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The simplest and most well known assumption for determination
of fatigue lifetime under variable amplitude cyclic loading is duc

to Palmgren [1] and Miner [2]). Mathematically it is<expressed by

the statement

|, S
) Ny = ! (1.1)

where the amplitudes of cycling are piccewise constant with kth

amplitude T and number of cycles n,, and N(o,) is the lifetime

for constant amplitude o, cycling.

k
Equ. (1.1) is casily interpreted for the casc where the cyclic
amplitude is a continuous function o(n) of the number of clapsed

cycles n. Tn that casc (1.1) becomes

Oy
dn(o
[W&l-l (1.2)
(¢]
0

where n(a) is the inverse of o(n), o, is the initial amplitude and

7, is the amplitude at failure. The lifetime ﬁu is then given by

ﬁu = ﬁ(ou) (1.3)

provided that (1.3) is a single valued function.

In the following the assumption (1.1) shall be referred to as
the PM rule. 1[It has first been stated in (1) and has been reintro-
duced in [2] on the basis of some physical assumptions. Other inter-
pretations in terms of assumed crack growth regimes have been given

in the literature. See e.g. [3]. The chief criticisms of (1.1)
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arc that it ignores sequence of loading effects and that the only
material information used is the $-N curve, thus fatigue failure
information under constant amplitude only, However, the PM rule
does agree with experimental data in certain cases but is also very
inaccurate in others. |

It is the purposc of the present work to show that (1.1) is
a very special casec of a general theory of fatigue lifctimd;ﬁré&i65
tion, i.c., cumulative damage theory, and to examine some rcgdiiing
conscquences.

It should, however, he emphasized that the thcories of cumula-
tive damage here éonsidcrcd are of detefministic nature. In com-
parison of the results of such theories to the usual significantly
scattered test results there arises the fundamental question: What
is the experimental interpretation of a deterministically predicted
lifetime? Is it the average of the scattered lifetimes under iden-
tical cyclic loading programs or is it some other associated statis-
tical parameter? To the writer's knowledge a satisfactory answer

to these questions is not available,

2. Resumé of Cumulative Damage Theory

For present purposcs it is necessary to give a hrief summary
of the cumulative damage theory developed in {4] for prediction of
fatigue lifetime under genceral cyclic loading programs.

It is assumed that there is available a family of '"identical”
specimens. Each of these specimens is cycled to failure in a two
stage loading. The first stages of all of the two stage loadings
are identically n, cycles at stress amplitude o,. The second stages

arc at different amplitudes °j with residual lifetimes njr. The
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njr are plotted starting from the S-N curve of the material hori-
zoncally to the left at ordinates oj. The resulting locus

is defined as the damage curve through n

o fig. 1.

l’ l)
e The following properties of damage curves have been established

in [4]:

1. A damage curve is uniquely defined by one of its
points. This is based on an equivalent loading

postulate which will be explained further below.

2. All damage curves pass through the static ultimatc
point 0, 0

3. Damage curves do not intersect the n or o axes,except at 0, 9.

4. Damage curves do not intersect (if the marerial is

.
b

such that additional cycling reduces the residual

lifetime) except at static ultimate point and

R T

fatigue limit,

ik Sl

It is thus seen that the damage curves form a family of curves
which cover the region bounded by the n,o axes and the S-N curve.
The actual shape of the damage curves is not known. But since the
S-N curve is a special case of the damage curves (one stage loading;
residual lifetime in second stage vanishes) it is perhaps not unrea-
sonable to assume that the damage curves are expressed by a similar

mathematical form as the S-N curve, [4]. Thus if the S-N curve is

represented as

H

SEEIREE D R O R M

S

f(r, n) (2.1)

I OO
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where s is a nondimensional stress c/cs and T is a curve fitting
parameter, then the damage curves are represented by the one para-

meter family

s = £f(y, n) (2.2)

where Y is a parameter which changes from curve to curve. [t is
of course possible to represent damage curves by a family with
more than one parameter.

