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Abstract

Implementing large scale LP algorithms is a difficult, laborious
and often poorly rewarded task. This is particularly true of algorithms
which exploit the structure of the LP matrix. For this reason many
algorithms have been proposed in the 1literature, but few have been
turned into good computer codes. Very little is known about the rela-
tive performance of different algorithms. In this paper we discuss
some of the suggestions that have been made for alleviating this problem
and describe an approach based upon a carefully defined collection of
subroutines which are designed to aid the task of implementing and
comparing LP algorithms. These subroutines or modules may be regarded
as the 'primitives' of a language for implementing experimental LP
algorithms, particularly algorithms which exploit matrix structure.

A set of such modules is described. These have been implemented in

FORTRAN, and user documentation is available.
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MODULES TO AID THE IMPLEMENTATION OF LP ALGORITHMS

by
L. Nazareth

1. 1Introduction

Implementing large scale LP algorithms is a difficult, laborious

and often poorly rewarded task. This is particularly true of algorithms which

exploit the structure of the LP matrix. For this reason many algorithms have
been proposed in the literature, but few have been turned into good computer
codes. Very little is known about the relative performance of different
algorithms.

In this paper we discuss some of the suggestions that have been made
for alleviating this problem, and describe an approach based upon a carefully
defined collection of subroutines which are designed to aid the task of
implementing and comparing LP algorithms. These subroutines or modules may
be regarded as the 'primitives' of a language for implementing experimental
LP algorithms, particularly algorithms which exploit matrix structure. A set
of such modules is described. These have been implemented in FORTRAN, and
uger documentation is provided. (We developed these modules as a first stage
in the implementation of a nested decomposition code for staircase structures,
but they were purposely designed for use in other contexts, and they may also

be a useful educational aid.)

This has been primarily a software organization and development effort,

and we have drawn upon the work of many different researchers in the field.

We do not claim that the modules are quality software, but we hope that they
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will evolve in the direction of quality software, e.g., through much more
exhaustive testing of the modules.
In the concluding section, we discuss future directions and the

benefits to be gained from an effort such as this one.

2. Background

We have discussed the overall framework for optimization software
development elsewhere, see Nazareth [1], [2]. In summary, we distinguish
between implementations designed primarily to aid algorithms or code develop-
ment and implementations which are intended for production runs and are thus

designed primarily to solve user problems. The former are called algorithm/code

oriented implementations (or sometimes experimental implementations) and the

later user/problem oriented implementations. Each of these can be further

tailored to a particular compiler and machine configuration, resulting in
different program realizations (see Boyle and Dritz [3]).

In Nazareth [1], three different approaches to algorithm/code oriented

software were also discussed. In the first approach one seeks to develop a
suitable high level language. This language permits highly readable programs
to be written with relative ease in the vernacular of applied mathematics,
and serves as a medium for communicating algorithmic ideas precisely (MPL,
see Dantzig et al.[4], 1s an example of such a language. Another example

is the Speakeasy language of Cohen et al. [5]. This latter language also
provides a mechanism which enables a user to extend the language to suit

his individual needs). In the early creative stages of algorithm development,

such a language is very useful, since new ideas can be quickly implemented
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and tested out,and the computational experience obtained often results in new
insights and developments. Thus the major features of an algorithm can be
laid out. Note however that a "quick and dirty' implementation can usually
be run only on toy problems, and that procedures which are numerically sound
and efficient in terms of time and storage, are difficult to write in any
language. Other pros and cons of this first approach are discussed in
Nazareth [1].

In the second approach, one attempts to introduce some limited
flexibility into software designed primarily to solve user problems, by making
some of the high level components available to the algorithm developer. For
example, in the MPSX/370 system, a number of high level routines, listed in
Figure 1, can be accessed through a control language and used to construct
algorithms. Another example is the SEXOP system, Madsen [6], see Fig. 2, in
which the major components are geared toward problem manipulation. Note that
in both cases one is greatly constrained by the overall system, particularly

by its data structures.

The third approach complements the first, by placing much more

emphasis on aids for developing a numerically sound experimental implemen-

tation, once some of the major features of an algorithm have been laid out (for

example, using an implementation in MPL). In this third approach, one
seeks to identify the components that are used to build an LP algorithm,
to specify them cleanly and carefully, and to implement them in a manner
which makes them flexible and easy to use. These modules can also be

thought of as the 'primitives' or 'basic operators' of a language for build-

ing LP algorithms. Since our aim is to produce software which is immediately
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and widely usable, we think that they should be implemented in FORTRAN
(they could equally well be implemented in another high level language and
our effort can be regarded as another contribution to identifying what
should go into a language for optimization; see' also Land and Powell [7],
Dantzig et al. [8]). Experimental codes which are constructed from these
modules should be executable on real life problems, not just on toy data;
thus attention should be paid both to efficient data representations and to

robustness. Finally the modules should serve as an educational aid.

