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1.0 INTRODUCTION

In recent years the techniques of estimation theory have been applied to

many problems associated with ballistic missile flight testing. In particular,
trajectory reconstruction, weapon system analysis, metric sensor evaluation,

and geodetic and geopotential model refinement are examples of problem areas

to which estimation theory has been successfully applied.

In practice, estimation theory is used in two ways; namely to estimate various

trajectory and system parameters using available measurement data, and to

perform an error analysis of the estimation process itself.

Test range activities, such as pre-mission planning and post-mission analysis,

are strongly influenced by requirements imposed for trajectory reconstruction

and system performance analysis. Planning for mission support usually involves

error analyses based on alternative range instrumentation configurations.
Post-mission activities include estimation of trajectory and system parameters

and associated error analyses.

Future test range activity is projected to involve more accurate guidance

systems, advanced reentry systems, and range instrumentation with more

accuracy and precision. The ability to meet future range testing requirements
will depend to a great extent on the fidelity and generality of the estimation

techniques employed.

Computer programs currently in use at SAMTEC for estimation and error analysis
are of the batch processing variety and, as such, have certain deficiencies.

In the first place, whenever the trajectory constraints are noisy, such as
when derived from noisy guidance data or during uninstrumented reentry, it is
not practical to perform optimum trajectory reconstruction with batch proces-
sing techniques. Secondly, the types of estimation problems which arise in

connection with range operations involve nonlinear equations, and the iterative

methods of solution these problems require often converge slowly, or even

diverge, when implemented in a batch processor.

1I 1- - -!-



The alternative to batch processing is recursive processing which not only

admits optimum trajectory reconstruction when the trajectory constraints

are noisy, but also provides excellent convergence properties which can

result in considerable computational superiority over batch processing when

the latter requires many iterations (l.

Because of the limitations of existing programs vis-a-vis projected future

requirements, an effort has been initiated at SANTEC to develop a new pro-

gram (TRAM) to meet these requirements. The TRAM program employs recursive

processing so that more general optimum estimation techniques can be imple-

mented and better convergence properties achieved than are possible with

batch processing.

r2 r -------------



2.0 SCOPE OF THE REPORT

In Section 3.0 of the report, a system viewpoint is adopted for the aggregate

functions of tracking and estimation. This viewpoint provides insight which

is useful in estimator implementation.

In Section 4.0 an overview of TRAM operation and its applications is provided.

The discussion, although purely qualitative, illustrates the processing

techniques employed in TRAM and the capabilities therein achieved.

Section 5.0 provides the mathematical development on which TRAM is based.

The fundamental estimation and error analysis equations are developed in

this section.

A discussion of computational techniques and trades is given in Section 6.0.

Included are specific algorithms and methods for computer implementation.

Section 7.0 is a discussion of program requirements which must be satisfied

by TRAM. Guidelines for program development, rather than detailed specifi-

cations are given in this section.

The report also includes a set of appendices. In the main, the appendices

provide support for the material in Sections 5.0 and 6.0. However, some

discussion of vehicle and metric instrumentation systems, together with

mathematical models, is also included.

3



3.0 SYSTEM CONSIDERATIONS APPLIED TO ESTIMATOR IMPLEMENTATION

The processing which is implemented in TRAM is based on the theory of

optimal linear estimation. The fundamental assumptions required for

optimality, together with the basic algorithms of linear estimation,

are discussed in Appendix A. In order to implement these algorithms

in a manner which most nearly satisfies the conditions required for

optimality, it is advantageous to view the tracking and estimation

functions as a composite system.

The utility of the system viewpoint is that it enables a clear distinction

to be drawn between tracker and estimator functions. This in turn leads

to the establishment of system interfaces which facilitate the implementa-

tion of the estimator in an optimum form.

In order for an estimator to be optimum, its mechanization must be based

on models for all processes which have occurred in the generation of the

measurements at its input. Thus, if the interfaces between the estimator

and the functions which precede it are not carefully selected, the result-

ing estimator either will be overly complicated or it will perform sub-

optimally.

Much of the discussion in Appendix C is directed to establishing the inter-

faces between the tracking and estimation functions by identifying the

most useful outputs from tracking instrumentation. These outputs are

shown to include data from both the encoder and the sensing element of

each tracking channel.

In Appendix C.3, the effect of collecting and processing only the encoder

data is analyzed. It is shown that this results both in suboptimum smooth-

ing and in the introduction of tracking error, neither of which can be

fully compensated in the estimator.

Since an optimum estimator inherently performs smoothing of noise process

errors and compensation for modeled systematic error, pre-processing of

4
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track data for either of these purposes is superfluous. In particular,

pre-smoothing of track data may destroy information and result in degraded

estimator performance.

The above considerations are reflected in the formulation of TRAM processing

algorithms. Considerable emphasis has been placed on minimizing the intro-

duction of processing error. Also, the algorithms have been devised to
allow optimum processing of joint encoder and sensing element outputs when-

ever both #re available.

5



4.0 OVERVIEW

The purpose of this section is to provide an overview of the principal TRAM

operations, and develop a framework for subsequent mathematics and program

requirements sections. To illustrate TRAM operation a multiple reentry

vehicle (RV) mission will be considered. A typical mission is depicted in

Figure 4.1. Illustrated there are the trajectory segments of the boost

vehicle (BV) and the RVs from launch to impact. Also noted are the separa-

tion and pierce points of each RV.

During the mission, off-board data is collected by various metric sensor

systems and on-board data is collected by telemetry systems.

Post mission processing of the metric and telemetry data is performed by

TRAM. The objectives of TRAM processing are twofold:

1. Optimal estimation of selected trajectory, instrumentation,

geodetic, geopotential, and aerodynamic parameters.

2. Error analysis of the estimated parameters.

4.1 Estimation

The parameters to be estimated are selected from a state vector composed of

the following groups:

l. DYNAMIC (TIME VARYING) TRAJECTORY GROUP

a. position and velocity for each vehicle

b. time correlated IMU or aerodynamic parameters

induced by random phenomena

2. METRIC SENSOR GROUP

a. sensor and pedestal

b. beacon

c. refraction

d. geodetic

e. timing

6
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3. INERTIAL MEASURING UNIT (IMU) GROUP

a. timing

b. platform, gyro, and accelerometer

4. STATIC (CONSTANT) TRAJECTORY GROUP

a. geopotential

b. aerodynamic

In essence the state vector consists of all parameters which appear in

either trajectory or instrumentation equations. The reasons for partition-

ing and ordering the state vector elements into the above groups will be-

come clear in Section 6.0.

The subset of state vector elements which are estimated are called the

estimated states. The remaining state vector elements are called the

constrained states.

4.2 Error Analysis

The error in an estimated parameter is defined in general by

error = estimate - true.

The purpose of an error analysis is to quantify, to the extent possible,

the errors which remain after estimation. Since the true values of the

parameters are not generally known (except in simulations) the best that

can be done is to provide a probabilistic description of estimation error.
An example of such a description would be the means, variances, and cross

correlations of the set of estimation errors.

An estimation error analysis is a two stage process. The first stage, which
is performed concurrently with estimation, consists of calculating the

sensitivities of the parameter estimates to each of the error sources to be

considered. The second stage combines these sensitivities with an error
budget (i.e., a statistical description of the errors for the sources being

considered) to obtain a probabilistic characterization of the estimation

errors. The second stage can either be performed concqrrent with or sub-

sequent to estimation.

8



The sources of error considered in the error analysis generally include sensor

and trajectory noise errors and state vector initialization ery-ors.

The subset 6f states whose initialization errors are included in the error

analysis are called propagated states. The set of propagated states, which

always includes the estimated states, may, in addition, include any subset

of the constrained states.

4.3 Sequential Linear Estimation

In general, an optimal linear estimator can be implemented by means of a

two stage sequential algorithm. The two stages are, respectively, filter

and smoother. The application of a sequential two stage linear estimator

to the multiple RV mission is illustrated in Figure 4.2. Examination of

the flow diagram shown in this figure reveals that all trajectory segments

for boost and reentry vehicles are first filtered, and then each segment is

smoothed. The order in which the segments are filtered is somewhat arbitrary,

but the order of smoothing is the exact reverse of the filtering order.

Furthermore, the filter operates on each segment by processing the data in

the direction of increasing time. The smoother, on the other hand, processes

the filter outputs in the direction of decreasing time.

The filter provides estimates utilizing only the data processed up to and

including estimation time. The smoother provides estimates utilizing all

of the data, by adjusting the filter estimates. It should be noted, however,

that only the dynamic parameter estimates (i.e., those in Group 1) require

adjustment by smoothing. The estimates of the static (constant) parameters

which are obtained at the end of the filter stage are unaffected by smoothing,

since these estimates are already based on the entire data set.

For processing convenience and flexibility, each trajectory segment can be

partitioned into regions of powered flight, freefall, and reentry and these

regions can be further partitioned into intervals over which sensor coverage

does not change.

In addition, in order to facilitate and enhance the efficiency of bulk
storage (i.e., disk or tape) input/output (I/O) operations, the intervals

g
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mentioned above can be further partitioned into subintervals at the junc-

tures of which all I/O operations are performed. The size of these sub-

intervals can be selected small enough such that the instantaneous storage

capacity in the computer memory is not exceeded and large enough to maintain

the number of I/O operations sufficiently small that computer efficiency

does not suffer.

During filtering, the input operations entail reading metric and telemetry

data, and the output operations consist of writing filter estimates of the

whole state and the sensitivities of these estimates to the propagated states.

During smoothing, the input operations read filter outputs, ard the output

operations write smoother estimates and the sensitivities of these estimates

to the propagated states.-

4.4 Nonlinear Sequential Estimation

In order to apply linear estimation to the multiple RV mission, a further

refinement is necessary, because the equations governing such missions

are, in fact, nonlinear. The refinement to be discussed is analogous

to the use of the Newton-Raphson method for solving nonlinear algebraic

equations. The algebraic method uses relinearization and iteration to

obtain a solution. On each iteration a set of linear equations is solved,

and the solution is used to relinearize the nonlinear equations to obtain

the set of linear equations to be solved on the next iteration. The pro-

cess is terminated when convergence occurs, i.e., when identical solutions

are obtained on successive iterations.

In the estimation problem, the nonlinear equations are linearized about a

nominal value of the state vector at each step in the sequential process.

The nominal value of the state vector is an arbitrary approximation to the

true state vector. The resulting equations are linear in the state vector

variation which is defined component by component by

variation = true - nominal.

The linear estimation equations are applied to estimate the variation. The

estimate of the whole state vector is then given component by component by

whole estimate = nominal + variation estimate.

11
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For each component in the subset of constrained states, the whole estimate

is by definition equal to the constrained value of the component.

The technique for nonlinear estimation consists of iterating the entire

two stage sequential filter/smoother operations. On each iteration, the

variation estimate obtained upon completion of the filtering and smoothing

of operations is added to the nominal to obtain an estimate of the whole

state vector. The whole state estimate thus obtained is then used as the

nominal state vector on the next iteration. This relinearization and

iteration process continues until the variation estimates converge to zero,

i.e., the whole state estimates on two successive iterations are identical.

On the first pass the nominal state vector is initialized with the best

prior estimate available. Then during the filter stage the nominal state

is reset periodically by equating the nominal state to the whole value

estimate obtained by the filter.

The questions regarding convergence of the above procedure are not easily

answered. While there are well known necessary and sufficient conditions

for convergence, they are not easily verified for the class of trajectory

estimation problems of interest here. However, experience has shown that,

in well formulated problems of this nature, convergence generally occurs

within several iterations provided the nominal state is initialized suf-

*) ficiently close to the true state. The periodic nominal reset procedure

described above is designed to maintain the variation sufficiently small on

the first pass that convergence occurs quickly thereafter.

4.5 Recapitulation

The estimation procedure and the error analysis which can be performed

concurrently with estimation are concisely represented by the flow diagram

of Figure 4.3. The diagram illustrates an outer loop for relinearization

and iteration, middle loops for interval processing, and inner loops for

processing of subintervals. Counters I, J, and K control the outer, middle

and inner loops, respectively.

12
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The outer loop is repeated until convergence is achieved or the maximum

allowed number of iterations has occurred. The middle and inner loops are

traversed in a forward direction (counters increasing) during the filter

stage and in the reverse direction (counters decreasing) during the smoother

stage. Although it is not shown in the diagram, within each subinterval

the filter processes input data sequentially with time increasing, and the

smoother processes filter data sequentially in the reverse (i.e., time

decreasing) direction.

Each interval, it will be recalled, consists of a trajectory segment portion,

which is exclusively powered flight, freefall, or reentry, over which sensor

coverage does not change. The interval discrete functions control filter/

smoother configuration over each interval by specifying sensors to be

processed, parameters to be estimated, times of discrete events within the

estimator, and so forth.

The subinterval discrete functions consist entirely of bulk storage I/O

operations.

It was stated earlier that the error analysis and estimation procedures can

be performed concurrently. This is accomplished by augmenting the filter

and smoother with error propagation functions. However, because of the

iterative feature of the estimator, it is more efficient to allow the

estimator to converge before performing the error propagation functions.

Thus, with reference to Figure 4.3, after convergence, one more pass through

the outer loop is taken in which only the error propagation functions are

performed.

14



5.0 MATHEMATICAL DEVELOPMENT

In Section 4.0, the major TRAM functions of estimation and error analysis

were discussed in qualitative terms for a multiple RV mission. The concept

of a state vector was introduced, and its composition by various groups was

presented. The state vector consists of parameters which affect either

trajectories or measurements. For purposes of estimation, two subvectors

of the state vector are defined. The first contains the estimated states.

The second contains the constrained states. For the error analysis, a sub-

vector of propagated states is defined which contains all the estimated

states and, in addition, some subset of the constrained states.

In this section, the basic equations for both estimation and error analysis

will be developed using the state vector concept.

The state vector, denoted by x, satisfies a nonlinear differential equation

(1) x(t) = f[x(t), ti + w(t), t > to

called the state equation. The metric sensor measurements, denoted by y,

are functions of state at discrete times and satisfy a nonlinear equation,

(2) y(t i ) = h[x(ti), til + v(t1 ), i = 0, 1, 2, ... 9

called the measurement equation. The quantities w and v are called the

state (or plant) and measurement noise processes, respectively.

While the TMIG measurements can also be expressed in the form given by (2),

it is more convenient to express these measurements in a form suitable for

introduction in the right hand side of (1) as a direct measurement of

vehicle dynamics.

If the state vector is ordered and partitioned into the four groups defined

in Section 4.0, equation (1) becomes

15



hA  fa[Xa(t), xc xd  t] Wait

b 0 0

(3) Ab 0 + , t> to
AC 0 0

Ld 0 0

where the groups are identified as follows:

xa, dynamic trajectory group

Xb, metric sensor group

xc, inertial sensor group

Xd, static trajectory group

Similarly, equation (2) becomes

(4) y(ti) = h[xa(ti), xb, ti] + v(ti), I = 0, 1, 2, ....

Equation (3) shows explicitly the dynamic behavior of the first group and

the static nature of the remaining groups. Also shown is the fact that in
general the dynamic behavior of xa depends on xa, xc and xd. However, the

dependence of xa on xc occurs only In inertially instrumented trajectory

spans. Equation (4) shows that the metric sensor measurements depend

only on xa and xb.

The state noise component wa(t) represents the effect of random forces,

such as aerodynamic forces, on those trajectory spans which are not

inertially instrumented. On inertially instrumented spans, all inertial

forces, including random forces, are sensed and incorporated into fa; and
Wa(t) represents noise in the inertial instruments.

5.1 Estimation

In this subsection, equations (1) and (2) will be used as a point of

departure. However, explicit dependence on the subvector of constrained

16



states will be suppressed, and x will denote only the subvector of estimated

states.

To apply linear estimation techniques, equations (1) and (2) must be linearized

with respect to the state vector. This can be accomplished over any time

interval of interest, say [t', ti'], in the following manner.

Let x denote the solution of the differential equation

(5) x~)=fix(t), t], to < t < tie"

with x(t') arbitrarily specified. x is called the nominal state vector.

Then, expansion of equations (1) and (2) to first order about x leads to

(6) x(t) = f[x(t), t) + F(t)[x(t) - x(t)] + w(t)

(7) yAt I ) =h[x(ti), t i ] + H(ti)[x(t i ) .- x(ti)] + v(t i ) ,

where

(8) F(t) -

\ax /x(t), t
and

(9) H~ti) (
Now define the state and measurement variations, respectively, by

(10) 6x(t) x(t) - x(t)

and

(ll) dY(tl) - Yti) - hfx(ti0 , til]

From (5), (6), and (7) it then follows that

17



(12) 8x(t) F(t)8x(t) + w(t)
and

(13) SAY(tl) H(ti)6x(tl) + v(ti)

for all t and tI in the interval [t', t"].

The solution of (12) can be expressed in a convenient form using the

transition matrix, 0, defined by

(14) *(t, s) = FI(t)l1(s)

for all t and s in Ct', t"], where T is the so-called fundamental matrix
defined by the differential equation

(15) 7(t) = F(t)1(t), '(t') = 1, t' < t < t"

The existence of f-l(t) is guaranteed for all t' < t < t", and thus 0 is well

defined by (14).

In terms of 0, the solution of (12) is expressed by

(16) 6x(t) = (t, s)6x(s)'+ 0(t, r)w(r)dr
s

for all t and s in [t', t]. In particular, for ti and ti. l in [t', t"],

(17) 6x(tl+ I) = O(ti+ I , ti)6x(t i) + u(ti)

where

ti+l
(1) u(ti) -- O (t ll r)w(r)dr.

By specifying x at a finite set of times and using (5) to obtain x in the

intervals between these times, the linear equations obtained above can be

18



extended to hold for all times of interest on the multiple vehicle trajectories.

