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SUMMARY

In this report , the problem of reconstructing the power spectral density of a
Gaussian signal process from hardlimited observations taken at Poisson sampling instants
was considered. Hard limiting the signal represents the most drastic form of amplitude
quantization that is possible — but yet allows meaningful analysis to be performed. The
sampled hardlimited data is represented with only one bit of information which gives a
significan t reduction in the amount of storage area needed for retaining the data. Also, the
processing of the data becomes simplified because of the simple representation. By
Theorem 1, the power spectral density estimate, ~N(X), is shown to be asymptotically un-
biased as the number of observation points approaches infmity. The asymptotic rate of
convergence for the bias (of the estimate) is identical to the rates of convergence for the
cases of Poisson spectral estimation (without hardlimiting) and of periodic spectral estima-
tion (to the aliased spectral density). Furthermore , because the estimate is asymptotically
unbiased, no aliasing of the spectral density occurs in spite of the hardlizniting.

The covar1~ ice of the estimate was shown, however, only to be bounded as the
number of observations tends to infinity. Although not indicated by the analysis up to this
point (primarily Theorem 1), the number of hardlimited samples needed for the same
quality of estimate of the spectral density may increase significantly over the n umber of
samples needed in the case when no hardlimiting is done. The focus of future work will be
to obtain tighter bounds on the covariance of the estimate and to show that these bounds
tend to zero as the number of observations tends to infinity.

Ins .*I~~.,
p 1

Ivc a
U 

,
~

- 

I 

-- -“- - rn —~~~~~~~~~~~ ---—. _ _  _ _  _ _



CONTENTS

INTRODUCTION.. - page 5

- 
THE JOINT DENSITY FUNCTION FOR POISSON SAMPLES . . . 8
BIAS OF THE ESTIMATOR... 11

CO VARIANCE OF THE ESTIMATOR.. .14

CONCLUSIONS . . . 2 2

REFERENCES.. .  23 
.

APPENDIXA . . . 24

!

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _



-. . ~~~~~~~~~~~~~~~~~~~~~~~~~

INTRODUCTION

This paper is concerned with the estimation of the spectral density function of a
continuous-time stochastic process from observations taken at discrete instants of time after
the process has been hardlimited. In [1],  a continuous-tin~e estimate using the hardlimited
realization of a stationary , Gaussian stochastic process was shown to be a consistent estimate
of the spectral density function of the original process. Hinich [2) deals with the consistent
estimation of aliased versions of nonbandlimited spectra from hardlimited Gaussian processes.
Brillinger [31 provides consistent estimates of the cross-spectrum and spectra of stationary
bivariate Gaussian processes from the zeros of the processes. Finally, Masry and Lui [4] and
Masry [ 5 ]  provide consistent estimates of spectra of continuous-time processes from obser-
vations taken at Poisson sampling instants.

In this paper we consider the problem of estimating the spectral density function of - -

a Gaussian process — the estimate is based upon hardlimited (+1 , —.1 or 0) samples of the
process taken at Poisson sampling instants. The proposed estimate is shown to be asymp-
totically unbiased. For the covariance of the estimate, all but two terms are shown to go to
zero and these terms are easily shown to be bounded. Future work includes finding bounds
for the rate at which the bias asymptotically goes to zero, along with showing that the
covanance goes to zero , and the rate at which the covariance tends to zero.

Let X ~~X(t), —00 < t <oo } be a real fourth-order , stationary Gaussian process with
zero mean , correlation function R(r) and spectral density function ~(X). Define the hard-
limited version of the process X(t) as Y(t)  = sgn X(t) where sgn X is equal to 1, — l or 0
according to X being positive , negative or zero , respectively. Then Y(t) is a fourth-order , zero
mean , wide-sense stationary process with correlation function [3,61

R~ (r) = E[Y(t + r) Y(t) 1

= (2/ir ) Arcsin (R(r) / R (0)) .  ( I )

Since all amplitude information is lost when the X process is hardlimited we assume that
Rfr) is normalized such that R(0) = 1.

