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Abstract

This paper deals with a mathematical model designed to provide

guidelines for managing a land resource over an extended period of time.

We develop a framework which permits sequences of management

decisions to be conveniently formulated, and their associated costs

and benefits specified. This takes the form of a network. Each path

in the network represents a possible decision sequence. We study how

to select suitable decision sequences and what proportion of the

resource to manage with each selected sequence, so as to optimize some

specified objective and meet the constraints imposed on management of

the resource. An L.P. model is formulated. The solution strategy

decomposes the L.P. matrix using Dantzig—Wolfe decomposition and solves

the subproblems efficiently by dynamic programming or a network flow

algorithm. Computational aspects are discussed and the concepts and

procedures are illustrated in the Appendix, for forest management.

This paper is a substantially revised version of Reference [61.
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*A LAND MANAG~ ’fENT MODEL USING DANTZ IG—WOLFE DECOMPOSITION

by
k

L. Nazareth

1. Introduction

In recent years many land management models have been forimilated,

e.g., Navon, et al. Ll,2], RCS [3], Heady and Chandler [4), Shoemaker

[5]. One of the most broadly—applicable formulations appears to be the

dynamic linear programming model. Here the equations and inequalities
p

are linear , and the term dynamic reflects an essential feature of the

type of management under consideration —— that management decisions
C

have to be made during each of a sequence of successive time intervals

which span the period of planning. Our model is of this type.

The total resource to be managed is assumed to be specified as

a set of resource classes, denoted by C~, C
2
, ~~~~ ~

k each capable

of yielding one or more quantifiable products, either simultaneously

or sequentially; a resource class is obtained by grouping together

Lu those portions of the total resource which have similar initial

conditions, productive potential, economic characteristics and response

to management. At the level at which planning is being conducted it

is assumed to be reasonable to consider such an aggregate of land

This paper is a substantial revision of Reference [6].
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parcels as a homogenous entity for which a given set of management

alternatives would be explored cf. for example, the timber model of

Navon , et al. [1).

The period of planning, over which management plans are to be

developed, is subdivided into a set of time intervals. These plan-

ning intervals are usually of equal length, and span the planning

period.

Consider a particular resource class ck . During each planning

interval a management or control decision may be carried out, e.g., on

a timber class a control decision may specify what proportion of stand-

ing timber should be removed during the interval. A control decision

results in (i) cost expenditure, (ii) the realization of benefits,

e.g., agricultural produce, timber, forage, etc., (iii) the development

or degradation of the resource class. A sequence of control decisions

carried out on a portion of the resource class over the span of the

planning period therefore implies a flow of costs and benefits. We

shall call this decision sequence and its associated costs and benef its

a management alternative. In general, for each resource class , there

will be many such alternatives each having a different impact on the

resource. Note that specifying a management alternative is independent

of the total acreage to which it is applied. Thus one of the assump-

tions inherent in the model is the linearity of costs and benef its of

each management alternative as a function of acreage managed .

2
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~ We shall denote the j—th management alternative for class

by the pair of vectors (M~, B~) , where M~ is a vector whose i—th

component M~~ is the cost per unit area of management decisions in

interval 1; similarly ~~ is the benefit per unit area in interval

I. We shall denote the area, i.e., number of acres of managed by

(M~, B~) by x~. Our problem can then be stated as follows: “Determine

x~ Vk ,j ac that all constraints are satisfied and some specified

objective is optimized .”

Because the number of management alternatives is potentially

very large, we develop a convenient way to specify them, and their

associated costs and benefits. This takes the form of a network. Next

we discuss possible constraints and objectives and develop the L.P.
4

model. Finally, we describe a aolution strategy which employs

Dantzig—Wolfe decomposition coupled with dynamic programming or a

network flow algorithm f or efficient solution of subproblems.

I.
3
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2. Specifying the Management Alternatives (see also Appendix I)

It is assumed that at the beginning of each interval, any

par t of resource class can exist in one of only a finite set of

distinguishable states. We shall represent the states of class

at the beginning of the i—th interval by C~~ where j  — 1, 2, ... , n~.

C~~ will often be specified by abstracting certain significant

characteristics of class called state paraaeters,and a state C~~

is determined by specifying the value that each parameter can take.

