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SUMMARY

In this report, the problem of reconstructing the power spectral density of a
Gaussian signal process from hardlimited observations taken at Poisson sampling instants
was considered. Hardlimiting the signal represents the most drastic form of amplitude
quantization that is possible — but yet allows meaningful analysis to be performed. The
sampled hardlimited data is represented with only one bit of information which gives a
significant reduction in the amount of storage area needed for retaining the data. Also, the
processing of the data becomes simplified becausg of the simple representation. By
Theorem 1, the power spectral density estimate, #N(D), is shown to be asymptotically un-
biased as the number of observation points approaches infinity. The asymptotic rate of
convergence for the bias (of the estimate) is identical to the rates of convergence for the
cases of Poisson spectral estimation (without hardlimiting) and of periodic spectral estima-
tion (to the aliased spectral density). Furthermore, because the estimate is asymptotically
unbiased, no aliasing of the spectral density occurs in spite of the hardlimiting.

The covariance of the estimate was shown, however, only to be bounded as the
number of observations tends to infinity. Although not indicated by the analysis up to this
point (primarily Theorem 1), the number of hardlimited samples needed for the same
quality of estimate of the spectral density may increase significantly over the number of
samples needed in the case when no hardlimiting is done. The focus of future work will be
to obtain tighter bounds on the covariance of the estimate and to show that these bounds
tend to zero as the number of observations tends to infinity.
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INTRODUCTION

This paper is concerned with the estimation of the spectral density function of a
continuous-time stochastic process from observations taken at discrete instants of time after
the process has been hardlimited. In [1], a continuous-timge estimate using the hardlimited
realization of a stationary, Gaussian stochastic process was shown to be a consistent estimate
of the spectral density function of the original process. Hinich [2] deals with the consistent
estimation of aliased versions of nonbandlimited spectra from hardlimited Gaussian processes.
. Brillinger [3] provides consistent estimates of the cross-spectrum and spectra of stationary

bivariate Gaussian processes from the zeros of the processes. Finally, Masry and Lui [4] and

Masry [5] provide consistent estimates of spectra of continuous-time processes from obser-

vations taken at Poisson sampling instants.

In this paper we consider the problem of estimating the spectral density function of

a Gaussian process — the estimate is based upon hardlimited (+1, ~1 or 0) samples of the

process taken at Poisson sampling instants. The proposed estimate is shown to be asymp-

totically unbiased. For the covariance of the estimate, all but two terms are shown to go to { |

zero and these terms are easily shown to be bounded. Future work includes finding bounds E
; for the rate at which the bias asymptotically goes to zero, along with showing that the |
covariance goes to zero, and the rate at which the covariance tends to zero.

Let X ={X(t), —o < t< w} be a real fourth-order, stationary Gaussian process with
zero mean, correlation function R(7) and spectral density function ¢(\). Define the hard-
limited version of the process X(t) as Y(t) = sgn X(t) where sgn X is equal to 1, -1 or 0
according to X being positive, negative or zero, respectively. Then Y(t) is a fourth-order, zero r
mean, wide-sense stationary process with correlation function [3,6] .

Ry(7) = E[Y(t +7) Y(1)]

= (2/m) Arcsin (R(7)/R(0)). )

Since all amplitude information is lost when the X process is hardlimited we assume that '
R(7) is normalized such that R(0) = 1. i
The following relationships hold:

RO= [ 00 eithan

-00

- -]

Ry®= [ sy eithan @)

-00

and if R(t) eL{ and Ry(t) €L then the inverse relationships of (2) hold




M —————

oo

o(\) = [ R(t) e=itN dt/2n

—=00

oy = [ Ry®eithayn. 3)

—00

Using (1) and (3) and noting that Ry(t) is an even function, the spectral density function can
be written as

o(A) = f sin [ Ry(t)/2] cos tA dt/w. 4)

(o}

The problem that is considered here is to estimate ¢(\) by sampling the hardlimited process
Y(t) at discrete instants of time,

o} e

which are determined by a Poisson point process.
The proposed Poisson finite sample estimate of ¢(A), using N discrete observations of
Y(t) which are taken from a Poisson point process, is