The following relationships hold:

R(t) = f ~(X)  ~ 1t~t dX

Ry(t) f#y(X) eltX dX (2)

and if R(t) eL 1 and Ry(t) eL 1 then the inverse relationships of (2) hold

5
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= f R(t) e~~tX dt/2ir

•y(A) = f Ry(t)e~~~ dt/2ir - (3)

Using (I) and (3) and noting that Ry(t) is an even function , the spectral density function can
be written as

• 
~(X)  = f sin [ir Ry(t)/2 1 cos tX dt/7r . (4)

The problem that is considered here is to estimate 0(X) by sampling the hardlisnited process
Y(t) at discrete instan ts of time,

It i N
m i  n=i~

which are determined by a Poisson point process.
The proposed Poisson finite sample estimate of 0(X), using N discrete observations of

Y(t) which are taken from a Poisson po int process, is

4 
i~~l 

C05 Xt~ 5~fl 
~~~ 

Y(tk+n ) Y(tk)j - (5)

The {t~} ~ are-genera ted by a Poisson point process on (0,oe), i.e.,

to =0

= t~_ 1 + n = 1, 2, 3, . . .  (6a)

where the a~ } are independent, identically-distributed (positive) random variables with a
common exponential distribution F(x) = I — ~~~ and ~ is the average sampling rate. The
process I = ~t~} is assumed to be independent of the process X(t). The probability density
function of tk.f~ —tk is independent of k and is given by

fn(t) = P (n—I )!  e~~t , t ~ 0. (6b)

6
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The covanance averaging kernel , WN(t), is given by

WN(t) h ( ~j _ )

where

h(t) = f H(X) eitX dX

and H(X) eL 1 is even and integrates to 1. The spectral window, WN(X), is defin ed by

WN(X) = MN H(MN X)

where MN <N is such that MN ~ oo and MN/N ~ 0 as N ~ Oo

The primary results of this paper are concerned with the asymptotic properties of
the spectral estimate (5). Theorem I establishes that the estimate is asymptotically un-
biased as the number of observations N tends to infinity. Furthermore , under mild con-
ditions of integrability on the correlation function (tR(t) eL 1), the asympototic rate of
convergence of the estimate to the true spectral density (of the original nonbandlimited)
signal process is O(IfN), i.e., the bias error tends to zero at the rate of at least i/N. As a
consequence of Theorem I , the estimate 3N(X) eliminates “aliasing” of the spectral density I :(the folding of high frequency power to lower frequencies which occurs with periodic samp-
ling) in defiance to the hard limiting. We also note that the asymptotic rate of decrease of
the bias is iden tical to the asymptotic rat e of decrease of the bias for Poisson spectral est i-
mation when no hard limiting occurs, which is, in turn , identical to the rate of decrease of
the bias of continuous time spectral estimation [5 1. The covariance of the estimate is
shown , however , only to be bounded as the number of observations tends asymptotically to
infinity .The bounding of the convariance is done in a series of lemmata , Lemma 2 through
Lemma 5. We show that the covariance is (asymptotically) bounded by

Coy [N (X)~ 3~(~O] = ~ [(13 J IR(u) I du) + f  R 2(u) du

4
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+ [max [1 , ~~0) j 
( 

f  ~~u) du)

+ (I  i Ry(u) I du 
2 j +

We note that since the covanance of the estimate — at least by the analysis contained in this
report — does not tend to zero , but is only bounded , the question as to whether or not the
estimate is consistent is still open.

THE JOINT DENSITY FUNCTION FOR POISSON SAMPLES

Before stating the main results, we collect together in this section some preliminary
results which will be helpful in the derivation of the bias and variance of the estimate (5) .
We begin by defming RyU’O(n) as

N-n
= (1/N) ~~ Y(tkl.fl ) Y(tk) (7)

k= 1

and the estimate (5) becomes

N