For the purposes of management and at the level at which management

is being conducted, the characteristics chosen must adequately describe
kthe productivity of class C . -

Suppose some part of class is in state ~~~ at the begin—

ning of interval i. The process of management during interval i is

now seen to consist of converting this portion, in state C~~, into

one of the states C
~i+l)j~ 

j — 1, 2 , ..., 
~(j+l)’ which are allowable

at the end of interval 1. This state transformation is achieved by

designing and implementing a suitable control decision. State trans—

formations between certain pairs of states may not be possible , or may

be excluded as being undesirable. The process of defining states and

state transformations is clearly an iterative one, since they interact

with one another.

Each state transformation C~~ + C~j+1)q~ achieved by a control

- 
decision carried out during the i—tb interval, incurs certain costs

and yields one or more benefit.. Costs and benefits are functions of

4
r-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_______ V .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~ - ~~~~~~~~~~ ~~~~~~ —

- 
4~~~~~F-~v. 

~
- * 

___



—
~~~~

- w —

the pair of states invol~~ d in the transformation and the control

decision by which it is achieved . These are specified on a per unit

area basis.

Finally, if the states and transformations for each interval

are displayed simultaneously, we obtain a directed network in which

each path from the initial state to any of the states at the end of the

planning period defines a management alternative. Within this frame-

work a variety of planning decisions may be made simply by pruning

the network.

In practice, a number of simplifying situations arise. (a) In

many cases it will be possible to use the same set of states and trans-

formations for every interval, subject only to discounting dollar

value of cost and benefit. (b) The states of one interval may be

deducible from the states of a previous interval. (c) The calculation

of costs and benefits may be possible from the state parameters and

some basic knowledge about the control operations involved. (d) Dif—

I ferent resource classes may share the same network, but with each

having a different initial state.

In this way, the set of networks that are needed, may be

generated from a much smaller information base.

In aussnary, the main steps are:

(1) Determine the resource classes.

(2) Determine the planning intervals.

(3) Determine the states for each resource class.

5
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(4) Determine the state transformations for each resource class.

(5) Determine costs and benefits for each transformation.

(6) Develop the network for each clasa.

In Nazareth [6], Chapter 4, application of the above procedure

to specific resources is studied, and points (a)—(d) above are illus—

trated. Specifically, different methods for discretizing the state

space for a timber resource are developed, and the way to include

reforestation is considered. The above approach has also been succes—

sfully applied to range land management (see Jansen [7] ) .

_ _  
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3. Examples of Constraints and Objectives

3.1. Notation

In addition to the notation introduced in Section 1, we use the

following:

P —— The number of planning intervals.
R —— The number of resource classes.

—— The set of all alternatives for C1~. Assume that there are

of these. For the purpose of stating the constraints we shall

act as though all alternatives are generated explicitly from the

network. However, the solution strategy works directly on the

network, as will be discussed in Section 4.

3.2. Resource Class Constraints

3.2.1. Variables definition rows

(3.1) 
N’~ 

Mk k 
- ~ B~ 

k 
—

j—l ~ i—i 
j

i — 1, ..., P; k — 1, ... , R, represent the total cost incurred

in interval i for class k. 4 represents the total benefit

accrued in Interval i for class k. These are known as the return

variable8 of class ck. We shall call x~ the principal variables.

7
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3.2.2. Availability constraints

(a) The total amount managed by all alternatives of class k is

constrained to be less than or equal to the total area available,

ka .

r k k(3.2) 2. Xj ~ 
a k — 1, ...~~ R

j —l

(b) For the first ~~ intervals, class k may not be totally

accessible. Say only 4% of the total quantity ak is acces-

sible for all intervals such that 1 < i. <

r k i k k(3.3) 2. xj I~~~~~a l I i I m
i E j ~~ k~~~l, ..., R

where J~ is the set of all alternatives from ~~ which involve

some nontrivial management of class in intervals prior to

the i— tb.

(c) A variety of additional constraints may be imposed on class k,

limiting the amount of land that can be in a particular state or

the amount that can be transformed from our state into another, or

requiring that at least a certain amount of land be in a particular

state during a given interval. Such constraints are important

when it becomes necessary to ensure that side benefits, not directly

specif ied , e.g., recreation value, are maintained at an acceptable

level.

8
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3.3. Global Constraints

• 
3.3.1. Periodic constraints

These constrain the total cost incurred in interval I and

the total benefit accrued in interval I and may be specified for

each class or globally over all classes.

4 <4 or

(3.4)

• 4 >4 or

The components of 4 represent the upper bounds on each type

of cost incurred in managing and the components of 4 the mini-

mum amount of each type of benefit to be produced. Similarly for U1

and V~ except the constraint is now over all classes.

3.3.2. Flow constraints

These for example constrain the total benefit derived in inter-

val I to be within certain levels of the benefit accrued in the

previous interval, e.g.,

(3.5) 
~ 4 1 (1 + u) 

~ 41 and ~ 4 ) (1 — I) 
~ 41

See [1] for examples of such constraints for timber.

