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Abstract

We briefly go over the veil known dual relationship between

Dantzig—Wolfe Decomposition and Benders Decomposition, in order to

develop suitable notation, and then elabora te upon the dual

relationship between nested versions of Dantzig—Wolfe and Benders

Decomposition. Next we develop a new pair of dually related decompo-

sitions termed symmetric Dantzig—Wolfe and symmetric Benders Decompo—

sition. Finally we discuss the advantages and disadvantages of

applying nested and symmetric decompositions to structured LP problems,

in particular to staircase structures.
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DUALLY EQUIVAL E NT DECOMPOSITION ALGORITHMS

WITH APPLICATION TO SOLVING STAIRCASE STRUCTURES

by

L. Nazareth

1. Introduction

Solving an LP problem say P by the dual simplex method (Lemke

El]) is equivalent to solving the dual of P by the simplex method

(Dantzig [2 1).  We shall use the term “dually equivalent” to describe

a relationship such as this, between two linear programming algorithms.

It is well known that Benders decomposition algorithm [3) is

dually equivalent to the Dantzig—Wolfe Decomposition algorithm [4],

see e.g., Lasdon [5]. Similarly a nested version of Benders Decoinpo—

t sition algorithm (see e.g., Kallio [6]) is dually equivalent to the

nested Dantzig—Wolfe Decomposition algorithm (see Glassey [7], Ho and

Manne [81). This paper is concerned with another pair of dually

equivalent algorithms which we believe may a) lead to new and interest-

ing ways to solve staircase sys tems, b) indicate how different optimi—

zation models may be combined. Our paper is organized as follows:

1.1. Overview

In Section 2 we discuss fundamental results. First, we discuss

• the relationship between Benders and Dantzig—Wolfe Decomposition,

primarily to develop notation and lay the basis for the new material.
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Nested versions of Dantzig—Wolfe Decomposition have been developed by

Glassey [7] and Ho and Manne [8]. By establishing a dual equivalence

with nested decomposition, Kallio [6] develops a nested version of

Benders algorithm for blocking triangular matrices, but does not go

into any detail. Therefore we elaborate a little on this. Next we

develop what we call, for want of a better name, symmetric Benders

decomposition and symmetric Dantzig—Wolfe decomposition. The symmetric

Benders algorithm is related to the tangential approximation method of

Geoffrion [9].

Finally , in Section 3, we discuss solution strategies and the

advantages and disadvantages of applying nested and syunnetric decompo-

sitions to structured LP problems, in particular those with staircase

structures.

Our aim in this paper is to discuss some basic approaches to

solving structured LP problems. Implementational details will be dis-

cussed at a later date.
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2. Basic Results

2.1.

We consider the primal LP system

n
minimize ~

j—l

such that ~ A~ X

j  
.� ~~ (2.1)—P

j—1

where

and are dimensional vectors

A is an (in x n ) dimensional matrix
j  j

and

b is an m dimensional vector .

The dual of (2.1)—P is

Tmaximize ir b

• such tha t A~ ! < j  — 1, 2 , .. ., n (2.2)—D

• w > O
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where

it is an rn—dimensional vector

Difficulties of notation often needlessly complicate the descrip-

tion of decomposition algorithms , particularly their nested versions.

Therefore we shall confine ourselves in this section to the LP systems

(2.1)—P and (2.2)—D with n = 2 or n = 3, which is quite adequate

for our purpose.

A summary of the development of material in this section was

given in Section 1.1. Lasdon [p. 382, 51, has described the dual

equivalence between Bender’s and Dantzig—Wolfe decomposition. In our

brief development of nested versions, we shall parallel the development

in Lasdon and appeal frequently to his results and notation. Note that

nested algorithms have been introduced for specially structured LP’s ——
staircase structures in Ho and Manne [8], and block triangular

structures In KallIo [6]. These are the settings within which the

algorithms can be expected to be useful, but they are not restricted

in principle to these structures. Since our aim Is exposition, we shall

let A~ be full matrices. Later, in Section 3, we shall consider

• special structures.