Thus the linear state and measurement equations become

(19) 6x(ti+1 ) = 0(t1+1, tt)6x(t ) + u(t)

(20) 6y(ti) = H(ti)6x(ti) + v(ti), I 0, 1, 2,

with the provision that whenever x is reset, 6x must also be reset by the

relation

(21) tx(t+ ) = 6x(t-) - [x(t+) -x(t) ,

where t- and t+ denote values before and after reset, respectively.

Equations (19) and (20) provide the model basis for application of the two

stage (filter/smoother) linear estimation procedure which will now be

developed. With somewhat briefer notation, the estimation model is given

by

(22) 6xi+ 1 = IDi6xi + Ui ,

(23) 6yi = Hi6x i + vi, i = 0, 1, 2,.

The sequential filtering and smoothing algorithms of linear estimation,

together with the assumptions on which they are based, are discussed fully

in Appendix A.

The filter algorithm for (22) and (23) is given by

(24) Ki = P-HT[HiP-HT + Ri
l  ,

AA A_

(25) 6xi = 6x + Ki(6yi - Hi6x1 )

(26) P.i =  Pi - KlHi Pi'

A .A

(27) 6x 1+1 =0 1 '

19. ..... ...........-. ..!



(28) PI -- *iPt *T + Qt' 1 0, 1, 2.

Qi and Rt are the covariances of ui and vi, respectively. 6x- is the estimate

of 6xi based on the set {yo' "'" Yt-1 } while 6xt Is the estimate of 6xt

based on the set {yo ". 9 Yt} . Pt and Pi are the respective filter covariances
AA

of 6x: and 6x. K. is the filter gain matrix.

A

The estimates 6x and the filter covariances P are computed sequentially. At

each step 6xi, based on measurements fyo " .. I is updated using yi to
A A

obtain 6xi, and Pi is updated to obtain Pi. Then 6xi is extrapolated to

obtain 6xi+ l, based on measurements {y0 ... Yi,} and Pi is extrapolated

to obtain P+
ilV

The smoother algorithm, to be considered here, has two forms, one of
which can only be used in the special case in which there is no state
noise. In either case the smoother is employed after the complete
measurement set {yo9 ... 9 YN) has been filtered.

The most general form of smoother, to be used here, is the fixed interval

smoother, and the algorithm for this form is given by

(29) A = OT

S A A

(30) xiIN = xi + Ai(xi+lIN - xi+l)

(31) PiN = Pi - A- P AT, i = N-, ... , 0uN 1 A(PJ,1 - i+lIN'
A

A, is the smoother gain matrix, xiIN is the estimate of xi based on the

complete measurement set {yo ... YN}' and PiJN is the smoother covariance

Of xi N"

20



The fixed interval smoother is initialized by the final values of the filter.

That is

A A

XNIN = XN

and

PNIN "N

The smoother quantities are computed sequentially but in reverse order toA A

the filter. At each step xiIN is obtained from xlN and filter outputs.
Similarly PijN is obtained from PI+IIN and filter outputs.

The filter estimates of the whole state, required in the smoother, are

obtained during the filter operation by simply computing and storing

the quantities

A A -

(32) i = 6x1 + x,

and
SA A

(33) xi = 6xi + xi i =0, 1, ..., N.

It should be noted that, unlike the filter covariances, the smoother

covariances are not required to obtain the smoothed estimates of the state

vector. However, the smoother covariances are required for the error

analysis. In fact, if all the conditions stated in Appendix A were

satisfied, the smoother covariance would be equal to the covariance of

estimation error.

The second form of the smoother which can be used only when state noise is

zero is the retrograde intergation smoother. This method of solution consists

of simply solving equation (1) (where w(t) = 0) by reverse or retrograde

integration from tN to to using the final value estimate from the filter to

initialize the integrator. The smoother covariance is similarly obtained

by retrograde integration using the final value of the filter covariance

for initialization.



The retrograde integration algorithm is given by

(34) x(tltN) = f[x(tltN), t), x(tN4t N ) xN

(35) P(tItN) = F(tJtN)P(tltN) + P(t'tN)FT(tltN). P(tN~tN) = PN' to <t t

where

(36) xN = dXN+ X(tN)

(37) F(tltN) = ia f~ t)

x(tltN) is the whole value state estimate based on {yo, YN}' and
A

P(titN) is the smoother covariance of x(tltN).

A flow diagram for the two stage estimator illustrating the basic functions

of the filter and both smoother types is illustrated in Figure 5.1. The

diagram is somewhat simplified, but serves the purpose of demonstrating the

essential structure of the estimator.

There are two major filter functions, update and extrapolate, which are

prepared by measurement processing and integration functions, respectively.

Notice als6, that in the filter stage the variation estimate must be reset

whenever nominal reset occurs (Cf. equation (21)).

5.2 Error Analysis

The Gstimation equations which have been developed in the preceding subsection

deal exclutively with the set of estimated states. In the linearization

procedure, it was tacitly assumed that the variation (i.e., true - nominal)

was zero for each constrained state. Since this subsection deals with all

error sources, including constrained states, nonzero variations of these

states will be considered.

Let xE denote the subvector of estimated states, and let xC denote the

subvector of constrained* states to be included in thb error analysis.

*It is assumed that each of the constrained states is a static state.

22
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ii
Then repetition of the linearization procedure used in the preceding

subsection leads to analogous equations which include the variations in

the constrained states. The analogues to equations (12) and (13) are

(38) 6xE(t) - F(t)6xE (t) + G(t)6XC + w(t)

(39) 6y(t1 ) = H(ti)6x E (t i ) + J(t t )6x C + v(t i )

where

(40) ~ t

0 / x(t), t
and

(41) 3J(tt)  =

(Xo) x(ti), t i

The analogues of equations (22) and (23) are

E ExC

(42) 6Xi+1 t e6Xo + UE

(43) 6y1  = H1 x + XC + v j 0 Is 2,

where
;, / i+I

(44) E =(t r)G(r)dr

ti

Now equations (42) and (43) can be used to develop the error propagation

equations for the filter and smoother. The filter errors are defined by

(45) e- 6- 64

(46) - - i 0 0, 1, 2, ... ,N.
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The fixed interval smoother error is defined by

(47) e iNxiIN i, iE 1= 0 1, 2, ... 9 N

and the retrograde smoother error is defined by

(48) e(tit N) = E(tj tN) x xE(t), to< t<N

From the error equations and the filter algorithm, it follows that

(49) e. (I - K Hi)e KJ + KC
1 K1J i 1 x0 +K1v

(50) ei+1  = 0 1e 1 -01 6x~ 0 "

Similarly for the two smoother types

(51) e iIN = ei + Ai~ei+lIN - ej+1]

and

(52) e(tjt N) =F(tj tN)e(tjtN) - G(tltN)Sxo

where

F~t~N) =( ( x ) ̂ (trtN). t

and

The esimatio error a nfon nteetmto rcs salna

combinationotaiation errors on in the estimatednd prcnstrisalineate

and errors due to measurement and state noise. Define

(53) D = ae

(54) E = D
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Then the initialization error propagation equations are

(55) D (I K KHi)D-, D- - I

(56) E1  (I K KHi)E- + K 31, E =

(56) 1 0

(59) D -+ 0. + D 0 =

(5) iN D 1 + A[i+l IN - D i +,D NIN DN

(60) EII E + Ai[Ei+lN - E-+,]. EN EN

(61) i(tItN = F(tjtN)D(tjt) D~t~N D

(62) E(tIt) = F(t t)E(tjt) G(tjt) E~t~ EN

A procedure for the error analysis using the above error propagation equations
together with the filter and smoother error covariance equations will now be
developed. The error analysis will provide the mean and covariance of the

estimation error based on an error budget.

The error budget specifies the mean and covariance of initialization error:

b~ E EE U EC

bC uCE ccIb0] 10 0 J

It also specifies the state and measurement noise process covariances
Qi i 0, 1, 2, ... ,9 and R,, i - 0, 1, 2, .... and it is assumed that

these noise processes are sequentially uncorrelated and mutually independent
with each other and the initial value of the state.
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The mean or bias estimation error is given by

EE+E C I

(63) b IN = DIlNbo + EiINbo

in the fixed interval smoother, and by

E +C
(64) b(tJtN) = D(tJtN)bo + E(tjtN)bo

in the retrograde integration smoother.

The covariance of the estimation error due to initialization error is given

by
11

(65) UI = DiIN EII uCE cc I~
L.0 0J .INJ

in the fixed interval smoother, and by

U EE UEC DT(tItN1(66 Uo~ ~~t---

(66) u(tltN) = [D(tjtN) EltltN)] uC uCC ET(tIt0 0c EtlN)

in the retrograde integration smoother.

The covariance of estimation error due to the noise processes is most easily

computed by an indirect method using the smoother covariance. The method is

valid only if the error budget values of the noise process covariances,

Qi' i = 0, I, 2, ..., and Ri, i = 0, 1, 29 .... , are used in the filter

algorithm (Cf. equations (24) and (28)). Under this assumption, the esti-

mation error covarlance due to noise processes is given by

(67) ViN = PiIN - D PNDT

uN uN N o iuN

or

(68) V(tItN) = P(tItN) - D(tItN)POD T (tItN)
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where P- is the initial covariance used in the filter.
0

In the special case in which state noise is zero and the retrograde integration

smoother is used, an alternate direct method of calculating the estimation

error covariance due to measurement noise may be used. This method is valid
regardless of whether the error budget values of measurement noise are used

in the filter. The first step is to compute Vi and Vt by

(69) V1  - (I - KiHi)V (I - KiHI)T + KIRIKi t , V 0 ,

(70) V = *$VI0T, i = 0, 1, 2,...

Then the estimation error covariance due to measurement noise is given by

(71) V(tl t) = F(tltN)V(tltN) + V(tltN) FT(tjtN), V(tNltN) = VN

Finally, the total estimation error covariance due to combined initialization

and noise process error is given by either

(72) . " UilN + V iN1, I = 0, 1, 2,

or

(73) W(tltN ) = U(t~tN) + V(tltN), to < t <t N

A flow diagram for the computation of the error propagation quantities D, E,
and V is presented in Figure 5.2. The alternative calculation of V is shown

as an option to be exercised only when state noise is zero and the measurement

noise error budget values differ from those used In the filter algorithm.

The sequential nature of the error propagation equations is in one to one

correspondence with the filter and smoother equations. Consequently, the
error propagation equations could be easily computed in parallel with the

estimation equations. However, because of the iterative process used to

minimize error due to nonlinearity, it is most efficient to defer the
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calculation of the error propagation equations until the estimation process

converges.

Once the error propagation quantities have been calculated and the initiali-
zation error budget has been specified, the error analysis is completed using
equations (63) or (64) to compute the estimation bias error, and (65) and
(72) or (66) and (73) to compute the covariance of estimation error.
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6.0 COMPUTATIONAL CONSIDERATIONS

In order to effectively select and implement an algorithm in a computer

program, due consideration of several factors is required. These factors

include the numerical precision of the computer and the accurdcy, stability,

and efficiency of the algorithm.

The numerical precision of a computer is determined by the number of digits

allocated to the mantissae'of numbers rep, -ented in the machine. The error

which occurs because of limited numerical precision is called roundoff error.

All other computational errors are inherently due to the algorithm itself.

The most common of these is truncation error. Truncation error results when

higher order terms in a Taylor series expansion are neglected.

The stability of the algorithm is determined by how roundoff and truncation

errors propagate. If these errors propagate in an unbounded or oscillatory

manner the algorithm is unstable.

Efficiency of an algorithm is a relative concept based on execution time

and storage requirements. Gross estimates of execution time and storage

requirements must be considered in selecting candidate algorithms, and

relative efficiency can be used as a tradeoff basis for otherwise comparable

* algorithms.

In the remainder of this section, the computer implementation necessary to

satisfy the functional requirements, developed in Section 5.0, for estimation

and error analysis will-be discussed based on consideration of the compu-

tational factors mentioned above.

6.1 Scalar Measurement Update

The update equations of the filter algorithm developed in Section 5.0 are

given by

K = P-HT[HPTH + R]-
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x 6x + K(6y - H6x-)

P = P - KHP-

where the time index i has been dropped. The function of these equations

is to process the measurement variation 6y and thereby update Sx and P" to

obtain 6x and P respectively. As written these equations are valid for a

measurement vector of arbitrary diminsion. For example, if Sy is an m-vector

and P is nxn, H-is mxn, R is mxm, and K is nxm.

The update equations are based in part on the assumption that the measurement

variation is given by

dy = H6x + v

where the covariance of v is the matrix R.

In the particular case where R is diagonal*, the vector update procedure

can be replaced with an entirely equivalent scalar update procedure which

is more efficient.

To illustrate the scalar update procedure, assume

6yl H1. R
& 62H H2" R2

Sy = 6Y2  , H = . , and R =220
6* R

6ym 'Hm. Rm

Thus for each j = 1, ... , m, 6y is the j-th scalar element of 6y, H. is the

j-th row of H, and R.. is the j-th diagonal element of R. Now the scalar

update procedure consists simply of applying the update equations sequentially

to the elements of 6y as illustrated in Figure 6.1.

*If R is, in fact, the covariance matrix of the measurement noise vector v,
then R is diagonal if and only if the elements of v are mutually uncorrelated.
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In the figure, dummy variables 6& and nI were used for immediate results
which need not be saved. The final values of these variables yield the
same values of 6xt and P, that would have been obtained by the vector update

procedure.

The gain matrices K j = 1, ... , m, must all be saved for use in the
error propagation equations. Furthermore, equations (55), (56), 3nd (69)

in Section 5.0 must also be processed sequentially for each fixed i at which

the scalar update method is employed. The reason for this is that

Ki  ' ,K1  K~m)]

The sequential error propagation equations are illustrated in Figure 6.2.

Dummy variables are once again use-, for intermediate results which need not
be saved.Y

6.2 Square Root Filter

The standard filter algorithm which was developed in Section 5.0 includes

sequential calculation of the error covariance matrix, P. A necessary

condition for an nxn matrix P to be a covariance matrix is that it be

nonnegative, i.e., PT = P and

aTPa > 0

for all n-vectors a. However, careless computation of P in the standard
filter can result in violation of the nonnegativity condition because of

roundoff error. When this occurs, filter instability can result.

There are a number of methods typically employed to preserve the nonnegativity

of P in filter implementations. However, some of these methods increase
execution time by as much as 100%. Worse, they sometimes fail to preserve
nonnegativity, expecially if P becomes ill-conditioned, i.e., nearly singular.
An alternative to employing any of these methods is provided by the square

root filter.
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The square root filter, which can be realized by any of several algorithms,

is mathematically equivalent to the standard filter. The square root filter

requires sequential calculation, not of P, but a square root of P, designated

here by S.

An nxn matrix S which satisfies the condition

p =SS

is called a square root of P. If P is nonnegative, then a real valued square

root of P exists, but it is not unique. Conversely, for any real valued

nxn matrix S, the nxn matrix product SST is nonnegative, since

aT(ssT)a (s~a) T.sa)> Li

for all n-vectors a. This property is important in square root filtering,

because it guarantees the nonnegativity of the filter error covariance matrix P.

Square root filters have two distinct advantages. First they are much less
sensitive to roundoff error than standard filters. In fact empirical computer

studies have demonstrated in some instances that square root filters have

single precision accuracy that can be achieved with a standard filter only by

using double precision arithmetic. Second, and most important, filter

instability due to.violation of the nonnegativity condition cannot occur,

since the error covariance matrix P (which need not be computed but which is

implicitly defined by the square root matrix S) is guaranteed to be

nonnegati ve.

Of the available square root filter algorithms, the one selected for application

in TRAM is due to Carlson. This algorithm, which is given in detail in Appendix

A, is very efficient. The required execution time is comparable to the most

efficient standard filter algorithm.

The Carlson algorithm has the distinctive feature that the square root matrix

S is maintained in triangular form. S may be either upper triangular or lower

triangular at the option of the user. Recall that a matrix is upper (lower)
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triangular if all elements below (above) the main diagonal are zero. The

importance of triangularity is that it reduces the computational and storage

requirements of S by nearly 50%.

The Carlson algorithm parallels the sequential operations of the standard

filter, except that it propagates S instead of P.

The matrix S is initialized by extracting a triangular square root of P0
using the Cholseky decomposition algorithm given in Appendix D.

The update operation is constrained to scalar measurement processing as

discussed in Section 6.1. If the measurement covariance matrix is nondiagonal,

a linear transformation must be performed on the measurement vector in order

to decorrelate the measurement noise components.

The extrapolation operation can partially or totally destroy the triangularity

of S, and as a consequence a retriangularization procedure may be required.

To illustrate the use of Carlson algorithm consider the m-dimensional measure-

ment vector variation at time ti,

6yi = Hi6x i + v

with measurement error covariance Rt. It is assumed that 6x7 and S7 are

available where Si is a triangular square root of P .

If R is nondiagonal, the first step is decorrelate the measurement noise

components. This is accomplished by applying Gaussian elimination with

complete pivoting (Cf. Appendix D) to Ri. This procedure yields a lower

triangular matrix L and an upper triangular matrix U such that

LUIR1IIT = U

where H is an invertible matrix constructed by row permutations on the

identity matrix.
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The matrix L has all ones on its main diagonal, and thus, by virtue of

triangularity, L 1 exists.

Now consider the transformed measurement equation

6yi = Hi6x I + vI

where

8yI = LI~dy i

Hi  =LnHi ,

iv Lnvi

and the covariance of vi is simply

R; = Li R1nTLT = ULT

Using the fact that (Ln) "1 exists, it is easily shown that the standard
filter update with 6y', Hi, Re is entirely equivalent to update with 6yi,

Hi, Ri. But it is readily seen that R. is diagonal, since it is both
symmetric and upper triangular. (Ri is symmetric since it is a covariance

matrix, and it is upper triangular since it is the product of two upper

triangular matrices, U and L In fact, element by element, the main

diagonal of R is equal to the main diagonal of U. That is,

U11

,U220

0 Um

As a consequence of R; being diagonal, the transformed measurements can be

processed by the scalar measurement update procedure of Section 6.1.
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The next step is to process the individual scalar components of the trans-

formed measurement vector using the Carlson update algorithm. Suppressing

both the subscript i and the prime notation, let the transformed measurement

quantities be given by

6y1  H1. Rl1

6Y2  H2 • R22
6y = . , H = M , R = ..