Many S-N curves can be adequately represented by straight

lines in semi-log or log-log coordinates. Thus

“r R y By

s =1+T logn semi-log (a)
(2.3)
log s =T logn log-log (b)

LR e

In that case it follows from (2.1.2) that the damage curve families

TR

have the forms

S T S

s=1+7Ylogn (a)
(2.4)
log s = Yy logn (b)
E where Y is determined by the coordinates of any point on the damage

curve.

The behavior of the damage curves in the neighborhood of a

fatigue limit is not clear at the present time. Let the fatigue
limit stress be denoted Co and consider two stage loadings with

first stage 9, > 04 for n, cycles and second stage Oge If a spec-

imen is cycled at constant level O the lifetime will, by definition

of the fatigue limit, be infinite (that is, longer than maximum

acceptable cycling time). For the two stage loading described

it is quite possible to have finite lifetime at O which is more-
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over a decreasing function of oy and n,. It is also reasonable
to assume that for any High-Low two stage loading, with first stage
9, for n, cycles, there will exist a fatigue limit ae(°1’ nl) which

is a decreasing function of oy and n,. If there is made the sim-

plifying assumption that ée ~ Og then all damage curves which
represent the two stage loading described above must terminate at
stress level O If the S-N curve is a straight line in semi-log

or log-log coordinates, the fatigue limit is represented by a break
in the S-N straight line, fig. 2. If the damage curves are assumed
linear in semi-log or log-lecg representation then they must converge
into the fatigue limit point n = Ne; S¢ ® °e/°s’ fig. 2. The equa-
tions of these straight lines are given by

S - S, ™Y log (gm) semi-log (a)

n (2.5)
log (s/se) =y log (N-) log-log (b)
e

It is to be expected that (2.4) will approximate the damage
curves in the neighborhood of the static ultimate point n=0; s=1
while (2.5) wil) approximate them in the neighborhood of the fatigue
limit. It is of course possible to construct nonlinear damage
curves which will be tangent to the two sets of straight lines at
static ultimate and fatigue limit but this subject will not be
considered here.

The damage curves determine,by definition,lifetimes under all
two stage loadings. It has been shown in (4] that lifetime under
any cyclic loading program can be determined on the basis of the
damage curves if it is assumed that specimens obey an equivalent

loading postulate. To explain this postulate it is first necessary

5.
S S

—"'\' i
%
X
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to define equivalent cyclic loadings: Consider any variable ampli-
tude loading program which terminates before failure occurs., Sub-
sequently, the specimen is subjected to constant amplitude cycling-

to-failure at some stress level, s The residual lifetime under

1
S, cycling is nr(sl). Among the infinity of possible loading programs
there must necessarily be some which have the same nr(sl). Such

loading programs are defined as equivalent cyclic loadings with

respect to s In conventional terms, equivalent loading means

1.
that specimens have "suffered the same amount of damage'. This
vague statement has, here, been precisely expressed in terms of

equal residual lifetime under subsequent constant amplitude loading.

Since the stress level, s is arbitrary it is reasonable to

1D
belicve that if the subsequent constant amplitude is s instead of

Sy residual lifetimes will be the same nr(s)#nr(sl) for the cyclic

loading programs equivalent with respect to s Hence the equivalent

T
loading postulate is stated as: eyclic loadings which are equivalent
for one atress level are equivalent for all atress levels.

This postulate is schematically illustrated in fig. 3. The
plots show variations of nondimensional amplitude of cyclic loadings.'