We shall also employ the notation

— (A1, ..., A~)

— (x1, ...~~ x~ ) (2 .3)—N

(Er ’ ~~~~~~
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2.2. Basic Decomposition Algorithms

2.2.1. Benders decomposition algorithm

We first briefly describe Benders algorithm, following Lasdon

[5], p. 370]. Consider the problem (2.1)—P with n = 2.

T T
minimize 

~~~~. 
+ C

2 ~2

4
such that A1 ~l 

+ A2 x2 > b (2 .4 )—P2

The method, in essence, fixes at some value and solves the result-

ing LP for 
~2’ then adjusts the value of and repeats, a procedure

known f ormally as Pr9jection, see Ceoffrion 110).

In order to ensure feasibility of the projected LP, x1 is

restricted to lie in the set (assumed non—empty)

• R1~~ ~~~~~~~~~~~~~~

such that A2 ~2 
! — 

~~~~ ~~

Then (2.4)—P2 is equivalent to

mm 
~l 

+ min[c
2 
x2JA 2 ~2 

> b - A1 ~l ‘ 
~2 

> 0] (2.5)

5
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The inner minimization , if dualized , becomes:
BENDERS SUBPROBLEM

Tmaximize (b — A1 x1) u

such that 4 u 
I £2 (2 .6)—BS p

u > O

and thus (2.5) becomes:

mis c~~ cl + m a x [ ( b _ A
1 x ) T u u E S J  ( 2 . 7 )

X1 E R  u

where

~ TS
~~~{uIA2 u < c 2 , u > o }

Let us denote the extreme points of S by u~ , i — 1, ..., n~ and the
extreme rays of S by u~ , i — ~~, 

~~ ~r 
Lasdon (5] establishes

two facts

Fact 1: The set R
1 is given by

R
1 

— 
~~l ’~~ 

— A1 ) T r 
< o ~~ i, • •

~~~
‘ 
~r ‘ ~i -~~ O}

where

are the extreme rays of the set C 
~ {u14 U < 0 , u > 0).

6
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Fact 2: If the inner maximization in (2.7) is unbounded, then the inner

minimiza tion in (2.5) would be infeasible, contradicting the assumption

tha t ~1
ER 1. Thus in the problem (2.7) we need only consider extreme

points of S in the inner maximization.

Thus problem (2.7) can be written as

mm + max[(b - A1 x1)
T 
u~ , I = 1, 2 , ... ,  n ] ~ (2.8)

j

and this is equivalent to

minimize z

such that z > c~ x~ + (b — A1 x ) T u~ , I = 1, 2 , . ..,

0 > (b — A
1 
~
1)
T 

~~ , I — 1, 2 , . .. ,

Writing v z — this becomes
BENDERS MASTER

minimize c~ 
~l 

+ V

such that v > (b - A1 x1
)
T 
u~ I — 1, 2 , ... ,

(2.9) —BM

1 — 1 , 2, ..., nr

• 7
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In practice, a relaxation strategy Is used, so that only a small

fraction of the constraints are employed in a restricted master . Again

see Lasdon [5 , p. 375], for details.