The scalar update procedure consists of applying the Carlson update

equations sequentially to the elements of 6y. The combined decorrelation

and Carlson update procedures are illustrated in Figure 6.3.

In the figure dummy variables have been used for intermediate results which

need not be saved. The starred box contains the key calculations of the

Carlson update procedure, and the detailed algorithm for the functions in

this box is provided in Appendix A. Notice that the matrix Ji of measurement

partial derivatives with respect to constrained states, required for error

propagation (Cf. (43), (56) of Section 5.0), is also subject to the decorrelation

transformation L. The quantities which must be saved for smoothing and error

propagation functions include H, J, Ki j = 1, ... , , and R in addition

to 6x1 , 6xi, Si. and Si .

The final step is the extrapolation operation. The nominal state and the

state variation are extrapolated in the same way in the square root filter

as in the standard filter. To extrapolate Si, a triangular matrix Si+ l

must be found such that

P_+ = S-+l(Si+l)T

where (Cf. (28), Section 5.0)

P+ = PI0T + QI
4ipi i Q 3
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and

P1  = SS T

This could, of course, be accomplished by computing P+l directly and applying

the Cholesky decomposition to obtain Si+ I . But this would defeat the purpose

of the square root filter which is to avoid sequential computation of P and

thereby gain certain advantages with respect to computational efficiency,

numerical precision, and filter stability.

The indirect calculation of Si+l is performed in the following manner. Let

ri be a square root of Qi, and observe that

[Si :r r] i ]T = Dipi0T Pl

Thus the augmented matrix [0iSi : r i ] satisfies one property required of

Si l but it is not square.

Now let T be orthogonal matrix, i.e., T l = TT, of the proper dimension to

allow pre-multiplication by [iS i ri] and observe that

ID iSi ( ilT} {[tiSi (ri]T }T =[OiSi !ri] [OiSi r riT = P_+

Thus if T is selected such that

[4iS i (r 1i]T = [S' 0]

then S' is a square root of P Wl"

By applying the modified Gram-Schmidt (MGS) process (Cf. Appendix D) to the
rows of [0 S ri], augmented by the rows ofj oJ, an orthogonal matrix T

can always be constructed such that

[0Si i riT = [S' :0],
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where S' is triangular. The order in which the rows of [0iSt : ri] are
processed to obtain T determines whether S' is upper triangular or lower

triangular.

In the particular case where Qi = 0, it is clear that the matrix OiS i is

itself a square root of Pi+1. However, depending on the structure of 0i. the

product Oi i is not necessarily triangular. Consequently, even when Qi = 0,

the MGS process, applied to the rows of 0 Si augmented by the rows of I if
necessary, may still be required to obtain a triangular square root of Pi+,.

In this case the procedure is appropriately referred to as retriangularization.

The efficiency of the square root covariance extrapolation is greatly influenced

by the structure of 0 i and Qi which in turn is dependent on the ordering of the
elements within the estimated state vector.

To illustrate efficient extrapolation, assume that the upper triangular form

of S has been selected and that x, 0, and Q can be partitioned as follows:

x: xb  0 Qb b 0 0a a ab ac aa

x 0 0 1 0 0 0

This form, which can always be achieved by proper ordering of the elements of

x, has grouped all dynamic states which are driven by noise in xas all dynamic

states which are not driven by noise in xb, and all static states in xc.
Denote the respective dimensions of xa, xb, x by na, nb, nc.

The corresponding partitioned form of S is given by

=[aa 
5ab 5ac1

S 0 Sbb Sbc ,

0 0 Scc

where Saa, Sbb, and Scc are each upper triangular.
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Now define

E = OS.

Then, in partitioned form

= 0 Ebb E bc

L0 0 CC

where Eaa and Ebb are not necessarily triangular. However, Ec is upper

triangular; in fact = S

Using the above partitioned forms it follows that

a Ea Ea :r~ 0 0j

[OS : r] = Ebb Ebc 0 0 0

0 0 E 0 0 0
L ~ cc

where raa is a square root of Qaa

Now an orthogonal matrix T, such that

[E : r] T = [Z- : 0]

where Z- is upper triangular, can be computed in partitioned form as follows:

1. Apply the MGS process to the rows of

E r

aa raa]

proceeding in the order from bottom to top, skipping linearly dependent rows, and

stopping when na orthonormal vectors have been obtained. Denote by ETT : T I]
a 43 Til
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the matrix whose rows are given by the na orthonomal vectors placed, from
a

bottom to top, in the order in which they are computed.

The matrix [TT: T T ] is nax2n. Denote by [TT: T 4] the nax2na matrix

whose rows are given, in any order, by the na orthonormal vectors which were

not computed.

2. Apply the MGS process to the rows of

bb

proceeding in the order from bottom to top, skipping linearly dependent rows,

until the full set of nb orthonormal vectors is obtained. (In the special

case where na = 0, the process can be terminated when the rows of Ebb are

exhausted.) Denote by T 2 the matrix whose rows are given by the nb orthonormal

vectors placed, from bottom to top, in the order in which they are computed.

The complete matrix T is given by

T 0 0 T14  0 0

0 T22  0 0 0 0

0 0 I 0 0 0
T

T 0 0 T44  0 0

0 0 0 0 1 0

0 0 0 0 0 1

but only T i, T22, T41 are actually computed. Now the resulting product

[ " : 0] = [z : r] T,
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with upper triangular E', is expressed in partitioned form by

a Za Eab Zac]

where

Zaa E aaT 11 + raaT4 1

Zab E abT22

Zbb = rbbT22

ac ac

Zbc = Zbc

cc cc

The complete square root covariance extrapolation is illustrated in Figure 6.4.
The inputs are Oi, Si, and Qi, and the output is S W . The partitioned form

of computation is very efficient in those cases where na + nb << nc. Note in

particular that the partitioned block of S represented by S cc does not change

during the extrapolation process.

6.3 Computation of Nominal State Vector and Transition Matrix

The mathematical development of Section 5.0 requires that solutions be obtained

to several differential equations. The state vector differential equation is

integrated to obtain the nominal state vector. Then the state vector differential

equation is linearized about the nominal state and this linear equation is solved

to obtain the transition matrix.

Let the state vector be permuted and partitioned into dynamic states xa, static
states xb which affect the dynamic states, and static states x which do not

bC
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affect the dynamic states. (Note this is not the same partition as used in
Section 6.2.) Then the differential equation for the nominal state vector
is given by

A a f fa[xa(t), Xb. t]

where the notation ()has been suppressed.

Linearization of (1) about the nominal state vector leads to the differential

equation for the fundamental matrix

'faa Mt 'iab(t) "Yac (t) Faa (t) F ab(t) 0 'Iaa~t M Tab(t) T'ac t)

(2) 'I ba(t) 'y bb(t) T bc~t M 0 0 0 T ba~t M Tbb (t) "~bckt) ti < t< tl

L T ca M(T)'b (t) T cc (t) L 0 0 0 J I~ L (t) M lcb (t) IF'c (t)

with initial condition

T a( ' ab(t') T act.) 1 0 0

TI ba(t') bb (t) Tbc (t.) =0 1 0

T ca (t') T cb W') TIcc(t') 0 0 1

where

Faa ax a
a 

Fab axT
a b
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It is clear that lac(t) = T Yba(t) = O, Ybb(t) = I, bc(t) = O ca(t) = 0,

vcb(t) = O, cc(t) = I for all t in [t', t"].

Consequently,

3aa(t) = Faa(t)yaa(t), t' < t < t"

and

(4) ab(t) = F aa(t)ab(t) + F ab(t) t' 4 t <

Once the solution of (3) has been obtained, (4) can be solved by direct

integration. Thus

t

ti

Now the transition matrix is given by

4aa(ts) 0ab(ts) 0ac(ts) a(t) ab(t) '(saaS) Tab(s) -

(6) ba(t's) 0bb(t s) Dbc(t,s) 0 I 0

ca (ts) 0cb (ts) 0cc (ts) 0 0 I 0 0 1

for all t, s in [t',t"]. From (6) it follows immediately that

aa (ts) ab (ts) 0

(7) ¢(t,s) = 0 I 0

0 0 I

where

!, (8) *aa(ts) = Waa(t)Iaa(s)
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and

(9) 9ab(ts) = 'ab(t) - oaa(tS)Yab(s)

for all t, s in Et', t"].

To summarize the procedure for constructing the nominal state vector and the

transition matrix, denote the dimensions of xa, xb, xc by na, nb, nc,

respectively. The steps are:

1. Given the nominal state initial condition

xa(t') x0

xb(t.) Xb

Xc (t,)o

solve the n a - vector differential equation

:k =f x (),xo t], xa(t') = 0o t' < t < t"

k<a(t) = faExa(t), xb, , (t) , t_ _tt

and put xb(t) = x, X(t) = for all t in t', t].

2. Evaluate the partial derivative matrices

af a
Faa a

Xa

F) fa ;

Fab xT
~ b

on [t', t"] using the nominal state vector.
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3. Solve the naXna - matrix differential equation

T aa (t) = Faa (t)aa(t), 'Faa(t') = I, t' < t < t"

4. Compute T-l(t) on (t', t") by direct matrix inversion or, alternatively,aa
by solving the differential equation

t) -? t)Fa -t, t') q I' t' t < t"aaa a a- -

5. Compute aa(t,s) for t, s in [t', tV] by

Caa(t,s) = Taa(t)Taa(s)

6. Integrate the naXnb matrix

t

'' f '-'r)F (r)dr, t' t"
[Taa ab](t) = -1 tb < t <

t'

7. Compute oab(ts) for t, s in [t', t"] by

b(ta aaab(t) - ('ea 't}

8. Put %ac(t,s) = O, ba (t,s) = 0, bb(ts) = I' Obc(t's) = O ca'ts) 0,

%cb(t,s) = 0, cc(t,s) = I for t, s in [t', t"].

In the above procedure, standard numerical integration methods can be used

to obtain solutions to the differential equations at discrete points in the

interval [t', t"]. Then, standard interpolation methods can be used to

obtain solutions at arbitrary points in [t', t"].

The results of a TRAM related computer study, in which a fourth order

Runge-Kutta integration method was used and in which fifth order spline

functions were used for trajectory interpolation and third order spline

functions were used for interpolation of the fundamental matrix, is reported

in [2]. The study, which was limited to an investigation of a !reefall

case, demonstrated that (with a step size of 5 seconds) the integration

algorithms and interpolation methods were efficient and sufficiently

accurate for TRAM applications in freefall.

50



6.4 Numerical Calculation of Partial Derivatives

Partial derivatives expressions are required in conjunction wi'h the

linearization of the state and measurement equations. If a function to be
differentiated is represented by a closed form analytical expression, its

derivatives can be calculated directly using standard formulas and the chain

rule. If, on the other hand, the function in question cannot be expressed

in closed form, then numerical calculation of some of its derivatives may

be required.

In some cases where direct calculation of derivatives by formula is

feasible, it may be undesirable for several reasons. First, in order

to use direct methods, analytical expressions for each partial derivative

must be developed, and then these expressions must be programmed. Often,

this is a tedious and error prone process for analyst and programmer alike.

Second, in many cases, the complexity of partial derivative expressions

greatly exceeds that of the primative function, and consequently the execution

time required for derivative evaluations can greatly exceed that required for

prime function evaluation.

Calculation of partial derivatives by numerical methods can be accomplished

very simply using only primative function evaluations. These functions must

be programmed regardless of how their derivatives are calculated, and the

additional analysis and programming required for numerical differentiation
is trivial. However, caution must be exercised to prevent the introduction

of excessive amounts of either roundoff or truncation error.

To illustrate the numerical differentiation procedure and bound its errors,

let g be a function whose derivative at z0 is approximated by

g(zo, + a) - g(z0 )g'(z o )

for some a > 0.
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The roundoff error in this approximation is given by

i1

r[g'(z r[g(z° + )] r[g(zo)]}

where r(g) denotes the roundoff error in the evaluation of g.

If g' is continuous on [zo, z0 + a] and g" is finite on (zo, zo + a), the

truncation error in the approximation of g'(z 0 ) is, by Taylor's formula

with remainder,

tg,(Zo)] =  g"(Zl)

for some z in (zo, zo, + a).

Observe that roundoff error magnitude increases with decreasing a, while

truncation error magnitude increases with increasing a. Consequently,

judicious selection of a is essential in order that the total error in

the approximation to g'(z ) not be excessive.

When g' is required in conjunction with a linearization procedure, a

rationale for the selection of a can be developed.

Linearization of a functional relation

w = g(z)

about a point z implies that the approximation

w = g(z) + g'(z)6z

is invoked, where 6z = z - z. When this representation is used for

computation there are, in addition to the error in g'(z), errors in w
due to both roundoff and truncation. Excluding any error in g'(z), the

roundoff error in w is given by

r[w] = r[g(z)]
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and, assuming g' is continuous and g" is finite, the truncation error in

w is given by

t[w] = 1 g"()(6z)
2

for some C interior to the interval joining z and z.

Now let zo = z and assume g" is continuous on some closed interval [a, b]

containing zo, z0 + a, and z. Define

I1r~g]lI = max Ir[g(c)]l

and

= max

a < C< b

Then the total roundoff and truncation error in the representation of w is

bounded by

je(w)j < 1jr[g]jj + 11g" 1 (6z)2

+ { 1r[gII + J Hg"II} (6z)

where only the terms involving a are due to error in g'(z 0 ).

Now suppose a = 6z. Then

2
Je(w)J 3 13r[g]IlI + JJg"JJ (6z)

Thus, with a = 6z, the roundoff error bound does no worse than triple, and

the truncation error bound no worse than double, when errors in g' are added

to the errors which already exist in w. Consequently, if the algorithm for

evaluation of g has negligible roundoff error, and if the linearization of

g has negligible truncation error, then g' has negligible roundoff and

truncation error when a a 6z.
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The above discussion shows that when g'(z ) is approximated by

g'(z) g(zo + ) - g(zo )

the roundoff error is bounded by

Ia [g']t < 2jr[g]jj

and the truncation error is bounded by

t~g, I I s I I"I I •

If g'(z o) is approximated by the symmetric formula

g'(z 0) g(z0 + a/2) - g(z 0 - a/2)

it can be shown that the roundoff error is likewise bounded by

lr[g']l < 2 (jr~g][I
_ t

and the truncation error is bounded by

~2

t[g']j < - I Igm

provided g"' is continuous on [a, b] (this time selected to contain

z + ct/2 and z - a/2).

The roundoff error bound is the same for the two formulas for g(z ), but

the truncation error is one order higher in the symmetric formula. Consequently

in comparison with the truncation error of the linearization process, the

truncation error of the symmetric differentiation formula should be negligible.

Since g(z) is required in the linearization procedure, calculation of g'(z)

by the unsymmetric formula requires only one additional evaluation of g.

Calculation of g'(z) by the symmetric formula requires, two additional

evaluations of g, but the additional computation is worth consideration

because of the truncation error protection it affords.
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The use of a = 6z in the above discussion was not intended for any purpose

other than error analysis. In practice it is desirable to select fixed

values of a for each variable with respect to which numerical partial

differentiation is to be performed. For each state variable, a value of
a roughly equal to the magnitude of the anticipated estimation error in

that variable should be selected.

6.5 Transit Time, Refraction, and Doppler Calculations

Let t denote the time at which a signal leaves a target vehicle and let t

denote the arrival time of the signal at a sensor which is tracking the

vehicle. The time difference

T H t - t,

is called the transit time from target to tracker.

The apparent range to the target at time t' is defined in terms of transit

time by

RA(t') = c,

where c is the speed of light in a vacuum. The apparent range RA(t')

and the true range R(t') differ only because of refraction.

If the true range and the range refraction error are known functions, then

both transit time T and time of transmission t can be computed for any time

of reception t by applying Newton's method to the function

g(t') = RA(t') - c(t - t')

This results in the algorithm

RA(t - Ti) CTi

i+l c + RA(t - Ti)
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which is solved iteratively beginning with To  0 and ending when the

condition

JTi+ 1 - Ti <

is satisfied for an arbitrary n > 0, or alternatively, when two successive

values of T differ by less than computer roundoff error.

In a two way doppler system in which the vehicle transponds (repeats an

exact replica of the signal received) with negligible delay, the doppler

frequency is defined as the difference between the transmitted and received

frequencies at the tracker. This difference frequency is expressed by

D(t) 1 d AD(t)

1 d
2Tr dt tr~t) t

- 1 - fo (t- 2T)- 2fot

-fdT

o dt

where fo is the transmitted frequency.

Now, since T satisfies the relation

cT = RA(t - T)

it follows that

CdT = RA(t - -t ]

Thus

d RA(t - T )

dt c + RA(t T)

and consequently
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D(t) = -2fo  c + ] t
c+A(t') t'=t

The transit time-and doppler calculations involve apparent range and apparent

range rate, which in turn involve refraction errors.

Under the usual assumptions regarding time invariance and spherical symmetry

of the refracting medium tt follows that

RA = R + p[R, Ej

AA = A

EA = E+ [R, El

where R, A, E, are true range, azimuth, and elevation of the target relative

to the tracker, p and c are range and elevation refraction errors, and RA,

AA, EA are apparent range, azimuth, and elevation. Observe that p and E

are functions of true range and elevation only.

The usual method of computing refraction errors involves "ray-tracing" through

the refractive medium with an assumed spherically symmetric refraction profile.

Viewed as a black box, such a refraction algorithm performs in the following

manner. The inputs are the apparent values RA and EA, and the outputs are

the true values R and E together with the errors p and c. Within the black

box operation begins by tracing a ray from the tracker with elevation angle

EA and continuing until the apparent range along the ray equals RA. Then R

and E are computed from the endpoints of the ray.

