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Abstract

Implementing large scale LP algorithms is a difficult, laborious

and often poorly rewarded task. This is particularly true of algorithms

which exploit the structure of the LP matrix. For this reason many

algorithms have been proposed in the literature, but few have been

turned into good computer codes. Very little is known about the rela-

tive performance of different algorithms. In this paper we discuss

some of the suggestions that have been made for alleviating this problem

and describe an approach based upon a caref ully def ined collection of

subroutines which are designed to aid the task of implementing end

comparing LP algorithms. These subroutines or modules may be regarded

as the ‘primitives’ of a language for implementing experimental LP

algorithms, particularly algorithms which exploit matrix structure.

A set of such modules is described. These have been implemented in

FORTRAN, and user documentation is available.
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MODULES TO AID THE IMPLEMENTATION OF LP ALGORITHMS

by

L. Nazareth

1. Introduction

Implemen ting large scale LP algorithms is a diff icult, laborious

and often poorly rewarded ta8k. This is particularly true of algorithms which

exploit the structure of the LP matrix. For this reason many algorithms have

been proposed in the literature, but few have been turned into good computer 4
codes. Very little is known about the relative performance of different

algorithms.

In this paper we discuss some of the suggestions that have been made

for alleviating this problem, and describe an approach based upon a careful ly

defined collection of subroutines which are designed to aid the task of

implementing and comparing 12 algorithms. These sub routines or modules may

be regarded as the ‘primitives’ of a language for implementing experimental

LP algorithms , particularly al gorithms which exploit matrix structure. A set

of such modules is described. These have been implemented in FORTRAN , and

user documentation is provided. (We developed these modules as a first stage

in the implementation of a nested decomposition code for staircase structures,

but they were purposely designed for use in other contexts , and they may also

be a useful educational aid.)

This has been primarily a software organization and development ef for t ,

and we have drawn upon the work of many different researchers in the field.

We do not claim that the modules are quality software , but we hope that they
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will evolve in the direction of quality software, e.g., through much more

exhau stive testing of the modules.

In the concluding section , we discuss future directions and the

benefits to be gained from an e f fo r t  such as this one .

2. Background

We have discussed the overall framework for optimization software

development elsewhere, see Nazareth [11, [2] .  In summary , we distinguish

between implementations designed primarily to aid algori thms or code develop-

ment and implementations which are intended for production runs and are thus

designed primarily to solve user problems . The former are called algorithm/code

oriented implementations (or sometimes experimental implementations) and the

later user/problem oriented implementations. Each of these can be further

• tailored to a particular compiler and machine configuration , resulting in

different program realizations (see Boyle and Dritz [3]).

In Nazare th I i] ,  three different approaches to algorithm/code oriented

software were also discussed . In the first approach one seeks to develop a

suitable high level language . This language permits high ly readable programs

to be writ ten with relative ease in the vernacular of app lied mathematics,

and serves as a medium for conmiunicating algorithmic ideas precisely (MPL ,

see Dantzig et al. [4],  is an example of such a language. Another example

is the Speakeasy language of Cohen et al. [5]. This latter language also

provides a mechanism which enables a user to extend the language to sui t

his individual needs) . In the early creative stages of al gorithm development ,

such a language is very useful , since new ideas can be quickly implemented

2
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and tested out and the computational experience obtained often results in new

insights and developments. Thus the major features of an algorithm can be

laid out. Note however that a ‘quick and dirty ’ implementation can usually

be run only on toy problems, and that procedures which are numerically sound

and efficient in terms of time and storage, are difficult to write in any

language. Other pros and cons of this first approach are discussed in

Nazareth [1]. 
- .

In the second approach , one attempts to introduce some limited

flexibility into software designed primarily to solve user problems, by making

some of the high level components available to the algorithm developer. For

example, in the MPSX/370 system, a number of high level routines, listed in

Figure 1, can be accessed through a control language and used to construct

algorithms. Another example is the SEXOP system, Madsen [6], see Fig. 2, in

which the major components are geared toward problem manipulation. Note that

in both cases one is greatly constrained by the overall system, particularly

by its data structures.