A set of such modules are described in the remainder of this paper.
How the set can be enlarged, and ways to make them easier to use, are discussed

in Section 5.

3. Description of Modules

The modules fall into three categories as described below. The

following overview is brief and assumes that the reader is familiar with

the theory of LP. For more detail on each module consult the documentation,

and for a surfeit of detail check the listings (see Section 4).

3.1. Problem Oriented Modules

Problem oriented modules serve as an 'interface' between the user's
LP problem and the routines which solve it.

LP problems are usually specified on a tape in standard MPS input
format (see [9] and Figure 4) while LP routines usually work on packed matrix
representations. A set of modules have been provided to aid in the reading

r of an LP tape and setting up of the data structures.

6
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Typical structured LP matrices are illustrated in Fig. 3.

Block Angular Dual Block Angular Staircase
by by Ay Ay By e By
By B, A B, 4
B, By b4 B Ay
B, B Ay 0 4
B4
FIGURE 3

An LP routine designed to take advantage of structure may require
a particular representation of data. Therefore it would be inappropriate
to provide a general input routine. Instead we provide components from
which a suitable input routine can be built. These modules can be used in
conjunction with those of Section 3.2.1, to set up the data representation

as required. For example, given a block angular LP matrix, it may be necessary

()

i

to set up each

as an LP matrix with consecutively numbered rows. A call to module PREADC (see
below) will set up a packed matrix with rows numbered according to the original

matrix. Following this by a call to ADRNDX (see Section 3.2.1) will renumber

the rows to be consecutive.

P
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The problem oriented modules in this version of the collection are
as follows: (They were adapted in major part from the input routines of
MINOS, Saunders [10]. However, since we segmented the routine and altered
several portions of the code to suit our needs, responsibility for errors

rests with us, and should in no way reflect upon the source of the code.)

o PREADR Read the ROWS section of an LP matrix

o PREADC Given a specified set of columns in the COLUMNS section, build
a column list/row index packed data structure.

o PRDRHS Read the RHS section of an LP matrix

o PREADB Read in the BOUNDS section of an LP matrix (see also Section
3:2.2)

o PCHKST Perform checks and gather statistics about the matrix.

The manner in which a matrix is packed is illustrated in Fig. 3 for
a specific example. By writing an input routine which calls the problem
oriented modules the user can translate the MPS input into a packed data

representation, suitable for his LP algorithm.

3.2, Algorithm Oriented Modules

These are the basic building blocks from which algorithms are

constructed. They fall into two categories.




| LP
!
hl min x1 + x2 + x3
s.t. 2x1 + 3x3 <10
l;x2+5x3 <20
100 > x1 20, Xy >0

Example of Sample MPS Input

(further details are given in
Chapter I of the documentation)

NAME LP
ROWS

N OBJ
L RWN1
L RWN2
COLUMNS

CLM1 OBJ 1.0 RWN1 2.0
CLM2 OBJ 1.0 RWN2 4.0
CLM3 OBJ 1.0 RWN1 3.0
CLM3 RWN2 5.0

RHS
RTH RWN1 10.0
RTH RWN2 20.0

BOUNDS
8 UP 2YN CLM1 100.

ENDATA

iy o

FIGURE 4
TABLEAU
AR T
Column Names
Row names CLM1 CLM2 CLM3 RTH
OBJ . 115 i 1. 0
RWN1 2. 0 3. } £ j10.
RWN2 0 4, 5. | £ |20.

Packed Representation of Above Matrix,

Excluding RHS (column list/row index data

structure) (further details are given in

Chapter I of the documentation)

Column Pointers Matrix Elements Row Indices

a+> a-+

a p—————| 1. 1

a+2 \ 2, 2

at+4 15 1

at7 4. 3

HE 1 1
Pointer to first 2 2

unused element

of this array 555 3
A HA

Thus the third column (called CLM3) starts
at element a+4 of the array called 'matrix
elements.' This column has three elements

whose corresponding indices are given by the

elements of the array called 'row indices.'
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3.2.1. Data Structure Manipulation Modules

These carry out a number of operations on packed LP matrices. By
using them it is possible to make>a distinction between devising a strategy
and the actual mechanics of implementing it.

The routines that are included in the current version of the collection

are as follows:

o ADCONC -- concatenate two packed data structures and return result
in first one

] ADRNDX -- reindex rows in a packed data structure

® ADTNTF -- convert packed data structure to element/row index/column
index data structure

o ADUPKC -- unpack a column of a packed data structure

° ADDELC —- delete a colum in a packed data structure.

Obviously there are many other operations of this sort. The above
are some which arise in the implementation of decomposition algorithms (c.f.

Introduction).