N N-n
$N(7\) = ;15 wp(t,) cos Aty sin ‘2—;1- z Y(ty4n) Y(tk)] ; (5)
n=1 k=1
The {tn} ;:0 are-generated by a Poisson point process on (0,%), i.e.,
t,=0
ty=th—1 toy L S 5 (6a)

where the {an} are independent, identically-distributed (positive) random variables with a
common exponential distribution F(x) =1 - e—PX and B is the average sampling rate. The
process T = {t,} is assumed to be independent of the process X(t). The probability density
function of ty ., ~ty is independent of k and is given by

-1
fn(t)=393(;—9?5r ePBt, t>0. (6b)




The covariance averaging kernel, w(t), is given by

WN(t) =h (M—tN'>

3 . where

3 . oo

| h= [ HOye™Nax
1 e

and HQA) €L is even and integrates to 1. The spectral window, WN(A), is defined by

WN) = My HMp ) 8

where MN < N is such that My — 0 and MN/N = 0 as N = co.

b ehesas e

The primary results of this paper are concerned with the asymptotic properties of
the spectral estimate (5). Theorem 1 establishes that the estimate is asymptotically un-
biased as the number of observations N tends to infinity. Furthermore, under mild con-
ditions of integrability on the correlation function (tR(t) €L ), the asympototic rate of
convergence of the estimate to the true spectral density (of the original nonbandlimited)
signal process is O(1/N), i.e., the bias error tends to zero at the rate of at least 1/N. Asa
consequence of Theorem 1, the estimate Q)N()\) eliminates “‘aliasing’ of the spectral density
(the folding of high frequency power to lower frequencies which occurs with periodic samp-
ling) in defiance to the hardlimiting. We also note that the asymptotic rate of decrease of
the bias is identical to the asymptotic rate of decrease of the bias for Poisson spectral esti-
mation when no hardlimiting occurs, which is, in turn, identical to the rate of decrease of
the bias of continuous time spectral estimation [5]. The covariance of the estimate is
shown, however, only to be bounded as the number of observations tends asymptotically to
infinity. The bounding of the convariance is done in a series of lemmata, Lemma 2 through
Lemma 5. We show that the covariance is (asymptotically) bounded by

-

. 2 s
i Cov [&N(x),aN(w)] =0 (ﬁ f IR(u)Idu) + f R%(u) du
o o




oo 2
+ﬁ(';‘” max [1, b(0)] (/ b(u)du)
48 0

o 2
+<f IRy(u)ldu> + p)P(w)

o

We note that since the covariance of the estimate — at least by the analysis contained in this
report — does not tend to zero, but is only bounded, the question as to whether or not the
estimate is consistent is still open.

THE JOINT DENSITY FUNCTION FOR POISSON SAMPLES
Before stating the main results, we collect together in this section some preliminary
results which will be llglpful in the derivation of the bias and variance of the estimate (5).
We begin by defining Ry(N)(n) as

N-n
Ry = 4N D Yty Yety) %)
k=1

and the estimate (5) becomes
N
N = ?IB' z wi(ty) cos Aty sin [nﬁY(N)(n)/z] . 8)
n=1

Note that ﬁY(N)(n) is not an estimate of Ry(n) since

ERyMNm) = (1--{%) | Ry £t at

o

and as N = oo becomes

e ——




é
a
;

T e

oo
[ ry®wmat,
o
which in general is not equal to Ry(n) but can be considered as an estimate of Ry(t,).
The following identities are easily established (recalling that R(0) = 1) from (1)

sin [wRy(t)/2] = R(t)

2

cos [7Ry(1/2] = [1 ~R2(1)] )

These identities are used later and alsc here to simplify the two term Taylor series expansion
of sin [r Ry(N)(n)/2] about the point 7 Ry(t,)/2

sin [wﬁY(N)(n)/Zl

e 1/2
=R(t,) + A, 7| RyMem) - Ry(tn)] [1 - Rz(tn)] 2 (10)
where |A,| < 1. The Taylor series expansion is used to determine the asymptotic behavior

of the covariance of the spectral density estimate.
Next we borrow a lemma from [4].

Lemma 1: Consider the integrals

[~ -3

dp= [ g0 00 dx kv A
(o]

where g €L and f,, is given by (6b). Then

(a) i d, =8 fg(x)dx<°°
n=1 o

and, if in addition x g(x) eL, then

® ) nd, =8 | a+p0am ax<eo .
n=1 o

The proof is straightforward and given in [4].




