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Abstract
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We study some of the numerical properties of the nested

o
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%

decomposition algorithm of Ho and Manne. In particular we seek
to show how well developed theory in the area of computational
linear algebra, due primarily to J.H. Wilkinson, carries over to

linear programming and yields useful insight into the behavior
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of algorithms in this area.
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ERROR PROPAGATION AND SOLUTION RECONSTRUCTION IN NESTED DECOMPOSITION

by

L. Nazareth

1. Introduction

The idea of a nested decomposition algorithm dates back to the
fundamental paper of Dantzig and Wolfe [1960]. Many authors have since
contributed to its development including Dantzig [1963, Ch. 23], Cobb and
Cord [1967], Glassey [1973], Ho and Manne (1974], Ho {1974a, 1974b],
Kallio [1975]. The major credit for the development of this algorithm
goes to Ho [1974a,b], who put it on a sound algorithmic footing, implemented
the algorithm and showed it to be a workable technique for solving LP

problems with staircase structire, of the form:

T
minimize t§1 [

subject to A .x =d (1.1)

1% 1
Beo1Zey * A2, = 4 &

—t
20 for t=1,...,T

'_!'x

¥ where x 1is n_ X1, A 1is m_Xn c is 1 X n_, and

X
X t t g X Mg By =mgy X0 & t’

gt is m, X 1 in dimension. We shall call the above problem LP. i

K
&
¥
&
o

In this paper we look at Ho's algorithm from a numerical standpoint.

This paper is organized into five sections as follows:




In Section 2 we provide background by briefly describing the

TN R RSN

algorithm and relating practical experience obtained by M. Aganagic* [1977]

who extended the code of Ho and ran it 6n a version of the PILOT model of

Dantzig and Parikh [1975]. It is this experimentation which motivated the

i i SR S s,

research described here.

In Section 3 we give examples which illustrate numerical difficulties
which can arise, and we discuss certain numerical properties of this algorithm. |

In Section 4 we use some of the results of backward error analysis
and perturbation theory of computational linear algebra, Wilkinson [1965],
in order to study the propagation of error from stage to stage. ]

In Section 5 we examine further the reconstruction of the solution
in nested decomposition, in the presence of numerical error. We propose i
an alternative method for doing this. ]

Finally in Section 6 we make some recommendations about the imple-
mentation of nested decomposition and describe some lessons we have learned
from our research, about the development of structured LP algorithms and
codes.

Our main aim in this paper is to look at LP algorithms based upon
the decomposition principle, from a numerical standpoint and to show that
such algorithms have some very interesting numerical properties. A complete

investigation is, of course, well beyond the scope of this paper.

*
! Ph.D. student, Operations Research Department, Stanford University, California.




2, Background
2.1. Brief description of algorithm

We assume familiarity with the nested decomposition method for solving
systems of the form (1.1) as described in Ho [1974a]. We summarize this

by the schemata shown in Fig. 1, for a four-stage problem.

Notes on Figure 1.

(a) We distinguish extreme points and corresponding proposals by super-
scripts, to emphasize that we are dealing with vectors.

(b) The matrix of generated proposals is denoted by Qj' In order to
emphasize the distinction between a master problem and the correspond-

ing restricted master problem we append the symbol

§§74§

(c) The convexity row is denoted by  susseeccece .

(d) The objective row for a subproblem comes from the pricing out of
proposals generated by the subproblem, as explained in the right-hand

column.

2.2. Reconstruction of the solution

This has again been described in detail in Ho [1974a]. He gives
two methods. In the first method (Method I), all extreme points developed

* %
for each subproblem are kept. Let (},, 54) be the optimal solution of

S/P 4. 1In Fig. 1,




i A A A 1
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In the second method (Method II), it is imnecessary to keep all
extreme points. Instead they can be regenerated, if necessary, in the follow-

ing reconstruction algorithm. Let us again consider the four-stage problem.

*
Fix x, at x, and treat the problem as a three-stage decomposition in

variables X1 X5 _and 53. Following Figure 1, the last stage would

then be of the form

4
i 1 1 Gy Ay, ’
mooren = 14 S/P 3 4
*
by =y = hyE,
A3 Xy } Variables

and the first and second stage would be as in Fig. 1. When this problem is

*
solved X4 will be known, and let us say its optimal value is X5

can now fix X and X, at their optimal values, i.e. the last set of

We 1

equations effectively drops out. We now solve the first three sets of
equations as a two-stage decomposition in variables x and X, This
process is continued until the optimal value of all variables is known.