The loadings are equivalent for amplitude s, since nr(sl) are the

1
same. The equivalent loading postulate then asserts that they are

T

equivalent for s are the same and similarly for

2 implying that n,
any other constant s cycling.
Residual 'ifetimes in two stage loadings are determined by the
damage curves, in view of their definition. For a piecewise con-
stant amplitude (multistage) loading the analysis procedure for
residual lifetime is shown in fig. 4. First loading stage, n,
cycles at 3 amplitude, is traced in the S-N plane by the horizontal

v, s oWt
+* [ P i

T S S T P ]
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segment n, at s,.
ceed on damage curve through N, .S, until level s, and then advance

For next stage, n, cycles at S, amplit de, pro-

n, horizontally. This is repeated for the various loading stages

until the S-N curve is reached. The sum of the n,, N then

LIRERE
defines the lifetime under the multistage loading program,
Now let the cyclic loading have a continuously variable ampli-
tude defined by
s = s(n)

. (2.6)
n = n(s)

The damage curve equation (2.2) is written in the alternative forms

n =gy, s)
(2.7)
Y = v(n, s)
In order to find the amplitude s, at which failure occurs under the

cyclic loading (2.6) it is necessary to solve the differential

equation
dn 30y, s)| , ;
s 6 + n'(s) (2.8)
y=y(n, s)
with initial condition
s(0) = So 2.9)

where 59 is the initial amplitude of (2.6). The solution of (%.8)

defines a curve s(n) in the s-n plane which intersects the S-N

curve at failure amplitude Sy The lifetime ﬁu is then given from

(2.6.b) by




n, = ﬁ(su) (2.10)

A1l of this presupposes that (2.6) are single valued functions.

If this is not the case the multivalued function must be separated

b 3 into single valued branches and the integrations must be carried

out separately and successively for the various branches.

Various cases of multistage and continuous cycl ¢ loadings

have been treuated in [4]) on the basis of the damage curves (2.4)

and (2.5).

3. Palmgren-Miner Cumulative Damage

The PM assumption will now be examined on the basis of the yeneral

cumulative damage theory summarized above. To construct the damage

curves let a specimen be subjected to a two stage loading n, cycles
at amplitude S, and then n* cycles to failure at amplitude s, Accor-
; ding to the PM assumption
| n T
R B! (3.1)
1 1 §
2 and from fig. 1
n® = N - n (3.2) [

Combination of (3.1) and (:.2) yields

n
ﬁ = Ni s const = Y (3.3)

Thus the equation of the damage curves is

n(s) =y N(s) 0 <y <1 (3.4)

where Nks) is the equation of the S-N curve, y=1 corresponds to the

(RN E e N S I e .. WY
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S-N curve and Y=0 corresponds to the s axis. The value of ¥y for
any damage curve is determined in terms of the coordinates of a

point through which it passes by (3.3).

Two stage loadings do not in general obey the PM assumption.

The following trends have bheen observed in metal fatigue

n nz

= b
NN

{ > 1 when s, < s, Low-High
(3.5)

< 1 when s, > s, High-Low

The condition (3.5) has interesting implications for the damage
curves. Writing the left side of (3.5) in terms of the substitution i

(3.2) for n, it follows at once that :

"(51) n(sz) ]
N(s)) ? N(sz) (3.6)

In words: the necessary and sufficient condition to fulfill (3.5)
is for n(s)/N{(s) to be a monotonically decreasing function of s,

In differential form

d n(s
s NTE% <0

which can be reduced to

g log n(s)] < § (log N(s) ] (3.7)

If the inequalities (3.5) are reversed, which has been found
to be the case in some fiber composite testing, then the inequalities

(3.6) and (3.7) also reverse. (3.6-7) become equalities if, and only

if, the PM assumption is valid. It is easily seen that the logarithmic

linear damage curves (2.4) obey inequalitics in the opposite sense to
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(3.5) and while the other kind’which converge into the fatigue
limit,obey (3.5). Indeed it has been found,[4],that two stage
fatigue life tests for steel are in good agreement with predictions
based on (2.5).

Next the case of multistage loadings is considered. Refer-
ring to fig. 4 the damage curves needed are numbered consecutively.
The abscissa of a point with ordinate Sj on the ith damage curve
will be denoted “ij' Suppose the loading consists of the three
stages n, cycles at amplitude S10 My at Sy and ng to failure at Sy
It is required to find Sy The procedure is indicated in fig. 4.