2 . 2 . 2 .  Dantzi g—Wolfe decomposition

We now work with the dual of (2.4)—P2

maximize b
T

such that 4 ~ <
(2 .l O)—D2

T
A2 ~ 

~~
- ~ 2

it > 0

Treating the constraints 4 iT < C 2 , ii > 0 as the subproblem ,

we have

n np r r
iT — ~ A 4 ~~~+ ~

j—l -‘ ‘ i— i

with
n

p
A 4 — 1

i—i J

The Dantzig—Wolfe [4] master problem becomes

• 8
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DANTZIG—WOLFE MASTER

S np r
maximize ~ (b~ u~’)A + ~ (b~ u~~~i

i— i J i—i J J

5 n

such that ~ (4 u~ )A + 
~ (4 tn1,1 

.
~~ 
21 (2.ll)—DwM

j l  .1—1

S
p

~ A 4 — l , A 4 , it 1 > 0
i—i _l ..I

Extreme points are, of course, developed as needed by a restricted

master. Let be the dual variables for the first set of constraints,

and v the dual variable for the convexity constraint. Then the

Dantzig—Wolfe subproblem becomes

Tmaximize (b — A1 
x
1) u

such that 4 u < (2.l2)—DWSP

2.2.3. Dual equivalence of Benders and Dantzig—Wolfe decomposition

This is easily seen by comparing (2.6)—BSP and (2.12)—DWSP , these

being the subproblems corresponding to the two decompositions, and noting

that (2.9)—BM is the dual of (2.11)—DWM . It can also be shown that

both algorithms employ the same test for optimality.
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2.3. Nested Decomposition Algorithms

2.3.1. Nested Bender’s decomposition

Let us now consider the system (2.1)—P with n = 3. Using the

• notation (2.3)—N , given at the end of Section 2.1, this can be written

in the form

minimize 4 ~2 + ~~ ~3
such that A2 ~2 + A3 x3 > b (2.13)—P3

~2’ ~3 -~~ ~~

Then following the development of Section 2.2.1 we can apply

Benders Decomposition to (2.13)—P3 and we have the subproblein

NESTED BENDER SUBPROBLEI4 1

maximize-- A~ ~2~~~l

such that 4 ~l 
< £3 (2.l4)-~~ SPi

• ~1~~ o

where a subscript on U is introduced to distinguish variables at the

first nested level.

10
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Analogously to (2.9)—BM of Section 2.2.1, the first level

Benders Master is

NESTED BENDER MASTER 1

minimize 
~2 ~2 

+ V
1

such that v
1 > (b 

— A2 t2)
T 

~~~ 
i — 1, 2, ..., n1

(2.15)—NBM1

O .?(~~_ A
2~~2)

T
~~~1

i _ l , 2, •
~~~~

•
~~~ ~lr

where are defined in an analogous way to the extreme points

in (2.9)—BM.

Then if we let

U~~” [u~ u~ 
p 1

1 —11’ —12’ 
~~~~~ ~ln ~lp

r r r rU [u u 1
1 —11’ —12’ 

~~~~~~~~ ~1n p

lr

and recalling the definitions of 
~2’ A2 and !2 we can write

(2.15)—NBM]. as

11
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minimize 4 ~l 

+ 
~2 

+

such that (U~ A1
)x
1 + (U~ A2)x

2 
+ e v

1 > 
~T

T I T  T
(U~ A1)x1 + I( U~ A2)x 2 > b

~1’ ~2 -~~ 0

Twhere e — (1, 1, . . .,  1).

If we now apply Benders Decomposition to this system, and let

the subproblem correspond to the variables (x2, v1), we have the second

level Benders master given by

NESTED BENDER MASTER 2

minimize 4 2~I. +

/u~
T \ /u~

T 

~~ 

T

such that v
2 > ( T I — I T ~ 

u~~ , i1 ,2,..

\u~ b_f \u~ A~j

/ T  \ I T  \ T NBM2

~ 
U~ b 

~% ~f
’ U~ A1~~ , i l ,2,...,n2

0>  

\U~
T
~~~)kU~

T
A
l

)_1

- 12
— 4 - c

• 4

• 
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I

and the subproblem is given by

maximize

T T /
U~ A2 Ic—2

- such that 

~ 
~2 
I

1 • U~ A2 0

and this can be rewritten as

maximize [(bT u~ i~ u~) - X~ (A~ U~ 4 t1~ )  ]U
2

• 
J 4U~ I4 u~ /!~2\such that 

~2 
I I——— I (2.l7)—NBSp2

- 

T J
0

T 

\lJ

13
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V. - 2.3.2. Nested Dantzig—Wolfe decomposition

Now consider the dual of (2.l3)—P3

Tmaximize b ii

such that 4 ~r I ~2
(2.l8)—D 3

TA3 !!1E3

it > 0

Then carry out the standard Dantzig—Wolfe decomposition cf §2.2.2

we have the master given, analogously to (2.ll)—DWM by

NESTED DANTZIG—WOLFE MASTER 1

n nlp lr
maximize ~ (b~ ~~)A + ~~ (b~ 

T
)

i—i i—l

n nlp lr
such that ~ (4 ~~i)Aii + ~ (A~ 