~~~A) = 

~~~~ ~~ 
wN(tfl ) cos Xt~ sin [,r~ y(?4)(n)/2 1 - (8)

Note that ~~~(N)(~) is not an estimate of Ry(n) since

E~~y~~~(n) = (1 
_ .
~

) f Ry(t) f~(t) dt

and as N -~ 00 becomes

8 
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- / Ry(t) f~(t) dt

• 
- 

which in general is not equal to Ry(n) but can be considered as an estimate of Ry(t~).
The following identities are easily established (recalling that R(0) = 1) from (1)

sin [~rR y(t)/2 1 = R(t)

cos [~r R y(t)/2 1 = [I — R2(t)) 1/2 (9)

These identities are used later and also here to simplify the two term Taylor series expansion
of sin [ir Ry(N)(n)/2 1 about the point irR y(t~)/2

• sin [ir~~y~~~(n)/2 1

= R(t~) + (N)~~ - Ry(tn)1 ii - R2(tfl )I 
1/2

/2 (IQ)

where IAn I ~ I . The Taylor series expansion is used to determine the asymptotic behavior
• of the covariance of the spectral density estimate .

Next we borrow a lemma from [4].

Lemma 1: Consider the integrals

dn J g(x) fn(X) dx , = 1 , 2, . . .

• where g eL 1 and f~ is given by (6b). Then

(a) d~~~P f g ( x) dx<oo

and , if in addition x g(x) eL 1, then

(b) ~~~n d ~~~I3 f ( 1 + i 3 x )g(x) dx< 0o .

The proof is straightforward and given in [41 .

9
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The result of the following proposition , the joint density function of the sampling
points, is used in the derivation of the covariance of the estimates (5) and is independently
of interest .

Proposition- Let ~t~ } be defined by (6a). Then the joint density function of t~ and tn+k ,
1n,n+k (x ,y), is given by

fk(y — x) fn(x) y > x
fn ,n+k(x ,y) =

0 y~~ x

for n = 1, 2, .  - ., and k = 1, 2, . . .  , where f~(x) is the density function (6b) of t~.

Proof. The following two relationships are used in the derivation [6]

= f~+~ (yI t fl = x) f~(x) (1 Ia)

~~~~~~~~~~~~~~ Fn+k (y l tn x) ( l i b )

where Fn+k(ylt n = x) is the conditional distribution function of tn+k given that tn = X.

From equation (6a), tn+k is given by

tn+k tn +A n ,k

where

n+k—l
An ,k a1 - 

—

i=n

Now , by recalling the fact that a~ are independently, identically distributed

Fn+k (yt tn x ) 1 ) ( t An ,k < Y I tn~~~

- • = P(A~,~~~ y — x)

F~(y — x) -

Using ( 1 Ib), fn+k (Yl tn = x) = ~k (Y — x) and substituting this into (Ha) gives the desired result.
Q.E.D.

10 

______________________________________ 

~~~~•L~



BIAS OF THE ESTIMATOR

In this section we show that the bias of the estimator goes to zero asymptotically as
N —~~ oo. The bias of the estimator (5) is defined as

• b = E [6~ (X)J — 0(X) -

The following theorem establishes that the estimator is asymptotically unbiased.

Theorem 1. Let R(t) eL 1. The estimate Ø14(X) is an asymptotically unbiased estimate of
0(X), i.e.,

(a) b 1~ NO”)] = o(1)

uniformly in A as N ~~~ 0o• Furthermore , if t R(t) e L 1, then

(b) b = 0(1/N) ,

uniformly in X as N -~~ 00

Proof. By (10) the estimator becomes equal to

= Q1(X ,N) + Q2(X,N) (12)

where
J

N
Q1(X ,N)~~~~ ~~~ WN(tn) CO 5Xt n R(tn )

N
Q2(X,N) = 

~~ 

Afl wN (tfl ) cos X t~ ~~~(N)(~) — Ry(tn)~ f t — R2(tn )I 
1/2 

-

Now taking the expected value of Q1(X ,N) (with respect to T = ~tn} since the Y process
does not appear)

E Q1(X,N) = f WN(t) C05 Xt R(t) ~~ fn (t) dt (13)
0 n l

I I

- •— - - —.-- - 
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-

_ ___  _ _f l _~-

_ _ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _



‘~~r~~ -~~~~~~~~~~~~~~- — ~~~~~~~~~~~~~ ----,-~~.---~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~

and

hm WN(t) f0(t)~~~N-+ oo =

since lim wN(t) = h(o) = 1 and by Lemma I lim l f n(t) = 13. Also note that

N
IwN(t) cos Xt f~(t) I ~~j3 - Ha

where Ha = I I H(X) I dA. Therefore, by the Lebesgue dominated convergence theorem

00 N
lim E Q1(X ,N) = 

~~ 
f lim wN(t) ~~ f,~(t) cos Xt R(t) dt

N~~ °° o N~~~OO n 1

00

= 
~~~