Now if the refraction algorithm produces smooth values of p and c, the
algorithm can also be used to obtain numerical partial derivatives of p and c

with respect to R and E. However, since the inputs to the refraction algorithm

are RA and EA, rather than R and E, it is necessary to employ the chain rule. Thus
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3RA DR A
aR aE DRA 3E A aRE

___ __ EA HEA

3arA EA a

or

aR2P R aR
aR 3E aRA HEA aRA EA

ac aH aR aE 9E E
aR E aA aEA aA

But since

=3 2RR ~
aR A aR A DEA 3E A

De 3E aE 8E -

' R A ' E A 5E A

it follows that only p, c, and the partial derivative matrix

aR aR
aRA A

ZRA ZE A

need be computed.

The complete procedure, using the symmetric central difference formula,

is outlined below.

1. At the tracker, trace a ray with elevatiob angle EA to apparent ranges

RA - ai/2, RA and R A + a/2, and compute the corresponding true ranlges and

elevations:
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R , R, R+

E', E, E

2. Put p = RA - R, E =EA E

R R+ -R _E = E+ -E
RA  , RA a

3. At the tracker trace a ray with elevation angle EA - a/2 to apparent

range RA and compute the corresponding true range and elevation: R-, E'.

4. Repeat 3. with elevation angle EA + a/2 and compute the true range and

elevation: R+ , E+.

5. Using the results of 3. and 4. compute

DR R+ -3R E E+ -E
3EA a 9 a

) 3E D R -.6. Put A = ( aE- (E-EaR-A

A A A A

Dp= (1) (E

D 3EA

3E A( DE A

DE A (DRA

6.6 Measurement Processing

The measurement variational equation for a four channel metric tracking

radar is given by (19) in Appendix C.2, and is repeated here for convenience. .
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6y(t) a  (:'A (: a(),

+ Hb6xb + H cO c

c ;.- iaTc

C .+

+ c IT

aav e
c + R'

A l A

T f

+ Hf- a a A - 6Xg
c +vRA

The variation 6y is formed as theivector difference of the actual and

nominal measurements.

Thus

r r

6y y-y * - I

d d

But if only the encoder measurements are available for processing, the

dynamic error terms replace the actual measurements, and
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The expressions for the dynamic error terms are given in Appendix C.3.

The nominal measurement vector y is computed by evaluating the measurement

equation using nominal values for all states. The form of the measurement

equation which is suitable for this purpose is called the dynamic measure-

ment equation. The algorithm for the dynamic measurement equation is

given below. The inputs are the encoder values RE, AE, EE, RE, sensor

indicated measurement time es, and nominal values of state variables. It

is assumed also that the range and elevation refraction corrections and

their respective partial derivatives, together with the true range and

elevation at which they apply, have been obtained by the procedure outlined

in Section 6.5. These quantities are denoted by p, c, - B- P- B R E

respectively. The outputs of the algorithm are the nominal measurement

variables, r, €, i, d.

6.6.1 Dynamic Measurement Algorithm

1. Correct sensor time by solving

es =t+ms (t)xd

for t, iteratively if necessary by Newton's method.

2. Compute the coordinate transformation from the geocentric

to the topocentric system at the-sensor site using astro-

nomic longitude XA and latitude GA:

-sin XA cos XA 0

CT -sin GA cos X -sin 6A sin XA cos 0A

cos GA cos XA cos GA sin 'A sin 6A

61



3. Compute the geocentric coordinates of the sensor site using
the geodetic longitude XG9 latitude Go and height HG:

a cos G -....

G cos G + HG cos G cos G

s le2  sin
2  G9

a cos G  .- .
Y2s G sin XG + HG cos 0G sin XG9V[1_: 2 stn 2

2

a (I-e2)sin eG - ~
Zs  - 2  -e + HG sin G,

V/l-2 sln WG

where a is the mean equatorial radius of the ellipsoid and

c Is its eccentricity.

4. Apply the iterative procedure developed in Section 6.5 to

solve for transit time, refraction and doppler:

(i) Initialize: 0 = , t' = t.

(ii) In the nominal trajectory time tags have been corrected

for nominal vehicle timing errors, put V = t'; other-

wise t" = t' + mT (t') xe
V

(iii) Interpolate the nominal trajectory to t" obtaining

geocentric coordinates x, y, z. 1, , ,, and compute:

u x-X s

v J=C y, -Ys

[ ]T [ ]w z Z s

R u2 + 2 +w2
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tn1

E= sin- 1 (WA/)

R = (uu +vv +ww)/R

E=

(iv) Compute apparent coordinates in presence of refraction

p p R2 R) + P(E E

C ~+ f(R-R) + -(E- E)

= aE

R A =R + p

AA =A

E = E + -c

RA R R+p

(v) Compute transit time increment:

R A CA

(vi) Test for convergence:

IF (6T 0) GO TO (viii).
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(vii) Adjust transit time and retarded measurement time and

repeat above steps:

T: 4- T + 6T

t, = t"T

GO TO (ii).

(viii) Compute apparent doppler shift:

-2 foRA
DA =

c + RA

where f is the transmitter frequency.

5. Apply target dependent errors at t':

RR = RA + ART

AR = AA+Ml T

ER = EA + AET

DR = DA + ADT

6. Recover doppler encoder value:

- 2 foRE

c + RE
DE =

7. Correct encoder angles for encoder errors.

AS = AE - AAE

ES  = EE - AEE,

iteratively if necessary using Newton's method.
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8. Denote the tracker outputs by

Ro= R E

Ao = A

E0  =E

Do D E

apply the feedback errors,

R F = R, 0 -AR F

D F = Do- AD

and compute the topocentric (locally level) to electronic

boresite~~~~~ codnt trnfrtiCEBboreite oordnat trasforatio. CLL'

9. Compute the discriminator outputs.

ro= RR -R F

do= DR - D F

=o tan(e/ey)

=0 tan 1 (ez/ey

where[e~ sinAR cosER
ey = I cosiR

LL R cosER

e~ sinE R J
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1O. Apply the sensor errors to obtain the nominal sensor outputs:

r ir r0 + Aris

d s d0  SF Fd 5

- a ~ +* 0 SF SF,~ *0

6.6.2 Measurement Equation Partial Derivatives

The coefficients of the state vector variations in (1) constitute the total

or dynamic partial derivatives of the measurement with respect to the

respective state variables. Thus

H x' /@RA

_ = Ha 7 ( aT )

aXT  H

RX b

a.y Hm
T Haxc

c+R a
dA

= H'=-m 6

..A

H x' /aR A
T4 - f ax T
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and

ax C A a

The quantities Ha, Hb, Hr, Hf and Hg, appearing in the above expressions,

are called static partial derivatives of the measurement with respect to

the respective state variables.

The total partial derivatives of the measurement can be calculated by

numerical differentiation using the dynamic measurement algorithm specified

in the preceding subsection. Alternatively, the total partial derivatives

can be constructed from the static measurement partial derivatives, where

the static partial derivatives are computed by numerical differentiation

using the static measurement algorithm to be given below. The latter

method of obtaining measurement partial derivatives is useful in conjunction

with the measurement variation averaging processing method to be

considered in Section 6.6.5.

The static measurement algorithm is very similar to the dynamic algorithm,

except that, in addition to the other inputs, t and t' are specified, and

thus it is not necessary to solve for transit time by iteration. Steps

in the static algorithm which are identical with corresponding steps in

the dynamic algorithm will be listed without elaboration.

6.6.3 Static Measurement Algorithm

I. Compute the coordinate transformation from the geocentric

to the topocentric system.

2. Compute the geocentric coordinates of the sensor site.

3. If the nominal trajectory time tags have been corrected

for nominal vehicle timing errors, put t" = t'; otherwise

t= ' + m T (t)X"

4. Interpolate the nominal trajectory to t" obtaining geocentric

coordinates, and compute R, A, E, R, E.
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5. Compute apparent coordinates RA' AA' EA' RA.

6. Compute apparent doppler shift DA.

7. Apply target dependent errors at t.

8. Recover doppler encoder value.

9. Correct encoder angles for encoder error.

10. Apply range and doppler feedback errors, and compute the
~EB

coordinate transformation CLL

11. Compute the discriminator outputs ro, do g ~,9'o"

12. Apply sensor errors to obtain sensor outputs rs, ds, *s' 4s"

In using either measurement algorithm for the purpose of obtaining partial

derivatives by numerical differentiation, computational efficiency can be

enhanced by judicious application of the chain rule. For example, if
a Xd denotes sensor timing bias, it follows that

Y = - mT(t')

Thus differentiation with respect to the scalar B suffices to compute the

derivatives with respect to the vectors xd and xe '

6.6.4 Measurement Processing with Adjustable Estimation Times

The measurement variation equation, which has been the subject of this

section, can be concisely written as follows
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k2) 6yyt 6x (t a + x
ax T X(t) + YT 6X b(t') + ax TXCM

ad ayad
e 

+ 2Y-6x + v(t)

ax T g
g

For purposes of illustration all states except those pertaining to survey

and refraction have been represented as time varying. Observe that there

are three-categories of states in (2); those which apply at t', those which

apply at t, and those which are constant.

Now let x a denote all states which relate to the vehicle or its trajectory

(including navigation and geopotential error states which do not appear

in (2)), let x denote all states which relate to the metric sensor system,

and let xy denote geodetic and refraction error states. Then the measure-

ment variation can be expressed by

(3) 6y(t) = ly x 6.') + 6 M +2x6 M +Va ax T axT Y

ay
Assume there is no state noise, let t* be arbitrary, and observe that

[6x(t' a [ t (t,t*) 0 0 6x (t*)

(4) 6x0(t) 0 88(tt*) 0 6xa(t*)

[ 6xy(t) J L 0 0 I 6xy(t*)

Substitution of (4) in (3) yields

6x (t*)

(5) 6ylt) = T 0(t *Tt*) + vt

[T ax 6x (t*)
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in which the measurement variation at time t is related linearly to the state

vector variation at an arbitrary time t*.

Equation (5) forms the basis for several processing options in which a

collection of measurements is used to update the estimate of the state

vector at an arbitrarily specified time. For example the state estimation

times can be made periodic, even though the measurement times are aperiodic.

It must be remembered, however, that (5) is valid only in the absence of

state noise.

6.6.5 Processing with Measurement Variation Average

A suboptimal method of processing will now be considered in which the

measurement variations, in each channel of each sensor, are averaged

over a specified time interval and collectively used to update the state

estimate at a specified time within the interval. An important distinction

here is that it is the measurement variations, not the measurement them-

selves, which are averaged.

The averaging technique to be developed here is based on (5) of the

preceding subsection and consequently is valid only in the absence of

state noise.

Averaging of the measurement variations prior to update of the state vector

estimate reduces the filter processing rate and thus enhances computational

efficiency. Also, averaging tends to reduce the magnitude of the serial

correlation coefficients of the filter input noise without deletion of

any measurements. Thus when serial correlation of measurement noise is a

potential problem, such as when encoder measurements are used exclusively,

averaging can be used to more nearly satisfy the requirement that the

measurement noise be serially uncorrelated (Cf. Appendix A).

The reason that the technique of measurement variation averaging is sub-

optimal is that higher order terms in a Taylor series for the averaged

variation are ignored. The error introduced by the neglected terms in-

creases with the duration of the time interval over which the averaging
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takes place. To maintain the truncation error within acceptable limits,

processing intervals are partitioned into subintervals and the measure-
ment variations on each subinterval are separately averaged.

To develop the technique of measurement variation averaging, consider a
single channel of an arbitrary metric sensor. Let an interval be selected

over which the variations are to be averaged. Let [ti , iel} denote the set
of measurement times in the interval, and similarly let ft'; icl) denote

the set of corresponding retarded measurement times. Let tI denote the

state estimation time specified for the interval. Then from (5) it follows

for each icI that

[~x (tI)]

(6) 6Y(ti) =j 4 oA(ttl) ${(ti,tl) 6x (ti) + v(t1)
x x xTI--a---

T [xy(tl) *

Bl ax(t I ) + v(t i )

where

BI = y t__(tl) Y y(~l

ax Y a~a~

and
axa(.t I )

X(t)= 6x(t 1 )

xXy(t I )

Since (6) is written for a single channel, Bi is a row vector. In fact,

Bi is the total partial derivative of y(ti ) with respect to x(ti), i.e.,.

Y(t )
Bi = Tt
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If Bi is viewed in terms of its constituent static partial derivatives, as

evidenced in (1), and transition matrix components, it is found that, for

fixed t, 51 is a function of x(t). x (tj) x6(t), x ( t). y, t, t

and the encoder measurement vector z(tt).

Let x x, x , .x T , be arbitrary and expand B to first order in (6).
Thus

(7) 6y(tj) ff6x(tz)

+ 6xT(t,)[x-(ot ) + T(x~(tt) -+cz)

BX 1 i;T + (xa(ti) -xa)

(zt-i) ) + v t i )

+ B1T  "t)

where B and its derivatives are evaluated at xa xa, x, xB, x,~ t-~, z

ax T x ti X) + (Xa(

with - x (t 1 ).

Now let < >I denote the operator which performs simple averaging over I.
Thus if N(1) is the number of elements of I, then .

Next put +
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x -- <xc(t.'>I

[B~ < W <Bt)>l

x = a

W =>

(8) <0y(t.)> I  = Bx(tI) +t

Extending the above analysis to all channels of a given metric sensor and
reverting to earlier notation it follows that

(9) <6y(t.)> xJ(t t + t(tI) + t

where the total partial derivatives , , ar

(9 -6~t) -x 0 -f Y U f a a t) +<~.

a TY

a T' ax axv~

Because of the decoupling of i and xa, xI and x , and T and Y' which

occurred in the above development, it is necessary that the total partial

derivatives _-, T -I be computed from static partial derivatives

using the expressions given at the outset of Section 6.6.2.
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Finally, the measurement error covariance matrix for use in conjunction with

measurement variation averaging must be computed. Extending (8) to include

the measurements from all channels of a given sensor which are to be processed

over the interval I, let

RIj = E(v(t1)v(tj) 
T

It then follows that

cov (<v(t.)>l) 2 Z Z R ij

N()ieI jel

In the particular case in which the measurement noise is serially uncorrelated,

I I:

coy (<v(t.)>I) = 2 E Rii  -N-.>1

6.7 Augmentation and Permutation of the State Vector

At any stage of the filtering operation it is possible to augment the state

vector with additional states. For example, when an RV is deployed it is

appropriate to augment the state vector with the RV position and velocity

states.

Moreover, when the filter operation is switched from one RV to another, the

trajectory states of the new RV become active while those of the old RV

become inactive. Consequently, in order to use the partitions defined either

in 6.2 or 6.3, it is necessary to permute the trajectory states of the two

RVs in question.

To illustrate the state augmentation procedure at RV deployment, assume the

state vector prior to augmentation is partitioned in the form

xa

where xa includes all dynamic states of the bus vehicl e (By) and xc includes

all static states. Lex xb denote the dynamic states of the RV.
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For a specified deployment configuration, a separation model based on energy

and momentum relations can be developed. In general the model has the form

a ~ aaox a +

xb jba I

where aaand D ba are known matrices, p is a known vector, and w is a zero

mean random vector with covariance

Q=rrT

6X is the variation of x prior to deployment, and Sx+ 6x+ are variations

after deployment.

The state vector is augmented to include xb. Thus

xa

[xciX Xb

After deployment, the variation estimates are given by

S[ ]
ox__ (aa

6xa + p

and

6X = 6X
c c

The square root covariance matrix prior to deployment is given in upper

triasnular form by
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:aa a

The augmented square root covariance matrix after deployment can be obtained
by applying the extrapolation technique developed in Section 6.2 to the matrix

aa aa aa ac

m' r

Th rcdr s culyapie nyt h um aix

baaa ba ac ,

S S S

o cc

Ll

The procedure is actually applied only to the submatrix0 0 S-S + 0
Caa Saa Saa Sab

r to obtain
0 - 0

L ba Saa L Sbb

The resulting square root covariance matrix is given in upper triangular

fo rm by

S+ S +  S+
Saa ab Sac

0S+ S +
Sbb bc

L ccj

J 14

where Sac = aaSac Sb+c = 0b Sac, and Sc+c = Scc

To illustrate the state vector permutation procedure, assume the state vector

prior to permutation has the form

X = ab

x
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and the square root covariance is given in upper triangular form by

aa Sb ScSaa ac

00b Sbc

o 0 S-
L ~ cc

Assume further that the state vector permutation consists of an interchange

of x and xb .

Permutation of the state vector variation estimates is accomplished by simply
A A

interchanging dxa and 6xb. Similarly the square root covariance matrix is

permuted by a simple row interchange to obtain

o s s

saa sab sac

0 0 Scc

Since the row interchange destroys the triangularity of S, the retriangulari-

zation method of 6.2 is applied to the submatrix

0 Sbb

Sa Sab

to obtain

Sbb Sba ,
+

0SL S.

aa

Thus the permuted and retriangularized S matrix is given by
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S+ S+ S+Sbb Sba Sbc

0 S +  S+

aa ac

L 0 Scc
+ - + .+ -

where Sbc = Sc Sac = S, and Sc = s-

6.8 General Partitioned Structure of the State Vector, Transition

Matrix, and Measurement Sensitivity Matrix

Extensive Use of vector element permutation and matrix partitioning has been

employed throughout this report for the purposes of illustrating theoretical

features and demonstrating computationally efficient algorithms. To this

point, the partitions which have been used were selected on a case by case

basis and no general structure has been evident. The purpose of this

section is to consolidate the piecemeal use of permutation and partitioning

into a general TRAM structure.

The state vector may be augmented with additional elements when an RV is

launched, And the state vector elements may undergo a permutation when the

estimation process passes from one trajectory segment to another. For a

given processing interval, the general structure of the state vector and

transition matrix depends on whether TMIG data is used to construct the
trajectory over the interval in question. The structure of the measurement

sensitivity matrix depends further on the measurement processing option which

is selected.

