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Abstract

We study some of the numerical, properties of the nested

decomposition algorithm of Ho and Manne. In particular we seek

to show how well developed theory in the area of computational

linear algebra, due primarily to J.H. Wilkinson, carries over to

linear programming and yields useful insight into the behavior

of algorithms in this area.
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ERROR PROPAGATION AJ~D SOL~~ION RECONSTRU~~ I0N IN NESTED DECO~~0SITI0N

by

L. Nazareth

1. Introduction

The Idea of a nested decomposition algorithm dates back to the

fundamental paper of Dantzig and Wolfe [1960]. Many authors have since

contributed to its development including Dantzig (1963, Ch. 23], Cobb and

Cord (1967], Glassey [1973], Ho and Manne (1974], Ho (1974a , 1974 b ],

Kallio [1975]. The major credit for the development of this algorithm

goes to Ho 11974a,b], who put it on a sound algorithmic footing, Implemented

the algorithm and showed it to be a workable technique for solving LP

problems with staircase structire, of the form :

T
minimize

t—1 a

subject to A
1
x
1 

— .
~1 

(1.1)

B
~_ i i + A

~~~~~~~~

> 0 for t

where is n
~ 

X 1, At is m
~ 

X n , — m~~1 
X ~~~~~ ~~ is I. X and

is m~ 
X 1 In dimension. We shall call the above problem LP.

In this paper we look at Ho’. algorithm from a numerical standpoint .

This paper is organized into f ive section. as follows:
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In Section 2 we provide background by briefly describing the

• algorithm and relating practical experience obtained by N. Aganagic* [1977]

who extended the code of Ho and ran it on a version of the PILOT model of

Dantzig and Parikh [1975]. It is this experimentation which motivated the

research described here.

In Section 3 we give examples which illustrate numerical difficulties

which can arise, and we di~cusa certain numerical properties of this algorithm.

In Section 4 we use some of the results of backward error analysis

and perturbation theory of computational linear algebra,Wilkinson [1965],

in order to study the propagation of error from stage to stage.

In Section 5 we examine further the reconstruction of the solution

in nested decomposition, in the presence of numerical error. We propose

an alternative method for doing this.

Finally in Section 6 we make some recommendations about the imple-

mentation of nested decomposition and describe some lessons we have learned

from our research, about the development of structured LP algorithms and

codes.

Our main aim in this paper is to look at LP algorithms based upon

the decomposition principle, from a numerical standpoint and to show that

such algorithms have some very Interesting numerical properties. A complete

investigation is, of course, well beyond the scope of this paper.

*Ph.D. student, Operations Research Department, Stanford University, California.

2

- ~~~~~~~~~~~~ ~

-. 

L1~ ~r . •~~~ :~:~~ ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~ _ _ _



• -
~~~

-
~~~~ w~ 

— - • • • • —

2. Background

2.1. Brief description of algorithm

We assume familiarity with the nested decomposition method for solving

systems of the form (1.1) as described in Ho [1974a]. We summarize this

by the schemata shown in Fig. 1, for a four—stage problem.

Notes on Figure 1..

(a) We distinguish extreme points and corresponding proposals by super-

scripts, to emphasize that we are dealing with vectors.