- f cos Xt R(t) dt = 0(X) - (14)

To take the expected value of Q2(X,N), the expectation is firs t taken with respect to the
- j Y process and then with respect to the I process. Taking the expected value with respect

to Y yields the bound

N N-n
IEyQ2(X ,N) I ~ Ha Ry(tk+n — t ic)j — Ry(tn) (15)

since IWN(t) I ~~Ha and [ 1 —  R2(t)] “2 
~ 1. Now taking the expected value of (15) with

respect to I gives

IE Q2 (X ,N)I
~~

H
aI ~~~ 1(

1 
*) 

f R y(t) f ~(t) dt _ I R y(t) fn(t) dt
’j I

N 00

= 

~ 
n f Ry(t) f~(t) dt (16)
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and by the Kronecker lemma [61, since

lim 
~~ 

f Ry(t) fn(t) dt = 13 f Ry(t) dt <00 ,

n 1  0 0

the expected value of the Q2(X~N) term goes to zero :

IEQ2 (X ,N) I -~- 0 a s N - - o o . (17)

- 

- Therefore, the estimator (5) is asymptotically unbiased and part (a) is established.
To establish part (b), the bias can be written, using (12) through (14), as

bI~~~
(A)1 = b 1(A ,N ) + E Q 2 (A , N)

where b 1 (X ,N) is defined by

b1(X ,N) = 

~~ 
f wN(t) cos Xt R(t) ~~ f~(t) dt -

• ° n N+ l

Let

e~ = f I R(t) I fn(t) dt = 1, 2, . . .  
•

1
then { n en } is summable by Lemma I (b). Hence ,

F 

-

~ Ib 1(~,N)I~~~~ 
~~~~~~~~~~~ 

~~~n e n~1~
o( 1)

and by( l6)

IEQ 2 (X ,N) 1 0(l/N) . L
Therefore,

b [~~~(X) 1 = O(l/N)

and part (b) is established. Q.E.D.

t
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CO VARIANCE OF THE ESTIMATOR

The covariance of the estimator (5)  is given by

Coy [~~~(X), 3N (w)~ EJ 1~~4(X) — E~~ (X)J ~~j (w) — E~N(w)JJ .

By replacing E~ N(X) with the bias expression, along with noting that the bias is not a
random variable , the covariance becomes

Coy 
I~~

(X),3N(w) 1 = E [6N(X) — 0(X)J [3~(w) — o(w)J — bI3~(X)1 b ~~~~ -

Since the bias goes to zero asymptotically as N -~~ 
oo we need only to investigate the

asymptotic behavior of E E6N~ L) — 0(X)] [~ N(w) — 0(w)] . By using the two term Taylor
series expansion (10) of sin [irR ycN)(n)/2] we have

H N
— EI~~j (X) — 0(X)J I~(w) — 0(w)] = E ~~ wN(tn) cos X t~ R(tn)

n 1

+ ~~~~~ wN(~~) COS Xt n[~~y~~ (n) - Ry(tn )J [I _ R 2(~~)] 
l/2 0(X)

}

- 
~~ WN(tfl ) cos Wt n R(tn)

• n l

+ ~~ ~~ BN WN(~~) ~~ wt0[~~$N)(n) - Ry(~~)J [l R2(~~)] 
1/2 - 0(w)

j 

- -

= 
~~ T~(N,X ,w)

i
j

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

- -  
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where

T1(N,X ,w) = 
E[~~ 

~~ 

wN(t fl ) cos Xt~ R(t~) — 0(X)]

• ~~ w~.4(t~) cos wt~ R(t~)

N
1 --(N ) 1/2T2(N,X ,w) = E ANw N(t n) COS Xt~ [R~ (ii) — RY(tn)] [i R2(tn)]

I n l  
WN (tn ) COS Wt n R(t~) —

T3(N,X ,w) = E 

n l  

BN wN(tn ) COS wt
n[ ~~1~

0(n) _ R Y(t n)J [1 R2(tn )} 
1/

2)

N
• 