The third approach complements the first, by placing much more

emphasis on aids for developing a numerically sound experimental implemen-

tation, once some of the major features of an algorithm have been laid out (for

example, using an implementation in MPL). In this third approach, one

seeks to identify the components that are used to build an LP algorithm,

to specify them cleanly and carefully, and to implement them in a manner

which makes them flexible and easy to use. These modules can also be

thought of as the ‘primitives’ or ‘basic operators ’ of a language for build—

ing 12 algorithms. Since our aim is to produce software which is immediately

3
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FIGURE 2: M(tJOR COMPONENTS OF SEXOP

ETUP (read in LP)

________  

EE~E EE~I~~~ I~J
USER XCOST (change objective function )

(change rhs)

\
~
\ <_LINEAR (involve solver) 

~~~~~~~~~~~~\
\ 

PERTURB (parametric analysis of rhs) 
BOX

TRADOF (parametric analysis of objective)
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and widely usable , we think that they should be implemented in FORTRAN

(they could equally well be implemented in another high level language and

our e f for t  can be regarded as another contribution to identifying what

should go into a language for optimization; see also Land and Powell [7 ] ,

Dantzig et al . [8]) .  Experimental codes which are constructed from these

modules should be executable on real life problems , not just on toy data;

thus attention should be paid both to efficient data representations and to

robustness. Finally the modules should serve as an educational aid.

A set of such modules are described in the remainder of this paper.

How the set can be enlarged , and ways to make them easier to use , are discussed

in Section 5.

3. Description of Nodules

The modules fall into three categories as described below. The

following overview is brief and assumes that the reader is familiar with

the theory of 12. For more detail on each module consult the documentation ,

and for a surfeit of detail check the listings (see Section 4).

3.1. Problem Oriented Modules

Problem oriented modules serve as an ‘interface’ between the user’s

LP problem and the routines which solve it.

LP problems are usually specified on a tape in standard MPS input

fo rmat (see [9] and Figure 4) while LP routines usually work on packed matrix

representations. A set of modules have been provided to aid in the reading

of an LP tape and setting up of the data structures.

6
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Typical structured LP matrices are illustrated in Fig. 3.

Block Angular Dual Block Angular Staircase

A1 A2 A 3 A4 B1 A1 A1

B1 B2 A2 B1 A2

B2 
B
3 A3 B2 A3

B3 B4 A4 B3 A4

B4

FIGURB 3

An 12 routine designed to take advantage of structure may require

a particular representation of data. Therefore it would be inappropriate

to provide a general input routine. Instead we provide components from

which a suitable input routine can be built. These modules can be used in

conjunction with those of Section 3.2.1, to set up the data representation

as required. For example, given a block angular 12 matrix, it may be necessary

to set up each

(
Ai

Bi

as an LP matrix with consecutively numbered rows. A call to module PREADC (see

below) will set up a packed matrix with rows numbered according to the original

matrix. Following this by a call to ADRNDX (see Section 3.2.1) will renumber

the rows to be consecutive.

_ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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The problem oriented modules in this version of the collection are

as foll ows: (They were adapted In major part from the input routines of

MINOS, Saunders [10]. However, since we segmented the routine and altered

several por tions of the code to suit our needs , responsibility for errors

rests with us , and should in no way reflect upon the source of the code.)

o P READR Read the ROWS section of an LP matrix

o PREADC Given a specified set of column s in the COLUMN S section , bulld

a column list/row index packed data structure .

o PR.DRHS Read the RHS section of an 12 matrix

o PREADB Read In the BOUNDS section of an LP matrix (see also Section

3 .2 .2) .

o PCHKST Perform checks and gather statistics about the matrix.

The manner in which a matrix is packed is illustrated in Fig. 3 for

a specific example. By writing an input routine which calls the problem

oriented modules the user can translate the MPS input into a packed data

representation, suitable for his LP algorithm.

3.2. Algorithm Oriented Modules

These are the basic building blocks from which algorithms are

constructed. They fall into two categories.

8
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FIGURE 4
TABLEAU

Column Names
mm x

1 + x
2 
+ X

3 CLM1 CLM2 CLM3 RTH

s.t. 2x
1 + 3x

3 < 10 1 OBJ . 1. 1. i.

4x2+5x
3 

< 20 RWN1 2. 0 3. < 10.

100>x
1

> O , x2 > O  RWN2 0 4. 5. ( 20.

Example of Sample MI’S Input Packed Representation of Above Matrix,

(further details are given in Excluding RHS (column list/row index data
Chapter I of the documentation) structure) (further details are given in

NAME LP Chap ter 1 of the documentation)
ROWS

N OBJ Column Pointers Matrix Elements Row Indices

a+—L RWN1 
__________a .