~~~~~~ ~i—l i—l

‘(2.l9)—NDWM1

it

‘p
~ A 11 — l

~li~ ~
‘li > 0

• . 14

~r. ~
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where 1 — l~ ..., 5ip and 
~!~~ ‘ 

1 — 1, ..., 51r are the

extreme points and extreme rays of the subproblem which is given by

NESTED DANTZIG—WOLFE SUBPROBLEM 1

maximize (b - A2 ~~ ) T 
~

such that 4 ir I c3 (2.20) —NDWSP1

where are the dual variables of rows other than the convexity

row in (2.19). If we substitute for A2 and in (2.19)—NDWM1

we get

maximize ~ (b~ ~~i
)A
ii + ~ 

(b~ ~~~~~

such that ~ (4 ~~1)X~~ + ~ (4 
~~~~~~ 

1 22

~ (4 ~~1)A 11 + ~ (4 
~~~~~~~~~ 

I 22

I A ,1 
— 1

1li, 
~li 

> o .

$ ‘~~~ 
.‘

~~ ~~~~~~~ 
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$ Writing

u~1 ‘—1 1’ ~~~ —in
‘p

— •

~~~~~~

‘

and

T TA — ( A  A )
—1 11’ In

ip

and
T T

— 

~~ll’ ~~~~~~~~ ~in ~ir

this becomes

NESTED DANTZIG—WOLFE MASTER 1

maximize (b
T 
U~ )A

1 + (b
T U~)i 1

such that (4 U~ )A , + (4 U~~~1 I £1

1 (4 U~~)A
1 

+ (4 U~~~ 1 -
~~ ~2 

(2.2l)—NBcJM1

• — 1  

V 
16
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Now if we repeat the Dantzig—Wolfe decomposition, letting

the subproblem correspond to the boxed set of constraints, we obtain

the second level master as

NESTED DANTZIG-WOLFE MASTER 2

maximize E (bTUPIbTUr)P ]A + 
~2r 

T j

i—l 1—1

5
2p ~2r I (2.22)—NDWM2

such that 
~ 
((4U~iA~

U
~
)u
~j

)A 2j + ~ 
[(A~U~J4U~)u~1]P21 I cl

i—i I 1—1

n

~~~A 2~ — 1

• A 21, ~2i~~~
0

If we denote the dual variables corresponding to the first set of

constraints, by 4, our subproblem is then given by

maximize [(bT u~ bT U~) - 4(4 U~ j 4 U~))u
2

(2.23)—NDWSP2

4U~ 4U~ /22
such that I 

u < I— ———

0T 
_2 _.

~~

17
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2.3.3. Dual equivalence of nested Benders decomposition and nested
:1 

—

Dantzig—Wo lfe decomposition

If we denote the dual variables of (2.l9)—NDWM1 by x2 and v1

then we can see that (2.lS)—NBH1 is the dual of (2.19)—NDWM1 . Also

(2.14)—NBSP1 is the same as (2.20)—NDWSP1 . Again, if we compare

(2.16)—NBM2 with (2.22)—NDWN2 and let and v
2 be the dual

variables of (2.22)—NDWM2 , we see that (2.22)—NDWM2 and (2.16)—NBM2

are duals. Also (2.l7)—NBSP2 is the same as (2.23)—NDWSP2 . Note

again that we viii deal in practice with restricted master problems.

2.4. Symmetric Decomposition Algorithms

2.4.1. Symmetric Benders decomposition

Let us return to problem (2.4)—P2 of Section 1.1

T T
minimize £~ 

x
1 
+ £2 ~2

such that . A1 
x, + A2 x2 > b (2.24)—P2

• ~l’ ~2~~~
0

We shall employ the following notation of Geoffr ion 19]

~ 
E ~~~~~~ such that A1 x1 > ~~~~~~

, x1 > 0}

for 1 — 1 , 2.