When TMIG data is used to construct the trajectory, the general structure of

the state vector is as follows.
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Xa

Xb

xc

X = Xd

Xe

Xfxf

Xg

where

Xa - trajectory states of vehicle on segment in process including dynamic

IMU states

Xb - trajectory states of other vehicles which have been augmented including

dynamic IMU states of those vehicles so equipped

Xc - metric sensor states including timing, survey, and refraction states*

xd - static IMU states, including timing, of other vehicles which have

been augmented

xe - IMU timing of vehicle on segment in process

Xf - static IMU states of vehicle on segment in process

Xg - geopotential states.

The corresponding partitioned structure for the transition matrix is given by

Oaa 0 0 0 eae 0 af eag

0 1 0 0 0 0 0

0 0 I 0 0 0 0

€= 0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I

*Throughout this subsection, it is assumed that all metric sensor states are
static, since SAMTEC sensors can be modeled in this fashion.
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If the measurements are processed asynchronously, the general structure of

the measurement sensitivity matrix is given by

H = [ ay 0 r'y ' ]
axa axT ax

However, it either adjustable estimation time processing or measurement

variation averaging is employed, the structure is

0 0 r~r aH 2Y t 0 : .UT -Y, + - ae' xT Car , xT ag "
aa : : axe ax : ax a

When a trajectory segment is constructed without the use of TTIG data, the

general structure of the state vector is given by

Xa

Xb

x - Xc

Xd
xd
Xe

where

Xa - trajectory states of vehicle on segment in process

xb - trajectory states of other vehicles which have been

augmented including dynamic IMU states of those

vehicles so equipped.

Xc - metric sensor states including timing, survey and

refraction states

Xd - static IMU states including timing, of all augmented

vehicles so equipped

Xe - geopotential states.

The transition matrix for this case has the structure
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0aa 0 0 0 0ae

0 I 0 0 0

0 0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

If the measurements are processed asynchronously,

H 0 0 1T T
[ax aa ci

But if adjustable estimation time processing or measurement variation

averaging is employed, then

H Taa 0 xT 0 Tx0ae]

6.9 Suboptimal Processing in the Presence of IMU Noise

In the development of the navigation variational equations in Appendix B, it

was necessary to introduce additional states to account for the noise in the
IMU velocity output. The function of these additional states is to model

the propagation of velocity noise into position and velocity variations.

In an optimal processor, the IMU noise states are included in the state

vector and are estimated. If, however, the position error induced by

velocity noise* is negligible in comparison with metric sensor position
errors, a suboptimal processing scheme in which the IMU noise states are
deleted can be employed with only slight degradation in estimation accuracy.

The principal advantage of the suboptimal processor is that computational

efficiency is greatly enhanced.

*For MMIII, this error is estimated to be less than one foot at boost termination.
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Although the IMU noise states are deleted and the effect of IMU noise

on position error is neglected in the suboptimal processor, IMU velocity

noise is not ignored, but is instead treated as an equivalent measurement

error in each of the metric sensor doppler channels. As a consequence

the measurement error covariance matrix of the collective doppler channels

is modified by the addition of another matrix to represent IMU velocity

noise. Since this results in a nondiagonal measurement error covariance,

the decorrelation process developed in 6.2 must be applied if scalar

measurement update ts to be used.

In order to achieve a substantial increase in computational efficiency, it

is necessary to employ measurement variation averaging in conjunction with

the suboptimal processor. (Note that this is made possible by the deletion

of the IMU noise states, since this eliminates state noise in the navigation

variation equations.)

An algorithm for calculation of the measurement error covarlance induced by

IMU velocity noise is developed below.

Let Dl, ..., DM denote the doppler channels to be processed on an interval

over which the measurement variations are averaged. Let to , ..., tN denote

the discrete readout times of IMU velocity in the averaging interval (to,

tN), and assume the IMU velocity noise is sequentially uncorrelated.

1. For each i = 1, ..., M, compute the retarded measurement times

t, ...9 tL of the i-th doppler channel which are in

the interval (to , tN).

2. For each i = 1, ..., M and each j = 1, ..., L(i), determine

k such that tk-l < tij < tk and set Cij equal to the

3x3(N+l) matrix* ( ) (l \ a~~f~
0tk't3 133 0i 3j - t  13 03 ... I03

k-k-l /kk-I / 3x3(N+l)

kth block (k+l)th block
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3. For each 1 = 1, .•., M, put

l L(i)
i NTiT j=l i  •

where N(i) is the number of measurements in the averaging

interval from the i-th doppler channel.

4. For each i = 1, ... , M, evaluate the partial derivative

of the i-th doppler channel measurement with respect to

velocity at the mid point of the averaging interval.

Denote this by

aT3VT "

5. Construct the Mx3(N+I) matrix C given by

9vT / CM

6. Partition into Mx3 blocks, i.e.,

where each Ck is x3.

Now denote the IMU velocity noise sequence by ro , ... , rN, and observe that

equivalent measurement error in the doppler channels is given by
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-oo
rN

Then if the IMU velocity noise covariance is given by

C = E(r T, k =O, .., N,

it follows that the covariance of the equivalent doppler measurement error

is given by

R = =T W NVTAR = Co0C vCo0 + ... + C NC vC N .

The total doppler measurement error covariance is then formed by adding AR

to the doppler measurement error covariance due to receiver noise.
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7.0 PROGRAM REQUIREMENTS

The purpose of this section is to establish guidelines for TRAM program

development. These guidelines are intended to insure that on the one hand

the functional requirements of estimation and error analysis are satisfied,

and on the other, the program structure is designed to be sufficiently

flexible and modular to provide for analysis of future as well as current

types of test vehicles and range support instrumentation.

The end-to-end execution of the TRAM program requires essentially three

phases of operation, consisting of respectively, data preparation, estimation,

and error analysis.

In the data preparation or pre-processing phase, metric sensor and

telemetry data are organized into files suitable for use in the estimation

phase. Included in this phase are computation of refraction errors and

their partial derivatives, gross editing, and statistical analysis of raw

metric data. Also included is the extraction of trajectory information

from the telemetry data.

In the estimation phase, the recursive filtering and smoothing operations

are performed iteratively until the estimates of the state vector elements

converge.

In the error analysis phase, error propagation parameters and error budget

values are combined to obtain estimates of the mean and covariance of the

state vector estimation error.

The error propagation parameters, required in the error analysis phase, can

be obtained during the estimation phase. This is accomplished by augmenting

the filtering and smoothing equations to include the sensitivity of the

estimation error to initialization errors (in all estimated states together

with a selected subset of the constrained states) and, in certain cases,

the estimation error covariance due to random measurement error.

However, the option should exist to exercise the filtering and smoothing

equations in an error propagation mode in which no measurements are processed,

but in which all error propagation parameters are obtained.
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In the sequel, the three phases of TRAM operation will be considered separately

and in more detail. Functional requirements, program modules and structure,

user options, and alternative modes of operation will be evident from the

discussion.

To maintain perspective, only those program operations which are essential

for estimation and error analysis will be considered. Auxiliary operations

required to provide analyst aids, in the form of various kinds of program

output, are not discussed. The redson for this is that the types of

auxiliary operations required are somewhat dependent on the user, and the

capability to perform these operations should reside in separate program

modules which are readily augmented or modified.

7.1 Pre-Processing Phase

The purpose of the pre-processing phase is to prepare files of data for use

in the estimation phase. The particular operations which must be performed

are highly dependent on the data source. However, since the estimator

performs operations of filtering, smoothing, and systematic error compensation,

these operations should not be performed by the pre-processor, on data to be

supplied to the estimator, regardless of the data source.

7.1.1 Metric Data Pre-Processing

The required pre-processing functions for metric data are:

(i) gross editing

(ii) refraction calculations

(iii) statistical analysis

(iv) file organization

The gross editing function serves first to identify intervals over which

each metric station is tracking properly. Second within each track interval,

subintervals are identified over which each sensor channel is tracking.

Finally, isolated points are identified by means of an edit flag, where loss

of data or transmission error occurs.
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In order to avoid aliasing of data, the level at which isolated points are

edited must be well above the level of systematic and random measurement

error. Thus, if M is a measurement, R is the reference used for editing,

o is the rms value of total measurement and reference error, and the measure-
ment is edited whenever

IM - RI > L,

then L should be at least as great as 10 a.

Refraction calculations are required in the pre-processor in order to

avoid repeating the time consuming ray trace operations on each iteration

during the estimation phase.

The refraction parameters are computed as functions of geometric, rather

than refracted, range and elevation angle. These parameters are required

at each point where a range, elevation or doppler measurement is to be

processed. Since the independent variables, i.e., geometric range and

elevation angle, are known only approximately for each measurement, the

partial derivatives of the refraction parameters with respect to the

independent variables are also required.

For the purpose of calculating the refraction parameters only, the raw

measurements should be corrected to obtain the best a priori value of

geometric range and elevation angle, and the refraction parameters should

be evaluated at this point.

Furthermore, when ionospheric refraction is significant, both group and

phase refraction parameters must be computed for each affected measurement.

The statistical analysis of the metric data is required to determine the

variances due to random measurement error. Unlike the measurement error

proper, the variances are smooth functions of time. Accurate estimation

of measurement error variances requires smoothing and calculation of sample

statistics over intervals of sufficient duration to reduce statistical noise

to a negligible level.
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When both sensor element outputs and encoder outputs are included in the

measurement set for a given channel, the variance of the sensor element

measurement noise is required at each sensor element measurement point.

If only encoder outputs are available, the variance of the encoded random

error is required at each encoder measurement point.

The raw data, refraction parameters, and measurement variances are organized

into separate files for each tracking station. A header must be applied

to each file which defines the tracking intervals over which the individual

channels of the station maintain track.

The data in each file is stored sequentially, in the order of increasing

time. The data to be stored Includes:

encoder data: T, R, A, E, D

encoder variances: , CEAEC 0D

sensor signals: t, r, , 4, d
2 22 2

sensor variances: a r ,  , ad

refraction parameters: p, E, 3P 2E L .- R, E
aR aE aR 'E

track indicator flags

edit flags

signal strength

7.1.2 Telemetry Data Pre-Processing

The pre-processing of telemetry data involves nothing more than extraction

of trajectory data and file organization. A file header must be generated

which defines intervals of data loss, and the times of guidance system

initialization, staging events, vehicle deployment, and system shutdown.

The data in the file is stored sequentially, in the order of increasing

time. The stored data includes:

major cycle data: time, position, velocity

minor cycle data: time, accelerometer, rate gyro and platform gimbal

angle outputs

time insertion data: time of receipt at TM station
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7.2 Estimation Phase

The operations which are performed in connection with the estimation phase

of the TRAM program can be categorized as follows:

1. Input

2. Initialization

3. Filter

4. Smoother

5. Convergence Test

6. Reset

Input operations include those which must be performed by the user in order

to initiate the estimation phase.

Initialization operations consist of those which must be performed by the

program before any filter or smoother operations can occur.

Filter operations consist of measurement processing and/or error propagation

calculations. Each time the filter is activated, it performs operations

over the entire trajectory. The filter operations are recursive, and

proceed in the direction of increasing time on each trajectory segment.

Each segment is partitioned into intervals over which the filter configuration

is fixed. Thus the measurement coverage and state dynamics do not change

on an interval, and all state vector augmentation and permutation operations

occur at interval junctures. Finally, the intervals are partitioned into

subintervals, and all bulk storage I/O operations are performed at sub-

interval junctures.

Smoother operations consist of filter output processing and/or error

propagation calculations. The smoother is activated at the conclusion of

each set of filter operations over the entire trajectory. The smoother

operations, once activated, are also performed recursively over the entire

trajectory, but in precisely the reverse order to those of the filter and

in the direction of decreasing time*.

*There is one exception to this which will be explained later.
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A convergence test is performed at the conclusion of each set of smoother

operations over the entire trajectory. This test determines if the state

vector estimates have converged or if the maximum number of iterations has

occurred. If neither part of the test is satisfied, the program performs

another iteration of the filter and smoother operations.

The reset operation is performed whenever an iteration of the filter and

smoother operations is required. The reset operation is required to

reinitialize the filter state vector and square root covariance to the

original input values. Also the nominal state vector is equated to the

estimated state vector obtained by the preceding smoothing operation.

The requirements for each of the above operational categories will now be

considered.

7.2.1 Input Requirements

A. Schedules

The user must define the order in which the trajectory segments are to be

processed. A measurement schedule for each tracking station, a schedule

indicating portions of the trajectory which are inertially instrumented,

and a schedule indicating thrust termination and reentry points on the

trajectory. (Some of these schedule items are derivable from the file

headers generated in the pre-processing phase.)

The schedule inputs are required in order to develop processing intervals

over which the filter configuration is invariant.

B. Parameters

The user must specify the complete set of parameters to be employed in the

program. These include a priori estimates of all state vector elements and

the state covariance matrix. Parameters which are not included in the state

vector but which enter either the state or measurement equations must be

specified. Also, the state noise covariance must be specified, and if a

measurement covariance is to be used which differs from that implied by the

measurement variances included in the data files, it must also be specified.
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C. State Vector Categorization

The user must specify, for each state vector element, whether it is to be

estimated or constrained. From the subset of constrained elements, the

user must specify those which are to be propagated for error analysis.

D. Measurement Processing

For each filter processing interval, the user must specify the type of

measurement processing to be used. The options are:

1. asynchronous

2. adjusted estimation time

3. measurement variation averaging

The first may be used in any case. The latter two are recommended only

when state noise can safely be ignored.

When the adjusted estimation time option is to be employed, the user must

specify the estimation times.

When the measurement variation averaging option is to be employed, the

user must specify the intervals (within the filter processing subintervals)

over which the averaging is performed and the estimation time within each

averaging interval.

In addition to the above, the user must also indicate whether the processing

is to be restricted to the use of encoder outputs. If this is to be the

case, the user must specify the dynamic error coefficients to be used for

each sensor.

E. Nominal State Vector

For the initial set of filter operations, the user must specify the nominal

state vector. (On subsequent iterations the nominal state vector is
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automatically set by the program.) The user must always specify the initial

condition for the nominal state vector, but he also has the option of

specifying the nominal state vector at arbitrary times over the entire

trajectory. When the user specifies only the initial condition of the nominal

state vector, he has the option of allowing the program to reset the

nominal state vector at arbitrary times by equating it to the filter

estimate of the state vector.

It should be noted, that although the user can in effect specify nominal

state vector resets arbitrarily, the program will actually restrict the

occurrence of resets to certain points within the filter cycle.

F. Convergence Criteria

The user must specify the convergence criteria of the estimator. The user

must also specify the maximum number of iterations of the filter/smoother

which are to be allowed in attempting to satisfy the convergence test.

The convergence criteria will be based on the differences between elements

of the estimated states obtained on successive iterations. For each estimated

state element, a test of the form "Is x(i+l) - x(') < "will be applied,

where I denotes the iteration count, k denotes the state vector element, and

ek 0 is specified by the user.

7.2.2 Initialization Requirements

Initialization operations consist of those which are performed prior to

the first set of filter/smoother operations and which are not repeated

on subsequent iterations.

A. Control Logic

The operations to be performed by the filter and smoother are dependent on

user inputs and program constraints. The control of these operations can

be accomplished by the use of various logical variables (flags) and the

specification of times at which discrete transitions in processing are to

occur.

92



Each state vector element has a flag to indicate in which of three distinct

categories it falls:

1. Estimated

2. Propagated

3. Constant

The constant states are invariant throughout all program operations. The

propagated states are constant for all program operations other than those

involving numerical partial derivative calculations with respect to these

states as required for error propagation.

The estimator state vector configuration is fixed on each processing interval,

and includes all estimated states which have been augmented up to and including

the epoch of the interval in process. A permutation array, or its logical

equivalent, must be generated for each processing interval to indicate (i)

which elements are in the estimated state vector and (ii) the order of these

elements within the estimated state vector.

The beginning and ending times for each processing interval must be set, and
flags must be generated to indicate the measurements to be processed. The

specification of measurements includes the designation of tracking stations

and the sensor channels to be processed.

Flags to indicate the type of measurement processing and the type of smoother

to be used on each interval must also be set.

Finally within each processing interval, the beginning and ending times for

the I/O subintervals must be set.

At the juncture of processing intervals, augmentation and/or permutation of

the elements of the estimated state vector can occur. This requires discrete

processing of the estimator state vector and square root covariance matrix.

The logic to control these discrete operations must be set during

initialization.
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On the first filtering pass only, the nominal state vector is reset at

arbitrary times which have been designated during initialization.

Filter logic will inhibit nominal state vector reset except at designated

points within its cycle, and a reset will actually occur at the first of

these points to be reached after the designated reset time.

As an alternative to the specification of arbitrary reset times, flags must

be available which provide for either of two extreme cases:

(I) no reset

(ii) reset at the highest possible rate, i.e., at every allowable

point of reset in the filter cycle.

A flag must also be set to indicate whether the nominal state vector is to

be reset externally or internally. In the former instance, the reset is

accomplished by interpolation of the external reference to the actual reset

time. In the latter case, the reset is accomplished by equating the

nominal state vector to the value obtained from the filter estimate at the

actual reset time. (In either case, the state variation estimate must be

reset such that the whole state vector estimate at reset is invariant.)

Finally, flags must be set to indicate whether error propagation calculations

are to be performed during the estimation phase or postpon.i until the error

analysis phase, and to control the optional calculatior assoc-ated wicn

error propagation.

B. Calculation of Constants

Depending on the assigned category for each state, a number of program

variables may actually be constant during either the estimation phase or

the error analysis phase, or both. For example, station coordinates,

coordinate transformations, geopotential parameters, and so on, may be

constant during an entire phase of program operation.

It is important to compute, to the extent possible, all program constants

during initialization. Furthermore, the structure of-the routines which

are used in the TRAM program should be designed so that the flags which
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define the category of each state element can be used to bypass program

blocks whenever these blocks serve only to recompute constants.

C. Filter Initialization

Prior to filter operation, the filter nominal state vector, state vector

variation estimate, and square root covariance must all be initialized.