Note: Reconstructed solutions are not, in general, basic solutions

for the original LP.
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2.2. Practical experience

By extending the code of Ho and running it on a version of the PILOT :

Model,.of Dantzig and Parikh [1975], M. Aganagic [1977] obtained a great deal

of valuable experience with the algorithm. He found

® that master/subproblems could become badly scaled

o that in certain cases, propagation of error from stage to stage was
substantial

® that the technique for reconstructing the solution could fail.

However the code used was an experimental one, and the LP problem
itself had coefficients which differed widely in magnitude. It is therefore
unclear whether these difficulties are inherent in the nested decomposition
algorithm, or whether some of them are the result of numerical instabilities

in the code (associated with use of the product form of the inverse) or

inherent in the LP problem being solved. Hence the analysis described here. J




3. Examples and Discusion

We now discuss each of the difficulties mentioned in Section 2.2,

mainly through numerical examples.

3.1. Scaling.
An LP problem which is well scaled for the simplex algorithm, can

be badly scaled for the decomposition algorithm. Consider the problem

minimize x + y

subject to x +¢ey >0

x-¢ey 20
s/p
x-¢ey €1
x+ey 1
y£1
Master
-y L1

where ¢ 1s small.

If the simplex algorithm is applied to this problem, every basis is
well-conditioned (i.e has a reasonable condition number), and small variations
in the coefficients will produce small variations in the extreme points of
the problem.

Suppose however we decompose this LP into a master and subproblem as

indicated above. The extreme points of the subproblem are




v

()- (0 (o) (G2

and the master problem becomes

(1/26)A3 + (—1/2e)k4 + 8 =1

(-1/2€)A3 + ( 1/22)}\4 + & > 1

Al + AZ + A3 + A4 =1
Ay 20, 8)» 8, 2 0

This problem has basis matrices with a large condition number

~2 0(1/e) and the structural (non-slack) columns differ widely in magnitudes,

so that their reduced costs can give misleading information about the value

of introducing a particular column into the basis. In this sense, see

Tomlin [1975], the master is badly scaled.

3.2. Error propagation

Consider the two-stage problem

A x, = b, } S/P rows

Bix, + Ax, = 92 } Master rows

Xy X 20

(3.2a)

o

o oy




Let !i be the true extreme points of the S/P and zi the
computed extreme points. If a stable algorithm is used, then by the back-
ward error analysis of Wilkinson [1965], each ’;i is the exact solution

of a perturbed system

3 ¥ Ve SO0
(A] + B)x) = b, (3.2b)

where A{ is the basis matrix corresponding to Eg_ and Ej is a small

perturbation. For example, if we assume that all elements of Aj satisfy

1
I(AJ l < 1, that partial pivoting in the LU factorization of Al is used
-t
and that |0, | <1, then [}, < 3-n-2 !, when ¢, 1o the number of bits

in a floating point word (see Wilkinson [1965]).

Note that gi can be extremely different from 5%, this being
determined by the condition number of Ai. We can show by perturbation
theory, Wilkinson [1965]), that

I - I _kjumin/n@n
I | @ - i e/ ad)

- I3yt
wnere k= [adllady

If the exact solution to (3.2a) is x = Zj Ajzi, jxj = 1, and the

computed solution X = Xj jxi, = 1, then :

Ixe = % 0 =i} ia(Ai + lzj)'lg1 -3 xj(gi)'¥31" |

assuming (Ai + Ej) and Ai are invertible,

-1
~ j j .-1 J -1 L J -
=} X (@+a EHT@DTY I A D) 1glll

B e T
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Now, for any square matrix X, (I + X)-l = (I -X+ x2 - X3 +¢++), provided

IXI < 1. If we assume, therefore, that H(Ai)-lzj” <1
~ -1
o - e ] Y (-ady1 -y gy oy ady?
I, = 2l = 130y - 2pap by + I X D TEY - ede -y )

e j\-1 ~ 313 s N T R IS P |
< llg(xj AP @Dyl + l|§ X CADTED (1 + (4 TED (A Tpy

Assume further that 33 # 0 <{==)> Aj ¢ 0.