~~~ 1. 1
L RWN2 — —

a+2 .~~ 2. 2
COLUMN S —

a+4 1. 1CLM1 08.1 1.0 RWN1 2.0 — —
CLM2 OBJ 1.0 RWN2 4.0 a+7 4. 3

CLM3 OBJ 1.0 RWN1 3.0 
~~~~ \CLM3 RWN2 5.0 \ — —

Pointer to first 3. 2
RNS unused element \ — —

• RTH RWNI 10.0 of this array \~~
. 3

• 
RTh RWN2 20.0 A HA

BOUNDS
• UP ~“N CUll luO Thus the third column (called CLM3) starts

at element a+4 of the array called ‘matrix
ENDATA 

elements.’ This column has three elements

whose corresponding indices are given by the

elements of the array called ‘row indices.’
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3.2.1. Data Structure Manipulation Modules

These carry out a number of operations on packed LI’ matrices. By

using them it is possible to make a distinction between devising a strategy

and the actual mechanics of implementing it.

The routines that are included in the current version of the collection

are as follows:

• ADGONC -— concatenate two packed data structures and return result

in first one

• ADRNDX —— reindex rows in a packe d data structure

• ADTNTF —— convert packed data structure to element/row index/column

index data structure

• ADUPKC —— unpack a column of a packed data structure

• ADDELC —— delete a colurin In a packed data structure.

Obviously there are many other operations of this sort. The above

are some which arise in the implementation of decomposition algorithms (c.f.

Introduction).

3 .2 .2 .  Simplex Modules

Algorithms for structured LI’ are usuall y based upon repeated

calls to a rout ine which performs one or more iterations of the revised

simplex method . This routine must be specificall y designed to meet the needs

of the calling algorith m for structured LI’, but the task of implementing it

is made much easier if the following set of basic operations are available :

10
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• MODRBS given values of non—basics, develop modified right—hand side.

• FORMC form cost vector for Phases 1 or 2 of Simplex method

• PRICE price out columns

• CHVZR determine which column leaves basis

• UPBETA update current approximation to solution

All these modules utilize a coninon data structure , as shown in Fig. 6, and

it is assumed that the packed LI’ matrix is in ‘computational canonical form ’

as explained in Fig. 6. In particular:

1. All bounds on the structural variables x are set in BL and BU. If a

variable is unbounded above or below, the corresponding element of BL or

BU is set to a machine representation of ± oo. (This is done by PREADB.)

2. A full identity matrix for the ~~gical variables (z0,z) is assumed to be

written at the start of the matrix. The bounds on these variables are

determined by the type of rows (as specified in the rows section and

read by PREADR). Again see Fig. 5. Thus no distinction is really made

between positive and negative slacks and artificial variables. They simply

have different bounds that they must satisfy.

An extension of the simplex method is inherent in the design of the

modules and the associated data structure, in that non—basic variables can be

• fixed at values between , their bounds , as specified by PEG. This is related

to the superbasic variables of Murtagh and Saunders [11], but the latter are

used in a more powerful way, since an optimization is carried out in the sub-

space they define. The use of pegged variables involves some straightforward

extensions to PRICE, CHUZR and UPBETA (see documentation for more detail).

PEG contains the current value of every variable in the problem, both logical.

and structurals. Thu. there ii some redundancy of information stored; but

11
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FIGURE 5: COMPUTATIONAL CM4CNICAL FORM

mm c x

s.t. A .x~~~b Some elements of 9. and u may

and be machine representations of

+ o r  -~ .

~Li~
mm c~x

s.t. I z + A x - b

9. < x <  u

and 0 < z1 < if row i is < ..(non—nega tive slack)

—Co < < 0o if row i is > .(non—positive slack)

O < z~ < 0 if row I is .(artificial)

mm z0 COMPUTATIONAL
5.1:. + C. — 0 CANONICAL

I z +A x — b  FORM

x—structural variables

z bounded as above (z0, z)—logical variables

We define A ~ [i ~
] an NROWS X NCOLS matrix.

12

.4

• ~~~~~ 

•

~ --—-r-~~~ ~~~~~~~~~~~ • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:~~~.

S iII~~~~



• -•-----w- ~~
- —‘~~

--- - -. • •  — — --  