18
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Tv1
(y
1) — mm {c

1 xi Ai ~~~
j  

>
x1 > 0

If the set is infeasible for the given y1, then vj(Zi) ~~ + = .

Ceoffrion [9) shows that (2.24)—P2 is equivalent to

minimize v1(Z1) + v
2(~2)

such that + 
~2 

> b (2.25)—P2

1 — 1 , 2

Fact 3: In an essentially identical proof to that used by Lasdon

[3] to establish Fact 1, Section 2.2.1, we have

i
E T

i

1h1
~~~~~~~~ 

~~~~~~~ 
10 , i — i , 2, . . . ,  nj~

}

t for I — 1, 2, where u~~, j — 1, 2, .. .,  

~ir 
are the extreme rays

of the sets C1 ~ {u14 ~ I 0, u > 0), i — 1, 2. 0

I

‘9

:~ ~.
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Consider now the objectiv e function of (2 .25 )—P2

+ v2 (12 ) = mm {c~ ~,IA 1 ~~ 
+ mis {~~ x2 IA 2 ~2 ~it

2
> 0

If we dualize each of these minimizations, we can write this as

+ v2(y2
) = niax {y~ U~~ I4  u~ I c~ } + max {y~~ u2 1 

~2 I

Fact 4: Again , analogously to Fact 2 of Section 2. 2.1, if either

maximization problem above went to +0.  along an extreme ray, the

corresponding dual minimization problem would be infeasible. This

would contradict the constraint y1 E Therefore we need only

consider extreme points of the feasible sets

T
(u~ A1 ~i I ~i 

, u1 > 0) , i — 1, 2

Let us denote these extreme points by u~~ , j  — 1, 2 , ..
~~ 

ni~

for 1 — 1 , 2.

Then (2.25)—P2 can be written as

n u n (max(~~ u~~ , j  — 1, . . .,  
~~~ 

+ max{~~ u~~ , j  — 1, 2 , . . .,  n 2 }]

such that + i~

1 — 1 , 2

a 20
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Thus, f inally, this can be written as the symmetric Bender Master

• problem

SYMMETRIC BENDER MASTER

minimize z1 + z2

such that z1 > ~~ , j  — 1, ...,

T r0 
-
~~~ ~~ 

, j  — ~~~ ~~~~~~ 
~lr

- (2.26)—sEM

Z
2 ~ 

U~~ ~ 
j — l~4 ~~

T ro 
Z2 

~2j ~ 
— l~4 

~~~~~~~~ 
n2r

and the symmetric Bender subproblems are given by

SYMMETRIC BENDER SUBPROBLEM I

• 
maximize 

~~

- such that 4 ~i I 2~ (2.27)—SBSP1

for 1 — 1 , 2.

21

~~~~~~ ~~~T’T1 . 
~~~~~~~~~~~~ 
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Note that the master has block angular form , and that again ,

in practice , we shall deal with a restricted mas ter problem.

• 2 . 4 . 2 .  Symmetric Dantzi g—Wo l fe  decomposition

Consider again the problem (2.iO)—D2

T
maximize b it

• such that 4 ~r I ~i
(2 . 28) — D2

TA2 ~ I 22

it > 0

- A feasible solution of the set S1 ~ {1T14 ir I 2i’ it > 0)

satisfies

n Uf lp lr
— A 11 u~~ + 

~ 
~~~

with

- it

~~~ A l~~= i

A
11 •�~ 

0 U11 ~ 
0
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where u~1, j — 1, ..., n1~, are the extreme points of S1, and

u~1, j  — 1, ..., are the extreme rays of S1.

Likewise a feas ible solution it
2 

of S
~ 

— {n 2 14 ~ I c2, -it > 0)

V 
satisfies

it
2 

it2r r
— 