(b) The matrix of genera ted proposals is denoted by Q~. In order to

emphasize the distinction between a master problem and the correspond-

ing restricted master problem we append the symbol

~~~~(c) The convexity row is denoted by ~~~~~~~~~~~~~~~~

(d) The objective row for a subproblem comes from the pricing out of

proposals genera ted by the aubprob lem, as explained in the right—hand

column..

2.2. Reconstruction of the solution

This has again been described in detail in Ho [1974a]. He gives

two methods. In the first method (Method I), all extreme points developed

for each subproblem are kept. Let (
~~, ~~

) be the optimal solution of

S/P 4. In Fig. 1,

r 
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In the second method (Method II), it is unnecessary to keep all

extreme points. Instead they can be regenerated, if necessary, in the follow-

ing reconstruction algorithm. Let us again consider the four—stage problem.

*Fix at and treat the problem as a three—stage decomposition in

variables x,1, x2, and x
3
. Following Figure 1, the laat stage would

then be of the form

[
~ 1 11 Q3 A

3 ~~b3

S/P 3

B3 b4 — A 4x4

A 3 x3 
} Variables

and the first and second 8tage would be as in Fig. 1. When this problem is

*solved will be known, and let us say its optimal value is x
3
. We

can now fix and at their optimal values , i.e. the last set of

equations effectively drops out. We now solve the first three sets of

equations as a two—stage decomposition in variables 
~l 

and x2 . This

process is continued until the optimal value of all variables is known.

Note: Reconstructed solutions are not , in general , basic solutions

for the original LP.
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2.2. Practical experience

By extending the code of Ho and running it on a version of the PILOT

Model ,- of Dantzig and Parikh [1975], M. Aganagic [1977] obtained a great deal

S of valuable experience with the algorithm. He found

• that maater/subproblems could become badly scaled

• that in certain cases, propagation of error from stage to stage was

substantial

• that the technique for reconstructing the solution could fail.

However the code used was an experimental one, and the 12 problem

itself had coefficients which differed widely in magnitude. It is therefore

unclear whether these difficulties are inherent in the nested decomposition

algorithm, or whether some of them are the result of numerical instabilities

in the code (associated with use of the product form of the inverse) or

inherent in the 12 problem being solved. Hence the analysis described here.
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3. Examples and Discusion

We now discuss each of the difficulties mentioned in Section 2.2,

mainly through numerical examples.

3.1. Scaling.

An 12 problem which is well scaled for the simplex algorithm, can

be badly scaled for the decomposition algorithm. Consider the problem

minimize x + y

subject to x + c y > O

x — c y > O
S/P

x — c y < l

x + c y < l

y < l
Master

-y l l

where c is small.

If the simplex algorithm is applied to this prob lem, every basis is

well—conditioned (i.e has a reasonable condition number), and small variations

in the coefficients will produce small variations in the extreme points of

the problem.

• Suppose however we decompose thie LP into a master and subproblem as

indicated above. The extreme points of the subproblem are

_ _ _ _ _ _ _  
- 

~~~~~~~~~~~ ~~~~~~~~~ “~~~~~~~~ • ~~~~~~~~~~~~~

_ _ _ _ _  

I 
_ _

~~~~~~~~~~~~
P

~~~~~~t 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• —-s.- w 
- • .  - • - ---- — -

/ o \  / i \  f l / 2 \  / 1/ 2
I I ’  I I’ I I~~ I

S \ 0 I \ 0 / \ l /2 c / \ —l/2c

and the master problem becomes

( l/ 2c )A
3 

+ (—l/2c)A 4 + 
~l 

— 1
(— l/2c)A 3 + ( l / 2 c) X ~ + 

~2 
— 1

A 1 + A 2 + A 3 + A 4 = 1

A~~ > 0 , 
~l’ 

82.� 0

This problem has basis matrices with a large condition number

~ 0(1/c) and the structural (non—slack) columns differ widely in magnitudes,

so that their reduced costs can give misleading information about the value

of introducing a particular column into the basis. In this sense , see

Tomlin [19 75], the master is badly scaled .

3.2. Error propagation

Consider the two—stage problem

A1x1 — k1 } s/p rows

B1x1 + A~~2 — k2 } Master rows (3.2a)
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Let 4 be the true extreme points of the S/P and the

computed extreme points. If a stable algorithm is used, then by the back—

ward error analysis of Wilkinson [1965], each is the exact solution

of a perturbed system

(Al + E~ )x~ — (3.2b)

where Al is the basis matrix corresponding to and E~ is a small

perturbation . For example, if we assume that all elements of Al satisfy

I (A ~) I < 1, that partial pivoting in the LU factorization of Al is used1 Lm —

and that I U ~~I < 1, then IIE~H < 3’n•2 1, when t
1 

is the number of bits

in a floating point word (see Wilkinson [19651).