~~~ wN(t n) COS Xt n R(t~) — 0(X)
n l

N
1 —(N) 11 11/2T4(N ,X ,w) = E 

~~ 

AN wN(tn) COS Xt~ R~ (n) RY(tn )j [I — R2(t0)J

•j .
~ ~~~BN wN(tn ) cos wt~ {~~i~’(n _ R y(c~)} {i 

_R 2
c~)} 

1/2

) 
-

The asymptotic behavior of each T1(N, A , w) will be obtained in a series of lemmata. We
• begin with the T2(N ,X ,w) and T3(N ,X ,w) terms.

Lemma 2. Let R(t) eL 1 and Ry(t) eL 1. Then T2(N ,X ,w) goes to zero asymptotically as
N goes to infinity.
Proof. The second term of the product in T2(N ,A ,w) is (recall (12)) equal to

0(w) Q2(A ,N)

15
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1
and by (17) goes to zero asymptotically as N -~~ oo. The first term of the product is, aftertaking the expectation, equal to

00 00

2~
2,r f f wN (s) WN(t) cos As cos wt Ry(s) [1 — R2(s)J R( t)

N N
~~~ fn ,k(s,t) ds dt

n 1  k=l

where ffl k(s,t) is given by the Proposition. This term is bounded by

2$2,r I f 
Ry~s) R(t) n fn ,k(s,t) ds dt -

Consider the sum

N N
S(N,s,t) = ~~ ~ fn ,k(s,t)

n l  k= l

= 
~~ l 

~~ Ifn ,n+k(s,t ) + f n ,n+k(t ,s)1 + 
~~~ 

f~(min{s,t~ )
n 1  k l  n 1

for the case s~ t. Then
- - 

N-I N-n N
S(N~s,t) = ~~ ~~(t—~) 

~~~ 
+ > f0(s)

n l  k= 1 n 1

N-I N-i N
~~ 

~~~ ~~ fk(t—S) + ~~~f~(s)

n l  k 1  n=l

which converges to 13(1 +13) as N -~ oo and by the Kronecker lemma [61

________ ___ - 
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n fn,k(5,t) —
~~ 0 as N-+ 00 -

n l  k 1

The same argument holds for t <s and, therefore, by the Lebesgue dominated convergence
theorem

• 

J J 
Ry(s) R(t) 

n l  k=l 

fn ,k(s,t) ds dt -÷ 0

as N-4 00. Hence

T2(N ,X,w) -~ 0 as N -~ oo . Q.E.D.

Lemma 3. Let R(t) eL 1 and Ry(t) e L 1 - Then

T3(N,X,w)~~ O

as N -~co.

The proof of Lemma 3 is identical to the proof of Lemma 2.
By multiplying the factors of T1(N,X,w) we obtain

4
• 11 (N, X, w) = ~~ 11 ,1(N, X, w)

i=1

where

T1,1(N,X,w) = 2 E > wN(tfl ) cos At~ R(t~) - 
~~ WN (tn ) cos wt~ R(tn )

(j3,r)
n l  n l

T~ ,2(N, X, w) = 
) ~~ E f ~~~ 

WN(tn ) cos wt,~ R(tfl )}

=T13(N,X,w) T1 2 (N,w,X)

T1 ,4(N, A, w) = 0 ( X)  0 (w) -

17
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We note that T1,2(N ,X,w) = -4(X) - Q1(w ,N) and by the proof of Theorem I

lim T 1,2(N ,X,w) = -9(X) 0 (w)  (18)
N-*oo

The term T 1,1(N,A,w) is divided into three sums :

T 1,1(N ,~~w)= ~~~T j ,1~ (N,X,w)

