based on the example of

the cell/element, which stands in the first row and the second column

1~ble 6 ,3. lew cell/element that stand m i  the first row and the

second column Table 6.3. New cefl/eleaent is equal to previous (s~ ,)

plus the product of the previous cell/element of the solving row a31,

which stands in the same column , that •&I, and the new cell/element

of solving column (—a 15/a32), which stands in the same row, as the

converted cell/element.

It is not difficult to ascertain that the foruulated rules of

the transf ormation of standard table are valid for any nusber of

equations and unrestricted variables and for any replace .emt x~-.-.y,.

the transform atio~ of standard table during replacement x1

is convenient to produce, implementing all the auxiUary saloslatie..

here, in table, for wh ich is separ ated the lower part of each

nucleus.

14
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the translation algorithm ~~~~~ of standard table is reduced in

this case to following operations..

1. to isolate in table solving cell/ólement as,. To com pute its

reciprocal value 
~~ and to register in th e lower part of the

same nucleus (in right lower to angle) .

¶ 2. 111 cell/elements of solving row (except very a,1) to m ultipl y

on X; result to register in lower part of the same nucleus.

3. All cell/elelents of solving column (except very a,,~ to
multi ply on — X; result to register in lover part of the sa me nucleus.

6. To emphasize (or to isolate in another manner) in solving row

all upper numbers (previous cell/elements) • with

exception~elimination of most solving cell/element of nucleus, and in

solving column — a ll, lower num bers (new cell/elements), with

exception/elimination of most solving ceLl/element.

5. For each of cell/elements, which do not belong eit her to

solving row or to that solving column, to register into lover part of

nucleus product of isolated nuibets, which stand in the sane column

and in the same row, as this cell/element.

I .
-~~~ - ~~~~~~ —~~~--~~• --• • - -  -• i .A
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1
6. To rewrite table, after replacing:

— x~ on ~~ conversely.

— cell/elements of solving row and column — by numbers, which
stand in lover parts of the same nuclei,

— each of remaining cell/elements — by sum of numbers, wh ich

- stand in upper and lower part of the same nucleus.
I

• Example 1. In to system of equations

Yi= Xt— x3 -4- 2x3—5,
U, ~ x,+I, 

(64)
~ 2x3— x,—I ,

- 

~~~
=— I, — z3+2

to replace x1~~~y2 , i.e., to deduce from the number of unrestr icted
variables x 1 and instead of it to introduce Yz ’

I
~c
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Page 68.

Solution. We reco rd/wr ite equations (6.3) in the form of the

standard table (see tables 6.14) , leaving in the lower part of each

nucleus of sufficiently vacant place.

Is isolated b y snail circle the sciv ing cell/element — 2 and

heavy lines — solving row and column, he compute )
~ = — 1/2 . Auxil iary

records let us keep in right lower to the angle of the nuc leus (see

Table 6.5) .

Let us fill , according to point/ items 1, ~ aud 3 algorithms, the

lower parts of the nucl€i of those sclv ing the rows also of column .

Let us isolate, after surrounding them by the framework , the

upper numbers of solving row and the lower n u m k ~ers of solviug chair

(except the most solving nucle us).

- 
$ Further we al read y can fi l l  al l  the remaining lover p a r t s  of the

nuclei, mul tiplying the corresponding tc them isolated numbers, wh ich

stand in the solvi ng row and the solving column on the s ame places

a

I.L ~~~~~~~~~~~~~~~~~~~~~~~~~ — — —  -~~~~- - - - .~~~~~~~~~~~ —
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I
that this nucleus (see Table 6.6).

We finish conversicn , toz. which rewrite tabl e 6.6, substitutin g

x~ by Y 2 .  the cell/elements ot the solving joy an~t co lumn — by lOw~ L

numbers of the sane nuc l€i , and remaininq cell/elements — by sum ot

the upper and lowe r numLez~ (see Table 6.7).

Thus, mu lear ned with the hel p of tabular al~jorithn to

accomplish in equation— limitations any ieplacement x1 -i-. y,.

Let us recall that in the prolleui of lincar programm i ng , besi des

• eq uation—limitations , thert~ exi~ t~ ev~ ii the linear function

L~~c,+c~x,+c,x,+...+c,x,+...4-c,x,,

which must be minimiz~ d. I f  this function is ex~Lessed through

previous unrestricted variables X1, x1, ..., X~~, tuen , obviously,

after replacement Xi “Ye it must be expressed by n~iw

un restricted variables x1, x,. ..., XM. ii,, Xj 1, ..., X,1. It is not

difficult to ascertain that for this can be used the sane algorithm ,

as for the transfor mation ot a ny  row of s ta nd a r d  t ab le .  I t  is

teal /actua l, leading I. to the standard torn

where y, = —‘- i: ~~, 
— c S  ...;y,, — ~~~~~ we we will obtain o n.-~

~ ~



DOC z 78068705 PAGE /4~9

ad ditional row (addjticral) of the standard table which differs from

the others oniy in ter ms of the fact that in it never is chosen the

solving cell/element.

tables 6.A~.

CSO6OAHeH~ I I 13~~~~ I 2

- -5 -‘ -2

x1~— 92 ‘ 1 0

V
—1 0 -2 I 

• 
-

&3 -

2 I Q 1 
— 

-94

key: (1). Absolute term. - -

Page 69. -

Tables 6.5. -

V2

~~~~~~~~~~ i- ‘
~ 1 -

‘-l,~eM ( s $ ~ 
-
~

_ _  _  _  
- H

_.!_ 
2 1 11 0
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Key: -( t) . Absolute term.

Tables 6.6.

_ _ _  

ye— 
-

r,

~~ 
-
~~ 

1 1

Key: (1). Absol ute term,

Tables 6.7.

C.odo*’~~MJII)N 
_______ —

Ji 1 -2Vi 2 2 2
- - I

X~ ~~ 2 2 
— -

-l 0 -2y3
5~~~~~ I 1.

2 2
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Key: (1) . Absolute term.

Pa ge 70.

Example of 2. To do a replacement ~~~~~ in system of eq uati ons

VI ZI~~ XI+ Z,— % ,
Yi~~~~ )X i z,—3, (6.5)

and ii th~ linear func tion

Solut ion. Let us fill the standard table, in upper row of wh ich

we place the linea r function L (SeC taUe 6.8)

~5~k-1~~~ L 4 3 ,
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--f ,q6)~~ ~~~
y2

C.o6omwe,sa 1 1~ 13Mu SH ( 1,  
_______ _______

_ _ _  i~
- 1---. —

~
—

;~~ Y~ Gl~— 

0 0 -3 2ys 
_______

~~~~ (1). Absolute term.
-F

Tables 6.9.

— i~~~~~Ji12i ~• L -2 1

6 ~r 0 
_ _ _ _ _

x~ 
~~~~~ 

._!J 
8 -2 

° 
0 -2

0 
0 

0 -s 
!~

Key: (1). Absol ute term. TAA ~~ __

t . , o . 
_ _ _ _ _ _  _ _ _ _ _ _

jc.o6osw a) y .r2 $

Page 7l. L -5 2 -2 3

5 -2 I -3

~~, 
2 0 -2

0 o - 3  
— 

2

— — — - - -í
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For the execution of replacement x~~~p, is the saia a table let

us m a k e  thø further calculations (see t ibia 6.9) .

By replacemen t ~i —~ s table is reduced tc the form (table

6. 10) .

With the help of the tabular dIgoLj t h t  of the exch a nge of

alternating/variable of equat ions of OZLP, it is possible to solve

any proble m of linea r ~-togL amat ing cr tc ascertain that it does not

ha ve sclutj on

The determination of the solution cf each problem of linear

programmin g falls into two stage:

1) seeking the su~)porting/[-ef* r€nce sciuticn;

2) fi nding the optimum solution , which minimizes the linear

func t ion L.

In the process ot the t i ts t  stage incidentall y is clar if ied ,

does have generally this prcLlem the permissible (nonnegative)

solutions; if yes, then is located the support i ng/reference soluti on

for wh ich all unrestrictell variables ar€ equal to sero, and

•v .rything bass are noriregative.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4
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In the proces s of the second stage incidentally is clarif ied, is

limited fr om below the min imized function I; if no, then of the

optimum solution there does not exist. if yes, then it is loca ted - -~

after one or the other number of replacements x,.-.y1.

Both stage solutions of OZLP are conve njentjy imp lemented with the

help of the descri bed tr a n sl at ion al gor i t hm of standard tables.

Page 72.

7. finding the supporting/ reference solution of the basic prob lem of

linear programming .

Let there be OZLP with linitaticn—€qualities , registered in the

standard form:

y
~ =b 1 — (me X1 +2k,; + ...

( i t)
y~ —b ,, - (a

~~, x1+8~ .X,+.:.

those solved relat ive to base variables Ye, ~~ ..., 
whic h are

expressed through unrestricted variables x1, x,, ... , x~. In each
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apex/verte x of ODR (support ingJreterence solution) at lea. t n of

variables must be converted into zero. Let us try to obtain the

supporting/ reference soluticn, set/assuming in formulas (7.1) all

un testricted var iables equal to zero..

We ha ve :

y~ = b1; Ye ~,; - - - ;  Y~ 
be,,. 

(7.2)

* If all absolute terms b1, b,, ..., b m ill equatiOns (1. 1) are

no~ nega tive , this means that the supporting/refarence solution is

already obtained; this case us does not interest. Let us consider the

ca se when among absolute terms h1 ,b 1 , . , b~ there is negative.

This means that solution (7.2) is not reference — it not at all

admissibly, and the supporting/reterence solutica still is in

prospect t o  find. For this, we w il l  stel  by step transpose bas e and

un restricted varia bles in equations (7.1) until ~a arrive at the

supporting/ reference so lut icn  cr will not ascertain that it do not

ex ist. The lat ter occurs in the case wh e n sys t e m ot eguations (7.1)

is incompatible wi th the inequalities

~~~~~ Xs>O’ ’ X~>O. y
~ 
>0... ’ y,~>O (7.3)

La. it does not have nonnegative solution~~~\~~restricteJ variables

so that th is procedure we uld  approac h us a uoundary of ODR , but it

did not recede fr3n it , i.e., so that the number of negative absolute

-~~~
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terms with each step/pitch would decrease, or, if the number of

negat ive absolute terms it remains pre v ious, then, at least ,

decreased their absolute values.

There is a series of methcds ot the selection at the solving

cell/element tor approach/a~ proxinaticn to the supporting/reference

solution. Let us pause (without strict prccj) at one of them .

Let there be one of equat ions (7.1) with negative absolute term.

We seek in tnis row negat ive cell/element G,,. If there is no this

cell/eleme nt (all cell/elements a11- > O )  this is the sign/criterion of

the fact tha t the sys tem of equat ions (7.1) is incompatible with

inequalities (1.3) . it is real/actua l, in the absence of negative

cell /eleme nts in row , entire/all right side of the corresponding

equation can be only negative , and this ccntrad icts the conditions of

the nonneg ative character cf variables.

Let us assume tha t the negative cell/element is. Then is

selected the c o l u m n, in which it is located that as that solve.

)Iow it is ne:essary to select thib co l u m n  most solving

cell/element. Let us consider all celi,elements of this column , which

• ha ve ident ical sig n w i th  absolute term. Frca them let us selec t as

that solving that, for which the reiaticn to it or absolute term is
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minimal.

Thu s, is chosen the solving column , which solves cell/element in

it and, which means, that the sclviny &cw •

We viii. be c3nvinced b as€ d on ex ant le , as is accomplished

approach/app roximation to the support ing/ reference solution wi th  this

rule of the select ion or the sciv iny cell/element. Incidentall y we

will be convinced of the soundncss of this rult . -~ 
--

sage 73.

Example 1. T3 find (if it exists) the supporting/refere nce

so lution of the pr oblem of linear programming with

limitation—e9ualities:
Pl I— i— x 1.— 2x~+z,),
,,— —- 5—~—2x 1 -4- x ,—a ,), 

-

‘3~~ 2—~*~ f- X~~

&f~~~~ I- ( — X ~~fX~)~

(here it is not brouqht the linear form which must be minimized ,

because the supporting/reference solutIcn is ought irrespectively of

the form of this for.) .

Solution. We record/wr i te  conditj a~~ (7. 14)  in the t~ rm of the

k standard table (se e Table 7.1) .

-_ _ _ _ _ _ _ _ _ _  -~
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in Table 7.1 is negative absolute term by —5 in row Y2 of col umn

x~. Accord ing to rule, is selected any negat ive cell/element of this

row, for example - 2  (in table 7.1 it is emphasized). By this we

selected the solving column x1. As “canui dates” to the role of the

solving cell/element let us examine all those cell/elements of this

column, wh ich are differing b y sign to their absolute term; this will

be —2 and 1 (zero as the solving cell/element figure it ca nnot).

We compute f3r each of the “candidates ” the relation to it of

the absolute term :

(—5) /(—2) — ~/,; 2/I~~2.

Small from these relations to 2; that •eaos cell/element 1 is

selected as that solve and we transpose x,.-~i, (see Table 7.2).

After the execution of actions, we come tc  ta~ le 7.3.

4 In Table 7.3 as before one negative absolute tern, but in

absolute value it is already less than in ta~ le 7. 1 
— tnat means that

we approac h 0DB.

Let us try t~ get rid also of this term. In row Yz is onl y on e

negative cell/element — 1 (it is emp hasized). That means that the

solving co lumn can be only colu m n x3. we compute for all

- - - ~~~~~~~~~~~~~~~~~ - -~ ~- - - - -~~~~ ~~~ ~~~~~ - - _ _
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Cell/elements of this chair , which have identical sign with our

absoLat. term, the ratio at absolute ter, to the cell/element:

• II—)3/1 3: (_ 1) I ( t) 1. i

2abl~~ 7.1.

~~~~~~~~~~ 
:‘ 

~

2 1 1

y4 1 
— 

~~~~ 
—l

~ey: (1). Absolute term.

- - Page 74.

Relation reaches tbe min im um , equal to 1, for two cell/elements;

let us tak e and the quality of that solving the first of them (—1) ,

that stands in row y2 and cclumn x 3, v let us dc -
~ replace ment —

(see Table 7.14 and 7.5) -

Zn Table 7.5 all absolute ter ms are ncnnegatjve, and the

• supporting/refereacq soLutAc~ is found:

~ I

a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - I -~~~
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~ Example of 2.. 1~o find (if it exists) the supporting/reference

soluticn of the system

M*——4— (—r1+2x,),

(7 $)
Vs IO (2x z . X ~+Z ,),

~~~ —2— (—x~1-z,).Tables 7.2..

C.o6o~swø 11MneN (/~

_ _ _  
2 

_1 1_~
_ _2 1

-5 -2 I —1Y2 2 0

x ..- Y 2 1  i l~ 0 1

_ _  
0 

O~~
_ 

~i

Key:  (1) . Absolute term..

Tables 7.3.

Cso6oaNwd~ 12 13&MSH ( I l 
_______  _______

3 1 —1 —1
— 

-‘ 2 3Y2

2 I 1 0LI
— 

1 0 -1 1• y4

a

_ _ _ _ _  ____  - A
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¶ Key: (1). Absolute term.

Page 75.

tab les 7.1$.

— _ _  _ _  

‘3

yI —I 2 
— I I

____I ~ 1
2 1 1 0

i~i 
1 : 

~~~~~~~~~

- 

- 
key: (1). Absolute term

I
- - -- -—~~~~~~~~~~~~~~~~~~~~ -~~~~~~~-—- - -~~~ ~~~~~~~~~~~~~~~ A
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1 ____  

.7. 
~~~

•

-- ~41I 
Y3

I 
2 3 2 P

I .r 1 -2 -3 -1

2 1 I 0

0 2 2 f ?

Key : (1) . Absolute term.

Tab les 7.6.

CSO~ OAHbI~l4nsw ~~~ 
_ _ _ _ _ _

4 -~1 2 0
-

3 
—- - 

-1

2 —1 I

y4 2 I® t~~~~~o J

- 

- Key: (1) . Abso lute term.

Pag. 76.
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Solution. We record/ut ite system cf equat ions (7 .5) in the form

of the standard table (see Table 7.6).

:4
It is selected t O W  w i th  the neqative absolute term , for examp le.

the first. in it theLe is nejative cell,element (—1). Is selected

column x 1 as that solve. ~e comput e the relat ic~ s:

(—4)/(—I)..4; (—2)/(—I)~~2.

Last/latter sense mini~ ally ; that means as tuat solve we take

cell/element (—1) in row y, and we produc e rep lace.ent x -.. I’~ (see

Table 7.7 and 7.8)

Let us turn our attention to row y~ in table 7.8. In it absolute

term is nega tive, but there is not one negativ e cell/element (except

quite absolute ter m). TFe corresponding equation takes tne form:

Can with any nonnegative values y,, x 2, x , v a l u e y~ be

nonnegative? It is obvious, no: with y,~ x 2=x 3=0 we will obtain y3=

— lie, but increase y,, x 2, x 3 over zero will do y
~ 

still less.

I —

- -
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1’A6~~ 1.1

2 0

- _ _ _  

1 -

y —10 2 -1 1

Key: (1). Absolute term .

Tables 7.8.

~~~~
oA:

~ ~=_
Y~_[ X 2~~~ 

I~

2 -1 0

Key: (1). Absolute term. -

Page 77.
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Consequently, syst em (7.5) is incompatibl e with the inequalities,

wh ich ensue from the nonnegative character of var iables, and the

prob le. of linear programming wi th boundary conditions (7. 5) the

permissible solutions does not have. Abcut the same testifies row Ya

ta ble 7.8, where also there is not one negative cell/element (except

quite absolute term) .

Thus, we see that there is no need to specially trace the system

of conditions of OZLP for ccnsistency icr tAte dcma in of the

no*~negat iv e solutions: this question is clarified automatically, in

the proces s of the determ ination of supporting,reterence solution.

8. Findi ng the optimum solutio n of the basic prcblen of linear

programming.

In the previous paragraph we learned to tind out the

supporting/reference soluticn of system of equations of OZLP ; during

the searches of th is supporting/reference solu t ion, w e w e r e  no t

completely occupied by the iinimized function L. Now we will be

cccupied the optimizaticn of solut ion, j.e.,, by finding such

supporting/reference solution which converts into the minimum the

linear fusction :
L
~~

c.
~~

(y i X
~
+y, Xt+...+ Vn X a)

- -  - - -  ~- - - -  -- -- _- — -  -~~
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In §5 we already dem cn~trated the fundamental side of the

methodolog y of the optiuizaticn of solution. Here we based on

examples will show how this optimizatics can be carried out with the

help of the tabular algorithm cf replacuent x1 .-.y 1.

Example 1. To find the sciution of the prcblea of linear

programming with the equaticns

~~~~~~~ x1+x ,—2x .),
v~— - ’ — ( X1 X~~+ ES). (8)
~i~~~5—( x,4- zn),

rotating in the minimum the linear function

L_ O_ ( ~~X i+ 2X t +X s) . (8.2)

Solut ion. All absolute terms in (8.1) are nonnegative , which

me ans, tha t suppor t ing/ reference 3oluticn is present:

x~— x~— x ,—0; u~—2; y,~~ I; ~i,~~ 5; v~’—2•

Is it optimum ? No , since the coef f ic ients Cf x 2 and  X j  in (8. 2)

are positive, whic h means, increasing these variables, we reduce L.

Let us register (8.1) ana (8.2) in the form of standard table

(table 8.1).

-
, Since the coefficients in tue firs t ro w of i

~ 
and x 3 are

positi ve, any of t hese var iables can be deduced from the numbe r of

‘4
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free. Let this wil l be x3. hhich of the cell/elements of cha ir 13 to

take that solve? This cellj€lem*~nt must be positive. That means that

of us exists the selection: 1 in row Y2 or 1 in row y~. L.et us select

that them them , f3r which the relation to it of ansolute term is

aiqima l (proof see in §5).

Relat ions are equal to 1/1 1; 5,1=5. Minimum of them 1. That

means that as that solve it is necessary to ta ke cell/element 1 in

chair x 3, row Y2 . Let u~ replace ~~~~~~~~ ( see Table 8.2, 8.3) .

-
. Page 78.

Tables 8.1.

______ ______ _____ 

La
0

2 I 
- 

-2

-1

5 0 
______ ______

2 -I 0

Key: (1). Absolute term .
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f~~~kb~ ~~~~

S1
-t ——

L 1  0 — 1 2
- - - -- 

—I , —Ii u
2 I ~~~~I — 2 _

- - 
2 2 !  —

~~ 12

- 

!~2 
--.

~~~~~ 
, 
—

~~~~ 
-, (D ,

y3 5 0 1
- — 

-
~ - .- - .  -.— - - 

I 
- -

2 2 — I 0
— -___ __ __ _

K.y: (1). Absolute term.

I

• Tables 8.3.

CRO 6OANWi ; x, ~, 1
L —‘ -2 3 .4

y~~~~
4 3 -I 2

- 53 
1 I

y3 4 -I -i

:~ 2 2 -, 0
— —  —

Key: (1) . Absolute term.

Page 79.
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In upper row table 8.3 is the positive coefticient of 12, which

means, that x2 it is necessary to deduce frc m unrestricted variables.

Is selecte d as the solving that ~‘ositive cell/element ch*ir x2, for

wh ich the relation to it of absolute term is minimal. L3ut in chair x 2

unique positive cell/element 2, it is selected as that solve (see

Table 8.ie and 8.5)

It turns out that procedure i~ not still finished : in the first

row table 8.5, is a positiv€ cell/element in column y
~ , 

whic h means.

that the  variable Y2 must be deduced from the number of free. As that

solve we take that ot the positive cell,elements ot chair Yz, fo r

which the relation to it ot absolute term is minimal.

!guate/com parin~ the relaticn s

6t ’4..4.

it is selected as that solving cell/element 3~ 2 in row y~ a nd  cha i r

we cont inue the procedure ot the optim ization (See Table 8.6 and

In the first row table 8.7 there is not one positive

cell/element ; that mean s o~- timuai scluticn reached ; it will be: I -

~~~~~~~~~~~~ ~~— 4 ; z1~—i; ~~~~ ~.
..6.

At these valm •e of variables, the lineat functicn L teaches its

-~~~~~~~
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minimu m value equa l to

L 11=~~g,

Doe s arise the qu est ion: a that if in the chair, whic h contains

positive row element L, will be located not one positive

cell/eleme nt, in oider to make it solving ? it is easy to ascertain

that in this case function L is not limited from Delow and  OZLP does

not have opt imum solut icn _

It is real/actual , in this case an iflcLease of the variable ,

that corresponds to this chait , reduces the litea r function L and

cannot do one of the base variables negative , which means, tha t

nothing impedes the unlimit ed decrease cf functio n L.

Thu s, let us tormulate the rules cf the determinati on of the

ç optimum solution of OZLP by the simplex nethod .

1. If all absolute ten s (without considering row I.) in

simple x— table are nonnegat ive , but in L CW  L (without considering

absolute term) thm re is not one positive celljeleaent, th en op t imum

so lution is reached.

a

- _ _ _ _ _ _ _ _ _ _ _ _  __________________- -

~

------ _ _ _
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C.o6oawba~ 5 5I 2
_____

___LTh -_
2 

1 -

I 

•l~3 ~ I —l r—~
—

- -
~~~~~~~~~~~~~ :~ ~

-;
~ 

® 
_ _ _

2 1 2~~ ~
I f—i 0

Key: (1). Absolute term.

I Page 80.

Tables 8.5.

-

~ C.o~ oAN~~ X y Va- _ , I
- 

_
~~ 

1 3 1L 2 2

6- Y1 2 2
— 

3 I 1 I
S3 2 2 2

2 I
~ 1 2 2 *

4 1. J.
2 2 2

-

- Key : (1). Absolute term.

a

LL _ - 1~-
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Tables 8.6.

_______ ______ ______ ______

CsoOo*..w*
‘I*SSI

L ~ 
2 2 -

~ 
3fT

~

~~~~~ ~~~~~ 
_ _ _ _  

1i iJ 

~D— 
1 j

‘3 
3 5

__1 2 -~~~ 
-

2 — — — -— r - ~5, 
_ _ _ _ _  

2 1 2 _~~~~
2
.i~~

4 3 I - ‘M.. , t * 
_ _ _ _

Key: (1). Absolute term .

Tables 8.1.

— 
oa.s.

-r- 
~~~~ 

-
~~~~ 

-
~~~ 

-

~~~

42 
L~~~~~ 4J 14_

‘3 
I -

~ ~

Key: (1). Absolute term.
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Tables 8.8.

_ _
__ _ _ _  

.— ~~~~~~~ —
~~~~

:~ L 0~~~~~~~~2 1 0 0

0 -t 0 0  ~~o

2 0 1 -l o

1 
~~~~~~~ _ _

%s-y: (1). Absolute term.,

Tables 8.9.

jC.OdOANIHI 
~ 13 54

— 
MfiH (l~ 

2

L 0 _2

1[ 
0

0
0

0

1 
£~~~~~~~~ 1~~~~~~~~~~

1 i 1 , ~~~~~~~~~~~~— 

2 0 I -I

~
:- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

asy: (1). Absolute term.
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~~~~~~~~~~ 
l~ . 10 

___  ___  ___

- Cso6oa,ss.~ ~ I’
- 

~!!L_L _~ 
I si ~i

- L 0 -1 -I 0 0

- 0 -t 1 0 0

2 I _ I f  _ i 0

I I 0 j 0 —I — 1

-~~~ Key: (1). Absolute term.

I
Page 82.

-
~ 2. If in row L there i~ positive cel-l,eleaent, but in column ,

- which corresponds to it, there is not cne positive cell/element, then

linear function L is not limited from be low , and opt imum solution

- does not exist .

3. if in this chair there are positive cell/elements, the n one

should rep lace of one of unrestricted variables by one of basis,

moreover as that solve it is necessary to take that cell/e le ment of

this chair, for wh ich relaticn to it of coniespondinq absolute ter m

is mimimal .

In conclusion let us pause at the so—called ‘ degenerate” case

when one (or more) absolute terms in equation—limit ations it is
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obtained equal to zero. This means that in this supporting/reference

soluticn are converted into zero onl y unre stricted variamles, but

also some of the base. Let us consider an example.

Examp le of 2. To find the soluticz~ of the problem of linear

pr og ramming with the conditions

ki —x i — z., 1
Vs — z,+x3+2, 1 (8.3)
V3 x3+X.+l, J

rotating in the m i n i m u m  the l inear func tion

I
L..2x1—x,. (8.4)

Solution. We record/write (8.3) and (8.L4) in the form of the

standard table (see Table 8.8).

According to general rule, we seek in chair 
~~ 

the solving

cell /eleme nt, for which the relation tc it of absolute term is

nonnegative and it is minimal. Equating relaticn to 0:1 and 2:1 , we

are stopped on solving cell/element 1 in rcw y1, for which thi s se nse

is equal to zero. We product replacement x 2 - 
)  

Y~ 
(see Table 8.9

and 8.10).

During transition from one ta A ~le ~.8 to ne xt 8.10, it is

-; logical, did not occur the decrease of the linear function L (it both

a
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was and it remained equal tc zero) , but the cell/elements of uppe r

row they became everything non positive , from what evident that the

optimum solution is reached: the minimum of function was equal to

zero and is reache d at x 1 =y 1 =x 3=x 4=0; x2=0; y
~~=2; y3= l.

Let us do still one, tne latter, observaticu apropos of the so—called

“ringing ”. We already saw that in the çresence of “degeneration ” it

can seem t hat rep lacement of cne of th~ unrestricted variabl es by

base and back leads only to the exchange of variamie s, without the

decrease of the linear function L. In  ver y rare cases can seen that

the consecutive application,use of a rule of the 3electxon of the

solving cell/element leads to the fact that after several

replacements X J 4-b y( we again are returned to the sane set of base

aid mn restricted variables, from which they began . This is called

“ringing”. Virtually in order to avoid this, sufficiently it is

during repetition to take the solving cell,~lem€n t not in the manne r

that it was undertaken for the first time (tor example, in other

chair) . During the organization of the algcnithm of linear

programmin g by ETsVM into program , must be intrcduced corresponding

indication.

Page 83.



- -- -—--
~::~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

~~~ 

_ _ _ _

DCC = 78068705 PAGE

9. Transport problem of linear program m ing.

In the previous para g raphs the simplex metho~I of the solution of

problem of linear programming presented is universal and it is

applicable for the solution of any such problems. klowever , there are

so me part icular ty pes of prcblems of the linear programming which , by

the force of some special feat ure/peculiarities of its structure,

admit so lution by simpler methods. To it is related, in par ticular ,

the so—called transport prcblem.

The classical transport problem of linear programming is

formulated as follows.

there is m of point/items of the sending: A1, A,,..., Am,

wh ich are concentrated the supplies of soae uniform goods (load) in a

quantity respectively a1, a,,..., ii,,, ot unity. Furthermore , is n of

stations of destiuiation:B1, B,,..., B,,, feeding claims respective ly

to b3, b,,.., b~ uni ty of goods.

it is assumed that the sum of all cla ims is equal to the sum of

all supplies :

(9.1)

Is known the cost/value c11 of th€ transport of unity of goods
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fros each point/it em of sending A, to *~ch station of destimation
B,. The table (matrix/die) ct the costjvalu~s of transpor t c,~J is

assigned:
Cl1 C11 ... Cj , ,
Cu C11 ... Ci,,
C,,,~ C~, ...

It is required to comprise such plan/layout of transport, by

which all claims would bQ carrie d cut , and in tlis case the

common/general/total cost/value of all transport was m inimum .

Upon this formulation of the problem the index of the efficie ncy

of the p lan/layout of transport is the cost/value ; therefore stated

problem more precisel y calls transport problem in the criterion of

cost/value.

Let us give to this prcblem mathE .maticdl formulation. Let us

desig nate ~si — quantity of load, transmitt ed from the i point/ite m

~~ sending A , for i station of destinat icn B, (i=1 , ... ,~i j=1 ,

n). Nonnegative variables x11, ~~~~~~ 
~~~~~ X JflI~ (number of whic h,

obviously, equally m m )  m u s t  satisfy tbe fcllowing conditions:

1. The total quantit y of load, directeu frcn each point/item of

sending in all the staticns of destination , must be equal to the

supply of the load in this point/item .

-— .- , i_A
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This will give to us m condition—equalities:
x11 +x1, + ... +x1,, =a1,
x,, + xft + ... + x,,, — a,,

Xml + x ,,, + ... + x ,,~~= a~~,

cr~ it is shorter,

xl) = ~ll

— 
x21 — a,, (9~

~~~x,iJ I=am.

2. Total quantity of icad, Supply/ delivered to each station of

destination from all point/items of sending, must be equal to claim ,

subject this point/item. Ilils will give n ccndition—equalities ;

~~~ + X 4 ÷ ... ÷ X1~g b,,
X11 + X1~ + ... + x~, b,,

x,,,+x.,~+ :. +X rn b;or, it is shorter,
H m

1’,, (9.3)

3. Total cost/value of all transpctt, i.e., sum of values

xuJ. siltiplied by appropriate cost/values C,1, mist be minimum:

--
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+ C~ X11 + C11 X12 + ... + 4~ X1,~ + ... +
+ ~,,,1 X ,g + C~,,1 X~~1 + ... + C~~p1 Xr.~ mm ,

or, much shorter ,

L — c,~ x,1 — mm , (9.4~

~ I,
where sign of double sum means that addition is produced on

all combinations of indices (izi , ... , m ;  j~ 1, ... , n), i.e., on a l l

combinations of po int/items of sending with stations of destination.

Page 85.

Funct ion (9. 14 )  is linear , limitaticn — equality (9.2) • (9.3) are

also linea r. B e f o r e  us — the typical prcblQn of linear programming

with limitation—equalities (OZLP) .

Like any other problem of linear programming, it it would be

possible to solve by the simplex method , but this problem has some

special feature/peculiaritiEs, which make it possible to solve it a

mote simpl y. Reason is the fact that all ccefficients of variables in

equations (9.2), (9.3) are equal to one. Furthermore , has a value the

structure of communication/connections Letw.~en conditions. It is not

ii
a
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I
difficult to ascertain that not dll m+n equdtions of our problem arc

independent variables. It i~ real/actual, store/adding u~ betw een

themselv es all the equations (9.2) and all, the equations (9.3) • we

mu st obtain one and the sam e , by the force of ccndition (9.1). Thus,

condit ions (9.2) . (9.3) are connected by one linear dependence , and

actually of these i~guations only m + n — 1, but not m • a are the 1 

-

linearly indepenã~ nt. That imeans that the ran k ct system of equations

(9.2), (9.3) is equal tc

r —m + n —1 ,

a~~therefore, it is possible to solve these equations relative to m +

— 1 base var iables, after  expressing the m through the ot hers , free.

Let us count a quantity of unrestr icted variables. It is equal

to:

~ n~n— 1)-—(h - l)~~(m—I) (n—I).

We know that in the prcblem of linear ~royramm ing the optimum

solut ion is achieved in one ot the apex/ver texes of ODR where at

least k of variabl es are converted intc zero. That means that in our

case for the Opti sum plan/layout of the transpctt at least (a — 1) (n

— 1) of va lues x,, t hey  must be equal to z€~o.

Let us agree the terminology. The values 
~ ,, 

of a qua ntity of

-~~~ - -_ _  _ _ _ _ _ _ _ _ _ _ _ _ _—

~~~

- — - - -k_ ._ ~~4
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coes of load, directed from point/item A, ~n paint/ item Bj we wifl.
call transport.

Any val ue par t (x1 ) (i-= 1, . _ .,  w ;  j=l, ... , n) let us call the

plan/layout of transport , or it is simple Ly plan/lay out.

Plan/layout (x,1) let us call permissible, if it satisfies

conditions (9.2), (9.3) (the so—called “ba lance conditions ”): all

claims are satisfied , all supplies exhausted.
f

The permissible plan/layout let us call supporting/refere nce, if

is it are different f rc m zero not more than r= m+ n— 1 base trans port
X II, and re.aijming transport are equal tc zero.

Plan/layout (x,j) let us call opt imum , if it, amon g all

permissible plan/layouts, leads to the smallest cost/value of all

transport.

Page 86.

Let us pass to the presentation of the methods of the solution

of transport problem (TZ).. These meth ods do not require manipu lations

• w ith simplex—tables, but they are reduced tc simpler operation s

directly with the table where in the determined order are registered



DOC 18068705 PAGE

all conditions o TZ. This table we will call transport table.

In transport table are record/written

— the point/i tems of sending and d€signaticn/purposes,

— the supplies, availatle in the ~cint/iteas of sen~iing,

I
— the claims, subject Ly stations of destination,

V

— the Cost/value of transport trom each pcint/item of sending

into each station of destination.

The cost/values of transpor t we will plaCE in the upper

right—hand corner of each nm cleus, wi th the fact in order in nucleus

itself with compilation of plan/layout to place the transpor t x~j .

The specimen/sample taUc gives in table 9.1.

For bre vity subsequentl y, let us designate the point/items of

sending — P0, stations of destination — PN. In the upper right—hand

corner of each cage/cell vrct. thw cost/values of the transpor t of

Cne of goods (load ) from P0 A1 into PW B,. In right column placed

the supplies of goods in each P0, in Icust row — the claims, the

a
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subjects b~ each PN. For TZ the sum of supplies is equal to the sum

of claias~ the com mon/general/total value ct this sum is

record/written in the right lower nucleus ci. table.

Above we showed that the rank of the system of

equation—limitat ions of TZ was equal to r m+n— 1, where m — a number

of rows, and a — a number of cclumns of transport table. That means

that in each supporting/ reference plan/ laycut, including optim um ,

they will be different from zero not more than n .m—i transport.

I

The nuc lei (cage/cell) of the tables in which we will

record/write these different from zero transport, let us agree to

call base, and the cthers (empty) with free.

A 
_________
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81 B, B~ 
3.nac~

C1, Cu . . . ..  C,,, aI I

C2 , C fl C3~A2 a2

Cm, C~ 2 . . . . .  Cm,,
Am am

— 
~~~~~~~~ b, b~ ~~~~~

asy: (1). Supplies. (2). Claims.
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Thus, the solutio n of TZ was reduced to the following. To find

such values of the positive transport bhich , being are written in

elementary cells of transport ta b le, wculd satisfy the following
- - conditions:

— su. of transpor t of eac h table rcw must be equal to reserve of

the given P0;

— sum of transpor t of each chair must be equal to the claim of
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given PN;

— com mon/general/total cost/value cf tLansport — ninimum.

In the future all the actions on the determination of the

solution of TZ will be reduced to the transformation of transport

table 9.1.

Durin g the description of the se transformations to us it is

;~ 
convenient it will be to use the numbering cf the cage/cells of table

(s~silar numbering of the cage/cells of the chessnoard). By cage/cell

~A,, B ,) or, it is shorter , cage/cell (i, j) ~~ will call the

cage/cell, which stands in the i row and the j chair of transport

I
t

. table. For example , upperaost left cage,cell will be designated (1,

- I 1), that stands hearth by it (2, 1) and so torth.

10. Determination of supporting/reference ~lan/layout.

The solution of transpcrt problem as any problem of linea r

programmin g, begins from the determination of supporting/reference

mo lution, or as we will speak , supporting/ reference plan/layout.

Unlike the general case of CZL P wi th arbitrar y limitations and the

minimize d function , the soluticn cf TZ always exists. It is

real/actual, from purely physical considerations it is clear that

- _ _- - - _ _ _
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aithoigh some permissible plan/lay out tc exist must among the

permissible plan/layouts without fail is optimum (it can be, not

one), because the linear function L — a cost/value of transpor t is

knowingly nonnegative (it is limited from below by zero). In this

paragraph we will show how to construc t supj.orting/reference

plan/layout. For this, there are differen t methods from which we will

pause at simplest, the so—called “methcd of the northwest corner”. To

clarify it most simple will be based on specific example.

Example 1. Co nditions cf TZ are assigned by the trans port table

(see Table 10. 1).

- 
- It is required to find the supporting/reference solution of TZ

(tc construct supporting/reference plall/laycut).

Solution. Let us rewrite table 10.1 anu will fill it with

transport gradually, beginning with left upper nucleus (1. 1)

(“northwest corner ” of table). Let us discuss in this case as

follows. Point / item B1 fed claim for 16 ones of load. Let us satisfy

this claim of volt—ampere the calculation of supply 48, available in

po int/item A 1, and let us register transport by id in cage /cell

(1.1). After this claim of point / item B~ it is satisf ied, and in

point/ item A 1, rem ained an additional 3C ones of load. Let us satisfy

because of t h e m  the claim of point/ item B 2 (27 cnes) . let us register

a
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27 in cage (1.2); the readining 3 units of ~oint/iteIa A 1 let us

assign to point/item B3. In the composition of the claim of

poInt/item 8 3 remained not satisfied of 39 unity.

Page 88.

Prom them 30 by cut because of point/item A 2, tha n its suppl y it will

be exhausted, and an adiiticna l 9 let us ta1~e from point/item A3.

From the remainin~J 18 units of ~ oint/ i tem A 3 12, let us isolate to

point/item 8,; remaining 6 units let us assign to point/item 85,

wh ich together with all 20 units of point/item A, will cover its

claim (see Table 10.2).

On this, safety distribution it is finished: each station of

destinatio n obtained icad according to its claim. This is expressed

in the fact that the sum of transport cf each rcu is equa l to the

appropriate supply , and in chair — claim .

Thus, by us immed iately is comprised the plan/layout of

transport, which satisfies balance conditjcns. The obtaine d solution

is only not per missible, but also supporting/reference the solution

of transport probl em.

L.
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18 27 42 12 26~~ 125

~sy: (1). Supplies. (2). Claims .

?abJea 10. 2.

_ _ _  

_ _  

_ _  

_ _ _  

B B~ 
3a

Q
sc
(~)

i8 27 42 12 26~~ 125

n.y: (1) .  Supplies. (2) . C l a im s .
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The cage/cells of t hy  tabl&’~ in w h w h  ~t a i i d  n onzero  t nspor t ,

ar e base , their numbet. satisfies c o nd i t i o n i.= w •n—1=8. Th~ others

cells — free (empt y) , in  t h e m  st an d  nonzero tLansport , their nuabe i.

is eqnal (n—i )  ( a — 1 ) = 1 2 .  That means that our

• ~lan/layou t—sUpporting/reft1rence and s tated pr o t i em of the

• construction of supportiny/reteLence plan /layout is solved.

Doe s arise the luosticn : a is this plan/layout optimum for

coat/value? It goes without sa ying that no I Iude~d with its

co~atr vcti on we in no w a y  cons ide t ed  t h ~ cost/va lues  of transport

C,1. It is logical , p la n/ l~~y c u t  was not  c b ta i n~~d opt imum.  I t  is

real/actual, the cost/vtluo ot t h i s  p l a n / l ay o u t  w h i c h  wil l  be

loca ted, if we multi pl y each t r a n s p o r t  ~y t he  app r o pr i at e  cost ,value ,

it is aqua l to 18.1O,27.a,3.5+3U.t3,9.1C.12.b,6.7.~~O .d=iOJg .

Tb improve this plan/layout, atter tra~ sferLing, tor example , 18

units tram cage/cell (1.1) intc coil (~ .1) and , in order not  t o  br eak

4 ba lance, after transferring the sale of 1~3 units ftom cage/cel l (2.3)

into cell. (1.3). We will obtain the ne w plan/layout. given in table

10.3.

It is not difficult to ascertai n that the cost/value ot new

Elan/layout is equal to 27.8.~~1.S+ 18s6+12.$.9.1O.12.a.6.7.2O’t~~’)1~~,

i.e., pet 126 unit s is smaller than the cost/value of th~

- .~ .. -
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plan/lay out , given in table IO.J.

Thus, because ot the cyclic periautat icn ot 18 units at t h e  b ai t

of som e ca ge/cells at ctheLs we succeeded in reducing the cost/value

of plan/la yout. On this method of de c rea s i ng  t h e  cost/va lue

subsequent ly wil l be based the algorithm of the optimizat ion ot the

Elan/layou t of transport.

Let us pause at  o ne  specia l  r e a t u r e / p e cu l l ar i ty  of tht~

r i l an / l ay o u t at t r an sp o r t , w h i c h  can  be met b o th  du r i n g  t h e

co~st guc tj on  at su p p o r t i n g / r e f e r e nc e  p l a n / l ay o u t  and d u r i n g its

ia~ ro ve.en t. Spvec h occurs about  t h e  so— ca l l e d  “degenera te ’1

p l a n/ lay o u t  in w h i c h  ~;o me of t h e  base t r a n s i -or t  prove t o  be eq ual  to

zero. Let us consider a specil ic e x a m p l e  or  t h e  emergenca of t h e

degenerate plan/layout.

Example of 2. Is g i v en  ti. anspur t table ( w i t h o u t  the cost/valuk’~

of transport, since we are d e a l i n g  o n l y  w i t h  t he  construc t ion of

sulp or t iny/ r efer ence  p l a n / l a y o u t )  — see Tab l e  1O .u.
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Tables 1O.~e.

A, 
- ~

°

a, ’... ~ U 30 ~&_ 
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PS7: (1). Supplies. (2). Claims.
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TaU es 10, 5.

A 10 10 
- .  -

A 3 

- 

20 tO 30

A 25 25
3

- -  - 

20 20

Lu;.. 
~~~ 

. 
,o 35 20 95

K•pz (1). Supplies. (2). Claim s.

rabies 10.6.

flI~ — — — — 3 Rscwa, a, a, a, a
A , 10 10 : 20.t

20-f io.s 30

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A, 20-2i 20—2i

n.y: (1). Supplies. (2). Claims.

Page 91.
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To comprise the supportLug/reterence klan/ lay out of transport.

SOlUtiOfle Appl ying the a~ thod of the northwest corner VC w il l

obtain table 10.5.

Supporting/reference p lan/layout is ccaprised. Its spec ia l

feature/peculiarit y is the tact that in it coly six, but not eight

different from zero transport. This aeans, certain of the base

transport which must be a + n — 1 = 8 , they render/showed equal to zero.

4 It is not dif ficult to note that wh y this cccurreI: during the

distribution ot supFlies according to staticns of destination in

certain cases, the residue/remainders proveu tc be equal to zero and

into the ap propria te ca~e,cell did nct tall.

Such cases of “degeneratica” can appeaL not only during the

composition of supporting/reterence plan/layout , but also during its

transformation, optiaizaticn.

In the future to us is convenient will be always to have in the

transport table m+ n— 1 of element ary cells, although in some of the m

perhaps they will stand the zero values of transport. For this, it is
•~ k

possible to neglig ibly little change su~plies or claims, so as to

total balance woul d not be broken , but eXCESS , “inter media te’.

1 3
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balances were d e s t r o ye d .  Ls s ut t i c i e nt  in n ’.cessary places to c h an g e

supplies or the claims, t o t  example . to value ~ . a after the

determination of the optimum solutio n to assume 1 0 .

Let us show how to pass t r ~~a t h e  degenerate plan/layout to that

nondegenerate based on the e x a m p l e  table 10.5. Let us ctt~aq~ slightl y

suçplies in the first row and will place t hem epail to 2~I+ s.

Purther .ore, in t h e  t h i r d  row let us write supplies 25. s. In order

‘.to reduce balance”, in the fourth tow we place supplies 20— s (see

table 10.6). For this table we construct su~portiag/r.f.r.nc.

plan/layout b y the method of the northwes t corner.

jn Table 10.b has already been ccntaintd as many base variables,

as is required: m .n— 1~~4. In the future , atter the optimization at

plat’layout , it will bc possibl. to assume s—0.

II. Improv ement im the ~lan~ la yout of tt~ n~~ort. cycle ot

recalculation.

In the previous para~ raph we already rapidly were introduced to

th. method of an imp rovem ent ir the 1lan/la~out , consisting of the

fact that some transport , without the damage of balance, arc

transferred from ca ge/cell to cage,cell on certai n closed cycle. Here

we will consider these cyclic perautaticns A f l  more detail.
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Let us take the transpcrt table , which consists, for ~xanpl e , of

5 rows and n 6  chairs (numbe r of rows and colu.n~ is unessential).

Cyc le in tran sport table we will cal l several cage/cells,

connected locked broke n line which in eac h ~ayejcell accompl i s hes

rotation on 900 .

For exampl e, ttble 11 .1 de~ icts two cycles: the first with four

apex/verte xes (2.1), (2.3), (4.3), (4.1) and the second — with eight

apEx/vertexe s (1.4) , ( 1_b) • (~ .b) , (4 . 1), (3 .4) , (3.5) , (5_51 , (5.4).

~
y rifleman/pointers is shown the direction of the circuit/bypass of

cycle.

Page 92.

Li
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B f 8, 1 83 84 B~ 8~ 
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cI~ c~ ~~

c3; ~~~~~ C~~4 C’~~ C7,A, 
~ I

- 
c 1,• c 3~’ C’33 c~ c3~ 1351 

- - -

A 3 a 3

- C4 ~ 4~ C41 
- 

C ,, C,. C 4,’
a - . .  

a1
C~ 3’ C~~ C~~ C~

Is’:; T~t~1 b 4 l b s [ b~ i~
.-4,

k.y: (1). suppl ies. (2). Claims.