The equation of damage curve 1 is

It follows that

n

n . oL N(s.) = 1 N n @ ! N, +n
12 N; 2 NI 2 22 WI 2 2

The equation of damage curve 2 is

n, "22
N N
2
It follows that
n n
RTY _ M2 ]
a3 T N N(s;) N, N, Ny3 " Ny * 0y

Failure at amplitude s, cycling occurs when the S-N curve is reached

at that level, i.e., when
n u N (3.8)

Combining (3.8) with the preceding relations it follows easiiy that
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which is the PM assumption for a three stage loading. It is not
difficult to show (by induction) that by this procedure failure in
a general multistage loading will be predicted by (1.1).

It should be carefully noted that the PM assumption has been
here adopted only for two stage loadings, whereby the form of the
damage curves was determined. The procedure for multistage loading
analysis in terms of the damage curves is based on the equivalent
loading postulate which refers to any damage curves.

The case of continuous amplitude variation is governed by the
differential equation (2.9). Analytical integration of this equa-
tion does not seem feasible in general. Even with the simple
damage curves {(2.4) integration could only be carried out numeri-
cally, [4). The situation is however different in the case of the

PM damage curves (3.4). In the presert case (2.7) are given by

(3.4) and (3.3). It follows that (2.8) assumes the form

. "mj(_l”; 5) + nr(s) (3.9)

where a prime denotrs differentiation. It is easily verified that

the solution of (3.9) is

L]
n(s) = N(s) f B {0)do (3.10)
®0

Failure is defined by the intersection of n(s) with the S-N

curve N(s), i.e., when n(s) = N(s). Thus for failure
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Su

J %%g%ﬂ= 1 (3.11)

ket 8 A S IO < e RS M T

It is easily seen that (3.11) is the same as (1.2), the continuous

amplitude variation version of the PM assumption.

The left sides of (1.1) and (1.2) may be termed the PM coef-

ficient. Recall the inequalities (3.5) for this coefficient for

o B e A e MR, r A Wt T o SRy e Y

two stage loading and their relations (3.6-7) to the damage curves.

It is not difficult to show that (3.6-7) also imply that the gen-

[PV

U B e

eral PM coefficient obeys inequalities (3.5) and also reversed
inequalities (3.6-7) for reversed inequalities (3.5).

Experience accumulated over many years has shown that the PM

rule sometimes predicts fatigue life with sufficient engineering

accuracy while at other times it is very much in error. To the

writer's knowledge no criteria for acceptability or inacceptibility

i of this rule are available.

: g In the course of present research, concerning the new cumulative
damage theory, fatigue life predictions have been performed for vari-
ous cyclic loadings on the basis of assumed linear damage curves
(2.4) and (2.5). It has been found that (2.5) are more appropriate

for metals. For two stage loadings there results the simple formula

n. 108(N,/N.)/log(N,/N,)

- (+

n2 ‘
+ N—; e 1 (3.12)

where Ne is lifetime at S the fatigue limit, as determined by the

S-N curve. It has been found [4} that (3.12) is in much better agree-
ment with steel test data than the PM rule.
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It is of considerable interest to have some general assess-
ment of the expected differences between lifetime prediction as
given hy the PM rule and the much more general cumulative damage
theory of [4]. While such general assessment is not available
at the present time the following example will perhaps serve to
establish trends.

Consider a multistage loading program composed of m stages,
r. cycles at amplitude s,. The amplitudes increase or decrease
monotonically in the interval from initial value s, to final value

1
S fig. 5.

m’
A procedure for lifetime prediction under multistage loading
has been given in [4]. This will here be summarized in a modified

form. Define the recurrence relations

My

TR IR T N (3.13)

where
Ny -- the number of cycles with amplitudes Sk in
kth stage,
Nk=N(sk) -- lifetime at Sy from S-N curve,
¢k -- functions of stress amplitude defined by the form

of damage curves.

