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Abstract

We briefly go over the well known dual relationship between
Dantzig-Wolfe Decomposition and Benders Decomposition, in order to
develop suitable notation, and then elaborate upon the dual
relationship between nested versions of Dantzig-Wolfe and Benders
Decomposition. Next we develop a new pair of dually related decompo-
sitions termed symmetric Dantzig-Wolfe and symmetric Benders Decompo-
sition. Finally we discuss the advantages and disadvantages of

applying nested and symmetric decompositions to structured LP problems,

in particular to staircase structures.
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DUALLY EQUIVALENT DECOMPOSITION ALGORITHMS

WITH APPLICATION TO SOLVING STAIRCASE STRUCTURES

by

L. Nazareth

1. Introduction

Solving an LP problem say P by the dual simplex method (Lemke
[1]) is equivalent to solving the dual of P by the simplex method
(Dantzig [2]). We shall use the term "dually equivalent" to describe
a relationship such as this, between two linear programming algorithms.

It is well known that Benders decomposition algorithm [3] is
dually equivalent to the Dantzig-Wolfe Decomposition algorithm [4],
see e.g., Lasdon [5]. Similarly a nested version of Benders Decompo-
sition algorithm (see e.g., Kallio [6]) is dually equivalent to the
nested Dantzig-Wolfe Decomposition algorithm (see Glassey [7], Ho and
Manne [8]). This paper is concerned with another pair of dually
equivalent algorithms which we believe may a) lead to new and interest-
ing ways to solve staircase systems, b) indicate how different optimi-

zation models may be combined. Our paper is organized as follows:

1.1. Overview
In Section 2 we discuss fundamental results. First, we discuss

the relationship between Benders and Dantzig-Wolfe Decomposition,

primarily to develop notation and lay the basis for the new material.
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. Nested versions of Dantzig-Wolfe Decomposition have been developed by f
Glassey [7] and Ho and Manne [8]. By establishing a dual equivalence 1
with nested decomposition, Kallio [6] develops a nested version of

Benders algorithm for blocking triangular matrices, but does not go {
into any detail. Therefore we elaborate a little on this. Next we
develop what we call, for want of a better name, symmetric Benders
decomposition and symmetric Dantzig-Wolfe decomposition. The symmetric
Benders algorithm is related to the tangential approximation method of
Geoffrion [9].

Finally, in Section 3, we discuss solution strategies and the
advantages and disadvantages of applying nested and symmetric decompo-
sitions to structured LP problems, in particular those with staircase
structures. 1

Our aim in this paper is to discuss some basic approaches to
solving structured LP problems. Implementational details will be dis-

cussed at a later date.
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where

7 is an m-dimensional vector

Difficulties of notation often needlessly complicate the descrip-
tion of decomposition algorithms, particularly their nested versions.

Therefore we shall confine ourselves in this section‘to the LP systems

(2.1)-P and (2.2)-D with n =2 or n = 3, which is quite adequate

for our purpose.

A summary of the development of material in this section was
given in Section 1.1. Lasdon ([p. 382, 5], has described the dual
equivalence between Bender's and Dantzig-Wolfe decomposition. In our
brief development of nested versions, we shall parallel the development
in Lasdon and appeal frequently to his results and notation. Note that ]
nested algorithms have been introduced for specially structured LP's --
staircase structures in Ho and Manne [8], and block triangular
structures in Kallio [6]. These are the settings within which the

algorithms can be expected to be useful, but they are not restricted )

in principle to these structures. Since our aim is exposition, we shall
let Aj be full matrices. Later, in Section 3, we shall consider
special structures.

We shall also employ the notation

Aj = (Al’ “oey Aj)

Ryo= (3 ceon Xy) (2.3)-N

‘_‘!j . (219 e sy Ej)
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2.2. Basic Decomposition Algorithms

2.2.1. Benders decomposition algorithm

We first briefly describe Benders algorithm, following Lasdon

[5], p. 370]. Consider the problem (2.1)-P with n = 2.