Tables 11. 4~.

A c,1 C u~ C,3. C 1. C,, C’. ~

A ~~~~~~~~~~~~~~~ C , C~ C~ a2

~~1: 
:~•~; (3~ C~,

.43 ~ . - -1•~~
C,~ ~~~: 

C,~ C 
~~~,J I C . ~

~ ~~. 

T~~ 
~~~~ 

_ _ _ _

_____ - 

b. ]  b3 b, b4 b!~ 
b5 Za~ ft.~

-
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Key: (1). supplies . (2). C liims.

Page~~ 3.

.It is not d i f f i c u l t  t o  ~t~~c e [t a L n  t h a t ~ u c h  c y c le  has even n u m b e L

cf apex/vertexes and. wht ~ h m eans , t hat even nuiber at

componeflt/links ( a r :~~w / k o 1 n t e r ~~) .

Let us ag t ee to  n o t ~ ~- y ~ j~ n “ i ” th o s c  a [ cx / v e r t e x e s  of c y cle ,

in wh ich the trans I~o1 t m i  u s e , a i d  b y  si~;n “ — n  — thoso

apex/verte x.s i n  which t~ie~y a t~~ reduced. Cycle w i t ~ i t h e  n o t e d

apex/ver text ~s let us c a l l  “d~~si y n a t t ’d” . Ta~~ke 11. 2 shows t w o

designat ed cycles :  f i rs t  r~~, with tour a p e x 4’v c r  te*Os ( 1 .1)  , (1 . 2 )

13.2) and (3.1) and S t ? COf l d  Is, w i t h  eA ~~bt a , ex ,’v t e x e s  (3.4) • (3. b)

(5.6) • (‘i. 3) • (2 .3) , (2.5). (4 .~~
) and  (4 .4 ) .

To transfei. (to “move ”) sane q u a n t it y a t  u n i t .~ at l~~~d on t he

designated cycle  - t h i s  m e a n s  to  in ci . ease  t n e  t r a n s p o r t , w h i c h  sta nd

in the pos i t ive  a p ex / v e r t ex e s  at cycle , t o t h i s  q u a n t i t y  of u n i t s ,

and t ranspor t , w h i c h  : ;t and  in  re a t i v e  apex/vertexes — to decrease by

the same quantity. It is ol’vious , during the transfer of any numbe r

of units on cycle, the e qui lilt iu m bet w een su~.p lies and claims does

not vary: as be for e the ~us at transpoit at each row is oqua l to the

supplies of this r ow, but the sum of transpcrt of each cha ir — 
c l a i mS
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of th~.s ccluan .  Th us , dur ing any end— arcund carry, which leaves

t ransport  n o n n e g a t i v e , the  pe r m i s s iL l e  ~l a n j l ay c u t  it r e m a i n s

permissible. The cost/value ot plan/laycut in thi~ case can vary —

increa se or be reduced.

Let us name the value ct cycle an incr~as€ in the cos t/va lue  of

transport luring transferring ct or~ unit CL lead over the des ignat ed

cycle. It is obvious , tue v a l u e  of cycle  is equa l  to the  a lgeb ra ic

sum of the cost/values , w h i c h  s t and  of the apex/vertexes of cycle,

f moreover the  cos t/values , w h i c h  s t a n d  ir ~csitive apex/verte xes, are

take n with sig n “4” , and in negative — w i t h  s i g n  “— “ . For example ,

for a cycle Ts1 in table 11.2 values is equal tc:

C~~—C,1 -if c1,—c,,~,

wh ile for a cycle Ts2

Let us designate the value of cycle Ts through ~‘_ During

transferring of one unit of load over cycle Ts, the cost/value of

transport increases by value -y; during transferring over it k of the

units of load the cost/value of transpcrt incrEases by ky.

It is obvious , for an improvenent in the plan/layout, has the

se’nse to move tran spor t only on that cycles whose value is negative.



~~~1T~~~~~~~T ________

DCC 78068705 PAGE 
~~~0

Each time when to us be m a n a g e d to c om ç l e te  t h i s  t r an s f e r ri n g ,  cos t

of plan/layout is reduced b y the a~~ roj~ iate value ky.

Since transport cannot be negative , we will use only  such cycles

whose negati ve apex/vertexes lie/rest at e l e m e n t a r y  cells of the

table  wher e stand posi t ive  t r a n s p o r t  1

PCCTN0’r E ~~.. In the  case of d e g e n e r a t i o n , as w e will, see further , can

render/sho ’. useful fictitious transfer cn the cycle whose negative

apex/verte x lie/rests at caçe/cel l with zero transport. ENDFOOTNOTE.

If cycles wi th negative value in table no longer remained , this means

that further improvement in the plan /layout is impossible, i.e.,

opbimum plan/layou t is achieve/reached.

L
S
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Fags 94.

The method of a consecutive improv ement in the plan/layout of

transçort lies ii~ the fact that in tabl€ are tcund out the cycles

with negative value , on them are moved the transport , and plan /layout

is improve d until cycles with negative va lue no longer remain.

During an improvement in the plan/layout 1y end—arou nd carries,

as a rule, the y use the method , borrow ed from the simplex method :

with each step/pitch (cycle) they substitut e one unrestricted

varia ble by base, i.e., is Lille 3 one free cage/cell and instead of

that they free/release one cf elem€ nta ry cells. In this case, the

tGtal number of elementary cells remains by constant/invariabl e and

iq~ua l a • n—i. This method is conveniert in that tar it is more

easily fou nd the adequate/approaching cycles.

It is possible to demcnstrate that for any free cage/cell of

transport table always the re is a cycle (and besides only) , one of

apex/verte xes of whi ch lie/rests at this free cage/cell, and all

others — in elementar y cells. It the valu e of this cycle, with plus

S

Id
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in free cage/cell, is negative , then plan/layout can be improved

transferri ng by of transport over this cyclt~. A quantity of unity of

load k which can be moved , is determined by the minimum value of the

transpor t, which stand in the negative apex/vertexes of the cycle (it

we mov the larger number ot unity of load , will ar ise negative

transport).

Exa mp le 1. To find optimum plan/layout tot tn~ tr ansport

proble m, given in tabl e 11.3.

Solution. We comprise supporting/reference plan/layout by the

method of the northwestern angle (table 11.4).

The cost/value of this plan/layout is equal to:

-- 22.10 + 9.7 + 25.6 + 23.8 + 186 + 20.7 796.

The num ber of base var iables, as it is set/assumed in the

nondegenerate case, is equa l to r a •,n — 1 = 3 + 4 — I b.

Let us try to improve plan/layout , after cccupying free

cage/cell (2.4) with minimum cost/value L4 _ Cycle, which corres ponds

to this cage/cell, s h o w n  in  t a b l e  to 11.4. Lh e value of this cycle is

equal to y = 4 — 7 + 6 — 5 = —2.

S
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On this cycle we can acvc the aaximu~a of 20 unit y of the load

(i~n order not to obtain in the cage/cell (3.4) of negative

transport). The new , improved plan/laycut is sbcwn in table to 11. 5.
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Page 95.

table 11 .3 .

___ ~~~ :~~j~
_ _

~ 
~ii

key: (1). Supplies. (2). Claims.

TaUe 11.4.

A 2 25 48

~~~ ~~~~~
A 3 I8~ ’—j-—~ 2O 38

3a~s~~ 22 34 41 20 
__

K ey: (1) . Supplies . (2) . Cla ims .

S

a
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ta ble 11.5.

~~~P < J B
B 8 ft

3am~puu 22 34 41 20 11 7
—I -—- _  _ _  _ _  _ _

fey : ( 1 ) .  Supplies. (2). Claims.

Table 11.6.

~ 
±

~
1 ::

_: :~ 
84 

3anttw

A 2 22 3 3 20 48

6 7
38 38

_ _ _ _  ~~ ~~~~~1 2 0 ~~~i 
“7

fey: (1) . Supplies . (2) . Claims .

(1
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Table 11.7.

_ _ _ _ _  

B B7 B~ 
_ _ _ _ _  

p

3aiuus J 
— ______  ______  _____

b 20 20 43 83
I 

_ _ _  _ _ _  _ _ _

Key: ( 1) . Supplies . (2) . Claims.

Table 11.8.

~~~flH B ft 3ana~L~
~~~~ 

I 2 B3
5 4

A1 20 2O~~~~~ C 4Ø+g
6

A2 I 123 23

7 j~SJ 6
+ -20—c 20—c

&RSHH~b 20 20 43 83

ley: (1). Supplies. (2). Claims.

i i

a —
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I
Table 11 .9 .

_ _ _ _  

B2 B3 

_ _ _ _

A 3 20— c 20 —c

4 ~~~~~~~~~~~ 2o 20 43 J 83

j Key: (1) . Supplies . (2) . Cla ims.

• Pa ge 9l.

Cost/value of this plan/layout L2 7% + 20 (— 2) 756. In it

as previous are six elementary cells.

For fur ther improvement in the plan /layout , let us focus

attention on free cage/cell (2.1) with cost/value 5. The cycle, vhich

corresponds to this cage/cell , shown in table 11.5; value its 7 —

6 • 5 — 10 = —4 on this cycle let us mcve 22 unity of load how we

decrease the cost/value of transport to L 1~~ 736 + 22 . (—4) 66$

(see Table 11.6).

S

k I d



DOC ~ 78068706 PAGE 30V

Let us try to further improve this plan/layout, counting the

H va lues of cycles , that begin by positive aptx/vertex in free

cage/cell, we examine / scan the ava i lab le  ftee cage/cells table 11.6

we determi ne the value ct cycle  for eac h of them.  All these values

(we let for reader to check this) either posit ive or zero, therefore,

no cyclic transference of ttansport can improve the plan/layout of

transport. Thus, the plan,layout, given in table 11.6, is optimum.

ybe used above method cf finding the optimum solution of

transport problem is called distributive; it coi~sists of the direct

findiag of free cage/cells with the negative value of cycle and of

• the transference of transport on this cycle.

• Exa mple of 2. To find the optimum plan/layout of transpor t for

• TI, wkose conditio ns are given in fable 11..7.

Solution. We construct supporting/reference p_an/layout by the

method of the nort hwestern angle; it is obtained degenerated . In

• or der to avoid this, w e break the balance of supplies and claims for

• in the first and third tows, wi thott breakin g the tota l balance

(sea of su pplies is equal to the sum of cla.~.ms). After this we

construct supporting/reference plan/laycut also by the method of the

northwestern angle (table 11.8), in it it is exact as many base

variables, as is necessary: five. We improve the plan/layout of
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transport by transfer 20 — ‘ unity of load on the cycle, shown in

table 11.8; we will obtain tu e new , best plan/lay out (see Table

t1.9).

The p lan/layo ut, given in table 10.9, I S  nOt still optina l,

since cycle w i t h  beginning in fLPe cage/cell (~.1) has the negative

value:

~~~ 6 — 5 + 4 — I O ~~~—5

we move on this cycle cf 20 unity of load; we will obtain tab le

11I I10 ~

The value of the cycle, w h i c h  beg i ns in cage/cell (2.2) by table

11.10. is also negative: L4 — 5 + 4 — 5 ~~4. However , on t h i s  cycle

it is possible to transfer cnl y transport, egual to ~~. Nevertheless.

let us do this and we will cbtain the new ~lan~ layout (see Tab le

1 1 . 1 1 ) .

• I n table 1 1 . 1 1  a l l  cycles , which  c~ r re spo nd  to free cage/cells,

have nonnegative value; thecetore the plan,laycut, given in table

11.11, it is optim um, set/assuming in it • — O  we will obtain fina l.

optimu m pl an/layout (table 11.12) with the uinimua cost/value of the

transport

A
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Let us  not e that the used here method of the “liquidation of

degeneration ” by ,- sa te t y c h a n g i n g  is n o t  e n t i r e l y  c o n v e n i e n t ,

since requires further acticns with ,. those changed by data. It

will simpler with the fillir.g table 10.8 nct change supplies, but “to

imagine” t hem to itself changed and instead of ~ to place in

e l emen ta ry  cel l (J .3)  is siiple zero. Elemeatary cell with zer o

4 transport in terms of the fact will differ rrou t~ e free, that in it

zero it is w r i t t e n , b u t  in t ree  is ac t .  F u r t h e r  m an i p u l a t i o n s w i t h

transport table will be completely the same, as )t in elementary

cells stoo d on ly  posit i ve t r a n s p o r t , w i t h  the on ly  d i f f e r e n c e , wh i ch

when one of the n e g a t i v e  a pex/ v e r t e x e s  cf cyc l e  r ender / sh ows  i n

e lementary  cell with zero transpo rt , it is necessary to transfer on

this cyc le nomleft t r a n sp o r t  ( f i c t i t i o u s  t r a n sf e r ) .

-—
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Page 98.

Tab le 11.10.

_____  

B~ _~~j  B3 
3an c

A 1 40 -s
- _ _

A 2 20 ~::—~~~~3 23

A, 2o-~~~
3a,us~,{’~ 20 1 20 43 83

Key: (1). Supplies. (2). Claims.

Table 11.11.

A 1 40.i 40+c

- 

A 2 20 : ~ : ~ : 23

A, 20-s 20-s
— _ _ _ _

334NM 20 20 43 83

Key: (1). Supplies. (2). Claims.

I:
a
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table 11.12.

83 

~

¶ ~~ 1~~~~~~ T2 o J 43~~~~a3

Key: (1) . Supplies. (2). Claims.

Page 99.

If in the t r anspor t  t a b le  of a l i tt le  ( o n e — t w o )  base var i ab l e s  the y

are conver ted into zero, it is ~-ossible to reccmnend this simple

method instead of e charges in tne supplies (claims). ~e recommend

to reader to independently solve examp le of 2 thus the simplified. It

is necessa ry to keep  in  m i n d  t h a t  wi th  a large quantity of base

variables, which are ccnverted intc zerc, the simplified method

becomes less conve n ien t, since it is easy tu be tangled with

arrangemen t on the table of the zero base transport (i.e. it is

erroneous to write elementary cells where they be located c a n n o t ) .



DOC = 78068706 PAGE ~ 13

12 . So lu t ion  of t r a n s p o r t  p r o b l e m  by m e t h o d  of potentia l~ .

-; the distributive method of the solution of TZ to vuich we wer e

introduced in the previcu s parayr i~ h, ~cssesses one deficiency/lack:

it is necessary to find out cycles tot all Lree cage/cells and to

tied their values. From this laborious work us trees the special

.ethod of the solution of TZ, which is called the method of

potentials . This methou makes it possible to auto .natically select

cycles with negati ve value and to determ ine their values.

V

Let the re be the transport problem wjtL~ the balance conditions

xj =a , (1 = 1, ..., in); 
~~ 

x,~ = b~ (j = 1, ..., n), (12.1)

• mo reover

i — I  i—I

The cost/valu e of the transport Of unity cf the load from A , in

B~ is equal to C11; the table of cost/values (c,,) is assijned .

It is required to find the plan/layout of transport (x,j), which

would satisfy bala nce conditicr.s (12.1), and in t h is case the

cost/value of all transport was mini m um:

L= ~ ~ c,j x~j = 1TI1fl. (12.2)
1—I f — I  •

S
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The idea of the method øf potentials for the solution of TZ is

reduced to following. Let us visualize that each of the point/items

of send ing A , is introduced for the transport cf unity of the load

(nevertheless, whe re) scme sum ~~ in turn , each of the stations of

destination Bj also introduces for the transpcrt of unity of the

load (where it is convenient) sum ~~ these payments are transmitted

to certain third p erson (“ferryman ”).

.4 /

Let us designate

a,+~ ,= ~~,j (i=1 , ..., nz; j = 1, ..., n) (12.3)

and let us call value C,j the “pseudoccst,’value ” of the transport of

unity of the load from A, in B,.

Page 100.

Let us note that the payments ~1~~1 must not be positive: it is

possible t h a t  the “ f e r r y i r a n ” itself p ays  to one or the other

point/item some premium for transport.

Let us design ate for brevity entire set of payments

~~~~~~~ ~~~~~~~~~~~~~~~~~ through (a,,~ 1). Without making more precise thus far

a question, fro. which considerations are assigned these payments,

let us demonstrate first of all one the general consideration or the

S
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“theorem about payment s”. It consists cf following .

For the assigned set of payments ~~~~~ the total

pseudocost/value of the transport

I
S~~ I f~~I

vith any permissible plan/layout of transport ‘X U) retains one and the

same valu e

L~ ,C*~const. (12.4~

La th is formula value c depends oIl y cm the set of ~ay n en ts
• (a,, p1),

• but it does not depend cii that , which ptecisety permissible

plan/layout (x,,) we use

Let us demonstrate this position. We have:

1 ~ ~ 
x~1 ~ 

(c&, + ~,) 
x,1

— 1—I I— I I— I  I—i

— a~ x~, + ~ I ~ x11. (12.5)
$ f_ I  / — I  I — I  — I

We convert the tirst of the double sums of expression (12.5).

Let us tak e out a, tram un der the sign of sui on j:

m fl

Z ~~~ rs~x,, — a, z,~.
l~~ I i~~~I

But plan/layout (x,j) is permissible , wh ich means, tt~at for it is

S

- -
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implemente d the ba lance condition:

N

4— I
whence

I ~~ x1~ — a~ a,. (12.6)
I—I  1~~ I (—I

Analo gously we convert second ter m in (12.5) :

m ft SI AS

~ t~,x,,— ~ ~ —
4~~ I I—I $—I  l~~ I

— 
I~~ I ~ — 

I~~ I
11l b,. (12.7)

Pa ge 101.

Subst ituting (12.61 and (12.7) in (12.5) , we w i l l  ob ta in :

L~ .

~~~~ ~ I CU X,,~~ a, a, + t~,b,. (12.8;

In formula (12.8) right side does cot deperd on the  p l an/ l a y o ut

of t ranspor t  (x,g ), b u t  depends  o n l y  on s up p l i t s  (a,), c la ims (b j) and

payments (a,, ~~
).

Thus, we demonstrated that the total ~seudocost/value of any

p.ratasible plan/layout of transport with the assigned pay ment s
(a,, ~~one and the same and trcm one plan/layout to the next does not

vary .
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Until now, we do not in any w ay ccnnec t paymen ts ~~~ and

paeudocost/value cu~~~a,+D, with true cost/values of transpor t

Now we wil l establ ish between them c o a m u n icat icn/connection .

• Let us assume that plan/layout (x,~) noutlegemerate (number of

elementary cells in the ta b le of trans~ crt is equal to m • n — 1).

yor all these cage/cells x,1>O. Let us de t e rmine  paym ents  (a,,~~1) so

th at in all elementar y cells of p seudocos t/value  would be wounds to

the cost/values:

c,,—a ,+~,—c,, with x,,>O;

as concern s fr ee cage/cells (where  x,, — 0), t h e n  in them th e

relat ionship/ratio between pseud ocost/values and  cost/values can be

wh ich conveniently :

i,j ~~cu; ~,1<c,1 when  Cg>C~ 
w i t h x,,~~O.

Prove s to be the relationship/r atio between pseudocost/values

and cost/values in free cage/cells it Ehows that is plan/layout

optimum, or it can be improved.

I

t
• --
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Let us demons t r a t e  f o l l o w i n g  t h e o L c m .

Theorem.

If for all elemen tary cellb of the plan/layout (z~>iO)

$g+Ps Cu Cgs,

a for all free cage/cells (XU—O)

then p lan/ l ayou t  is o p t i m u m  and  a n y  me thod s  i t  is improved  be it

cannot.

Proof. Let us designate ix,,) — plan~ l ay o u t w i t h  t he  corres ponding

to it system of payments (as, a,), that lossesses property indicated

above (for ~ll elementary cells of pseudocost/value are eg ual to

cost/value s, but for free — they do not exc~ed them). Let us

determine the cost/value of this p lan/layou t:

I C,,X~ . (12.9)
f_ I  A S I

In sum (12.9) are different fro. zero cnl y terms, corresponding

to ele mentary cells, in them the cost/values are equal to

çs.udocost/values. t h e ce f cr e

L— I I ~~~~~ (12.30)
i — I  I—I
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Page 102.

on the basis that previously demonstrated , ta is sum (in this

syste. of payments) is equal to certain constant C (see (12.4)):

I I ~~~~~~~ (12.11)
t~~~I i—I

Wow let us try to change plan/layout (x,g). aft er replacing it with

some other plan/layout (4 ,) Let us designate the cost/value of the new

p lan/ layout

L’ — I I c15 x , .  (12.12)

where x , — the  n e w  t r a n sp o r t , d i f f e r e r t  f r c m  zero , g e n e r a l l y

speaking , in other cage/cells, t h a n  x ,,- Some of tt~ese cage/cells

coincide w i th  prev ious — base tor a p l a n/ l a y o u t  (x ,,~, and ot hers — w i t h

free for  a p lan/ layout  (x,j~- In t he  f i r s t  — ccst/value r,.~ on previous

are equal to pseud ocost/values, but in the seccad — it is not less

them: 

-
CU > C1j.

Therefore sum (12.12) cannot be less than sum (12.11) (it 12.9): 
I -

I I C15 Xj ,~~~ ~~ I 
C,jXjj 

~~ 
~ c41x~I —C—L . (12.13)

j~~~~I I_ I I~~ i — I  I
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Vs see that by no change in the plan/layout (x,,) its cost/value

caa b. decreased; tha t  means plan/layout Cx,~) it is op t imum and

theorem is demonst rated.

• It is not difficult to show that this theorem is vali d also tor

th. degenerate plan/layout in which some of the base varia bles are

.q sa l to Zero. It is r ea l/ a c tual , then  t h a t  in e lementary  cells of

transport are strictly pcsitive, for proo f it is unessential: it is
• sufficient so that they will be nonnegative .

• Thus, is proved that the sign/critericn of the optimum character

of plan/layout (XU) is s a t i s f a c t i o n  of two condi t ions:

U CU for all elementary cells; (12.34.)

~,,<c,, for all free cage/cells. (12.144)

The plan/layDut, which possesses this property, ~.s called

potential, and the corresponding to it paymen ts (a,,~~j ) — by

• potent ia ls of point/items A,, B~ (i—I, ns; I~~I, ... , n).

Using this terminology, the demonstrat ed above theore. can be

formulat ed t hus:

S

L~ ~~
- ------

~~ ~~
— — • •
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~ny potential plan/layout is optimum.

Thus, for the solution of transport problem to us it is

necessary one — to construct potential plan/layout. it turns out that

it it is possible to construct by the met h od of successive

approximations, being assigned first by some a r b i t r a r y  sys tem of

payments, which satisfies ccndition (12.14a).

Page 103.

-t

In this case , in each elementary cell , is obtained the sum of

• pa yments , equal to the cost/value ct transport of this cag e/cell; 
•

then , improv ing  p l a n/ l a y o u t ,  one should simultaneousl y vary the

system of payments so that they approach potentials.

Durin g an improvement in the plan/layout us zielps the followi ng

pE~perty of payments and j~seu docos t/va lues:

• whatever the system of payments (a,,~ 1), satisfying condit ion

(12. 1~~a) • for each free cage/ ce l l  the value ot th e cycle of

recalculat ion was equa l to the d i f f e rence  between the cost/value ~~

and the pseudocost /va lue C~ in this cage/cell:

— C11 — C4,. (12.15)

S



- ‘i: -• -

~~~ 
T T

DOC 78068706 P A G E

Act ua l ly ,  let us cons ide r  sole t r a n s p c r t  table, for e x a m p le  a

5, a 6 ( tab le  12. 1).

Let us enter/write in this table neither supplies nor claims nor

transpor t (the y w i l l  not  be to  us necessary~ , let us s izaply note (let

us encircle by h e a v y  l ine)  c l em e n t a r y  cells.

Let us take any free cagejcel l, fcr exdmple (1.~ ), an d let us

construct corresponding to it the  cyc le  of the  recalculat ion whose

r positive apex/ve r t ex  l ie/rests  at t h i s  free cage/cell, and all others

— in base. Let us d e t e r m i n e  t he  v a l u e  of th i s  cycle. It is equal to

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S

_ -
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~able 12.1.

_ _  

8~ 83 83 
_  _ LC 11 C13 Ci: C. C~ C~A1 

~~~~

— - - -. •

C 31 ~~ 22 C3. C3, C~ C~

- ~~~~~~~

, C~ C~ = ~~~~~~~ 
C~ 

I
’

C41 C4 C43 C44 c4~ c~A4

C5, C52 C~ C54 C~ 
- 

C5

J 

A~ 
_ _ _  _ _  _ _  _ _

Page 104.

But for  all e l emen ta r y cells cf ccs t/value  are equal  to

pseudocost/values ; t h e r e f o r e

y15~~ c15 —(a 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

— 

~ +l’~s) clb — (cZl +I 1~) =

i.e. the value of the cyc le, which beg ins in free cage/cell (1.5) is

eq ual to a d i f f e r e n c e  in cos t/va lue  c15 and  in pseudocost/value ’~
’
~ 5

in this cage/cell. It is obvious, the same it will be correct and tor

any free cage/cell.

‘I ~
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Thus, with the use of the method  of po t en t i a l s  for  t h e  so lu t ion

of TZ drops out the most lak~oriuus cell/element ot the distributive

method : the searches of cycles with negative value.

The procedure of t h e  c c n s tr uc t i on  of ~o t ent i i l  ( o p t i m u m )

p lan/ layou t consists of f o l l o w i n g .

As the first approximaticn to o p t i E u a  & la n/ 1ty o ut , is t a k e n  a n y

permissi ble p l a n/ l a y o u t (at  least c o n s tr u c t e d  t y  t he  meth od  of

nGrthves te rn  a n g l e ) .  In  t h i s  p l a n/ l a y o u t  m + n — 1 elementary cells

where m — n u m b e r  of rows , n — n u m b e r  of c o l u m n s  of t r a n sp o r t  table.

For t h i s  p l a n/ l a y o u t  i t  is ~ossib le to d e t er m i n e  p a y m e n t s  ~~~~~~~ so

that  in  en ch e l e m e n t a r y cell is i m p l e m e n t e d  t h e  condi t ion:

(12.16)

Equations (32 .16)  en t i re  m + n — 1 , and number unka~ wn is equal

to m • n. Consequently, one of these u n k n o w n s  can be assigned

a r b i t r a r i l y  ( for  e x a m p l e , e j ua l  to zerc) . A L t e r  th i s  of in + n — 1

eq uations (12.16) it is possible to  f i n d  r em a in in ~ p a y m e n t s  n,,~~,,

and from them to compute th e p seudccost/va lues :

for each free cage/cell. If it turne d cut that all these

ps .udocost/values do not  exceed the cost/values

- .  • A 14
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(12.17)

then the p l a n/ l a y o u t  is potent ia l  and , wh i ch  means , t h a t  i t  is

optimal. But it at least in cne free cage/cell pseudocost/value is

greater than  the c o s t/v a l ue

then plan/layout is not opti m um and can be improved  by the  t r a n s f e r

cf transpo rt on the cycle, which corres~onds tc this free cage/cell.

The value of th is  cycle is equa l  to the  d i f fe r e n c e  between the

coat/value and the pseudocost/va lue  in th i s  f re e  cage/cell.

Thus , we come to the  f c l l ow i n g  r u l e  ( a l g o r i t h m )  of th e  solut jon

of t ran spor t  problem by the  m e t h o d  of ~ctentia 1s.

1. To take any  s up p o r t i ng/ r e f e r e n c e  p l an/ l ay out of t r a n s p o r t, in

wh ich are noted a + n — 1 e l e m e n t a r y  cells ( remain ing  cage/cell —

free).

2. To determi ne fo r  t h i s  p lan/ laycut  p ayments  (a,, 
~~ on the

basis of condition , so tha t  in any ele.entary cell of

pseudocost/valu. were  equa l to cost/values:

(12. 18)
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One Of the payment s can be assiy n e u  a r b i t r ar y ,  fu r  examp le , to assume

equa l to zero.

Pa ge 105.

3. To count p seudocostj values ~~~~~~~~ for all fr ee

cage/cells.. If it seems t h a t  t h e y  a l l  dc nct  exceed cost/v alues , then

Elan/ layou t ~ 5 op t ima l .  •

4. If a l t h o ugh  in one f r ee  cage/cell pseudccost/value exceeds

cost/value , one should beg in  t c w ar d  i mp r o v e m e n t  in t rack  l a y o u t  of

t ransfer  of t r anspor t  cyc le , w h i c h  cor r esp cnds  to any f r ae  cage/cell

• w i th  negative value ( f o r  wh i c h  pseudoccst /va lu e  more cost/ value) .

5. Af ter this anew are counted  p ay m e n t s  and  pseudocost/values,

and , if plan/ layou t s t i l l  is nc t  o p t i m a l , p r ocedure  of i m p r o v e ment is

contin ued unti l  is f o u n d  o p t i m u m  p lan / l a y o u t .

To the concepts of “paym en t s” and cf “p seudocost/vatues” it is

possible to  give  demonstrative economic interpretation.

Let us vis ual ize t h a t  (a,,~~1) — real payments which point/ite ms
II

~ i4
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and ~~ pay for  the  t r a n s p o r t  of u n i t y of ica d to some t h i rd

person “carrier”).  W i l l  nct  c o n t r a s t  in terests  A m d  B — t h e y  they

fun c t ion  as single economic sy s t em.  The  t r a n sp o r t  of u n i t y  of the

load f r o m  po in t/ i t em A , of point/item B, objectivel y s t ands  C,j. and

both sides A and B together  p a y  for  th i s  t r an s p o r t  to “ f e r r ym a n ” sun

— a ,+~ ,. Opt imum w i l l  be such p l a n / l a y o u t  of t r anspor t  w i t h  which

• th. point/items A ,, B, overpa y to “ f e r r y m a n ” n o th i n g  over the

objective cost/value of transport , i.e., such plan/layout, any 
•

de par ture  f rom which  is disadvantageous for company A, l~ — it will

force to pay them f c r  t r a n s p o r t  more t h a n  it th ey  conveyed loads

themselves .

Let us demonstrate the application /use of a metho d of potenti als

for the solution of  TI base d on s p e c i f i c  e x a m p l e .

Example 1. To solve by t h e  method of p o t e n t i a l s  TI , assigned in

table 12.2, where is written the first supporting/reference

plan/layout, compr ised using the method of the northwestern angle.

- -  - ~~~ JJ
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Ta ble 12.2.

B1 B2 B3 [  B4

A1 17 8 25

5 6  4 3 8
A2 13 19 

- 32

9 7 5 4 3
• 43 22 14 4 40

A4 

— lo 8 8 
20 20

3aR~~
’s~ 17 21 41

__j 
14 24 117

i i  _ _  _ _  _ _  _ _  _ _

key: (1).  Supplies. (2) . Claims.

Page 106.

SOlution. We a t t ri bu t e  to t a b l e  12.2 f rom below addi t iona l row

for payments ~;. to the right — an addi t iona l column for  paymen t s

~, (see Table 12.3). Pseudccost/values 
~~g j — ~~~~,-f  

~ 
we recor d/write

in left  up per to t h e  ang le  cf each cage/cell, and cost/val ues — in

the upper r igh t—ha nd co rne r .  One Of t he  paymen t s , for exa m ple a 1, it

is selected arbitrarily, set/assuming that let us say, tha t a~ = 0.

For each elementar y cell the pseudocost/va]ue c~j . . c m~-~-~6j  •ust be

equal to cost/value cgj

F I.

• 1  
~~• ---~~~-~~~~~~ -- --- -~~~~ - - -
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Set/assuming a1 = 0, we find from the condition

a~+~~~~ IO; O+~~~~ IO; ~~~~IO.

a from the condition -
•

a1 +~~,— O +~~,~~~S; ~,=8.

Continuing th is procedure, we fin d:

Ua+~~ —~~,+8..6,
. 2+f ~s 4;

Since not all pseudocost/values in free cage/cells table 12.3

sa tisfy condit ion (12.17), the plan/layout, given in table 12.3, is

flGt Optimum. Let us try tc improve it, translating into base one of

the free cage/cells for which ~ ,,) c,,. fcr example , cage/cell (2. 1) .

We construct the corresponding to this cage/cell cycle (it is shown

in table to 12.3). Value of this cycle 5—8 = —3. Let us transfer on

this cycle of 13 unity of the load (more it is cannot tha t the

tr ansport in cage/cell (2.2) wculd not become negative), we decrease

the cost/value of p lan/layout by. 13.3 = 39 and  wi l l  pass ~to sable

12Sa . 
-

we ~~.pute for a plan/layou t table 12. 4  new values o~ payments,

as before set/assuming 0 1 = 0. We see t l~at in table 12.4 still there
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arc th e  tr ee cage/cells f o r  which  ?,,>,~, fur examp le (1, 4). Cycle

for this cage/cel l is shown in table tc 12.4.

$able 12.3.

‘0 10$ 86 95  64  5
A 17 8 25 0

• 
A2~~~~~~~

6
9
:3
~~~~~~

0
32 .2

A3 22 14 4 40 -)

i~~~ 4i~~~~ i~~ Thi~~~8 8 $
A4 20 20 4

Key : (1). Supp lies. (2). Payme nts. (3). Claims. ( ie). Payments .

y
•

I

A -
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Table 12.4.

_ _ L
10 lOb 81 9~ •~ 5 —

_-1 • • - • _ • - . - _ __ ~5
__. ._ i__

~~ 19 32 -5
•~~~~~i 4 ’~~~ 134~~~~~~ 4 3 ~~~~~ 3

A, 22L ~i4 4 40 -1
11 149 10 10 8i~A 4 20 20 ‘
7 - _ _

H

Key: (1) . Supplies. (2). Payment s. (3). claims. (43 . P a y men t s .

Table 12.5.

_____  

8,1 B,~ 84
—

~~ ~~~~ r-~
-9~~ 65 ~~~~~~~~~~~~~~~~A 1 2l~~ 4 1  25 0

J~~~~~ _ •~~~_~~__ 
- - -I - -  - -~~~~~~ -— -_ -r ~5 55  6 4  4 3  33  8A, 17 15~ 32 —3

-— -

±] J
~~~ll 14 1? 10 10 as  e• - A4 J  i 

~~~ j20 20 3

3an~~ 7~~±~i ~~

~r _ _ _ _ _  I I I _ _

• Key: (1). Supplies . (2). Payme nts. (3). Claims. ( 14) . Payment s .
P

t

~~
- ,  I

- -  - - -
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2able 12.6.

_

_

A, 6 ‘0 24 40 -2

9 149 lOS 87  88 8
A 4 20 20 I

~
‘
~~~~~~~~~~~~~~~~4 J 4 24 U7 

• 

H

,~i7IItII T -
Key: (1). Supplies . (2). Payments. (3).. Claims. (4) . Paymen t s .

Table 12.7.

~~~~
flH B 

- _ _ _

B3
8 4 2A, 20

5 4
A, 25

3~~~~ 3A3 30

20 25 30 
— 

75

Key: (1). Supplies . (2). Claims.

_ A L 4
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Table 12.10..

2
_

B~ 
63

_
B, B3_

2 

3anac~i f l n K

- I A, 20+c 20.c 0

4 3~ 5 4
A, “r 25 lIt 25 -c 2

A 3 
3—Tr~4i e3Ji~~: 30—2,

_ _ _  

20 25 30 75 
_ _ _

2 3 2

Key: ( 1) . Supplies . ( 2 ) .  Pa yme nts.  (3) . Claims.  ((4 ) .  Payments .

Table 12.11.

~~~ flH B B B 3ana~~ flJ~~TCNUS

2 8 4 4  2 
~ a,

A 1 20’e 20-st 0

3 3~~ ~ 3 4
A3 c 25 25+4~- I

3 3 3  4 3  3
• A3 20—c 10— c 30—2c I

20 25 30 75
p fl1Ia,e~ N 2 2

______ _____ _____ ______

Key: (1). Supplies . (2). Payments. (3). Claims. (‘4). Payment s.

• 1
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tab le 12.8.

81 B, 83 ~3ana’~~ fln~~enus

A; 20

E4L’ 
— 

I

:

A3 30—2c 30—2t 0

- 

3a~..uR 20 25 30 75• _ _  —

6 4 3

Key: (1) . Supplies . (2) .  Payments .  (3) .  Claims.  (4 ) .  Payme nts.

Table 12.9.

~~~ flH B B B 3an~&~Ifl,~~ems
I 2 3

_ _ _ _  _ _ _ _  

20

~t~~~~
__

: 

20+c 0~~

A, s—c 20+2t ~5se I

3 ~ 4 6 3  3
• Aa 20 I0—2e 30—2e 0

- 20 25 30 75

fliia~esus 
- 

-

- Pj ftJ ~

-~ Key: (1) . Supplies . (2) . p ayments .  (3) . claims. (4). Paym e nts.
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‘Table 12.12.

B 3anL~~a,
6 4 ~~A3 20 20
3 5 4

A, 25 25

3 6 3
A3 20 10 30

3ams,~~ 20 25 30 75

Key: (1). Supp lies. (2). Claims.

Page 110.

The transfer of four unit y cn tbjs cycle ls~ads to the plan/layout,

presented (with its payments and pseudocost/values) in table 12.5.

This plan/layout still not cptimua. Transferring on the cycle, which

cotresçonds to tree cage/cell ((4 , 3), 20 unity of load, we obtain new

plan/layout (table 12.6) with new payment s and pseudocost/values.

In Table 12.6 alr eady all pseudocost/values to not eiceed the

appropriate cost/values, which means, tha t this plan/layout is

• 

• 

optimal. The potentials of point/items are found and equa l

respectively:
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Durin g the analysis of these values, it cannot be forgotten

which one of them (in our case o~) is assigned arbitraril y (a3 = 0 ) ;

theretore the potentials (or equilibrium payments) of point/items are

sufficiently conditional. It is important that their su. for all

transport, different frcm zero, is equal to the sum of the

cost/values, written in the appropriat e cage/cells. If we look at

these payments not from the point of each point/item individ ually,

but from the point of an en tire “company ” ot point/items (A, 8), t hen

it is uni m portant, w h i c h  ot t h e  p o i n t/ i t em s  pays  more , bu t w h i c h  — is

less. ~~A following example will ~e dedicated to the degenerate

case.

Example 2. To solve by the method Cf potentials TZ whose

conditions are given in table to 12.7.

Solution. App lyin g the method of the northwester n angle, we

obtain the degenerate plan/laycut . Introducing
4
safety changes, we

• 
- obtaim supporting/reference plan/layout with five elementary cells.

• Counting payments (table 12.8), we see that the plan/layout is not

optimal. We improve by its e n d — a r ou n d  carry of transport and , etc.

• The proced ure of an im provement in the plan,layout is shown in table

12.8, 12.9. 12.10, 12.11; plan /layout, given in last/latter table, is

S

~~~- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
• •
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optimal. Set/assum ing in it s—0. we ok tain final optimum plan/layout

(table 12. 12) with the cost,value

L~~~~~20 2+25 5—2O $+ 10.3—255. p
Let us note that this cost/value the same , as cost/value of the

p1mb/layout, shown in table 12.10 when s— o; this and it is logical. 
- 

-

siQce table 12.11 is obtained from table 1~.10 ty transpos ition on

the cycle of ticti tious .-~ transport; this transfer does not vary

the cost/value of plan/layout, but it is Ilecessary only in order to

ascer tain that the pla n/layout is optimal.

13. Transport problem with incorrect balance.

Until now, we examine cnl y such txansport problem , of w hich t he

sum of sup plies was equal to the sum of the claims:

a, — 
~ 

b,. (13.1)
s_ I

This — the classical transport problem , otherwise called

~transport problem with correct balance ”..

Are encountered such versions of TZ . wh ere  condition (13.1) is

troken. In these conditions we speak about TI with incorrect balance.

Page 111 .
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Balance of TI can be broken in twc directions:

1, The sum of supplies of the pcint/iteins Cf sendin~j exceeds the

sum of the sub ject cla i ms:

I_ I I~ I

2. Sum of sub ject claims exceeds availdble stocks:

I

Let us agree the first case to call “T~ with the surplus of

supplies”, and the second — “TZ with the surplus of claims ”.

Let us consid er consecut i vely these two cases.

1. TI with surplus of supplies.

At poin t/items A1, A ,, ..., A r. are supp l ies  of load a1, a,, ..., a~;

point/items B~, B,, ..., 8,, fed claims b3, b, ... , b , moreover

1_I

It is required to find such plan/layout of transport (xu). by

- -
~~ which all claims wil l  be carried out , and the common/genaral/t otal

I-~

I

I

-- 14
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• cost/value of transport is minimum:

L~~ ~~

‘ 

~
‘ c~~x~~

u..pdn.

It is obvious , upon this formulaticn ct the problem, some

coidition—equalities TZ are converted into condition—ine~pialities,

and some — remain the equalities:

x0(a, (I E. 1,..., in),
:‘ (13.2)
~ x,1—.b1 (J u— 1,...,n).

‘ — I

• We be able to solve the problem of linear programming, in

whatever form — e~ ualities or inequalities — were  assigned its

conditions. State~i problem can he solved, tor example , by the usual

simplex method. However , prcblea can be solved simpler , by the usual

simplex me thod. Ho wever, problem can be solved simpler, if we b y

artificial method reduce it to 1-reviously examine4 TZ with correct

balance.

Por this, over availa ble n of stations of destination

let us in troduce on e addit iona l, f i c t i t ious, station of
dsstiaation 8.. to whic h let us ascribe the fictit ious claim , equa l

to the surplus of the supplies above the claims:

b.~ 7, a,— ~~b, (13.3)

14
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and let us place the cost/values of transport of all PG into

fict itious PN 
~• 

equal tc zero:

c,,~~O ( (= 1 , ...,m). p
Page 112.

Th us, the sending of some quantity of load x,, troxa point/item A , of

point / item B, wil l simply nean that ir point/item A , they remained

not sent X,~ unity of load.

By the introd uction of f i ctitious PN B~ wit h its cla im b$ we

will equal balance TZ, an d r cw it can be solve d as usual TZ wi th

correct balance.

2. TZ with surplus of claims.

At poist/items ~~~~~~~~~~ are sup~plies of load a1, ..., a ;

point /items B~, ..., B,, fe d claims b~, ..., b,,, moreover ± b,>I a,, i.e. the

available supplies insufficiently for the satisfaction of all claims.

It is required to comprise such plan~,’layou t of transpor t by

which all supplies will renderjshow exjorted , and the cost/value of

trans port — minimum.

I
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It is obvious , this prcblem also can te reduced to usua l TZ wita

correct balance, if we iotrcduce into examination the fictitious

point/item of sending A~ with the supply o~, equal to the missing

supply :  P
~
1 t~ia, , — Z b , — Z a ,,

i—I £—1

and to place the cos t/va lues  of transpcrt from P0 A, into any PN

equal to zero: c j =O (j=I. .... fl). In this case, scue part or the claims

~~ a. eac h point/item will remain not satisfied; let us consider

that it seemingl y is cover/coated because of fictitious P0 A,.

Thus , we wil l  reduce TZ w i t h  the  su rp lu s  cf claims to TZ with

correct balance. Let us note tha t in this case we completely did not

worry abou t the “vali d ity ” of the satisfaction of claims, assi gned no

conditions for which pcrticn/f raction of its claim it must obt ain

each PH — us they interested only the expenditure/consumptions which

must be mi nimized.

If we assign mission differentl y, for ex aiple, to require so

that  everything ; P H were sat isf ied in  an equal portion/fraction.

probi.. again it is re d uced to TZ with correct ba Lance. Mamely , it is

necessary subject claims “to correct ” , a f t er  m u l t ip l y i ng  each of the m

by coeffic ient k— ~~ a,:Zb ,, a f t e r  w h i c h  to solve ?Z •v ith  correct

ba lance.
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It is possible to also assign the mission of weight d istribution

according to stations of destination taking into account comparative

importance of each point/item. With t h i s  port icq/ fract ioi i  of the

claim whic h obtains each point/ i te m, it can be not identical as in

recently the described method , but ditfirent. In this case problem

also is reduced to TZ with correct balance.

L i
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Table 13.1.

_ _ _  

B, B2 B3 
j

3antá:

3a.i~~~ 
- 

18 21 
- 20

ley : (1). Supplies. (2) . Cla ims .

Table 13.2.

‘~~~flH ~ ~ B 3an~ cwI fl ,,~~
’eM,

~, B2 D3

_ _  _ 

_ _

_ 

_ _  

_ _

P8 21 33 38 10

• flna7e~~~

Key: (1) .  Supplies . (2) . Payme nts.  (3) . C l a i m s .  (Le) . Payments.

d ~•
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table 13.3.

11)flH B B B B 3anac~i fltia~e~~nO 
_____ _____ 

a ,
5 5 7  7 5  ~ 0 0

A , is 21- _._
~~~’fl 50 

- 
0

—? 
:--

~
-

~~±~~
- -

~~~~~~~~~~~~~ 

_ _

5 0
,0 

I ______ ______ ______ ______ ________

A

Key: (1). Supplies . (2). Payments. (3). Claims. (~e). P aymen t s .

Pa ge 114.

Ta ble 13.4.

~~~~ B1 B2 B3 B0 
3a~~~~flna w

5 5 7  7 5  60  0A, 18 I 31 50 0
__ -__

A2 +L~~1... JY 40 0
— 

2 8 4 4 —3

_ _  _ _ 

-3

3a~sMH 1~ 18 21 33 38 170

_ _ _ __ _ _ _ _ _  

-I 

-

_ _

~~~~ (1). Supplies. (2) . Payments. (3) . Claims. (Is). Paym .ats.
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~a~le 13.5.
- 

3an&~~ nA~ e~~
• ~~~~~~ B, B2 B~ ~~

5 Se  7 5  60  0 • —

A, 18 32 50 0

5 G P  65 50 0
A, I 33 6 40 0

3 8 4  4 3  5-2 0
A, 20 

* 

20 -2

18 21 33 38 110

fl s,aTemH 5 6 5 0

Key: (1). Supplies. (2). Paymen t s .  (3) .  ClaLm s .  (~4 ) .  Payments .

- i I

I

-

~~ 

I
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Example. To solve TZ w i t h  the s u rp l u s  of supplies whose

co;ditions are assigned in table to 13.3.