Note that xl can be extremely different from 4, this being

determined by the condition number of Al. We can show by perturbation

theory, Wilkinson E1965), that

— 
~~II ~~IIEu II/IIAl D)

where k~ — DAIIHI (AiY ’H111411 — 

(1 — k
~
flE
~II/JIAl II)

1~~If the exact solution to (3.2a) is — 
~~ ~~~~ ~~~ — 1, and the

computed solution x — L A — 1, then
~~~~~~~~~~~

—c —1’ j j

S II.~ 
— .~ II —II~ 3

~ (A1 + — !

assuming (Al + E~) and Al are invertible,

— ij~ T3 (z + Al — 
~ 

A~ (A~)
4b

1fl
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Now , for any square matrix X , (I + X)~~ — (I — X + — + •“ ) ,  provided

lixIl < 1. If we assume, therefore , that iI (Al)~~E~ II < 1

ll~~ 
- 

~~Il - IJ~
(
~ 

- A
J)AI b1 

+ 
~

I — A
~

) (Al) ’
~b1II + II~ ~

‘
~
((Al)~~

Ef)(I + (Al)~~
E
~
)
~~ (Al

Y’bi
I

Assume fur ther that A~ ~ 0 <— .> A~ ~ 0.

It!c.!t hl ~~. ii 

~
(
~

_ 
l)x~A~ 

1 
+

lIx~
—x

~II 
~ V ~~~~~~ — l\ + ~~ I~~/A~ I I(Al11hl(4~~ lR(lEu ll/114hI

Ix
~ JI — 

~ 

A~~ / ~~(l — HAIHII (Al) 411(DEu JI/IIAIIJ)

This bound is not an encouraging one , if IIAIIIII(Al) ’JI is large or

differs substantially from A~ .

Let us however now adopt the viewpoint of backward error analysis.

Ignoring, for the moment, errors in optimizing the baster (see Section 4)

then we are, in effect, exactly solving a system of the form (3.2b) , in

which each element of A
1 has a small uncertainty with a known bound. 

S 
-

NOTE that since varies with we cannot have A
1 perturbed

by a f ixed matrix , i.e. by a static perturbation. We shal l use the term

dynamic perturbation to distinguish our case .

10 
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Now , if we assume that the solution of the LI’ is stable, then
we would expect — to be small. This implies a correlation of

error, which the following example exhibits:

minimize x4

subject to x
1 + (l+c )x — a

11 3  
sip

+ x2 + (l+c
2

)x
3 — a2 (3.2c)

x~~+ x 4 — a
Master

x4 — a 4
x > 0

There are only two feasible extreme points of SIP , and these are

S / a1 /a1 — (l+c
1

)k
1 J  2 1— ( a~—a1 and — 0

k

when k — (a2—a1)/ (c 2—c1) and where we assume that C l and £ 2 are
small, £2 > c1 and a2 > a1 > a2 (1 + £ i)/ (l  + £ 2) . The master problem is:

S minimize XI
:1a2

_a
_\subject to I )~~ + x — a2 4 3

x4 — a 4

A 2 — l

A1, A 2, x4 > O

11 1
_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~ ~

S- St
r~~~~~~~~~~~~~~~~~~~~~~~

- -
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This has the solution

x4 a4

A 2 — (a3 —

A 1 
— 1 — (a

3 
—

where we assume a
3 

> a4 
> 0 and chosen so that A l, 12 

> 0. The optimal

solution 2
~,pt 

is given by A
l~4 

+ A~~~ , which becomes

a
1 

— (l+c1
)(a

3
—a4
)

(a
2—a1

) — (a
3
—a4

)(c
2—c1
)

~opt 
— 

a
3
—a4

Solving the system (3.2c) as an 12 also yields the unique (optimal) solution

and the associated 4 X 4 basis is well conditioned. This implies that

is relatively insensitive to small changes in the matrix or r.h.s. elements.

Suppose that a1, a2, Cj~ C
2 

are obtained by truncating ~~ ~2’ ~~]. 
and £

2

which are not machine representable numbers. Suppose also that the above

derivation is carried out with 
~~ 

g2, 
~ 

and e2 used in place of a1, a2,

and £20 and denote the quantities corresponding to k, A
~ 

and A2 by

and A 2 . Then the quantity k which determines 4 can be

drastically different from k — (a2—a1
)/ (e 2—e1). This is because the