T T
minimize 21 51 + )

U
N

such that A1 51 + Az

1%
v
(-2

v
o

X10%, 2

The method, in essence, fixes X at some value and solves the result-

ing LP for Xys then adjusts the value of X and repeats, a procedure

known formally as Projection, see Geoffrion [10].
In order to ensure feasibility of the projected LP, Xy is

restricted to lie in the set (assumed non-empty)

R, & (x>0l x

1

such that A, x, > b - A §1}

Then (2.4)-P2 is equivalent to

min ‘CI X + min[cg leA X, >b - A1 X s Xy > 0]
x, € l- 20 P e I A
3EY X

o =L =

(2.5)

> (2.4)-P2
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The inner minimization, if dualized, becomes:

BENDERS SUBPROBLEM

maximize (b - A1 51) u
T
such that AZ u 5_92 (2.6)-BSpP
u>0 /
and thus (2.5) becomes:
min cT X, + max[(b - A, x )T u, u€s] (2.7)
€ -1 -1 - 1<1" ==
X R u
271 1 =
where
A T
S={uldyu<e,,ur0} .
Let us denote the extreme points of § by gf, 1 om s np and the

extreme rays of S by gi, Tom e, n . Lasdon [5] establishes

two facts

Fact 1: The set R1 is given by

T

Ry = (%1 -4 x)) O P n., x >0}

where

o>

g: are the extreme rays of the set ¢ 2 {ula

T
2

gSO,!_JzO}.




! Fact 2: If the inner maximization in (2.7) is unbounded, then the inner

minimization in (2.5) would be infeasible, contradicting the assumption

S

that )_cleRl. Thus in the problem (2.7) we need only consider extreme

points of S in the inner maximization.

Thus problem (2.7) can be written as

min ch + max[(b - A x)T up,i=1, 205 evaresy Y] (2.8)
=1 =1 - 1717 =i P
x, €ER
=1 1
and this is equivalent to
minimize 2z
T T
such that 2251 X + (b - Al :_cl) \_1? AR D U e np
i -
02(1_:-1\1;_:1) u o i-l,z,...,nr
512.0 .
A T
Writing v = z - ¢ X this becomes
BENDERS MASTER
T
minimize cl X + v \
T p
such that v > (b - Al 1_:1) Yy 1 %1, 2y vy np
b (2.9)~BM
03 =-A %) o i1e1l, 2 n
AR 1 217 Yy g
|
{ 5120 /
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In practice, a relaxation strategy is used, so that only a small 1

A

fraction of the constraints are employed in a restricted master. Again

see Lasdon [5, p. 375], for details.

2.2.2. Dantzig-Wolfe decomposition

We now work with the dual of (2.4)-P2

maximize b m
\ |
1
such that AT m<c
uc a 11784
>(2.10)—D2 J
1
T
Ay m<e, i
120 4
Treating the constraints Ag T £ Cys M2 0 as the subproblem,
we have
a, n
ot £ L0
i=1 j=1
with
n
EVER
A, = .
g=1

The Dantzig-Wolfe [4] master problem becomes




DANTZIG-WOLFE MASTER
n n

L r
maximize ) (bT gp)x + 7 (ET gr)u

‘ j=1 3 i i=1 173

n

n
P r

such that Z (A: EP)AJ + 2 (A: ur
=] J-l

. y u )y (2.11)-DWM

A
0
—

n
I oay
A, = A
O R Sabl B
Extreme points are, of course, developed as needed by a restricted
master. Let X be the dual variables for the first 'set of constraints,

and v the dual variable for the convexity constraint. Then the

Dantzig-Wolfe subproblem becomes

maximize (b - A x

[
[
~
(=
_—

such that A, u<c, >(2.12)-DWSP

e

|v
o

Sl

2.2.3. Dual equivalence of Benders and Dantzig-Wolfe decomposition

This is easily seen by comparing (2.6)-BSP and (2.12)-DWSP, these !
being the subproblems corresponding to the two decompositions, and noting
that (2.9)-BM is the dual of (2.11)-DWM. It can also be shown that !

both algorithms employ the same test for optimality. |
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2.3. Nested Decomposition Algorithms

2.3.1. Nested Bender's decomposition

Let us now consider the system (2.1)-P with n = 3. Using the
notation (2.3)-N, given at the end of Section 2.1, this can be written

in the form

minimize g, %)+ Cq Xy \
such that A, %, + Ay x, > b >(2.13)-P3
Ry» X4 20 /

Then following the development of Section 2.2.1 we can apply
Benders Decomposition to (2.13)-P3 and we have the subproblem

NESTED BENDER SUBPROBLEM 1

e S P
maximize (b AZ 52) Y )
such that A, u. <, >(2.14)-NBSP1
y 20 /

where a subscript on u 1s introduced to distinguish variables at the

first nested level.