Then failure is predicted by

My = 1 (3.14)
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Choosing the damage curves in the form (2.5a), that is semi-

lcg linear through fatigue 1limit, the functions ¢, assume the form
-5 (3.15)
It is noted in passing that for damage curves (2.5b)

¢k = log(sk/se) ' (3.16)

If Sk in (3.15-16) are expressed in terms of Nk from the S-N curves

(2.3) then in both cases

¢k log(Nk/Ne)
0.1 log(Ny {/N.)

(3.17)

Equ. (3.12) for two stage loading is a special case of (3.13) with
(3.17).

It is easily seen that the PM rule is obtained as a special
case of (3.13-14) when ¢k-const.

Numerical computations have been carried out for ascending
stair case loadings and their descending reverses, with initial

and final amplitudes

s, *® 0.3 sm = 0,7

sl = (,7 sm = 0,3
In all cases

Se * 0.2 r=-0.1

where T refers to S-N curve (2.3a), and

Sk~ Sk-1 ® 4s = const = (3.18)

o orsnrre,
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In the first set of computations it was assumed that n =n=const.
If a number of stages m is chosen the number of cycles n per stage
then becomes the unknown to be determined from (3.13-15). It was
found that for these cases the predictions agreed closely with the
PM rule. Therefore, introducing (3.18) into (1.1) a good approxi-
mation 1is

1/“‘5"‘ 1 (
n. = 2 3.19)
u k"l Nk

In the second set of computations it was assumed that

n = BNk (3.20)

where B8 = const. In this case the unknown for given number of stages
is B8, which is found numerically by satisfaction of (3.14). Once
B is known the lifetime under given program is thé sum of BNk over
all stress values.

The results of the computations are shown in fig. 6 as ratio

of lifetime defined by (3.20) to lifetime predicted by the PM rule.

Note that according to the latter

It easily follows that the ratio plotted in fig. 6 is simply
B8
[ AN mB
Bpm

It is seen that there is substantial disagreement with prediction

of the PM rule. Also loading sequence reversal produces substantial

changes in lifetime as is seen by the difference between ascending
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and descending loading program lifetimes,

The differences in agreement with the PM rule in the different
loadings are not difficult to explain. In the first case the

number of cycles is the same for each stress level. Therefore the

damage produced at different stress levels is significant only for
the high stress levels. Roughly speaking the loading is equivalent
to constant cycling for a certain number of cycles at max stress
level of the lonading. However for such (constant amplitude) loading
the PM ruleﬁis (trivially) valid.

In the second kind of loading the damages done at each stress
level are of similar magnitudes since the number of cycles in each
stage is proportional to the lifetime at the stage stress level.
Thus there is no reason to expect validity of the PM rule.

On the basis of the foregoing it may be speculated that the

PM rule will be adequate when the most of the ''damage' is done at

roughly the same stress level. For a rough assessment the PM coef-
ficient (1.1) or (1.2) may be computed. If in (1.1) one of the
terms is dominant (larger than .9, say) or if in (1.2) the major
contribution to the integral comes from a narrow stress band then
it may be surmised that the PM rule would be an adequate approxima-

tion.

4. Conclusion

It has been shown that the well known Palmgren-Miner linear
cumulative damage rule is a special case of a general cumulative
damage theory. In this respect it should be noted that according

to present development it is necessary to assume validity of the PM

rule only for two stage loadings. Its validity for multistage

b =14

::’A' "Nl AE R L A AW Lot 0 BRIV SRR Y e & ¥ € {2-4-«"1, X _ -
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loadings then follows from a general equivalent loading postulate
which is assumed valid for any cumulative damage theory.
It has been shown by means of numerical examples that there are
classes of multistage loadings for which the general cumulative

damage theory and the PM rule are in close agreement while substan-

tial disagreement is found for others.

It must be emphasized again that all theories included here
are phenomenological and deterministic. The fit of any such theory
to test data is obscured by the significant scatter observed. It
is therefore most important to generalize the theory developed so
as to take into account the scatter of lifetime test data.
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