The result of the following proposition, the joint density function of the sampling
points, is used in the derivation of the covariance of the estimates (5) and is independently
of interest.

Proposition. Let {tn} be defined by (6a). Then the joint density function of t, and tp4k,
fn,n+k (x,y), is given by

fie(y = x) f,(x) y>x
fn,n+k(x!Y) =
0 y<Xx

forn=1,2,...,andk=1,2,...,where fn(x) is the density function (6b) of t.

Proof. The following two relationships are used in the derivation (6]

fp k(oY) = frak (YIty = x) fr(x) (11a)
kYt =) = 55 (it =) (11b)

where Fp4+k(ylty = x) is the conditional distribution function of tp+k given that ty = x.
From equation (6a), tp+k is given by

thtk = th ¥ Ank
where

n+k-1

Ank= z o .

i=n

Now, by recalling the fact that {ai }are independently, identically distributed
Fretk(Ylty =0 = Bty + Ap c <1ty =X)
= P(An,k <y-X)

= Fk(y - X) ‘

Using (11b), f 4, (YIt, = x) = fi(y - X) and substituting this into (11a) gives the desired result.
Q.E.D.

10 :
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BIAS OF THE ESTIMATOR

In this section we show that the bias of the estimator goes to zero asymptotically as
N — oo, The bias of the estimator (5) is defined as

b [an0V)| =E [By)] - o0 .

The foilowing theorem establishes that the estimator is asymptotically unbiased.

Theorem 1. Let R(t) e Lj. The estimate $j() is an asvmptotically unbiased estimate of
#(A), ie.,

@ b [ay] = o)
uniformly in A as N > o. Furthermore, if t R(t) € L}, then
) b [$NO\)] =0(/N) ,

uniformly in A as N = oo,

Proof. By (10) the estimator becomes equal to
BN = Q(AN) + Q(A,N) (12)

where

N
QAN =gz > Wy(ty) cos Aty R(ty)
n=1

= 1/2
Apw(t,) cos At [RY(N)(n)-RY(tn)] |1 -R2(tn)l i

M=z

QAN =3

n=1

Now taking the expected value of Q(A,N) (with respect to T = {ty} since the Y process
does not appear)

o N
EQAWN =5 [ wy®cosAtR(® D fy(t)dt (13)
o n=1

11




e v,

lim  wy() z f£,(t) =B

since lim wN(t) = h(o) = | and by Lemma [ lim Zf (t) = 8. Also note that

N
N cos Mt ) £, (0] <B - H,
n=]

where Hy = f|H(\)| d\. Therefore, by the Lebesgue dominated convergence theorem

oo N
lim EQAMN=gz [ lm wy® D fyt)coshtR()dt
N—>co o N- n=1

(= -]

=1 fcosxt R(t) dt = ¢(A) . (14)
(0]

To take the expected value of Q7(A,N), the expectation is first taken with respect to the
Y process and then with respect to the T process. Taking the expected value with respect
to Y yields the bound

N
EyQ(N) I <H, (s)

n=1

N-n

1

[‘ﬁ Z RY(tk+n‘tk)] = Ryl(tp)
k=1

/2

since [wn(t)| < Hp and [1 - R2(t)] : < 1. Now taking the expected value of (15) with

respect to T gives

IE Q;(\N)I <H,

N co oo
S i0-8) [ rRyowa- [ Ry®oa
o (¢]

n=

—

H,

N

Mz

n [ Ry®fmadt (16)
o

n=1

12
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and by the Kronecker lemma [6], since
N oo )
lim [ Ry £ dt=p [ Ryt <,
(o]

the expected value of the Q,(A,N) term goes to zero:

IEQy(A,N)| >0asN oo . a7

Therefore, the estimator (5) is asymptotically unbiased and part (a) is established.
To establish part (b), the bias can be written, using (12) through (14), as

bl$N()\)] =b;(,N) +E Qy(\, N)

where bj(A,N) is defined by

by OLN) =5 f wi(®) cos At R(t) 2 £,(t) dt .
n=N+1
Let
| ROt at PR e

then {n €n } is summable by Lemma 1 (b). Hence,

N s

oo

; E IblO\,N)l< Z -—N Enen=%io(l)
and by (16)
|E Qy(A,N)I = O(1/N) .

Therefore,

b[$N(7\)] = O(1/N)

and part (b) is established. Q.E.D.