10
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Analogously to (2.9)-BM of Section 2.2.1, the first level

Benders Master is

NESTED BENDER MASTER 1

minimize 92 32 + v1

such that v

where !{1' uii are defined in an analogous way to the extreme points

in (2.9)-BM.

Then if we let

Bl b
Up = [u3gs 93y

uf -

and recalling the definitions of LI A

(2.15)-NBM1 as

2 - =11

2 %))

[ur.u i ] LAY ll
1 =11’ =12 * =1ln

T p

%) u,1i=

r
%) uy

and .3

2 2

1], 2, ccop M

L 2 N atatens nlp

1r

we can write

R T T R

(2.15)-NBM1

gt . A ISR, i A N
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minimize &1 %

p’ P
Uy (U

such that 1

A1)§1 +

(UrT

1 (v

Al))_(1 +

T
€ %5 +
A2)§2 +e

4))%,

<

where gT G LA s S U ) 1

X

If we now apply Benders Decomposition to this system, and let

the subproblem correspond to the variables (52, VI)’ we have the second

level Benders master given by

NESTED BENDER MASTER 2

x, +v

minimize ET X

1 2

such that v

22

1o

L

12

i s 1=1,2,...,m,

r
Uy v 421,2,0005my

> (2.16)-
NBM2
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and the subproblem is given by

T
PT PT
v b vb A
maximize = X ,
r’ £’
Ul b Ul A
PT | ;
|
PRt &
such that | —————- - u, < -
T |
£ I
U Ay f o i
u 20

and this can be rewritten as

TpTr_TTpTr
maximize [(b" U} b U)) x (A U7 A U]y,

T.pl T .x
AU 14T 2

such that |-===- -ll ------ u, < — (2.17)-NBSP2
e’ | o 1




e 2.3.2. Nested Dantzig-Wolfe decomposition

Now consider the dual of (2.13)-P3

i

T
maximize E m

b Ehat Ar w €8

suc a 2__-2

>(2.18)-D3

T

A3ESS3

E>0 )

Then carry out the standard Dantzig-Wolfe decomposition cf §2.2.2

we have the master given, analogously to (2.11)-DWM by

NESTED DANTZIG-WOLFE MASTER 1

\
n n
1p 1r
T p T r
maximize ) (b Eli)kli + 7 (b 911)“11
i=1 i=1
n n
1p 1r
~T p AR 5
such that J (A, ul A, + § (A, wu, 28,
i=1 i=]1
> (2.19)-NDWM1
ﬂip
: A = -
, i 11
g Fp 20
/
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P

P
where 911,

extreme points and extreme rays of the subproblem which is given by

r
£® 1y sy nip and Yygo 1= 1, cies n, . are the

"

Sp— p——.

NESTED DANTZIG-WOLFE SUBPROBLEM 1

= T
maximize (b - A, 32) T

such that & (2.20)-NDWSP1

3 -

3
I
‘0

w

(E]
8%
o

where %, are the dual variables of rows other than the convexity

=2
row in (2.19). If we substitute for 52 and 52 in (2.19)-NDWM1

we get
T p T .¥
maximize E (" u Ay * g (™ uyIuyy

T p di
such that ) (A 211)111 + ; (Ay Eli)uli Lc

0
N

1

P T r
LAy upng, + E (A yyuy Le

0
N
A IR 5

Aags Myg 29

Pare o in




rt Writing
P P
| L (211’ Sat uln1 )
‘ P
L
r r
U, = (u e st )
1 =11 -lnlr
and
T T
Al = (All, alstely Aln )
1p
and
T T
Bo= Cgiy sowy By ) ;
11 ln, 1
this becomes !

NESTED DANTZIG-WOLFE MASTER 1 ]

T p
maximize (b Ul)J_\1+ (b Ul)u1 W

T  p T
such that (Al Ul)él + (A1 Ul)El S_ €1

q4
T . p T ¥
(A, UDA, + (4, Uy < gy > (2.21)-NDWM1
0 .
e N =1
v Aoy 20
16

N \ea Py
-4‘; f»c,,ﬁ ‘9; "r
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Now if we repeat the Dantzig-Wolfe decomposition, letting
the subproblem correspond to the boxed set of constraints, we obtain

the second level master as

NESTED DANTZIG-WOLFE MASTER 2 W

“ZP T p' T.r, p n2r T plsT T, ¥
maximize ] [(b'U3ibUDuZ, 1y + 121 (b Uy} b0 Jup, iy
1=1 ! =

n n
2p ! 2r ) &(2.22)-%2 A
T,p!,T.r, p T.p!,T.r T
such that 121 [(AIUIEAIUI)EZi]AZi + 121 [(A101§A101)221]u2i S'cl
] i