~~~~~~~~~~~~~~ ~~ ~~~~~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3.4. Example of Objective

Objectives will be of the form, f o r  example, minimize total

cost

(3.6) Minimize ~ ~ 41(1 +
i—i k—i

where r is the interest rate.

One form of the L.P. matrix derived from the previous equations

is illustrated, Lor three resource classes In Figure 3.1. Each sub—

matrix Dk corresponds to a network whose paths determine the column

of coefficients ~~~~ 4
~)T of the principal variables associated

with class C

I
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4. Choice of the Solution Strategy

The various classes Ck, k — 1, ..., R compete with one another

for the resources available. From the set 5k, vi we must select

that combination of alternatives and their levels which “best” meet

the constraints of the analytic model in Section 3. This optimal solu-

tion would identify which classes to manage intensively, which classes

it would be profitable to convert from one mode of production to another ,

and when to carry out such a conversion .

The most obvious, technique of solution is to explicitly generate

each of the submatri,es Dk and thus to develop the complete L.P.

matrix. This will only be feasible for networks with a relatively

small number of paths.

I

4.1. The Decomposition Model

We now seek to develop a technique which avoids an explicit

generation of each alternative. In this technique we decompose the

matrix into a master and a set of subproblems using Dantzig—Wolfe

Decomposition. Each subproblem has a network associated with it , and,

as we shall see, the nature of the subproblem constraints and objective

are such that it may be eff iciently solved, for example by Dynamic

Programming on this network. The rows of Figure 3.1 corresponding to

the Periodic and Flow Constraints and the Objective define the master,

and the rows corresponding to the Variab le Definition and Availability

rows for class ti’, define the k—tb subproblem.

12
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Using the notation developed in Figure 3.1, we may write the

analytic model as:

Minimize ~~ ~l + ~~
2 + ... + fR ~R

Subject to A’ ~~ + A2 z2 + + AR zR -

1 1  - 
1B 2 — b

(4.1)

2 2  2B 2 — b

R R~ ‘R
D Z — b

z~ ~2 ~~~~~~ zR > o

where is the vector of principal and return variables

k k k k 1 RZ — (x , X , Y ) the vectors I , ... , I have zeros in the posi—

tions corresponding to the principal variables and the columns of

A~ , . .., A~ corresponding to the principal variables are also zero

~1 -i(cf Figure 3.1). Denote by r and A respectively the elements

and columns of f 1 and A1 corresponding only to the return variab les .

Using the standard Dantzig— Wolfe Decomposition principle [10],

[12), the k—th subproblem is then of the form

13
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~~nimize (~k 
- ~~k) (

~
) — 11ok

(4.2) Subject to Bk z
k

z~~> O

where II are the dual variables (prices) assorted with the non—

convexity constraints of the master problem , and 
~ok corresponds

to the convexity constraint arising from the k—tb subproblem .

4.2. Solution of Subproblems

4.2.1. Basic considerations: Dynamic programming solution

In order to explain the solution strategy in a simple context,

let us consider in Figure 3.1 only availability constraints of the

form (3.1). Assume, also for simplicity, a single cost and a single

benefit per transformation , and let ~ — (~~k 
— ~~k)~ Henceforth we

drop superscript k , to simplify the notation.

The k—tb subproblem above may be written as:

14
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I x ’
Minimize p . ( —

- ok

Subject to ~ M1~ Xj — X~ — 0 V 1

(4.3) 1 B 1~~ x~~— Y 1 — O

x~ — a
j

x 2.0 .