The filter nominal state vector is equated to the initial condition which

the user has specified for the nominal state vector. However, the initial

condition of the nominal state vector must be brought into time commensuration

with the a priori state vector estimate, if this condition is not already

satisfied. This is accomplished by interpolation if possible; otherwise it

is accomplished by integration of the state differential equation using

the nominal state vector initial condition.

The state vector variation estimate is equated to the difference (estimate

minus nominal) between the'a priori state vector estimate and the initial

value of the nominal state vector.

The square root covariance is initialized by applying the Cholesky

decomposition to the a priori covariance of the state vector estimation

error. The object matrix to which the Cholesky decomposition is applied is

obtained by row/column permutations of the a priori covariance to conform

with the initial state vector configuration.

7.2.3 Filter Requirements

At interval junctures, elements may be augmented to the filter state vector,

and the filter state vector may then undergo a permutation. Correspondingly,

augmentation and permutation operations must be performed on the square root

covariance matrix of the filter, which must also be retriangularized.

All filter I/O operations are performed at subinterval junctures. The

inputs include measurement data and the nominal trajectory. The required

outputs are dependent on the particular processing options in effect, but

basically include all filter outputs and error propagation parameters required

by the smoother.
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Within each subinterval the filter operates in a cyclical manner performing

functions of extrapolation, update, error propagation, and nominal resets
when required. The specific filter requirements will be considered

separately for each of the measurement processing options.

A. Asynchronous Processing

Asynchronous measurement processing is recommended on each interval over

which state noise is not neglibible, but it may in fact be used on any

interval.

Consider an interval on which asynchronous measurement processing is to
be employed. On this interval, the measurements from a fixed set of

tracking stations are scheduled for processing.

The processing is performed recursively on blocks of measurements, each

consisting of one measurement from each scheduled sensor channel of each

scheduled tracking station on the interval under consideration.

The first step in the processing of a block is to check the edit flags

and delete those channels which have been edited during the pre-processing

phase.

Next, for each measurement that remains in the block, the nominal measurement

is computed along with the nominal receive time and retarded time of the

measurements at each station, and measurement variations are formed.

The measurement variations of each station are then processed in turn,

where the order of station processing is the same as the order of increasing

retarded measurement times.

For each station, the processing consists of extrapolation operations followed

by update operations. The extrapolation operations are performed to bring
the filter and error propagation parameters up to the station retarded

measurement time. Then, filter and error propagation update operations are

performed fcr each sensor channel of the station.
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If nominal state vector resets have been scheduled on the first filter pass,
they only can occur immediately following the processing of one measurement
block, prior to computing the nominal retarded measurement times of the
next block. Thus at the conclusion of the processing of each measurement
block, on the first filter pass only, a test is performed to determine if
a scheduled reset time has been passed during the processing of that block.
If so, the nomirial state vector and state variation estimate are reset at
the time corresponding to the end of the block.

On subsequent filter passes, nominal state vector resets do not occur,
since the nominal state vector is always equal to the whole state estimate

obtained on the preceding smoother pass.

However, when fixed-interval smoothing is employed an operation which
resembles reset must be performed as a part of each extrapolation. This

operation is required because the variation estimates are extrapolated
with state noise equal to zero.

Thus when fixed-interval smoothing is employed, the nominal state vector

and the state variation estimate are each extrapolated (to the retarded
measurement time of the station in process) with state noise equal to zero.
Then the difference between the extrapolated state vector and the nominal
state vector, iterpolated to the retarded time, is computed (extrapolated

minus nominal), and the difference is added to the extrapolated state
variation estimate to obtain an adjusted state variation estimate at the
retarded measurement time. The adjusted state variation estimate is used

in subsequent processing, and the extrapolated state vector and extrapolated
state variation estimate have no further use.

Intermediate filter outputs are required on processing intervals in which

fixed-interval smoothing is to be employed. In this case filter outputs

must be saved before and after the update operations for each station in

every processing block.

Thus, within each processing block, when the extrapolation operations for

a given station are complete, the nominal state vector and statt variation
estimate along with the nominal received and retarded measurement times,
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the filter square root covariance matrix, the filter transition ,ifatrix,

and the error propagation parameters must be saved. Then when the update

operations for all sensor channels of the station are complete, the state

variation estimate, the filter square root covariance matrix, and the error

propagatiop parameters must again be saved.

B. Processing with Adjustable Estimation Time

Adjustable estimation time processing is recommended only when state noise

is negligible*.

Adjustable estimation time processing is identical with asynchronous

processing to the point where the measurement variation, receive time,
and retarded time have been computed for each measurement in a block.

At this point, extrapolation operations are performed to bring the filter

and error propagation parameters up to the estimation time which has been

designated for the measurement block as a whole.

Then, filter and error propagation update operations are performed on the

entire block of measurement variations in any convenient order.

If nominal state vector resets have been scheduled on the first filter pass,

they can only occur immediately following the completion of the set of update

operations for an entire measurement block. Thus, whenever, on tie first

filter pass only, a scheduled reset time has been passed during the processing

of a measurement block, the nominal state vector and the state variation

estimate are reset at the estimation time associated with the block.

On subsequent filter passes, nominal state vector resets do not occur.

However, when fixed-interval smoothing is employed, the same reset-like

operation described for asynchronous processing must be performed at the

close of each extrapolation.

*Although the actual state noise process may be negligible, this does not
preclude the use of a nonzero state noise covariance matrix in the filter
mechanization and subsequent use of the fixed-interval smoother. This type
of mechanization can be useful in reducing unmodeled error growth in the
estimates.
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On processing intervals in which fixed-interval smoothing is to be employed,

filter outputs must be saved before and after the set of update operations

for each measurement block.

Thus when the extrapolation operation for a measurement block is complete,

the nominal state vector, the state variation estimate, the designated

estimation time, the filter square root covariance matrix, the filter

transition matrix, and the error propagation parameters must be saved.

Then, when the set of update operations for the block as a whole is complete,

the state variation estimate, the filter square root covariance matrix,

and the error propagation parameters must be saved.

C. Processing with Measurement Variation Averaging

Processing with measurement variation averaging is an extension of

adjustable estimation time processing, and is likewise recommended only

when state noise is negligible.

When measurement variation averaging is employed, each processing subinterval

is partitioned iito averaging intervals. Then, for each averaging interval,

a block of measurements is formed, and an estimation time within the interval

is designated.

The measurements which constitute a block consist of all measurements, within

the averaging interval of the block, from all scheduled tracking stations

for the interval in process.

Once a block is 'ormed, edit flags are tested, and individual measurements

which have been edited during the pre-processing phase are deleted from

the block. Then, for each measurement remaining in the block, calculation

of the nominal measurement and nominal receive and retarded measurement

times is performed.

Next the measurement variations for the block as whole are computed and,

for each sensor channel, the average measurement variation over the

averaging interval is computed.
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Extrapolation operations are now performed to bring the filter and error

propagatipn parameters up to the estimation time which has been designated

for the averaging interval.

After extrapolation, the filter and error propagation update operations are

performed on the entire block of averaged measurement variations (consisting

of at most one per sensor channel) in any convenient order.

If nominal state vector resets have been scheduled on the first filter pass,

they can only occur following the completion of the set of update operations

for an entire averaging interval. Thus, on the first filter pass only, at

the conclusion of the set of update operations, a test is perfarmed to

determine whether a nominal reset has been scheduled at any time within the

averaging interval.

If no nominal reset has been scheduled within an averaging interval, the

filter processing described above is repeated for the next block of measure-

ments and the next averaging interval.

But if a nominal reset has been scheduled within the averaging interval, it

is now performed. Moreover, regardless of the designated reset time, the

actual reset takes place at the estimation time of the interval. If the

nominal is to be reset from an external source, the source value is first

interpolated or -ntegrated to the interval estimation time. Then the

nominal state vector and the state variation estimate are reset, and the

filter processing described above is repeated for the next block measure-

ments on the next averaging interval.

On processing intervals in which fixed-interval smoothing is to be employed,

filter outputs must be saved before and after the set of update operations

for each averaging interval.

Thus when the extrapolation operation for an averaging interval is complete,

the nominal state vector, the state variation estimate, the designated

estimation time, the filter square root covariance matrix, th( filter

transition matrix (from the preceding estimation time to the current
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estimation time), and the error propagation parameters must be saved. Then,

when the set of update operations for the averaging interval is complete,

the state variation estimate, the filter square root covariance matrix, and

the error propagation parameters must be saved.

As in all other cases, between the points at which filter outputs before

and after update are saved for the smoother, no nominal reset is allowed.

7.2.4 Smoother Requirements

The two smoother types which may be employed in the TRAM program differ

substantially in mechanization and operation, and, for this Yeason, the

two will first be considered separately.

A. Retrograde-Integration Smoother

This smoother is by far the simpier of two types, but it can be effectively

employed only when state noise is negligible.

On intervals in which retrograde-integration smoothing is to be employed,

it is only necessary to integrate the dynamic states and the error

propagation parameters. The integration process is initialized at the

end of the interval and proceeds in the direction of decreasing time.

Static states are held fixed during each retrograde-integration.

This type of smoother requires no intermediate filter output, but its own

output can be stored at the same subinterval junctures as used for filter

inputs.

If the retrograde-integration smoother is used on an interval at the end

of a trajectory segment, then it is initialized by the final filter estimate

of the whole state on that interval. When this case occurs, the final time

on the interval, i.e., initial time for the retrograde-integrator, must be

adjusted by applying to the nominal vehicle time tag at the end of the

interval, the difference between the filter estimate of and the nominal

value of the vehicle timing correction at the end of the interval.
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B. Fixed-Interval Smoother

The fixed-interval smoother is employed on processing intervals In which

state noise is not negligible. It may also be used at interval junctures,

coinciding with vehicle deployment, where random separation errors occur.

The fixed-Interval smoother operates recursively on filter outputs and

error propagation parameters, but in reverse order to the filter recursion.

The smoother requires the filter estimates of the whole state vector before

and after each filter update. These are obtained, respectively, by

combining the noinal state vector and the filter estimates of the state

variation before and after each update. The subinterval structure used

for filter I/O operations is also used for smoother I/O.

At each stage in fixed-interval smoothing, the time tag of the filter

estimate must be adjusted by applying the difference between the smoother

estimate and the nominal value of the vehicle timing correction at the

estimation time.

At the conclusion of the entire smoothing process, the smoothed estimates

can be interpolated to any convenient set of times, designated by the user,

and stored for future use. For this it is only necessary that the stored

smoothed estimates be sufficiently closely spaced such that smoothed

estimates at arbitrary times can be accurately obtained using low order

interpolating splines.

C. Comments on the Smoothing Process for the Trajectory as a Whole

The smoothing operation is performed over the trajectory as a whole in

exactly the reverse order to the filtering operations. At interval junctures

the smoother may change from one type to another, but the process is

essentially continuous. Furthermore, when discontinuities occur at interval

juncture such as with separation errors at deployment, the fixed-interval

smoother is used to make the transition, regardless of the smoother types

used in either of the intervals forming the juncture.
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It was mentioned earlier that there is one exception to the rule that the

smoother operates in reverse order to the filter. The single exception

occurs, as a processing option, when state noise is negligible in the
inertial guidance system of the boost vehicle.

In this case, at the conclusion of the filter pass on any iteration, the

initial conditions for the smoother estimate of the boost vehicle trajectory

are completely known, and since there is no state noise, the smoothed boost
vehicle trajectory can be reconstructed by forward integration o2 the navigation

equations. (It is tacitly assumed that the launch point survey error has been

estimated, or it is negligible, in which case the uncertainty in the navigation

initial position and velocity is zero.)

When this option is exercised on the boost segment, the smoother processing

on all other segments is unaffected, except that it terminates at points just

after vehicle deployment, and it is no longer necessary to smooth the dis-

continuity at deployment events.

7.2.5 Convergence Test

The number of filter/smoother iterations which are performed during the

estimation phase is determined by the convergence test which is performed

at the end of each iteration.

The first part of the test is performed by comparing differences, in each

of the components of the estimated state vector, obtained on successive

iterations. For convergence, each element of the estimated state vector

must satisfy the convergence criterion which has been specified by the

user. This part of the test is performed on the second and all subsequent

estimation cycles.

The other part of the test simply counts the number of estimation cycles

which have been performed and compares this with the maximum number the

user has allowed
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If the maximum number of cycles permitted by the user is attained without

satisfaction of the convergence criteria, program operation is halted and

an error message to this effect is generated.

7.2.6 Reset

When the convergence test results in another iteration of the estimator, it

is necessary to perform a reset operation.

The reset is required to set the nominal state vector and reinitialize the

filter.

The nominal state vector is equated to the estimated state vector obtained by

the smoother. For this purpose, the smoother trajectory estimates can be

interpolated to a designated set of time points. Then, for intermediate

points required on the next filter cycle, spline interpolation car be used

between the designated time points.

Reinitialization is required for the filter state variation estimate and

the filter square root covariance matrix. The state variatior estimate is

equated to the difference between the a priori whole state vector estimate

and the value of the new nominal state vector at initialization time.

7.3 Error Analysis Phase

In this phase of orocessing an error analysis of the estimation process is

performed. This is accomplished by processing an error budget, specified

by the user, with the error propagation parameters of the estimation process.

The result of the error analysis is the bias and covariance of estimation

error based on the specified error budget.

In its complete form the error budget must include a schedule of state and

measurement noise covariances as well as the mean and covariance of the

initial value of the vector whose elements are the estimated and propagated

states.
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The error propagation parameters may be obtained during the estimation phase.

However, it is usually more efficient to defer calculation of t-iese parameters

until the estimation process converges. Also, it may be required for planning

purposes to perform an error analysis in advance of the estimatior phase.

For these reasons, an error propagation mode is required in which the error

propagation paramaters are obtained separately from the estimation phase.

In the error propagation mode, the nominal state vector is suFplied externally,

and it is necessary to perform all estimator functions, except measurement

processing, as well as the error propagation functions. In the particular

case in which the error propagation mode follows the estimation phase, the

externally supplied nominal state vector is equal to the whole state vector

estimate obtained during the estimation phase.

In order that the noise induced errors be properly accounted far, the filter

and smoother gains actually used for estimation must, with one exception, be

based on the noise covariance schedules in the error budget. The one ex-

ception occurs on intervals in which state noise is negligible, in which case

the covariance of estimation error due to measurement noise can be computed

by the alternate method given in Section 5.0, regardless of how the filter

gains are obtained.
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A. LINEAR ESTIMATION

Consider a linear stochastic system described by

(1) xi+ 1  = otx1 + u1, 1 = 0, 1, ..., N-1 ,

(2) Yi = Hixi + vi, i = 0, 1, ..., N

In these equations x is the state vector, and y is the measurenent vector.

fui, i = 0, 1, ... , N-l} is a sequence of random vectors called the state
noise process, and {vi, i = 0, 1, ..., NJ is a similar sequence called the

measurement noise process. These processes are assumed to be zero mean,

sequentially uncorrelated, and mutually uncorrelated with each other and x0

Mathematically these assumptions are expressed as follows:

E(ui) = 0, E(uiu.) = Qi.i.; 1, j =0, 1, ..., N-1

E(vi) = 0, E(vivT) = Ri6ij; i, j = 0, 1, ..., N

and

E(uiv) = 0, E(xu) = 0, E(x v) = 0

where

o, i j

Q and R are the state noise and measurement noise covariance matrices, re-

spectively. To ccmplete the system description, it is assumed that the

a priori mean and covariance of xo, denoted by xo and P-, respectively, are
0 0 0

also specified.

The estimation procedures to be considered in the remainder of tiis appendix

will apply to the linear system given by (1) and (2).
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A. Optimal Linear Estimation

For the system (1), (2), let x(iij) denote a function which is in the form

of a constant plus a linear function of the measurement set y0  " yj and

which has the property E[x(ilj)J = E(xi). Such a function is said to be a

linear unbiased estimate of xi given yo, ... yj.

Let x(ij) be a linear unbiased estimate of x1 given yo. y"j, and suppose

x(ijj) has the property*

E[ljx(i J) - xil12I < E[2x(ij) - x ll I

for all linear unbiased estimates x(iij) of xi given yo, ... 9 yj. Then
x(iij) is said to be an optimal linear estimate of xi given y ... Y"

It can be shown that an optimal linear estimate of xi given yo' ""Yj
always exists and is unique. The notation x(ilj) will be used exclusively

to denote the optimal estimate defined above, and the notation P(ilj) will

be used to denote the error covariance of x(ijj) defined by

P(tlj) -- EC(x(ilj) - xi) (xCli) - xi) TI

P(ilj) is also called the state covariance of xi given yo, ... 9j

A.2 Kalman Estimation

A recursive procedure for realization of the optimal linear estimator for
the system (1), (2) has been developed by Kalman [3], (4]. The procedure
consists of two stages. The first stage employs a filter algorithm, while

the second uses a smoother algorithm**.

The notation i zi 2 = z Tz denotes the ordinary Euclidean norm of z.
*The terminology employed here is due to N. Wiener and has been adopted by R.
Kalman. An estinator which estimates xt given measurements with indices up
to and including j is called a filter if i = J; it is called a predictor
if I > J, and it is called a smt-h-e--r if i < J.
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Application of the Kalman filter to the system (1), (2) yields x(iji) x

and P(ili) - P. by recursion. The algorithm is

(3) K = PiHT[HiPiHT + R111 i

(4) x = xi + Ki(y i  Hix i

(5) P = Pi" KiHiPit i =0, 1 , N

(6) xi+ l = ixi

(7) P- = P OT + Qi, i = 1, ... , N-(7) i+l : ¢i Ii

The smoother algorithm is initiated when the filter stage is complete. The

smoother uses the filter outputs in a recursive process, which runs in reverse

order to the filter recursion, to compute x(ijN) and P(ijN), i = 0, 1, ... , N.