LY

A =1
2L

Aggs Mgy 29 J

If we denote the dual variables corresponding to the first set of ‘

constraints, by 5:, our subproblem is then given by

Topital o T..T pg. T E ’
maximize [(b U1 |§ Ul) :_cl(Al U1 1A Ul)]gz

(2.23)-NDWSP2

|
such that i Y, £
I

e T

17




2.3.3. Dual equivalence of nested Benders decomposition and nested

Dantzig-Wolfe decomposition

If we denote the dual variables of (2.19)-NDWMl1l by X, and vy
then we can see that (2.15)-NBM1 is the dual of (2.19)-NDWMl. Also
(2.14)-NBSP1 is the same as (2.20)-NDWSPl1l. Again, if we compare
(2.16)-NBM2 with (2.22)-NDWM2 and let X1 and vy be the dual
variables of (2.22)-NDWM2, we see that (2.22)-NDWM2 and (2.16)-NBM2
are duals. Also (2.17)-NBSP2 is the same as (2.23)-NDWSP2. Note

again that we will deal in practice with restricted master problems.

2.4. Symmetric Decomposition Algorithms

2.4.1. Symmetric Benders decomposition

Let us return to problem (2.4)-P2 of Section 1.1

minimize

such that A >b > (2.24)-P2

).(1’ ?.‘220 /
We shall employ the following notation of Geoffrion [9]

A m
Y, = {3y €R la X, such that A x, >y, X

for 1 =1, 2.

-




A T
vy = min {e; xla x> y,) .
X, 20 1

If the set is infeasible for the given ¥4» then vi(zi) 2, o,

Geoffrion [9) shows that (2.24)-P2 is equivalent to

minimize v,(y;) + v,(y,) ) ]
such that y, +y, > b >(2.25)-P2
3, €Y, , 1=1,2 . )
1

Fact 3: In an essentially identical proof to that used by Lasdon

[3] to establish Fact 1, Section 2.2.1, we have

T r
{ziGYi"zi gijio o RIS i e v nir}

for i =1, 2, where t_::j, J®l, 2y uiy n, are the extreme rays

of the sets C, & {ulA] u< 0, u>0}, 1=1, 2. S

* oy

& 19




Consider now the objective function of (2.25)-P2

o=

U
N
(v
r<
N
Rt

T T
vy v,(y,) = min {cy 51“1 X 2 ¥;} + min {ey 3_(2|A2
23 20 X9 20

If we dualize each of these minimizations, we can write this as 1

T T T T
vi(yy) * vy(yy) max {y; t_xllAl u, £t + max {y, gzlAz u, < c,}
Yy 20 Y 20
Fact 4: Again, analogously to Fact 2 of Section 2.2.1, if either *

maximization problem above went to +« along an extreme ray, the
corresponding dual minimization problem would be infeasible. This
would contradict the constraint vy i €Y 1 Therefore we need only ]

consider extreme points of the feasible sets
(ulATu {c u, > 0} o 0.2
-1'"1 =4 —~-=41 -1 - k . :

Let us denote these extreme points by Eij’ JEERlINZE iy “1p
for 1 =1, 2.

Then (2.25)-P2 can be written as

min [max{z'{ qu s =1, ...,' nlp} +max{z; 2‘2’1 o e D sea ARl b]

I I

2p

such that Ity 2b

21EY i= 1, 2

1 ’

20 ‘




Thus, finally, this can be written as the symmetric Bender Master

problem

SYMMETRIC BENDER MASTER

\
minimize zy + z,
such that z, > yr u? j=1 n
124 4y s wens My
0> x i=1
2% By  vees By
f(z.za)-sm
T p
222 b2} t_xzj it | LR an 3
T r
0> ¥p 92_1 s J =1, ees My 1
1.’521"'22 g J

and the symmetric Bender subproblems are given by

SYMMETRIC BENDER SUBPROBLEM i

maximize z;r u

T 1
such that Aju < Sy (2.27)-sBSPi l‘
|

for 1 =1, 2,

21
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Note that the master has block angular form, and that again,

in practice, we shall deal with a restricted master problem.