Solution .

~~~a 4~~ IlO~ ~~~bj ui 724

1.3~,
i~~~I

th, difference betwee n supp lies  and claims is equal to

By the introd uction of fictitious flH84, with claim b~~_~~~ we

bring the problem to TZ with the correct balance (see Table 13.2,

13~ 3, 13.4 , 13. 5) .

The pla n/ layout, presented in table 13.5, is opt imum , since in

all free cage/cells of pseudocost/value do not exceed cost/values.

Accord ing to this plan/lay ou t, of 50 un i ty of load, availa ble in

point/item A 1, are not transported by 32, and the others 18 are

directed for point/item E~ ; of 40 u n i t y ,  avai lab le  in po in t/ i t em A ?,

6 are not transported. 1 is transmitted for point/item B2 and 33 —

for point/item B~. Al] 20 units, w h i c h  are in pcint/itea &~~, ate

directed for point /item B~.

lie, solution of transpqrt - problem P0 to criterion of time.
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Until now , the critericn of the opt i m u m  character of the

solution of TZ we have t o t a l  cost/ value of t r anspor t , and we a t t emp t

this cost/value to minimize. P -

In the m a j o r i t y  of the  cases of pract ice precisely the criter ion

of cost/value is main , d e t e r m i n i ng  the qua lity (efficiency) of the

plan/ layout  of t r an spo r t .  How ever , in ce r t ain  cases to the

foreground , is put forth not the cost/value of transport I., bu t  t ime

I, dur ing  wh ich al l  t r a n sp o r t  kill, be fin ished. Thus, for instance ,,

it occ urs, when speech occurs about the  t r an sp cr t  of the perishable

products or about the supply of ammunitio n to the place ~f combat

operations. As best the plan/layout ct transport (xi,) will be

considered that plan/layout, with whic h the time uf the termination

Cf all transport  is m i n i m a l :

T=mjn. (14.1)

Such transpor t of the pro b lems w h e r e  c~tiuu . considers

plan/layout the mi n i m u m  time T, is called transport problem in the

criter ion of time.

Problem is pl aced as follows. There js m of poin t/items of

sending A,, ,. ., A ,,, w i t h  suppl ies  a,, ..., a,,, and ii of stations of

i— - -~~~ ~~— -



~ 

~~~T~~~~T’~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DOC ~ 780 68706 PA GE 2f~~

destination B,, ..., B,, with claims b,, ..., i’,,; th. sum of suppl ie s is

equal to the sum of the claims:

= 

~
‘ b1. (14.2) p

The preset times of transport i,~ from each P0 A , into each PN

B,; it is assumed tha t  t h e y  do not  depend on a quantity .f

transportable load X~j , i.e., a quantity of conveying devices always

is sufficient for realizing any volume cf transport. Supplies a,,

claims b~ 
and tiles i,~ a re given in t ab le  14.1 , construc ted jus t  as

usual transport  ta ble, w i t h  tha t  d i f f er e n c e , that  in the upper

right—hand corner of each cage/cell instead of the cost/vatues C,,
stand the times t ,~.

Padge 116.

It is required to select transpor t (XU) in such a way that would

— be satisfied the balance conditions

x~ —a~ U — 1, ... , in),
l~ I
m (34.3)
xj — b, U — 1, ... , fl),

and , furthermore , was converted into t h e  m inisui the time of the

termimatio n of all t r anspo r t  T.
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It is expressed t im e  T t h r o u g h  t imes t,~ and t r a n s p o r t  X~p Since

all transp ort are f in i shed  at the t o r qu e,’m cm e n t  wh en  ends quite

prolonged of all t ranspor t, then t im e T is ma xi m um of all time s t,~,

which stand in the nuclei, which contain ncnzerc transport. Let us

register th is in t he form o f the f o r m u l a :

T=max 
~~~~~
, (14.4)

I,) > 0

where the sign x~,> o  shows that  is t aken  m a x i m u m not of all tag, but

only f rom those for  which  t~e transport are different from zero.

We wish to find this plan/layout ci transport (.r,~), f3r which tine

T it is converted into the minimum:

T=m ax t,j=~min. (14.5)
~lj > O

- - -~~~
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Table 14.1.

B 
- 

B2 
— 

B~ 
3a’ .t

A, 
III 112 . . . . -. 

~~I

A3 
- 

~21 I3~, ~~ - 

-

t~~1 1m2 I.,,
A~ a.

3a~~~ b • • , • bn £o , Ze,I I I~~~~~ I -

~ey:  (1) . Supplies . (2) . Claims.

Pa ge Ii?.

Stata d proble m is not the problem cC linear programming, since

value T — not linear fu n c t i c n  cf var ia b les 
~~~~~~ 

This problem can be

reduced to the solution of the problems of linear programming, but

not one, but several. However , we wi ll not be occ u pied by such an

information, but let us demcns tra te the calculated method, whic h

makes it p ossible to directly find the optimum solution ot TZ by the

criterion of conversio n time of transport table. This method is

called the “method of the forbi dden cage/cells”. Most simple it wil l

clarify it based on example.

A
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Example.  Con~1it ions of TZ for  c r i t e r i a  of t ime (suppl ies, cla ims

and the times of t ransport) are give n iii table to 14.2. It is

required to find the planjlayout of t r a nsp cr t , wh ich is p laced in

ai v4mua time,  and to indicate this time . - -

Solution. The initial plan/layout cf transport it would be ~ 
-

possible, as we ma ke mor e e a r l i l y ,  tc comprise by the method of the

nor thwestern an gle , but we see that in this case it will be obtained

(because of cage/cell (1. 1)) very long t ine T = 10. Let us a t t empt

th is tc  avoid, “a f t e r  f o r b i d d in g ” to i t se l t  to  place d i f f e r e n t  f rom

ze ro t ransport  in cage/cells (1. 1) and (4. 1) , where  s tand the  longest

times in table (t,s = 10 ard t,1 = 11) . Let us cross out in  table

114.3 these cage/cells and will, compris e  t h e  new p lan/ layou t  of

transport so as f i r s t  of a l l  to  occupy cagejc eils  wi t h short  tines.

In the plan/layout (table 14.3) the time of the  t e r m i n a t i o n  of

all transport is equal to 8 — it is reached in cage/cell (3, 2). Let

us t ry  to improve p lan,l ayou t , a f t e r  f ccb i d ~ in g  to itself fo r  f u r t h e r

use all ca ge/cells where the  time i,,~~~8. and a f t e r  crossing o u t

th ese cage/cells. Let us t r a n s f e r  14 u n i t y  of loa d on tne cycle.

indica ted in table 14.3; by th i s  we is reduced transport  by in the

course of time 8. Will be obtained the plan/layout, given in table

~
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1~~4, in the course of t im e termina t ion T = 7 (cage/cell (3, 3)).

In order to st i l l  im prcve this plan/layou t, we should red uce

transport from cage/cell (3, 3), after forbidding, fu r thermor e, the —

transfer into cage/cell (1, 5), wh ich contains the same time. 7 of

the 13 uni ty ,, which stand in cage/cell (3 , 3) ,  we rem ove b y tr ans fe r

on the Cycle, show n in tab le 14. 4. New pl a n , layout  is g iven  in tab le

by 1I~..5.

- - - ~~~~~ - - - -
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Table 14.2.

_37 40 II 15 P24

Key: (1). Supplies . (2) .  Claims.

Table 14.3.

,~~~~
Hi B B 2, 8~~~~B B 5~~~~~~~

A 1 
- 
,-~ 25 25

- - - i ~ ~~~
- — - -

~~~ 
-- -& - ---e1

~. A, ! 21 2 II 
- - 

-
.

- -- -- -, ~~~~~~~~~ 
~
_

~5 - -

A 3 ‘ 14 ~3 
I .>~~N

1 ~5 42
—

~~~~ 
:/

hu 1 23 

~1 8~~~~ :‘ 23

Esy: (1). Supplies. (2). Claims.
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‘raUe 14.14.

8, 
~ 

3a~~~

b1 
21 37 40 II 15 124

Key: (1). Supplies. (2). Claims.

Table 14.5.

~~~ 
~~~~~ ~~~~~~~~~~~~~

A, 
_

A, 21 2 II 34

A3 2 IX 6 > K ~~~~~~~~~~
42

A4 16 7 23

21 37 40 II 15 124

Ks~~: (1). Supplies. (2) . Claims.

Page 119.
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Let us try to get rid cC r e m a i n i n g  6 u La i ty  in cage/cell (3.3)

via their  e n d — a r o u n d  c a rry .  For t h i s , let us test all possible

transfers from this cage/cell, which begin kiorizontally or

vettically.. The horizontal transfer into cage/cell (3.5) is excluded ,

siqce column 5 does not contain the not forbidden cage/cells. The

horizontal transfe r into cage/cell (3. 1) is also exclude~i, since f o r

this it is necessary to decrease the transport in cage/cell (2.1),

wh ich is impossible.

Vertical transfer , as can be ascertained directly, also gives

not one cycl e, which reduces the tine cC transport.

From this we conclude t h a t  t he  p l a n/ l a y o u t  of t r a n s p o r t , d a t u m

in table 14. 5, are optimal , and the minimu ; time of t r anspor t  is

equal to T,,~ 7.

‘1

ii

-

~~~~~~-
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3. DYNAMI C PROG RAMMING .

1. Problems of dynamic programmin g .

D y n a m i c  p r o g r a m m i n g  ( o t h e r w i s e, “dynauuc p l~1LuIing ”) repre sents

iy itsc-U the spec ial mathematical methcd at the o p t im i z i t i o n  of the

~olu t i C n~~, specially fitted out to multistage (O~ mu l t i s tage)

o p e r a t i o n s.

Let us v i s u a l i ze  t h a t  the  op eL a t i c t ?  0 beiz i g in v e s t i g at e d

[e~~rk~sen t s by itselt the process , which dev~~lu~~s in t i m e  ~~nd w h i c h

f a l l s  i n t o  a series of “z tep/pitches ” Or of “ st a ~j -~~ ”. Some o p e r a t i o n s

are dismem bered to step/pitches logically: ~oi ex a m p l e , i u r i n g

g l i d i ng / p l a n n i n g  of the econom ic activity OL t h c  grou p of enterprises

natural step/pitch is fiscal year. In cther op er a t ion s listribution

into step/pitches is necessary to introduce atti~ icially ; for

e x a m p l e , t h e  process of t he  c o r .c lu s io n/ d o r i v a t i on  of rocket in space

oi~~it can be c o n d i t i o n a l l y  decompose d i n t o  th~ s tages  ea c h o f w hic h

cccupius some tine/temporary segment At.

E
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The process, under discussion , is controllej, i.e.,, at each

Step/pitch is acc9pted some solution on which depends the success of

this step/pitch and opeLaticn as a whole. Contrcl of oparation is

composed of a series of elementary, “step ” Lontrols.

Let us consider the example o t 
a logical—crultistage operation 0.

Let i-lan/g lide ths activity ox. the group (syst~-m ) of industria l

enterprises fl,,fl,, ...,fl~ for certain period ci. ti~fl4’ T, which consists

cf m of economic years (Fig. 3.1).

In the beginning of period for the developm ent of the system of

enteiprises, are selected scni e ~.isic means K0, ~~ich m ust be someho w

distribute d between enterprises. In  the process ox tne tunctioning of

system , the isolat ed means partially are expond /consum el (they are

amcrti-zed) . Furthermore , each enterprise tor y~~ar ~t~’lds c e r t a i n

income , depe nd ing on the inserted means. In t he  oeginning of each

fiscal year, the available means can be redistribute d between the

enterprises: to eacLs of them is selected S O m e  portion/fraction of

means.

L~ placed the question: how it is necessdry in the beginning

each year to distribute t h e  av a il aU c  m e a n s  between entarpri ses SO
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that the total income from an entire system of enterprises during

en t i re  per iod of T = m would  be ma x i m u m ?

~ I
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Befor e us — the typical k coblem of dynamic aaout programming.

Is examined the controlled process — t u n c t i on i ng  of the  s ystem

cf enterprises. Control of process consists of the distribution (and

red istribution) of means. The step/pitch of control is tae

i so l a t i on/ l i be ra t i on  or some neans  to each of the enterprises in the

b e g i n n i n g  of fisca l yea r .

Let i n  the b e g i n n i n g  of the  i year to ~xnt erprises fl1 fl. ... fI~ be

selected respectiv ely t he mean s:

y~I) j~2) v(~
)

p I p •
~~

.p ~ %j

The set of these values represents by jtselt nothin j else but

control at the i step/pitch:

U~~ (Xi’’ , ~~~ ..., X1~). (1.1)

Control U by opermtion as a whole represents by itself the set of all

S tep  ccntrols:

(1~~ ~L’1, U,. .. ., U,,,). 0.2)

L __ _  ---~ - Là
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Control can be good or poor, efficie nt or ineffective. The

efficie ncy of control U is considered ~y the same index d , as the

efficiency of operation as a whole. In our example the in~ ex of

eff ic iency (objective f u n c tion) represents r y  it sel t  t o t a l  income

from an entire system of enterprises fcr m of years. I t  ~epends on

coqtrol of operati on U, i.e.., on an entire set of the step controls:

V — V (U) — V (U1, U,. ..., U,,,). (1.3) — -

Does arise the qu estion : how to select ste p controls u, U,. ..., U ,,

so tha t  va lue  V wou ld  become m a x i m u m ?

Sta ted  problem is cal led the  problem ci. the optiinizition of

con trol, and the control, dur ing  which ind ex  Il reaches maximum , by

optimum control. 1.et us designate optimum ccntrcl (unlike control

general l y U) of letter u. The optimum ccnt rol u by multistage process

consists of the set of th. optimum step controls:

u— ( u ,,u,, ..., u,J. - (1.4)

Thu s, before us is worth the problem : determining optimum

control at each step/pitch u~(1— l,2,...,rn) and , whica means, that

c p t i w u m  control of the entire oper ation u .

Let u s note that in our example (contro l the f i n a n c i n g  of the

system of enterprises) the index of e f f i c i en c y  W r epresen ts  by itself

- -



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ ~~~

DOC = 78Q68707 PAGE 
I~bISI

the sum of inc omes for all separat e years (s tep/pi tches)  ~
Ph

W— ~~~ w1, (1.5)

where w~ — inc om e f r o m  an en t ir e system of en terpr i se s  fo r  the i— th

year.

Page 122.

The index , which possesses this property , i~ called additive. We

will for the moment examine only problems with additive index .

Let us assign the missicn of d y n a m i c  vr o gr a l n ining in gene ra l

form. Let there be operaticn 0 wit h the additiv e index of efficienc y

(1.5), that falls (it is log ical  OL artif icially) to LI of

step/pitches. At each step/pitch is applied some control U~. Is

required to find t h e  o p t i m u m  ccntrol.

u ~ (u1, u,, ...,

with which the index of the efficicacy

W - w 4
‘— I

it is converted into maximum.

Stated problem it is possible to solve differently : eit her to

seek immed iately optimum ccnttol u, or to ccnsttuc t it gradually,

stop by step, in each stage of calculation optiLrizing only one

step/pitch. The second the method of optimization usually proves to

- - -
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be more simply tha n the first , especially with tna large numbe r of

ste p/pitches.

This idea of the gradual , step—by—step optimization of process

comprises the esse nce of the  method of d y n a m i c  p r o g r a m m i n g .

At rirst glance , this idea can seem surficient trivial. In fact,

what , it would sees, it is simpler: if it i~ difficult to optimize

cperation as a vh3le, then to decompose it intc a series of

step/pitches ; each such step/pitch will be the separate, small

operation to optimize which is alread y not aiftic u lt. It is necessary

to select at each step/pitch such contrcl, uuring which the

efficiency of this step/pitch is maximum. Not so whether ?

It  turn s out that comp letely not thu s ! The jrincipie of d y nam i c

prcg ramming does not assume in any way that each step/pitch is

op t imized  separate ly ,  i ndependen t  or o the rs ;  t ha t , choos ing  step

ccn t ro l , is possible to fo rge t  ABO u T all  otner  st ep/pitches.  On the

contrary, step control must be chosen taking into account all its

conseljuences in the future. Planning must be farsighted , taking into

account prospect. What to sense, if we do select at this step/pitc h

t h e  cont ro l , d u r i n g  which the efficiency of this step/pitch is

ma x imum , if subseq uently this does preven t us to obtain ood results

of other step/pitc hes? No, choosing control at each st e p / p i t c h ,
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necessary to make this withcut rail “with cauticn to future ”, are

ctherwise possible serious errors.

Let us consiler the example: let plan/ylid~ the work of the

group of the industrial enterprises some of which are oc:upied with

the issue of consumer goods, others produce for tais machines.

Prok-lein is obtaining for a of the years of the m~ xiw u m vo lume  of the

issu~ of consumer good s. Let plan,ylide the investment s on the first

year.

Page 123.

Cm the  basis of the narrow interests of this step/pitch (year), we

must all means put of the prod uction of consumer ~oods, release the - -

available machines at full power and attain toward the end of the

year of the maximum volume of producticn. k~ t cor~.ect whether will be

this solut ion from the point of operaticn as a whole? It  is ob vious ,

no Keeping in mind future , it is necessary to isolate some

portion/fr action of means, also, to the prod uction of aa~ hines . In

this case, the vol ume of production for the first yea r, it is

logical, w i l l  be reduced , t he n w ill be creat ed th~ conditions, which

sake it possible to increase its production durin g the subsequent

years.
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Th us, plan/g l i ding  m u l t i s t ag e  ope r at ion , it is necessary to

tr 0ak down control at each step/p itch taking into account its future

conse q uences at the still forthcoming step/pitches.

H owever , from this rule there is an except io~i/elisination . Among

all step/p itches there is cne, which can plan/glide simply, without

“cauticn to future ”. Which this is step/pitch? it is obvious, the

latter — ~fter it there are no other step/pitches. This step/pitch,

only of all, can be plan/glided so that it as such would bring

greatest advantage. Aft er planning opt i~all1 this last/litter

step/pitch, it is possible to it to attach L~enIflt~ mate, to

penultimate — prod— penultimate and so forth.

Therefore the process of dynamic programn~ing is run up/turned

from end ~t the beginning: earlier than all plan/glides last/latter,

a stop/pit ch. But as it to pla n, if we do not know how did end

p e n u l t i m a t e ?  Obvious ly ,  it is necessary to  uo d i f f e r e n t  a s sumpt ion s

about that how en~ ed penultimate (m — 1) step/pitch , an d for each

of the m to find such control, during whic h the gain (income) at

last/latter step/pitch would be maximu m . Afte r solving t~is problem ,

we will fi nd conditional optimum control on the iu st~ p/pjtCh, i.e.,

the contro l which must be used , if (a — 1) step/p itches were

finished in a specific manner.
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Let us assume that this procedure i~ carried out an d for  each

issue (a — 1) step we know conditional op tim um control at the m

step/pitch and the corresponding to it conditicnal optimum gain. Now

we can optimize control on penultimate , (m — 1) step/pitch. Let us

do all possible assumptions about that how ended ~red—penu itimate, (m

— 2) step/pitches, and for each of t he se  a s s u m p t i o n s  w i l l  f i n d  this
- 

- 
contrcl on (a — 1) step/pitch so that the  g a in  for last/latter two

step/pitches (from which the latter is already optimized) would be

maximum. Further is optimized control cn (m—2) step/pitch and ,

etc.

In  .i word , at each step/pitch is ought such control which

ensures the optimu m continuation cr process of the relatively

achieved/reached at given torque/moment state. This principl e of the

select ion of control is called the princi ple of optim um character.

Control itself , which  ensures the optimum continuation of process of

the relatively assigned state, is called conditional optimum control

at this step/pitch.

Now let us assume that the conditiona l optimum control at each

step/pitch to us is known: we know that to nak~ further , in wha tever

s ta te  was the process at the beginning of each step/pitcR. Then we

can t in d no longer “conditional” , but simply optimum cont rol on each

step/pitch.

H -.
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It is real/actual, let to us be know n the initial state of

process, let us designate it S0. Now we already know that to make at

the tirst step/pitch: it is necessar y to U S e  the conditional optimum

control, manufactured by us foi the first step/pitch, wnich relates

to state S0. As a result of this ccntrcl afte r the first step/pitch

system wil l pass into another state S1; but for tnis state we we

again know conditional optimum control at t u e  seconu step/pitc h u2,

and so forth. Thus we will find optimum control or the process

U — (U,, u,, ..., urn) .

giving to ma ximum to possible gain W~~.

T h u s, in the process of the optimization of control of the

method of the dynamic programm ing of multi stage process “passes”

twice :

— for the first time — f t o m  end at the b e g i n n i ng ,  as a result of

wh ich they are lo:ated conditional optimum controls on each

step/pitch and optimum gain (also conditions) on all step/pitches,

beginning with dat um and to the end of the ~roc€ss.

L

I~
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— ror the second time — from b e g i n n i ng  t o w a r d  the  end , as a

t e su l t  of wh ic h a r e  located ( n o  l onger  cond it i ona l )  o p t i m u m  s tep

controls on all step/pitches of operatica .

These general rules will beccme clearci. bise -l on specific

e x a m p le.

2. P roblem of the  ga in  of a l t i t u d e  and of ~~ eed by L l i g h t  vehicle.

One of the simplest problems , solved hy the method of dynamic

progra~ ning, is the problem of the optimum climb and velocity flight

• ve hicle. With this problem ~e will begin t h e  pre~i.~ntation of

practical procedures ot dynamic progra~ mi n-j, mcre~ ver for the purpose

of systematic clarity, condition of protlew they dill be to the

extreme simplified .

Let the aircraft (or another tjight venicle ) , w h i ch  is fO~ fld on

height U0 and which has velocity V 0, be must be raised to base

altit- mde He.. bmt its velocity is led to the assigned value V.

(le t te r  w we mill  note the  end of the E tocess). is known f u el

consumption , required for lifting the apparatus from any height H to

any other H’ > ft ~t the constant velocity V; is know n also fue l

consumption , required tor an increase in the velocity from any val ue

of V to V ’ > V at the constant/invariable hei ght 8.

4; 
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It is requirad to find tne optimum climb and velocity, by whic h

overall fuel consumption will k~e minimua .

The solution let us construct as follows. For simplicity let us

assume tha t ent i re  process of t he  ga in  of a l t i t u d e  and velocit y is

divided into a series of ccnsecutive step/pitches (stages) and for

each step/pitch aircraft increases only height cr only velocity.

Page 125.

Let us represent the state of aircraft as point S on plane Vo lt

(Fig. 3.2), where the abscissa — the velocity of aircraft, and - 

-

crdinate — its height.

I t  is obvious , the re  are many  possible controls  — m i ny

trajectories on wa ich it  is po ssible to t r a n st e r  point  S f r o m  S0 in

~~~~ see.,
S.. Of all these trajectories it is necessary tc ~elect ~~~~~~~~~

wh ich the fuel consumption will be min imum.

Let us solve problem the method ot d yn amic programming. For

this, let us divide the interval of velociti•s V,— V, imto n & of the

equa l parts:  
- 

-1

a,

IL — ~~~~~~~~~~ . . 
— k.4
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and the interval of h.ights 11.—H 0 — into n 2 of t h e  equal  pa rts:



-~w--~~~~~~~~~~~~~~ _ _ _ _

DOC 78 068707 PAGE

H

H

N,,, 

~~~~ 
-- — — — -

~~~

- 

~~~~~~~~~~ ~~~

— —

r~ I H0’$dH - - ___ ___ — — —~

H • -ir4J --

4H~
H — 

#1j~ 
-
~~~~ ~~~~~~~~ 

— — —

.
~~ ~i ~~~~ ~?üT 

-i~;;4~w ~~~ ~
Fig. 3.2.
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The nu mber  of part s n 1 and n 2 of f u n d a m e n t a l  v a l u e does not have and

can be selec ted on the basis of re~g u ir e m e n t s  fo r  t he  accuracy of the

solution of problem. Since for  each s tep/pi tc h we can v a r y  onl y

he ight or only ve loc i ty ,  the tot al Mach nututer cL step/pitches will

be:

m—n ,+n2.

For example , for the case, depicted in Fig. 3.3,

,i~—8, ,s,—6, m=14.

& I ~ y t r a j e c t ory,  which translates point S f rom S0 in S~, consists

~~t ‘~4 - .p / : ’i t c h es , or stages.
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- In order to optimize contro l of t h e  process ot the gain of

1, a lt i t u d e  ani velocity (i.e. to selec t ~~~~~~~~~Eajectory, in wh ich

ru e l  c cn s u mp t i o n  i t  is minimal) , it is necessary to know

ex p e r ~d i tu r e / c on s u mp t io n  a t  each s tep/p i tc h ( h o r i z o n t a l or vert ical

• t ra j e c t o r y  phase) . Let us assume t h at  tLesc e xp c nJ i t u r e / c on su mp t i o n s

- 

- 
cf probl em (see Fig.  3 .4 ) .  wit h each segment it is registered fuel

• co n s u mptio n in arbitrary units.

I

- 
To any trajectory, which translates S tr~~- ~~ 

in S~, corresponds

t h e  comp letel y spac i f ic  f u e l  c o n s um p t i c n , ~—~ u a i  to the sum of t h e

n u m b e r s , w r i t t e n  on segments .  For e x a m p l e , the t r a j e c t o r y ,  m a r k e d  by

Litleman/pointers in Fig. 3.14, giv es fuel consu m pt ion :
- W~~~J 2 + I 1 + I O + 8 + 1 J + 8 + 1 0 + ,O + I3 + 15 + 2 0 + y +

+ 12 + 14 = 163.
We should of all trajectories select b~ .-~3~.Lor whi~ h the fue l

consumjtion is minimal. It would be possible, ot cour5e, to sort out

all possible trajectories, but them toc there a~~ m uch.  it  w i l l  much

siupler solve problem by the method of dyncuni c p r o g r a m m i n g .  Process

consists  of 114 ste p/p i tches ;  let us  o p t i m i z e  c~~ch step/pitch ,

beg i n n i n g  wi th  the  latter. The tinal state of air~~~L a tt  (po in t  S.) to

us is assi gned ; the  14 th  step/ p i tch  w i t h o u t  f a i l  must  b r in g  us int o

th is  p c i n t .
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Let us loo k , when :e We can move into  point  S~ for one step/pi tch ,

i.e., a t e  such tha possible states of aircraft after penultimate ,

13th s tep/ p i t c h ?

Let us consider separately the right upper angle of our

rectangula r grid (Fig. 3 .5) w i t h  end point S.. At t h i s  p o in t  it is

possible for one step/pitch to move of two adj acen t  po in t s :  B~ and

82,  moreover of each — onl y in one manner , so tnat ‘~he selection of

cond i t i ona l contr3l  at last/latter step/pitch w e  ~1o not have — it is

• singular. If penultimate step/pitch brou ght us into point B1, we must

move  over)  (gai n speed hor izonta l  and  expend 17 u n i t y  of f u e l ;  if we

i n t o  point  8 2 — go ove r ve r t i ca l  l i n e ( t c  g a i n  a l t i t u d e )  a n d  to exp end

-

~~~~~
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14 unity. Let us register these minimum (in this case simply

un a voida bl e) e x p e n d i tu r e/ c c n s ua pt i o n s  in the special small circles

wh ic h let us place at points  B~ , B 2 (Fig .  3.6). ~ecordin~ “17” in

small circ le of B~ in d icates: “if we they atrived in B~ , t hen min imum

fuel consumption , translating us into point S., was equal to 17 , •  

-

unit y ”. Analogous sense has a recording  “ b y  14” in small  circle at 
• 

-
-

poin t  82. Th e opti m u m  con trol , which leads to t his

experditure/consum ption , is marked in each caSe by the arrow/pointer,

outgoing from small circle. Ar row/pointer indicates the direct ion in

which we mu st  move f r o m  th i s  p o in t , if as a resul t of the previous

our activity they rend er/showed in it.

Thus , conditional optimum control on last/latter, 14th

step/pitch , is found for any (B~ or B2) issue of tne thirteenth

step/pitch . For each of these issues, it is found , furthermore ,

conditio na l minimu m fuel consumption because of which it is possible

to move f r o m  this  point  in S,..

Let us pass to gliding/planning of penultimate , 13th step/pitch.

For t h i s, let us consider all the possible tesults of

p r e d — p e n u l t i m a t e , 12th s tep/p i tch .  A f t e r  t h i s  s tep/pi tch we can

ren der/ show only i n  one of the point s C~ , C~ , C 3 (F ig. 3 .7) .  From

each suc h point  we must  f i n d  o p t i m u m  w a y  in point  S. and t h e

cor responding  to t h i s  way minimum fue l consumption .

79 -
— - • -—---• • — -
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It we render/ showed into points C 1, t hen of selection no: we

must  be mov E d on h or izontal  and expend 15 + 17 = 32 unity of fuel.

This exp endi tu r e/ coa suwpt io~ we w i l l  r eg is ter  in small  circle w i t h

point C1, and optimum (in this case only) control t rom point C3 let

us again mark by arrow/pointer.

Fcr poi nt C2, the selection is: from it it is possible to go in

S. either through B~ or throug h B~.

4

•1



—,—
~
---•-- . 

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DOC = 78068707 PAGE

S

i 

7, 1’ c:~!;—.~-r’ 
-
;

_ _ _  I’ 

~ 
I ?7 .___

~J
Fig. 3.5.

Fig.  3.6.

Pag e 128.

In t he  f i r s t  ca5e we wi l l  spend 13 + 17 = 30 u n i t y  of fue l , in the

second 17 + 14 = 31 unity. That means tha t optimu m way f r o m  C2 in

S. begins wi t h ve r t i ca l  section (let us n Ote  this v~ r t i~ al

a r row/p o in t e r ) , an d  m i n i m u m  fu e l  consu m pticn is e ju a l  to 30 ( th is

n u m b e r  we wi ll reg ister in sm all cir cle  w i t h  p o i n t  C2 ) .

Final ly ,  fo r  point  C 3 way  i n to  S~ aga in  only : on v er t i c al  line.

• Is bypasse d it in 12 + 14 = 26 u n i t y ;  th is  v a l u e  (26) we w i l l

re g ister i n  small circle wi th  C 3, but by a rr o v ,p o int e r  let us mark

cptim~ m control.

Th us , passing f r o m  one point to t h e  n ex t  Lro 3 ri gh t  to  le f t  and

downward (from the end of the process to  i ts  beginning), it is

t
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possible for each node ci Fig. 3.4 to select conditional opt imum

control at the following s~.p/pitch , i.e., the direction , which leads

frcm this point of point S., with  m i n i m u m  f u e l  consumpt ion , and to

register  i n  small  circle at t h i s  p o i n t  t h i s  minimum L. 
-

expenditure/consum ption. In order to find in node optimum control, it

is necessary to look over two possible ways frcm this point: to the

right and upward , and for each of them to find the sum of fuel

consumpt io n on th i s  s tep/pi tch  and m i n i m u m  ru e l  c o n s ump t i o n  on

cptimum contin uation way, already constructed tor a f o l l 3 wi n g  point ,

wher e cond ucts this way. Frcm two ways (to the right and upward) is

chose n tha t , for  which th is  sum is less ( i f  sums are equal , is chosen

a n y  w a y ) .

As a result of the execution Cf t h i s  p r o c e d u r e , fr om each nod e

(see Fig. 3.8) is conducted the arrow/~ cinter , wtiich indicates

cond i tiona l op ti m u m  con trol, while in small circle is record/written

the minimu m cost/value cf trar.siticn frcm this point in S.,

(conditiona l mi nim um cost/value)~. Sooner or later process is

f i n i s h ed, after reaching starting point S0.

From this point, and fr om a n y  o ther , O~~~C U t S  t h e  a r r o w/p o i n t e r ,

wh ich indi cates, w here it is necessary f r o m  i t  t~ be novai , and in

small circle is registered minimum fuel consumption.
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On this, the stage of the ccnditjonal optimization of control it is

finished , and begins t h e  c o n c l u d i n g  stage Ct u ncond i t iona l

o p t i m i z a t i o n  — cons t ruc t ion  of o p t i m u m  c o n tr o l  at each s t ep/p i tch

f r cn  the f i r s t  to the la t ter.  In th i s  cas e, w e  cons t ruc t  t h e  o p t i m u m

t r a j e c t o r y  of point  S, be ing  moved on ar r o w/ p o i n t e r s  f rom S0 in S~.

Fi-j ur es 3.8 show s the  f i na l  r e su l t  of t h i s  pro cedure  — optimum

trajectory it is noted by greasy/tatty small circles and further

r i f l eman/po in te rs .  N u m b e r  “ 139” , tha t st a n d s  a t  point S0. indicates

m i n i m u m  fu el consump tion ~~~~~~~~~~~ less which it cannot he obtained in

which trajectory.

Thus, stated problem is solv ed , an d op t i m u m  control  of process
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is f o u n d . It consists of fo l l o w i n g :

• — at the first step/pitch to increase only velocity, retainin g

by constant/invariabl e height Hi,, and to brin; velocity to V0 + AV.

— at the second and  th i r d  step/p itches to  increase h e i g h t  to H0
+ 2~ H ,, r e ta in ing  the  veloci ty of cCnSt a nt / inva r iao l e .

— on the f o u r t h , f i f t h  and by post Step/p i tcnes  to a ga i n  gain

speed unt i l it becomes equal  to V 0 + 4~~V.

— at the  seven th  and e i g h t h  ste p/ p itches to gain altitude and to

b r i n g  i t  to  H 0 + 4AH.

p 

— at the nin th, tenth , eleventh and t v t l f th  step/p i tches  to • -

again gain speed and to bring it to the assigned finite value V.;

4 — at last/ lat ter t w o  s tep/pitches ( t h €  t h ir t eenth  and

fou r t een th ) to gain altitude to the assigned value H..

I t  is not d i ff i c u l t  in a number of examples to ascertain that

t he  obtain ed control r e a l/ a c t u a l l y  is c p t i m u m  and in a n y  other

t r a j e c t o r y  fue l  c on s ump t i o n  w i l l  be more f o r , at least , n o t  less) .
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The examined here problem of the cptimum gain of altitude and

velocity is the simplest example in which they frequently demonstrate

the basic idea of dynamic programming.

ft

‘4
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Page 130.

It is rea l/actual, in our s i m p li f i e d  f c r mu l a t icn of t he  problem at

each s tep/p i tch  we should  choose on ly  be twee n t~ o con t r o l s :  “to  gain

a l t i t u d e” and “to gain  speed”. Spec i f i ca l ly ,  in connect ion wit h th is

elementary  simple set of controls, proble m very easily is solved to

end.

flis intentional simplified formu laticn of the problem does not

completel y correspond to r e a l i t y .  A c t u a l ly  n i gh t  veh ic le  can gather

• (bu t  o f t en  also it ga the r s )  he igh t  and ve loc i ty  it is s i m u l t a n e o us.

In this case for each point on plane ~~~ point  S can move at a n y
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ang le  w i t h i n  the l i m i t s  or certai n sector ( b i g .  3.9) , moreover to

each J i rec t ion  cor responds  its fue l c o r s u m p t i c n  per the  u n i t  of

le n g t h  covered path  ( i t  goes w i t h o u t  s a y i n g  t h a t  not t he  rea l way,

b ut condit iona l — on p l an e  V O H ) .

In or de r to solve th is  p r o b l e m  of d y n a m i c  proyr a~n t Q i~1g, we must

somehow es t ab l i sh / i n s t a l l  “s tep/p i tches ” o r the  “st ages ” of pr ocess.

To us it is here already inconvenient i t  w i l l  be to use t h a t

distribution into stages, which we selected for  t .ie p r ev ious  problem.

W i l l  more convenie nt decompose segment 
~~~~ 

intc m of parts, lead

throug h dividing points a series of l ines of  support (0) — (0) • (1) —

(1), ..., U) — (i), ..., (a) — (a), perpendicular 3~~ , and to assume

t h a r  t iw  “ step/ p i t ch”  consists of the  t r a n si t i o n  ± point from one of

t h e  li nes of suppor t  tc a n o t h e r  (F ig .  3.10).  I t  ~u t ake  li nes of

sup p o r t  by s u f f i c i e n t l y  close , it is p ossible  tc  a ssume th a t  eac h

trajectory phase, f rom on e l i ne  of s up & c r t  to f o l l o w i n g ,  is

straight—line. It goes without saying that the direction of each such

section must not exceed the limits of the “solved sector” , determined

by the “rose of direct icns” in Fig. 3. 10.

Fuel consumpt ion on s t r a i g h t  p o r t i c n  is u ct er i ni n e d  by  the point

where  it b e g i n s, w i t h  the  d i r ec t i on  of sect ion and w i t h  i ts  length .
S

Th~ s e t — u p  of the so lu t ion  of t h i s  p r c L . l r m  by the  m e t h o d  of

L _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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dynamic programming is somewhat more ccwplex than the “stepped ”

set—up descr ibed ab ove , b u t  in p r inc ip le  it d i f f e r s f r o m  i t  only in

terms of t he  fact  tha t  at each step/pi tch it is necessary to c hoose
• not betwee n two  d i rec t ions , b u t  b e t w e e n  se vera l .

I
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Page 132.

For each of these points, it is reveal/detect/exposed optimum

control, i.e., the direct ion of further secjuence m ovin g over which we
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F
F ig. 3.9.¶ Key: ( 1). Trajectory .

Pa ge 131 .

Bcgin s process f r o m  last/ lat ter  s tep/p ~.tch (Fig .  3.11). First  of

all, ar~ det ermined  t h e  possible Fos i t i cns  cf çcint on s t r a i g h t  l ine

( iii — 1 ) — ( m  — 1),  f r o m  wh ich  it can a r r ive  in S. for one step/pitch.

This, cbviousl y ,  a l l  posit ions f r o m  A tc B (s ince t he  select ed by us

rose of directions assumes tha t the veiccity an d  tieig h t  in the

~rocess of set de:rease cannot. Let us assijn on segment ~~ a series

of possible positions of point s, for each of the m , let us construct

the straig ht portion of way to point S~ 
and will count on this

section fuel consumption. Ziction along this sectL.m will be (forced)

cptimti r control, into expenditure/consumption — (unavoida b le) bY

minimum ex penditure/consumption. Thus, the conditional optimization

of last/latter step/pitch is car r ied  ou t .  Let us pass to pen ultimate

step/p itch. Let us assign a series of Fcints on segment  E~ of line
Cm — 2)— (m — 2).
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P %u.~t

i t  i~~ ~ p~ n t  ~t t  t w ~ 1t~ ;t / 1 a tt t ~r t * / ~~i t c h u . ;  t h t  ~utn~ muin of fuel. In

o r d o i  t o  t i t id t h i s  d i 1  •~~ t IOU , w~ ~u u ~~t t ci t . .j ch  ci t ho ~‘o ;sj Ii1e

b &J ln O f l t .~, uhici t  co inbiiie t h is  c int  t L ( ’ D  .~ t L~ L i ’ .j h t  l.i iio (n — 1 ) —  (In —

1)~~ t o  co u n t  tuel coio. u~~p t i c n  ~t zid to  ~;um i~ w i t h  (~~l~~~~dy  op t i mi z e d )

t’X ~~~fl I i t  u t  e/ consum pt i o u  it  l~t~.; t ,’ i~~t t  o~ ~top,p i t L h . IL all d i t o ct  ions

~is o~~t i m u u i , t~i ch~~seui t h i t , t o 1  w h i c h  t h i s  t o t~il

e x E e n d i t u L /coll s u m F t i o n  ~~ ~i nj r n i I

F u r t h o r  we p~~s:; t o w u x d  o})t 1~n i ;it  i cn  ( i i  — ~ t ep/p itch  an d ,

t~ t c . t n ~t oh st c%tp~ i:; ou ’~j ht  t h i~. i ii ~ ct to u t  o I t Ik~ inot iou £ ~ om each

p o i n t . 1( ~L w h i c h  f u e l  c c z u s u a ~ ’ t i o n  ~i t  t h e  fl~’~t~~t~~~t . ;t e p/p i t ~~h pl us

( i u t ’ t ~1y o p tj u n i z e i )  t u o l  c o n s u u ~pt t o n  it  i l l  r o r n u t I ~t n ~J t o  e n d

~t e~~/ 1i t o h  ~~ reaches t hc mi  n i u i u r n .  Tb j~i pL’o& ~: ci c o n d i ti o n a l

opt j ul i i~~t i On  is COit t l i t u t  d unt i l  w o ue a c h  t h~ t i t~ .t ;t o p/ L i t c h  who se

~~ no Loru~JeL u n u s t  n o t  be v a r i e d  — i t  k u ow n .  Thu s  i t  i~ ;

tlet ’i in m e d  m i n i m u m  f u ’ l  c o n s u m u  p t i o I l  t ot  ~~f lt  i i  c~
)
~~u~ ~i t  t on , bo~j i  nn in ~j

LL om p o i n t  S 0. F u r t  ht~r , ~n ov  m y  t r o  i~ e t c h  p a i n t  • b~~y i r u uu i u t j  t rou t  ~ 0,

th rou~;h o p t i m u m  w a y ,  we t i n d  t h ~~ opt imun c l imb and vo l oo t t y  (it is

n ot o d  in ? iy .  1.11 by ~oints)

Let us note t h at  t he de~;c r ih e d  i r e th o d o l oy  y oi th e  c~~f l ~truction

cf t h e  opt imum t r a j e c t ery  ot  point ~ ( c [ t i u m unm ccii t i:ol) is not related

in any w a y  only tD the ease ot  t h e  yam o t  alt itude and ve loc i t y .

A l o t u ~ t h axes can be p lot/dt~ o~~ited nct the h~~i’j ut t nd t he  ve l o c i ty ,
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it is spent at tw3 last/latter ste~/pitches the minimum of fuel. In

order to find this direction , we must tcr €ach of the possible

segments , which combine this ~cint f ton straight line (a — 1)— (m —
1) • to count fuel consumpticn and to sum it with (already optimized)

expenditure/consumptio n at last/latter step/pitch. Of all directions

as optimum , is cho sen that, for which this total

expenditure/con sumption is ~ini unal.

F urth er we pass toward optiumizaticn (rn — 2) step/p itch and ,

etc. In each stage is ought this directio n of trio motion from each

point, for which fuel ccnsulrption at the nearest step/pitc h plus

(already optimize~ ) fuel consumption at all remaining to end

step/pitch es reaches the minimum. This process ci conditional

optimization is continucd until we reach the first step/pitch whose

beginning S0 no lon~er must not oc varied — it known. Thus it is

determined minimum fuel consumption tot entire cparation , beginning

from point S0. Further, moving frour each point , beyinninj from S0,

through  opt imum w a y ,  we find the optimuw climb an~ velocity (it is

noted in Fig. 3.11 by points).

Let us note that the described methodolog y of the construction

cf the optimum trajectcry of point S (c~timum ccntrol) is not related

in any way only to the case of the gain of altitude arid velocity.

Along th4-~ axes can be plot,deposited nct the height and the velocity,
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but any ot her values, for exam[.le.

— t h e  Cartesian (polar) coordinates or the urivin~ /moving point.

— we igh t s  and t h r e e  c om p r i s i n g  ve]cc i tiez  Cf rocket .

— the quantit ies of means , packed i n t o  t h e  d i f f e r e n t  b ranches  of

lrcd uction , etc.

An equa l form , t h e  maximize d (minimized) ind~~x of efficie ncy W

can be any nature, for exam ~~1e.

— t h e  e x p e n d i t u r e  of supplie5 to the sistem of measures.

— the t ime  t r an s f e r r i ng  of f r c ~m po in t  S~ in S~

— the income, yielded by the  gr o ut  of en t e r p r i s e s  and , etc.

The selection of the coordinate system in w h i c h  is solved the

problem , and the method of the articulation of operation to

step/pitches they can be the different ; their

concrete/specific/actual forms are dictated , mainly, by the

considerat ions of convenience in the design diagram , and sometimes —

ty clarity of geom etric interpretation.
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3. C o m m o n/ g e n e r a l/ t o t a l  f o r m u l a t i o r .  of th ~~ ~‘L o t. 1.~m of d y n a m i c

p r o y L a a ~n i n y  t he  in t e r p r e t a t i o n  of a d m i n i s t ra t i o n  i i~ p hase space.

A L t e r  a re  e x a m i n e d some spec ir i c  p r o b l e m s  Cr d y n a m i c

p r o g r a m m i n g ,  let  us  g i v e  t h e  c o mm o n/ g e n e r a l/ t o t a l  I o r m u l ~~t i o n  of such

~r oh l e m s  an d  wi l l  f o r m u l a t e  t h e  p r i n c i ples of t heit s o l u t i o n .

I
Page 133.

In t 1~i~ ca se, we w i l l  use t he  g e n e r a l i ze d , ~ y m L ~~l ic , bu t  not

ca lcul a t i o n  f o r m u l a s ;  each or then  exp r e s s~?..~, ~h i ch  on w h a t  depends,

b u t  doe s not  make  i t  p ossible a n y t h i n g to compute. N e v e r t h e l e ss, t he

w r i t i ng  of such co m mon ,’y en er a l/ t o t ul  f c r m u u l a s  is v e r y  u s-~f ul  f o r

u n d e r s ta n d i n g  of t h e  essencE of  me l -hod .

Is e x a m i n e d  f o l l o w i n g  c om mo n/ y e n er d l / t u t a l  t a s k.  T h e r e  is

certain ph ysical system S, ~h ich  i n  t h e  COUtSC Ct time varies its

state, i.e., in sy stem s, occurs some process. ~~ can m a n a g e  t h i s

process, i.e., in this or scwe other way to a f te c t  the state of

sys t em.  Th i s  sys t em S we w i l l  cal l  t h e  c o n tr o l led  sys t em , a n d  t he

m ethod  of our  e f f e c t  on i t  — c c n t ro l  U.  R e ca l l  t 1 l at  by l e t t e r  U is

des ignated  not a n y  g i v e n  va lue , but  t h e  w h o l e  s€t of v a l u e s , V ecto rs

0
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or 1un c~~ions, whi:h character ize contrcl .

L~-t  u s  assuma t~i a t  w i t h  process is c o nr i e c t cj  some oir  i n ter e s t ,

whi ch is expressed numerically by value W , which ~e will call “gain ”.

we wish so to manage process so that t~~e g~~i~i wcu~ d be mlxim u l *.

FCCTNOTE ~ • Here a n d  s u b s e q u e n tl y  fo r  ~rev ity let us speak only about

w a x i m i z a ~~ion W ;  it is im p l i€ d  t h a t  the “m aximum ” in any event can be

re~.1aced b y the “minimum ”. k ND FCOTN OIE.

it is ob vious , j am d.p.nds on tha  control:

W ..r (U). (3.1)

We wish  to f i n d  t h i s  control  ( o p t i m u m )

U— u , 
-

w i t h  w h ich  j a m  is max imum:
— max (V (U)) . (3.2)

Recording  sax i~ read “ sax imu m on tt” an d  i nd ic a te s :  “ m a x i m u m  U
1J

of a l l  va lues  of W (U) durin g all pcssihle cLntrcl . U”. That of the

c o n t r o l s , a t  wh ich is re ached  t h i s  m a x j m u m , ~~~ t . & e t ~-e is t h e  op t i m u m

cont ro l  u.

Th u s, is placed t h e  comm on/ gen e r a l/ t o ta l  t a sk  of t h i
‘I.

op tL i i za tion  of con t ro l  of p h y s i c a l  sy s t em.  H o w e v e r , it is placed

s t i l l  not comple te ly .  U s u a l l y  in  such t a sk~ m u s t  be t ak e n  in to

j
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account  some conditions, s up e r i m p o s e d  cn the  i n i t i a l  s tate  of system

S0 end  f i n a l  state S.

In t h e  s imples t  cases these s t a tes c a n  be comp le te ly  assigned

(for example , see §2). In other cases the y can ~e ass igned not

completely , but are only limited by any particular conditions, i.e.,

are shown the region of the initial states S0 and the region of final

states ~~~~~

Page 134.