Partitioning ~ into (j i , ~
) where: ji corresponds to the vector

(X — X1, ... , X~, ...) and p corresponds to the vector

— Y1, ... , Y~ , .. . )  the aubproblem objective may then be written

as follows:

Minimize 

~ 

(
~ M1~ + i~ Bjj )]x j  

-

(4.4) Subject to ~ x~ a
j

Xj > O .

- - 15
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The minimum value can always be attained for such a problem by a

single alternative, say x
~ 

at level a and all other alternatives

j ~ t at level zero; t will, be such that 
~~ 

(ii .~ Mj~ 
+ 

~~~ . 
8it~

is a minimum. Now recall that (Mit
) and (B

it) are obtained from

the i—tb path in the network corresponding to class C. Therefore

solving the subproblem corresponds to finding the path of minimum

length in the network for C whose arc values have beem computed as

follows:

—— The cost in interval i is multiplied by i~ and added to the

benef it multiplied by 
~~~~
.

This minimum path can be found using the recursive technique

of Dynamic Programming [8).

Once an alternative giving the minimum value of the subproblem

objective for each subproblem has been found for the current set of

master prices, the coordinates of the extreme point corresponding to

the return variables must be returned to the master. These are given

by the vector v — (M
~ a, 

~~ 
a) and the appropriate column of the

master for non—convexity rows is now generated from A v.

4.2.2. Extensions to solution strategy

We shall illustrate this for two cases:

(1) Extending the DP when adding constraints of the form (3.3) of

- Section 3.2.2.  It will suffice to consider a single constraint

of the form

16
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k
k ~l k(4.5) ~ x
1 ’j~~~a

iEj~

where again, we shall drop the superscript k for simplicity.

(Thus (1 — P1)% of the resource class is not accessible during

the first planning interval.) Consider C to be partitioned

into two sets whose acreages are in the ratio P1
:(l — P

1).

Recall that the initial state is represented by C11, and assume

that acreage in state C
1~ transforms into state C

2~ 
at the

end of the interval 1 under no management (which may mean just

some basic maintenance). Then the solution to the subproblem

corresponding to resource class C is obtained by finding the

minimum paths in the network modified as described earlier in

Section 4.2.1.

(1) From C11 to one of the final states.

(ii) From C11 through C2~ to one of the final states.

These can be found simultaneously in one ~~~~~~~~~~ of the DP algorithm.

If these paths or management alternatives are given by

(z) and

respectively, then the components of the extreme point correspond—

ing to return variables are

17
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and these are given back to the master for the next iteration

of the decomposition algorithm. The reader will have no difficulty

extending this scheme to several accessibility constraints of

the form (4.5).

(2) Using a network flow algorithm to handle constraints discussed

in 3.2.2(c). This is best described by reformulating the resource

class constraints of Section 3.2 as follows:

—— Let cipq~ 
bjpq and Zjp q represent the cost, benefit, and

acreage, respectively of the transformation C~ + C (i+l)
(where again superscripts k are dropped for convenience).

I

Then we can write (3.1) as

(4.6) ~ c z — X , b z — y
i,pq i,pq I i,pq i,pq ip,q p,q

Availability constraints of Section 3.2.2 can be specified by

associating upper and lower bounds with each’ arc of the network

and by introducing dummy nodes and arcs in the usual manner . Then

a subprob lem can be solved using a network flow algorithm, whose

objective function is given, as in (4.3) by p . (f) , with ~( and

! defined by (4.6); the components of the extreme point corre-

sponding to the return variables are deduced from the optimal flows

in the network and returned to the master problem , for the next

iteration of the decomposition algorithm.

18
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4.2.3. Other related model structures

Dantzig—Wolfe decomposition coupled with dynamic programming

(DP) is, of course, not new. Other models which employ this solution

strategy are, for example, those of Dzielinski and Gomory [16] and

Parikh [14]; these models share some features In common with ours.

However , the particular manner in which this strategy is formulated

and used differs substantially from one model to another.

The model of Dzielinski and Gomory [16] is a particular example

of the production scheduling problem formulated in Lasdon [11 , p. 171].