13




COVARIANCE OF THE ESTIMATOR

The covariance of the estimator (5) is given by

Cov | B0, Be)] = B[ oy - By [ - Eﬁmw)]'.

By replacing E@N(A) with the bias expression, along with noting that the bias is not a
random variable, the covariance becomes

Cov | By, Be)| = E [0 - 60| | Bt~ 6)] - b[dyen)] )] -

L‘ | Since the bias goes to zero asymptotically as N = oo we need only to investigate the
: asymptotic behavior of E[$N(A) — gO\)] [#N(w) — ¢(w)]. By using the two term Taylor
series expansion (10) of sin [nRy(N (n)/2] we have

(

N
E[Bn00 - 60| B - )] =E{ 2L S W) <08 X ty Rity)
n=1

N
= 1/2
t35 S ANWN(ty) cos Aty RY(N)(n)-RY(t,,)] [1-R2(t,,)] 2_s0

n=

It

N
1o S WN(ty) cos ety Rety)
n=]

N
+713 Z By WN(tp,) cos wtp, [ﬁ\gN)(n) —Ry(tn)‘ ll - R2(tn)] l/2'-¢(<~9)
n=]

4
= Z T,(N, w)

i=l1




where

N
Ti(NAW = E|la= S wyty) cos At R(t) - 6(0)
B

% n=1
N
1 i
~ [ﬁ z wn(t,) cos wty R(t,) - Mw)}
n=1 i

N
TN\ =Elss S Agwnty) cosht, [Rm) - Ryt )| [1-R2et| /2
2 28 th Y n th

n=1

N
wi(t,) cos wt, R(t,) - ¢(w)

1
Br

3
3 .

n=1

e e e et s

N
T3(N,A,w)=E ok BN WN(t,) cos wt, ﬁ(N)(n)—Ry( ) 1—R2( ) 172 | '
3 26 Y tn tn @

n=1

N
s 17;17r z wy(t,) cos At, R(tn)—¢(7\)’ g

n=1

N

® 1/2

T4(N,\,w)=E {ﬁ S ANwN(ty) cos M [R‘YN’ (n)—Ry(tn)J [1 -Rz(tn)] : ,
n=1

N
l,}a S By wn(ty) cos oty [ﬁ‘YN) ) —Ry(tn)] [n -Rz(tn)] " zl :
n=1

The asymptotic behavior of each T;j(N, X, w) will be obtained in a series of lemmata. We
begin with the To(N,\,w) and T3(N,\,w) terms.

Lemma 2. Let R(t) eL| and Ry(t) eLj. Then T7(N,\,w) goes to zero asymptotically as

N goes to infinity.
Proof. The second term of the product in T2(N, A, w) is (recall (12)) equal to

#(w) QAN)
15 -1

— it — “ A g
B o e




R
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and by (17) goes to zero asymptotically as N - o, The first term of the product is, after
taking the expectation, equal to

AN (- -] (- -]
‘Tz B2 oj 0[ WN(s) wi(t) cos As cos wt Ry(s) [1 - Rz(s)] R(t)

ﬁ fn’k(s,t) ds dt

u[\/]z
nMZ

where fn,k(s,t) is given by the Proposition. This term is bounded by

o oo N
25 [ [ ry® R(t)§ D 2 (s, ds dt .
o o n=1

Consider the sum

S(Ns,t) = z z £ k(D)

n=1 k=

N-1 N-n N

2 Z (o ntk @D + g (691 + z fp(min{s,t})
n=1 k=1

n=]

for the case s<t. Then

N-1 N-n
S(Ns,t) = z z fi(t=s) f(s) + z ()
n=1 k=1

N-1 N-1 N
< Z £.(s) z fi(t=s) + zfn(s)
n=1 k=1 n=1

which converges to (1 +8) as N = o0 and by the Kronecker lemma [6]

16
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N N
% z z n fn’k(s,t)» OasN—>oo |
n=1 k=1

The same argument holds for t <s and, therefore, by the Lebesgue dominated convergence
theorem

= N N
[ [ ryorOg S D nfyusndsdt=0
o n=1 k=l

o

as N = oo, Hence

=7

TH(N,A, w) > OasN—>oo . Q.E.D.