For example , in the  task , s imi la r  e x a m i n e d  in t h e  p r ev iou s

pa r a gr a p h , it can seem tha t  f l i g h t  vehicle m i s t  be g iven  no t  in to  the

accura te ly  assigned state S., but into some r eg ion  on p l ane  V~ H (let

us say , t h a t  to achiev e height , nct lesser t h a n  g iven  ona , hav ing in

t h i s  case velocity,  included within certain limits) ; initial velocity

V 0 alsc can be not in accuracy  assigned , but it it is possible to

ark~itraril y choose in scm e toundar i e s.

The fact that the initial state of syste m S0 enters in region

we will record/write with the help of the taken in ma thematics

“sig n cf connection/inclusion ” E:

s,E~..
it is analogous, fo r  the  final state of th e sys tem:

~~~~~~

4’

I—
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Th u s, the coa.on/genera l/ to tdl  task ot op t  im.~m co n t r o l  is

f o r m u la t e d  as f o l l o ws :

From many possible controls U tc find b u c h  op t i m u m  :ontro l and,

which tran slates the physic al system S t r o m  i r ~i ti a l  st ate S, E ~~0 in to

f i n a l stat e ,S.E& so that in thi s case t h ~ g d i n  ~ would be converted

i n t o  m a x i m u m .

Let us give to control process geometric int er pretation. For

this , tor us it is necessary te somewhat wicen cur custoiary

qecmetric represen tations and to introduc e t h e  co n cept of the

so—calle~ phase space (or state space).

State S of system 3, by which we is c o n t r o l le d , always can be

described with the help of one or the cther quantity of numerica l

parameters. Such parameters they can be, fcr e xample:

— coordinate of body and its velocity :

— l u an tit y of means, inserted intc the branc h of production ;

— n u m b er  of ~ roup in qs  of the  t r oops

an d so f or t h .
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Th i i-~.e p ar a m e t e r s  we will call th~ phase cccrd~ nates of system 5,

and the state of s ysteum as represent ative ~e i nt  S wi t h taese

coordir .ates in c e r t a i n  c o n d i t i o n a l pha se  space  (s t a te  space) . The

• d i m f ~r~siona li t y  of this space dep ends on th e number of phase

coordinates. If the state of system is c h a r u c t eu i ied b y  ~ne pa r ame te r

~~, ther~ phase space will be on e—dimensional and represents by

themse lves the section of the axis of atscissas (~‘ig. 3.12), and

control :s interpreted by the law of the motion ot point  S f r o m

initial state ~~~~~ into final state S~ E~~.

-~~~~~~~~~~~~~ J~4
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051g)we 9~~~~~w~~u cgCm~swv1s
(#esc oi n,JCwsp Ncmk)

Fig. 3.12.

Key : (1) . Reg ion of the possibli? states of ~y s t € u m  (phase space).
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If t~.e ;tite of system is c h a rac t e r i z e d  b y t w o  p a r a m e t er s  ~ and E2

(f or exa mple , b y ve locit y a n d h e i g h t , as in to  §2 , ch a p t e r  3) , t he n

phase spac.-~ will be two—dimensional (plane or its p a r t ) ,  a nd process

will t ’t~ re presented transferrin g as of point S from S,E.~. 
in S.E~.

over t h e  spec i f ic  t r a j € c t c r y  on phase  p la n e  € 1 0E2. Trajectory this

w i l l  repre sent con t rol  (Fig .  3.13) .

It  t he  state of system S is charac ter i~ ed by t h r e e  coord ina te s

E~ (for example , abacissa, velocit y a n d  accele ra t ion) , the n

phase space will be three—dimen siona l s~ace o r it ~ part , a n d  t h e

co~ tro1le~ process wi l l  be dep ic ted  t r a n s f e r r i n g  as of point S over

space cu rve  (Fig. 3. i 4 ) .

I t  the number of parameters , which characterize the state of

sys tem , is more than three, t h en gcowettiC inteLpretation lose s i ts

—
j.

—
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c l a t i t y ,  b u t  ge om e t r i c  t e r m i n o l o g y  c o n t i n ue s  t C  L~~u ia iu  c on v e n i e n t .  In

the •jcr,eril case wh en the state of system ~ is c~~ i cr i b ed  a t h e

p d L a m . � t - ~L s

~~~~~~~~

we w i l l  ~~j eak a b ou t  p o i n t  S in ~— d i w e n s i o n a i  phase Space a n d  a b o u t

its t r a n s fe r r i n g  f rom r e g i o n  ~~ i n t o  r e gi o n  ~~~~~ over  SUCh t r aj e c t c r y ,

foi wh i ch ~jain W is maxi m um.

T~ e select ion of pha se coor d ina tes e1. , ~~ 2 ••~~~~~~ t h a t  i e t e rm i n e

the ~~t & t t  of sys te m , and the corresponding om€tiic interpretation

can ~e t h a t  or other, depending on c c n v en i c ’ nc e ih the construction of

desi~~n ~]i~~gram. In certain cases as one  of t h e  ~‘n t: c o or d i n a t e s,

w h i c h  c h a ra c t e r iz e t h e  s t a t e  of sy . t e w  5, i.~ t e  c on v en i e n t  select

t i m e  t , ~a s t  f r o m  t he  beg i n n i n i  of p rocess ;  t h e n  s t age s

(stE ~~/~~i~~ches)  are  v i s u a l l y  v i s i b le  in t h e  L~~ia se ~;pace as of

t r a n s f e r r i n g  of po in t  S f r o m  cne of t h e  p la nes ( h y p e r p l a n e s )  t

c c rst  to a n o t h e r  ( F i g .  3 .15) .

Let us assume tha t t he  phase  coordinates ~~~~~~ ..., the

det~ rm ini n g state systems S, are  selected . i h e  cos~ on/geaeral/total

t a sk ot the optimization of control in ~eome tric term s can be

f o r m u l a t e d  t hus :

~ ind t h i s  con t ro l  and (optimum control) , und~ r the affect of
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w h i c h  1o± flt S of phase space w i l l  move  f r o m  t h e  in i t i a l  reg ion I
~J

into finit e d o m a i n  g~ so t h a t  in  t h i s  case •j a i r  ~ will become

• ma x inum .

stated common /general/total problen can b~ so lved  ny  differen t

iethods — in any way not only method of dynamic p r o q r am a j a g .  L

C h ar a c t ~~r i s t i c  fo r  d y n a m i c  p r o g r a m m i n g  is tne specific systematic

1 method , which consists of f c l l o w i ng :  t h e  p tcc e~~s of transferring the

Fci~~ S from ~~ in ~~~~, is divide d on several step/pitches (stages)

(5CC F ig .  3. 16), ~nd t h e n  is c o n d u c t e d  t he  ~t c~ ;— ~~j — s t e p  op t im i z at i o n

cf co n t ro l  and  g a i n .

II ,

I
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4 O~wcma ~~~~~~~~ I_ / cpcmo.*tuu Cu cmtM.4.
/ ~~~~~~~~~
I ~~~,l7DOCmpQ NC 

Fig. 3.13.

Key: (1). Domain ~f the possiLle states of systea (phase space).
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Q~~acm. IOJ..cU,~,wo,, 
~~ \

I ~oc,v,on wud ~uCmSMw (JiI / (~~~o8oe ~woc’~ SHe-

-t- /
~~~— — — D~~

Fig. 3~ 114.

Ke y: ( 1) . Doma in of the  possible s ta tes  of sy s t e m  ( phase  space) .

H
• Jj
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ri g. 3.15.

4 

-

Fig. 3.16.

Key: (1). the a step/pitch. ( 2 )  . 1st step/pit cli . (3) . ~litA step/pitch .
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The p rocedure  ot t h e  construction of o~tisutu control of the

m e t h o d  ot d y n a m i c  p r o g r a m m i n g  tu1l~ at t w o  b t aq e :  p r e l i m i n a r y  and

f i na l .  A t  p r e l i m i nar y  s t age  is det er m i n e d  tot  each step/pitch t h e

cond i t iona l optimu m c o n t r o l , wh ich daE ’ efld J on s t a te  ~ o l sy s t em
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(reach ed as  a r e su l t  CL t h e  p r e v io u s  s tep / p i t c he s ) , a n d  c o nd i t iona l

optimum ga in at all rem ainin g st ep ~~p i t ch e s , begin ning with d a t u m ,

a l so  ( Ie j .~n d in g  on s t a t e  S.

A t  f i n a l  sta’e is det e r m i ne d  for  eac h st c p/ ~~i tc h  t i na l

(unconditional) optimu m ccntrcl.

Preliminary (conditional) optimization is ~u od uced on the

s te p/ p i t c h es , in  t h e  r e v e r s e  o rd e r : f r o m  l a s t/ l at t e r  s tep/p itc h

t o w a r d  t h e  first; final (unccnditional) optiniza tion — a lso on the

st e [/ ~~i t cheS , b u t  in t h e  n a t u r a l  order : fr o m  t h e  t ir st  step/ pi t ch

tow ard t h e  latter.

Of t w o  stages of op t i~~i zat i o n  in cc lnp a r a l ) l y  inar~ important and

sort is la boriousl y the first. Aft er the teiui i z~ation of the first

s t age, t he  s a t i s f a c t i o n  of t he  second difficulty Joes not repr esent:

t he re  t e m a i n s  on ly  to “ read”  t h e  r e c o m m e n d a t i o n s , a l r e a d y

• p r e f a b r i c a t e d  d u r i n g  t h e  f i r s t  stage .

At the basis of s t e p  by s tep  p rocedu r e , l ie/res t s  the  a l r e a d y

m en t i o n e d  p r inc iple  of o p t i m u m  c h a r a c te r , w h i c h  consist s  ot

f o l l o w i n g :

ver st ate  S of  sy s t e m  as a result of seine n u m b e r  of
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step /pitches , we mus t choose c o n tr o l  at the nearest step/pttch so

that it , in conjunction with the optimu m cent rd at all subseq uent

step/pitches , would lead to ma x i a u m  g a i r ~ in  a l l  r J m a i n i n J

s t e p/p i t c h e s , i n c l u d i n g  d a t u m .

Let us  reg is ter  th e  f u n d a m e n t a l  s t r u c t u r e  of b oth  st age s  of

optim i~~-t tion with the helç ct cosmcn/generai/tota l symbolic formulas.

“Symbolic ” we them cal l because in t h e m  w i l i  t i g u ~~v t h e  f un c t i c n s

a r g u m e n t s  of wh ich w i l l  he not  t h e  n u m b e r s, w h i l e  “states ” and the

“controls”, each of which in the genera l case is c har a c t e r i z e d  not by

cne number , but by the who le  set of n u m b e r s  or ty tunction.

Let us introd uce some designations. Let us agree to designate

W~ S) (3.3)

the  condi t iona l o p t i m um  gain , obta ined at al l  s ub s e ’j u e n t

st ep/pitches, beginning with the i—th and to e n d ;  i t  i t  is reached at

cptimuw contro l at all these step/pitches and it is equal to the

m a x i m u m  g a i n  w h i c h  can be ob t a i n e d  at  al l  t L ~ese s tep /p i t c h e s

together, if at their beginning system is in state S. Briefly we will

call value W1(S) conditional optimum gain.

L e t us agree to also des i gnat e

u,(S) (3.4)

the conditiona l optimum control at the i stt.p /p i t ch , whic h, together
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w i t h  o p t i m u m  control  a t  a l l  subsequen t  ste~ /p it cLi ~ s, conver t s  gain at

all remaining step/pitches, beg inn ing  w i th  d a t u m , in to  m a x i m u m . More

s h o r t l y  let us call control u,(S) of conditicual c~ timum control.

Page 13H .

Let u s  assign the mission : to d e t er m in e  f u n c t i o n s  ~~~ and u, (S) ,

i.e., cond itional optimum gain and conditiona l optimum control , for

all step/p itches (i = 1, 2, ... , m).

Let us consiler the i step/pitch of cciktrol process. As a result

of i — 1 previous step,’~ itcbes system arrived into state 5, and we

was selected some control U~ at the i step/pitch . If we it use,

then , firs t of all , we will obtain at a given i—t n step/pitch some

gain w~; it depend s both on the state of system S and on t he  used

control U,:

w, ~~w,(S, U1). (3.5)

Furthermore, we will obtain some gai n at all remaining

step/pitches. With respect to the principle ot optimum character, let

us consider that it is maxiuum. In order to find this gain , we mus t

know the state of the  sys tem bet ore  the  f o l l o w i n g ,  (i + 1 ) — St

s tep/pi tch.  Under the effect of control U 4 at the i step/pitc h, the

system fro m state S (in which it was before this step/pitch) will

pa ss into some new state SI. This  new s ta te  w i l l  depend , f u r t h e r m o r e,
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cm t h e  pre vious state S and t he  used ccn t rol  U,:

S’ — ç , (S. U,). (3.6)
L.t us register the gain which we dill obta i:i at all

s tep/p i t ch es , b e g i n n in g  w i t h  t h e  i — t h , if a t  t h e  i. step/pi tch it will

be u~;ed a n y  ( g e n e r a l l y  s p ea k i n g ,  not  o p t i m u m )  ccnt r o l  U ,, but on all

t o l l ow in g  (from (i + 1 )—st  to the  m — t h  o p t i m u m  control. This gain

will be equa l to gain m , at t h i s , i — t h  st ew/ p itch , p lus  c o n d i t i o n a l

optimum gain at all subsequent ~;tep/pi’~ches, L t g i l L n i n g  with (i +

1)—st determined for th e new state of system S’ ; let us ~tesignate

this “st~mioptimua ” gain through t(S 1/,):

t,(S, U ,) ’~ w4 (S , U ,) + W, + i (S ’) ,

or , t a k i n g  into accoun t ( 3 . 6 ) ,

W, (S, U,) —w, (S, U,) + W~., (~, (S, U,)). (3.7)

Mow , in accordance wi th  the  pri nc i pl e of optimum charac ter, we

mu st  selec t such c o n t r o l  IJ , =u ,, d u r i n g  which value (3.7) is ma x i m u m

and it rea ches th. values:
W, ~~ — max 1w, (5, U,) ÷ ~~~ ~~~~ 

(S~ U,))) .

The contro l

U, —u , ( S),

at which this maxi m um is reached, and there is conditionil optimum

control at the i s t ep/p i t ch , but  v a l u e  i tself (3. d) — a ~ o nt 1 it i o n al

o p t i m u m  g a i n  ( a t  a ll .  s tep/p it ches , beginning with t h e  i — t h  and to

e n d ) .
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in  egu a t i o n  (3. 8) of f unc t ion  w,(S, U,) and p,(S, (1,) ar e  k n o w n .

U n k n o w ns remain  f u n c t i o n s  W,~S) and W,~1( S) ; o~ the .  the  f i r s t  is

exiressed as the second.

Page 139.

Formula (3.8) represents by itself the so—called funlamental

tuncticnal equation or dynamic programniny ; it ma kes it possible to

determine function W,~S) , if is krown follo w ing a ft ~~i. it iii orde r

f u n c t i o n  W’,~1(S).

As concerns f unction w,~(S) ( C o n di t i o n a l  o p t i m u m  g a i n  a t

last/latter step/pitch) • it can be determin ed v e r y  s imp l y .  I t  is

real/actual, after last/latter step/pitch there is no othm r , and it

is necessary to simply convert into maximum gain at  t h e  l a s t/ l a t t e r

step/pitch:
W,,~ (S) max (it ,, (S. U,,)) . (3.9)

Maximum in formula (3.9) is taken not cn au pcs~ible controls U,, at

the in step/pitch, but only cn those w h i c h  g iv e  sys t em in to  the

assijne.1 domain of fina l  states ~~ i .e. ,  on those for which

c,,, (S. U,,,) € .~~
.,.

T h i s  a l w a y s  mus t  be ked in mind with the use of formula (3.9).

The co ntrol U,,, muM(S), at w h i c h  is r e a c h e d  t h e  m a x i m u m  of gain
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(3.~ ) , a r~1 is conlitional optimum cont vol ~t l ast / l a t t e r  s t e p/p i t c h .

Now it is possible, one a f t e r  a n o t her , t o  c o n s t r u c t  en t i r e

chain/net work of conditional op tim um ccntrcis. it is real./actual ,

k r c w i n g VM(S). possible, cn common/general/t otal fur~ ula (i. 8),

se t/ assuming  in it i + 1 = 
~~, to f i n d  tuaction WM_,(S) and

corresponding conditional opt im um ccntrcl W’,, ,(S)  then u ,,_,(S) and

u ,,,....3(S); and so on , up to t h e  l a t t e r  f r o m  t h e  e nd  ( t h e  f i rst )  ot the

step/pitch , for which will he f o un d  t u n c t i o n s  ~ , ( S )  and  u~ (S) .

Function W 1(S) is conditional op timum gain ~OL e n t i re  op .3rat ion ,

i.e., all step/pit ches , beginn ing with the rir~ t an~ to the latter

( i f  t h e  f i rst  s tep/p it c h  begi n s f r o m  t h e  sp t c i f ic  ~~ at e  S of syste m

S) .

T h u s , p r e l i m i n a r y  o p t i m i za t i o n  is f i n i s h e d  — are found

co nd i t i o na l  optimum gain and conditional o~ ti rn u w control for each

s t e p/p i t c h .

Let us now pass to the second stage ot o~~timizati3n — tinning

the unconditional (final) optimum control

u —(is1, is1. ... , is,, ).

Let us begin in t he  f i r s t  s tep/p i tch . Let us assume t h a t  the

initial ~;tat e S0 to us is ccmp letely krcwn. Let us substitute this

state S 0 i n t o  f o r m u l a  f o r  the  c o nd it i o na l  o~~t i n i u m  g a i n  W 1 ( S ) .  We will
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o b t a i n

V ~~V1(S,). (3 1O~

O~.t i m u m  control on the  f i r s t  s tep/p i t ch  w i l l  be locat ed

s i m u l t a n e o us ly  wit h ( 3 . 10 ) :

u1 -u~(S,) .

F u r t h e r , k n o w i n g  th e  imit ial st ite S o ~n d  Cont r o l  u 1, we can

rind s t a te  s~ of system atter the first  st e~/ pi t c te :

S1’.’.%($~,,M.J. (3.11)

P ag ’  114 i).

i ’t n o w i n g  t h i s  St~~~t~~ S~~, it  is pos sib le  to  r i n d  o p t i m u m  c o n t r o l  on

the’  s.~conJ step/pt tch U~ U~ (
~~
‘) , t h e n  S~ = b z 3~~, u ? )  and so forth.

‘th us , go ing  over the chain/net work

s,_.
~~(s,) -.s; -.u,( s;) -. ... -..s~

_ 
~~~~~~~~~~~~~ (3. 12)

we b.t us determine , one in other , all step optimum controls let us

find the consisting of theu optimum ccntro l ot  c p ’r t t i o n  as  a w h o l e

u— (a1, a1. ..., a,,,),
dfld ilso (if it  was not in a ccur a cy assiq ne~ p r e v i o u s l y )  t h e  f ina .l

stat~’ of the system:

(3.13)

I t  goes wit h ou t s ay i n g  t h a t  t h i s  sta~~ w i l l  ~.e l on g  to d o m a i n

&.. b.caus e we chose c o n t r o l  at last/latte t step/pi tch precisely so

that this cond ition would be obser ved:

S, — ç(S~ .., u.,) €~~..

L -
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Let u s  assume now t h a t  t h e  i n i t i a l  st a te  ot s y s t e m  is k n o w n  to

us n~~t com p le te ly ,  but it is only limited b~ t ii € c o n d i t ian :

S.ES,.
The n it is n 2c essary  to f i nd  such ( o p t i m u m )  ~.i i t i al  s t a t e  S~ , in

wh icu conditional optimu, gain rot all the step/pitches is maximum :

= max (V 1 (S)) . (3.14)
S ~~~.

The initial state S,~, for which this maxi m um is r e a c h e d , and

mu st bE - selected as i n i t i a l .  F u r th e r  o p t i m u m  c cn tr o l  is con s t ru c t e d

in exactly the same way, as before on the cnain/ne twork:

s;— . u, (s;)_ ; ~~~~~~~~~~~~~~~~~~~~ (3.15)

that also gives optimum contrcl of operation as a whole:

and t he final state of systeaS = S,, if it w a s  not p r e v iou sl y

con’p I.etely determined.

On this , the process of optimization it is finished.

I n  t h i s  p a r aj r a p h  we used the  system o~ t h e  sy mb o l i c  f o r m u l a s

which, it goes without say ing, are u n s u i t a b l e  f c r  d i r e c t  c a l c u l a t i o n

cn t h e m :  i n  these f o r m u l a s  is not s h o w n  not  o n l y

concrete/ s pec i f i c/ ac tua l  the  tor n of th e  f u n c t i c n  ~ 1(S. ~~ and q, (S , U 1),

but even and thosis arguments S and 
~~

‘
, 

— n u m b e r , vectors, or

A l A
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Ne v.~r th e l~~s5, the  s yst em  of s y m b o l ic f o r m u l a ;  is v e r y  u s o f u l  f o r

o r g a n i z i n g  t h e  p rocedure  of d y n a m i c  p r c y r  n i u j  D u l i n g  t n e  so lu t ion

cf a n y  p r oble m of d y n a m i c  p r o g r a m m i n g ,  it is ccn v .~~ ient  to  a d h e r e  to

O f l e e  of t h e  f o rev e r  e s t a b l i s h e d/ i n s t a l l e d, stand a~..d o rie r  of actions.

T h i s  c rder  can be e st ab l i sh ~~in s ta l l e d , fo r  e~x .a n~~Ie , in t h i s  f orm .

1. To select m e t h o d  ot descr iI’ine .j ~.r oc~ ss , i.e. , p ar a  mete rs ,

w h i c h cha r a ct e r iz ?  s t a t e  of s y s tem , p h a s e  sj.ace ~~u method of

a r t i c u l l t i on  of o p e ra t i c n  tc “ s t e j~~p i t c he s” .

2 . To register gain on i ste~
) / p i t C h  de~ c g ~t 1inj  ~5 st at e  of sy s t em

5 in t~ e beginnin~ of this step/pitch and ce~ntrcl U,:

is’, — w ,(S, U,).

3. To registar for i step/pitch funct ion , w~~~ch expresses cha nge

in st a t e  of system f r o m  S toward  5’ under  t i e  e r t e c t  of control U,:

S’—,,(S,U,).

4 •  To register fundamental functicna l o~ uatiJn (4.8), wh i c h

cx p re ,s~es fumc ti o~ W ,(S) through ~~,~1(S):

W , ( S) — mix ., (S, V,J+ V~+, (ç, (S. 1J~))). (3.16)

5. To f i n d  f u n c t i o n  V M(S) ( cond i t i ona l u p t i I r u u ~ gai n) f o r
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la~~t ; 1 at t~~r 1i~ wp/pi tc Ai :

W ,,( S) — max (w,,,(S, U ,,)) (3.17)

( . n I x i m u m  i s  taken only ~~~n those controls w h i c h  g i v e  sy ~~t~~a i n t c

a s s i g n ci  d o m d i u  of f i n a l  r t d t e s  
~~ 

and c o L L ~~~~cn i i ~~-~ to i t

co r n i i t i o r~i~ o p t i m u m  c o n t r o l  at l a s t/ l a tt e r  ~ te~~/ ~~1t c t :

6. Knowing U” (S) and using equat ion (3.lb) with

concrete/s pecific/actual term o~ the fur .ction w,(S , U,) , ç,(S , U ,) , to f i n d

- - one ~ehind another function

W.._ ,(S). W,~_ , (S) , ...,W1(S) I 
-

a n d  c o r r e s p on d in g  to them conditional o~tipum ccutrols :

u~,_ , (S) , u,,~~ (S) , ..., u1(S).

7 . ~t i n i t ia l  s t a te  S~ is assigned , to find -)~. ti1nun ga i n

= r 1(s .) ani further unconditional o~ t iwum co n t r o L s  (a nd , if i t

is must , final state S..) on chain/ netwcrk :

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

Pag e  ~~~~

~~. I f  i n i t i al .  st at e  S~ a s s ign ed , ~ut it is o~~1v l im i t e d  b y

c o n d it  ion

t o f i n d  o p t i m u m  in i t i a l  s t a t e  Se’, ~y w h i c 1~ g a in ,  ~~ (S)  r eaches

. a x i m u m  W,,_,—max (V1 (S))

- ~~~~~~~~--



DOt. = 7dO ~. 3 7 O 7 
~~~~~~~~~~ 307

and f u t ~~t e t , on c h a i n/ n e t w o r k , u n c o n d j tj o n a ~ o~~ t L ~iium c o nt r o l s .

S u i se j u en t l y,  sol v i n y  d i f t ~ rent prcb lctu s ci ~1 na:nic p r o g r a m m i ng,

we w i l l  a d h e r e  to t h i s  ~.eguen ce  of a c t ion s .

I r. conc lu s ion  let us note  ~ul l o w i n g .  Is j~ iscip le t ac  process of

dyna~’ic projramn iny can be rui up /turned (althcu ya not so it is

loy i ca l)  , also , in t he  d ir ec t i o n , opposi t e to t h a t  w u i c u  w e  took :

con ditional optimum controls car be found out in lirecti n from t h e

f ir ~;t s t E - i / p i t c h t o w a r d  t h e  l a t t er , b u t  u n c o n c i t i o n a l  — f r o m  th e

l a t te r  t o w a r d  the  f i r s t .  For  e x a m p l e , in t h c  tO ~~r~ t t h e  g a i n  of

a l t j t u 1~ a~~1 v e l o c ity  w h i c h  we c o ns i d er c - d  ii the ~~ ev iou s  p a r a g r a p h ,

rot...nJ interferes wi th u5 to construct process n ot  f r o m  r i g ht uppe r

angle to lower lef t, but on t h e  c o n t r ar y ,  an d  r e su l t  in  t h i s  case

will be ob tained t h e  same.  Th i s  is r e lat e d to a n y  tas k of m u l t i s t a g e

yl ifiny/planning . It  is possible tc  f ir s t  p l a n/ q l i s~ t h e  f i r s t

st e p/p i tch , when  i t  w i l l  (j ive S y s t e m  j n t o  st at e  ~~~, t h en  t h e  second ,

so as to g a i n  f o r  t w o  f i r s t  of s t e p/p i t c h  (the ti:st — a lr e a d y

o p t i m i z e d )  woul d  be maxim um , anü so f o r t h .  A f t * : r a l l  c o n d i t i o n a l

opti m um cont rols and the corre5panding q ai n .~ t h e y  w i l l  uo k n o w n , it

is possible to find unconditional o p t i m u m  c on tr c i s  on all

s tep/pi tches .  C o m p u t a t i o n a l l y  th i s  d i a g r a m n o t  d h it  t h a n  not worse

I— 
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p r o~~os€d above , but in the senst~ of ccrveni e nc~ I S t n e  p r a s e n tat i o n

a n d  u n l i e r s t an d i n y  is i n f e r i o r  to i t .  ‘[k ’c r e f w~c ~e e v e r y w n e r e  will

ad -r e  to t h e  d i a g r a m  o u t l i n e d  ebov e : c cn u i t i c ’~~a i  ~ p t i m u s  c o n t r o l s

a L  l o cat e d  in r eve r se  o r d er ,  f r o m  l~~s t, l at t e r ~tc j/ p it c r i  t o w a r d  t he

~irs1 , ind uncondi tionil — in ujrect/stlalgnt c r i ~t, f i o : n  t h e  f i r s t

ste~~/~~L t c h  t o w a r d  t h e  l a t t e r .

~ . Tas~ s ~ f d i s t r i bu t i n - ~ t h e  r e sou rce/ i if e ti~iic~:.

I n  p r ac t i ce  v e r y  f r e q u e n t l y  i r e  e n c o u n t e : L d  t h e  m u l t i s t a g e

op c r a t .~w.s , connec ted  w i t h  t h e  r e a son a L le i i st r i L u t i o r ,  of one or the

ct h e :  r~-~~;o u rc e/ l i f et im e s . s p c E c n  can  y c , t OL e x a ~~~l ? , a b ou t  t he

d i s t ri ~’ i t i o n  of m o n e y  r escurces , r a w  m a t e r ia l , Wort~ toi~~ in

t n t , r p r i s e s, t h e  b r a n c h e s  of i n d u s t r y  or t n .~ s 4 a j e s  of s op ar a t e  works

or , i~-~t us •~ay ,  t h a t  ab c u t  t he  Ii strib itic n of pr jectiles acco rd ing

to  tar. t/purposes , tne total wcijht G, div er$~~d to technica l

equipment/device, according to its separate a J I ~r~~J a t e / u ni t s , and so

t o t t . h — ge nerally, about the distribut icn or all ~ossibla resources

acco rding  to some c a t ego r i e s  of m e a s u r e s .

Let us beg in w i t h  most id le  t i m e  of t h t ~ “ cI t 5 si c a l”  t a s k  of

d i s t r i b u t i ng  t h e  r e s o u r c e, l i f e t im e s , on w h i ch  it is ea s y  it will be

to d e in c n st  rate the special feature/peculiarIt y ct similar tasks.
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Task is place d as follows.

There is the specific initial quantity of resources  K 0 ( i t  is

not necessarily in money form) , which we mus t distribute during m of

the years between two branches of p roduc t ion I a n d  II.

Page 143.

The resources ,  in s e r t ed  i n t o  each b r a n c h , y i e l d  io: y e a r  t h e  speci f ic

i n c o m e , d ep e n d i n g  on t h e  v c lu m e  of i n s er t i c n s. If we is p u t  resource

X i n t o  bra nc h 1, t h e n  f o r  yea r  we wi l l  c b t ain  t h e  income, equa l f(X) ;

in t h i s  ca se , the i n se r t ed  resources p a r t i a l ly ~r e  r educed  ( t h e y  are

amortized, they a r e  e x p e n d e d ) , so t h a t  t o w a r d  the  end of the year

from them remains some part:

ç(X) <X.

It is analog3us, resources T, inserted intc branch II , yield for

year income g(Y) and are reduced tc

At te r  a year , w h i c h  r em a i n e d fr o m  K0 resource  a n e w  are

distributed betwee n branches I a n d  11. New rescurces  do n o t  en- er

¶ f r o m  w I t h o u t , and in to  product ion are packeu all the remaining in the

presen ce resources ; inccme intc produc t ion is n ct  packed , but  i t  is

accumulated separately. It is required to tind tu i s  method of control

of r e source/ l i f e t imes  ( w h i c h  resources , i n  w h i ch  years and into wh ich

d
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L r a n c h  t o  1)ack , by w h i c h  to ta l inccm e  f r o m  b o t h  o r an c h e s  f o r  m of

year.~ will be maxi m um.

Let us solve problem the method of dynamic programm ing ,

accord m y  to t he  e x p a n d € d ~ scanneJ  above standard Iiayram.

1. syst em S in this case — t w o  k r an ch e s  w i t h  in se rt a d  in th em

resource s, I t  is c h a r a c t er i z e d  by two  I a r a I n e t ~~r s X and Y, whic h

ex p r e s s  q u a n t i t i e s  of resources  in braiiche5 I and L I  respectively.

The n a t u r a l  “s te p / p it c h”  ( b y  s t a g e )  ot Frocess is fi s c a l  yea r .  D u r i n g

t h e  c c r t~~~~ process of v a l u e  X and  Y , t }~ey v a r y  i ep en d in g  on t w o

reason~;:

— r ed i s t r i bu t ion of the resources betwee n Lranches in the

beginnin g of each year;

— decrease ( e x p e n d i t u r e )  of resources ror year, wni~ h manifests

itself at the end of each year.

Control (J~ •t th e i Step/ ~ i t ch  w i l l  L~ t h~.. lu a nt i t i e s  of

resources X 1, V1. packed in tranc h I a n d  I I  a t  t h i s  ~.tt p / pj t Ch .  C o n t r o l

of operation U con sists of the Set of all step controls:

LI (Us, V~, ..., (4.1)

We should find this (optisum) control

1~~
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14 (U1, u1, ..., M1,J, (4.2)

j ~jtb which the total income , yielded by bot L braitches iii in of years
m

was m a x i m u m :

(4.3)

2 .  State of system before i step/pitch is characterized by one

paramet .~r K — by quantity of resources , w h i c h  ~ € L ~.J pre served after

pr e v i o u s  i — 1 ste p/p i tches.

page 144 .

Co n t r o l  U1 at the  i st e p/p i t c h  wil l  consist i n  r u e  t ac t  t h at  we wi l l

isolate into branc h I of resource X1; value Y 1 w i l l  be dete rmined

automatically; it will be equal to the remaining resources:

Y,~~ K — X ,.

Gain (incose) at the i step/p itch w i l l  be:

u’, (K, X~) —! (X,) +g (K—X,). (4.4)

3. tI nder th e effect  of this  control at  I ste p/pitch , system w i l l

pa r- s f r o m state K into Etate

~45)

4. Ma in f unct ional cont r ol takes fo r m :

~ .(K)~ mix 
~~~ 
(X,)+g(K — X1)+

÷ ~*“ + ; (c(X , + * ( K — X j~~ . (4.6~

where  sign 0~~~~X~~~~~ A designates , t h a t  m a x i m u m  i~; t a ,~,n  on a l l

L
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n o n n e g a t i v e  inse r t ions  X1, w h ich do not exc~&d available stock of

resources K.

Condi tiosal optimum control at i stepjpitch x~(~() will be that of

the values X1, with w h i c h  express ion  in t h e  c u r l y  braces i t  reaches

maximu m .

5. C o n d i t i o n a l o p t i m u m  ga i n  a t  l a s t/ l a t ter  s t ep /p i tch  wil l be
W

~~ (K) — max (F (X,,) +g (K ..._X_)); (4.7)
OI~X1~~1(

to it corresponds conditional optimum coutrol xM(K), by whic h this

m a x i m u m  is reached .

6. Knowing function ~‘ (K), we f i n d  t h r o u g h f c r i u u l a  ( 4 . 6 )

cor~ditiona. 1 optimum gains on two latter, o~ t h r t ~, latter and so forth

step/p itches:

W~,_1 (K) — mix

÷W~ (c (X,,~ . 1)  + ~ (I ( — Xm_ i)));

max
(4 8)

Wa (K) m *X ( F ( X ~) + g ( K X ~) + 

an d corresponding to them conditional optimum controls:

~~~ (IC), x,,_,(K), ... , :2(K). (4.9)
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Page 1145.

7. I n i t i a l  s t a te  ic~ ( i n i t i a l  su p p ly  of r e scu rces )  is assigned ;

t h er e fo re  m a x i m u m  income (optimu . g a i n )  w i l l  L

— W, (K ,).

Optimum control at the first Step/pitch wilt be:

z, ~~x,(K ,).

State of system after the first step/pitch ;

O p t i m u m  cont ro l  a t  the  second s t ep/p i t c h :

and so forth on chain/network . State of system arter i of the

step/p itches:

K ...,(x 1) +* (K ._ i — x i). (4.10)

Op timum control at the l step/pitch:

.
~~~ 

(K;_ 
~)

and so forth , up to last/latter step/p itch , on th e  c h a i n / n e t w o r k :

K,—. x1(K ,)-’ K;-.x,~~~~~~~-.... —~~~~~~~~i
_i.:m (K~~

_i)_ ..K~~.

Value 
~~~~~ will represent by itself a quantity of resources,

which remained (during o p t i m u m  ccntrol ) afte r la5t/latter step/pitch.

The set of the resources, inserted on years into nranch I:

w i l l  repre sent by i tself the o p t i m u m  ccn t roi  a l o ng  w it h  w h i c h has

sense to consider

y — (ui , k,~ 
..., ij,,,) — (K,— x~, K~—x,, ..., K

,._. p
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— a ~j u a n t i t y  of resources, inserted into br dnch II on years.

Let us give to the process of distributi ny t~ ie

H resource/lifetimes geometric inter pretation. From the considerations

of clarit y, let us do phase  space t w o — d i m e n s i o n a l , a lt h o u g h  it was

possihle to be bounded one—dimensional Let us p lo t/ deposi t  a long  the

•1 axis ox of resource x , packed in to  b ranch  I , alcn~j t he  axis OY —

resource Y, packel into branch Ii. The sum oi these resources cannot

be more th an a quantit y of the initial rescurces K0; therefore phase

space — this the part of plane xOy , included within the isosce les

right tria ng le LOB wi th legs K 0 (Fig. 3.17).

Since in the beginning ox t h e  proces s of d i st r i b u t ion  the  sum of

resources of both branches is equa l to K 0, th e  d o m a i n  of the initial

states ~~ is nothing else but the hypotenuse ox triangle AB. To a

quan tity of resources at the end of petiod u~ oz the years of no

li m i t a t i on s, besides 0~~ X .+ Y ~<I( ,. it is su p e r i u i posed: t h e r e f o r e

do main  ~~ the f i n a l  states of system is e n tir e  t r i a n g l e  A~~B (besides

hypotenuse).

_ _ _ _  ~~~14
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Page 1~~6. P
i

It is represented the tr4 )ectcry cf pcint S in phase space (fig.

3. 18) —

tet us visual ize t h a t  in the E eg inn i n g  of each year occurs the

distr ib u ticn (or r ed i s t r ib u t i cn )  of means according to ora nc he s, and

during yea r the inser ted means  are e x pen d e d  a n d  is formed income.

Then each componen t / l ink  of the t rajectcr y of point S of phase space

wi]]. ccnsist of two half—sections: on the tirst occurs only the

redistribution of means and po int S it is moved in parallel ~r, on
the second — means they are expended and p cint  S steps d o wn and to

the left, it is nearer at the beginnin g of coordinates. Exception is

only first step/pitch, for which the first half—section is absent:

i.iediately they a re  assigned X 1, Y 1, and t e g i n s  the  e x p e n d i t u r e  of

peals. The sea of abscissa and ordinate  of Last /ta tt er point in the

trajectory S. rsp resents b)  itself a q u a n t i t y of means ,ç~, which it

will be ptes.cv.d toward the end of the period d icing this control .

11, ~



-I—- 
~~~~~~~~~~~~~~

DOC = 78068708 P A G E  3~pt,
5. Example of the solut ion of the problem of d i s t r i b u t i n g  the

resource / lifetimes .

Examp le. Plan/glides tFe activity cf two branches of prod uction

I and II per iod t3 5 years (in = 5) Ar e assigned to the ‘f  unction ci

income ” :
f ( X ) ~~1—r 1; gfl— l—e~~

and the “fnact ious of expenditu r e ” :

ç (X) ~~0,76 X; ~ (%“) ~ O.3Y.

I t is reqeir.d to distribute the avai lable means in

size/dimension K 0 = 2 ( a rb i t r a ry  uni ts)  between branches I and II on

years, on the basis Of maximum conditict of income.

Solut ion. In accordance with the ccmaon/general/tota l diagran ,

given in §L1, we ob tain:

1. As in p. 1 common/general/tcta l aiagraa.

014
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H

0 D X  x .à~,

Pig. 3. 17.

— L
• Page 147 .

2. Gain at i step/pitch:

w1(K , X,)— I —e~~E+ I 
_c_t _X1)_ 2 _(e X 1 4.e_t _ X

~~).

3. ønde r th. effect of control x, (insertion of means x1 into

bra nch I , •~YL Y — J ( — X  into br an ch TI) syst em at i step /p itch iii].

pass from state i in

K’ — O,7SX~+ O,3(K—X 1).

1$. Fundamenta l funct ional  equation :

W 4 (K) — max 12 -— [e_x 1+e
_
~

( .A ~)1 +
o~~X,~~I(

(o,75X1+o,3(K—X~
)).

Conditional o p tj mu , control at the i step/pxtch — t h at at which

• is reached this maximum.

I
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5. Conditional optimum gain at last step/ p itch:

W1Q()~~ max

— max

Let us find t his m aximu m .

With  f ixed/ recorded K the expr essicn , w h i c h  stand s in the curly

braces, there is the  tunc t icn  of a rgum e nt  X~ , ccnvex upward.

Eepenchng on the va lue  of K the m a x i m u m  of this fu nction can be

re ached either wi th in  cu t t ing  of f  (0 , K ) (Fig.  3.19) , or a t  his lef t

end (P ig .  3 .20) .

In or der to f ind  this m a x i m u m , let us d i f fe ren t i a te  the

expression

.1(K, ~~~~~~~~~~~~~~~~~~

with fixed /recorde d IC o i  X~ and will  mak e deri ved equal to zerc

~~L ~~~~~, _i iIc—x .~..Q. (5.1)

H

-~~~~~~~~~~~~~
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O n the  datum ( f i f t h  s t e p/p i t c h  to as stil l  be m an a g e d  to solve

equat ion (5. 1) in l i t e r a l  f o r m ;  at further step/pitches such problems

it is nece ssary t3 solve nu m er ica l ly ( g r a p h i c a l ly ) , From (5. 1) we

have:
—X 5 = In 2—2K 4- 2X,; (5.2)

X1=(2K—1n 2)/3. (5.3)

~~nc. it follows t hat i f  K > ( l n  ~)j 2  ~~~O . 3 t 4 7 , the n maxi m u m is reache d

within cut ting off (0, K) at point x 5 ( K )  = (2K — 1n2) / 3 , but if K (

(in 2 J / 2  % 0.347, then maxi sum is reached at the  end of t he segment:

x~(K)=0.

Thus , conditio na l opt imum control  cn last ,latter (the f i f t h )

step/pitch is found: if we approache d this step/pitch with the supply

• of means IC > (in 2)/2, then from these means one should isolate into
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branch I portion/fraction (5.3); but if we apprcached the fifth

step/pitch with a supply  ot means iess than (1n2) /2, then all these

means it is necessary to return into branch 11. As to be, if we do

ap~proach the fifth step/pitch with the ~Upp1y of means, in accuracy

equa l to (ln 2)/2? It is obvious, in this case both controls indicate

one and the  same , n a m e l y :  t c  select nears  i n to  branch I not  is

necessary. Let us register the obtained conuiticnai optimum contro l

on the fif th step/pitch in the form of the tormula

I 0 K~~ (In2)/2,

~~
1
~~~~t (2K—I n2)f3 n~ I K>( 1n 2)/2. (5.4)

• 1.y: (1 ) . with.

Let us f i n d  now co nd i t i c n a l  o p t i m u m  g a i n  ( inco m e)  on the  f i f t h

st ep/pitch whic h w i l l  be obtained during this ccntro l:

or , su bstituting here C Z ptC5 5 i Of l s  (5. 1$) :

I —e—” n~n K~~(In 2)/2,

ws( IO hhhl
t 

2_~~~Te T n~~ K > ( 1n 2)/2.

ICe;: (1) . with.

Since for  us subsequen tly it is necessary to compute value ~5 (K)

for the diff erent values of ar gumen t, let us ccnstruct its gra ph

• depending on K (Fig.  3 . 2 1 ) .
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On the same ;rap h , but on other scale, it is represented

dependence on K of the conditiona l optimum control x5(K). The second

curve represents by itself troken line which tc K = (ln/2)/2 goes

alon g the axis  of abscissas, and a f t e r  t h i s  p o i n t  it grows  l i n e a r l y .

W i t h  the cons t ruc t ion  ot th is  g r a p h  a re  f in ished  all, proced ures ,

connected wi th  the o p t im i z a t i o n of l a s t/ l a t t e r  step/pitch.

6. We pass to p e n u l t im a t e  ( t h e  f o u r t h )  s tep/pi tc h. The proble m

of its condi t ional  o p t i m i z a t i o n  let us solve n u m e r i c a l l y ,  being

assigned by a series of va lues  K ( q u a n t i t y  of means , t h a t  r ema i n ed

after  the third step/pitch) .

In order not to make  unnecessary w o r k , let us explain tha t w i t h i n

which l imits can be located K. Let us f i n d  larges t of the possible

values of K.

Page 149.

It viii be ob ta inad , if at the f i rs t  three step/pitches all means

will be enclosed i n  b ranch  I , where  t he  e xp e n d i t u r e  are m i n i m u m ;  t hen

after three years we obta in:

The small val ue K will be obt ained, if at the first three
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step/pitches all means will be inves ted  in Lr an ch  LI:

= K 0,3~—0,054.

O n section 0. 05 14—0 .811 L4 , are included all the  possible va lues  K.

Let us assign on t h i s  sec t ion  s e v er a l  r e f e r e n ce  values  of h : K =

0. 1; 0. 2 ; 0.3 ; 0. L~ ; 0.5;  0.t~; 0 .7;  0 .8 and fo r  cacti of t h e m  let us

f i n d  c o n d i t i o n a l  o~~t i w u w  c c n t r ol  on th e  f o ur t h  s tep/pi tch x , (K)  and

condit iona l m a x i m u m  i n c o me  cn two  last j la t t e r step/pitches W , ( K ) .  For

th i s , let us cons t ruc t  t h e  ser ies ot c u r v es , t h a t  represent

“semioptimum ” gain W 4 a t  t wo las t/ l a t t e r step/pi tches ( d u r i n g  a n y

control at the fou r t h  s tep/p i tch and w i t h  cp tiaum — on the f i f t h ) :
d~4 (K , X ,) =w 4 (K , X .) + W~(0,75X4+0,3 (K—X4)).

where first term w4(K, X.)=2_Ie_ i.+e_2(~
(
~
.X .I, and  second tern W 5 is

determined fro. the  cu rve/ g rap h of F ig .  5 .3 , f or wh ich  it is

necessary to enter into it ins tead  of K w i t h  a r g u m e n t  K ’ = O .75X, +

0.3(K—I,).

The curves of dependences W 4 cn X 4 (iuith assigned K) for the

sixth step/pitch are represented in Fi g. 3.22.

Let us f i n d  on each of the curves point with maximu m ordinate

and will mar k it by sm all circle. The crdinate of this poin t

re presents by i tself  c o n d i t i o n a l  m a x i m u m  i ncome  at two la s t/ l a t t e r

step/pitches W , (K) , and  abscissa — condit i cnal  op t imu m cont rol  x , ( K ) .

After determining these values for each v a l u e  of K = 0.1; 0.2;

...; 0.8, 1.t us construct the gr ap h/diagcau of depead .nc.s W , ( K )

and x , ( K )  for th. fourth step/pitch (Fi g .  3 . 23 ) .
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xs r ws

01 
0,6 

, / 48 ~~~~~~~~~ O,*L’~c 
~~~~~~~ /

42 ,/
D D 42 4* 46 if 

__________

o o ,z 4 *0,6 z.

Pig. 3.21. F;3. 3.~.a...

I
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Further we pass to the optiwizatjcn of the  th i rd  step/pitch. For
it the pos sible va lues K are within the limits from 2.0.32 = 0.18 to

2.0.752 1.12. Let us again  assign a ser ies of reference values K: K
0.3; 0.5; 0.7; 0.9; 1.1 and for each cf them let, us compute income

on the third step/pitch dep ending on K and contro ls X 2 :
w, (K , X1) ~2 — fr, X. 