The L.P. constraint matrix has the form given in Figure 4.1, where

corresponds to the j—th schedule or activity (selected from a set,

say Si,, def ined by the ‘technological constraints’) for producing

item 1, where I — 1, 2, ..., I. The problem is to select a particu-

lar subset of schedules so as to satisfy the resource constraints and

minimize the cost of operating all activities over time.

ITEM 1 ITEM 2 ITEM I

‘~~~~~i~~~ r~~-r~1 21 2 Ii I

T rows ... [
~~ /I ::nts

Iii ...i, I
Item

I rows 11 1 
Constraints

L 11 “l 1
Figure 4.1

19
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When I >> T most blocks will have only one ~ 0 (and therefore

1) and the L .P .  approximates the underlying integer programming

problem. The item constraints defined a single decomposed subproblem

(giving one convexity row in the master). This is separable into I

Wagner—Whitln type deterministic inventory problems which can be solved

by DP. The constraint matrix Is similar to the special case discussed

in Section 4.2.1, when return variables are substituted out. The

manner in which dynamic programming is used to select schedules is

quite different from our use of it, and there is no analogue to the

extensions discussed in Section 4.2.2. Note also that the model of

Dzielinksi and Gomory is concerned with detailed plans for production

scheduling.

Our model also shares features in common with the model of

Parikh [14] for long range operation of a multiple water reservoir

system. Each reservoir system plays a role analogous to our resource

class, and return variables analogous to ours are defined for water

release and on—peak and off—peak energy production , for each reservoir

and time period . The constraint matrix Is also block angular (cf

Figure 3.1) , with the return variables coupling the constraints for

each reservoir to the constraints for the integrated system. Each sct

of constraints for a reservoir system defines a subproblem , which is

solved by a particular application of DP over a grid defined by dis—

cretizlng storage and water release . In contrast to our model , note

that there is no partitioning of a resource class , each partition to be

managed by a different  alternative, and that the considerations of

Section 4.2.2 again do not have a direct analogue.

20
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Amldon and Akin [9] have used dynamic programming for forest

management. Tcheng [13) has developed a decomposition model for forest

management. Our model combines and generalizes these approaches. We

have drawn rather directly upon the concepts of optimal control theory,

in order to set up a framework for specifying management alternatives

for each resource class. This would normally be done with the coopera-

tion of a resource manager who is familiar with its characteristics.

Thus we have structured the process of defining what can be done to a

resource class. We have then shown how these resource classes can be

combined in a block angular L.P. model, to which the Dantzig—Wolfe

decomposition principle can be applied . In the next section , we

describe the design of a computer system which implements these ideas

in a general way.

H 
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5. Computational Aspects , Discussion of Experimental Computer Program,

Computational Results

Figure 5.1 below is a broad—brush description of the InformatIon

requirements and possible options, in a system designed to implement

the resource allocation model and the solution strategy developed in

this paper . The information needed to specify a network of management

alternatives for any resource class is as follows:

—— The states of each Interval.
—— State transformations for each interval.

—— Costs associated with each transformation.
—— Benefits associated with each transformation.

Each resource class, however, has its own special characteristics.

These may make possible the calculation of the above information from

a much smaller base of information. For some classes the direct approach

of reading in matrices that specify states, transformations, costs and

benefits may be best; for other classes it may be preferable to

generate these items of information from data that Is more natural

and more compact. See Nazareth [61 Chapter 4, for examples of this.

A system for specifying networks which Is built around general I/O

routines, should therefore be flexibly designed so as to incorporate

special features of a resource class.

In the experimental computer program we Implemented the portion

of Figure 5.1 given by the shaded boxes and the joining paths marked

with double arrows.
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(i) The information needed to specify each network is fed in as

follows:

• For each state parameter a list is specified of all the levels

It can assume. A state is defined by specifying a level for

each state parameter. Thus each state may be identified by a

set of indices. These determine the position within each list

of the corresponding parameter levels.

The state transformations, costs and benefits are specified as

2—dimensional data arrays or tables with as many rows or columns

as there are states. The (i,j) element of , for example, the

cost table gives the cost of the transformation that converts

the i—th state to the j—th state. When states vary from interval

to interval, each of the above three tables contain many imbedded

zeros. However, we have adopted this approach of having the

same three tables apply to every interval rather than that of

having three tables, each of a smaller dimension, per interval,

for ease of implementation.