2.4.2. Symmetric Dantzig-Wolfe decomposition

Consider again the problem (2.10)-D2

maximize ET m
such that AT mse
1=—=-1
Agnisz
1290

A feasible solution Il of the set S1 é
satisfies
nZ ; nir i
.y W AUyt Wy 8
1 o 13 -1j =1 15 =1j
with
n%p
N = ]
0 B
Ag20. w20

22

r (2.28)-D2

2 T




P -
where ulj’ 3 Qe s nlp are the extreme points of sl, and

r
ulj’ A=l e, n, . are the extreme rays of Sl.

T
Likewise a feasible solution 1, of S, = {ﬁzlAz 1 £cy, 120}

satisfies
n n
2p 2r
P r
T, = A u + z u u
=2 jzl 2) -2j =1 2j =24
n2p
A, =1
g 4
]
A2j’ “21 20 l
1
Then (2.28)-D2 can be written as :
SYMMETRIC DANTZIG-WOLFE DECOMPOSITION MASTER
\
maximize ET g
such that 7 - (§ Alj 9;1 + § “lj ng) =0 ?
T £ (§ Az Upy * § Ny Upy) = O |
>(2.29)-SDWM
R -1
g u
} *23 -1
I’ Alj’ AZJ' ulj’ qu 20 9 J

SR




If we denote the dual variables corresponding to the first

two sets of constraints by N and Yps then the two subproblems

-

for symmetric Dantzig-Wolfe Decomposition are given by

SYMMETRIC DANTZIG-WOLFE SUBPROBLEM i

maximize zz Bi

such that AI

uy S.Si (2.30)-SDWSP1i

2.4.3. Dual equivalence of symmetric Benders and symmetric Dantzig-

Wolfe decomposition

This is immediately seen by noting that (2.27)-SBSPi and

(2.30)-SDWSP1 are identical, and that (2.26)-SBM is dual to (2.29)-SDWM.

Again, in practice we use restricted master problems.
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3. Concluding Remarks on Solution Strategies and Application to

Special Structures

In Section 2 we dealt with algorithms for solving (2.1)-P
and (2.2)-D, confining the discussion to the case n =2 or 3.
It 1s easy to see how the algorithms extend to arbitrary n. In this
section we elaborate upon these algorithms discussing, in particular,
their advantages and disadvantages. We shall be primarily concerned
with their application to staircase structures. Figure 3.la) and
3.1b) illustrate two dual staircase LP's, which are special cases

of general LP's illustrated in Figures 3.2a) and 3.2b)

1 2 3 4 1 2 3 4
r, %
£ 1
______ 2
r
2 3 sif
4
3
4 |
{
|
Figure 3.la) Figure 3.1b)
1 2 3 4
1 | ’ |
i | | |
2 2 ‘ ] !
3 | | |
4 ]
3
4

Figure 3.2a) Figure 3.2b)
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Note that in staircase structures there are often only a
few linking columns in Figure 3.la) and correspondingly only a few

linking rows in the LP dual to it, Figure 3.1b).

3.1. Nested Decomposition Algorithms

The algorithms for Glassey [7] and Ho and Manﬁe [8] were
developed for staircase LP's of the form shown in Figure 3.1b).
The algorithm of Kallio [6] is a generalization of these to the case
when the matrix is block upper triangular.

In these algorithms, stage 4 would correspond to the first

subproblem and stages 1, 2, and 3 to the first level master. Then

‘stage 3 of this master is the second level subproblem and stages 1

and 2 the second level master, and so on. A major contribution of Ho
[11] was to develop a workable implementation of the procedure and
demonstrate its effectiveness, since many details must be worked out
in order to specify a workable nested decomposition method.

We should note the following:

a) The nested decomposition method of Section 2.3.2-works best for
structures of the form 3.1b), since each master will then have
relatively few rows. If applied to the staircase structure
3.1a), where each stage has many more rows than columns, each
master and thus subsequent subproblems would become very large.

b) All structure within each stage can be lost in the nested Dantzig-

Wolfe Decomposition. Thus, if the constraints of some stage are




Wj—

e

c)
d)

e)

£)

implicitly defined, e.g., by a network, we cannot exploit this
added structure in the problem.