~~~~~~ 
(~~ X1)~

Then let us ad jo in  to it the already op t imized  income at two

last/latter step/pitches w 4,, which we will determine according to the

cu rve/graph of Fig . 3.21 , entering in it instead of K b y argu m ent K ’
= 0.75x 3 + 0 .3 ( K— X 3) ,  and we w i ll obta in  “ seaicptiaum ” ga in  a t  three
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last/ lat ter  s tep/pi tches ( d u r i n g  o p t i m u m  cont r o l  on t w o  l a t t e r  and

a n y  contro l — at the third step/pitch) ~~ (K , X3) = w 3 (K , X 3) + V 4

(0.75K 3 + 0 .3  (K - X 3 ) ) .

For this function let us again const ruct the graph/diagra ms of

dependences 
~
‘
~J 

on X 3 w i t h  f i x e d/ r e c o r ded  K . For  each of the curves,

let us again note m a x i m u m  (Fig. 3.2~4). After this let us cons t ruc t  on

one graph (Fi g.  3. 25) two curves : the ccnd i t i ona l  opt imum control

z , (R )  and  the  c o n d i t i on a l  o~~t i m u a g a i n  h 3 ( K ) .

-J~



—
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x.fAi

~~ 
w.Iz,

05

0 0 - 42 4* 0,6 MA ’

Pig. 3.23.

1,0 _~~~~~~.f7,3 4*

b ~* 4. :~ D ~, ~~~~~~~~~~ 
~~~~~~~~~ A:

Pig. 3.2k.
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In perfect au a logy is solved the p rob lem of the o p t i m iz a t i o n  of

th.  second step/pi tch. Are  var ied va lue s  K f r o m  2 .0 .3 = J .6  to 2 .0.75

= 1.5: K = 0.6; 0.9; 1.2; 1.5. Is de te rmined  i ncome a t  the second

etep/pitch :

w, (K , )i~,) — 2 — (e
~~ +

e_I(
~
(_x .)I.
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To it is adjoined the cc n d it i o na l m a x i m u m  income W , ( K ’ ) ,  deter mined

on the  cur ve/graph of Fig .  3.25 w i t h  t l~e entrance

K’ — 0 ,75X,÷0,3(K~~ X,).

Is obtained value ~~?, fo r  whic h ag ain  at e constructed t h ~ gr a p h s

(Fig. 3. 26) .  On each c u r v e d  is f o u n d  t h e  m a x i m u m  and are co n st r u c tt ~d

two curves : X
~ ( K )  and 

~~ 
(K) ( F ig .  3. 11)

It r em a i n e d  t o  o p t i m i z €  one  o n l y  t i rst  s t ep/p i t ch .  rhis —

already more easy p r ob lem , since  the  i n i t i a l  state of system K 0 = 2

to us is k n o w n  and , wh ic h mea n s, t h a t m us t ~ot v a r y  i t s e l f .  T h e r e f o r e

for  t he  f i r s t  s t e p/p i t c h  is cc nst r u c te d  o n l y  one  curve dependence

W 1 ( K 0, X 1) on X 1 w i th  the kr.cwn K 0 (Fig. 3.~~8) ,  wh ere

~ ‘~~( K ,  X1) -‘n (K,. XJ÷W,Q(’)—

~~~
.—, WI (K’).

a last/ lat te r t e r m  is loca ted  t h r ou ~ h t h  cu r v e / g r a p h  ot F ig .  3 .27

upon the entrance into it with argument K’ = J . .15X 1 + 0 . 3 ( K 0 — X ~~~) ,

where K 0 = 2.

Deter m i n i n g  o n  onl y c ur v e d  (see Fig.  3. 2 8)  m a x i m u m , Let us f i n d

th. f ina l (no longer c o n d i t i o n a l )  v a l u €  ot m a x i m u m  income in a l l  of

f ive  years :

sad th• corr spoad inq tc it uecoad Ati osaj, ej ti .u. coatrol at th.
f i rs t step /pitc h:
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1,5 mt w~

_ _ _ _ _  ~,. ~ s ,z *
-4 I ’~f w x ,

Pig. J.26. ~~~~~~~~~~~~~~~~~

.4
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6. After the  process of ccnstruction of conditional op t imum

coptrols and gains is f i n i s h e d , it  is necessa ry  to lead second stage

of optimization, passing, step by step, con trol process f rom f i r s t

step/pitch to latt .c on chain / network:

~~~
-. ~~;-~+ 

~~,
-+ K; —. ~~~~

-+ —~~ x,-.K&.

Kr.ov$~ag *~ • 1.6. we find t)~e su pp ly of means a f te r  t he f i r s t

step/pitch :
~~ ..o,75x~+O,3(Ko—XI)~~

l t32.

After enterin g wi th  this value K iito graph x~~(K ) in F ig.

3. 27 , we f i n d  op t imus  control on the  smco n d step/pitch:

— I ,~Y2.
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The residue / remainder cf means a f t e r  the second step/pitc h wil l

be:
K;_o,75x,+o ,3(K — x,)~~o,86.

~j th thi s value ~~ we enter in graph x 3(K) (see F i g .  3 .25 )  and we

find opt iau. control on the th ir d ste p/p itch
x, — 0,62.

Res id ue/remai nder of means af ter tb. th i rd  step/ pi t ch :
K;_ o ,75x,+o,3(K ;—x s ) — o .54.

Throu gh  the  curve/graph of Fig. 3.23 , we f i n d  o p t i m u m  control  on

the f o u r t h  step/pi tch
r,—O ,30.

Resid ue/rem ai nder of mean s a fter the f o u r t h  step/pitch:

K~—0,75x4 ~ o,3(K;—x 4)~~ o,3o.

wi th this value K; we enter in g r a p h  x 5 ( K )  (see Fig. 3 .21)  and  we

f ind  op t imum contr ol o~ the l a s t/ l a t t er s tep/p i tch  x 5 = 0.

Thus , g l id ing/ planning is f in i shed:  ob tained op t imum cont rol ,

wh ich indicates, h o w  m a n y  acans with their initial supply K 0 = 2 mus t

be packed into bra nch I on years. This cont r ol wi l l  be:

x — (1 ,60; 1 ,02; 0,62; 0,30; O)~

Takin g into a ccount tha t  the ava i l ab l e  mean s  prior to  the

• b.ginoing of each year are known and equa l to:

K,—2 ; K~ — I ,32; ,(;~~o,e6; !(~ .‘O,54; !( — 0 ,30,

we imiediat eip find quantiti es of seams , pecked into b ra nch ii
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th roug h the years:
y (0,40; 0,30; 0,24; 0,24; 0,30).

Thus , it is possible to  f o r m u l a t e  t o l l c w i n g  r e c omm eu d a t i o n s

regard ing the inser t ion of mea n s.

Page 153.

From the av a i lab le  in the b e g i n n i n g  sup~ l y K 0 2 and the renam ing

means at the end of eack~ ye ar, it is necessary to pack on years in

branch I and IL fo l lowing sums:
(1) (.a) ro~

I 5
I I I ,Irl 0.62 0,31) o
II , II 1 , 3 ( 1 11.21 (1,21 0,30

B.y: (1) . Branches . ( 2 ) .  !ear .

D u r i n g  t h i s  d istribution of means in five years, wi l l  be

obtained the  m a x i m u m  income , equa l tc

W .. 4 35

The residue/remainder of means at the end cf the period will bc

equal to: 0.3.0.30 = 0.09.

Figures 3. 29 dep icts o~ t j m u m  traj€ctor~ in the phase space (each

stage , except the f i r s t , is d i v i d e d  intc half—steps).

- - ~~--~~i~
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From the  examined  e x a m p l e  it is e v i d e n t , how complex and tedious

is step—by—step optimization “by h a n d ” , even  fo r  t h e  most e l emen ta ry

problems (only two branches of productions; the simplest “functions

of income” and the “function of expenditure ”) . Under  any  sore comple x

condit ions the deve lopment  ct o p t i m u n  pla n/ layou t  of the  me thod  of

dyna mic pr o g r a m m i n g  is v ir t u a l l y  impossible w i t h o ut  the enl is t ment of

high speed E T sVM .

I

F~ . .3.a.8.
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Pig. 3.29.

Bey: (1). year.
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6. Othe r problems of distributing the resourcejlifetimes.

The problem of distributing the resou rce/lifetimes has many

versions. Some of them comparatively differ little from the simplest

~rob1.m,, e .2amined in §
~ 4 and 5, others are  so dissimilar to it  on

its verbal fo rmula t ion , which  u nt i l  the  next  t i m e  is d i f f i c u l t  to

catch in the.  common/general/total  fea t ures. Here and in fol lowing
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para graph we wil] . g ive several  examples  of ~ isi1ar problems.

1. Distribution of resource/lifetimes in heterogeneous stages.

On the problem , examined in §4, stages were unifor m in the sense

that the “function s of the i~ ccme ” of f (X) , of y ( 1 )  and “the funct ion

of expeaditur. ç(X) ,~~(Y) were i d e n t i c a l  tcr al l  ste p/pitches.  It can

seem that they va r y iron on. step / p i tc h  to the  next , n am e l y  f or the  i

step/pitch they are equ al to:
11 (X), g1(Y) ’1 2• 
ç, (X) , 

~ 
(Y) J (i — . ~ ...~ m).

• In this case th. standard set—u p cf the  sciution of proble m

ba relys change. Basic func t iona l  eguat i cn takes  t ne form

W,(K) — max

+w, +, (,, (X .) +,,(K —X ,))~.

The condition of the optimization of the m step/pit~ tt w i l l  be:
WM ( I ()~~ mix lI..(X.,j +g.(K—X J),

a in all the remai ning procedure of th€ construction of solution it

will  re•ai n constant.

2. Prob le. of the redundancy of res ource / l ife t imes .

There is a tota l of ~~~ branch of p roduct i on  and cer ta in  supply

• of mean s I(~~, which can be packed into producticn not wholly, but

partially to reser ve. I t  at the i ~tep/pitch of produc~i~ n are
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invested means X, then they give income f , ( X )  and are r ed uced to ~1(X).

It is required to r a t i c n a l ly  d i s t r i b u t e  the availa b l e and

re mainin g means on m of step/p itches sc that t h e  to ta l  income fo r  all

r of step/pitches would be maximu m .

Page 155.

It is not d i f f i c u l t  to see that th i s  pr oblem is redu ced to

previous real/actually, the reserved means can be considered inserte d ¶
• into scme f i c t i t i o u s  second b r an c h  w h e r t  t hey  are not expended , but

also do not  jive the  income:

g~(Y)~~0; ~~~~~~~ 
(i~~ I , ..., in).

‘laking in to  accoun t t h i s  cond i t i on  t h e  prok ie in  is solved in exac t l y

the sa.e way just  as p r c b l e m  of d i s t r ib u t i n g  the  r e source/ l i f e t imes

in heterogeneous stages. The geomet r i c  i n t er p r et a t i o n  of problem in

phase spac e is shown on F ig .  3. 30.

Let us consider t he  special. case cf t h e  prcbl em of t he

re dundancy of r esource ,lifetimes , when in aU sta~jes

~ , (X) — 0 (1— 1. ... . in),

i.e. the inserted means are exp end / ccn mu med by pillar (F ig .  3 . 3 1 ) . .

• Si nce mean s are ex pended by pi l l a r , th e n  eac h hcr izontal  tra jec tory

phase reaches the very ax is  of ordinates.

S
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Stat d prob ism is reduced to t in d iqg  of the maximum of fu n c t i cn

m of arg umemts (X1, x, ..., X.J :

‘— I
where Xb X , ..., X,~ are n o n n e g a t i v e  and Limited by the condi t ion:

~~ X,i(J(. (6.1)
i—I

If incoas f 1 (X) (as this logical to assume) represents by itself

the nondec reasing function of the inserted means X, then ine quality

sign in formula (6.1) can be rejec t / t h r o w n , since under these

conditions to expend/consume means not to end is disadvantageous.
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Let us note that some simplest prcblems of the redundancy of

resource/lifetimes admit elementar y soluticn also without the method

of d ynamic programming. To the m belongs, fcr example , ta~ simp lest

case when the •fuact j o n of income” in all stages one and the same:

and means are expend /consum ed completely :

=ç~~(X)= O.

• It is not difficult to ascertain tb a t if the function of income

is convex downwar d (Fig. 3.22), then it is more advantageo us anything

to put all means in SOS e stage, an d i~ tc t he others not to pac k. But
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if the function of income is convex u p w a r d  (Fig .  3.33), then the

ma ximum of income is reached during the even d i s t r i b u t i o n  of means

be tween  the stages : x1 = = ..1 =X m = !~ Im.

3. Problem of distributing the rescurcejlifetimes between three and

• more by branches.

( Let us assume t h a t  unde r  cond i t ior .s of prob lem of ~ 4

re source/ l i fet imes are d i s t r i b u t e d  not b e tween  two brancaes (1 and

II) , but  between severa l :  I , II , a.. ,  (n) : moreover for each (the

j— th) branch are assigned: the “function of income ” f 1”( X),

expressing the income , yielded by means X, inserted on the i year

into the j—th  branch, and the “functicr~ of expenditure ” ç,~’~(X)~~~X,

showing, how much decrease means X , insErted on the i yea r into the
• j—th branch.

Prob lems it d i f f e r s  f r o m  tha t  e x a m i n e d  in t h e  point ,’L t e m  of I

this parag raph onl y by diLnensionality (number cf parameters, which

determine the stat e of sys tem) . For example , f o r  three b ranches  I, 11

and I l l  ph ase space is s h o w n  on Fig. 3.34. For the case of more

than three branches geometric i.nterpretaticn icses clarity , but the

essence of préb lem rema ins  the same. The  s tate of system wi l l  be

determined no longer by the pair of au.ber s X , Y, but of n by the
Y ( t ~ X(2) ~~~members

d .iqmatia g imser tions into each of the br
anches.S
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• 
• The process of d i s t r i b u t i n g  t h e  m e an s , as i n t h e  t w o — d i m e n s i o n a l  case

.4 can be div ided in t o  s tages  and p ro duc e d f ir s t  c o n d i t i o na l

• op t imiza t ion  (from end at  t b e  b e g i n n i n g ) ,  and the n — u n con d i t i o n a l

( f ro m b e g i n n i n g  t o w a r d  the  end) . The  s t a t e cf the  sys t em p i i o r  to th t

beg inn ing  of each s tep/p i t c h  w i l l  be as  betULC characterizi~d b y  th e

sum of the means , subject to di~;tributicn , i.e., by one n u m b e r  K.

Wi l l  more complex be ma t t e r  w i t h  c c n t rc l .  Con t ro l  at  t h e  i

step/pi tch w i l l  consis t  of t h e  i s c l at i c n/ I ih e r at i o n  ot mo a ns not  01

one branch , but of u of the b ranches:

I
~ 

~) X ,(’~ K — ‘:
~~ 

\ i  p)

It is nece ssary to f i n d  the  ma x imum of the func t ion  of severa l

variables. W i t h the number ci branches n > 3 prcblems of

op timi 7a tion , it d oer ; become v e r y  b u l k y  an d  w i t h o u t  aid of E VN

( ~M~~% — compu ter 3 scarcel y i t  c a n  he so l vt d .

S

-
~~
-

~~~
- - ---

~~~~~~~
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I
• 7. Distr ibut ion of resources w i t h  i n se r t ion  of incomes i n t o

çrcd uction . f

Until  now , in the problems of t h e  d i s t r i bu t i on  of

resource/lifetimes, we examine d the “income ”, yielded by enterprises.

• it is completed in dependent  of the d i s t r i b u t e d  means;  it even could

¶ be expressed in other  u n i t s  ( for  example , resource/ l i fe t imes  — in

- -• - ian— hours, and in:ome — i n  rubles) . No w we w i l l  consider the  case

when incom e is packed into product io n (in f u l l  or in part)  . It goe s

wi thou t  say ing  tha t fo r  t h i s  income and means  mus t be g i v e n  to single

(mcney) equi valent.

The problem of the  d i s t r i b u t i o n  of resource/lifetimes with the

insertion Cf incomes into poduction car be p laced d ifferently,

depending on whether is packed the inccme in full or in part and

which value is ma z imized .

• j s gi ven below series Cf p rob lems , in each of which occurs the

speech abo ut the d i s t r i b u t i c n  of resource/lifetimes according to two

branches of product ion with the insertion (Lull/total/complete or

partial)  of income s in to  pr oduc t ion , dur in g d i tfe r en t  object ive

functions.



-

~~~ 
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1. Income is packed into producticU ccmpletely, is ma ximi zed sun

of all means (basic p l u s  income)  a f t e r  a s tage .

In th i s  case gain W r epresen ts  by itself the sum of a l l  means ,

wh ich were preserved in bo th  branches after the completion of

last/latter stage, plus t h e  income , given  by both branches in

last/latter stage. This entire gai n is acquired only on one,

last/ latter stage, but it r ep resen t s  by  i tself a specia l case of the

addi t ive  index  of e f f i c i ency tcr which

U7 =~~~ w,,

if we consider that the ga ins  in all  stages, except the l a tt e r , are

equa l to zero

= ... = Wn, ) = 0; w,8 = W.

Pa ge 158.

Since all mea ns (and basic and income) are packed into

production on equal basis/bases, there is no necessit y  t~ ex am ine

separatel y the “f u n c t i o n s  of income ” a n d  o t  “ f u n c t i o n  expend” , and it

suf f ices  to introduce for each branc h cnl y according to one f u n c t i on :

for  branch I — f unc t io n F 1(X) , showing ,  h cw m a n y  means (including

inco.e) it will be obtained at t he  end of the  i s tep/pi tch in b ranch

I with the insertion of it cf reans X in the beginning of t hi s
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I
step/pitch . Analog ous f u n c t i c n  f o r  b ranch  Ii wi l l  be G,(Y) . Let us name

the fw nct ions
F,(X), G,(Y)

the  “f u n c t i o n s  of a c h a n g e  in t h e  means ” in t h e  i stage. Let us note

• t h a t  is gene ra l l y  poss ib le  a n y  of the  r e la t ioqsh ip/r at ios :

F ,~A ) > X ;  F,(X)<X F,(X)..~X

(it is ana logous f  or G, (Y) ) .

I
Let us consider t h e  p hase  space , corresponding to th i s  problem

9 (Fig. 3. 35). This space w i l l  be no l onger  t r i a n g le  AOB (as in

problems w i t h ou t  t he  i n s e r t i o n  of incomes)  , b u t  en t i r e  t i r s t  q u a d r a n t

IOY (means can not o n l y  he r educed , b u t  alsc increase) . T r aj e c t o r y

consists as before of a series of th~ compcnent/1.inks, being

decomposed in to  h a l f — s ec t i o t s ;  the first half—section (tor all

stages, except the f i r s t )  r ep re sen t s  r e d i s t rib u t i o n  of the means

(point S moves in parallel AB~~ , the  second — e x p e n d i t u r e  and

acquisitio n of the means (pcint S can gove in any direction) . U n l i k e

previously examine d pro b lems , here inccme yields only one , t h e  la t ter

• componen t/ l ink  tha t in Fig .  3.35 is isciated by  h e a v y  a r r o w .

In this case the value of index W is d ir e c t ly  ev ident  on d r a w i n g

— this sum of abscissa and crdinate of the koimt S,,, of the

representing final stat e system. Proble . of the optimum contro l :  t o

deduce point S. on straight l ine A,,&, Iarsllel AB and outermos t from

a

-
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the origin of coord ina tes .  The va lue  of ga in  fo r  an y  t r a j ec to r y in

phase space represents b y itself each of the segments ,

intercept/detached by s t ra igh t  line A ,B,, on the coordinate axes .

-l

Let us construct the set—up of the soluticn of this problem by

the method ot dynamic programming, withou t uetailed verbal

explanat ions  ( th roughou t  the specime n/aesple of the  previous

çroblems). On f unction F,(X)and~~,(Y thus far let us set no

li mitations.

Gain at all step/p itches, except the lattet, is equa l to zero ;

therefore we will not it record/write.



T~ I ~~~~~~~~~
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Pig. 3.35.

Page 159.

At last/latter ste p/pitch it is ex pressed by the formula :

w~~(IC , X, Fm (Xm) 4 0 n ( ni) (7~~

where ~ — th. mean s with whi ch we apprcech.d the last/ latter

step/pitch .

The fundamental functicnal equaticn of dynamic programming will

be:
W ,(K)= max ~~~~ (F1(X1)+G,(A —X,))). (7.2

• where K — the means w i th  which we aUrcached the  i step/p itch .

At last/ latter s tep/pi tch we ob t a in  the  cox~dit iona i o p t i m u m

gain , .qwa l to
V ,,, (K)— mix IFm (XM) ÷G~(K X ,JI, (7.3)

&
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and condition the o p t i m u m  ccnt r ol at whic h th is  ga in  is r eached: xm(K).

• F u r the r , thro ug h f o r m u l a  (7 .2 )  we f i n d  e v e r y t h i n g  conditional

gain and conditional optimum ccntrcls cn all step/pitches, beginning

with the latter, after which process it passes in torwacl direction

they are determined unconditiona l optimum control~ at each

step/pitch .

Is such the s e t — u p  of t h e  so lu t ion  of ~roble ia by the method  of

• dynamic programmin g wit h any  f o r m  of t h e  f u n c t i o n  of a change  in

seams F ,(X ) , G,(Y). However , i t  we on these f u n c t i o n s  super impos e some

(ver y natural) limitat ion, set—up can ke hig hly simplified.

Let us assume tha t  a l l  t h e  f u n c t ic us  F ,( V) . G, Y) represent by

themselves the non decre asing tuncticns cf their argument s, i.e., with

an increase in the q u a n t i t y  of i n ser t ed  m e a n s , the sum of income and

remaining means toward the end of the stage cannot decrease.

Let Us show t h a t  in t h i s  case c c n dit i on a l  o p t i m u m  ga in  the re  is

the nondec reasing f u n c t i o n  f ro m t h e  issue of each of the  p rev ious

step/pitches, i.e. from the sum ot means of its end.



P ~~~~~~~~~~~~~~~~~~~~~~
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A c t u a l l y ,  let the issue of some , let us say ,  that  ( i — i )  step

(sum of means of its en d )  is equal to /(~....1. Let us consider o p t i m u m

gain under this condit ion as function ~~~ Since gain is acquired only

at last/latter step/pitch, then it is unimportant , to examine this P
gain fc r  a l l  the  s tep/p i tches , e i the t  c n l y  f o r  last/ lat ter

step/pitch , or for all t h e  step/p itches beginning with the i—th. Let

• us select the latter : let us consider  the  optimum gain W for  a l l  the

st ep/pitches by beg inn ing  wi th  the i — t b  as func t ion  A ,_ , :

UV 1 (K _ i) . (7.4)

i t  is necessary to descn strat e that this function —

nomdecreasiny.  Proof let us conduct  t h e  m et h o d  of fu l l/ to t a l/ comple te

induct ion, but not from one i to j  4 1. b u t ,  on the contrary, from

one i • 1 to neXt .  Let us assume that the proven property is correct

for i + 1, i.e.

th er e is the  nondecreasing f u n c t i o n  of its argUm ent  ~ (sum of means

at the end of the i s t ep / p i t c h ) .  Let us deacn a tr a t e  that  t hen

nondecreasing function it will be and ~7.4).

Page 160.

It is real /act ual , accor ding to eq uaticn 17.2)  (where K ,_1 is marked

simply K) funct ion T1(K 1_1) te p re~ en t s  b~ i tself  the maximu m of the

exiressioi



~ 
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Let us show t h a t  (7 .6) the re  is t h e  t~ondecreasing func t ion  f rom

~~~~ then will be it is clear t h a t  as its m a x i m u ,  value ~~~~~~ wit h

an increase ~~ ‘ ‘  decrease canno t .

Let us fix some value !(,_
~~. Let fo r  this value expression (7.6)

reach maxi mum in A~, equal to W1(K,... 1), durin g the specific cont r ol X1.

Let us give now to va lue I (~—~ certain posit ive incr ease~~K~ .1. For us

was formed certain su rp lus  of means , w h i c h  we can put additionally

either into branch I or into bra nc h LI , or into both immediately.

Since function F , (X) , G, (y) nondecreasing, the from this “addition” of

means each tern under the sign of functio n (7.f,) can only be

increased, and als c, th erefcre , their sum it can only be increased ,

b u t  not shape less . h h a t  in t h i s  case wi l l  stop wi th  f u n c t i o n  (7 .6)?

Accord ing to our assu mption , funct io n U”~÷1 — nondscreasing,  which

means , tha t with an increase I(~~ expression (7.6)  decrease cannot .

Thus , transition f rom i + 1 to i is çrcwen.

Let us show now t h a t  our proper ty  is correct for  a l as t/ la t ter

st ep/pitch (i + 1 = a) .  Thi s  is proven  s imp Ly .  Ca f o r m u l a  (7.3) the

gain at the a s tep/pi tch d u r i n g  o p t i m u m  c o n t r o l  represents by itself

the maximu , of the exprassicu

L
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and, it is logical, it is nondecreasing functio; from ,~~~~~ (this

r~~.ntly it was proved for  a n y  I., and also , ther efore, for i =

Thu.. ~~~~~~~ there is n ondecreasing func t ion K. ,~~, a that means that

accord ing to the pr inc ip le  of fu l l/ to t a l/complete induction , and a n y

of gains V~(I (,—i) non decreasing f un c t i c n , which  it was requir ed to

prove.

From that dem onstrated escape/ensue very simple recommendations

regarding optimum contrcl. it is real/actual, it fina l optimum gain

there is nondecreas ing function f r o m  t h e  common/ gene ra l/ t o t a l sum of

means , realized on the issue of each step/pitch , then optimum control

lies in the fact  t hat , as a r esu lt of each step/pitch obtainin g the

of ma xi m u m  v al ue of th i s  sum means. That xeans that control of each

separate step/pitc h can be chose n cu th e  basis of the interests of

this separate step/pitch , w i t h o u t  t a k i n g  into account the others.

This special feat ure/peculiarity of s ta ted  problem leads to the

fact that  the process of g l i d ir g/ p l a n n in g  s t rong l y is simp li f i e~1.

There is no alread y necessity for the  ccaplex procedure of the

de termination of cond i t iona l  o p t i m u m  g a k n s  and  conditiona l o p t i m u m

controls — for each step/pitch, beginning with the f i r s t , immediate l y

it is loca ted uncond i t iona l  o p t i m u m  control .  At the  f i r s t  step/pitch

it is necessary to select the control X i, during which it is

converted iatn ma ximum K 1 — sum of means after the first step/pitch:

I ( — m 1 x 1F1(X 1) f G3 (!(,—X 1)J .

I
-- -~ 

4
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On the second — the c3ntrol during which is converted into maximum

value F~ X ,) + G~(K ~ —
max

and so forth to K~
_ .Na x imum gain at t h e  a step,’pitch will be equa l

to: Wm max ~Fm (X m) +0~ (K~
_
~~ X rn)~

O~~~X m~~~ K Z _ t

Thus 1 dur ing  non dec rea s ing  functio;s  F 1 (X) , G1(Y) stated proble m

of distribut ing the  r e s o u r c e/ l i f e t i m e s  is only ou tward ly  s i m i l a r  nct

the proble m of d y n a m i c  p r o g r a mm i n g ,  b u t  actually — is much simpler

it.

The similar degenerate problems of the dynamic programmin g where

the optimu m control copsists cf the simple optimi zation f each

step/pitch, freque ntl y are encountered in practice. If, having

focused attention on this special fea t~ reJpeculiarity, to solve them

all the same method of dyn amic pro gram~ ing, solution, it goes without

saying, it will be accurate, but will require man y times of more

time, than if we immediately take into account their degeneracy.

2. Income is packed into product icn completely in all stages,
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except lat ter; we are m a x i m i z e d  income at lds t/ latte r  s tep/p it ch.

Problem d i f f e r s  f r c m  t h a t  examined  above by the  fac t  tha t  is

ma ximized not the  sum of t he  r e m a i n i n g  means  p lu s  income a t

last/latter step/p i tch , but o n l y  one i ncome a t  last/lattar

step/pitch , regard less of t h e  tact , ho w m a n y  mean s were preserved

from initially inserted.

In order to separate/liberate the sum of the remaining means

from income, it is necessary fcr a last/latter step/pitch to assig n

not the f u n c t i o n  of a change in the means , but separately of the

~fmaction of incom e” f ~ ( X ), ~~ ,,(Y) and the “ f u n c t i o n  of expendi t ure ”
c~(X), ,,_ (Y).

It is eas y t~ ascertain t hat the  p rob l em so placed , is reduced

to previou s. It is real/ac t ual, set/assuming at the last/latter

step/ pitch 
~ (X) — f,,, (X); 0,,, (Y) g,,, (Y),

vs obtain conditions p. 1. It is logical  t ha t  it  a l l  the fu n c ti o n s

F 1(X) , G1( Y) (i a 1, ...,  a) — nondecreas ing ,  this  problem , as

çr.vioss. mill be degenera ted .

3. In come is packed into p r oduct icn  act completely,  but some

pact of it is drop ped f t om  the ro l l;  is  ma xim ized full/ t otal /complete
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de duct ed income in all s t a ges  j .~lus re sidue / iema ind e r  of means afte r a

stage.

P age 162.

For the solut ion ot th is  pro o lem , mus t  be assigned to the

“ function cf income ”:

11(X) , g1 (Y) (1 = 1, ... ,

the “fuact ioms of expenditure” :

q~, (X~ ~ X; ~~, (}‘) ~~ Y (1 ~~ I , ... , m),

and still , additionall y ,  the “ function of deduc t ions ” :

i ,~L)) ~~_ D (I 1 , ...,

showing, what par t of income 
~~~, o b t a i ne d  at t h e  i step/pitch, is not

packed into production at fcllcwiny (i • 1) step, but it is droppe d

from the roll.

Let us plan t he  s e t — u p  ot the  s olu t i c n  of pr oblem by the  method

of d ynamic programmin g .  The state ot t}e systeir prior to the

~egimnin g of the i ste p/ p itch let us characterize a g u a n t i t y  of means

K. which are subject to distribution; it is obta ined  f rom the  issue

of the previous s tep/pi tch  v ia  t h e  d € du c t i cn  of th e  specif ic f r a c t i o n

of income.

Gain at the i step~pi tch viU be

~~~~ 
(K 1 X 1) — r~ ~Ia (X ,) +g1 (K X ,) ) .
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Control X~ a t  the  i s tep/p i tch  ( i n se r t i on  of means X 1 into

branch I , and rema ining means — i n t o  branch I I )  translates sys tem

fr ~ a state K into the new state:

+g, (K —X ,)—r 1 (f~ 
(X 1) + g1 (K— X 1) ).

Fundamental funct ional equation:

W1 (K)  { r~ (J1 ( X~) + g, (K —X ,)) +

+ W + (w, (X1)+ *1 (K —X 1) +f , ( X 1) +

+g, (K —X 4) +‘a (1~ 
(X1) +g ~ (K —X 1))) ) .

Condi tional optimum gain at the m s t ei i oitch

U”,,, (K)— max j f ~ (X ,,,) +g~ (K X ,,.) + ~~m(X m) + $m (K X m))
o

In the remaining set—up of d y n a m i c  p r c y r a a m i n g  r ema ins  the  sa me ,

as before for the nondegene ra t e  prob leir s of distr ibuting the

resource /lifetimes .

We recommend to reader as an exercise to ske tch the  se t—ups  of

the soluti on of the f o l l o w i n g  problems of d i s t r i b u t i ng  the

resource /lifetimes.

4. Income is packed into p ro d uctic n nct comp letely,  but

p art ial ly;  maximized only full/tot al/ccmplete deducted income for all

-~~~
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m of step/pitches, without acccunt of the r e m a i n i n g  meanj .

5. Income is packed i n t o  ~r o d u c t i cn  nct  comple t e ly ,  bu t

pa r t i a l ly ;  is m a x i m i z e d t o t a l  q u a n t i t y  cf m ea ns  (basic p lus  income)

afte r m step/pitch , wi thou t  account pr eviousl y deducted sums.

Wi l l  not be a n y  or  these prob lems  unde r  some conditions

degenerated?

Page 163.

8. Solution of the  p r o b l e w  of d y n a m i c  p r o g r a m m i n g  t a k i n g  i n t o  accoun t

the prehistory of process.

All  problems of t h e  d y n a m i c  p r o g r a m m i n g  w h i ch  we , u n t i l  n o w ,

examined , differed in terms of the L o lic r i n g  special

feature /peculiari ty:  “i ncome ” w 1 at each i step/pitch and the

maximum income W b e g i n n i n g  wi th  the  i st ep ,p i t ch  and t h e y  f u r t her

depended only on stat e S of syste m S before th is , i step/p itch and on

the used control u1, but they did not depend on how (in what way)

system arrived into state 5, i.e., as a res u l t  of which controls when

and as this  occurred. By o ther  owls.  t h e  p rob lem of the op t i m i z a t i o n

of control at each ( i—th)  s t ep/p i tch  w € solved t a k i ng  in to

account the present s ta te  5, bu t  w i t h o u t  t h e  account  to the
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pr ehistory of process.

For e x amp l e , so lv ing  t h e  p r o b l e m  at distrituting the

resource/litetimes bet wee n by twc (or it is more) branches of

prod uction , we as the characterist ic of the state of the syste m

before each step/p itch took one va lue — available available means K;

to us was in no way matters to that , when and as system t t  a r r i v e d

into this state , i .e . , as were d i st r ibu te d ~aen ns between branc hes

over all previous  stages. Was i m p or t a n t ly  o n l y  qu a n t i t y  of means K ,

with which we arrived at next step/pitch.

In  m a n y  probl ems of d y n a m i c  p r o g r a m m i n g ,  t h is “independence  f r o m

prehistory ” does not occur. For example , income at the i step/pitch

cai depend not only  on the  q u a n t i t y of m eans , inserted in t o  each

branch at this step/pitch, but even on wh ich means and at whic h

step/pitch es were packed into it earlieL.

Theoretically always it is poss ib le  to  t a k E  into account the

pr ehistory of process w i t h  the hel’. cf the Lollcwing method: to

include/connect in the n u m b e r  of p hase coordina tes , c h a rac t e r i z i n g

st ate S of system s before this step/pitc h, a l l  those p ar a m e t e r s  f r o m

the past , on which depends  f u t u r e .

For example , if income at t h e  i s t e p/p i t c h  depends not  on i y  on

- — --~~~~~~~~~~~~ - —
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the  insert ed means ~~~~~, but also on p r e v i o u s l y  inser ted  means  2 , it is

possible to  charac ter i ze  the  s t a te  of the s y s t e m  before  t h e  i

step/pitch by the simply not available available supply of means K ,

b ut set (K, 2), where Z — previousl y insert€d means.

If is essential not o n l y  comm onj g ~~ner a i/ t c ta l sUm p r ev i ou s l y

inserted means , b u t  alsc w h e n  prec i se ly  a n d  how many  me ans  were

packed — in princi ple it is p ossible “t c e nL i c h”  s ta te  S and by  these

i n f o r m a t i o n  f rom t h e  past .  t h u s , t h e o ret i c a l l y  a l w a y s  it is po ssib le

to in t roduce  in to  the  numb er of pa ra meters, which characterize the

state of syste m at present to rque / mo m ent , as much as desired t h e

parameters  fr o m  “t h e  pas t” . h o w e v e r , in  pr ac t i ce  this  “e n r i c h m e n t”  of

ph ase space r a p i d l y  leads tc bound les s  c o m p c u n d  c i rcu i t  3f d y n a m i c

programming,  with so complex  tha t  the methcu itself ceases to be

suitable. Indeed the  main  idea of the dynamic pro grammin g : “instead

cf one time solving of complex  p r o b l e m , m a n y  t im e s  solving

compar a t ive ly  s imple ” ceaseE i t se l f  to j u s t I f y,  it “si m ple ” problem

ceases to be “idle time ” .

Page 164.

The refore the a t t e m p t s  to solve by t h e  metho d of tite dynamic

pr ogramming of problem w i t h  c cm p l e x  e t t m c t “p reh i s to ry ” usua l l y to

n o t h i n g  good do not  lead.
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However , if t h e  e f f e c t  of “p reh i s tor y ” can  oe taken into account

with the help of the small number of parameters (one, two , three),

som etAme s to const r uct a c o m p a r a t i v e l y s imple  se t—up of dynamic

prog r a m m i n g  and it is possible to solve t h e  p r cb le a  of o p t i m i z a t i o n .

As an example  of problem “w i t h  p r eh i s t o ry ” let us consider the

prc b l€m of the  m a i n t e n a n c e  cf t e c h n o l o g y .

Problem is placed as follows.

There is the technical equipment/device 5, exploite~i during i ot

years.

Operat ing costs depend on the  t o l l cw i n g  fac to rs :

— fro m the “age ” at  equipment /device t, i.e., quantity of yea rs,

its past from input t ime  into o p e r a t i o n ;

— from a quantity of maintenanc e k, produced to toLgue/moment t;

— from a quantity of years r, of past from time last/latter

main tenance I.



-~

DCC 7806870 8 P A G E

FOOTNOTE 1~~ Strictly speaking, operating ccsts depend not only on

time v, passed aft er last/latter repair , but also on periods previous

k of repairs;  but  thi s dependence is weak , an d it it is possible not

to consider. E N D F O C ’ IN O T F .

Let us assume t h a t  the  m a i n t e n a n c e  is j~roduced (if i t  is

produced) i n s t a n t l y ,  also , in the  b e g i n n i n g  of year .  It is log ical to

assume tha t the e x p e n d i t u r e s  cn  th i s  r ep a i r  (cost/value of r epa ir )

depend on the  same a r g u m e n t s  t , k and v t h a t  an d oper a t ing  costs.

W e wish so t~ distribute main tenance cii years, in order to the

sum of overal l  e x p e n d i tt r e s  (op e r a t i ng  costs plus

exp endi ture/ consum ptions to repa i r , if it was produced) t h e y  wou ld

reach the minimum.

State d proble m can be solved by t h e  m e t h o d  of dynamic

prog r a m m i n g ,  if we c h a r a c t e r i z e  t h e  s ta te  ct system ( technica l

equipment/ device S) at the  b e g i n n i n g  of each step/pitch by t h r ee

phase coordinates ; t — the “age” of syste m , k — by q u a n t i t y  of

re pairs in the pas t and ~ — by time , past from the torque/moment of

last/latter repair .
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in order to solve the  problem of the  op t i miz a t i o n  of control , it

is necessary to assign both the operat ing costs an d the

expenditure/consua pt ions to repair  in f u n c t i o n  f rom these phase

coordinate s.

Let us in t roduce  f o l l o w i n g  designations.

3,(1)— ’ the cost/value of the op€raticn of equipment/device for

the year, which begins at torque/moment t, if to torque/mo ment t of

no repair it was produced;

3~1, ~) — — the cost/value of the cperation of equipment/device

for the year, beginning at torque/moment t , if to torque/moment t was

produce d one repair, and frcm the time of this repair it passed v

years;

and generally

3h(1, T )— C O St / V a lu e  of t h e  op erat io n of equipment/ device for

one year , beginnin g at to rque/moment  t , if to tcr &ue /m oment  t was

produced k of repairs, and fr og  the  t ime  of the lat ter  of them passed

v years.

Page 165.



~~~~~~~~~~~~~~~~~~~~~~~~
‘ -

~~~~~~~~~~~~
-

~~~~~
-

~~~~~~~‘

DOC 78068708 PAGE

R 0 ( t )  — the  cos t/va lue  of t h e  repair , produced at torque/moment

t~ if to torque/mo ment t of no r epa i r  it was prcduced ;

R 1(t , v) — the  cost/value of the  r epa i r , produce d at

torque/moment t , if to torque/moment t was ~roduced one repair, and

from the time of this repair it passed 1 years;

and genera l ly

Rk(t , T) cos t /value of the repair , produced at torque/mo ment t,

if to torq ue/momen t t was p roduced  k of r e p a i r s, and from the time of

the latter of them passed r years.

Let us represent the stat e of the technical e~ uipment,device S

as point S in phase space ; alcng one axis ~e will plot/deposit the

“age” of equipment/dev ice — time t, cn anothe r — the time ~
‘, past

from the torque/moment of last/latter repair , cm the third — quantity

Cf repairs k (Fig. 3.36). Since under all conditions v < t and k < t,

then all the possi ble states of sys tem will be represen ted as pcin ts

within trihedral angle OAtB. If to torque/moment t of repair  i t  was

not , point S is locate d on axis Ot ;  if was one repair - point S it is

located in plane K 0 ’L , para l le l  t0i- and  by that distant behind it up
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to distance of 1, and sc f o r t h .

In order not to use thr ee—dimensic~ al ,’space picture, “it is

stratified ” phase space on sever al parts w h i c h  we wil l  designa te:

(0), (1), (2), ..., (k),

Part (0) of phas e space represent s by I tself  simply axis  Ot ;

part (1) — t r iangle  on p lane  K 0 ’L , par t  (.2 )  — t r iangle  on the plane ,

pa rallel tO~ and lying of it at a dist ance of ~ and so forth. With an

increase in the number cf space the si2€/diwensions of triangles

always are reduced. The parts of phase space (0), (1), (2), ..., (k),

... are shcwn on Fig .  to 3.37.

Prior to the beginning of each year of us, exists a selection

le tveeu two controls:

DO  — not to make repair (to continue to exploit equipment/device

S).

— to do a repair  (and a f t e r  it to con t inue  to exploi t

eq mipsent/device).

Let us look , which  t r a n s f e r r i n g  in phase space experiences point

S under the action of each con t ro l.
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Pig. 3.36.

Page 166.

Let point  S is locate  in space (0) — cii axis  Ot at  poin t  wi th

coordinate t (see Fig. 3 .37) .  Under  t h e  e f f e c t  cf control  U 0 ( t o

cont inue to  exploit) it for year w i l l  mcv e intc  poin t  w i t h  abscissa t

• 1 on the same axis .

Under the e f f ec t  of ccntr o l  U i  (tc do a repair) it will mcve

in to poi nt S’ in space (1) wit a coord ina tes  (t + 1, 1). r h e  second

coordinate v = 1, since r e p a i r  is prod ice d in the  b e g i n n i ng  of yea r.

i. e. , for year to end of nex t  s tep/p i tch .

Now poi nt S occupies scme attitudE (1). Ccntrol U0 ( to  cont inue

to exploit ) will lead to the fact that both t aud i for one

step/pitch will be increased an one un i t , i.e., point S will move
upwar d ~n4 to the right (ii parall•l tk. h ypot enuse of tria ngle) into

point with  coordinates (t • 1 ,~ v + 1),, if previous coordinates wer e

It. v).

_ _ _ _ _ _ _  _ _ _ _ _
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ant if we use control  U ’  ( le t  us do a repa i r ) , point w il l  move i n t o

space (2) . in to  point  5’ w i t h  coord ina tes  (t + 1, 1).

General ly,  if point  S is located in space (k) (k ~ 1) • t hen

control D O moves it to one step/pitch to the right and upward , ot



-

~~~ TTT~ TT~~~~~~~~~~~~~~~~~~~~~~~
- ~~

DOC = 78068708 PAGE

point with coordinates (t, ,)  Cf point hith cocrdin ates (t • 1 , v +

1), but control U~ — ot the following in order space (k + 1), of

point wi th  coordinates (t + 1 , 1).

Let us  reg ister t h e  ru l e s  of the  t r a n s i t i o n  of point S in pha se

space unde r the e f f e c t  of c c n tr o l s  UO and U ’  in the  f o r m  of the

“table of t r a n s f o r m a t i o n ” (Eec T able  8.1, the  f i rst  of f i v e  co lumns) .

Thu s, to us i t  is clear , as is m o v e d  the  pcint  in phase space

under the e f fec t  of  any  cont ro l , i.e., we know the f u n c t i o n

= q~(S, U) ,

accord ing to which it varies the state cf sy s t em  under  the  e f fec t  of

the  used control  U (U = UO , U’)~.

Now let us look , to which  “ gain ” — to the

expenditure/consum ption of ~,, at this step/pitch will bring each

control. If we wil l use ccntrol DO , then  a t  th is  step/pi tch we wi l l

ha ve onl y operat ing costs; if cont rol U I  — expead i tu re/ consuap t ion s

to repair plus opera t iona l  to the  nearest  y e a r , but  o thers , t h a n  if

repair was not. Let us r eg i s t er  these e xpendi ture/ consumpt ions  in the

same table 8.1 in the  f o r m  of additional column.

Using this table, we can now for any state of system S and any

co*trol (00 or Ui) • used at the any moment t, to find:

~~ IA
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— where will move point  S u n d e r  ccntrol  e f f e c t ;

— to which e x p e n d i t u r e  of resources t L i s  will ,  lead.

After  this  tab le  it is comprised , it is al ready not d i f f i c u l t  to

organize the  very procedure  of o p t i m i z a t i o n.
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~~~hle 8. 1.
I UcxoaNoe ,,oao*.*~i Ho,o~ eoci’o,,u,e 

—

1~) I 14) Paexo.~ a~upb~Tp.~N- 1 NO4fMN,~. ~ flP’ eflit flp(~ ~~~~ Ware. Nl~HN&,K~u*~ Mc,VTIO ciuio 4OO~~~j~ H.tT~~ a MOM~~HT I

(0) (1) U’ (0) (1-— I) 
~~U’ (I) (1+1 ,1) R, ( / ) r3, (1 , 0)

— 
ii) (I , T) U° (1) (1 4~I ,t-&-- I) 3, (.~(2) ( ( -~- I. I) R, (z , ii ~~~~~ 0)

_ _  _ _  _ _  _ _  _ _ _ _ _  _ _ _  P

t

(k) (1 ~) (JO (4) (i+1 ,r+I) 3e (I, n
U’ (441) ((+1.1) R~(l , ;)-~-3,,~~,(/ ,O)

_ _  _ _

key: (1) . Ini t ia l  position.. (2) . New state.. (3) . space. ( 4 4 ) .

coordinate. (5) . cont rol .  (6) . E x p e n d i t u r e  at t hj s  step/pitch , which

begins at to rque/moment  t .

Page 168 .

We will begin , as ever , f ro i r  l a s t/ l a t t e r  step/ p itch , let us sort out

all the po ssible states of the sys tem befor e  this  s tep/pi tch and for

each of them will find condition al optimu m control (U° or U’) on the

m step/pitch and cond i t i ona l  o p t i m u m  g a i n  ( m i n i m u m  expendi tu re ) on

last/ latter step/pitch. F u r t her  let us cp t im iz e  (a — i) step/pitches ,

so as to it. in conjunc tion with the alread y optimized m—th , w c u l d

give minimum ex pen diture, etc.

Let us demons t ra te  t h i s  m e t h o d o l o g y  on concrete/specific/actual

example .