3.2.2. Simplex Modules

Algorithms for structured LP are usually based upon repeated \
calls to a routine which performs one or more iterations of the revised
simplex method. This routine must be specifically designed to meet the needs
of the calling algorithm for structured LP, but the task of implementing it

is made much easier if the following set of basic operations are available:

10
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e MODRHS given values of non-basics, develop modified right-hand side.
e FORMC form cost vector for Phases 1 or 2 of Simplex method

e PRICE price out columns

e CHVZR determine which column leaves basis

e UPBETA update current approximation to solution

All these modules utilize a common data structure, as shown in Fig. 6, and
it is assumed that the packed LP matrix is in 'computational canonical form,'

as explained in Fig. 6. In particular:

1. All bounds on the structural variables x are set in BL and BU. If a
variable is unbounded above or below, the corresponding element of BL or
BU is set to a machine representation of + . (This is done by PREADB.)

2. A full identity matrix for the logical variables (zotg) is assumed to be
written at the start of the matrix. The bounds on these variables are
determined by the type of rows (as specified in the rows section and
read by PREADR). Again see Fig. 5. ‘Thus no distinction is really made
between positive and negative slacks and artificial variables. They simply
have different bounds that they must satisfy.

An extension of the simplex method is inherent in the design of the
modules and the associated data structure, in that non-basic variables can be
fixed at values between. their bounds, as specified by PEG. This is related
to the superbasic variables of Murtagh and Saunders [11], but the latter are
used in a more powerful way, since an optimization is carried out in the sub-
space they define. The use of pegged variables involves some straightforward
extensions to PRICE, CHUZR and UPBETA (see documentation for more detail).

PEG contains the current value of every variable in the problem, both logicals

and structurals. Thus there is some redundancy of information stored; but

Y AP,

S U Zpws LT



We define Ze [I

z bounded as above

P ——— I — -
FIGURE 5: COMPUTATIONAL CANONICAL FORM
(',l
f min c°x
v £
s.t. A-}_;g Some elements of % and u may
and be machine representations of
P 2<x<u $ar = e,
| [
A4
min c°x
s.t. Iz + Ax =D
2<x<uy
and 0<z < if row 1 is <.(non-negative slack)
~lig L if row 1 is 2>, (non-positive slack)
0< 2z, L0 if row i is =.(artificial) -
¥
\Y4
N .oty COMPUTATIONAL
Bebo s Byt ERNE CANONICAL
Iz+ Ax =D FORM
2 {x<u

| i

Xx-structural variables

(z0 »z)-logical variables

[

A

] an NROWS X NCOLS matrix.
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this is not too great a penalty to pay in our experimental system, given the

added flexibility that PEG makes possible.

2.2.2. Sparse Linear Algebra

The routines of Reid [12], implementing LU factorization of sparse
matrices and Bartels-Golub updating are very suitable for our purposes, and we
only provide an interface for converting a basis in our representation to one

needed by Reid's routine LAO5AD.

4. Documentation and Listings

In addition to this paper, machine-readable documentation has been

written, organized as follows:

Chapter 1: User documentation giving briefly the purpose, usage and algorithmic
details for each module. Each group of modules is preceded by an
introductory section giving background material.

Chapter 2: Coding and documentation conventions.

Chapter 3: Testing programs and output they produce.

Chapter 4: Listings of modules.




5. Future Directions and Conclusions

One obvious direction for further development is the addition of new
modules, for example, problem oriented modules to output solutions, more
extensive data manipulation modules (e.g. to reorder a matrix by permutations),
additional simplex modules (e.g. to deal with dual methods), additional sparse
linear algebra routines, and so on.

A second direction for expansion is to make the modules easier to use,
by deploying them within a suitable host system which takes over much of the
bookkeeping tasks of a module and shields the user from them, e;g. the Speakeasy
system of Cohen et al. [5]. In addition, the host system provides many additional
facilities, e.g. graphical aids, extensive matrix manipulations, etc. In the
calling sequence of a typical FORTRAN module, many parameters correspond to
work vectors, work arrays, dimensioning information, switches and error flags.
The Speakeasy language provides a very convenient mechanism for writing an
interface to a FORTRAN subroutine. In essence the call can be redefined and
often greatly simplified, since tasks of allocating work storage, parameter
checking, etc., can be assumed by the interface. The MPL language [4] is
another example of a suitable host environment.

The effort described in this paper is limited in scdpe and suffers from
many shortcomings. However we would like, in conclusion, to emphasize three
benefits that are gained from mathematical software patterned along these lines:
a) It is of use to investigators in Systems Optimization Laboratories who

wish to implement optimization algorithms and study their behavior. In
particular we plan to use our modules to implement algorithms for structured

LP based upon the Dantzig-Wolfe Decomposition principle.




b) It is a useful educational aid; in particular our modules serve as a mini-

tutorial on the implementation of LP algorithms, and we have already used :

them for this purpose in the lecture hall. 1

=

c) The discipline of systematizing and preparing codes raises many questions,
which in turn spurs further research. The PEG‘array, see Fig. 6, is a small

example of this. This point is also discussed, within the context of the

LINPACK project, by Stewart [13, p. 7].

Y USSR
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