L 

i=l

where

T1 1 1 (N,X ,w) = 2 E 

~~~ 

w~~(~~) cos At~ cos wt~ R2(~~)

T~ ,1,2(N ,X,w) = 2 E ~~ WN (tfl ) WN (tk) cos Xtn cos wtk R(t0) R(tk)

n 1  k>n

N
Ti ,i ,3(N, A, w) = 

1
2 E ~~ wN(tfl ) wN(tk) cos At~ cos wtk R(t~) R(tk)

— n l  k<n

The T 1,1,1 term will be disposed of first. By taking the expected value (with respect only
to the~ tk })

T1,1,1(N ,X,w) = 

($~)2 w~ (t) cos At cos wt R2(t) fk(t)

and by the Lebesgue dominated convergence theorem

00 

T1 1 1 (N , A, w) = f cos At cos wt R2(t) dt - (19)

We note that l1 1 2 and T 113can be rewritten as, , , ,

18 
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N-i N-n

T1 , 1 ,2(N ,A,w) = 
~~~~~~~~ E WN(tn) WN(c ,l) cos Xtn cos Wtn.~~ R(tn) R(t~.~ )

n l s l

= 
(13~)2 J f wN(u) wN (v) cos Au cos wv R(u) R(v)

N-i N-n

• 
~n,n+s~~

,”) du dv
n 1  s l

and

T1,1,3(N,X ,w) = 
~~

‘
~2 f J wN(u) wN(v) cos Au cos wv R(u) R(v)

N-I N-n

• fn+s,n(u~’) du dv -

n 1  s 1

Now (with a change of variables in T 1 1 1  of u v  and v=u)

I T 1 1 2 (N ,A,:) +:1 1 3 (N ,A,w) I

= J f wN(u) wN(v) R(u) R(v) (cos Au cos wv + cos Xv cos wu)

N— l N—n

• ç(v—u) f0(u) dv du
n 1  s l

N-I N-I

~ f I R(u) I f~(u) f I R(v) I f~(v—u) dv du

/ c c
~ ( 13 f I R(u) I du) • (20)

\ 0  /
“A I

fi 19
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We, therefore, have the following lemma:

Lemma 4. Let R(t) e L 1 f l  L2. Then

cc 2 co

I T1(N ,X,w) I ‘
~~~ (

~ J 
I R(u) I du) + J R2(u) du + 0(X) 0(w) .

The proof of Lemma 4 follows (18) through (20).
The final term that we investigate is T4(N ,X ,w). Before stating the derivation of the

asymptotic behavoir of 14, the following assumption on the fourth order moment of the
output , hardlimited signal is made.

Assumption 1: The fourth order moment function of the output signal,

A
My(t 1,t2~t3) = E {Y(t) Y(t+t 1) Y(t+t 2) Y(t+t3)} ,

satisfies

I My(t 1,t2,t3) 
~ 

b1(t1) 
~ 

b(t1)

where b~(t) eL 1 and b(t) eL 1 and b~,b are continuous, even , nonnegative functions which are
nonincreasing over [O,cc). In addition , the function b(t) satisfies the inequality

b(t 1) -b( t2)<b ( t 1 + t 2) (21)

for t 1 and t2 positive.

We first note that the t1’s in the above assumption are real numbers and not the random
variables from the Poisson point process I. Secondly, the inequality (and other conditions)
for the function b(t) in (21) is satisfied for the exponential function exp (—aIt~ .

Lemma S. Let Ry(t ) E L 1. Then

IT4(N,A,w)I~~ 
~~~~~ 

~~ 
f l 3 b(0)~ (1 b(u)du) 

2
+(

~~ IR ~ (u) I du) j + o(1 ) .  
L

The proof of Lemma 5 comprises Appendix A.

20
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• We note that by the above analysis, i.e., by combining the results of Lemmata 2
through 5, the estimate (5) is not a consistent estimate of the true spectral density 0(X).
In fact , the covariance of the estimate is (asymptotically) bounded by

2
Cov

~
3

~
(X)

~~
N(w) J = o ~(13 f  I R(u) I du) + f  R2(u) du

2
m a x [ l ,b(0)1 (1 b(u)du

4132

+ (j I R y u I d u ) 2) +0(X)0(w)I .

The objective of future work is to obtain tighter bounds and show that these new bounds
go to zero asymptotically as N tends to infinity. Specifically, tighter asymptotic bounds
need to be found for the two terms T1(N ,X,w) and T4,1(N ,A,w).