- - .
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€x ampl eg  a section cf r a i l w a y l ine  is exploi ted d u r i n g  a = of

6 years. Operating costs for one year . which b € g i u s  at to rque /moment

t , (in a r b i t r a r y  u n i t s )  are expressed ty  t h ~ func t ions :  33 ( t ),  .3,(t,

r), 3, ( t , r), .33(t , r ) ,  .~ ,( t , i-) , ~95~ t , v) (index — quantity of
P 

previous r epa i r s. v — q u a n t i t y of y e a r s , past f rom the las t/Lat te r

re pair of w a y ) .  The cos t/va lue  of repair is assigned by functions

R~ (t). R ,(t, v ) ,  R 2(t, ,‘) , R 3 ( t , v ’ ) 1  R , (t , i-). The values of

fuoctions 9 and 9 are givec in Table~ 8.~ and 8.3.
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Table 8.2.

b y~~ t ,&au 

~~~~ 
I y 3 4 I •

l,’J , 2,5 3,1 4 ,~ 5,1 6,6

~~ c~~r:r~j ITIr~0 — 2,2 2,1 3,M ~‘,u 6 ,3
I — — 2 ,5 3,~ 5, I
2 — — — 4 ,~

) 5,1
— — — — 5,1 h,6

~~~~~~~~ ii -
:~~~~~

_

2 — — — — 5,0 6,(’

I I I .. 4 J 6

0 -— — — :3 ,5 4,2
I — ... - — — 4 .5

~4, ( t . ‘) ~~~~~~~~~~ 

________ 

] 
________ ________ 

4 j I b

(I 

— 

— 1 3js

JIey : ( 1).  FU nction .

_____W
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4 ta ble 8. 3.

(‘~ 1 
________ 

I 
________ ________ 

I 
________

~~ (1, t) I — 1,2 1 ,4 1 ,9 2 ,4
2 — — 1 ,5 2 ,0 2,5

— — — 2,1 2 ,6
4 — — — — 2,9

_ _  J~~~~~~~~~ 2~~~~~~~ 4 H
1 I — — — 0,8 I ,)

2 — — — — 1 ,4

_ _ _ _  _ _ _ _  ___  

— 

__1_ 
LU

key: (1). Function .
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(t) 3~c~oaNii Ofl TIIMNUWt t WSCYO(O Wan

~) conioiM~ etey.’ ~~~~~ • 
(5)

fl~o ynpaa~ie,iaa P.COOA npt yfl’ OnlNIaaaba oe Hil t
ctp ~ acT o (000MH H J t i l  U. , p a R JIVüHI I  U’ ynp,t tt~tt’iiiie ~~
___________ ___________________ _______________ _________________ — _______________ ______________

(0) f t=5 6,6 j 3,0+6,3=9,3 U° 6 ,6

(I) (5,)) 6,4 2 ,4+5,5=7,9 U° 6,4
(5 ,2) 6,5 2,5+5,5=8,0 (/0 6 .5
(5 ,3) 6,6 2 ,6+5,5=8,1 (JO 6 ,6
(5 ,4) 6 ,6 2 ,9+5 ,5=8,4 1J° 6,6

(2) (5 I) 5,7 2,0+4 ,5=6.5 U° 5,7
(5 2) 6,0 2,1+4 ,5=6,6 (JO 6,0
(5 ,3) 6,2 2,3±4 ,5=6 ,8 U’ 6 .2 

-

(3) 
-_____ - 

4 7  1,1+4 ,2=5,3 U~ 4 ,7
(5,2) 5, 5 1,4+4 , 2—5 .6 U’ 5,5

(5,1) 4 ,5 1 ,0 -~.3 ,8=4 .8 U’

key: (1). Conditio nal op t i m i z at i o n  of the  s i x t h  s tep/pi tch.  ( 2 ) .

Space. (3). Stdte of systeu’ ( c c or d in a teE  t , r ) .  ( 4 ) .  E x p e n d i t u r e

dur ing control .  ( 5 ) .  O p t i m u n  ccntrol.. (6) . I~1inimua expenditure .

Page 170.

Solution.  Us ing  th e  t ab le s  of f u n c t i c n ~ 8 . 2  and 8.3 an d  t h e

table of t r a n s f o r m a t i o n 8.1 , let us dcve lo~ t h e  process of ‘l y n a m i c

prog r a m m i n g .  As ever , let us b e g i n  t r o u  t h e  o p t i m i z a t i o n  of

las t/ la t ter  ( the  s i x t h )  s t ep /p i t c h .

All t h e  possible s t a teE  of syst e m S be fo re  th is  s t ep/p i t ch  wi l l

be represented as p o i n t s  a ~y abscissa t = S in spaces (0) , ( 1 ) ,  ( 2 )  •
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( 3), (4) (see Fi g. 3.38) . For t h e  s i x t h  ( l a t t e r )  s tep/p itch o p t i m u m

will be the contro l ((J O or U I), during w h i ch  th e  ex pend i tu re  a t

last/latter step/p itch is m i n im a l .  E x p c n d i t u r e s  let us compute

according to las t/ la t te r  c o l u m n  l’ab le e.i. In Pig. 3.38, besides the

state of system , we w i l l  desi gna t e even t h €  o p t i m u m  cont ro l:  U O  wil l

be designated by the arrow/pointer , directed to the rigat (in space

(0)) and to the right and upwa rd (in remaining spaces). Contro l U’,

wh ich removes point  f r o m  th i s  sect ion cf the phase space and which

translates into following in order part , let us represent as the

arrow/p oin ter , dir ected to the  r i g h t  and dcwnwerd. For each point

within small circl e let us teccrd/write the minimum expenditur e at

all r e m a i n i n g  s tep/pi tches , w h i c h  cor r esponds  tc this state of system

(conditio4al optimum ~jain).

I
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Table 8.5.
OnTNMHSIUNH IIITOPO war~

t’HCT ilhi I aCXCJ1 Il~~II y flp,II ’ - PdCIOj~~pII Y~ P~~ 
Ofln1. M~~,~ 0~

N.I T b I L I )  

,,e,,H,i t ”  JIe H H H  U’ I ~~~~~~~ P1c000

g 4  5, 1-~-6 6=II~7 [2 .3+5.0+6 4 = 1 3 7 )  U’ 11.7

(I) (4,1) 5,I.4’6,5=II ,6 1 ,9+4,8+5,7=12,4 (JtI 11 ,6
(4 ,2) 5,1+6,6=11 ,7 2,0+4,8+6,0=12,8 U’ 11 .7
(4 ,3) 5,1+6,6=11 ,7 2,1+4,8+6,2=13,1 U’ 11 ,7

(2~~~] (4.1) 4,9—~-6,0=I0,9 1,5+3,9+4,7=10,1 U’ 10,1
(4 ,2) 5,0±6 ,2= 11,2 1 ,6+3,9±4 ,7=10,2 W 10 ,2

(3) (4 ,!) 4 ,0±5,5=9,5 0,8+3 ,5+4 ,5=8,8 (JI 8,8

-________ ________ 
~ CJIOIHaH Ofl THMI4 Sa&LHI qeTle pToro u .ara

(0) ‘~~~ I 4,0+11 ,7=15,7 1 .84-3.8±11 .6=17.2) U’ 15,7

(I) (3 ,1) 3 ,9+11,7=15,6 i ,4±3 ,7-~-I0 ,I=l5 ,2 (I’ 
- 

15 ,2
(3.2) 4 ,0+11 ,7=15,7 1 ,5+3,7+10,1=15 ,3 U’ — 15 ,3

(2) (3,1) 3,8+10,2=14,0 1.2+2.8+8.8=12.8) Ul 12,8

~‘ CJ I O O H l H  ofllHSIH 3aUHR y~Iemero War.

(0) 1=2 3,1+I5 ,7=18,~ 1 .4±2.4+15.2=19.0) uo I 18,8

(2 ,1) 2.5+15.3=17 .8 ) 1 ,2+2,3+12,8=16 ,31 ~~ 1 16,3

~~ ~‘ CJIflBHa * OI tTI IMI4I3PPJ IH  s1oporo War .

(0~ (=  I 2,5+ 18,8=2 1 ,3 ( 1 ,24.2 ,2+16 ,3=19,71 U’ 19,7

(e) OflTuuNsaiu,N flepaoro War.

(0) t=0 2,0+39.7=21,7 — U’ 21 ,7

Key ; (1). Cond i t iona l  o p t im i z a t i o n  of the  f i f t h  s tep/pi tch.  ( 2 ) .

SpaceW (3) . State of system (ccordinate~ t, r )  . (4 )  . Ex p en d i t u r e

during control, (5). Opti nun ccntrcl . .(6) . ~1ini inum expenditure. (7).

Conditional optimization of fourth step/pitch. (8). Conditiona l

optimizat ion of t h i r d  s tep/p i tch .  (9) . Condit i on a l ,  o p t i m i z a t i o n  of

second step/pitch. (10). Optia~ization of first step/pitch.

I.- _ j~
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t.O 1 2 3 4’ 5 6

~ j .’
~~

(~/ 
2

~~ I I
~~~~2

(2) 

Y 1
‘~‘~‘ 

_ _ _ _ _  _ _ _ _ _ _ _ _

1*1
0 F 2 3 4’ 5 S t

Pig. 3.38.
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Page 172.

The ca lculat ion s , connected w i t h  cp t i wiz at i o a , let us take shape

in the for m of the tables (see TableS 8. 4 and  8.5 on page 169 , 170) .

Thu s, optimization is tinished. It will lead us to f o l l o w i n g

conclusions.

Minimum expenditure /consumption is equal. tc 21.7. Is reached it

at tb. following optimum ccntrol:

4’ (U’ , U’, U’, U’. LI’, U’), S

i.e. :

— on the f i rst year section is ex~ loited without repa ir ;

— in the beginni.og ot the second , third . fcurth and fifth yea rs

is pro duced re pair;

— on sixth year section is exploited wjthcut repair.
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in this  case, the expenditure/consumptions reach the minimum ,

equal to 21.7 arbitrary units ~~.

FO O TNO T E 1 • Dur ing  the  ana lys i s  of this example , it  is necessary to

keep in min d tha t  the  n u m e r i c a i  da ta  a re  selected f r o m  methodica l

co ns iderat ions and n o t h i n g  in common with ‘validity have. ENDFO0TNOTE.

9. Problems of dynamic prog ramm ing , not connected with time.

U n t i l  now , we e x a m i n e  cnl y such problems of the dynam ic

pr ogramming  where the  p l a n n e d/ g l i d e  operat ion is developed in time

and fa l ls  into a ser ies  of the step/pitches (stages), following after

each other in n a t u r a l , t i m e/ t e m p o r a r y  crder  — f r o m  the f i r s t

step/pitch toward the l a t te r .  G e n e r a l l y ,  t h i s  not is compulsory;

br eakdown into steps or “ s t ag ing ” in the  problems of d y n am i c

pr og r a m m i n g  can be p roduced  not o r  t i m e , but  according to a n y  othe r

sign/criterion, fo r  e x a m p l e , acco rd ing  to the reference n u m b e r  ot one

or the other object.

As an example let us consider follcwiny task.

L.t there be the group of the enterpr ises

S n1, 11,, ,.., fl,,,, (9.J)

wh ich issu e one and  t he  same p roduc t ion .  We h a v e  avai lable — som e S

~i.

— S S -~~~~~~~~~~~



— ~~~~----— -. —--—-. S~~~ — -~ ~~~~~~~~~~ - 
__
~
_•____‘7_ - -

~ — — —.
-

~~~~~~~~~

DOC = 78068709 PAGE 313

suppl y of means K 0, w h i c h  w e can put in the grcu p of enterprises  
S

(9. 1) in order to produce over p l a n/ l a y c u t m a x i m u m  output .

Let us assume that each enterprise can master only l imi te d

quan t i t y  of means, and
k,, k1, ..., k,, (9.2)

represent the m a x i m u m  sums , which can master respectively anterprise~
(9.1).. If in enter prise fli are inves ted  means  X, it will give g~,(X)

unity cf further (above—plan) prod ucticn.

It is require d so to distribute the available means between

enterprises so tha t the total volume W of further production would be

max immm.

Pa ge 173.

Control of means l ies in t he  f a c t  t ha t  to enterpr ises  are selected

respectively the  means:
A,, X,, ..., A ,,.,

not exceeding in the sum of available capital K 0:

i~~ )

it is required to find the Optimum control , by which

W— I w ,i.i max,
i— I

wher• w1 — further product ion of the i enterpr ise .

- .  - . S



T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Tii~ TI TI~~~ 
S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DOC = 78068709 PAGE

Stated problem is easil y solved by the method of dyna m ic

programming ;  the  “ s tage” of the prccess of distriouting the means is

the isolation/liberation of means to the A enterprise. S

Let us label s tag es (step/p itches ) by way of numbers of

enterprises (i.e. in ar b i t r a r y  order) . let us assume that the means

S to enterprises fl~, ...,fl,,.~, are already isolated, and at last/latte r, m

st ep/pitch we a r r ived  w i t h  some s u p p l y of m e a n s  K.

I t  is obvious , o p t i m u m  cont rol on last,latter step/pitch lies in

the  fact  t hat , isolating m en terpr ise  cf all the r ema inin g  mea ns K,

it they do not exceed k .,, and a m a x i m a l l y  possible gu a n t i t y  of means

k M, it K~~ k ,,1. Thus, conditional Optimum control at the  La s t/ l a t t e r

stsp/pitch :

( K  when ~~~~~~
S 

x~ (K) :1- j  
~ fl&n K>~~.

During this c cntrol m axim um income at iast,latter itep/pitch

wil l  be

W,,. (K) — w,,. (K) — ,~~ (x,, (K )). (9 3)

L
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Let us pass to gliding/p lanning of penultimate step/pitch — to

the isclat ion/ l i ber atj c n  cf means to (m — 1) enterprise. After m — 2

st ep/pitches av a i lab l e wi l l  remain mean s K. We must  select t h i s  S

control

with which income at ( m — 1) step/pitc h plus the already 3ptimized

iaco.e on the lat ter  is converted into the m a x i m u m :

W,,,....1 (K) — max (ç,~_ i (X ....,)+ W,,.(K — X m_ i) I, (9.4)
S 

an d so for th .

The f u n d a m e n t a l  f u n c t i o n a l  e gu at i c n  of d y n a m i c  p r o g r a m m i n g  w i l l

max ( c 4 (X 4) + W ,+, (K —X 1) 1, (9.5)
0 çx 1 ~~~

a entire/all  procedure of c o n d i t i o na l  and uLL c on d i t i on aj  o p t i mi z a t ion

in no way differs from that problem of the distzibution of

resource/lifetimes according to neterogeneous sta~jes with redundancy,

which we examined  above , in §b .,

Page 174.

Thus , the met hod of d y n a m i c  p r o g r a m m i n g ,  wh ich  ini t i a l ly was

presented to us as specitic method of the optimiz ation of the
S 

pr ocesses, which  d e v e l o p  i n  t i m e , has muc h iider field of

app licat ion/ uses.
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Example . One must p l an  m u l t i s t a g e  space veh ic le  w i t h i n  the

limits of the specific launching weight G. Cosmonaut’s cab has the

assigned weight g,, It is assu me d t h a t  the roc ket will tLav e m of

step/stages. Launch ing  we igh t  of rocket is cowpcsed of the weights of

all  stages of rocket plus the weight of the cal::

G — Q,+ g~ .

where 00 — weight, isolated into all m of step/stages.

Each step/stage has some fuel reserve. After fuel depletion , the

waste step/stage is d i sca rded  and en ter s  in to  action f o l low i n g .

The velocity of rocket  at the  end of the active section W is
S 

WI, W, 
compose d of in of velocity increments

A 
which it it acquires on

S the individual sections of trajectory, as a result of the work of

each step/stage. The a d d i t i cn a l  ve loc i ty  w~, given to rocket at the i

step/pitch , de pend s, in the  f i r s t  place , cn t h e  w e i g h t  X,. isolated

into the i—th step/stage, and in the  second p lace , on that  passive

we ight P, which is necessary to carry this step/stage:

i~— I (X ,, P) . (9.6’i

It is requir.d to f i n d  t h i s  w e i g h t  d ist r i t ut i o n  Q0 ac cord i n g to

separate step/sta;es , by which the veiccity at the end of the active

section is m a x i m u m .

5—  
. 

-~~~



DOC = 78068709 PAGE 
~77

Solution. Let us consider in of the step/stages of roc ket as in of

the  stages of acceleration. State S of the system prior to the

beginning of each s tep/p i tch we wi l l  c h a r a c t e r i z e  one para mete r 0 —

~y remaining weight , which are subject to d i s t r i bu ti on  bet ween

step/stages. Control on the i step/pitch consists of the selection of

weight X , abstrac t/removed f r o m  t h e  r e m a i n i n g  we igh t  Q to this , i—th

step/stage. 
S

Since a veloci ty  i n c r e m e n t , acccrding to formula (9.6), d epe n ds

cm two arg uments  - weight of s t ep/ s t age  a n d  pass ive  w e i gh t  P. let us
P — Q — X s-f g,~,de termine th is  passive weig ht. It is o b v i ou s , it is equal to

and a velocity increment will be:

V1 — I (X g, Q.- X~ +1,.) .

Under the effect of ccntrcl X1 the system passes from state 0

into state Q’ — Q — X ,

funda mental funct ional equation w i l l  t a k e  the fo rm:
1’, (Q) —max (f (X,, Q—X 1 +g ,.) + V,4., (Q_X ,)) , (9.7)

O ptim um conttol at the  i step,’p itcb is t h e  value X1~~ x1, with

which  it is reache d t h i s  m a x i m u m .

Optim um control at the in s t ep /p i t ch  ( u n d e r  the  n a t u r a l S

- -  S -~~~~l4
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assumption that with a gain in weight, abstract/removed by

- 

S 

step/stage, a velocity increment i t  increases) , lies in t h e  f a c t

that , weig hing out to last/latter step~ s taye  of entire remainingS I
weight Q. 3m this case, at last/latter step/pitch, there will be

acq u i r e d  t h e  vel.ocity ‘

W m (Q)~~l (Q. Eu)’ (98)

Fur the r  the  procedure  cf dyna m ic p rog ram m in g  is r” up / tu rned  b y
S us ual order. As a resu l t  is loca t€d  t h e  o p t i m u m  set of the wei ghts  of

the  step/stages: S

q x ( X 1. x,, ..., Xm), (9,9)

impar t ing  to last/ lat ter  step/stage (cab) the m a x i m u m  sp-~ed:
W~ (Q,). -

-

, 

Page 175.

u~~~~L10. problems ~ f d y n a m i c  p r o g r a m m i n g  ~&.-+y.. m u l t ip l i c a t i v e  c r i t e rion .

S Until now , we examine cnly such prcbl€ins of the dynamic

programming in which t h e  ga in  (cr i te r icn, cr the index of efficiency)
S is compose d of the sum of gains Wi at the separate step/pitch es:

(10.1)

i.e. was addit iva~

Somet imes appear the problems, in W h i c h  value W r epr esents by

itself not sum , but the product :

w.~ ii w1, (10.2)
i_ I  S.

-44
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eker. w~ — a gain at the i ste~./pitch ~it is assumed that everything

W 1 ar• positive). This index or the criterion of effic iency is

called multiplicative.

It is not difficult to ascertain tha t any ~~oblem with

multiplica tive criterion can be reduced to ~rotlem with additive

criterion. For this, is suffici ent, for exam ple , to take the

logarithm of expression (10.2) and to seek the solution, which

rotates into maximum the lcgarithw of val ue W. Since logarithm —

increasing function , then the ma xim um cf logarithm corresponds to the

maximum of value W .

H~ vev er, for the sclution of çroblezas with multiplicative

crit~ rion, there is no direct/straight necessity to without fail take

th. logarith m of it. Entire/all procedure ot dynamic programming can

be for this case constructed directly. As the basis its is put this

selection of conditiona l cp timum contrcl at each step/pitch by which

is con verted into maximum t~e gain at all remaining step/pitches,

equal to the product of gain at this step /p itch and of the already

optimized gain at all subsequent steF/pitc hes.

The fundamental functicnal equatic~ o f d yn amic programming for
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this cas. will tak e the for.:
W~ (S) — max 1w, (S, U,) . W1~ (ç, (S. LI1))), (10.3)

1 U i

p~tbe condition of the opti.u. character of last/Latter step/pttch

will be preserved in the same for. an iiith the additive c r ite r ion :
Wm (S) max lW u. (S, UuJI. (10.4)

Entire/all procedure of dyna.ic programming with multiplica tive

cr~iter ion in no w a y  differs from the usua l, besides the fact that

under the sign of maxi m um stands not the sum , tu t product.

Let us consider one of the typical prcbleiLs of dynam ic

programmin g with multiplicative critericn.

Page 176.

tistribution of means for the increa se of the reliability of

technical equi pmen t/device.

There is the technical equipment/device S, which consists of m
3i. 9,,. 3m

of cell/elements, or node/units A ~see Fig. 3.39). The

failure—free operation of each cell/element is unconditionally

necessary for the work of equipment/device S as a whole.

Cell/elements can reject (go out cf order), moreover

independently of each other. The reliability (probability of
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failure—free operation) o~ entire equi [me n t/device is equal to the

produc t of tb. reliability ot all cell,.I.ements:

P— fl PI.
4— I

where Pi — reliability of the i cell/element..

Avail able are some means K0 ( i n , weight or other moaetary

teras~, wh ich can be used to the increase ci the reliability of

cell/eleme nts.

A quantit y of means X, inserted into the attachments, which

increase the reliability of the i celljelement , leads it to the va lue

p1~~f, (X) . (10.6)

All the functions f1(X) — nondecreasing.

It  is req uired to determine the o~ timua distribution of means

accord ing to cell/elements, wh ich leads to the greatest reliability

of equipme nt/device as a whcle.

Problem is solved by the method ot dynamic programming. Before

ma — proble. with •ultiFlicative criterion. qain at the i step/pitch

p1 — f,( X j ) . where the control X4 — quantity of means, inserte d into the

i celljel.m.mt.

S
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Fun da mental funct ional eq uat~ op takes the tot.:

P4 (Ifl — mix 
~ (X,). Ps + 1 (I ( —X ,)), * 

(10.7)

where P1(K) — a condi t ional opt imum gain, i.e., the maximum

reliability of the equipment /device , ccrprised ci all cell/elements,

beginning with the i-~th and to the n—tb , if after i — the 1st

step/pitch , ~~e., after the provision wit h the means of previous i —

1 cell/ele ments, available remained leans K. Conditional optimum

( co~tro1. at the i step/p itch x, (I () — the quantLty of means at which is

reached th is ma ximum.

As in all problems of distributing the rescurce/lifetimes whe re

the means are expe nd/ccnsuwed to end , and g a i n  — nondecreasing

func tion, optimum cont rol on last/latter step/p itch lies in the fact

that, isolating into this step/pitch of all the remaining means:

(10.8)

In this case, is reached the conditio nal optimum gala , equal to

(10.9)
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S

?ig. 3.39.

sage 177.

By the consecutive application/use of toraula (10.7) for i = m —

1, a — 2, .. ., 2. as ever , we fin d the conda.tio~ai opt i m u m  control s

(K) , ~~
_
~ (K), ... , x,( K)

and conditional optimu , gains

Pm_ i (K), Pm_ p Q(), ... , P,( K).

The first step/pitch in this case is cptiiized not

conditionally, but it is urconditional , since an initial quantity of

means ~~ is assigned:
max 1h (x~).P,(K .— X~)I . (10.10)

O~~~L 4 K .

The control

— x1 (K1),

at which is reached maximum (10.10), and there is unconditiona l

optimum control at the first step/pitch , but P 1(K0) — u n c o n d i t i o n a l

optimum gain . i.e. , maximally attainable by given means the

reliabilit y of equipment/device. Further optimum control is

constructed according to the diagram:

...-~K~ _ — K _ , — x~.. -.~z,,-’I( , “-0.

L~. ~~~~~ .
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11. Infini te—step process of dynamic prcgranming .

£11 problems of the dyramic programmin g which we extaine , until

now , are r e l a t ed  t o  the  prccesses , w h i c h  were being divided into the

finite Mach number of Step/p i tches .  It goes wi thout sayin~j tha t all

the practical problems , ccnnected with glidLng,iplanning of economic

and simila r to the n operaticns , are related to this class — to

plan/glide it flakes sense only to the fij~ite (even very large)

segment of time forward. However , there are the problems, in w h i ch

this section of tine is represented previou sl y not by comp letely

determined , and us it can inte rest the so lu t ion  of the problem of

op ti lu. g l i d i n g/p l a n n i n g  i r r e s p e c t i v e l y  of that , at whict i  precisely

step/pitch the operaticn will be fin ished, in such cases sometimes

there is expedient to consider as the mcdel of phenomenon certain

idealized infinite—step ccn t rol l ed  process , which wi l l  ne ob ta ined

fro. real with • —.. —. This model  is c o n v en i e n t  in t h a t  in i t  there

is of exce ptional on its role “last/latter step/p itch” - all the

step/pitches between themselves are equal , no process in known sense

uniform. ~onditional optimum control in t his process proves to be not

depending on the number of step/pitch, hut uepcnding only on state S

of system $ prior to t h e  b e g i n n i n g  of ste p~ pitch . lt goes without

sa ying that for this it is necessary that the step/pitches would be
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uniform, i.e., the functions , determiniLg income and change in the

state of system under ccntrcl effect, here ror all step/pitches

identical.

Page 178.

One should emp hasize tha t  in u n i f o r m  i n f i n i t e — s t e p  process

identica l for all step/pitches Itove tc be cnl y conditiona l optimum

coiitrols; as concerns unconditiona l optImum control , then it, being

dependent on the state of system , reached to this step/pitch, in the

general case varies frcn one step/pitch to the next.

Let us note that unlike finite—step prcblems , for which optimum

control. al wa ys exists, infirte—step prcblems can and not have

— solution. In order to be convinced of this , let us consi~1er an

elementary example .

Let there be the problem of distributing the resource/lifetimes

with the redundanc y (se e § 6), but with the infinite number of

step/pitches. Mean s X, inserted into production , dive for year income

f(X) and are expen d/consumed tc end. Available is an initial supply

of means K 0, which is required optimally tc distribute on years, so

* as to total income would be maximum. 
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Existence and the form of zolutic~ dep€nds on which form of the

f u n c t i o n  f ( X ) .

Let us assume that this iunct Ion is ccnvex downwar d (Fig. 3.40).

Then it is obvious tha t the optimum sol uticn exists and lies in the

fact that, putting into product ion of all tL~e available means in the

first Year. it is real/actual, let us suppose that we, for example ,

S divided means in half , the first half they jut in production on the

first year. and the second — cm f o l l c w i i ~g yed r .  i t  is obvious , th is

will  be di sadvant~~yeous , sinc. for the com~~.x dcwnward function 1(X)

2/ (I(,’2) </ (K,).

Let us assum e now that funct ion is ccnvex upward (Fig.

3.~~1).

it is obvious that in this case it is ~rofjtable not to pack

into product ion all mean s immediately, but “to stretch” them. For

example, if we, instea d of packing Int c prcauction of all means at

the first step/pitch, is distributed them to tw c step/pitch, then we

will obtain the larger Income:

2/ (K,12)> I (K,) ,

to three step/pitch — still larger , and so torth. With an increase in

th. number of step/pitches, to which are distributed the means ,

inco.e only grown.

— -~~~- ~~~ - —---
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Page 179.

Let us determine limit , to which wil l strive total income wit h

the unlimited increase of the number of step/pitches, into which are

packed the means, and that means that durin~ the simultaneous

decrease of the num ber of mea ns, packe d at each step/pitch.. Let us

assume first that we plan/g lide tc ni of years and each year we pac k

into product ion one and the sa me sum

~X — K ,in*,

an d then let us direct m to infinity, ~ut ~X — to zero. FigureO 3.42

shows that with sufficientl y small tx it is possible to replace

section curved f(X) with the secticn of tangent in the beginning of

co•rdina tes. Then the income, obtained for year , is ap proxima tely

equal to

r (o) AX -~~f’ (0) K~1’I,
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where f’ (0) — a va lue ot the derivative of income in the beginnin g or

coordinate s. In this case, total income during entire period of m of

years will be approximately equa l to

W~~ f ’( 0) I(,. (11.1)

With m — approximate equality (11.1) is converted into

prec ise.

Thus, mu obtained the paradoxical conclusicn/derivation : than

lesser mea ns we pack into pi od uctlon on each year, the fact will more

be income; w ith in  l im it, with n — , will b€ obtained maximum

income (11.1). But if we directly pass to l~.miting case and to place

ax = 0, i.e., not to pack iritc the pr odm c t ion cf any means , then ,

cb viously, and income will he equal to zerc.

This is an ezamp le of the infinte—step prctlem where the optimum

solution doe s not exist. With any final ii it exists and lies in the

fact t hat, packi~~ of means in all stages equally, while with the

infinite numbe r of step/pitches, it ceases to exist.

With setting and solution of infinite— step probl ems by the

thod of d ynamic programming it is alway s necessary to trace a

questicn concerning the existence of scluticn t~

FOOTNOTE ‘ . The conditions for existence of solution in infinite—step
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prob lems ar e examine d, for exam p le, in [10 . hNDFOOTNOTE .

Infinite—step model in ti’e problems of iyr.ami c pro jramm ing in a

series of the cases can render/show simpler than rinite—step. It is P
real/actua l, ins tead  of a s~~~~es of f u n c t l c u a l  eq u at i o n s , solved one

af ter anot her in the usual Frocedure of d ynamic programming, here it

is necessary to solve in all only One the functiona l equation for a

conditiona l optimu m gain , suitable fcr any step/pitch.

Let us register this ori y tunctio~ al equation. 
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Pig. 3.42.

Page 180.

Let the infinite—step contrclled process occur in the paysical system

S; let us designat e S — state of this system after some (any)

step/pitch. Under the effect of ccntrol U, systen $ for the next
step/pitch passes into the new state S’, which depends on past state

S and the used control U:

S’ =ç (S, U).

For this step/pitch we obtain gair (income) w, also depending on

Sand U:
w— f (S , U).

The n it is possible to wr i t e bas ic  f u n c t i cn a i .  equa t ion  f o r

inf ini te—step problem in the form:
W (S) — max ~f (S, If) + V ~*p (S, U)) }, (11.2)

where W (S) — the conditional maximum gain which can be obt ained ,

managing system , which is found in state S. In Equation (11.2) W(S) —

only unknown function; remaining func ticns (0 , f) are given ones.

--.---- -~~
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Conditiona l optim.i m control u (S) — the control at which is reached

maximum (11.2).

In some simplest problems succeeds in selecting function i (S) so

that it would satisfy equaticn (11.2). The general. method s of the

analytical solutio n of functional equations do not exist. In cases

when it is impossible to select functic~i W (S), that satisfies

¶ equation (11.2), they rescrt tc approximate solution of this

equation. For this, can be uscd the method cf successive

approximations, which consists of following: is solved the problem of

dynamic  programmin g for fin al, con ti n u a l l y  cf t he increas in g nu mber

of step/pitches m; if scluticn exists, the n with increase m of

func tion W,(S) and u1(S), t ha t  de t e rm ine  condit iona l o p t i m u m  ga in

and condit ional optimum contrcl for the step/pitches, are sufficient

distast from end, they are stabil ize d , a p p r o a c h i n g  appropr ia te  b y

functions W (S) and U( S)  for  i n f i n i t e — s t e p  process , as whic h they can

be approximately undertaken.

In conclusion let us note that the infinite—step prob lems of

dyi~amic proqa~~mming can be obtained not only because of the u n l i m i ted

increase in the nu mber of step/pitches at the assigned len gth of each

step/pitch , but also because of the unlimited cecrease of the length

of step/pitch £t, when discrete step by step ccntrol passes in to

coot in uous. Such problems are fairly cc.p lica ted, and we will not be

on the m stopped.

LL -
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Page 181.

~ . SIMULATION OF OPERATIONS ACCORDING TO THE
PATTERN OF MARKOVIAN PROCESSES .

1.. The Markovian process S by discrete states.

Many operations, which it is necessary to analyze at the visual

angle of the selection of optimu m solution, are developed as random

processes, course and issue of which depend on a series of the random

factors, accom pany ing these operat ions..

In order to compute the numer ical parameters, which cha rac terize

the efficiency of such opera ticns, it is necessary to coastruct

certain probabilistic model of phenomencn, which considers its

accompanying rando m factors.

For the mathematical description Cf many operations, whic h

develop in the for m of random process, can ce successfully used the

mathematical appar atus, worked out in the probability theory for the

so—cal led f iark ovian processes. 
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Let us explain the concept of the Markovian process.

Let there be certain ph ysical system C whcse state varies in the

course of time (under system S can be understocd anything: technical
equipment/device, repair shop, com puter, railroad junction, etc.). If

the state of system S varies in time by ranUom, previously

unpredicted/unpredictable form , we say that in system C proceeds the
randoa process.

Examples of random processes they can be:

— process of f u n c t i o n in g  of E T s V M 1 9LLBM — digital com pu ter];

— process of guidance to the target/purpose of the guided

missile or space vehicle ;

— process of maintain/serviceing the clients of barbershop or

re pair shop;

— process of the fulfilment of the plan of the supply of the

grcup of enterprises, etc.

•1



r ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ T~ ~
__

~~~z ~~~~~~

DOC = 78068709 PAGE 
3ff9

The concrete/specific/actual COUrSE of each of such processes

depends on a series of the random , previowusly

unpredicte d/unpred ictable factcrs, such as:

— admission of orders by ETsV N and the form or these orders; =

ra ndom output/yields of ET5 V M f r o m  sys tem ;

— the random disturbances (interference) in the system of rocket

coi~trol;

— ran dom character of the flow cf the claims (requirements), of

the catering from the side c l ien ts ;  
- 

-

— ran dom interruptions in the ful f ilment Cf the plan of supply,

etc.

Page 182.

The random pr ocess, which takes place in system 5, is called

~arkov process (or “process w i t h o u t  a f t e r e f f e c t” ) , if it possesses

the following property:

~or each torque/moment of time to probabilit y of any State of

system in the future (with t > t0) depend s cnly on its state in
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pr esent (with t = t0) and dces not depend on that , when and how

system arrived into this state (i.e.. as it was developed process in

the past).

In other words, in the Markovian process its future developme nt

depends only on present state and does not depend on the “prehistory ”

Cf process.

Let us consider an example. Let system S represent technica l
equipment/device, whic h a l r e a d y  s tud ie d ce r t a in  t ime , by

correspond ing form “was worn out” and arrived into certain state,

which was being characterized by the certain degr ee of worn out

nature S. Us it in teres ts, as wi l l  wor k sys tem in the f u t u r e .  It is

clear that, at least in the first ap~ rcxination , the performan ce

characteristics of system in the futurE (failure rate, the necessity

for repair ) depend on the  s tate  of equ i pment/ device  at present

torque/moment and do not depend on that , when and as equipment/device

it achieved its present state.

In practice frequentl y are encountered the random processes,

which, wit h one or the other degree of approximation , can be

considered Markov.

The theory of the Mar kovian p rocesses ~s the at present very

L
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vast section of the  p r ok a b i l i t y t heo ry  w i t h  t he  wide s p e c t r u m  of

d i f fe r ent applicat ion/a ppe nd ices — f r c i r  t he  description ~f physica l

phenomena of the t y p e  of d i f f u s i o n  or m i x i n ~ of charge dur ing

smelting in blast furnace to the processe s of queueing or propagat ion

of the mutation s of genes in biological population. Us wil l interest,

mainly , the applicatio n/uses of theory Cf tx~e Markovian processes to

the construction of the mathematical mcdels of the operati ons , course

and issue of which depends substantially cn random factors.

~t~he Narkovian processes are divided into classes according to

• some sign/criteria, d e p e n d i r y  cn ~~ and a t  wh ich  moment  of t ime

system S can vary  its states.

-4 Random process is called process wit h discrete states , if the

possible states of the sys tem:

SI,  S,, Ss,

can be enumerated (to inde x one after another , and process itself

lies in the fact that from time to time system S a b r u p t l y  ( i n s t a n t l y )

jumps of one state intc ancther.

Page 183 .

- . Example 1.. The t echnica l  equipment/dev ice  S consists of two

assemblies: I and I I , each of w h ich can during the work of
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equipment/device fail (break down) . Are possible the following states

of the system:

— both assembly work;

S~ 
— first assembly failed , the second works;

$3 — second assembly failed , the first works;

S, — both assemblies failed .

The process, whic h takes place of system , lies in the fact that

it randomly, at some moment of time, passes (it jumps) from state

into state. In all the system has four possible states which we will

index. Before us - process wit h discrete states.

Besides processes with discrete stat-es, there are random

processes with the continuous states: for these processes is

characteristic gra dual, smooth transition from state into state. For

example, t he process o f chan g ing the vc ltag€ in lig hting syste m

represents by itself random process with ccntinuous states.

I n  this chap t er we will ex amine only ran dom processes wit h

discre te states.

I 
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During the analysis of random processes with discrete states, it

is very convenient to use geometric pattern — by the so—called

graph/coun t of states. The graph/count cf states geometrically

represents the possible states of system and its allowed transitions

ftc. state into state.

Let there be system S with the discrete states:
S1, Sm, •••‘

We will represent each state as rectanyle , an d allowe d

transitions (“juap/migraticns ”) from state into state — by

rifleman/pointers, who combine these rectany les (Fig. 4.1).

Let us note that by rifleman/pointers are noted only direct

transitions from state into state; if system can pass from state S1

in S3 only through S2, then by riflema n,pointers will be noted only

transitions S1 ~~~~~~~~ S2 and S2 ~~ —3S3< kut not S
~ —p S3.

~
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Example 2. S — truck system which can be located in  one of

the five possible states:

S1 is exact, it works ;

S2—is defective, it exp ects  inspect ion;

5 3 — will be scanne d;

5, — is overhaule d;

L~
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S~~is copied.

The graph/count of the states of system is shown on Pig. • 4.2.

Example 4 3. To construct t he  graph/count of states unde r

• comditions of example 1 (is assumed that the repair of assemblies in

the course of process is nct produce~~,

I
Solution. The graph/count of states is represented in Fig. ~~L

4.3. ~et us note that cn graph/count is not shcwn the allowed

transition f rom state S 1 directly in S, which will be carried out, if

strictly simultaneousl y leave the system both assembly. rhe

possibility of this event we disregard.

Example • 4. System 5, as in example 1, represents technical

eq uipment/device, whic h consists of twc assemblies: I and II: each of

them can at some moment of time refuse. The refused assembly

immediately begins to be restored.
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The possible states of the system:
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S1 — both assembly work;

S2 — first assembly is restored , the second works;

S 3 — first assembly works, the seccud i.s restored;

5, — both assembly are restored.

The graph/count of the states of system is shown on Fig. ~~ 4.4.

Exam p le 5. Under ccnditicrs of example 4 each assembly before

beginning to be restored ,, undergoes inspection for purpose of

localjzation of malfuncticn .

The states of system let us for ccnvenience label not by one,

but by two indices ; the first will indicate the states of the first

assemb ly:

I — wor ks,

2 — will be scanne d,

3 — are restored ;
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the second — the same states for th~ second assembly, so tha t, for

example, S23 will indicate; the first assembly it will be scanned ,

— the second — is restored, and so forth.

The possible states of system S will be:

— both unit work ,

S12 — first unit works, the second will, be scanned,

S33 — both un it are restored.

(a total of 9 states).

The graph/cou nt of states is shcwn on Fi g. ~~ 4. 5.

we”.
2. Random processes ~.—by discrete and by ccntinuous time. Narkov

target/pur pose.

-the method s of the mathematical d€scri~tio~ of the riarkovian

process, which takes place in system with discrete states, depend on

that, at which tor que/moments of tine — previously known or ra ndom —
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can ~~cur the transitions (“jump/migrations ”) of system from state

into state.

random process is called process wit h discrete time, if the
I...transitions of system from state into state are possible only at the

strictly defined , previously fixedjreccrded moment of tne time : t1,

In time intervals between thes€ tcrque/moments system $
retains its state.

~andom process is called process wit h continuous time, if the

transition of system frcm state into state is feasible in the any, in

ad vance un known , random moment t.

Let us consider first of all the ilarkcvian process with discrete

states and discret e time.

Let there be the physical system S, which can be located in the

states:
81, 8,, ... , 8,,

moreover the transitions (“jump/migration s”) of system from state

into state cart are possible only at the torque/moments:

ti, 6. •••‘

Let us call these torque/moments the “step/pitches” ~r by the

“stages” of process and examin e the rando m process, w h ich occurs in

- - •  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- - system 3 as function of the integral argument : 1, 2, ...,

(num ber of step/pitch).

Page 186.

The random process, which occurs of system , lies in the fact

that at successive moments cf time t,, t2, t3, ..., system S prove s

to be in one or the other states, behaving, for exam ple, as follows:

S1_ S ,+S1_+S4 *S~÷S1 4~~ 
-

or -

S1 —+ S~ -4, S1 ~~~~ S1 —4’ S$ P’ S4 —+ S1 —s’

In general case at torque/moments t1, t2, ... system can not
• cnly vary state, but also remain in pre vious, fcr example :

Let us agree to designate S,’m~ the event , which con sis ts of the

fact that after k of step/pitches the system is in state S1. With any

k ‘of the event

S1(*), ST(1), ... , S,(~), ..., S~
(
~’

is formed full/tot al/complete group and are

incompatib le/incon sistent .

Th e process, which  occurs in system, can be presented as

sequence (chain/network) Cf the events, fo~ example :

5J 40) , 5~( I), 5~I2), S,(3~, ~~~

---— -
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This random sequence of e vents is called Narkov chain, if for

each step/pitch t r ans i t i ona l  p roba b i l i t y  ftom any state S~ into any

8, does not depen d on that , when and a~ system it arrived into state

S..

We will describe Markov chain wit h the help of the so—called

probabilit ies of states. Let at the any moment ot t ime (after any, k

step/pitch) system S can be in one. of the states:

S1, S~, .. .,

i.e. it wi ll be carrie d out one of the tSll/total/complete group of

th. antithetical events:

S111), SIll), ..., ~~~

- -
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Let us designate th. pzobabjlities of these even ts:
P1 (I) P(S,’~ ); ~1(l) P(S,’~ ); ...: p , ( I) P(S~ ’) )

— probabilit y af ter the first step/pitch,

p1 (2)—P (S,lI1); p,(2) P(5 11)); ...; p,, (2) P (S,,”)) (2.1)

— probability after the ~it’cond ste1-/p itch; and  qener~il 1y ~ tter the k

step/pitch :

p
~ (*9 

P (S1~~); p1 (k) — P(S,fk)); ... ; p,, (*9 — P (S,~
(
~~). (2.2)

It is easy to sew that for each numb er of st~ p/pitc~t k

since this — the probabi lity of incomp atible evCflt~;, which for m

fu l l/ t otal /complet e g r oup.

Let us call t h e  p robabi l i t ies

-p
~ (*9, p, (k), ..., i;~ 

(k

~S
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th. probabilities of states; l tt  us assign the mission: to find th~

probabilities of the states ot ~y.item Icr any k.

I
tt is represented the state of system ~n the tor n of giaph/count

(Fig. 14.6) • where the pointers showed ~cssiL~le t ra n s i t ion s  of sy s t em

• fro. state into state for cne step/pitch.

Ran dom process ( F l a r k o v  c h a i n)  can ~e visualized in the manner

that as if the point, which re~ resents systdm S. randoml y move s ( i t

94 Loans) on the graph of st~ tts , jumpiny from state into state at

torque/moments t1, t2, .. .,  and Some timE s (in the general case~ and

bein .j detained som e n u m b e t  ct step/pitche s in one and the same state.

For exampl e, the sequence of the transitions

it is possible to represent on th~i jra~ h/count of state .~ ~s seg uence~

- F ot differe nt posit ions ot the ~oint (sc€ broken pointers,

representing transitions tLom stat e intc state in Fig. 4.7). The

“delay ” of system in state S2 on t h i c d  stage is depicteJ by the

arrow/pointer, out goin q trom state S~ and to it returning .

LA - -
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For any step/pitch (torque/moment of tine 4, 1,. ... , t~, ... or

number 1, 2, ..., k, ...) exist some the transitional probabilitie s

of system from any state into any another (some of t hem are equal to

zero , if direct  t r a n s i t i o n  fo r  one step ~~p i t c h  is impossible) , and

also the probabil i ty of the delay of system in this state.

Let us call t hese Frchabiiiti€ s the transient p r o bab i l i t i e s

Markov chain.

Markov chain is called unifor m, if transient probabilitie s do

not d epend on the number ot step/pitch. Otherwise Narkov chain is

called heterogeneous.

- -
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Let us consider first usifota Nsrkov chain. Let cyst. . S ha ve n

of possibl, stat.. ‘S1,S,....,S~. let nn assume tha t for each state

to us is kno wn transit ional pr obabili ty into any other sta te for  one

atop/pitch (including the probability of delay in this state). Let us

~.aignat. p,, tram sitioaal probability for one step/pitch of state

S~ of state S,;P~ it viii be the p r c t a b i l i t y  of the delay of

system in state S1. Let us registe r transient probabiliti es P 11 in

th. for m of rect amg*lar array (matr ix/die) : 

P11 P1. ... pu •..

P$* P1, ... P1., ...
• l~uI . (2.3)

I) 1 • ‘ (1

Pill P r4$ ... P ,,4J .~~ P ,,,,

Some of the trassient çrobabiliti .a P,~ can be equal to zero:

th is means that for one step/pitch t~e transition of syste m of the i

state into the j—th is impossible. Alo~ g the principal diagona l of

th. matrix/die of transient probabili t ies , sta nd the probabilities

P u of the fact that the system will not leave the state 8,, but it

sill remain in it.

usimg introdu ced above •vest s Sr. s~, ..., s?>, tra nsi.at

• p~•hsbilities P ,, can be registered as coaditio~~l probabilities;
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Hence it follows that the Sum of the terms, which stand of each

of bu ildings of matrix/die (2.3), must be equal to unity, since, in

whatever state the system was before th€ k ste~/pitch , events

were incompatible/inconsistEnt and form

full/total,’co.plete group.

In the examination Markov chains, frequently it is to con venient

use the graph/coun t of states, on whom Cf arrow/pointers are written

the corresponding transiticn probabilities (see Fig. 14.8).. This

graph/count we will call the “labeled graph/count of states”.

Let us no te t ha t in Fig. LLR are written not all tr~ansie~ t

probabilities, but onl y those of the., that are not equal to zero and

vary the state of system , i.e., P 1i wi t h i 
~ j; “probability of

• 

• 1!
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I
delay’ P11, P~~ , ... to enter/write cn graph/ccun t is excessive,
since each of t hem s u p p l e m e n t s  to  u n i t y  t h e  su m  of the t r a n s i e n t

probab ilities, which correspon d to all arrcv/pcinters, waich proceed

fro. this state. For exam~ l€, for the graph of Fig. 14.8

= 1—(Pj.+ P11), P~ - 1 — (P~+P.~~ p~),Pie
P•1~~ I—P ,,.

If from state S1 proceeds not one arrow/~ cinters (transition

from it not into which anctFer state it is impossible), the

correspond ing probability of delay ~~H it is equal to unity.

Having available the labeled graph,count Ct states (or, that

e q u i v a l e n t l y ,  the matrix /die of transient piobabilities) and knowing

the initia l state of system , jt jS possible to find the probabilities

of the  states
• • P1 (k). p 1(k), ...-, p 11 (k) -

after any (k—tb)  s t e p/p i tch .

Let us show how that is made.

Let us  assume t h a t  at the  i n i t i a l  moment (before the first

step/pitch ) the sys tem is in some specific state, for example ,

• Thin, for initial moment (0) we a re  have:

Pi (0) 0; p, (0) —0;...; p,,, (0) 1;...; p~ (0) —0,

i.e. the probabi l i ty  of al l  states are equal  tc zero, besides the

IA
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probabilit y of i n i tial  state s,,.. which is equal to unity .

Let us f i n d  t h e  probabilities of states after the first

step/pitch. We know that before the first step/pi tch the system

knowingly is in st ate SM. That means that for the first step/pitch it

will pass in t~ ’-states Sl,S*. ...,S a,, .... SN with the probabilities

Prill’ PUPI, ..., P r4r4~. . l  ~~~
thcse registered i~ the . m at r i x  tO~~ of t r ans ien t  probabil i t ies.

Thus, the probabilities of £tat~s af ter the f i rst  step/pitch wil l  be:

Pa (1) — P,1; ~ (1) P,,,, ; ... p
~ (1) — P,,,,,1;...; p

~ (1) == ~~~~~ (2.4)

Page 190.

Let us find the probabilities of states after the second

step/pitch :

Pi (2), p1(2),..., p1 (2), ... , pr4 (2).

Let us com pute the. according to the formula of composite 
-

-

probability, wi th  the  h yp o t h e s e s :

— after the first step /pitch system was in state S 1, ;

— after the first step/pitch system was in state S2; 
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— after the first step,’j~itch system will be in state S,;

— after the first step,pitch system will be in state ‘~s•

The probabilities of hypotheses are known (see (2.14)) ; the

conditiona l probabilities of transitior intc state S, wit h each

hyp othes is are als o k n o w n  ar d  reg is te re d in the  ma t r ix/ d ie  of

transient probabilities.. C~i th e fo r m u la of compcsite probability, we

will obt ain:

p ,( 2 ) —p  ( 1) P u +P , (3) Pp + ... +p n ( I ) P ,,s:

p , (2) —p ~ ( I ) P1, +p.(I) + ... +I’* (I) P,1; (2.5)

or, it is much shorter ,

p, (2) ‘.! p,(1) P,, (1—1,..., n). (2.6)

j n  formula (2.6) the addition e x t e n d s  f o r m a l l y  t o  all  s ta tes

S,, ..., S~; . to ac tua l ly  cons ider  is necessary on l y  those of t h e m , fo r

wh ich transien t probabilities P ,~ are diffe r ent from zero , i. e.,

those st ates f rom whic h can be comp leted the ttansition into state

S1 (or de lay  in i t ) .

Thus, the pr3babilities of states aftei the second step/pitch

I.- -_ — _ k A
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are known. It is obvious, after the third step/pitch they are

de te rmined  ana logously:
(27)

and ~~merally after the I step/pitch:

P1(k) — P, (k—i) Pg, (1 —1 . ... , n). (2.8)

Thus, th. pro babilit ies of states p , (k) after the I step/pitch

are determined by recursion formula (2.E) through the probabilitie s

of states from (SI — 1) step ; those, in  t u r n , — through the

probabi l i t ies  of s ta tes  a f te r  (k — 1) step and , etc.

Page 191.

Example 1. On some target/purpose is ccnducted shooting four

shots at t he  momen t of t i m e  t 1, t2, t3, t,.

The possible s ta tes  of t a r y e tj p u r p c s e  ( sys te m S):

S 1 — target/purpose is unharmed ;

S2 — target/purpose i~ insignificantl y injured ;

S3 — target/purpose will obtain essential damages;

S4 — target/purpose is completely struck (it cannot funct ion)

- -±
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The labeled graph/count ot the states of system is shown cn Fig.