X &y o & kL 5
e -x I < I g(;—} - 1>AjA{ bl + | E(Aj d) 199(;-}) @ led (eady1ed)

% % Iinead) Licnednynad
R ;1 1>+lej/le “‘1“"“3’ e /11ad 1
Ll Ly - Iadiicady~ncie? iznad

~

This bound is not an encouraging one, if "Ai””(Ai)—lﬂ is large or xj
differs substantially from AJ.

Let us however now adopt the viewpoint of backward error analysis.
Ignoring, for the moment, errors in optimizing the master (see Section 4)

then we are, in effect, exactly solving a system of the form (3.2b), in

which each element of Al has a small uncertainty with a known bound.

NOTE that since E'1 varies with Ai, we cannot have Al perturbed

by a fixed matrix, i.e. by a static perturbation. We shall use the term

dynamic perturbation to distinguish our case.
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Now, if we assume that the solution of the LP is stable, then

we would expect ”zc - Et” to be small. This implies a correlation of

error, which the following example exhibits:

minimize X,
subject to X, + (1+el)x3 =a
s/p
X, + x, + (1+€2)x3 = a,
X, +x, =a
3 4 Master
% "%
xi_z 0

There are only two feasible extreme points of S/P, and these are

a, a - (1+e1)k
x; = az-al and xi = 0
0

when k . (az—al)/(ez—el) and where we assume that el and €, are

small, €, > € and a, > a, > az(l + el)/(l + ez). The master problem is:

minimize x

4
a,-a,
subject to 52'81 Az + . a,

(3.2¢)

R ——

e T




This has the solution

Al

where we assume ay > a, > 0 and chosen so that Al’ Ay > 0. The optimal
1 2

solution Zopt is given by Al§1 + *251’ which becomes

- -

! a; - (l+el)(a3-aa)
(az-al) = (83.34) (ez-el)
aa-al‘

2

Solving the system (3.2c) as an LP also yields the unique (optimal) solution

and the associated 4 X 4 basis is well conditioned. This implies that x

opt
is relatively insensitive to small changes in the matrix or r.h.s. elements.

-~ -~ -~ -~

Suppose that a;, a5, €4, €, are obtained by truncating a5, a5, &y and €
which are not machine representable numbers. Suppose also that the above
derivation is carried out with al, az, el and e2 used in place of a;, a5,
€ and €as and denote the quantities corresponding to k, Al and Az by

i. ;1 and ;2. Then the quantity k which determines gi can be
drastically different from i = (;2-21)/(;2-21). This is because the

basis which determines 5: is 1ll-conditioned. The corresponding quantities
A

1 and iz will also be quite different from xl and Az. However the

errors in 1, and A, are correlated with the errors in 5; and 5;. so

that !bpc does not change drastically.

12




3.3. Reconstruction

Finally we give an example which illustrates difficulties associated
; with reconstruction of the solution. We wish to show that Method 2 of

Section 2.2 can result in numerical instability.

-

Consider the problem:

maximize %,
subject to X, + (1-«:1)x3 = bl
S/P
x, + (It ,)%, =B (3.3a)
= \
X +x + 2(1-«-:3)1(3 + x, b3 h Master

xizo

There are only two feasible extreme points and these are given by

. b, by-b,(Lte )/ (14 ,) :
| ,‘i -5, |. 1i - 0 (3.3b) z
0 b,/ (1+¢,) g’

where we assume that b, and b, are chosen so that 3(_1, _i > 0. All

bases corresponding to these are well-conditioned. The master problem

is given by

i st Py N




v maximize x“

| b

(1+e1) 2(1+e3)b2
L subject to (bl + bz)A1 +|b

2 +
(1+eé$’ 2 7 3

1 (1+e2)

Aps Ao X, 20

Assume (Ze3 - el) < €,e Then the coefficient of AZ < coefficient of Al

and so the optimal solution is given by Al =0, Xz = 1 and X, determined
by (3.3c). Then the optimal solution, by Method I of Section 2.2,

b, - b2(1+e1)/(1+e2)
0

X
—opt
b2/(1+ez)

el b1 + b2(1 + 2s3 - el)
L 3 ‘ a+ cz)

-

(The basis corresponding to variables X1» X4 and X, in the original LP

is well-conditioned and the solution xopt can be alternatively obf.lned

from this basis.) If Method II (cf. Section 2.2) is however used, we must

then solve the system




"f
Asesm, 73

1 1 1
0 1 1+€2 X | . b2
(1 + 2(e3-e1))b2
p s B 2(1+£3)J | X3 1 b1 + as Ez) |

This is an ill-conditioned problem, and thus numerical error could result
in the reconstructed solution being substantially different from the true

well-conditioned optimal solution, even possibly infeasible. We return

to the problem of reconstruction in Section 5.