basis which determines 4 is ill—conditioned. The corresponding quantities

and A2 will also be quite different from A~ and A 2. However the

errors in A~ and 12 are correlated with the errors in 4 and 4, so

• - 
that x does not change drastically .

12
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3.3. Reconstruction

Finally we give an example which illustrates difficulties associated

with reconstruction of the solution. We wish to show that Method 2 of

Section 2.2 can resul t in numerical instability .

Consider the problem :

maximize x4

subject to x1 + (l-fc1)x3 — b
1

s/P
x2 + (l4c2)x3 — b2 (3.3a)

x1 + x2 + 2(1-$c 3)x
3 

+ x4 — b
3 ~ Master

X
i

> O

There are only two feasible extreme points and these are given by

/ b 1 b1—b 2 (1+c 1)/(l4€ 2)

4 — f b2 , 4 — 0 (3.3b)

• 0 b2
/(14e

2
)

where we assume that b1 and b2 are chosen so that 4, 4 > 0. All

bases corresponding to these are well—conditioned . The master problem

is given by

13
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A maximize x
4

b
2
(l-I€

1
) 2(1-I€

3
)b
2 1

subject to (b1 + b2)A 1 + b
1 

— 
(1~~~) + (l.

~
€
2
) 

X~~+ x~ b
3

J (3.3c)

11+ 12

A~ , A~ , x4 > 0

Assume (2c
3 

— e
1
) < c

2
. Then the coefficient of 12 

< coefficient of 11

and so the optimal s,olution is given by X~ — 0~ A~ — 1 and x4 determined

by (3.3c). Then the optimal solution, by Method I of Section 2.2,

b1 
- b2(l-Ic1

)/(l4~2
)

0x ——opt
b2

/(l-fc
2)

(b1 + b2(l + 2c 3 —b3 _ \  (l + e 2)

(The basis corresponding to variables x1, x3 and x4 in the original LP

is well—conditioned and the solution x0~~ can be alternatively obtained

from this basis.) If Method II (cf. Section 2.2) is however used, we must

then solve the system

14
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1 0 l-fc 1 x1 
• -

0 1  1-fe2 x2 — 
b
2

(1 + 2(c
3—e 1))b 21 1 2(l-$c3

) x3 
- 

b~~~ + (1 + c2)

This is an ill—conditioned problem, and thus numerical error could result

in the reconstructed solution being substantially different from the true

• well—conditioned optima l solution , even possib ly infeasible. We return

to the problem of reconstruction in Section 5.

I
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4. Analysis of Error Propagation

In this section we use some of the results in Wilkinson [1965],

thap. 4 on backward error analysis and perturbation theory of linear systems

of equations, in order to study the propagation of error from stage to

stage . A complete error analysis is beyond the scope of this paper.

4.1. In backward error analysis one seeks to show that the computed solution

x of a problem, say P, is the exact solution of a problem obtained by

perturbing P. In the nested decomposition algorithm, a typical restricted

subproblem is of the form (see Fig. 1)

rows: Q~~ + A~~~ -

convexity rows: 1 S/P — t (4.la)

where — B
t...lX~_l, 

and X~_ 1 is the matrix whose columns are computed

extreme points and rays of the previous subproblem S/P — ( t— l ) .  is a

row vector whose j’th element is 1 if the corresponding column of X~_1 is

an extreme point and 0 if it is an extreme ray . A typical basis of

S/P — t consists of a set of m
~ 

+ 1 columns, and is of the form

B _ 1 X~_ 1 At

I £~~~— (4.lb)

g o

16

- 

5~~~~~~~~~~[T 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~Z~~~~ •~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~ -a - 5 ~
S
~~~ ~~~~~•f t  0 _ _ _ _ _ _ _ _ _ _



