FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO CHARGED-PARTICLE ACCELERATOR, (U)
SEP 78 Y 6 KOMAR, O A GUSEV
FTD-ID(RS)T-1423-78 AD-A066 417 F/G 20/7 UNCLASSIFIED NL OF END DATE FILMED AD A088417 5 - 79 DDC - Shake C.

FOREIGN TECHNOLOGY DIVISION

CHARGED-PARTICLE ACCELERATOR

Ву

Ye. G. Komar and O. A. Gusev

Approved for public release; distribution unlimited.

78 12 26 568

-715	White Section
285	Butt Section [
ва "вроунс	ieo ()
1681111841	16#
JUSTIF ISAT	101
37	ICH/AVAILABILITY COOPS

EDITED TRANSLATION

FTD-ID(RS)T-1423-78 11 September 1978

MICROFICHE NR: 710-78-C-00/234

CHARGED-PARTICLE ACCELERATOR

By: Ye. G. Komar and O. A. Gusev

English pages: 5

Source: USSR Patent Nr. 307743, November 24,

1972, pp. 1-2

Country of Origin: USSR

Translated by: Gale M. Weisenbarger

Requester: FTD/TQTD

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-HAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP.AFB, OHIO.

FTD_ID(RS)T-1423-78

Datell Sept19 78

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
Аа	A a	A, a	Рр	Pp	R, r
Бб	5 6	B, b	Сс	Cc	S, s
Вв	B •	V, v	Тт	T m	T, t
Гг	Γ:	G, g	Уу	Уу	U, u
Дд	Дд	D, d	Фф	• •	F, f
Еe	E .	Ye, ye; E, e*	X ×	X x	Kh, kh
Жж	ж ж	Zh, zh	Цц	4	Ts, ts
3 з	3 ,	Z, z	4 4	4 4	Ch, ch
Ии	Ии	I, i	Шш	Ш ш	Sh, sh
Йй	A a	Ү, у	Щщ	Щщ	Shch, shch
Н н	KK	K, k	Ъъ	3 .	"
ת ונ	ЛА	L, 1	Н ы	H w	Ү, у
19 15	M M	M, m	ЬЬ	b •	1
Н н	Н н	N, n	Ээ	9 ,	Е, е
0 0	0 0	0, 0	Юю	10 n	Yu, yu
Пп	Пп	P, p	Яя	Яя	Ya, ya

^{*}ye initially, after vowels, and after ь, ь; e elsewhere. When written as \ddot{e} in Russian, transliterate as $y\ddot{e}$ or \ddot{e} .

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	English
sin cos tg ctg sec cosec	sin cos tan cot sec csc	sh ch th cth sch	sinh cosh tanh coth sech csch	arc sh arc ch arc th arc cth arc sch arc csch	sinh-1 cosh-1 tanh-1 coth-1 sech-1

Russian	English
rot	curl
1g	log

1423, gw

CHARGED-PARTICLE ACCELERATOR

Ye. G. Komar and O. A. Gusev

A charged-particle accelerator is known in which the path of the team is surrounded by a coil. The voltage on this coil is created through a transformer connection from the primary winding connected with a pulsed power source the operation of which is synchronized with the moments of transition through zero voltage on the preheating cathode.

The beam of accelerated particles leaves the accelerator in the form of sheaves, the energy of individual particles of which in time repeats the shape of the pulse of voltage from the pulsed power source.

The proposed direct-effect accelerator uses the energy of an inductive accumulator for acceleration of the particles, and for focusing, the magnetic field of this accumulator connected by one of the leads to the current receiver at the output of the accelerator and by the other, through the direct-current voltage source, to the cathode of the charged particle source. For improving the focusing of accelerated particles the accumulator is made in the form of a hollow cylindrical sclenoid, the axis of which is combined with the axis of the accelerated beam.

The drawing shows a schematic of the device.

The accelerator corsists of an inductive accumulator 1 solenoid and a source of particles with a preheating cathode 2, a guide electrode 3, a drawing electrode 4, and of a source of drawing voltage 5 and of a current receiver 6.

It is possible to construct an electric accelerator in this form. An ion accelerator differs only in the structure of the ion source and in the polarity of connection of the voltage source.

The accelerator operates in the following manner.

Bollowing triggering of the particle source by electrode 3 the

the voltage of power source 5 and through inertia it passes inside of the sclenoid 1 to the current receiver 6. The voltage source 5 through the beam of particles turns out to be shorted to the winding of the solenoid and the current rises in it.

When the current of the sclencid reaches the assigned value of the current of the beam, the transition process ceases.


Sclencid 1 turns out to be surrounded by a magnetic field with stored energy equal to half of the product of its inductance and the square of the current in the winding. The field inside of the sclene id is directed along the axis and provides focusing of the team. In order to increase the energy of the particles it is sufficient to begin to decrease the value of the current of the beam of particles acting on the guide electrode 3 of the particle source.

With a decrease of the current of particles between the ends of the sclencid a voltage arises which is equal to the product of its inductance and the derivative of the current. This voltage combines with the voltage of the source and brings about supplementary acceleration of the particles. Regulating the rate of change of the current it is possible to change the accelerating voltage. The inductive accumulator can be preliminarily charged from the source and without passage of a beam of particles from the source. For this it is sufficient to place a commutator, a mechanical one, for example, between the cathode of the particle source and the lower lead of the accumulator. After charging of the inductive accumulator it is necessary to pass a beam of particles through the commutator equal to the current in the accumulator, to break the commutator and decreasing the current of the beam, to create a voltage on the accumulator.

Object of Invention

- 1. A charged-particle accelerator containing a particle source, a source of drawing voltage, and an accelerating system is distinguished by the fact that for the purpose of obtaining sheaves of accelerated particles with energy regulated during the pulse the source of the accelerating voltage is made in the form of an inductive accumulator connected by one lead to the current receiver at the output of the accelerator and by another, through a direct-current voltage source, to the cathode of the charged-particle seurce.
- 2. The accelerator described in paragraph 1 is distinguished by the fact that for improving focusing of the accelerated particles the

accumulator is in the fcrm of a hollow cylindrical solenoid, the axis of which is combined with the axis of the accelerated beam.

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGAN	IZATION	MICROFICHE	ORGAN	IZATION	MICROFICHE
A205	DMATC	1	E053	AF/INAKA	1
A210	DMAAC	2	E017	AF/RDXTR-W	ī
B344	DIA/RDS-3C	9	E403	AFSC/INA	1
C043	USAMIIA	1	E404	AEDC	1
C509	BALLISTIC RES LABS	1	E408	AFWL	ī
C510	AIR MOBILITY R&D	1	E410	ADTC	1
	LAB/FIO		E413	ESD	2
C513	PICATINNY ARSENAL	1		FTD	
C535	AVIATION SYS COMD	1		CCN	1
C591	FSTC	5		ASD/FTD/NIIS	5 3
C619	MIA REDSTONE	1		NIA/PHS	1
D008	NISC	1		NIIS	2
H300	USAICE (USAREUR)	1			
P005	DOE	1			
P050	CIA/CRS/ADD/SD	ī			
NAVOR	DSTA (50L)	1			
NASA/		ī			
AFIT/		1			