~~~~

At initial moment tar gct/purpcs€ is Iccated in states S1 (it is

not i n j u r e d ) . To d e t e r m i n e  the probati1iti€~ ot the states of

t a rge t/pu r pose a f t e r  t o u r  shots .

Solution.. From the graph ox states we have :

P~~~ O,4~ P,~=0,2j P11—0,l and ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Analogo usly w e f ie d :

P1,—0 Pu~~O,4; p
~~~0,4; P11—0,2~

P 1~~ 0 ~~~~~~ P ,—0,3; P11, =0,7~
P~~~0 P~ =0~ P~~=O P,=I.

Thu s, the matrix/die ct transient ~robabilities ta&es the form:
0,3 0,4 0,2 0,1
0 0,4 0,4 0,2

IP I—“~ 0 0 0,3 0 ,7
0 0 0  I

Since at the initial moment target/pur [cse S is located in sta te

then

The probabilities of states after the first step/pitc h (shot)

are t ak en  from the first m atrix row -

A (I)—o.3; p,(I) O.4; p ,(I)—O,2 ~ ( l ) — 0 ,I.

Probabilities of states after the second step/pitch:

pl(’)—p g (I)Pu+A (1)P 0,30,4+O,4 O ,4 ” ~~~~
A (2)=p~, (I) P~ 4-P (I) P.,+p, (I) P.~~0,3.0,2+0.4.0,4+0,2.0,3— 0,28;

F. (2) .ui p~ (I) P~~+F.(I) P .+F, (I) P,,+ p.(I) P..

=0,J.0,I+O,4.0,2+O,2.0,7+O,I.I’.O,35.
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Probabilities of states after the third step/pitch:
p1 t3)—p, (2) P 11 _ 0.0Y.0.3 .ui~~~ 7,
p,(3)=p,(2)P,,+p1(2)P,,.0.09.0,4.4-0,28.0.4_0,)43

p , (3) —p 1 (2) P,,+p 1 (2) P,s+ p s (2) P,,
0,09.0,2+0.28.O,4~~o.~8.q,3...q,~ 4.

p, (3)= p 1 (2) P 11, + P~ (2) P~ + P3 (2) P~ + p~ (2) P~ .1.
—Q,09.0,1+O.28.O,2+O,28.0.7+0.35.J

Proba bilities of states after the toutth step/pitch:

Pe (4) —‘ p~ (3) P~ — 0.~~~
p~ (4)— p, (3) P..+p3 (3) P~ =0,2l0.4 +0.148.0.4 — 0,0700.
p, (4)—p 1 (3) P 11+p 3 (3) Pn+p , (3) P 33

0,027.0,2+O.)48.O.4+Q,214.0,3 — 0.L288;

p4(4) p,(3)P11+p, (3) P~, ‘r P, (3) Pc+P ~ (3) Pi.
0•02?.0,l +0,148.0.2+0.214 .0,7+0.611.1 — n~~~~ .

Thu s, you obtained the pro~ abiliti€s of all issues of the

bombardmen t of target,/purpcse (tour shcts) :

-
. — target/purpose is not injured: p1L14) z 0.008;

S
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— target/purpose will cbtain the insignificant damages : p2(4) z

C.070;

— tar get/purpose will cbtain the essential d~ma~jes: p~~(4) ~ 
-

0.129;

~~

— tar get/purpose was struck comp letely: ~~4 ( 4 )~~ 0.793.

We considered the unifcrm I~arkov chain , for which transitional

probabilities from one step/pitch to the next dc not vary.

Let us consider now the general case — heterogeneous Markov

chain for which the prokabilities of transition P1, vary from one

step/pitch to the next. Let us designate p~ 
— the transitional

probabilit y of system from 5tate S1 into state S, at the I

st ep/pitch, i. e., the conditiona l probability
p~~=p (s~*) ,sik_~).

Let us assume that to us are assigned the matrix/dies of

transitiosa]. probability at each step/p itch. ~rb€n the probability of

the fact that system S after I of the step,’~itches will ~e located in
state S1, it will be expressed by the foraula:

. p 1 (k) =~ ’p 1( k — I ) P ~~ (i= 1 , ..., n), (2.9)
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which it differs from analogous formula (2..~) for the unifor m Markov

chain Only by the fact that in it they figure transitional

proba bilit ies, which depend on the riumt€r cf step/pitch I.

Calculatio ns on formula (2..~) not a bit are not more complex than in

the case of unifor m circuit.

Page 193.

Examp le ~~ 2. Are prodt~ced three shots on the target/purpose

which can be into the sane four states ~~~~~~~ S~ , S3. S4, as in previous

-
, example , but transitional probability fcr three consecutive shots are

different and assigned by three matrix/dies:

0,3 0,4 0.2 0,1
0 0,4 0.4 0,2
0 0 0,3 0.7
0 0 0 I

0,1 0.4 0.3 0,2
0 0,2 0,5 0.3

‘ ~ 0 0 0,2 0.8 ’

0 0 0 1

0,05 0.3 0.4 0,25
0 0.1 0.6 0,3

1i I 1 0 0 0.1 0.9
0 0 0 1

A t initial moment targetjpurpøse is located in state S1. To find

the probabilities of states after three shcts.

Solution. We have :

IA
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p1(I)=0.3; p~(I)—O ,4; p ,( I)= O,2: p,(1)—011;

p1 2)_pi(t)PHO,3.0.I
...0s0&

p5 (2)=p1(I) PS~~+P,( I )PW =0.3 0.4 0,4.0,2 = 0.20;

1; p~ (2).. p 1 (1) PS
~ 
+P1 (I) P~] + P1 (1) PW

=0.3.0.3+0.4.0.5+0.2.0.2..0.33;

p4(2)~~p 1 (I) P~~+P3 ( I ) P~~+P5(1)P
~
’i
1 P,+’J) P~~ =0,3 0,2 +

p1 (3).. p1 (2) P~~ ..0.030,05 0.002;

p 1 ( 3 )_p j (2) P~~~+p s (2) P~] 0 .030.3+0.2 0 0..I ~~~~

p5 (3).. p (2) ~W + p, (2) p~33) + p, (2) P~~ =
=O.3.0.4+0,20.0.6+0.330,I =0.165;

p~ (3)— p~ (2) P~~ + p1 (2) p~34) + p 5 (2) p~;
i
4
) + P 4 (2) p~

) —

_0,03.0.25+0.20.0.3+0 33.0.9+0.44.1 
~~~~~~~~~~~~~~

Thus , the probabilit y cf states afte r three shots:

P~(3)~~ 0.
QO2; p, (3)—Q,O29; p,(3)=Q, 165; p, (3)~~ 0,804.

~~~~~
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3. Markov process with discrete states and continuous time . Equations

of Ko.l.ogorov for the probabilities of states.

Zn the previo us paragraph we exa.ined flarkov chain , i.e. , the

ra~dom precess, taking place in the system which randomly can pass

from State into state only at some previously specific,

fi xed/reco rd ed •o•ent of time.

In practice considerably more frequently are encountered the

situations when the transitions of system from state into state occur

not into those fix/recorded, but at the random •oment of time whic h

to pr.viously indicate is impossible — transition it can be carried

out, generally speaking, at any moment. ~or example , breakdown

(failure) of any cell/element of eguipmeiit can occur at the any

•ouent of tie.; the termination of the repair (restoratioa/red uction)

of this cell/eleme nt a lso can occur into previously the not fixed

tOrque/moment, etc.

-- ~~~~~~-
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For describing such processes in a series of the cases, can be

saccessfully used the diagra, of the Narkovian process ~ by discrete

states and continuous t ime , which we will Lot brevity call continuous

~arkov chain.

Let us show how are expressed the probabilities of states for

this process.

Let there be a s.ri .a of th. discret e states:

S1. S,,..., 5,,;
the transition (jump/aiqrat ioa) of syst.m S from stat e into state can

be realize d at the any moment of time. The graph/count of the states

of syste. is re pre sented in Fig.

I~’1~,t s~~~~~~~~:

/ , . . S S S S

r,~. ~~~~~~~~~~~~~
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Page 195. —

Let Us designate p,(i) — probability that at torque/mo ment t

system s will be located able & (1. — 1, ... , n). It is obvious, for

any moment t, the sum of the probabili ties of states is equal to one:

(3.1)

simce the •v•ats, which consist of the fact that at torgue/mom ent t

the system is in states S3, S5. ... , S,~. at.

incompatible/inconsistent and form fsll,lt otal /c .plete group.

-
~ Let us assign mission — to determine for any t of the

probabilit y of the states :

p,(t), p,(1), ... , p,(t).

For finding of these probabilities, it is necessary to know the

characteristics of process, analogous to transient probabilities for

Narkov chain. In the case of process with contiiuous time for us it

is not necessary to assign those defined, different fro. zero,

transient probabilities ~~ the probabilit y of transiting

(jump/migrat ion) the system fr om state iiito state accurately at
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torque/moment t will be equal to zero (just as the probability of any

se pa ra te value of coatin sous ran dom variable) . Instea d of transient

prebab ilit ies P., we will introd ece into th. e xamination of the

probabilit y densit y of transition ~.•,•

Let system S at tor que /moment t is be in state S.. ~et ma

co nsider the elementar y time interval At, which adjoin. tor les/uo.ent

t (Fig. 4.11).

Let us name the  probabili ty density of transit ion I,, the limit

of relation the t ransi t ional  probabil ity of system for ti.. At fro m

stat. S~ into sta te S, to th. length of iaterval/pap It:
Pt, (s ’)

(3.2)
£,..O £1

wh ere P,1(M). — Fobability that the system, which was being located

at torqae/ .o.ent t in stat. S1, for time At will pas~ from it into

sta te~~(probab ility densit y of tra nsition it is deter mined only for j

ti ) . -

From formula (3.2) it follows that with small At the probability

of tr snsitioa P 11(1~I) (with an •cc.racy to infi nitesimal higher

or ders) is egmal to ~~~~

P1, (As) ~ ~~ Al.

If all the probability densities of transition 7 ., do sot depend
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on t (i.e. fro. th at , at which torque/moment it begins elementary

sect ion It), flarkov process is called uii~~or.; if these 4.nsities

represent by themselves some fun ct ions of time l~(l), proce ss it is

called heterogeneous. P
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at

C

Fig. 4.11.

Page 96.

~jth the use of the abbreviated name ~co~tiuuous Nar kov chaim ” we

• also will distingu ish uniform and heterog eneous circui ts.

Let es assume that to us are knowp to the probability density of
transition 7,, for all pairs of states S,, S,.

Let us construct the graph/count of the states of system S and

against each arrow/pointer will write the appropriate probability

d.~sity of transition (Fig. 4.12).

This graph/count, with the writtei of arrow/pointers probability

densities of trans itio n, we mill call the labeled graph /count of
states .
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It proves to be, knowing the labeled graph/count of sta tes, it

is po.sible to def ine the probabilities of the states:

P1 (1) , Pi (I). ..., P~. (1) (3.3)

as fuections of ti me. Wa mely . these proba bilities sat isfy the

sp.cific form of differential equations, the so—called equations of

Kolmog or ov. Solving these equations , we will  obtain probabilit ies

‘3 % .

‘ • I.

Let us demonstrate the methodology of the derivatiom of the

equations of Kolmogorov for the probabilit ies of states based on

specific example.

Let a pat.. S have four possible states:

S1. S~, S1, S,;

the lab .l.d gra ph/coast of the states of system is show n on Pi g.

‘4. 13.

let us assign to itself the missicn : to f ind  one of the

probabilities of the states , for exa mpl e ,~ p 1 ( t ) .  This be pro babili t y

that at torque/moment t the system will be located able S 1.

Let us give t a small increase ~t and will find prob a bility that

at torgue/mossut t . At the system wil l  be it is located a ble S1.

I.. this event it cam ooasr ?

I
_ _ _  -~~~~ — --  

~
ij
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It is obvious, by two methods:

— at torq ue/moment t system was already abl• S1, but for ties
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At , it did not lea ve this state or

— at torque/moment t system was with state S,, but for time at,

it passed from it into S1.

The probability of the fitst version let us f in d as product of

probability p, (t) that that at tor que/cement t the system was able

S1~ to conditional probability that, being in state s1, sy stem for
time At it will not pass from it into s~ , This conditional
probability (with an accuracy to infinitesimal higher orders) is

eq ual to I — ) 151t.

It is analogous , the probability of the second version is equal

to the probability of the fact that at torque/moment t the system was

able S, m ultiplie d by the conditional probability of transition fot

time It i~ to state S~: (l) )~~Al

&nploying the rule of addition of probabilities, we ebtain:

Pi(1 + M) ‘Pi (l)(l —~~~~~ Al)+p . (1) X, Al.

Let es discover brackets in right side let us transfer p1(t)

into 1.1 t and let us divide both parts of the equality on At; we will

obtain:

p,(~+AI)—.~,IV )

low let us direct At to zero and •il& pass to th, limit:

urn Pt (1+ 4)~~ PI (~ _ —),.. p~(l) + )b~• p$ (I).&
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Left side is nothing else but derivative p1(t):

(3.4)

Thus, deduced differential equatics which must satisfy funct ion

p, (t) .. Analogous d ifferen tial equations can be deduced, also, for the

remaining probabilities of the state: p2(t), p,(t), p4(t).

Let us consid er the  second state S~ and will find p5(t • At) —

tk. ~~obability of the fact that at torque/moment (t • At) system S

will be located able S5. This event can occur by the following

methods:

— at torgue/m oment t system was already able S5. but for time

At . it passed from it either in S, or in 5,;

— at torqu e/momen t t system was able S1. but f or time At , it

passed from it int o S5; or

— at torque/moment t system was able 5,, but for tii. At, it

passe4 fro m it into S5.
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The probability of the first version is computed as follows:

p5 (t) it is multiplied by conditional probability that the sys tem

after At will pass either in 5 3 or in S,.

Page 198. -

Sj-flce the events, which consist of transition for time At of S5 of 53

and of S5 of s,, are incompatible/inconsistent, then is probability

that to be carried out one of these transitions, is equal to the sup

of their probabilities, i.e., A53At • A5~6t (with an accuracy to

infinitesimal higher orders). Probability that will be carried out

uct one their these transitions, is equal to 1 — k 23 &t— ) 5, At. Hence

the probability of the first version:

Adjoining here the probabilit y of the second and third versions,

me will obtaim: -

+P1 (t)~~ A1+P.(t)X ,s&

Transferring p~ (t) to left side, Dale o~ At and passing to limit, we

will obtain differential equation for p 5(t) :

v.—. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~ (1). (3.5)

Discussing analogously f or states S~ , 5,, we will obtain as a

result the system of the differe ntia l equations , comprised according



7’

DCC a 78068710 PAGE 1~3?~.

to type (3 .4) and (3.5). Let US reject/throw in them for brevi ty

argument t of func tions Pa’ Pa. Pi, p, and will rewrite this system

in the form: -

d.fl = i ._ ;411p 1 +x,1 P,.

—
~~~~ ~~~~~~~~ ~~~ Pi + ~ 42 P4’

a (3.6)
-~~~ —~~ii P, ~~~~~~ Ps + ~‘ss P2’

These equations for the probabilities of states are called the

• equati ons of kol.ogorov.

Integ ration of this system of equstioms will give to us the

unknown probabilit ies states as of fun ct1~on of time. Initial

conditions are taken depending on was ho w - the  initial state of system

S. For exa mple , if at zero time (wit h t = 0) system S was in state

S1. then it is nec essary to take the initial co;ditions:

wit h 1-0 Pi =”  p ,=p 5 =p ~”O.

I-
Let us note t hat all fcur equations for P~. p~, p,, p, it wou ld

be possibl. and not to write; real/actuaLly, p~ 1 p5 a p~ a p, 1

for all t, and any of the probabilities Pi’ p~, p,. p, it is possi ble
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to express by t hre e ot hers. Pot example p, it is possible to express

by Ps-, p~, p., ii the fot .

P~~~~I— ( P i  +P~+Ps)

and to substit ite in t~ e re maimtu g .q.atk o~s.

Page 199.

Then special equation for probability p, it is possible and not to

write. However, subsequently to us it will more conveniently use the

full/t otal/complet e system of equations of type (3.6) .

Let us focus attention on the structure of equations (3.6). They

all are constructed according to the completely specific rule which

can be for mulated as follows.

On the left side of each equation is the derivative of the

probability of state, an d right side contains as many member s, as

arrow/pointers are connected with this state. If arrow/pointer is

directed f rom state , the corresponding ter m has a sign “N inus; ” if in

state — positive sign. Each term is equal to the product of the

probability densit y of transition, which corresponds to this

arrow/pointer, multiplied to the probability of that state fro m wh ich

proceeds the arrow/pointer.
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This rule of the compçsition of differential equations for the

pr~obabilities of states is common/general/total and it is correct for

•1 any continuous Narkov chain; with its aid it is possible completely

mechanically, with out any reasonings, to record/write the

differential equations for the probabilities of states it is direct

on the labeled graph/count of states.

Example. The labeled graph/count of the states of system S takes

the form shown on Pig. 4. 14. To write the system of the differential

equations of Kol mogorov and initial conditions for the solution of

this system , if it is known that at the initial moment the syste. is

in state S 1.

Solution. The system of equations of Kolmogorow takes the form:

a

-

~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Initial conditions: A

with ~ • •, p~ • 1. p~ a • • p. a

S
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Page 200.

4. Plow of events the simplest flow and of its property.

-
‘ In the exa mi nation of the random processes, which take place in

systems with discrete states and cont inuous  tin., frequently it is

necessary to meet the so-called “flows of events ”.

The flow of u vent s is called the sequence of the uni f orm •vent s,j
following one after anqther into some, generally speaking, random
moments of time.

S
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Examp les they can be:

— flow of calls at exchange ;

— the flow of the inclusions of inst r uments in everyda y electri c

system;

— the flow of the cargo compositions, which enter railroa d

station,

— th. flow of th. malfunctions (short duration failures) of

computer

— th. flow of the shot s, directed to target /purpose and , etc.

in the examination of the processes, which take place in system

with d iscrete states and continuous time, frequently there is to

convenient visualize the process iii the manner that as if the

transitiop s of system from state into state occur under the action of -

some flows of events ( f low of calls, the flow of malfunctions, the

• flew of claims f or main tenance , the flow of visitors, etc.).

Therefore has sense to examine in more detail the flows of events and

their property.

~~~ ~~~~ - - -
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Let us represent the f low of events as the sequence of points on

time axis Ot (Fig. 4.15) . Usin g this image , it is sot necessar y to

-: forget, that the position of each point o~ the axis of abscissas is

random..

The f low of e vents is called regu lar , if events follow one

anuther through strict specific interval of til.. This flow

co.paratively rarely is encountered in practice, but represents a

definite interest as limiting case.

Durin g operat ions research, more frequently it is necessary to

meet the flows of the events, for whic h and the torque/moments of

occurrence of an event and time intervals between the m are random.

In this paragraph we will consider the flows of events, which

possess some especially simple properties. For this, let us introduce

a series of determinations.

1. Flow of events is called staticnary , if hit probabil it y of

one or the other number of event s to secticn of time of long v (Fig.

4. 15) depends only on length of section and does not depen d upon

where precisely on axis Ot is arrange/locatEd this s ctioa.

r,-
~~. ~~~~
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2. Flow of events is called flow without aftereffect, if for any

nonintersecting sections of time numbe z of events, which fall to one

of them, doe s not depend on that, how man y events hit to another (or

others, if is examined more than two s€ctjcns).

3. Flow of ev ents is called ordinary ,  if hit probability to

elementary section of two or more events is negligible in comparison

with hit probability of one event..

Let us examine in more detail these three properties of flows

and will look, to which physical conditions the y correspond and

because of what can be broken,

The stability of flow indicates its uniformity on the time: the

probabilistic characteristics of this flow must not vary depending on

time. In particular, the so-called intensity (or “density”) of the

flow of events — the average number of events per unit t ime  — for a
stationary flow must remain constant. This, it goes without saying,

not that means tha t the actual number of events, which appear per

unit  time, constantly — no, flow can have local condensation and

re solutions. It is important that for a st at ionary flow these

condensation and evacuation ,’rarefactions. It is important that for a

_ _ _ _ _ _ _ _ _ _ _ _ __ _
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stationary flow these ccndensation and evacuation/rarefact ions do not

bear regular character, but the average number of events, which fall

to the sii gle sect ion of time, rem ains constant for entire considered

period.

In practice frequently are encountered the flows of the e vents

wh ich (at least, on the limited section of time) can be considered as

stationary. For example, the f low of the calls, which enter exchange,

let us say, that in range from 12 to 13 hours , it can be considere d

stationary. The same flow during whole days will be no longer

stationary (by nig ht the intensity of flow of calls is much less than

in th. daytime) . Let us note that so Ja is the matter also with the
• ma jority of the ph ysical processes whic1~ we call “stationary ” — in

actuality they are stationary Only on the limited section of time,

and the propagatio n of this section to infinity — only the con venient

method , used for the purpose of simplification.

The absence of aftereffect in flow scans that the events, which 1
form flow, appear at successive moments of time independently of each

ot her~ For example , the flow of the pass.qgers, entering to metro

station, can be considered flow without aftereffect, because the

F reasons, which sti pula ted separate pass,nger ’s arrival precisely at

given torque/moment, but not into other, as a rule, are not connected

with analogous rea sons for other passengers. I t this depen de nce

S
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appears, the condition of the absence of aftereffect proves to be

broken.

Let us consid er, for example, the flow of the freight trains,

which go over the siding. If , according to safety conditions, they

cei~not follow one another more frequently tha n through the time

interval v 0, then between events in flow there is dependence, and the

condition of the a bsence of aftereffect is broken. If interval 
~~0 is

small in comparisç n with the average/mean interval between trains v,

this disturbance/breakdown is une ssential, but if interval ,‘
~~ 

we

co.par e with , it it is necessary to consider.

• Page 202.

The ordinariness of flow eans that the events in flow come one

by one, bet not by pairs, by sets of three, etc. For example, the

flow of the clients, wh o are directed for barbershop, virtuall y can

be considered as ordinary, what it is canqot about the f low of the

cl ients, directed to ZAGS Ccivil registry office ] for

record ing the reject. The flow of the attacks of destroyers on

bomber, wh ich is located above enemy teiritory . is ordinar y, if they

attack target/purpose one by one, and it ii not ordinary, it they go

in to attack in pairs or sets of three.
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If in the nonor dinary  flow of event they occur only by pa irs,

only b7 sets of three and sc forth, then can be it considered as

ordinary “flow vapor ”, the “flow of sets of t hree”, etc. Somewhat
more complexly is matter, if the numbe r of events, which for m

“package” (group 3f the simultaneously incoming events) is ran dom.

Then it is necessary together with the flow of packages to examine

random variable I — number of events in package, and the mathematical

model of flow becomes falser: it represents by itself not only

sequence of the onsets of packages, but also the sequence of random

varisbios — nmmb .rs of events in each packaye (Fig. ~ . 16) , where x~ ,

x2, .~~.. x1, ... — waite , taken by random v ariable I in the f irst ,

second and so forth packages. An example of the nonordinary flow of

events with the ra ndom number of events in package — flow of coaches,

which arrive to the sorting st ation (“ package” is train) .

Let us consid er the flow of events, which possesses all thr e

proper ties: stationary, without  af tereffect, ordinary. This flow is

called simplest (qr stationary Poisson) f low.  Same “simplest” is

connected with the fact tha t the tatheuctical description of the

events, co~nected with the simplest flows, proves to be simple st. Let

us not e that by the way that “id le t ime itself” , it is on first

glance, rsgular flow from strict constant intervals between events,

is not in any way “protozoan” in the sense of the word named a bove:

it possesses pronounced aftereffect, since the onsets of events are
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cosne~ ted by rigid functional dependence. specifically, due to this

aftereffect the analysis of the proce8s~~, connected with regular

flees, proves to b . as a rule, it is acr. difficult, but not more

easily in comparison with protozoa.

The simplest flow plays among other flows special role. namely,

it is possible to demonstrate which with superpesition (mutual

imposition) is sufficient large num ber of floes, which possess the

aftereffect (provided they were st ationar y and were ordinary), is

formed th. total flow, which can be considered simplest, and thereby

it is more precise , than the larger numbe r of flows storetadds up’.

FOOTIOTE ‘. For th is, it is addit ionally required so that the

store~added up flows would be congruent in intensity, i.e.. so tha t

among them it would not be, let us say, that one, that exceeds in 
—

intensit y the sum of all others. UDPC0T~~TE.

-

~ -
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If the flow of events does not have an after effect, it is

ordinary, but it is not stationary, it is called unsteady Poisson

flow. In this flow intensity >4 (average siu mber of events per unit

time ) depend s on the tim.:

>4 >4(t),

wherea s for the simplest floe

>4.- const.

?he Poisson f low of events (both tat ionary and unstead y) is

closely related with the known Poisson distribution. Namely, the

num ber of events of floe, which fal l  to an y section, is distributed

according to the law of Poisson.

Let us explain, that this indicates. Ne will consider on axis

4•

~

- -
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Ot ,i whet. is obser ved the flow of events, certain sect ion of the time

of len gth v (see Fig. 4.17) . that begins a t  torque/moment t o and

fiqisking at torque/moment to • v. It iz not difficult to demonstrate

(proof is given in all courses of the probability theory) that the hit

probabilit y to this section unifor m t events is expre ssed by the

formula : . . -

— e ’ (an —C, 1, ...), (4.1)

wher e a — average num ber of even ts, ch ick is mec.s.ary to section v.

For a stationary (simplest) Poisson flow value a is equal to the

intensity of floe, multiplied by the l.ngt~ of the interval:

i.e. on it depends upo n where on axis Ct is undertaken section v. For

an unstead y Poisson flow value a is expressed by the formula:

a— >4(t)dt,
S

and, chick means, that it depends on that, at which point to begins

the section i.

Let us consiier on axis Ot the siuplest f loe of events with

intensity >4 (Fig. 4.18) .

~~
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Us it will interest ti me interval T between adjacent events in this

flow , it is obviou s, T to eat a value is random; let us find its law

of distribution. Let us first find the distribution function:

F (1) = P (T < I),

i.e. probability that value ‘F will tak . value is less than t. Let us

plet fro m the beginning of interval ‘F (point t0) segment t and will

fled proba bility that interva l T will be lesser than t. For th is, it

is necessary that to the section of length t , which adjoins point to,

coul d kit at least one the event of flow. Let us compute proba bility

of this 1(t) through the probability of the oppos ite event (to

section t will hit not one events of flow) :

F (I)~~1—P,.

Probability P 0 l.t us find from formula (1.4) , set/assumin g
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whence the disttibutio-n function of value ¶1 it will be:

F(g).—I—e— ~ (1>0). (4.2)

In order to find the density of distribution f(t) of random

variable T, let us differentiate expression (4.4 on t:

f ( 1 ) _ >4e U (1> 0). (4 3)

The law qf distribution with density (4.3) is called exponentia l

(or ex ponenti al) . Its graph takes the for m , presented in Fig . 4.19.

Valu e >4 is called the par ameter of expc nentia l law.

‘Fbe exponential law of distribution, as we will see further,

plays large role in the theory of the Narkovian processes.

Let us find the numerical characteristics of random variable T

mathematical expectation (averag e value) in, - and dispersion D~. We

have:

m,_~ tf(I)&=>4~ Ie_k~dt.

integrating in parts, we will obt ain :

fllLt luuI+. (4.4)

hh.~
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Pig. 4. 18.
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The dispersio n of value T let us fi~d through the second init ial

tor~ss/mement: -

whence, again inte grating in parts, we will, obtain:

D,=-~
.. (4.5)

Taking the root square from dispersion, let us find the

toot—mean— square deviation of random variable ‘F:

a~=~~~~~=-~- . (4.6)

- ~- 
Thu s, f or exponential distribution mathematical expectation and

IG ot—mean— square deviation are equal to each other and are reverse to

th. pa rame ter ).

- -
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It is concealed by form , tracing the structure of the sim plest

flow of ev ents, we they arrived at the conclusion : time interval T

between adjacent events in the simplest flow was distributed

according to exponential law; its average value and root— m ean— square

deviation were equal to 1/k, where ). — ai~ intensity of flow.

For unsteady Poisson flow the law ef the distribution of

interval/gap T will be no longer exponential; the form of this law

will depen d , in the first place, from that, where on axis Ot is

arrange/located the first of the events, and, in the second place,

from the for m of dependence > 4 ( t ) , that characterizes

alternating/variable intensity of flow. However, if >4(t) varies

comparatively slowly and its change for time between two events is

small , then the law of the distribut ion of time interval between

events it is possible to approximately count index (~4.3) ,

set/assuming in this f o r m u l a  value >4 equal to average value >4(t) on

that section ehich us interests..

j v copclusion of this paragraph let us deduce expression for the

so—called “probabilit y element of appearing the event”.

Let us consider on axis Ot the simplest fl~~ of events with

intensity >4 and the elementary section At, adjacent at point t (Fig.

4. 20) . 
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Let us find probability that on section At will appear some

even t of f low, i.e., section will not be •espty ”. Since flow is -

ordinary, the probability of appearance on section At more than one

event can be disregarded. - -~~

- i
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Let us designate P 0 (At) probability that on section At there will not

be the eve nts, but P 1(At) — probability that on it will appear one

evemt.. On the basis force of the ordinarii ess of the flow

P1 (s t) x I —P~(at),

and probability P• (M) we compute on forsela (4. 1) :

P,(A1) —~~-e—’ —e~ —e ’~’,
vhepce

Expan ding e~~1’ in a series accord i;g to degrees >4A t and

disregarding the small higher-order quamt~ities, we will ob tain :

P1(At)~~ I— (l—k.64’).
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Hence

P1 (Al) ~ kA!, (4.7)

i... the proba bility of appearance on the elementary section of the

ti me At of some event of flow is approximately equal to > 4A t, w here >4

— an intensity of flow. This probability we will call the -

“proba bility element of appearing the ev.~t”.

It is obvious, the same formula will. be valid also for an

unsteady Poisson flow, with that difference, that value >4 m ust be

ta ken equa l to its value at that point t, which borders on the

section At:

P1(&) ~ >4(t)~ t.

5. Plows palm. Erlang ’s flows.

The flow of e vents is called flow palm (or by flow with the

lisit.d af te reffect) , if tine intervals between the consecutive

events: 
--

TI, TS, ... , T,, ...
represent by themselve s independent, equaL ly distributed random

va riables (Fig. 4.21).

Th. simplest flow there is a special case of flow the palm: in 
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it distances ?j, t~, .,.• Ti, ... represent by themselves rando m

variables, distributed according to one and that not exponential law;

their independence follows from the fact that the simplest flow is a

flow sithoat aftereffect, and distance on time bet ween any two events

does not depend on are such the distances between each other.

Let us consider an example of flow palm. Certain cell/elenent of

technical equipment/device (for example, electron tub .) works

coptinuously to its failure (breakdown), after which it is instantly

substituted new. The life of cell/elene~t is accidental.

Page 207.

If the separate copies of cell/element s go out of order independently

Of each other, then is the flow of failures (or the “flow is

restored,” since failure and restoraticVreduction they occur at one

and the same torque/moment) it represents by itself flow palm. If

moreover life of cell/element is distributed according to expo nential

law, flow pall is converted into the simpl est (stationary Poisson)

fLow.

Anoth er example: the group of aircraft goes in combat formation

“colum n ” (Pig. 4.22) with an iden t ical for all aircraft speed of V.

Each of them , exce pt that lead, is due to withstand syste• , i.e., to

- ------ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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be hel d at the assigned distance from in front of that go. This

distance, measured by range finder, it is withstood with errors. The

torque/momen ts of the intersection wit h the aircraft of the assigned

border under these conditions for, flow pal., since randon variabl es P
— L1/Y; T~ = L,/Y; ... are independent. Let us note that the same

flow will not be flow the palm , if aircraft attem pt to maintai n the

assigned distance not f con soseda, but from which leads entire

column.

Many flows of events , which are epcoentered in practice,

although they are not in accuracy flows palm, can be by them

ap proximatel y replaced. -

The important for practice specimen/samples of flows palm are

Erlang ’s so-called flows. These floes are formed as a res ilt of the 
-

“aIft~ mg” of the simplest flows. - -

Let us consider on axis Ot of simplest flow of events (Pig. -

4.23) and will preserve in it not all points, but only each the -

second ; the ot hers let us re ject (in Fig. 4.23) the preserved points —

are shown heavily) . As a result of this Operation “of cutting ” or -

“sifting” is formed again the flow of .ve~ta; it is called the floe -

of Ir lang of secon d order.
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Pig. 4.21.

(‘)

~z ~~~~~~~ ~~~~~~~~~~~~

rig. ‘4 .22.

X.y: (1). aord.r.

Pig. 4. 23.

Pa ge 208.

Gemerally , the flow of Erlang of k srdsr ~ is called flow, it

s ’ 1

--
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is obtained, if we in the simplest flow preserve each k—t b point , and

the ot hers to re ject .

For example , rig. 4 .24 shows the formation/education of Erlang’s

flow of the 14th or deraq (three points of the simplest flow are

re jected , and the four th  is retained) .

It is obvious , the simplest flow represents by itself a special

case of Erlang’s flow, and precisely the flow of Erlang of tat order

3,-
The period of time T between adjacent events in Erlang’s flow of

the k crdet represents by itself sum k of independent rand om

quant ities — dista nces between event s of the initial simplest flow:

Each of these random variables is distrib uted according to the

ex pone ntial la w:

f1 (l)—>4e ’3
~ 

(t> O).

The law of the distribution of interval of T between adjacent events

in flow 3k i* called the law of Erleng of k order.

Let us find expr.ssiom for the densit y of distribution of this

law; let us designate it /~(l). Por this , let us cousid.r oa axis (Pig.

4.25) the simplest flo w with intensity A, in which the events are
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divided by interva ls T1, Ta. ... . and lit us find probability element

f~ (t)dl — ~~obsbility that interval 
T_ k

ZT1 will reader/sho w within
s — I

the h u t s  of elementary sect ion (t, t • dt) .

For this, in the first place, to section with a length of t must

hit exactly k — 1 points of the simplest flow; the probabi lity of

th is event , accord ing to formula (4. 1) , is equal to

- e ’—’ ~
- (k—1)I ~k—I)I -

Furthermore, last/latter (the k—tb) point must hit to elementary

section Ct, t • dt)  — the probability of t his is equal to >4dt (see

formula (14.7)). Multiplying these probabilities, we will obtain:

“h— I

whence

(1>0). (5.1)
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pig.. 4.214.
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~t is obvious , with k * 1 , is obtained the usual exponential

distributi on :

I1 (t) ~~Ae ” (t>O). (5.2)

Let us find the characteristics of Erlang’s as of tie k order:

his mathem atical expectation ~~~ and dispersio~ D~(’~. Ra nd om variable

T, distributed acc ording to the law of Erlang of k order, is obtained

by addition k of the independent random quantities:

T ir.
,~; T ,.

where each of values T~ is distribute d eccording to exponenti al law

(5.2) with mathematical expect ation 1/A a~ d dispersion 1/k ’ (see

formulas (14. 14) and (11.5)).  Applyin g the theorems of the addition of

mathem atical expectations and dispersiops, we have

n,
~

h) 4., D~’) — (53)

- - - ~~~~~~ - -~~~~~~~~~~
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Extra cting from last/latter expression square root, let us find

the root—mean —square deviation :

o A

Thus, we foun d mathematical expectabion, dispersion and the

root—mean— square deviation of the interval between adjacent events in

Erlang’s floe of k order:

rn11’1 __ 4
~— ; D,(h1 ...~.; ~~~ (5.4)

Let us note that both the law of distribution f ~(O. sa d all tb.

its characteristics are expressed not through tb. imtensi t p of

Erlang ’s very f low 3~, but through the iiitensity A of his generati ng

simplest f how which underwent cutting through. It is of interest to

express them throu gh the iatens ity (average number of swea ts per unit

time) of Erl an g ’s very floe 3,. Let us designate Ak - am intensity

of f ion 3i~.

- ~~~~~~~~L4
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Pig. 14.25.

Page 2 10.

it is obvious

A, 1/k; 1~~~Mj, 
-

since from initial simplest flow wit h iuteesity A is tsken only k

part.

Substituting expression A through Ak in fir mula (5. 1.) • we wi ll

obtain

or

b~ 
(1) ti—’ hA~~i (1 >0). (5.5)

Eathematical expectation , dispersion aid t~~ root-mea n-square

deviation of this law •ihl be:

rn 111 — ;~;.; 
D1(’ n _.!.. ; al(h~_ yç;;~~

. (5.6)
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Wow let us assume that, retaining constant/ invariable intensity

of flow A,:

A,=A—const. P
we will vary only order k of Erlan g ’s law . Its mathematical

exp~~*atio. will reaais constant:

(5.7) ~- 
-

and disper sion and root— mean- squa re deviation will, vary :

D11*) _ _-_ !-j_ ; ~~
(h) (5.8)

From formulas (5.8) it is evident that with k — — and the

dispersion, aud root—mean—square deviation vanish. But that this does

mean? This means that with k —
~~ the flow of Erlang of assigned

intensity A aslimitedly they approach regular flow with the

consta nt interval between the events:

T — const ._!_
A

This property of Erl ang ’s flows copven iently in practical

applications makes it possible, being assigned by differen t k, to

obtain the flows, which possess different aftereffect — fr om the

full/t otal/complete absence of aftereffect (k = 1) to the rigid

fu~ctionah connection between the onsets of events (k •). Thus, the - -

order of Erlaug ’s flow Ii can serve in some degree as the ‘measure
aftereffect ” .
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For the purpose of simplification it is frequent ly to con venient

approx imately replace the real flow of events — by Er l anj ’s fl ow with

the same aftereffect. This are made, matching the characteristics of

real flow — mathematical expectation and -the dispersion of the

interval bet ween e vent s — with the sane characteristics of Erlang’s

substituting flow.

Page 211.

Example. As a result of statistical processing of time intervals

between events in certain f low ate obtained the following

characteristics:

— average value of interval mt — 2 mm ,

— the root—mean—squar e deviat ion of interval a,— O ,9 aim.

It is required to select Erlang’s flow, which possesses

ap~ rOxinatel y the sane characteristics, to f ind  his int.m.ity A mad

crde r k.

soluti on. Ia teesitp ~ t here i, the value, reciproca l to the
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average interval between the events:

A~~ I/m,— I/ 2~~O,5 (ovent /mii.~) .

Prom foriula (5.8) we find the order of Erlang’s flow k:

k_ ( -~ ) _ (0,9.~,5 
)2

Choosing as k near integer we obtain

* — 5.

Thus, this f low can be approximately replaced with the flow of

Er~lang of 5th order with a density of the form of:

g4~~~’5.O .5t

or

I, (t)~~4,lt’e ”’’ (1>0). (5.9)

The form of the curve of distribution (5.9) is shown on Pig.

‘4.26)

a

the special attention, given here to the flows of Erlang in

comparison with other flows palm (with the arbi trary law of timing

between ad jacent e vents) is explained by the fact that wit h the help

of these flows it is possible to reduce non—Markov processes to

Narkov. As this is made , we will see later, in §~10. 11 of presen.

-- -~~—.-~~~~---—--.~~~~~~~~~
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chapter, and also in §6 Of chapter 5.

By Erlang’s flow are very conveuie~t for the approximate

repr~~entatiou of flows the pals of any fiorm, since the fl ows of

Ertlang of different orders form whole gamma, which gives gradual

transition from the si.Elest flow (full/total/complete absence of

aftereffect) to flow with regular intervals (fulL/total/comple te,

rigid afte reffect) . The possibilit y of the approximate representation

of any flows palm by f lews  cf Erla ng ’s type they are even more

widened , if we use “generalized Erlang ’s laws”, which they are

Obtaifled during the additiop of several rando. variables, distributed

according to exponential laws with the different parameters (for

example, see [8D, and Erlang’s also “aired generalized laws”, which

they are obtained, if we sum several Erlaflg’s generalized laws with

the coefficients (“weights”), which for, in sum one.

fft,-

9

119.9.~~~~~~.
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6. Poisson flows of events and continucus Markov chains.

Page 212.

Let us consid er certain physical system S with the discrete

states s,, s2, .. ., S ,,,~ which passes from state into state under the

effect of some ran dom even ts, for example, calls at exchange,

breakdowns (tailures) of the cell/elements of a~~ ara tus, the shots,

directed along target/~ urpcse, etc.

Let us this visualize so, as if the events, which translate

syst em from state into state, reprEsent by theaselves some flows of

even ts (fl ow s of calls, the flcws of failures, the flows of shots,

etc. ) .

let system S with the graph/count of states, show n on Fig. 4.27,

at torque/moment t is be in state S L and can ~~~ from it into state

under the effect of som& Poisson flow ot events with an intensity

of A,,: as soon as it appears the first event of this flow system

imstamtly passes (it juaps) from ~~ in ~~ . As we know titat this
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transitional proba bility for elementary t-im~ interval At (probabilit y

element of transition) is equal to ~~~~ Thus, tne probabilit y

density of transition ~ , in continucus Narkov chain represents b y

it~elf nothing else but the intensity of flow of events, w hich

translates system on the ap [ropLiate arzow/~ointer.

If all flows of events, which translate system S from state into

state, Poisson (stationary cr unsteady — are unimportant) , then the

Frocess, which takes place in system , will be NarKov. It is

real/actu al, Poisson flow possesses the absence of aftereffect ,

therefore, in the assigned state of syste m at given torque /moment ,

its ttansitions into other states in the future are caused only by

the appearance of some events in Pcisscn flows , but the probabilit ies

cf appeari ng these events do not depend on the “prehistory ” of

process.

In the fut ure, examining Mdrkov ~rccesses in systems with

• discrete states and continuous time (ccl)tinuous Markov ct~ains), to us

is convenient will be in all cases to ccnsiuer the transitions of

system from state into state as occurring under the effect of some

flows of events, a t  least i n actuality these events were single. For

examp L e , the wor kin g technica l  equi pme n t/device we w il l cons ider as

b~ ing located under the acticn of the flo w cf failures, although

actuahly it can refuse only one time. it is real/actual, if

-• -~
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equipment/device it rejects at that totqu e/iaoment when comes the

first even t of flow , then comp letely n e v e r t h ele s s  — is continued

after this the flow of failures or it ceases: the fate of

equipment/device on this no long er depends. For us it will more

coqveniently deal precisely with the flcws of events.

Thus, is exam ined system S, in which the transitions from state

into state occur under  the ac t ion of the  Pcisso~ f lows of even t s w ith

the specific intensities. Let us write these iDtensities (probability

densit y of transit ions) cn the graph/coun t of the states of sy stem of

appropriate rifleman/gunner. We will, obtain the labeled graph/count

of states (Fig. ‘4. 27) ; on which , u sin g the ru l e, formulated into §3,

it is possible to immediately register the diffirential eg.uations of

~olaogorov for the p r ob a b i l i t i e s  of states.

Page 213.