/
c T

where X1~~~, 
At 

and denote columns of ~~~~~ At and

Computed extreme points and rays for the next subprobiem

S/P — ( t  + 1) are exact solutions of

(6 + - 
(

~~t )  (4.lc)

e.g. if (i) 
~~~~ I’

(ii) partial pivoting in the LU factorization (4.ld)

of ~~~is used

(iii) Iu1~I < 1

Then II6~~II 1 3 + 1)2
1 

, see WIlkinson [1965 ] and Section 3.2.

Under what circumstances can we cast errors in ~~ back into the data of

the original problem and into the convexity row?

Let us partition 6~~ in the same way tha ~~ is partitioned

in (4.lb). Then

6e11 j6~~12

— 4-———— (4.le)

~~~~2l 16~ 22

The errors 6(
~ l2 can be attributed to A~, in (4.ib)and [6

~~2116
~~22]

to the convexity row in (4.lb) . In addition let us seek 
~~~~~~~ 

such that

17
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(B t 1  + 6B t_i )x
~~i — Bt_lX _l + 6~~ll

or

6B t_iX
~~i — 6

~~l1

A strong assumption which ensures this is that every matrix

is a feasible basis has full column rank and that

I + ~T
~~~~ — (X~~_1 ~~~~~ l

)
_1 

X~~~~1 
satisfies 11x~_1H I k ,

where 2+ denotes the generalized inverse of Z. Then

II6Bt iII~ < II&~~11JI) X~~~IJ < 3k(m
~ 

+ l)2 t

when (4.ld) holds.

f Note that ‘5
~ t~l 

varies with We can however say that when

the above assumptions hold , the computed solution is the exact solution

obtained by nested decomposition, applied to an 12 (1.1) , whose matrices
—tI At have a dynamic perturbation bounded by 3(m

~ + 1)2 ~~~
, and whOse matrices

t Bt have a dynamic perturbation bounded by 3 k 1 (m
~+1 + 1)2 . Further each

• àonvexity row in the nested decomposition has a dynamic perturbation bounded
- — t

by 3.(m
~ 

+ 1) 2  1.

The above assumptions are very restrictive. Lees restrictive

assumptions would require 6~ 11 to be cast into errors in the data of

~~~~~~~~~~~~~

J 

previous stages. Also in order to circumvent having to explicitly introduce

error into the convexity row , we could force it to be satisfied, by using

a method similar to that used in the CUB a1gorithi~~Dantzig and Van Slyke 11967].

18
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S - 4.2. Perturbation theory complements backward error analysis, see Wilkinson

[l965~ . We study the following questions:

Define LP1 by perturbin g each matrix At by ôA t and each B
t

by ôB
t 

in (1.1), where oA
t 

or OB t are small fixed (static) perturbations.

If the matrices in the decomposition of LP are in consequence perturbed

to Q~ we ask : Will each column of Q~ be close to the corresponding

columns of Q
~

?

We make the following strong assumptions :

Assumption 4. 2: Every basis of S/P — t (see (4.la) ) is well—conditioned

and 

ii
~~

iii
~~;
’ii I c (4.2c)

Assumption 4.3:  The subproblems in the decomposition of LP1 match those in

the decomposition of 12 in the following sense : each has the same number

of columns; furthermere, if a basis is feasible for SP — t in the nested

decomposition of LP, the basis for the corresponding set of columns

in SP~ — t , in the decomposition of LI’1, is also feasible.

Given a basis for subproblem t of 12, let +

for some be the corresponding basia for the subproblem of LP1. tat

the two feasible solutions be x~ and x
~ 

+ Ox
~
, respectively.

Thus

+ 6
~~~

) (x
~ 

+ 6x
~
) — b

t

1~1 
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As in Section 3.2,

lox I! cII8~ II/lI~ II
— dfl6

~~~~
lI/II

~~~~
lI) 

(4.2b)

where c is defined in Assumption 4.2.