The algorithm for smoothing is given by

(8) Ai = Pi i(Pi+1) '

(9) x(ilN) = xi + Ai[x(i+lJN) xi+ l ,

(10) P(iJN) = Pi + Ai[P(i+-N) "Pi+1]Ai ' i N-1, ... , 0

A.3 Carlson Square Root Filter Formulation

There are several algorithms which are mathematically equivalen. to the

Kalman filter algorithm, but which recursively compute a square root S of

the state covariance matrix P, rather than the covariance matrix itself

[5], (6], [7]. In each of these algorithms, the condition

=5 T
p1 SS



which is the defining relation for the square root of P, holds. These

algorithms differ markedly because of the nonuniqueness of S. The

distinctive feature of the Carlson algorithm is that S is maintained in

triangular form.

The Carlson algorithm is initialized by applying the Cholesky dcomposition

and, if necessary, the Gram Schmidt process (Cf Appendix D) to Po to obtain
0

the appropriate (i.e., upper or lower) triangular form of S.I,'
The Carlson algorithm will be given for the case where the measurement

is a scalar. When the measurement is a vector, the Carlson algorithm can

be applied sequentially to each scalar component of the measurement vector

by the procedure developed in Section 6.2.

The measureient update relations for the Kalman filter are given by (3), (4),

and (5) and the time update, or extrapolation, relations are given by (6)

and (7). The corresponding update and extrapolate relations will now be

developed for the Carlson square root filter.

Assume that xi , Si, and yi are given, where Si is triangular and satisfies

P-= S:(S:)T

Assume further that yi is a scalar measurement of the form

Yl = tixi + vi

where vi has mean zero and variance ri. Then the Carlson update algorithm

can be used to compute xi and Si , where Si is triangular and satisfies

SiSi = P P- KhP
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The Carlson update algorithm will be derived for the case ir, which S is

maintained in upper triangular form. However, by a simple reversal of

index order, this algorithm can also be used to maintain S in lower tri-

angular form.

For notational brevity, the index i will be dropped. Thus

y = hx+ v, E(v) = 0, C(v) - r,

and

P- -(s-) T

Put

g (S-)ThT

and

hP'hT + r gTg + r

If 0 0, then x = x- and S = S', and the update process is complete. If

a 0, it follows from (3) that

(11) K = Sg

Then from (4)

(12) x =x + K(y -)

and from (5)

p = S-(S-)T_ ()SggT(S)T
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or

(13) P = S'I-1  ggTI (S)TS

Now let U be an upper triangular square root of [I - gg T, i.e.,

- - ggT = UUT

Then with

(14) S =SU

it follows that

p = SS

Since the product of two upper triangular matrices is itself upper triangular,

it is clear that S is the desired form of the updated square root covariance.

All that remains to complete the development of the Carlson update procedure

is to compute U. To this end let

gT = (0, ... , O, gm+l' ..." gn )

where 0 < m < n-l. (If gi = 0 for all i, then U = I, K = 0, x^= , and

S = S-.)

Then, by the Cholesky decomposition,
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where W is upper triangular and

-i r+ i Z1 2 i = nf~l

Wki,, .k m+l, i-, m+2, n
(r + gfg (r + g

j<i J ~

j~ig j  J<ig~

Now let

ai : i 1 + Z i -, ... , , : r
*1 m

i = ~~/i, i m, ... ,n,

and observe that

wi = ii _ I/i ,i =n

Wki = -gkgi/(Oi 10i) , k = m+l, ... , i-1, i = m+2, ... , n

and

a = an

Define

1 ii i , i = m+l, ... , n ,

0 ,i< im+l

S gi/(ili), i = m+2, ... , n
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c 0 . . . . 0

0 2

d 1 0 . . . . 0

0 d2 ' . 0

00

and

0 g1 9 1 . .. g1

o 0.9 2 . .. 92

Then

Ui C-GD.

Now with the cclumn partition notation

S- = [s1 I.. I J

S = EsI V4SO]

it follows from

S S-U =SC -SGD
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that

si = cis - di (E s )
j<i

Define

Pi+ - Pi + gisi i = +l, ... , n,Pi =O, <m+l.

Then si = cisi - dip i , i = 1, ... , n

Moreover, since
n

= n .s" = S-g ,

Pn+l gjsj

and

On = a,

it follows from (11) that

K p1 Kn+l

From the above development, it is seen that the Carlson update procedure can

be carried out with recursive operations on the columns of S. An auxiliary

sequence of vectors {pi, i = 1, ..., n+l} is computed, and the Kalman filter

gain is given by K = nnI
%n Pn+l

The complete algorithm, valid for both upper and lower triangular forms is

summarized below. For the upper triangular form ill, in=n, and id=+l,
while for the lower triangular form, il=n, in=1 , and id=-l. Ntice that

the algorithm includes tests to prevent divisions, as well as certain mul-

tiplications, by zero.
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Carlson Update Algorithm

1. gT =(g' "" gn) = hS

2. K =O, ip = 0

3. a =r,y =%F

4. i=iI

5. IF (r > 0) GO TO 11

6. IF (g. > 0) GO TO 12

7. s= s

8. IF (i in) GO TO 35

9. i i4-+ id

10. GO TO 6

11. IF (g O = 0) PUT s= s AND GO TO 21

212. a=r+g
i

13. B=y

15. IF (o > 0) GO TO 18

16. si = 0

17. GO TO 20

18. c = o/a

19. si = c s1

20. K = gisi ,  ip = 1

21. IF (i=in ) GO TO 34

22. i i+i d

23. IF (g =0) PUT s= s AND GO TO 33
21

24. +

25. B y

26. y
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27. c B/y

28. Si =c s

29. IF (ip = 0) GO TO 32

30. d = gi/(By)
31. s i  si -dK !

32. K K + gisi, ip = 1

33. IF (i i in) GO TO 22

34. IF (i- 1) K = K
A A

35. x=x"
A A

36. IF (ip 1) x - x + K (y-hx-)
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To develop the extrapolation relations for the Carlson square root filter,

assume that xi, Si are given, where S. is triangular and satisfies

P. = SiST -=

1 ii

Assume also that

xi+l = ixi + ui

where ui has mean zero and covariance Qi. Then xi+ l  f x., and all that

is required of the Carlson extrapolate algorithm is to compute Si+l , where

Si+ls triangular and satisfies

Si+l(Si+ T= Pi+l = O + Qi

The Carlson extrapolate procedure is based on the Gram-Schmidt orthogonalization

procedure which is discussed in Appendix D. To illustrate the procedure, drop

the subscripts for brevity and let the dimension of S and Q each be nxn.

The first step in the procedure is to apply the Cholesky decomposition to

obtain a square root of Q, i.e.,

=

Then the nx2n matrix

[s I r]

is formed. Finally, an orthogonal 2nx2n matrix T is determined such that

(15) CS 101 = CoS I riT

where S" is an nxn triangular matrix. Since
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S_(S-) T  
= [,S I rTTT  T

SssToT + rrT= OpOT + Q

it is clear that S" is the desired form of the extrapolated square root

covariance.

Thus all that remains is to construct an orthogonal matrix T which satisfies

(15). This is accomplished by application of the Gram-Schmidt process to

the rows of [S I r], augmented as necessary by the rows of the 2nx2n

identity matrix I2n' to obtain a set of 2n orthonormal vectors. These

orthonormal vectors then form the columns of T.

If S" is to be upper triangular, the Gram-Schmidt process is applied to the

rows of

1n 0[ n ]0 1n

in the order from bottom to top, until a complete orthonormal set is obtained*,

to form the columns of T in the order n, ..., 1, n+l, ..., 2n.

If S is to be lower triangular, the orthonormalization procedure is applied

to the rows of

Linearly dependent rows are simply skipped over.
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in the order from top to bottom, until a complete set is obtained, to form
the columns of T in the order from left to right.

That T satisfies (15) follows by construction. Also, it should be noted
that at most, n columns of T need be computed since the products involving
the remaining columns of T in (15) are all zero.
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B. VARIATIONAL FORM OF THE NAVIGATION EQUATIONS

In this appendix, the variational form of the navigation equations with

three degrees of freedom (DOF) will be developed. The reference coordinate

system is taken as earth fixed (EF), and the 3 DOF are the EF position

coordinates of the navigation system. Extension of the results in this

appendix to 6 DOF can be readily accomplished by augmenting the three

position coordinates with the three Euler angles which express the spatial

attitude of the navigation system with respect to the EF coordinate frame.

Extension to 6 DOF is required when the navigation system is of the "strap-

down" variety corionly used to provide on-board instrumentation data during

reentry.

Let P denote the position vector of the navigation system relative to the
ddearth center of mass. Denote by [ -ti and T]E , the time derivatives

with respect to inertial and earth fixed frames, respectively. Then

(1) P = AG(P) + AF

where AG(P) is the acceleration due to gravity at P, and AF is the acceler-

ation of the navigation system due to all forces except gravity.

The velocity vector of the navigation system relative to the earth is de-

fined by

(2) V d P.

But

= V + WxP ,

where w is the angular velocity vector of the earth with respect to an

inertial frame.
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Consequently

(3) [dll dt + (aXP)

Li -[Ldt]) (V + wxp) + wx(V + wxp)

V + 2wxV + xwP

A A+A R(P, V)I

where

A E E V V

and

A R(P, V) =- 2wxV + wx(wxP)

The quantity A R(P, V), due to earth rotation, is the sum of Coriolus and1. centripetal accelerations.

Now from (1), (2), and (3), the navigation system equations of motion (EOM)

are expressed by

A G A(P) A AR(PS V) +A F

or

:(4) P =v

A 0 (P, V)

where

A0( V AG(P) - R(P, V)
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B.1 Boost Phase

Let to denote the time at which the navigation system is initialized. Then

the solution of (4) can be expressed by

= dt' + + P(t 0 )

V(t) t Ao[P(t'), V(t') V F(t)
to

where !

V F(t) f A F(t' )dt'. i
to

The navigation system constructs a solution of the form given in (5) using

outputs from an inertial measuring unit (IMU) which senses AF and a clock

which measures time.

The acceleration sensed by the IMU, denoted by AFN, is given by

AFN(t) = AF(t) + M[AF(')' t]bI

where bI is the vector of IMU error coefficients* and 
M is a matrix which

is a function of t and a functional of {AF(T), to : T < tI. But if the
IMU accelerometers are of the integrating variety, the output of the IMU

is sensed velocity which is given by

VFN(t) = AFN(t')dt' + bo + r(t)
to

where b0 and r(t) are the respective bias and zero mean random 
conponents

of instrument output error. Thus for integrating accelerometers, the IMU

output is given by

(6) VFN(t) = VF(t) + b0 + f M[AF(.), t')dt'b I + r(t)
t0

*The components of b include coefficients of initial platform mi!align-

ment error, uncompesated gyro precession, and uncompensated accelerometer

error.
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The time measured by the navigation clock is given by

(7) 'N(t) = t + AtN(t) = (1 + AtN)ot

where t denotes t-ue time (i.e., time indicated by an earth fixed master

clock) and AtN(t) is the navigation clock error. This error can be ex-

pressed in the form

(8) AtN(t) = mT (t)bc

where bc is the vector of clock error coefficients and m is a vector

function of t.

If the IMU and navigation clock outputs are given at discrete times t i ,

i = 0, 1, 2, ... , a navigation solution of the EOM can be obtained by

numerical integration. Similarly a nominal solution (about which the

variational equations are obtained) can be obtained by applying nominal

corrections to the IMU and clock outputs prior to integration. Assuming

the integrator truncation error is negligible, the nominal solution is

expressed by

(9)f t) t(t')dt'++ T(g[Vlt)J f A Lo[Plt'), vt') V F(t)] V(to0).

to

where VF and t denote the nominal corrected values of VFN and 0N, respec-

tively, and A denotes A evaluated using the nominal geopotential model.

Observe that

t(t) = (1 + AtN)1000)

or, approximately,

t(t) t + mT(t)6b
c

and thus
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t¢t) l+ mT(t)6bc

Also, note that

t
VF(t) VF(t) + 6bo + f M[AF(.), t'] dt'6b1 + fr(t)

t0

The geopotential function can be expressed by

(10) AG(P, c) AG(P, c- (c - c)
c

where c is the vector of true geopotential coefficients and c is the value

of these coefficients used in the nominal solution. Thus

Ao(P, V) E AG(P, c) - AR(P, V) I

and

Ao(P, V) AG(P c) AR(P, V) o(P, V) _T c

The solution expressed by (9) is called the on-board nominal solution. In

order to relate this solution to off-board measurements, it is necessary to

use the navigation clock (corrected for nominal errors) and ccnstruct an

off-board nominal solution. The off-board solution is given t.y

I ' t ' t_ P[t- (01]

VI ~ ~ -l Ct)(0

The variational equations will be developed exclusively for the on-board

solution, and (11) will be used to relate on-board trajectory variations

to off-board measurement variations.

In order to obtain the variational equations, (9) is subtractEd from (5)

and the right hand.side of the resulting difference is expanded to first

order about the nominal. The variational equations thus obtained are given

by
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SP~t M t 0 1 6P(t )

(12) L M t L I
SV(t) to La P(t') I V(t' L J

S O1 V(t')

+ jAG  6c - ~ mT(t ')Sbc dt'
~ Ao[P~t' ), V(t' )]c P(t), cL

0 0 0

- : 6bo  - tt j 6b -
f M[AF(.), t']Idt' r(t)

6P~tt o

+ 6V (t o )

The above equation expresses the trajectory variations in integral form.

Differentiation of both sides and augmentation with the error coefficient

variations yields the complete set of navigation variational equations in

differential form. Thus

0So I 0 _*T 0 0 P 0

aA a0  'T G-6
SV7 0 -AomT  -M -- 6V 6r(t)

(13) Sbo  0 0 0 0 0 0 6bo  0

6bc  0 0 0 0 0 0 Sbc  0

0Sb0 0 0 0 0 0 6b0

6c 0 0 0 0 0 0 6c 0
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Equation (13) is exact only for the case where VF is provided continuously

with respect to time. When VF is given only at discrete times, the form

of M and r will depend on the method of interpolation of VFN used in inte-

grating the EOM. For example, suppose VF is given at t0  t1., t2,. and

linear interpolation is used in the intervals [ti' t.i41], i =0, 1, 2.

That is, for t1 i: t -C t i+11 i =0, 1, 2,

(4VF(t) F v ~tt.) t [ (V.1 F(ti+l) -VF ti)]

Then ignoring velocity interpolation error,

6VF ~t(t)- rt]
~.].f M[AF() t']dt'sbl + c6r(ti+ 1) 6~i

tti+1) - t(t) 1 ,t

= (~+1  t1  [fi~lMCAF() t]dt'6bI + .r(tj+1) - r(ti)]

t.i.

and therefore, in (13) it follows that the substitutions

and

(16) 6r (L'[ 6r(t.,.,) - cr(t,))

where &t = - ti, must be made for all t in the interval [t.l LIl

Suppose also that the navigation system is initialized while the vehicle is

at rest on the launch pad. In this rase

VFN(to) = Fto) =0

and thus 
r t0-
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Furthermore, if lF(t o) = 0

6r(t°) = "Sb°

Now define the state noise process

u i = r(ti+l), i = 0, 1, 2, ...,

and introduce the correlated noise states and n defined by:

E(t) =0

n(t) = 0

for

ti < t < t and

n(t.)f 0 0  n(t ui

i 0 0, 1, 2, ., with initial condition

0

Then from (16)

(A )[6n(t)- w(t)] ti < t < ti+l, i 1 l 2,9..

0 n(t + 6bo], to < t < t

Thus, augmenting the variational equations with the correlated noise states,

it follows that (13) can be expressed by:
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6P 0 I 0 0 0 -Vm 0 0 6P

aAo a)Ao / 1"6to' 1 i6o T ~ AG

aP v)A 1 ' a

6c 0 0 0 0 0 0 0 0 6&

(17) 6r 0 0 0 0 0 0 0 0 6n

6b0  0 0 0 0 0 0 0 0 6b
0 0000

6bc  0 0 0 0 0 0 0 0 6bc

6bI.  0 0 0 0 0 0 0 0 6b

_6c_ 0 0 0 0 0 0 0 0 _' 6c_.I

for t < t < t wherei~~ ~ i ,- , ,..
i = i 1, = 0,

together with

P(t.) I 0 0 0 0 0 0 0 P(t;) O

V(ti) 0 1 0 0 0 0 0 0 V(t-) 0

(18) n(t+) 0 0 0 0 0 0 0 0 n(ti) + I ui

b (t) 0 0 0 0 0 0 0 0 bo(t-) 0

b(tT) 0 0 0 0 0 0 0 0 b (t-) 0

bl(t!) 0 0 0 0 0 0 1 0 bl(t i) 0

0 0 0 0 0oo oo b(t) 0

c(t1) 0 0 0 0 0 0 0 1 C(t-) 0
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for 1 = 0, 1, ... , with initial condition

P(tO ) P(to )0 0

v(t;) V(t0)

E(to)  0
00

(19) n(to) - 0

00
bo(t o)  b

b1 (to ) b1

c(t) c

If ui , i =0, 1, 2, ... , is a sequence of uncorrelated rando; vectors, then

equations (17), (18), and (19) provide the desired structure for application

of the linear estimation results discussed in Appendix A and Section 5.0.

If, on the other hand, the sequence of random vectors is correlated, additional

correlated noise states must be augmented to the system given by (17), (18),

and (19) in order to obtain the structure required for the estimator to be

optimal.

B.2 Free-Fall Phase

The position and velocity of an RV at deployment can be computed from (9)

using vehicle Euler angles and their rates together with a separation model
based on energy and momentum relations. Following release, the position

and velocity of the RV can be computed using an equation analogous to (9)

with VF = 0. Thus if td is the time of deployment,
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[ RV(t) ft RV(t 1 RV tdt
(20) = dt' + ,t 31 td .0 VRV(t)] td l0° [PRV(t') ' VRV(tm) VPv(td) t

Now (20) is the nominal on-board solution for the RV. The only timing error

associated with this solution is that which exists at td' Thus the nominal

off-board solution for the RV is given by

(21) [PV(t)] [PRV(t + td - t(td))] , - ~ d
(21) t > ttt d ) .

v m.(t)J VRV(t + td - t(td)).