Example 1. The technical  sys tem S consists of two assemblies: I

and Ij;  each of t h e m  i n d e p e n d e n t  of o ther  can reject (go out  of

orderl . The flow of the failures of the  f i r s t  assembly — Poisson,

with intensity )~; the second — also Poisson, wit h in ten sity ~ Each

assembly r igh t  af ter  fa i lu re  begins to be over haule d (to be

restored). Flow of restoration/reductic~s (tetuinations of the repair

of the overhauled assembly) for both assemblies — Poisson with

Intensity ~~~.

-~ - - - - - -4
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To co mprise t he g raph/ coun t  of the st a tes of system and to wr ite

the equations of Kolmogorcv for the prctabilities of states. To

determine, under which initia l conditic4ls it is necessary to solve

these equations, if at the initial moment (t 0) system works

exactly.

Solution. States of the system

— both as sembly are exact ,

S21 — f i rst assem bly it is overhauled , the second is exac t ,

S~~ 
— the first assembly it is exact, the second is overhauled,

— both assembly are overhauled.

The labeled graph/count ot the states of system is shown on Fig.

~.28.

The intensities of flow of events on 11g. 4.28 are writte n from

following considerations. If system S is in state S11. the n on it

fumct$on two flows of events the f l o w  cf the m a lt u n ctions of
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node/enit I with in tensity “i which translates it into state S21.
I an d the f low of the m a l f u n ctions of no de/uni t 11 wi th in tensity

that translates it into S12. Let now the system is be in state S21

(node/unit I is overh auled, node/unit II is exact). From this state

the system can, in the first place, retur n to S41 (this occurs under

the action of the flow of restoration/reductions with intensit y X) ;

in the second plac e, — to pass into state S~ 2 (when the repair of

- l n~~e/unit I is not still f i n ished, but node/unit II meanwhile left
- the system); this transitio n occurs under the action of the flow of

the failures of n0de/unit II with intensit y ~~ ,. Intensities of f lo w

at remaining rifleman/gunner are enterJwr itten analogously .

H
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Pig. 4.27. Fig. 4.2a.

Page 214.

Desig nating the probabil i t ies  of states P~~ , ~~~ P 12 and

an d by usi ng the ru le, formulated into ~3, Let us register the

equations of Ko ]mogorov for the  probabi l i ties  of the states:

‘p

~~~
— —  (“l +)II)p,,+~~Pm +~ip,,,

A (6.1~
P12.-

~~~
- -—— (  +4 1)P12+ u P~~+ ~~

The initial conditions under which it is necessary to solve this

‘I
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syst•m:

with t = 0 P 4 1  1 , P z i  = P I Z  = P22 0.

Let us note that, using the con dition

PH + P~, + p~, + ~~~
.

it would be possible to decrease the nuther of equations on one. It

is real/actual, any of the probabilities P u ’  £24. P12. P22 can be

expressed by the others and substituted into equations (6. 1) • but the

equation, which contains on the left side the derivative of this

p robability of — reject/throwing.

Let us note that besides the fact that equations (6.1) are valid

• both ~or the constant intensities of Poisson flows ~i’~~ip~~ and for

variables
A~~~Aj (t); ~~~~~~~~~~ ~~~~~~~

Example ~~ 2. Group in the composition of five aircraft in line

asters (Fig. v.29) accomplishes coating on the territory of enemy.

Fro~t/leading aircraft (leading) is jalmer ; until it is

biased/bea ten , the following it aircraft cannot be discovered and are

abtacked by the air defense weapons of enemy. Attacks undergoe s only

jaumer . Plow of attacks — pcisson , wit h intensity X (attacks/hour).
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As a resul t of a t t a c k  j a m m e r  is surprised with probability p.

If jammer is struck (it is biased/beaten), then following af te r

it aircraf t are discovered and undergo attacks PVO; for each of them -:

(wntil it is struck) it is directed th~ Poisson flow of attacks with

intensity X; by each attack aircraft is surprised with probability p.

When a i r c r a f t  is s t ruc k , at tacks on it cease, ~ut to othe r aircraft

th ey are not t r ans fe r red .

To write the equations of Kolmogorcv for the probabilities of

the stat es of system and  to indica te ini t ia l  coqditions.

I.-
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Pig. v.29.

Key: (1). Interferences. (2). Producer.

Page 215.

Solution. Let us label t he  states of system wi th  resp ect to the

number preserved a i r c r a f t  in the g r o u p :

— all a ir craf t  are whole;

S, — jammer is biased/beaten, remain in g airc r aft whol e;

S3 — jammer and one bombe r are biased/beaten , remaining aircraft

vbole~

I
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— jamaer and two bombe rs are biased/beaten, remaining

ai rcraft  whole ;

S1 — jam.er and three bombers are biased/beaten, one aircraft is —

wb cle;

S0 — all aircraft are biased/beaten..

States we differ from each other by the number of preserved

bombers, but not on that, which precisely Cf then was preserved,

since all bombers according to the ccnditicns cf problem were

equivalent — they  a t tack w i t h  identical  i n tens it y  they are surprised

with jdent ical probability.

The graph/count of the states of system is shown on Fig . k.30.

In order to label this graph/count, let us ~ietermine the intensities

of f low of the events , which  t r ans la te  sys tem from state into state.

From state S~ into S, the system translates the flow of the

damaging (or “successful”) attacks, i.e., those attacks which lead to

th. de feat of prod ucer (it goes without saying that if it was not

eatli.r streck). The intens ity of flow of attacks is equal to X , but

not all they — damag ing :  each cf t h e m  ~ioves to be damag ing  on ly  wi th

p robabilit y p. It is obvious,  inte nsit y of the flow of the damag ing
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attacks is equal to X p ;  this intensity is written as )~~ , of the first

to the lef t a r row/po in t e r  cn g r a p h/ coun t  ( F ig .  4 .i0) .

We wi ll be occup ied f o l l o w i n g  ar r cw/p c in t e r  and will  f ind

intensity X ,3_ System is in state S,, i.e., are whole and can be

attacked f o u r  a i r c r a f t .  It  wil l  pass into  sta te  S 3 for time At, if

for this time of any of the aircraft (nevertheless, which) will be

biased/beaten. Let us find the probabilit y of opposite event — in

t ime At not one a i r c r a f t  it wi l l  not be biased,’beat e~z:

(I _).,~g) (~~._kpA~ ) (1—Lp Afl (1—)~P A1)~~(t —kP At)’ L—4kp At.

Are here reject/thrown the members of the higher order of smallness

relative to At. Subtracting this probability from unit, we will

obtain tra nsitiona l probability from S, in S3 for time At

(probability eleme nt of transition) : -

4ApAt,

whence

~~~~4Ap.

that also is writt en of the second to the left arrow/pointer. Let us

mate that  the i n t e n s i t y  of this flow of events is simply equal to the

sum of the intensities of flow of the dam-aging attacks, directed

toward separate aircraft. Discussing visually, it is possible to

A
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obtain this conclusion/derivation as fcllo ws: system S of state S ,

consists of four aircraft ; for each of them , functions t~e flow of

the damagi ng attacks with intensit y Ap; means to system ~s a whole it

functions the total flow of the damaging attacks ~it1z intensity 4Xp.

With the help of analogous reasonings are enter/written the

in~tensities of flow of events at reaaini~q tifisman/gunner.

~~ ~T~[ j
~ 

S~ 
_  _

Fr3 ~~~~~~

Page 216.

The equations of Kolmogorov for the prohakilities of states take

the form:
dp~~ i——, ’pp $.

~~3)~pp,+4~Pp.,

~~—2)~pp2-4- 3?~pp,,

~~t_ ;,,ppt.



DOC 78068711 PAG~

Since at the initial acment (with t = 0) all aircraft are whole,

initial cond itions will be:

w i t h  1—0 p . 1 . P.~~P,—p,—p 1—p, 0.

Exampie 3. The condi t ions  the sane as int o exampl e _ 2. but

intensity X is related to the Common/general/tota l flow of attacks,

ditected to entire group . While jaguner is whole , ill these attacks

are directed for it; when it is t~ias€djteaten , attacks are

di~tribute d evenly between the remaining a ircraft, so tna t to one

aircraft it comes on the average X,’k (attacks/hour) , where k — a

nu mber of preserv3d aircraft. To comprise graph of states, to labe l

it and to ceg ister the e q u a t i o n s  ot Ko lmoyo tov  for the probabi l i t ies

of states.

Sc] ut ion. The labeled g rap h/ count  cf s tates i~~ shown on Fig.

4.31.

Equat ions of Kolmggor c , !

L _ _) .P P I + .P P h

- — -~~~
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Page 217.

Let us note that in this paragraph we cnly wrote out

differential equations for the probabilities of states, b ut they were

not occupied by the solution of these equations.

In regard to this it is possible tc note following. Equations

for the probabilit ies of states represent by themselves linear

differential equations with constant or variable coefficients —

d~~.a1iag om that, are constant or alternating/variable intensities

~~~, 
of th. flows of the even ts, which  t ransla te system f rom state

isto state.

.~~~4 
~~4



DOC a 78068711 PAGh

Vbe syste. ot sevetal linear dxtf~ rential equations of such type

only in ra re cases can be i n t e g r a t e d  in t h €  qu a d r at u r e s : u s u a l l y  th i s

syst em it is necessary to sc ive nu me r i c a l l y  — either by hand  or in

analog compu ter (AVN) , or finally by FIsYN. A l l  these methods of the

solution of the systems of the  d i f f e r e n t i a l  equat ions  of d i f f i c u l ties

do no~ sup ply/deliver ; theretore the mcst essential — to be able to

t.giat.r system of equations and to t o r iu la t a  for it initial

conditions , t h a n  we  were  bounded  here.

7. ~a~ imua probabilities of states.

Let there be the ph ysical system S with the discrete states:

S1, 5,, ... , S,.

in which proceeds the Narkovian process with cci~tinuous time

(continuous Nar kov chain). The yra ph/ccun t of states is shown on Fig.

~. 32.

Eet us assume that all the intensities of flow of the events,

which translate system fro. state into mta te, are constant:

in other words , al l  f l o w s  of e v e n t s  — the simplest (stationary

Poisson) flows.

~ II
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Pig. 4.32.

After registering the system of th€ ditterential e~ua tion s of

Kolmogorov for the probabilities of states and after integrating

these eq ua tions u n d e r  the  assigned i n i t i a l  condi t ions , we wi l l  obtain

the probab ilities of s ta tes  as functicns of time, i.e., n of the

functicns:

pi (i) p, (i), .... p,1 (f),
with any t of those giving jn sum one

~~ p 1 (t) ~~~I .

Let u s raise now the  f o l l o w i n g  quest icn :  t ha t  wi l l  occur with

sy stem S with t-4 •? Will functions p1 (t), .... p,~ () approach some

limits? These limits , if they e4ist, are called the maxim um (or

“fina1~) probabilities of states.
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jt iS possible to demonstrate the fullowing general

consideration. It the number of states of system £ certainly and f rom

each state is poss ible tc move (for cne or th e other num ber of

step/pitches) into each another , th en the max i m u m  pro babilities of

states there exist and the y do not dep€nd on the initial state of

sys tem.

On Fig. 4. 33, is shown t h e  g r a p h/ c o u n t  of states, who sa t isf ies

th. placed condit ion:  f r o m  a n y  sta te t I~e sy s t em can sooner or later

pass into any anot her. On the contrary, for the system the

graph/count of states of which is shown on Fig. 4.34, condition

satisfied. It is obvious that it the initia.L state of such of systems

Sa.  then, for exam ple, state S,, with t 9— can be reached, and if the

in!itial state S2 - cannot.

Let us assume tha t the place d con d it icu is sat isf ied, and

maximti u probabilit ies exist:

(1) ~~Pt (1~~ I, 2. ... , n). (7.1)

Nax imum probabilities we will de5i~~ate by th. same letters p
~.

Pa. ..., p,. that also very probabilities oL states, understanding

ra ise this time variable values (funct ion of t imel , but  constant
7I~’n. bqg’5

-~~~~~ — -  -
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Fig. 4.33. Fig. 4.34..

Page 219.

It is obvious , the maximu m probabilities of states, just as

pr.—liait, in sum must give the unit:

I’

‘~
-l
p,~~~ 1.

Thus, with t -.) — in system S is establish/installed ~ot which

ssxiism stea d y sta te: it lies in the fact  that the system ran d omly

varies its states, bu t the pro babi lity of each of then no longer

depends on the time: each of the states is realized with certain

constant probability. whic h sense of this probability? It represents

by itself nothing else but the mean relative retention time of system

in this st ate. For exam p le , if of system S three of the possible

- -
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state S1, S2 and S~~, moreover their maximum probanilities are equa l

to 0.2. 0.3 and 0.5 , this means that afte r transition to the

steady—state conditions/mode system s in of mean two ten th t ime  will

be located in state S1. three t e n t h  — in s tate  5~ and the  half  of

time — in state S3. Does arise t h e  ques t ion:  how to compute  the

maximum probabilities of states p,,, p2,.... p,~

It turns out that for this in the syste m of equations of

Kolmogorov , which describe the probabilities of states, it is

necessary to assume a l l  l e f t  sides (derivc ~Uves) equa l to zero.

~t is real/actual , in m axi m um (being steady) conditions/mode all

probabilities of states are constant , w hic h m eans, that their

deriva tive s are eq ual tc Z Q L O .

If all the Left sides Cf the equation s of Kolaogorov for the

probabilities of states are assumed equal tc zero , then the  sys tem of

differential equat ions will be converted into the system of linear

algebraic equations. Together with the condition

(7.2)

(the so—called n3Lmalizing condition”) these equations make it

possib le to compu te all , th e maximu m pr c~abiliti€s

I
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Example 1. The phys i ca l  sys tem S has th e pcssible states S1. S2,

S3~ 5, whose labeled ~raph / coun t  is g iven  on Fig. 4 .35 (of eac h

arrow/pointer placed numerical value of the correspondinj intensity).

‘to compu te the maxi mum probabilities of states P1, P~. P3, P..

Solution. We write the equations Ct Koimogcrov for the

probabilities of the states

—p , +2Pi +2,~, (7.3)

= — 3p~ + 3p, + 2p4.

dp,
~~~~~~~ 2p.+p,.

Pa ge 220.

Set/assumin g left sides equal to zero, we will obtain the system of

al.gebsaic equatioms for the •aximu m prcbabi.Litiea of the states:

74( . )

- -

~ -
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Equat ions (7.4) — the so—called homogeneous equations (without

absolute term ). As is known trom al qebrd , these e &uation~ dt~termine

values P i,  Pa. p3. ~., cnl y with an acciztacy to coustant factor .

Fbrtunatel y, o~ us exists the ntn aaliziEg condition:

(7 5,

which, together with t~guaticns (7. 44) , i t  makes it possible to find

aL l  u~ kncw n probabilities

It is real/a:tual, ~t is expr e.~sea nom (7.44) all unknown

prcbabilit ies through cue of them, ~cr example , through p~ . From the

fitst equation : ,, ..
~~~~

Subst ituting in the second e~ uaticn, wc will obtaifl

Ps~~~~2A + 2p.— 2 p~ + IOp~~~ i2p~.

Pourth equation gives

Subst itut ing all tt~ese expressions for Pa. ~~~ & .  u n d e r

normalizing condition (7.5), we will o)tain

I-
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Hsnce

24p~~~I , 
~l~

U1/N. 
~I’’12pi ’~~

P4 SPL~~~/•.

Thus, t he  maximum probabilities of states are ob ta ined , t h e y

eq ua l to

P1~~ 1/N, P. ’/,. p / j  ~~~~~~ t7.~~

rhis means t h a t  in the  m a x i m u m , s te a d y — st a t e  condit ions/m ode

system S will carr y ou.t able S1 on the average one twenty fourth part

of the time , able S2 — half of t ime , ab l e S 3 — f i ve t w e n t y  f o u r t h  and

ab le S. — on e four th Of t u e.

-~~---.J~
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Pa ge 2 2 1 .

Let us note that solvinj this protlem , we in no way used one ot

equations (7. le) — by the third. It is not difficult to ascer ta in  tha t

it is the corollary of three others: s tcre ,adding  up all the four

eq uations, we will ob ta in  identical  zezo. W i t h  an equal success,

solving sy stem , we could re :ect/throv any of tour equati~ ns (7.4).

The used by us method of the com~ csition of algebraic equations

fo~ the maximum pr obabilities of states was reduced to following: to

first write differential equations, and then to place in them left

sides equa l to zero. However, it is possible to register the

al gebraic equation s for ~i a x i m u m  probabilLties and it is direct ,
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without passing through the stage cf differential. Let us illustrate

this based on example.

Example * 2. The graph/count of the states of system is shown

on Fig. 4.36. To write algebraic equatio~s for  the max in un

probabilities of states.

Solution. Wit nout record/writing dif~fe r en tial equa tions, we

openly write the appropriate r i gh t  sides and we equate to their zero;

in order not  to deal w ith ne ga tive term s, is imme diately transferred

to them another par t, rever sin g the si gn:

~ si P,+~ ai P.~~( i,+~ u) P1.

- ~ 12P O’13+~’Ia) PI.
(7 )

~~iP~~~~~ii Pi

in or der subsequen tly to imme d iately write such equa t ions, it is

usef ul to memorize the followin g in n emcn ic  rule:  “which  f lows , then

also it esca pe/ens ues”, i. e., for  each s ta te  the sum of t he terms,

which correspond entering tc arrow/pointers, it is equal to the  sum

of the ter ms, which correspcnd ou tgo ing ;  each ter m is equa l to the

intensity of f low of events , which t rans la tes  system on th i s

arrow/pointer , mul t ip l i ed  by the  p r o b a b i l i t y  of that  state which

leaves the arrow/pointer.



-

~~~

DOC = 78068711 ~~~~

Example ~~ 3. To write algebraic equations for the maximum

probabilities of the states of system S, the graph/count of states of

which is given on Fig. 4.37. To solve these equations.

Solution. We write algebraic equa tions for the maximum

probabilit ies of the states:

A11p,.~,,p, ~ (7.8)

Norma lizing con dition:

P1+Ps+P3 1

is expressed with the help of first two equations (7.8) P2 and

~ 3 through p~:

~1t

(1.io~

Let us substitute into them normalizing condition (1.9)

Pi+.~~~ -Pi +~~~~~-P1 . I I s

A
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whence

Pt _

‘•tI ~$1

Pur ther ,  from (7. 10) we will obtain

.~1L
‘~1p1P. 

~~
—, pa— — .

.

Page 222.

8. Process of “death and of multiplication”.
In the previous

paragraph we ascertained that by knowing the labeled grap h/count of

the states of system, it is possib le tc im me d iately wri te alge braic

equations for the maximum probabilities of states. Thus, if two

continuous chains. Ma.rkov have the identical graphs of states and are

distiaguishe d only by the values of intensi ties ta,. ?ks~ the re is
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no necessity to find the maximum protabilities of states for each of

the graph/counts i n d i v i d u a l l y :  s ut f i c i e n t  to comprise and to solve

for the literal form of equat ion  for one of t h e m , and then to

substitute for  ~u ’ t he  cor responding  va lues. For g raph/ coun t s ’s P
many f r equen t ly  encountered forms , linear Egua t ion s  easily are sol ved

in literal form.

in this p aragraph we wi l l  be in tr cduceu  to one very typical

pattern of continuous !larkov chains — the  sc—called “ s e t — u p  of dea th

and multiplication ” 1~

FOOTNOTE * • The or ig in  of te rm “set—up of dea th  and mul t ip l i ca t ion”

originates from t he  biological  problem s where by a similar set—up is

descrjbed the process of c h a n g i n g  the n u m b e r  of population .

ENDFOOTNOT E.

3arkov contj ~~uous cha in  is cal led the  “prccess of death  and

multiplica tion ” , if its g r a p h/ c o u n t  of states takes the  f o r m ,

presented in Fig. 4.38 , i.e., all s ta tes  it is possible to dra w out

into one chain/net work in which each of the average states (S2, ... ,

is connected by direct/ s t ra igh t  and feedtack wi t h each of the

ad jacent states, and end states (S1 •, 5~~) c n ly  wi th  one adjacent

stat . 
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Fig. 4.38.

Page 223.

Example 1. Te chnical equ ipment/ dev ice  consists of three

identjc al assemblies; each of them can go cut of order (reject ) ; f r o m

the seemed assembl y La m ed ia t e ly  beg ins to 1€ restored. The states of

system we la bel accord in g tc the num ber of defective assemblies:

S, — all three assemblies are exac t ;

S 1 — one assembly retused (it iS restcred) , t w o  corrected :

— two assemblies are restored, one ~t is exact ;

S3 — all three assemblies are restcred.

The graph/count of states is showr on Fig. 4.39. From graph it

-
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is evident that the process. w hich takes place in system, represents

by itself the process of “death and multiplrcation ”.

The set—up of death  and  m u l t i p l i c a t i o n  v er y  f r e q u e n t l y  is

enco untere d in the most diverse pract ical  p rob lems ; therefore  has

seqse to previousl y consider th is  se t—up in general  form and to solve

the matching syste m of algebraic equat icas wit h the tact, in order

subsequently, meetin g the ccncrete/specif ic/actual processes, which

take place according to this set—up, nc t tc solve problem each time

anew, but to use already prepared/tinishe d solution.

Thus, let us consider the ran dom p rocess of death and

multiplication with the graph/count of states, presented in Fig.

4.40.

Let us wri te  a lgebraic  equa t ions  fcr  the probabili t ies of

states. For the first state S1. we have:

(8.!)

lot the secon d state S2 the suns of the terms, which correspond

to the entering and outgoing arrow/pointers, are equal to:

m t .  by force (8.1), it is possible to shorten to the right and

4 i ~
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to the left equal to each cther members X 12~ a and X~ 1p2 ; we will

obtain;

and furthe r, in perfec t analogy,
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in &or d, $or the  c i r cu i t  of d e a t h  and mul t ip l icat ion members ,

who corres pond c o n f r o n t i n g  above each cth et  to a r row/poin ters, are

equal to each other:

(8.2)

where k takes all values frcm 2 to n.

Thus, the maximum probabilities of states p~, P2’ •.., ~~~ 
in

any set— up of deat h and multiplication satisfy the equations

U _~~~~~~~_~~~--~~~~~ -~ ~~~~~~~~~~~~- -  -~~~~~~~~



DOC = 78068711 PAGE

~i,P, ~-ti Pv

~II PI ~~~~~

(8.3)
k1,...,, I PI—~ ~~~~~ ._ P,,,

~.,,—i , “ Pi—i ~~~, ~— i  p,,

and the normalizing conditics:

Pa+ P.+...~~p~ . j  
(8.4)

Let us solve this system as follows: from first equation (7.3)

it is expressed p2 :

(8.5)

from the second, taking i~ tc account (8.5 , we will obtain :

(8.6)

fro m the third, taking into account (8.6) :

p1_ A11~L~l,

and generally

p ~~~~~~~~~~ ~ ~~~~~~~ h—I • . -

I — Ps. (8.7)
I. h—I I— I • h—S
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This f o r m u l a  is va l id  fo r  any  k f r c m  2 to  n.

Let us focus a t ten t ion  on its s t r u c t u r e .  In n u m e r a t o r  sta nds the

product of a]], probability densities of transition (intensities)

X,,, tAc t stand of th€ arrow/pointers ,, directed from left to’ right,

from beginning and up to that that goes into state Sh; in denominator -

— product of all intens ities Au, which stand of the

ar.rov.flointers, wh ich go from right to left, furthermore, from

beginning and up to the arrcw/poin ter, bhich proceeds from state S~.

VitA k a n in numerator , it will stand the product of iatensities

A,1, which stand at a].] rifleman/gunner , that go from Left to

right, and in denominator — at all rifleman/gunne r, tha t go f r om

zight to left.

Page 223.

Thus, all probabilities Ps, Pz. •.., p~ are expressed th rough

one of them: p1. Let us substitute these expressions under the

normalizing condition Ps + P2  • .~~ . • p~~= 1. I~e w ill obtain
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~ip~ ’1$ p + + ~~~~~~~~~ h ~~~~~~ h-I +Pi + P1 + 
~ 

- 

~‘*. h—I ‘h—l . 1—2

+ 
~~~~~~~~~~~~~~~~~~~ “~~i!p =il.
N. .— i N—’I. .—.S ‘

whence

- - . ~~~~~~~~~:2~~~~~~~~~i~~ ÷
~:T:~ 

.i’~:’(8.8)

Bemaining prohabilitie~ are expresse d as E s:

~~~ “ 12
. Ps r-~~Pi’A21

• 

1;. ~~~. :.~; (8 9)
p1=1 Pt .

1. N—I ii

~ ~,t :—
~~~
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thus, the problem of “death and au1tiplicat~on” is solved in

general form are found the m aximu m protabilit.ies of states.

Examp le ~~ 2. To find the maximu m protabilities of states for

the process of death and sulti~ licatio n whose gra ph/count is shown on

Fig.. 4 41.

Solution. On formulas (8.8) and (8.9) we hav e

p1 — — —  
1

,~~!÷~J÷~±~ ,+L.! ! ~3 3.2 3•2 .2 3 3 2

~~~~~~~~~~~~~~~~~ n,!.!! ~ ...!.! !.
3 5 15 3 5 15 ~ 3 $ 5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ ~~~

- 
-

E xa mp le ~~ 3. Instrument consists of three assemblies ; the flow

of failures — si.plest, the mean tim. of the failure—free operation

of each assembly is equal to T5 The r e fused  assembly imi ed ia te ly

begins to be overhauled; the mea n time cf the repair

(restorati on/reduc t ion) of assembly is equ al to lp; th. law of the

distribution of this time expcnentia l (tlow of restoration/reductions
I 

— simplest). To find the average e f f i c iency of ins t rumen t, if with

three working assemblies it is equal tc lOOo/o , with two — 50010, and

with cne and less — an instrument not at all it works.
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Solution. The enumeration of the states of system and the

graph/count of states already were given in an example of 1 this

paragraph. Let us label this graph/ccumt, i.e., let us write at each

arrow/poin ter appropria te intensity ~“1 (see Pig. L~.l42).

Since the fl3w of the failures of each assembly — simplest, then

t ime inter val between failures in this flow is distributed according

to exponential law with paramete r .~~~ i/a, where ~~~—. aver age the

tine of the failur e—free operation of assemhly.

On arrow/poin ters to the right the system translates failures.

If system is in state S0, then wor k three assemblies; each of them

undergoes the flow of failures with an intensity of iiZ~ that eans

that the f l ow  of f ai lures,, which functicns on entire system, three

times is more inte nsive: ‘n —ale.

If system is in state S1, then work two assemblies; the

common/general/total flow ct failures has the intensity: ),,~~~ff I -

is analogous ~,,-‘lli ~

On arrow/pointers to the left the system t ranslates repai rs

(restoration/reductions). Mean recovery t ime of assembly is equal to
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t . which means , t h a t  t h e  i r t e n s i t y  cf n o w  of

restoration/reductions, which functions on one restorable assembly,

is .qsal to ~i — 1 / . to t~ o asseirbly — 2fi;, to three assembly —

$~‘1p These values ~~~~ A 2 1,  X~~~ are britten oq rig. 8.5 of the

arro~lpoin ters, wh ich lEad to the left.

using the obt ained above general sclutnon ci the proble m of

death and •ultiplication , we have (placing p~ instead of ps):

17~~ 11~~
, I~~~ %3

1+3(- ~~-)+3(- -± ) ,(4~~~
~~6/  ‘~lri / \ s~ /

17 ~

I~ \~ p,.
~4~1

Let us assign concrete/specific/actual values 1i =I 0  (hour). 
‘
~i ’~~~

(hour). Then ~!._Ø,5 and

+‘,,+•,, ~,,j 7 ‘/s,, Pg~~’Is ’/n ”4,. ~~~~~~~~~~~~ p i..i I /1.S/~~~~~Lg~~.

The average e f f i c i e n c y  of i n s t r u m e n t  in the steady—state
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- c~nditions/mode:
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rig. ~.I42.

Page 227.

9. Cyclic process.

The Markovian process, which takes place in system , is  called

cyclic, if states are ccnnected into r i n g  (cycle) with the one—sid ed

transitions (see Fig. 4.43 cn page 228).

Let us write algebraic equations for the max i mum p robab i l i t i e s

of the states:

)1, p, ‘.~is p,.

~ e—I . * Ph...i “~~ *. *4.1 Pr.’ (9.1)

i Pi,.— i ).~• I P~.
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plus the nor malihi ng c o n d i t i o n

Prom equations (9. 1) , after reject/t h rowing the latter, it is

expressed all probabilities Pi’ ..., p~~~ through p~:

~~~~~~~~~~~~ -

= P~ =

Pi ~~~~Pi.

Pi,
)‘h. *~

~~~~~~~~~~~

Page 228.

IA
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substituting these expressicns in (9.2) , we will obtain:

Pi 1 (~~~ 
+~~ ÷

• ... ÷~~) p~ —I.

whence

Ph-

p . •:;— Ph’
t•j .

(9.2)

~~~P,.
A + I

p,,

Pormulas (9.2), which exp ress the maxi m um probabilities of

states for a cycl ic  process , can  b~ led to m or e  con~ eni.~nt and more

demonstrative form , if we pass from intensities ~iJ to the mean

times 4~ of the stay of system (in a row) in state S1 (i a 1 , ... .

n).

It is rea l/ ac tual , let  f i o m  state S., as it takes place in I -
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cyclic set—up, proceeds onl y one arrow/po inter (Fig. 4.44) . Let

system S is be in state .Let us find the mathematical expectation

of time Tj , which it still will stay in this state. Since process is

Narkor process, the law oi t ime  al locatio n of T~ does not depend on

that, how long system already stayed in state S~; that means it the

same, which it would be. if system recently arrived into state S:
i.e., represents b y itself nothing else but the ex ponential la w of

the d istribution of time interval T betwe en adjacent events in the

si mplest “ flow of the attendance/de~art~ res” of system from state S4
The pa rameter of t his  law is equal  to ~~~~~~~ and the mea n

retent ion t ime of system in state S.L (if it in it already is

located) egually to t~~~ -.!__• Hence )
~~~~..J for all i = 1, 2,

.~~, n — 1. For i = n , we will  ob ta in  (~ y the force of cycl ic

recurrenc. ) X,,~1 J.~‘p.
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Fig. 4.43. Fig. 4.44.

Page 229.

After  subs t i tu ting  these expressions into fo rmulas  (9 .2) a f ter

elementary t r ans fo rma t ions  we will obtain :

p
~~

—
i; + i’+ ”. +7.

’

= 

•,s
p . 

A + 12+ ... +

- V p,
Pp. — —

tI± ~~I +• . +11,

or, are shorter:

Pr. (k—I, n) (9~~

Ia I

L
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i.e. the maximum probabilities of states in the cyclic set—up belong

as lean retention times of system in a row in each of the states.

Examp le 1. Electrcnic digital computer can be located in one of

the fpllowing stat es:

S 1 — exac t, it works.

S2 defective, stopped; is conducted the search of
ma if unction.

S3 — malfunction it is localized; is conducted repair.

— repair it is finished; is co~ ducted launch prepara tion of
machine.

*11 flows of events — simplest. The mean time of the

failure—free operation ETsYM (in a row) is equal to 0.5 (days). For a

___  A
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repair machine it is necessary to stop on the average at 6 hours. The

search of malfunct ion lasts on the averag e of 0.5 hours. After the

termin ation of repair , the mach ine  is prepared for launching/starting

on the average 1 hour. To find the xaxisu . krotabilities of states.

Solution. The graph/count of states ta’es the fo r m of cyclic

set—up (Fig. 4.45).

Let us determine mean retention time E1sV~ iii a row in each

state:

~~— L/.. 11. t/.,. 1._ &~, i;—~~ (days)

whence, on formula s (9.3):

~~ I,~ + hj~~~4. hi. + 14 
/a ~~~~ Ps~~~Ia A~~ I~

or, in decimal fractions,

P~~O,6I5; ~~~~~~~ p,.. o,~~s p,—O,Nl.
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hg. 4.45.

- -ì
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Page 230.

Thus, if process is reduced to simpl e cycl ic  w i t h  one—sided

transitioas, the maximu m prctabilities of states are located very

simply: ftom the relaticnship/ratic cf mean retention time s (in a

r ow )  in  each of the  s tates.

Xn many insta nces of practice , it is n€cessary to deal w i th  the

branching cyclic process where the graph/ccun t of states in  se parate

units form s branchings otf.

Example of 2. ETsVM can be located in the following states:

s~ ~~ e xact, it works;

S2 defective~ stopped; is conduct~ed

S3 —malfunction render/showed insigniticant and it is removed

hy local resources ;

.1
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5, — malfunction render/showed serious and he is removed by the

brigade of the specialists;

S5 — launch preparatior.

Process, whic h takes place in system — Markov (all flows of

events — simplest) . The mean time of t)~e ex act work of machine is

equal in a ro w t~, the mean retrieval time of walrunctions — t 2, the

mean -time of repai r by local resources — t3, the mean time of repair

by the brigade of the specialists — t,, the mean time of preparation

ETsVM for lauqchin g,startiny — t~~.

lialfunction ETSYM can be eliminated by local means with

probabilit y ~~ , and with probability 1 — s requires the call of the

brigads of ths apscialists. Brigade’s work is paid in size/dimension

of k (rubles/h). H

jt is required to find the maximum prcbabil.ities of states and

to determine the average/mean expenditure/consumption , which goes for

th. paymen t of the work of maintenance cre w per unit time (in a 24

hour ~~riod).

Solution. We construct the labeled graph/ccunt ot states (Fig.

4.46).. If the state leaves only one arrcv/pointer. then the intensity
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of flow of events, which stands of th i s  a r row/po in te r , is equa l to

unity, divided into mean retention time (in a row) in this state. If

th. state leave not one arrcw/pointer, but two , then the

common/gen eral/total intensity, equal to un ity, divided into mean

retention time (in a row) in this state, is m u l ti plied for  each

arrow/poin ter to probability t h a t  t h e  t r a n sit i or  will  be completed

pr ecisel y on this arrow/pointer.

equations for the maximu m probabilities of states take the form:

‘I

..=— p1 — -=— p1.
I.
I — ,  I

- p.— -=.- pd. (9.4)V,

Pi + P4~~~~~~ P~,I. •~ V~
I I

plus the nor ma l i z ing  c on d i t i cn :

(9.5)

F Of equations (9.4) one as we know that it is possible to

reject/throw; let us reject/throw the mcst comple x — the f o u r t h ,

while from the others is expressed Pz, P~ . p,, ~~~~ throug h p.:

- .
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‘I t. i~

— -~~~ 
— F ’ ) 1~ 

— 
(1 — ., )~t, 4j~ (I

- 
4 t,

p.— 
~~~~

. p1.

Page 231.

Substituting in (9.5), we have:

~~~~~~~~~~~~~~~~~~~~~~~~ 

( 1— D )~~ +4~~~i.~ gI ~ 
gI gI l

Hence

P t — - - - 
it

6 +6+Dt,+(I —S) i.+i.
-

~~

(I .—.~~)P.— 

~ +1 +a~~+( I—S) i~-(-i1 ’

P. — a .~~ —t.+V.+JDI,+(I —.P) I+6

The average fraction of time which the system carrie s out (in

the steady—state condi t ions/mode)  in stat e 5, (repair  by t he  br igade

of the specialists) is equal to p,. Tnat means that per hour the

sy stem carries out in th is  state on the average p, hours. Multiplying

this value on 24k, we will obtain the average expenditure of

— —
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resources for the  p a y m e n t  of the  b r i g a d e  of t h e  specialists f o r  the

days: C = 24kp, .

Let us turn attention to the structures of probabilities p., Pz.

..., p~ in the pattern of the branching cycle.. They, so kA and in the

ca se of sim ple cycl e, represent b y themselves  the ratios of mean

retention times (in a row) in states tc the sum of all such times,

with that difference, that for the state, wtich lies on “branch” ,

wh at mean time is mul t iplied to transitional probability on this

~branchN (.~~ or 1 — ?~ Usin g this ru le , it is possible to

• immediately write the m a x i m u m  p robab i l i t i e s  of states for  le f t

• branching cyclic c ircuit.

w
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Fig. 4.46.

Page 232.

10& Approximate information of not— Markov I.rocesses to Markov.

Method of “pseudostates ”.

in practice we almos t never  deal wit h M arkov processes in the

pure form: real pr ocesses almost always possess one or the other

aftereffect. For a Markov process the retention time of system in any

state is d istributed in a tow according to expcnential law ; in

realit y th is hardl y ever is thus. For examp l e, if the flo e of even ts,

which translates syste m frca state into state is a flow of the

failures of some uni t, then it is more log ical to assume that the

remaising time of the failure—free operation of unit depen~ds on tha t,

how lorg unit already worked. In this case, the retention time of

unit in running order is random variable, distributed not on

.zjonentia l, but according to some other law. Does arise the question
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concerning that , is it possible to approximately substitute not—

P4.issom flows — Pojsso~ and to which errors in the m aximum

probabilities of states can briny a similar replacement. For this, it

is necessary to be able at least to appoximately trace the random - 
-

processes, which take place in systems wit h aftereffect.

Let us consider certain ph ysical system S. in whicu proceeds the

random process, directed by scme nct— Pcisson flows of events. If we

try for this process to write the equations, which express the

probabilit y states as of function ci tine, we will see, that in the

q.~ eral ca se this  to us does not  accompl i sh .  It is rea l/ ac tua l , for  a

Narkov system we computed probability tha t at t c rgue/moaen t  t + ~t

the system will be able Sb taking in tc accoun t only  t ha t, in w h ich

state system was at torque/moment t, an d without taking into account

that how long it was in this state. For a nut—Markov system this

me thod is alread y unsui ta b le: computing transitional probability from

one state in to ano ther for time ~t, we must let us consider that how

loqg syste• alread y led in th i s  state. This  is brough t , ins t ea d of

the ordina ry d i f f e r e n t i a l  equa t ions. tc  equa t ions  w i t h  the par t ia l

deriva tives, i. e., to the  much more cemplex mathemat ica l  vehicle

wi th the kel p of w hich on ly  in rare  ca ses it . is possible to obtain

necessary results.

Does arise the question: a it is not possibl e whet he r to reduce 
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art if icially (at l east approx imate ly )  a not— Pt arkov process to

M a r ko w?

It t u r n s  out that  in certain cases this is possible: na mely, if

the nwmb er of states of sys tem not is very grea t , but d i f f e r i n g f rom

protozoa the flows of events , wh ich participate in problem , re present

by themselves (it is accura te  or a p p r o x i m a t e l y )  Er l ang ’s f low s . Then ,

introd ucing into the circuit of the possible states of system Sole

fict it ious “ pseudo states” , to reduce a n o t — L l a r k o v  process to Narkov

and it is possible to describe it wi th  the  n e lp  of the  o r d i n a r y

differential equat ions which with t —~ — pass in to alge braic

equa tions for the maximum probabilities of states.

Let us explai n the idea of the method of “pseudostates” based on

specific example.

Page 233.

Example 1. is examined S — technical. eyuipment/dev ice system.

wh ich can go out of order under t he  e f f e c t  of the simplest f low of

•ailf usctions with intensity x. The r e fu s e d equipment/ device

immediatel y begins to be restored. Reccver y time (repa ir) T is

distribute d not according to t h e  exponential law (as must so that the

proce ss viii be M a rk ov ) , but according to the law of Er lang of lcd
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order:

~,(l) — ~‘~~“~‘ e W  (1> 0). (10.))

It is required to reduce this not— Mar~ov process to Markov and

to find for it the maximum probabilities of states.

Solution. Random v a r i ab l e  T ( r e covery  time ) is distribute d

according to the  l aw of E r l a n g  and , w h i c h  means , tha t  i t  repre sents

by itself the sum of three random variables T~ , T,, ?,, distributed

accord ing to the e x p o n e n t i a l  law (see ~ S cn ap t e r s  $~) with the

pa rame ter ~i :

1 (l)— pe— s’ (1>0). (10.2)

Ihe true states of system a total Cf two:

S i — equipment/ device  is exac t ;

— equipment/device is restored.

?he graph/ count  of these s tates is shown  on Fig. 4.47

r•lated to cyclic circuit).

Mowe ver , considering that the transition c~ arrow/pointer S2 —>
Sa takes place under the ettect of not the s imp les t, and Erlang f low
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of events, the process , w h i c h  cccur s in sys tem , N arko v is not , and

for it~ we cani~ot wri t e  e i the r  d i f f e r e n t i al , or algebraic equat ions.

In order to artificially reduce tt~is pro cess to N a r k o v , let us

iiwtrod uce in to the c h a i n/ n e t w o r k  of states, instead of one state 5~~.

three Consecutive “pseudostate ”.

— repair begins;

— repair is con tinue d ;

— repair is finished ,

i.e. let us divide repair into three stage or “phase”, moreove r the

retention time of system in each of the phases let us cons ider

distributed according to exponential l aw (10 .2).  The g raph/ count  of

states wil l take the f o r m , shcwn on Fig. 4.4$, where the rol, of one

state S2 the y will play three pseudostatss Si’), S~” and S~ . The

process, which takes place in this system , mill be alr..dy flarkov.

Let us designate pS’
~ 
~~~ p~n — mamimum probabilities of the

stay of system in pa.udostat .a ‘, s~’~, s~’~; then
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Desig nat ing

iiIuu. ui, ~i— ”~
,’i’

we can immediately w r i t e  (as for  a usual  cyclic circuit) maximum

probability of the states: -
:

- - - 
;

‘,+4+t~+g tI+~~~ s

6 
_
_

~

-
p, — pSI) + ps!) + P~”r 3t~_

Pa ge 234.

Let us no te t hat value  3t2 represents b y itself nothing e lse b ut

mean recovery time (repair) — it equal to the sum wean retention

times of system in each phase of repair.

eassing in formulas for Pa. Pa trcau the mean times t1, t2 to

intensities of f low, on formulas t, = 1,A , t 2 = 1/p, we w i l l  obtain:

p a / (I ’+ $ ’), p~~~3l./ (~i+ 3l.) . (10.3)

Similarly is obtained the conclusion/derivation: for our

el ea sta ry example the probabilit y of the stay in each of two states,

as for a ~a rk ov cycle , it is equal to relative mean retention time in

a row in each of state.
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A fo l lowing e xample  there  w i l l  be somewhat  more complex.

~ xaaple l 2. The technical  equipsent ,device S consists of two

identical assemblies each of which can go out of order (reject) under

th. effect of the simplest flow of malfunctions wit h intensity X. The

refused node/unit immediately begins tc be overhauled. Tue time of

repair T is distribute d acccrding to the law of Srlang of second

order:

/,(t)~~ &’1e—W (1>0).

It is required to find the maximum probabilities of the states

cf system.

SoLution. The true states of system three (we label them

accord ing to the number of tefused node/units).

S0 — both node/un i t  w c r k ;

S~~ 
— one node/unit works, another is cverhauted;

S2 — both node/unit are overhauled.

Let us divide conditionally repair into two phases: t b repair

is b.gwa and repair is fiaish.d.
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Si

&I2~~’ 
~~~~~~~ A J 4 ~~ j4~~~~.

rig. 4.47. Fig. 4.48.

Page 235.

The deration of each p hase let us conside r disttibuted according to

ezpo~~ntia l law (10.2). The process, whic h occurs in system, is led

to Markov, if we introduce these pseudcstates:

— one node/unit works, anothet begins to be overhauled;

— one node/unit wcrks, another ends to be overhauled ;

St’.”— both node/unit begin to be repaired;

S~’
.’ — one node/unit begin to be repaired;

— both n ode/unit end to be ovethauled .

Ii

a
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The graph/count of the states of system with pseudostates is

shown on Fig. ~~ 4•449~ On the arrow/pointers , whicn lea d from 3~ i , t ,

in Sg’.” an d from S~’’ in S(’, it is writ ten 2~., but not ~, because
to pass dering th. following phase of repair (termination of repair)

cam any of two nod e/units.

Equations for the m axim um probabilities ot states they take the

tor n :

Vip0 i. ~ip~’. “—(“+~‘)pV~,

(1O.4
2~p(~• ~~~~~~~~~~~~

-—‘Vip,.
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Fig. 4.49.

Page 236.

From third , fifth and sixth equations (10.4) we have:

l) ,~~,

‘
~~~ + P~’’~~. (lO.5~

that jt makes it possible tc decrease the nu m b e r  of u n k n o w n s :

substituting (10.5) in remaining three eq uations (10.4), we wil l

obtain :

(10.6)

~pV~+ 
!~~p,~~2pp~ .1), L 

- -  - - -



- —  
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p~ I) , P1’ ”
From these th ree equations with three unkn•wms pO,A~t is

possible on arbitr arin ess to reject/throw any , for example , latter,

and to supplement the noiializiny condition:

P U +P Y’+ PS ’~ +P ~,
’ “ -i- p V ’~+ 

p~’’~— 1, -‘

or, taking into account (10.5) ,

(JO.?)

It is solved two first eguation (10.6) together with equation

(10.7). Is expressed frcm first equaticu p~~” through 
~~ 

and

(10.8)

let us substitute this expression in the second equation; we will

obtain: 
-

(A ÷ 2pi) p51) — [21 + .! (1 + ii)]

or, after reductio n on (1 •

(10.9)

I - f

_ 
-



.-= -_-- - --
~~~~~~ 

_____

- ~~~~ 
- 

- _
~~_,-_

~~~~~~~~ -~~--,. -
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S*batitutinq this in (10,8), it is expressed and probability

pSI .?.) throegh p~:

(10.30)

By now let us substitute (10.9) and (10.10) under norma lizing

condition (10.7):

whence

1+ 4~fp4 4k’/)&~ i’+4A,~+4~’ 
(10.11)

After this let us find all the remaising maximum probab ilities:

from (10.9), (10.10)

—4
I) “ ~~‘— .I~l. 1)

~? +4Ap + ~~~~ “ ~~ + 4).~i• + 4)~.’ 
‘ 

-

from 410.5):

.4
. ___________ ~

(I
~ 

I) ,
~~ M’+ 4)qi -f 4A’

’ ‘ u’+ 4)44 + 4).~

niL !)
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After are found the prcbabilities of pseudostates, it is

po;sible to find the probabilities of the states:

p 

~~~~~~~~~~~. p’+4A~e+41’ 
‘ ‘ ‘ ‘ 

~i’+ 4) . i+ 41’ ‘



..
p.
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for example, when I 1, ~ = 4 (in steady state) ~irobabiiity that

both node/uni t th e y  work , it is equal to p
~ = 16/2 5 = 0.64;

probability that one node/unit is overhauled p, -
- 8/25 = 0.32;

probabilit y that both node/unit are overhauled p~ = 1/25 = 0.04.

let us note that the method of pseudostates admits compar atively

simple sol ution of problem cnly in the simplest cases when the number

of states of reference system is small. Hone ver , sometimes it is —

possible to use this method , also, to the ptoblems where the numbe r

of states not is very small; in any case, to obtain if not literal ,

then numerical approximate soluticn of the matching system of linear

algebraic equations.

The possibilities of the methcd of pseudostates substantially

are widened, if we use as the flows of events nct some Erlang flows

al-one in pure form , but alsc by the generalized Erlang and mixed

generalized Erlang distributions which it was mentioned at the end