The proposal transmitted to SI’ — (t+1) is — B
~
x
~ 

and to

SP1 — (t+l) is — (B
~ 

+ OB
~

) (x
~ 

+ Ox
~
). So 

-

llq~~1 — 

~~1ll I II6B~
x
~I l + liBtoxt il

— 

~~1ll I1I6Bt 11 !I~ct 11 ~~~~~~~~~~~~~~ Jlx~Jl 1
~ L IlB~

x
~JI + (1 — c(J IO

~~~JI/ll~ ’~
ll)) IIB~

xt Il ] 
- 

(4.2c)

If we assume that each q~~1
(q
~~1
) in a basis 

~~t+l ~~~~~ 
is j

of the same order of magnitude, the left hand side of (4.2c) is also an

estimate of llo
~~+i

Il/Il
~~+j

Il . 
— t

If we therefore let Il8
~~lIl/lI~~lII 1 

2 ~~, and note that

JIB~
x
~lI I lIB~llDx~II so that

(1 — c(Ij8 ~~~ fl hI I~~~ f l ) )

underest imates the 2nd term in (4.2c), then it is readily seen by induction

that the leading te rm in the right hand side of (4.2c) contains the factor
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(ct2 1). This suggests that the columns of could depart substantially

from the columns of when t is large . Note however that the solution -

of LP1 will be very close to the solution of LP if the optimal basis is

stable. Again, as in Section 3.2, we have the effect of correlation of errors.
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5. Reconstruction of the Solution

In Section 2.3 we showed an example of how numerical difficulties

can arise with reconstruction of the solution. In this section we discuss

further difficulties associated with solution reconstruction.

5.1. Returning to the two—stage problem (3.2a) of Section 3.2, suppose now

that computed proposals 4, which are exact solutions of (3.2b), are such

that HE~ H is no longer small—e.g. where an unstable algorithm is used

to solve the system of equations 4x~ — b1. In this case , the optimal
• * *  1

solution, say (x1,x2) > 0, of a linear programming problem LP , obtained by

dynamically perturbing (3.2a) , may be such that a no vector x1 > 0 for

which (x1,x2
) is feasible for LP (3.2a). (Recall that the (dynamic)

perturbation is determined by the pattern of decomposition.) Thus method

II of Section 2.2, which solves directly the LP

minimize

/ A \  / b
subject to ( ~ — ‘

~ (5.la)
I * 1

could fail. A similar situation could arise when the assumptions of Section 4.2 I
do not hold, and it is not possible to account for computational errors in

the master problem En terms of small (dynamic) perturba tions in the original

data A1, A2, B1. Note that Method I will succeed, in the sense that it

reconstructs a solution which is feasible for the perturbed 12. Thus in the

I _  
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presence of numerical error Method II does not adequately reproduce Method I.

Similar arguments also hold for a t stage problem. It is also clear from

these arguments how crucial it is to use a stable implementation of the

simplex method for solving the subproblems . 
S

The second point we would like to make is that loss of feasibility

occurs in a particular way, as we now show. Consider a three—stage problem

of the form (1.1). As summarized in Fig. 1, the true extreme points of the

first stage are denoted by 4, and we assume that the corresponding sub—

problem is bounded. The true extreme points of the second stage also assumed

bounded are

“4
and we shall assume that these are deliberately perturbed to

() ,
with 

~k A 2k — 1Y j. The third stage master is then given by

~ (01B2) 
(2) 

A
3~ 

+ A~~3 - b3

(5.lb)

— 1

X
3f

X
3 > O
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4

Let the optimal solution obtained by solving (5.lb) exactly be

\ * 1
Then by Method I

/~ i~\ /~ ‘j\
1—2 1 V I — 2 1 *I I — L I  1 A
I * 1  I — l I 3j
\ .~2/  ~

and

.2~ 
_
~4~;~j

* * *Note now that (x1, x2, x3) satisf ies stage 1 and stage 3

constraints exactly. Only stage 2 constraints are violated. (We have

assumed that 
~k ~‘2k — ~ again demonstrating the values of solving sub—

- problems by a CUB type algorithm.) Error has however propogated to stage 3

in the sense that allocation of resources to each stage is affected and

hence so is the computed optimal solution . However feasibility of stage 3

is retained.

5.2. In the light of- the above two observations, we seek a method of

reconstruction which

(1) uses the same pattern of decomposition as the Phase 1 and 2 procedures,

and avoids numerical difficulties discussed earlier.

(2) is able to reconstruct at any point , not just at optimality.

( 3) accurately mirrors Method I, but gets around having to save all

24
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extreme points generated. We accept it to be reasonable that if

a proposal B14 is saved , then the corresponding 4 is also saved.

When B~4 is thrown away , then the corresponding 4 can be dispensed

with.

(4) is able to utilize a strategy akin to that used in a standard simplex

method , when the optimal values of a set of variables say are known .

We suggest the following strategy:

Method III:

* *Step 1: Let A -~- A and t ÷ m
t m

* *Step 2: At stage t use to compute 
~~~~ 