Lemma 3. Let R(t) eL| and Ry(t) L. Then

T3(N,\, @) > 0

as N »> oo,

The proof of Lemma 3 is identical to the proof of Lemma 2. !
By multiplying the factors of Ti(N,A, w) we obtain | |

4 | |

T (N, w) = 2 Ty {NAw) i
i=1 i
where
N N
Ty (AW = —5 BJ ) wiylty) cos My Rity) > wiylty) cos oty Rity)
i Bm : g
n= =

N
Ty N w) = SR E S wN(ty) cos wty Rity)

n=1

Ty 30N\ w) = Ty (N, w,\)

Ty 4N @) = 600) $(w) -




We note that TI’Z(N,R, w) =-¢(A) * Qj(w,N) and by the proof of Theorem 1

im Ty oA w) = ~6(0) $(w) (18)

N > oo
The term T]’I(N, A, w) is divided into three sums:

3
T INA @ = > T) g (NAw)

i=1

where

N
1 2 2
T N,A,w)=——=E A t R
1,1,1INA @) (6:)2 E wN(ty) cos Aty cos wt, R4(ty)

n=1]
N
L
Ty, NAw)=——E Z 2 wi(tn) WN(ty) cos Aty cos wty R(ty) R(ty)
it s 1 k>
n= n

N
T1’1,3(N,)\,w)=rﬁ-;7-5 3 D wltn) wiylty) cos My, cos wt R(ty) Rety) -
n=1 k<n

The Ty 1,1 term will be disposed of first. By taking the expected value (with respect only
to the{ty })

N oo
1 2 2
Ty 1 (N w) = z w2 (t) cos At cos wt R2(t) fi (t) dt
o (6m)? of N .
k=1
and by the Lebesgue dominated convergence theorem
- -]
, L | 2
lim Tl,l’l(N,)\,w)—-— cos At cos wt R<(t) dt . (19)
0

N = o0 3'2

We note that Tl,l,2 and Tl,1,3 can be rewritten as

18
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e —— A w

N-1 N-n
1
Ty,1, 2N @)= 25 B Z Z WN(t) WN(tn+s) €08 Aty cos Wiy R(ty)R(ty4)
n=1 s=1 |
. = (;}r)-f 6[ of w(u) w(v) cos Au cos wv R(u) R(v) |
N~1 N-n
; 2 z fn m+s(u,v) du dv
=1 s=1
and
Ty 1 3(NAW) =5:_)2- of oj wi(u) WN(Y) cos hu cos wv R(u) R(Y)
N-1 N-n
. z fn+s,n(“’v) dudv .
=] s=1 ;J

Now (with a change of variables in Tl,l,l of u=v and v=u)

l T l 5 l ’2(N1k’w) + Tl ,l ,3(N,x,w) I

[ f wN(u) wN(v) R(u) R(v) (cos Au cos wv + cos Av cos wu)
o u

N-1 N-n

: 2 Z f(v=u) f,(u) dv du

n=1 s=1

3 - N-1 50 N-1
< f I R(u) | z fa(w f | R(V) | 2 f,(v=u) dv du
s=1

o n-1 u

co 2
<(s8 f | R(u) | du

o

(20)

19




We, therefore, have the following lemma:

Lemma 4. Let R(t) eL N L2- Then

2 oo
ITl(N,)\,w)I<(B f lR(u)ldu) i R2(u) du + 6(\) $(w).

o o
The proof of Lemma 4 follows (18) through (20).
The final term that we investigate is T4(N,A,w). Before stating the derivation of the

asymptotic behavoir of T4, the following assumption on the fourth order moment of the
output, hardlimited signal is made.

Assumption 1: The fourth order moment function of the output signal,
N
My(tl,t2,t3) =E {Y(t) Y(t“"’tl) Y(t+t2) Y(t+t3)} .

satisfies

3 3

| My(tp by tg) | < n by(tp) < n b(t;)

i=1 i=1

where b;(t) €L and b(t) eL; and b;,b are continuous, even, nonnegative functions which are
nonincreasing over [0,0). In addition, the function b(t) satisfies the inequality

b(ty) < b(ty) <b(t; +ty) 1)
for t; and t, positive.

We first note that the ti’s in the above assumption are real numbers and not the random
variables from the Poisson point process T. Secondly, the inequality (and other conditions)
for the function b(t) in (21) is satisfied for the exponential function exp (-alt|).