21



CONCLUSIONS

The problem of reconstructing the power spectral density of a Gaussian signal
process from hardlimited observations taken at Poisson sampling instants was considered.
The estimate of the power spectral density of the original (not hardlimited) signal process
is shown to be asymptotically unbiased as the number of observation points approaches
infinity. The important consequences of the asymptotically unbiased estimator are as
follows.

1. No aliasing of the spectral density of the (original) signal process occurs in spite
of hardlimiting the amplitude of the signal.

2. The asymptotic rate of convergence of the bias is identical to the rates of con-
vergence for the cases of (regular) Poisson spectral estimation and of periodic spectral
estimation (that is, the convergence of the periodic estimate to the aliased spectral density).
In particular , under mild integrability conditions on the power spectral density, the rate of
convergence, for the bias, will be 0( 1/N) where N is the number of observations. - -

The covariance of the estimate was shown, however, only to be bounded as the
number of observations tends to infinity. Therefore , the crucial task that remains to be
completed is to show that variance of the estimate tends asymptotically to zero. Upon the
completion of bounding the variance of the estimate by a factor which tends to zero as the
number of observations tends to infinity, the estimate of the spectral density will then be
known to be mean-square consistent — a fact that will increase the confidence of the esti-
mate. This task , the bounding of the variance, will be the focus of fu ture work .

In addition to completing the proof of showing that the estimate is mean-square
consistent , future work should include simulation results, for finite sample size N, that
would indicate the feasibility of implementing Poisson spectral estimation using hardlimited
samples. Furtherm ore , since each hardlimited sample requires only one bit of information
for the purpose of storage or transmission , a trade-off study between the decrease in the
required representation (of one bit per sample) which decreases storage area and the
(possible) increase in the num ber of samples for good spectral estimates should be
conducted.

22
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APPENDIX A

Lemma 5 (restated here for the convenience of the reader) and its proof comprise the infor-
mation in this appendix.

Lemma S. Let Ry(t) eL1. Then

1T4(N ,X,w)I ~~~~~~ Imax [I , b(04(J b(u) du) + (7 IR y(u)Idu) 
j 

+ 0(1).

Proof. To begin the analysis of 14 (N ,A,w), the expected value with respect to the Y process
will be taken first — only the relevant terms (with respect to Y) appear .

Ey [R ~~0(fl) — Ry(t~)j  R~/~(k) — Ry(t k)j

N-n N-k

My(tj — t Q, tQ.th — tQ, tj+k — t 2)
2=1 j =l

— Ry(t~)/N Ry(t~~~ t2)

— Ry(t k)/N Ry(t 2~~ t2)

+ Ry(tn ) Ry(tk)

• and T4(N ,A,w) becomes

T4(N ,X,w) = (T 4 i (N ,X~w) + T4 2 (N ,X ,w)~ /4132
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where

T4,1(N,X,w) = ET ANBNwN(t fl )w N(tk) cos Atn C05 wtk
n 1  k 1

1/2 1/2
— R2(t n )1 11 — R 2(tk)]