A~ S~ .

R T <y Y e B N
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4, Analysis of Error Propagation

In this section we use some of the results in Wilkinson [1965],
Chap. 4 on backward error analysis and perturbation theory of linear systems
of equations, in order to study the propagation of error from stage to

stage. A complete error analysis is beyond the scope of this paper.

4.1. In backward error analysis one seeks to show that the computed solution
X, of a problem, say P, is the exact solution of a problem obtained by
perturbing P. In the nested decomposition algorithm, a typical restricted

subproblem is of the form (see Fig. 1)

mt rows: Qt&t + Atﬁt = kt
convexity rows: eTA =] S/P - ¢t (4.1a)
Aer X, 20
c c
where Qt = Bt-lxt-l’ and xt_l is the matrix whose columns are computed
extreme points and rays of the previous subproblem S/P - (t-1). g: is a

row vector whose j‘'th element is 1 if the corresponding colum of Xi_l is
an extreme point and O if it is an extreme ray. A typical basis of

S/P - t consists of a set of m_ + 1 columns, and is of the form

t

Ac ~
Bt-l xt-l At
623 - (4.1b)
el I 0




c T 1
denote columns of xt-l’ At and e.- :

“e - AT
where xt_l, At and g_t

Computed extreme points and rays for the next subproblem

S/P - (t + 1) are exact solutions of

b
& + aw@; = ("‘) (4.1c)
1

e.g. if (1) |@ijl <1

(1i1) partial pivoting in the LU factorization (4.1d)
of @ is used

(114) vl <1

]

-t
Then IIGQII‘,° £3 (mt +1)2 1 , see Wilkinson [1965] and Section 3.2.

Under what circumstances can we cast errors in @& back into the data of

the original problem and into the convexity row?
Let us partition 6@ in the same way that (B 1is partitioned
in (4.1b). Then

6@y, 16@,,
6@ R Jrp—— U T (“ole)

6@ §®,,

21}

The errors 6@12 can be attributed to A, in (4.1b)and [6@21|6@22]

to the convexity row in (4.1b). In addition let us seek “t-l such that




>c ‘c
(By_y + 8B )X 3 = B Xy + 66,
or
6B, X = 6@,

A strong assumption which ensures this is that every matrix ii—l

-

is a feasible basis has full column rank and that

i “c+ “c'r oy o4 -1 jc ACT
Xp, = (x_, X)X, satisfies IIXt_lll <k, ;

where Z+ denotes the generalized inverse of Z. Then

t ]

Sk
C -
llsB L 18@B, 1N X, ll, < 3k(m, + 1)2

=1/l

when (4.1d) holds.

c
B._1 ¢t-1° We can however say that when |

the above assumptions hold, the computed solution is the exact soiution

Note that § varies with X

obtained by nested decomposition, applied to an LP (1.1), whose matrices

-
A, have a dynamic perturbation bounded by 3(mt +1)2 1, and whose matrices
-t
1

Bt have a dynamic perturbation bounded by 3-ke (mt +1 + 1)2 « Further each

convexity row in the nested decomposition has a dynamic perturbation bounded

-tl
by 3- (mt +1)°2 -,

The above assumptions are very restrictive. Less restrictive
assumptions would require &@ 11 to be cast into errors in the data of | ‘
previous stages. Also in order to circumvent having to explicitly introduce ‘1
error into the convexity row, we could force it to be satisfied, by using

a method similar to that used in the GUB algorithm, Dantzig and Van Slyke [1967].

18




4.2, Perturbation theory complements backward error analysis, see Wilkinson
[1965]. We study the following questions:

Define LP]' by perturbing each matrix At by 5At and each Bt
by 58: in (1.1), where 5At or SBt are small fixed (static) pertu;bations.
If the matrices Qt in the decomposition of LP are in consequence perturbed
to Qi we ask: Will each column of Qi be close to the corresponding
colums of Qt?