~~~~~

~~~~~~ —M’ e —• ‘ , 
- ~ ‘ - - ‘ ‘ ‘  — - • -•-——,—•—.——• —

4.

3

~ I—k I~I—k—k—k~I I I~ 
I

.€ °.~~~ ~~~~~~~~~~~ 1—— ~~~~~~~~~~~~~~ ~~~~~ ~~r

~~ ...  ... ~ 1.111 
~ I

_

2
‘C

2 —
— ‘.

‘1
—S

2
~ ~~~~~~ ~

~~~~ ,. N N N U

‘C ~~~~~~~~~~ • 2 2 ~~~~~ 1~~~~~N• 
K~ ~~ . . . ~ I ~ I I_ _ _ _ _ _ _ _ _ _  ~~~~~~~

H ~1~1 i~ ~. I i
•

a ~~~~~~~ ~ • •
I .~— .. a . . .  . a a  ~

~I I i
i

J 13

I_ _ 
_ _ _ _ _

.‘•-. ~~~~~~~~~~~~~~~~~~ - 9 ~a , ç ~pJp~~~~~
# 

~~~~~ ~~~~~~~~~~~~~~~$I 
_1

~~~! ~



• —-s r w 
- .

this is not too great a penalty to pay in our experimental system, given the

added flexibility that PEG makes possible.

2.2.2. ~parse Linear Algebra

The routines of Reid [12], implementing LU factorization of sparse

matrices and Bartels—Colub updating are very suitable for our purposes , and we

only provide an interface for converting a basis in our representation to one

needed by Reid ’s routine LAO5AD .

4. Documentation and Listings

In addition to this paper, machine—readable documentation has been

written, organized as follows :

Chapter 1: User documentation giving briefly the purpose, usage and algorithmic

details for each module . Each group of modules is preceded by an

introductory section giving background material .

• Chapter 2: Coding and documentation conventions.

Chapter 3: Testing programe and output they produce.

Chapter 6: Listings of modules.

•- 
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5. Future Directions and Conclusions

One obvious direction for further development is the addition of new

modules, for example , problem oriented modules to output solutions, more

• extensive data manipulation modules (e.g. to reorder a matrix by permutations) ,

• additional simplex modules (e.g. to deal with dual methods) , additional sparse

linear algebra routines, and so on.

A second direction for expansion is to make the modules easier to use ,

by deploying them within a suitable host systen which takes over much of the

bookkeeping tasks of a module and shields the user from them, e.g. the Speakeasy

system of Cohen et al. [5) . In addition , the host system provides many additional

P facilities, e.g. graphical aids , extensive matrix manipulations, etc. In the

calling sequence of a typical FORTRAN module, many parameters correspond to

work vectors , work arrays, dimensioning information , switches and error flags .

The Speakeasy language provides a very convenient mechanism for writing an

interface to a FORTRAN subroutine. In essence the call can be redefined and

often greatly simplified , since tasks of allocating work storage , parameter

checking, etc., can be assumed by the interface. The MPL language [4] is

another example of a suitable host environment.

The effort  described in this paper is limited in scope and suffers from

many shortcomings. However we would like , in conclusion , to emphasize three

benefits that are gained from mathematical software patterned along these lines :

a) It is of use to investigators in Systems Optimization Laboratories who

wish to implement optimization algorithms and study their behavior. In

particular- we plan to use our modules to implement algorithms for structured

12 based upon the Dantzig—Wolfe Decomposition principle .

15
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b) It is a useful educational aid; in particular our modules serve as a mini—

tutorial on the implementation of 12 algorithms, and we have already used

them for this purpose in the lecture hall.

c) The discipline of systematizing and preparing codes raises many questions,

which in turn spurs further research. The PEG array , see Fig. 6 , is a small

example of this. This point is also discussed , within the context of the

LINPAGK project, by Stewar t [13, p. 7].
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