The procedure lacks symmetry with respect to interchange of stages.
There is an inherent propogation and build up of error in the
nested decomposition process. Errors in the extreme points of a
subproblem, result in errors in the columns of the master to
which these extreme points are transmitted, which in turn result
in errors in the next level of the decomposition. For a more
detailed discussion see Nazareth [1]2.

A post-optimality procedure (called Phase 3) is needed to recover
the solution (see Ho (11]).

Finally, note that the nested Dantzig-Wolfe decomposition can be
carried out in other ways. Thus in Figure 3.1b) stages 3 and 4

could be the first level subproblem and stages 1 and 2 the first

‘level master then each of these could be decomposed in turn into

a master and subproblem. A serious disadvantage of such a pro-
cedure is that a Phase 3 process would be model at intermediate
stages in order to recover an extreme point of a subproblem, for

transmission to a master.

By the dual equivalence discussed in Section 2.3.3, we would

expect the Nested Benders algorithm to work best on structures of the

form 3.1a) and 3.2a). Because we wish to have primal feasibility

explicitly in 3.2b) we might consider applying nested Benders decompo-

sition to this structure. However, note that we would then have the




disadvantages of nested Dantzig-Wolfe decomposition applied to 3.2a)

i.e., at first sight it appears as though we get master problems

)

with a large number of rows, though there may be ways to get around

; this by working with the dual.

3.2. Symmetric Decomposition Algorithms

In contrast with the Nested Dantzig-Wolfe decomposition algorithm,
the symmetric Dantzig-Wolfe algorithm applies most naturally to struc-
tures of the form 3.la) and 3.2a), since the size of the symmetric

Dantzig-Wolfe master is determined by the number of columns. Let 21

H ' denote the number of linking columns for stage i in Figure 3.1la)
and r, the number of remaining columns for stage 1 (correspondingly
zi and r, are the number linking rows and remaining rows in Figure

3.1b)). If we decompose into 4 subproblems, one for each stage in
Figure 3.1la), the symmetric Dantzig-Wolfe master has 2:_1 T, + 222_1 L, + 4
rows and a structure illustrated in Figure 3.3. Note that the shaded
blocks correspond to dense matrices, a potential disadvantage.
The first portion of the matrix has Z? r, + Zi %y columns.
f In general, if extreme points of subproblems are not degenerate, and
cancellation does not occur, we would expect that variables correspond-
ing to this first part to have non-zero values. Thus we would expect
a basic solution of the symmetric master to have approximately

Zi %, + 4 columns from the dense block diagonal part of the matrix.

1f li is small, these would be relatively few. Operations involving




a basis, for example, LU factorization, in this system can then be :

handled more efficiently than corresponding operations in the sparse

l 3 staircase system 3.1b).

r1+£l r2+22 r3+24 r4+24

{
I
.+, +1 I /7 =0
5 s | rl // =
I /
11 / =1
r2+9,1+22+1 I 21 /7 =0
I /
2 ’/////,
I /
» 22 / = ]
Fyteyte 5+l I L, //
e /////// -9 i
3 /
1 /
Ly /] i
; -
] Tty 5, :;// 0
: 3 :
’ 1 /
: " = ////
r‘ / = ]
1 -8 Figure 3.3
{
Notation for Figure 3.3: IL denotes an zi X 21 identity matrix.
i
b
29
s A B R
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In contrast to the nested algorithms note:

a) No Phase 3 is required to recover the solution.

b) Special structure within a subproblem is not lost. In particular
different models can be integrated into a single model and at the
same time the special structure of each model can be exploited.

c) There is no transmission of error from stage to stage.

d) It is also possible to dé symmetric decomposition in a nested
manner. For example, we could treat stages 1 and 2 and stages
3 and 4 as the first level subproblems and obtain a master with
Zi Ly +-E? r, v, 4 2 rows and 2; T Zi r, columns in the
front portion of the matrix. The procedure can then be repeated
within each pair of stages. Note that in this case there is trans-
mission of error from our level of decomposition to all subsequent
levels.

Finally by the dual equivalence of Section 2.4.3, the above

discussion applies to the Symmetric Benders algorithms, which is used
on structures of the form 3.1b).
In effect in symmetric decomposition, we are exchanging our LP
problem for a block/dual block angular structure of special form of
Figure 3.3 with dense blocks and smaller subproblems. The latter do
not lose any structures of their own and are amenable to solution by
specialized techniques. Symmetric decomposition may have advantages

for solving certain sorts of staircase models and for combining different

models into a single integrated LP model.
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