Lemma 5. Let Ry(t) €L;. Then

LG vl £ Bboad” +f T imetaion *leow.
IT4NA ) <= 2 {max [L6@)] ([ bwau) + [ 1Ry
o o

The proof of Lemma 5 comprises Appendix A.




We note that by the above analysis, i.e., by combining the results of Lemmata 2
through 5, the estimate (5) is not a consistent estimate of the true spectral density ¢(A). f
In fact, the covariance of the estimate is (asymptotically) bounded by f

caldaid 2w

(- -] 2 o0
Cov| BN Bn(w) =0 |8 [ IR)Id R2(u) d
l‘ ov{(bN( ¢Nw] [( of u u) + 6[ u) du

s 2
B(1+)
+'757_ max [ 1,b(0)] ( 6[ b(u)du)

B e L

i 2 2 :
4 + ([ Iky(u)IdU) +¢(x)¢(w)J.
| (o]

R ————

The objective of future work is to obtain tighter bounds and show that these new bounds
| go to zero asymptotically as N tends to infinity. Specifically, tighter asymptotic bounds
3 need to be found for the two terms T{(N,A,w) and T4’1(N,7\,w).
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CONCLUSIONS

The problem of reconstructing the power spectral density of a Gaussian signal
process from hardlimited observations taken at Poisson sampling instants was considered.
The estimate of the power spectral density of the original (not hardlimited) signal process
is shown to be asymptotically unbiased as the number of observation points approaches
infinity. The important consequences of the asymptotically unbiased estimator are as
follows.

1. No aliasing of the spectral density of the (original) signal process occurs in spite
of hardlimiting the amplitude of the signal.

2. The asymptotic rate of convergence of the bias is identical to the rates of con-
vergence for the cases of (regular) Poisson spectral estimation and of periodic spectral
estimation (that is, the convergence of the periodic estimate to the aliased spectral density).
In particular, under mild integrability conditions on the power spectral density, the rate of
convergence, for the bias, will be 0(1/N) where N is the number of observations.

The covariance of the estimate was shown, however, only to be bounded as the
number of observations tends to infinity. Therefore, the crucial task that remains to be
completed is to show that variance of the estimate tends asymptotically to zero. Upon the
completion of bounding the variance of the estimate by a factor which tends to zero as the
number of observations tends to infinity, the estimate of the spectral density will then be
known to be mean-square consistent — a fact that will increase the confidence of the esti-
mate. This task, the bounding of the variance, will be the focus of future work.

In addition to completing the proof of showing that the estimate is mean-square
consistent, future work should include simulation results, for finite sample size N, that
would indicate the feasibility of implementing Poisson spectral estimation using hardlimited
samples. Furthermore, since each hardlimited sample requires only one bit of information
for the purpose of storage or transmission, a trade-off study between the decrease in the
required representation (of one bit per sample) which decreases storage area and the
(possible) increase in the number of samples for good spectral estimates should be
conducted.
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APPENDIX A
Lemma S (restated here for the convenience of the reader) and its proof comprise the infor-
mation in this appendix.

Lemma 5. Let Ry(t) eLl. Then

g 5 R o 2
|T4(N,>\,w)|<&;ﬁ) max [1,b(0)‘< f b(u) du) +< f IRY(u)Idu) +0(1).
43 0 (o)

Proof. To begin the analysis of T4 (N,A,w), the expected value with respect to the Y process
will be taken first — only the relevant terms (with respect to Y) appear.

By [R{V@ - Ryt | [R P00 - Ry(ty)|

N-n N-k

1
=N_22 2 My (tj = tg to+n = to: i — to)
=1 j=1

N-k

- Ry(tp)/N 2 Ry(tg4k = tg)
e=1

N-n

- Ry(t))/N Z Ry(to+n ~ t)
g=1

+ Ry(t,) Ry(ty)

and T4(N,7\,w) becomes
TaNAW) = [Tq j(NAw) + Ty J0NAw)| /462
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where N N