A complete example which illustrates the above material and

that of the preceding sections is given (6].

(ii) The information needed for the master constraints (see Figure

3.1) and other problem parameters are flexibly specified via

the NAMELIST option of Fortran.

(iii) For the subproblems only availability constraints of the form

(3.2) in Section 4 , were implemented in the experimental pro—

gram . In implementing the Decomposition —— D.P. solution
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stra tegy, par ticular care was taken in the design of the dynamic

I 
programming subroutine; in particular, explicitly indexing

within 2 or higher dimensional data arrays avoids a large number

of multiplications involved in locating array elements.

(iv) Program validation was carried out by comparing the results

with those obtained by explicitly listing alternatives for a

simple example and solving by the Simplex Method .

The preliminary results concerning the efficiency of the solution

strategy have been encouraging. The solution strategy has been tested

on a case study involving the management of range resource classes

reported in [6]; further studies for timber and combinations of timber

and range management are planned , and will be reported in more detail

at a later date .
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6. Conclusion

Our aim in this paper has been to develop a flexible planning

t. tool for laying down broad guidelines on resource management. Its

purpose is to help resolve questions which arise in multiple use manage-

ment of a land resource, e.g., those discussed at the beginning of

Section 4. Although we can only speculate at this point, we feel that

in addition to potential uses already discussed for forest, range,

wildiand and agricultural management, these ideas may carry over to

land reclamation and strip mine management [17] and to pest—control

management (15).
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APPENDIX 1

EXAMPLE FOR TIMBER RESOURCE

We shall introduce the procedure for developing and specifying

management alternatives, within a specific and simplified context .

We have chosen to consider for purposes of illustration, a resource

in which the primary product derived from the land is timber. This

will serve to introduce the reader to the formal model outlined in

Section 2. In devising this example we have been strongly influenced

by the Timber RAN approach to the timber management problem [1,21.

The resource is assumed to be specified initially as a set of

timber resource classes , each class being approximately homogeneous

with respect to its silvi—cultural and economic characteristics. We

shall assume for simplicIty, that we have a single timber resource

cl ass , of a given size — measured in some units of area , say thousands

of acres (TA) . Assume also that there is only a single age class of

• initial standing timber of average age A decades , and that the -

density of the initial standing timber is d1 board feet per thousand -

• acres (BF/TA) . in arriving at this figure a good deal of averaging

is involved, since the assumption of homogeneity is in practice far

from true.

A plan for the management of this class must be drawn up, from

the present time up to a planning horizon P decades hence —— the

planning period : A simple management plan would establish guidelines

on how much timber to remove during each decade. In order to avoid,
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• in this illustration, the complications arising from the need for
I

reforestation once a stand has been clear—cut (meaning all standing

timber is removed), we shall assume that no part may be clear—cut

before the end of the planning period . Only during the last interval

is clear—cutting allowed.

A sequence of management or control decisions carried out on

any portion of the resource class, and the impact of each decision

on the land, may be the following:

State of Cost of BenefitTime Control decisionthe land decision derived

Beginning of d1 BF/TA of Partial cut to level c1 S/TA b1 BF/TA
first decade standing timber d1 

BF/TA.

Beginning of Timber has Partial cut to level S/TA b2 BF/TA
second grown from a2 BF/TA.
decade level d1 to

level d2 BF/TA .

BeginnIng of Timber has Partia l cut to level S/TA BF/TA
jt tk decade grown from d

1 
BY/TA.

level

• i to SF/TA.