by

* *x—t-l tJ—t-l

(Recall (3) above.)

If (t— J.) — 1, then STOP.

Step 3: Omit stage t and all subsequen t stages, put upper and lower

bounds on 
~~~l’ 

constraining these variables to be close

to 
~~~~~~~ 

and solve the (t—l) stage problem for A _1 using

nested decomposition.

Step 4. t ~- (t—1) and GOTO Step 2.

The major difference in Phase 3 between Method III and Method II

is that Method III uses the same pattern of decomposition as the one used in

Phase 2. The price one pays for this is the added information that must be saved,

as discussed under (3) above in this Section.
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6. Conclusions

We conclude by recounting some lessons we have learned from this

effort for the implementation of large scale LI’ algorithms, and some specific

recommendations for nested decomposition.

(a) This effort has benefited substantially from the numerical experiences

of M. Aganagic (19771 on a real life model, and we reiterate the

importance of gathering such practical experience. Indeed this is one

of the points emphasized in Dantzig and Parikh 11977], who discuss how

the activities of algorithms and model development complement each other.

(b) at the same time it is clear that the experimental information gathered

will be suspect, unless the experimental implementation is sound and

is designed to fail gracefully, i.e. it does not have to deal with all

possible cases, but it must at least provide reasonably good clues

when the algorithm encounters difficulties. This is the theme of

Nazareth [1978a], where a set of sof tware aids for developing good

experimental implementations is described.

(c) our research demonstrates that a fairly substantial reformulation of

the nested decomposition algorithm may be necessary before setting

about developing a robust user oriented version, which is capable of

handling a diverse set of LP applications.

(d) because error propagation may be an inherent problem we have been

prompted to look at other decompositions, see Nazareth (l978b1.

(e) It is clear that some extremely interesting numerical problems arise

in nested decomposition. Our results are only a small contribution,

and we feel that a more complete error analysis and perturbation theory ,

which we now plan to under take, would be a substantial contribution.
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There is also a definite need for a sound experimental implementation,

S in order to carry out further experimentation. This code should, for

example,

(i) use stable factoring and updating techniques as described in Reid [1976].

(ii) use the method of reconstruction described in Section 5.

(iii) use the techniques of structured programming, since the data flow

in the algorithm is quite complex. Data flow and numeric consider-

ations should be separated when possible.

(iv) be able to start from an arbitrary feasible (not necessarily basic)

solution, either user supplied or developed from an intermediate

reconstruction.

(v) use a technique similar to that in the GUB algorithm, Dantzig and

Van Slyke [1967] with LU factorization of the basis, see Tomlin

(19741, to ensure that convexity rows are closely satisfied.
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