We make the following strong assumptions:

Assumption 4.2: Every basis @t of S/P - t (see (4.la)) is well-conditioned

and

1B MBI < e (4.20)

Assumption 4.3: The subproblems in the decomposition of LP:l match those in

the decomposition of LP in the following sense: each has the same number

of colums; furthermore, if a basis @ is feasible for SP - t in the nested

t
decomposition of LP, the basis ﬁ;: for the corresponding set of columns
in SP]' - t, in the decomposition of LPl. is also feasible.

Given a basis 6': for subproblem t of LP, let 6": 4 @t + 6@
for some 6@ ¢ be the corresponding basis for the subproblem of LPl. Let
the two feasible solutions be X, and X, + Gxt. respectively.

Thus

eXe = B¢

(ﬁt + 66t)(xt + Gxt) - bt

L il . N




As in Section 3.2,

llﬁxtll c||5@ /1@ |
Tx 1 = e CHGQ ||7||@ D) (4. 20)

where c¢ is defined in Assumption 4.2,

The proposal transmitted to SP - (t+l) is Qp4; = B.x, and to

SP1

- (t+l) 1is = (Bt + GBt)(xt + Gxt). So

1
Q41
6B, x Il + 1B 5%l

1

Iogyy = Gesall [ ToBllx 1B IO @ I/IB 1) I,
Taggl < | BT * @ - <& I7T&E Dy T8 %]

(4.2¢)

1
If we assume that each qt+1(qt+1) in a basis t+l ¢%+1 is
of the same order of magnitude, the left hand side of (4.2c) is also an

t+l ” / ”@t+1

If we therefore let 6@ II/Il@,l <2 ', and note that

estimate of (68

IB.x, Il < IIBNx, ]I so that
C(llﬁﬁt“/"@tll)
1 - c(s ¢ )

underestimates the 2nd term in (4.2c¢), then it is readily seen by induction

that the leading term in the right hand side of (4.2c) contains the factor

20

<
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Al Al N M i N A A




(c2 1). This suggests that the columms of Qt could depart substantially

from the columns of Qt when t is large. Note however that the solution

of LPl will be very close to the solution of LP if the optimal basis is

Again, as in Section 3.2, we have the effect of correlation of errors.

stable.
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5. Reconstruction of the Solution

In Section 2.3 we showed an example of how numerical difficulties
can arise with reconstruction of the solution. In this section we discuss

further difficulties associated with solution reconstruction.

5.1. Returning to the two-stage problem (3.2a) of Section 3.2, suppose now
that computed proposals zi, which are exact solutions of (3.2b), are such
that HEjH is no longer small--e.g. where an unstable algorithm is used

to solve the system of equations Aigg = 21. In this case, the optimal
solution, say (xI,x;) > 0, of a linear programming problem LPl, obtained by
dyﬁamically perturbing (3.2a), may be such that @ no vector x; >0 for
which (51,52) is feasible for LP (3.2a). (Recall that the (dynamic)
perturbation is determined by the pattern of decomposition.) Thus method

I1 of Section 2.2, which solves directly the LP

T
minimize £1%

o b
subject to x = (5.1a)

B by, = A,

could fail. A similar situation could arise when the assumptions of Section 4.2
do not hold, and it 1is not possible to account for computational errors in

the master problem in terms of small (dynamic) perturbations in the original
data Al’ Az, Bl. Note that Method I will succeed, in the sense that it

reconstructs a solution which is feasible for the perturbed LP. Thus in the é

22




presence of numerical error Method II does not adequately reproduce Method I.

Similar arguments also hold for a t stage problem. It is also clear from
these arguments how crucial it is to use a stable implementation of the
simplex method for solving the subproblems.