Bs~ inning of Timber at level Clear cut . 
~~~
, S/TA 4 BY/TA

ptn decade 4 BY/TA.

End of Pla n— No standing —- —— ——ning period , t imber.
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All cuts above are assumed to be instantaneous and to take

place at the beginning of a decade; then the woodland is allowed

to develop under the influence of the normal ecological conditions

governing its behavior, until the beginning of the following decade,

when another cut may be initiated.

We may depict such a sequence of control decisions as a path

under a growth curve. The growth curve specifies the approximate

levels of standing timber at different periods of time, in the absence

of any timber harvesting.

Note that the sequence of decisions does not specify how much

of the class it must manage, i.e., costs and benefits are stated on a

per TA basis. For the inherent assumption of linearity to hold good,

management would normally be undertaken on a fairly large scale.

Now it is clear that potentially there exists an infinite set

of such decision sequences, each representing a different management

alternative. We therefore discretize the state space by imposing the

restriction that , at the beginning of any interval i any par t of the

class may exist only at certain timber density levels , denoted by

di1, d12, ... , d~~, ... , d~~ BF/TA. These define the n~ states

at the start of interval i, each state being characterized by the

level of the pa rwneters average timber density and average age of

standing t imber . With these parameters therefore we abstract certain

essential characteristics of the timber class from the complex physical

state in which any portion may exist, namely, those that are considered ,
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for the purpose of management, to adequately describe the productive

level of the timber class. The age, which is deducible directly from

i is given by A + I — 1 (where recall that A denoted the age of

the timber class at the beginning of the first interval). We shall not

therefore mention age explicitly below. The age parameter does become

significant if we allow reforestation during any interval.

Consider two states defined by the density parameter levels

and d
(i+l)q~ 

at the beginning and end of the i—th interval,

respectively . If acreage in the state corresponding to density level

d1 at the beginning of the i—th decade can be cut down to a certain

level a1~ (in our simp le model all- cuts are assumed to be instanta-

neous and the model is deterministic), and under normal condi-

tions then grows back to approximately level d(i+l)q by the end of

the i—th decade , then we say the state corresponding to di can be

transformed into state d (i+l)q • The cost of such a transformation is

obtained from a knowledge of the volume of timber removed and the cost

of the control operations involved in the harvesting. The benefits,

i .e. ,  the amount of t imber harvested may be calculated from the state

parameter levels and is given by (d
ie 

— â1~) .  A rule may also exist

for deducing the cost from the level of the parameters involved in the

transformation and some basic information about the control operations .

If we now draw a graph of all transformations from states at

the beginning and end of the i—th interval we obtain a bipartite graph .

Missing arcs simply that no transformation exists between the corre-

sponding pairs of states, or if one exists, It is not desirable. For
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each interval we have such a bipartite graph, and displaying them

simultaneously results in a network whose nodes are the states and

whose arcs are the possible and desirable state transformatIons. Each

arc specifies the cost and benefit of the corresponding state trans-

formation and each path from the beginning to an end state determines

a sequence of control decisions and their associated costs and benefits,

i.e., a management alternative.

The reader should be aware of some of the assumptions under-

lining the above procedure. We have discussed resource class classifi-

cation and linearity already. Another consideration is that the level of

standing timber on any acre in decade i will, in reality, be dependent

on the complete sequence of cuts during all preceding decades. In the

above model this has not been taken into account. Previous successful

models, e.g. ,  Timber RAN [1] have not taken this into consideration

either and therefore this aspect of our model should not represent

an unacceptable departure from silvicultural reality . Whether it does ,

however , is a question that must be answered by a person with special

skills in forestry. The situation may be rectified by introducing

further parameters to describe the state of the land . However our main

purpose in this section , is to illustrate the formal model , and not to

explore its application to a specific resource in any great detail,

so we shall defer further discussion of these points.

It has alread y been emphasized that the network does not specify

the level of a management alternative, i.e., the number of acres that

it manages. This is determined by mathematical programming as discussed

in the main body of this report.
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This paper deals with a mathematical model designed to provide guidelines

for managing a land resource over an extended period of time.

We develop a framework which permits sequences of management decisions to

be conveniently formulated, and their associated costs and benefits specified

This takes the form of a network. Each path in the network represents a

possible decision sequence. We study how to select suitable decision

sequences and what proportion of the resource to manage with each selected

sequence, so as to optimize some specified objective and meet the constraints

imposed on management of the resource. An L.P. model is formulated . The

solution strategy decomposes the L.P. matrix using Dantzig—Wolfe decomposi—

tion and solves the subproblems efficiently by dynamic programming or a net-

work flow algorithm. Computational aspects are discussed and the concepts

and procedures are illustrated in the Appendix, for forest management.

This paper is a substantially revised version of Reference [6].
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