~~~ 

A
21 ~2j 

+ 
j~i 

U
21 ~2j

n2P

- 
~ 

A
21 

— 1

~2j~ ~
‘2j .�.0

Then (2.28)—D2 can be written as

SYMMETRIC DANTZIC—WOLFE DECOMPOSITION MASTER
V T

maximize b it

such that ~~ 
- (~~~ 

A11 ~ 
+ ~ U 11 u~~) 0

- 
- (~~~ 

A 21 !~~j  + ~ 0

• 
~(2.29)—sDwM

— l

• 

- 
~~A 21 - 1

w, A,1, A21, ~lj~ ~2j .�• ~
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V. -
~ If we denote the dual variables corresponding to the first

I
two sets of constraints by 

~ 
and 12’ then the two subproblems

for symmetric Dantzig—Wolfe Decomposition are given by

SYMMETRIC DANTZIG-WOLFE SUBPROBLEM 1

Tmaximize

such that 4 ~ I 2~ (2.30)—SDW5Pi

~~~ 
2:. 0

2.4.3. Dual equivalence of symmetric Benders and symmetric Dantzig—

Wolfe decomposition

This is immediately seen by noting that (2.27)—SBSP1 and

(2.30)—SDWSPi are identical, and that (2.26)—SBM is dual to (2.29)—SDWM .

Again, in practice we use restricted master problems.

24

• 4~~~~~~~~~~ - ~~~~~~~~~~~~ ~~ ~~ j 4S  
_~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• - -~~-•—•- .— ~~~~~~ 
-0.~~~~~~~~~ r • -

_ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

) 
_ _ _



--~~~- ~~~~ -~~~~~ - 
-

t .
3. Concluding Remarks on Solution Strategies and Application to

V. Special Structures

In Section 2 we dealt with algorithms for solving (2.1)—P

and (2.2)—D, confining the discussion to the case it — 2 or 3.

It is easy to see how the algorithms extend to arbitrary n. In this

section we elaborate upon these algorithms discussing, in particular,

their advantages and disadvantages. We shall be primarily concerned

with their application to staircase structures. Figure 3.la) and

3.lb) illustrate two dual staircase LP’s, which are special cases

- 
of general LP ’s illustrated in Figures 3.2a) and 3.2b)

1 2 3 4  1 2 3 4

• Figure 3.la) Figure 3.lb)

• 
- — 1 2 3 4

I

I

~~~ 

2 

_  _  _  _

Figure 3.2a) Figure 3.2b)
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Note that in staircase structures there are often only a

few linking columns in Figure 3.la) and correspondingly only a few

linking rows in the LP dual to it, Figure 3.lb).

3.1. Nested Decomposition Algorithms

The algorithms for Glassey [7] and Ho and Manne [8] were

developed for staircase LP’s of the form shown in Figure 3.lb).

The algorithm of Kallio [6] is a generalization of these to the case

when the matrix Is block upper triangular.

In these algorithms, stage 4 would correspond to the first

subproblem and stages 1, 2, and 3 to the first level master. Then

• 

. stage 3 of this master is the second level subproblem and stages 1

and 2 the second level master, and so on. A major contribution of Ho

[11] was to develop a workable implementation of the procedure and

demonstrate its effectiveness, since many details must be worked out

• in order to specify a workable nested decomposition method.

We should note the following:

a) The nested decomposition method of Section 2.3.2-works best for

• t structures of the form 3.lb), since each master will then have

relatively few rows . If applied to the staircase structure

3.la), where each stage has many more rows than columns, each

master and thus subsequent subproblems would become very large.

b) All structure within each stage can be lost in the nested Dantzig—

Wolfe Decomposition. Thus, if the constraints of some stage are

26
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implicitly defined, e.g., by a network, we cannot exploit this

added structure in the problem.

c) The procedure lacks symmetry with respect to interchange of stages.

d) There is an inherent propogation and build up of error in the

nested decomposition process. Errors in the extreme points of a

subproblem , result in errors in the columns of the master to

which these extreme points are transmitted, which in turn result

in errors in the next level of the decomposition. For a more

detailed discussion see Nazareth [1)2.

e) A post—optimality procedure (called Phase 3) is needed to recover

the solution (see Ho [111).

f) Finally, note that the nested Dantzig—Wolfe decomposition can be

carried out in other ways. Thus in Figure 3.ib) stages 3 and 4

could be the first level subproblem and stages 1 and 2 the first

• 
• 
level master then each of these could be decomposed in turn into

a master and subproblem. A serious disadvantage of such a pro—

cedure is that a Phase 3 process would be model at intermediate

stages in order to recover an -extreme point of a subproblem , for

transmission to a master.