T4, (NAw) =Ep 2 2 ANBNWN(ty) wN(ty) cos At cos wiy
n=1 k=1

.Il —Rz(tn)] 1/2 [1 —Rz(tk)l o
N-n N-k

1 i
N Y71 2 2. My (tj = to, to4m = to, tisy — to) :
=1 j=1

N-k

- Ry(tn)/N C z RY(tQ'H( - tQ)]
=1

N N

T4’2(N,)\,w) = ET z Z ANBN wN(tn) wN(tk) cos A t,, cos wty
n=1 k=1

|1 = Rz(tn), e ,1 - Rz(tk)J /2

N-n
| Ryt Ry - Ryt - D RY(tkm-tQ)]
e=1

The term T4,2(N,)\,w) is now considered and becomes

N N
T4 2(N A w) z Z f wN(u) wN(v) cos AU cos wv
= = 0

1/2 1/2

1-R2w)] " 1-R2v))

N-n
+ [Ryw Ry - RywIN - Y Ry f j(wv) du dv
e=1

N N
ANB Z Zl f / w(u) wn(V) cos Au cos wv

o (o}

11 =R2u)] s §! -Rz(v)l Ry(u) Ry(v) n f, y(u,v) dudv . l
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We recall from the proof of Lemma 2 that

N N
2 2 G
n=1 k=1

converges as N tends to infinity, and hence, by the Kronecker lemma [6]

: N N
% z n z f x(LV) > 0 as N > oo
P n=1 k=1
and by the Lebesgue dominated convergence theorem

oo oo

N N
IT4 (N W) < f f Ry(u) Ry(V) % z n 2 fp k(uv) du dv
o 0 n=l k=

-+ 0asN—>oo .

We now consider T4 l(N,)\,w). The sum over the indices £ and j is divided into
three regions g

Ry ={ig: e<if

E | R%={j,Q: i<e<i+k}
R; ={j,2: j+k<2}

In Ry, tiyy = tg = tj4 — t; = 0 and, therefore,
b4 tg) < bltjyy ~ 1) .

Also note, that in R

b(tj - tQ) <b(0) .

In the region R, by Assumption |

b(tQ - tj) b(tj"'k - tg) < b(tj"'k - tj) 2

(A-1a)

(A-1b)

(A-2)
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Finally, in the region R3, tg- tj 2 ti+k —tj >0, and the following inequalities hold
b(tj - tQ) < b(tjﬂ( - tJ) (A-3a)
b(tj4x — tg) < b(0) . (A-3b)

By Assumption I and the inequalities (A-1) through (A-3) T4,1 (N,A\,w) becomes bounded by

N i £ 3
ITq (N W)l < 2
S n=1 k=1 of o[

wN(u) wN(v)

[ L [zz b(0) b(u) b¥) + ZZ b b(v) + TT b(0) b(u) b(v)]
N
- R Ba

+|Ry(u) Ry®) | (1 ‘Tlff)] £ (uv) du dv . (A-4)

At this point we assume a specific covariance averaging kemel is given — namely the
Dirichlet spectral window, which has as the corresponding covariance averaging kernel

1 It < My
wy(t) = h(t/MN) =
0 otherwise .
Thus, (A-4) is bounded by
My My

IT4 (N W) < _z 2 : f f’

n=1 k=1 (¢} o

-n N-k
[T 1| max [1,b(0)] b(u) b(v)
L=1 j= l

+|Ry(w) Ry()| (1 "rl'fr‘) £y (wv) du dv

N
= z 2 f j‘ '(““‘)N*"" max [1,b(0)] b(u) b(v)
n=1 k=1 (4]

+|Ry(w) Ry | (1 -%) £ k(UY) du dv .
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Now, since ZZ fn,k(u,v) < B(1 + ), by the Lebesgue dominated convergence theorem

MN My
(- -]

f f max [1,b(0)] b(u) b(v) z Z £ 1U¥) du dv
o

o n=1 k=1
2

<p(1+p)max [1,b(0)] - ( fb(u)du) 2
0

Next,
My My
o0

| max 11,600 b(w) bev) Y D> mkp wvdude
6 n=1 k=l

0\58

My [ @ .
<B(1+) max [1,b0)) N ( [b(u)du)
o

For the third term
My My

co oo

[ [ max(1,60)1 b bev) S %"2- k() du dv
o o n=1 k=l

)2 (job(u)du)

2

z|zz

<B(1+p)max [1,b(0)] (

Finally,
MN My
©o ©o k
f f Ry(u) Ry(v) z (l -ﬁ) fp k(u,v) du dv
o o n=1 k=l

- 2
<B(1+p) (f RY(u)du)

o

and the lemma follows. Q.E.D. 28
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