The second point we would like to make is that loss of feasibility
occurs in a particular way, as we now show. Consider a three-stage problem
of the form (1.1). As summarized in Fig. 1, the true extreme points of the
first stage are denoted by Ei,

The true extreme points of the second stage also assumed

and we assume that the corresponding sub-
problem is bounded.

bounded are

3
A5

x

=2

and we shall assume that these are deliberately perturbed to

~j
A2

i

~2

with Zk'igk = 1V j. The third stage master is then given by {
33
2
I (ols,) =7 ) 3yt Ak by
3 x |
z (5.1b)
A
=1
3
j i
Agyr By 29

23
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Let the optimal solution obtained by solving (5.1b) exactly be

*
A3
2 A
X,
Then by Method I
A; ; 'i'% .
= = o A
X, k| £12
and
* *
X = § ’-‘jl A3

* k%
Note now that (xl, Xy x3) satisfies stage 1 and stage 3
constraints exactly. Only stage 2 constraints are violated. (We have

ok
assumed that Zk A2k = 1, again demonstrating the values of solving sub-

- problems by a GUB type algorithm.) Error has however propogated to stage 3

in the sense that allocation of resources to each stage is affected and
hence so is the computed optimal solution. However feasibility of stage 3

is retained.

5.2. 1In the light of the above two observatipnc. we seek a method of

reconstruction which

(1) uses the same pattern of decomposition as the Phase 1 and 2 procedures,
and avoids numerical difficulties discussed earlier,

(2) 1s able to reconstruct at any point, not just at optimality.

(3) accurately mirrors Method I, but gets around having to save all
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extreme points generated. We accept it to be reasonable that if
a proposal Btgi is saved, then the corresponding zi is also saved.

When Bigi is thrown away, then the corresponding xJ can be dispensed

\ o
s with.
(4) 1is able to utilize a strategy akin to that used in a standard simplex
method, when the optimal values of a set of variables say 5;, are known.
We suggest the following strategy:
Method III:

* *
Step 1: Let At « Am and t<+ m

by

A
i

*
Step 2: At stage t use A  to compute

* *
Ze-1 'g ktjl‘jt-l

(Recall (3) above.)

If (t-1) = 1, then STOP.

Step 3: Omit stage t and all subsequent stages, put upper and lower
bounds on X 10 constraining these variables to be close

to

* *
X_10 and solve the (t-1) stage problem for At-l using

nested decomposition.

 Step 4. t+ (t-1) and GOTO Step 2.

The major difference in Phase 3 between Method III and Method II

is that Method II1 uses the same pattern of decomposition as the one used in

] E Phase 2. The price one pays for this is the added information that must be saved,

as discussed under (3) above in this Section.




6. Conclusions

We conclude by recounting some lessons we have learned from this

g

effort for the implementation of large scale LP algorithms, and some specific

recommendations for nested decomposition.

(a) This effort has benefited substantially from the numerical experiences
of M. Aganagic [1977] on a real life model, ahd we reiterate the
importance of gathering such practical experience. Indeed this 1is one
of the points emphasized in Dantzig and Parikh [1977], who discuss how
the activities of algorithms and model development complement each other.

(b) at the same time it 18 clear that the experimental information gathered
will be suspect, unless the experimental implementation is sound and
is designed to fail gracefully, i.e. it does not have to deal with all
possible cases, but it must at least provide reasonably good clues
when the algorithm encounters difficulties. This is the theme of
Nazareth [1978a), where a set of software aids for developing good
experimental implementations is described.

(c) our research demonstrates that a fairly substantial reformulation of
the nested decomposition algorithm may be necessary before setting
about developing a robust user oriented version, which is capable of
handling a diverse set of LP applications.

(d) because error propagation may be an inherent problem we have been
prompted to look at other decompositions, see Nazareth [1978b].

(e) It is clear that some extremely interesting numerical problems arise
in nested decomposition. Our results are only a small contribution,

and we feel that a more complete error analysis and perturbation theory,

which we now plan to undertake, would be a substantial contribution.
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There is also a definite need for a sound experimental implementation,

in order to carry out further experimentation. This code should, for

example,
(1) use stable factoring and updating techniques as described in Reid [1976].

(11) use the method of reconstruction described in Section 5.

(i11) use the techniques of structured programming, since the data flow
in the algorithm is quite complex. Data flow and numeric consider-
ations should be separated when possible.

(iv) be able to start from an arbitrary feasible (not necessarily basic)
solution, either user supplied or developed from an intermediate
reconstruction.

(v) use a technique similar to that in the GUB algorithm, Dantzig and

————

Van Slyke [1967] with LU factorization of the basis, see Tomlin

(1974], to ensure that convexity rows are closely satisfied.
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