r N—i1 N—k
L I 1 -‘V’ \T~’• 1’~ 

2.~ Z, My(t3 — t2, ~~~ — t2, tj +~ — t2)
2=1 j =l

N N 

— Ry(t~)/N 

N—k 

Ry(t Q+k — t2)J
T4,2(N ,A,w) ET AN BN wN(c) wN (tk) cos A t~ cos wt k

n 1  k=1

I I  — R2(tfl )I~~
2 

11 — R 2(t k )J 
1/2

— - . [R y(t~) Ry(t k) — Ry(tk)/N 
2=1 

Ry(tk.th — t2) J .
The term T4,2(N ,X,w) is now considered and becomes

H
T4,2(N, A,w) = 

~~~ k=l 
ANBN f J wN(u) WN (V) cos Au cos wv

f l _ R2(u ) I l/2 U _ R 2(v) I ’/2

[R y(u) Ry(v) - Ry(v)/ N Ry(u) ~~,k(u ,v) du dv

N N
ANBN V  ~~~ 00 00

= N L L f f WN (U) WN(V) cos Au cos wv
n l , k l  o o

• E l  — R2(u)] 
1/2 [1 — R2(v)1 1/2 Ry(u) Ry(v) n fn ,k(u ,v) du dv -

it. 
25
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• 
We recall from the proof of Lemma 2 that

- 
.- fn ,k(u ,v)

n 1  k l

converges as N tends to infinity, and hence, by the Kronecker lemma [61

N 
n l  ~~ l 

f~,k(u ,v)~4 0 a sN 4 0 0

and by the Lebesgue dominated convergence theorem

N N

1T4,2(N,X,w)I 

~ f f Ry(u) Ry(v) 

~~ l 
fn ,k(u,v) du dv

-+ O as N -+ oo .

We now consider T4 1(N ,X,w). The sum over the indices 2 and j is divided into
three regions

R 1 = {J~2: 2~~J}

R2 {J, Q: J < Q < J +k }

R3 = {J~Q: J + k < Q }  -

In R 1, ~+k — 
~~

‘ tJ.fj~ — tj ~ 0 and , therefore ,

b(t3+k — t2) 
~~~ 

b(tj+k — t~) . (A-la)

Also note, that in R 1

b(t~ — t2) ~ b(0) - (A-lb)

In the region R2, by Assumption I

b(t 2 — t~) b(tj÷k — t2) 
~~~ 

b(tj÷k — tj) - (A-2)

- -  
_ _ _ _ _ _



Finally, in the region R3, t2 — tj )‘ tj÷k — t3 >0, and the following inequalities hold

b(t~ — t2) 
~~~ 

b(tj+k — 9 (A-3a)

b(t.j+k — t2) ~ b(O) - (A-3b)

By Assumption 1 and the inequalities (A-l) through (A-3) T4 1  (N ,A,w) becomes bounded by
N N

IT4,1 (N, A, ~ k=l I I I wN (u) wN (v)

‘
~~~~~~ [Z~ b(0) b(u) b(v) ÷ ~~ b(u) b(v) + ~ E b(0) b(u) b(v)
N 1R 1 R2 R3 I!

÷ IR y(u) Ry(v) I (1 ~)I ffl ,k(u ,v)d u d v .

At this point we assume a specific covariance averaging kernel is given — namely the
Dirichiet spectral window, which has as the corresponding covariance averaging kernel

I It I~~MN
WN(t) h(t /M N)

~
- i I 

0 otherwise -

Thus, (A-4) is bounded by 
-

MN MN

k=l 
- 1 1

IN—n N—k ] 
‘

I

.

~~~~ I ~ ~~ lj 
max ( 1 ,b(0)] b(u) b(v)

L 2 l  j= l

÷ IR y(u) Ry(v) l (i 
_
~

) J ~~,k(u,v) du dv

MN MN
= J [ (N 2 — (n+k)N + nk max [l ,b(O)] b(u) b(v) :

+ IR y(u) Ry(v) I (i —*) fn ,k (u ,v) du dv -
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Now, since ~ Z ffl ,k(u ,v) ‘~ fl(l +13), by the Lebesgue dominated convergence theorem

MN MN

1 1° max I i  ,b(0)J b(u) b(v) 

~~~ k=l 
ffl ,k(u ,v) du dv

I

~~13(l + 13) max (I ,b(0)J ( J b u ) du ) - (A-5)

Next,

MN MN

f  f  max [1 , b(0)1 b(u) b(v) k ffl ,k(u ,v) du dv
0 0  n=l k=1

2MN 00 2
<P (1+P ) m a x [ l , b(0)1 

~~ (I b(u) du)

= o(±~-) a s N -~oo . (A-6)

For the third term

MN MN

1 1 max E l , b(0)] b(u) b(v) ~~ ffl ,k(u ,v) du dv

I M N ’t 2 = 2
‘~~ 13(1 +13) max E l , b(0) I I —N—) (i b(u) du)

= ~ ~~j i) 2j . (A-i)

Finally,

MN MNJ0 [p~yi~u~ Ry(v) 

~~ 
(i — 

~n,k0~”) du dv

co 2

~~~~~~~ (! R~ (u) du)

and the lemma follows. Q.E.D. 
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