By the dual equivalence discussed in Section 2.3.3, we would

expect the Nested Benders algorithm to work best on structures of the

form 3.la) and 3.2a). Because we wish to have primal feasibility

explicitly in 3.2b) we might consider applying nested Benders decompo—

sition to this structure. However, note that we would then have the

27
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disadvantages of nested Dantzig—Wolfe decomposition applied to 3.2a)

i.e., at first sight it appears as though we get master problems
• 

with a large number of rows, though there may be ways to get around

this by working with the dual.

3.2. Symmetric Decomposition Algorithms

In contrast with the Nested Dantaig—Wolfe decomposition algorithm,

the symmetric Dantzig—Wolfe algorithm applies most naturally to struc—

tures of the form 3.la) and 3.2a), since the size of the symmetric

Dantzig—Wolfe master is determined by the number of columns. Let

denote the number of linking columns for stage I in Figure 3.la)

and r1 the number of remaining columns for stage I (correspondingly

and r1 are the number linking rows and remaining rows in Figure

3.lb)). If we decompose into 4 subproblems, one for each stage in

Figure 3.la), the symmetric Dantzig—Wolfe master has r1 + 2
~~_i 

Li. + 4

rows and a structure illustrated in Figure 3.3. Note that the shaded

blocks correspond to dense matrices , a potential disadvantage.

The first portion of the matrix has ~~ r~ + L~ columns.

• In general, if extreme points of subproblems are not degenerate, and

• cancellation does not occur , we would expect that variables correspond-

ing to this first part to have non—zero values. Thus we would expect

a basic solution of the symmetric master to have approximately

+ 4 columns from the dense block diagonal part of the matrix.

If is small, these would be relatively few. Operations involving

- -fir
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a basis, for example, LU factorization, in this system can then be

handled more efficiently than corresponding operations in the sparse

staircase system 3.lb).

r1+L1 r2+L2 r3+&4 r4+L4

r1+Li+l 1r1 I 
~::~•~

-

~~ 

— 9

/4  
I

• ———— —— . -—

- 
— 

r2+L1+L2+l ‘L
i 

—

/7//

• I~ 
,~~

:

~~~~

_____ _ 1

~~

_ 

/

/

/
‘ 

I -~~~~r
3 //

I ‘~3 //~ - l

r4+13 I /7/ 0L3 I  /7, 
I 

_____ 

Notation for Figure 3.3: I~ denotes an L1 
X L~ identity matrix.

i
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In contrast to the nested algorithms note:

a) No Phase 3 is required to recover the solution.

b) Special structure within a subproblem is not lost. In particular

different models can be integrated into a single model and at the

same time the special structure of each model can be exploited .

c) There is no transmission of error from stage to stage.

d) It is also possible to do symmetric decomposition in a nested

manner. For example, we could treat stages 1 and 2 and stages

3 and 4 as the first level subproblems and obtain a master with

£
1 
+ ri + L

2 
+ 2 rows and ~~ + r1 columns in the

front portion of the matrix. The procedure can then be repeated

within each pair of stages. Note that In this case there is trans-

mission of error from our level of decomposition to all subsequent

levels.

Finally by the dual equivalence of Section 2.4.3, the above

discussion applies to the Symmetric Benders algorithms, which is used

on structures of the form 3.lb).

• In effect in symmetric decomposition, we are exchanging our LP

problem for a block/dual block angular structure of special form of

Figure 3.3 with dense blocks and smaller subproblems. The latter do

not lose any structures of their own and are amenable to solution by

specialized techniques. Symmetric decomposition may have advantages

for solving certain sorts of staircase models and for combining different

models into a single integrated LP model. 
•
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