The variational equations for the RV on-board solution are given in differential

form by

6PRV 0 I 0 6PRvjo Ao aAG
(22) 6VRV = -~p aT VRv t t d~

RV RV a
_ Sc 0 0 0 5c

with

6PRVtd) 1 Pi(td) Er
(23) + L :

6 LVRv(td) SV(td)

where cp and ev are due to attitude, attitude rate, and sepa-ation errors

at deployment.

B.3 Reentry Phase with On-Board Instrumentation

If the RV includ'es on-board instrumentation for use during reentry, the

procedure used for the boost navigation system can be used t) develop

nominal and variational equations for the reentry navigation system.

These equations will be initialized by the free fall solutioni at or near

pierce point, and the initialization procedure will be subject to both

the free fall timing error and the reentry navigation clock error.
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The time measured by the reentry clock is given by

0 R(t) = t + AtR(t) = (1 + AtR)'t

where t is true time. Correction of the reentry clock for nominal errors

yields

t Rt) 1 +AtR) 'OR(t)

and if

AtRt T m(t)bR

then

t R(t) t + m T)bR

The nominal on-board reentry solution is initialized at time t pusing the

nominal off-board freefall solution as follows.

p R (t p) %~(tp
(24) I I

[RtPJ _ VkV(tR( tp)

But from (21)

[h P(t R(tp)) [pRV(tR(tp ) + t d - t(t d))1

[ V6 (t R(tp))- J RV ( + td -t(t d)) J
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Therefore

Rt)] r+ [ 1 t(t p - tp + t d- t(t d)]

[VR(tpd = I'RV (tp I L RV(tp)
p R V t p V R V ( t p T

= +[ ~V (n) m(t )6bRc- mT(td)6bc:)

Consequently

[25)PI(t p1 [ RV(tp ] PRV p(Mtp))6 1 T(tdb)

(25) [ J [6V RV(tp) L VRV(t p) m(PdR

Observe that (24) is used to initialize the nominal-on-board reentry solution,

while (25) is used to reset filter estimates and covariances (or square root

covariances) at the outset of reentry.

Finally, in order to relate the reentry navigation solution to off-board sensor

measurements, the nominal off-board reentry solution is required. This solution

is given by

PA P''t ~ lm ]
(26) t >]P~Rt) t t R(t p

VAM (Rt(
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C. METRIZ SENSOR SYSTEMS

The diagram shown in Figure C.1 depicts the general structure of a metric

sensor system, the signal flow through the system, and the sources and in-

jection points of various errors. The sensor elements generally have rather

narrow operational limits, and for this reason, it is necessary to control

the sensor with a servo mechanism. The loop which includes the sensor elements,

servo electronics, feedback elements (and in some cases the enccder) performs

a tracking function which maintains the target within the sensor operating

limits.

In an angle tracking system, the sensor elements consist typically of a

monopulse receiver. The receiver senses the apparent displacement of the

target relative to the receiver boresite (or tracking axis) in the form of

two angles. The servo electronics and control elements contain amplifiers,

filters, and antenna drive motors. The inputs to this block are the sensed

angles out of the receiver, and the outputs are motor shaft angles. The

feedback element is an antenna which is positioned by the motors, and the

sensor input elements are rigidly mounted to the antenna. The motor shaft

angles are encoded outside the loop, i.e., the encoders are not within the

control loop.

In a range tracking system, the sensor element is typically a device which

measures the time difference between the leading edge, centroid, or some

other point on the received pulse, and a timing pulse output from the feed-

back element. The sensor element output is an analog signal which is input

to the servo electronics and control elements. This block consists of

amplifiers, filters, and integrator circuits. The output of this block is

roughly proportional to target range and is digitized in the encoder which

is typically inside the control loop. The feedback element prodices a

timing pulse delayed in time (relative to pulse transmission time) by an

amount controlled by the encoder.
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In a range rate or doppler system, the sensor element producres a signal with

phase equal to the difference of the phases of the received signal and a

frequency controlled oscillator in the feedback element. This phase modulated

signal is input to the servo electronics and control block which consists of

a frequency discriminator, amplifiers, filters, and integrators. The output

of this block (v:hich is roughly proportional to the doppler shift of the

received signal relative to the transmitted signal) is digitized in the encoder.

Then depending on whether the oscillator in the feedback eleient is controlled

by an analog or digital signal, either the servo output or the encoder output

is input to the feedback element.

In a pulse radar system, the optimal sensor element is a matched filter, but

in practice the implementation is usually a suboptimal approximation to a

matched filter. The output of the sensor element (regardless of whether it

includes a matched filter) consists of a sequence of pulses which is synchron-

ous with the received pulse sequence. This sequence of pulses contains target

information corrupted by various systematic errors and sequertially uncorrelated

noise. Since the information in this pulse sequence is relative to the sensor

track point which is monitored by the encoder, it is necessary to use the encoder

measurements to relate the sensor outputs to a reference coordinf.te system.

C.l Metric Sensor Measurement Equations

From the foregoing discussion, it is clear that the sensor element (i.e., receiver)

outputs in the range, doppler, and angle channels constitute the fundamental

measurements of a metric sensor, while the encoders merely provide the means

whereby these measurements are related to a reference coordinate system.

Consider a four channel tracking radar, and let y denote the measurement vector

at time t. The components of y are simply the receiver outputs in range, doppler,

and angles at t. Let T denote the transit time of the signal which is received

at t, and let t' denote the time when the signal left the target. Then

(1) t' = t -

and it is the target position and velocity at t' which ultimatel. affect the

measurements made at time t.
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Let the rdnge, azimuth, and elevation of the target be defined with respect

to the topocentric coordinate system located at the sensor as shown in Figure

C.2. Now define apparent values of these spherical coordinates to be equal

to true values modified by refraction.

Thus

(2) RA(t') = R(t') + p[R(t'), E(t')]

(3) AA(t') = A(t')

(4) EA(t') = E(t') +e[R(t'), E(t')]

where the apparent values are subscripted, true values are unsubscripted, and

p and e donote range and elevation refraction, respectively. Cbserve that for

a specified refractivity between target and sensor, the apparent values of

target position relative to the sensor are functions only of true position

relative to the sensor. Note also that

(5) ct = RACt')

and thus for a given t, (1), (2), and (5) together with the true target

trajectory relative to the sensor suffice to determine transit time.

The apparent range rate is given by t R l(t)
1) lAlt') = '(t') + , ~'

and this quantity determines apparent doppler by

(7) DA(t') = -

c + RA(t ')

where fo is the transmitter frequency.
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The apparent quantities given by equations (2), (3), (4), and (7), possibly

corrupted by target dependent error, provide the inputs which generate y.

Thus the input quantities of interest are the received values

(8) RR(t) = RA(t') + ART(t' )

(9) AR(t) = AA(t') + AAT(t')

(10) ER(t) = EA(t') + AET(t')

(11) DR(t) = DA(t') + ADT(t')

where ART is due to beacon delay, AAT and AET are due to phase front distortion,

and ADT is due to beacon oscillatur drift.

In the range channel, the sensor element forms the difference

(12) ro(t) = RR(t) - RF(t)

where RF(t) is the output of the feedback element. Assuming the range encoder

is inside the tri:cking loop,

(13) RF(t) = RE(t) - ARF(t)

where RE(t) is the encoder output and ARF(t) is the error intrcduced in the

feedback path. If the feedback error is due only to a bias and a scale factor,

then

(14) ARF(t) = BR + SFR . RE(t)

Now the sensor element output consists of the range difference r0 corruptedby sensor errors and receiver noise. Thus

(15) rs(t) = r0 (t) + Ars(t) + vr(t)

where Ar s(t) is the error introduced by the sensor and v r(t) is tie receiver

noise error. If the sensor error is due only to a scale factor, then

141



(16) Ars(t) = SFr Mr(t)

In the doppler channel the sensor element produces a signal with phase equal

to the difference in the phase of the received signal and the phase of a

frequency element. In an optimum mechanization, this phase difference would

be measured dir,ctly and would constitute one component of the measurement

vector. Typically, however, this phase modulated signal is Filtered and

input to a frequency discriminator which forms the differenc?

(17) d0 (t) = DR(t) - DF(t) ,

where DF(t) is the doppler modulation in the feedback element. Because of

the filtering operation, the frequencies in (17) are not instantaneous

quantities. Inrtead they are approximately equal to the average frequencies

over a time interval determined by filter bandwidth. (Actually, if the filter

and discriminator parameters are known, a state variable representation can

be used to relate the frequency output given by (17) to the phase difference

of the received signal and the feedback oscillator. This approach will not

be taken here, however.)

Now assuming the doppler encoder is inside the tracking loop,

(18) DF(t) = DE(t) - ADF(t)

where DE(t) is the encoder output and ADF(t) is the error introduced in the

feedback path. In general the feedback error may include bias and scale

factor terms. However, because DF(t) in (17) is an average value due to

filtering in the sensor element, ADF(t) will also include a term which

accounts for the average lag error of the feedback oscillator in response to

inputs from the encoder. In a pulsed doppler radar, with period Tr, in which

the feedback oscillator is reset only once each period, the average lag error*

is approximately given by TrDR(t)/2 [8 1. Thus accounting fcr bias, scale

factor, and lag errors,

*The existence of this error has been verified both experimentally and
analytically for the SAMTEC C-Band systems.

142



Tr
(19) ADF(t) = BD + SFD . DE(t) + R(t)

The frequency discriminator output consists of d0 corrupted by sensor errors

and filtered receiver noise. Thus

(20) de(t) = do(t) + Ad (t) + V(t) ,s 0 s P)

where Ad s(t) is the error introduced by the sensor and vd(t) is receiver

noise error. Assuming the sensor error is due only to a scaie factor,

(21) Ads(t) = SFd . d0(t)

In the angle channels, angles of arrival of the received signal with respect

to the tracking axis (i.e., electronic boresite) are sensed. In order to

develop expressions for the sensed angles, it is convenient to first define

an electronic boresite coordinate system. This system is defined by a sequence

of rotations applied to the locally level (i.e., topocentric, coordinate system

located at the sensor. The transformation from the locally !evel system to

the electronic boresite system is denoted by C (t).

Assuming the angle encoders are outside the loop, CLL(t) is a function of the

encoder outputs, encoder errors, and feedback errors. This functional

representation of C (t) will now be developed.

The shaft angles of the tracking system are related to the eocoder angles by

[As(t) AE(t) AAE(t)1

(22) I
Es(t) EE(t) AEE(t)

where AAE(t) and AEE(t) are the encoder errors, which include bias and

nonlinearity terms.

The azimuth shaft angle measures the antenna pedestal rotation in a plane

which is determined by the North and East mislevel coefficients, PN and PE"
These coefficients define the total mislevel, P, and the azimuth angle of

the mislevel axis, Am, by means of
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I

PN PcosAm

(23)

PE LPsnAm

The transformation from the locally level system to the mislevel system is

then given by

-[ cosAm sinAm 0 lcosi 0 -sini cosAm -sinAm 01

(24) C -sinAm cosAm 01 0 1 0 sinAm cosAm 0L 0 0 1J Lsinp 0 cosp 0 1

Now an azimuth shaft coordinate system is defined by a rotation of the mislevel

system through the angle AS(4;).

This rotation is given by

coSAs(t) -sinAs(t) 0

(5 cASct(25) cj(t) sinAs(t) cosAs(t) 0

0 0 1

Next a nonorthogonality coordinate system is defined by a rotation of the

azimuth shaft system through an angle, n, equal to the nonorthog,)nality of

the elevation trunnion. This rotation is given by

[cosn 0 -snn1

(26) CAS(t) = 0 1 0

sinn 0 cosn

Now an elevation shaft coordinate system is defined by a rotatior, of the

nonorthogonality system through the elevation shaft angle Es(t). Thus

1 0 0

(27) C(t)-- 0 cosEs(t) sinEs(t)

L0 -sinEs(t) cosEs(t)
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A mechanical boresight coordinate system is now defined in terms of mis-
alignment angles in traverse and elevation, denoted by mT and mF respectively.

Thus

(28) CMB = 0 cosnE sinmE sim cosmT 0
ES E E

0 -sinmE sinm E 0 0 1

Next a gravity droop coordinate system is defined. The droop an'fle, 6 is a

function of the true elevation angle of the mechanical boresight, and it is

a rotation abouL an axis which lies in the horizontal plane and is orthogonal

to the mechanical boresight. The transformation from the me:hanical bore-

sight to the gravity droop system is given by

[cosy 0 sinyl [1 0 0 lcosy 0 -Siny
(29) CGB 0 1 0 0 cos6 sin6 0 1 0j

L-siny 0 cosyjLO -sinS cosS siny 0 cosy

where y and 6 are determined as follows.

Define unit vectors ex , ey, ev by

ex= ,jey = [ ,1ev = CL•

GD

If lev x eyl = 0, then i = 0, and CMB I•

Otherwise, define

h ev x e,YT

v y

Then

cosy = e . eh

siny = (ex x eh) . ey
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and the elevation angle of the mechanical boresite is given by

EMB = t v x ey

with -IT/2 < eMB < 7r/2. Assuming a simple cantilever model for droop, it

follows that

= SoCOSEMB

where 6 is the coefficient of droop.

Finally the electronic boresite coordinate system is defined in terms of

electrical misalginment angles in traverse, elevation, and skew, denoted

by ET, eE' and es, respectively. Thus

cose s 0 -sins 1 0 0 1 cosST _s'flc T0

(30) cEB 0 1 0 0 coseE sineE sine.r coseT  0

sines  0 cose s  0 -sineE cosE 0 0 1

The transformati)n from the locally level system to the electronic boresite

system is given by the product of successive rotations. Thus

(31) CEB = CEB CGD MB ES NO AC.

LL GD MB ES NO AS WL LL

Let e(t) denote the unit vector defined by the angles of arrival 3f the

received signal. Expressed in the topocentric, or locally level coordinate

system, this unit vector is simply

snAR(t) cosER(t)
sinER(t)

Therefore, in the electronic boresite system this unit vector is given by

14
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EB8(t) SnR(t) csR(t)

(3) EB~t EB LL:t = (t) cAR (t) cosER(t)

Now, define the discriminator traverse and elevation angles ,n the electronic
boresite system by

(34) M(t) = tan'lexB(t)/eyEB(t)]

and

(35) *o(t). = tan l[ez(t)/ y(t)]

respectively. Observe, however, that these angles may be approximated by

(36) M(t) e x0 eEB(t)

and

(37) 0o(t) : ezB(t)

where the truncation error is third order. Consequently, if and 4oare
less than ten milliradians, the errors in these approximations are roughly
one microradian or less.

The outputs of tie sensor element are given by *o and * corrupted by sensor
errors and receiver noise. Assuming the sensor errors consis-, of scale factor
and crosstalk, the sensed angles are given by

(38) 1+ I +1
*s)(t) *0 (t) SF SF ot) Lv

where SF and SF are scale factor errors, SF and SF are cross talk
errors, and v (t) and v(t) are receiver noise errors.
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C.2 Nominal and Variational Measurement Equations

The measurement equations for a four channel tracking radar were developed

in the preceding subsection. If the sensor element outputs at timne t are

denoted by rS(t). s(t), *s(t), and ds(t) in range, traverse, elevation, and

doppler, respectively, then the measurement vector is defined by

r (t)

(1) y(t) = s(t)

~ (t)

d (t)

By introducing appropriate state variables for vehicle dynamics and the

various vehicle and measurement related error sources, the mesurement vector

at time t can be expressed in the following algorithmic form:

(2) t = es(t) - TMx

(3) t' t - T

(4) cT = RA(t')

(5) y(t) = h[x;(t'), xb, xc ...,I Xg, z(t)] + v(t)

The state variables which appear in the algorithm are defined below.

x - vehicle trajectory states (off-board)

xb - vehicle dependent measurement error states

Xc - sensor measurement error states

Xd - sensor timing error states

xe - vehicle timing error states

xf - refraction profile states

Xg - sensor survey states (coordinates of geodetic

position and astronomic vertical)

148



In equation (2), e s(t) denotes the sensor clock indicated time at t, and ms(t)

is a known vector function of t.

Equation (3) expresses the relation between the measurement ttu e t, transit

time T, and the retarded measurement time t.

The transit time constraint is expressed in equation (4), where the apparent

range R09t') is ierived from x (t'), xf, and xg

Finally, the measurement y(t) is expressed by (5), in which z(t) is the

encoder measurement vector at t, and v(t) is the measurement noise vector

at t.

The complete set of equations, (2) through (5), constitutes the dynamic

measurement algorithm, while equation (5), in and of itself, is called the

static measuremeait algorithm.

The sequence of operations in the dynamic algorithm is as follows. First the

sensor clock measurement is corrected to obtain t from equation (2). Next

equations (3) and (4) are solved iteratively, using the off-board trajectory

x; to determine T, t', and x'(t'). Finally, the measurement vector y(t) is

obtained from equation (5).

If nominal values of the state variables (including a nominal off-board

trajectory xa) are specified, the dynamic measurement algorltnm can be used

to obtain the nominal measurement y(t), computed with v(t) =._, and the

partial derivatives which appear in the measurement variation equation:

(6) 6y(t) = 2-6x (t. ) + Y 6x + + Y 6x + VMt
UT a ;xT b BxT g

b g

where 6y(t) = y(z) - y(t), and the partial derivatives are evaluated at the

nominal state.

The relationship which exists between the nominal off-board and on-board

trajectories of Appendix B, denoted respectively by x' and x , can be
a a

expressed in terms of the vehicle timing variation. Let ev (t) be the
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vehicle clock indicated time at t', and suppose that

(7) ev(t') = t' + m T(t')xe

where m (t) is a known vector function of V. Then if V is the nominal

value of t' obtained from the measurement algorithm, it follows that

(8) x (t') = x (t' - mT(to)6xe)a a v e

Observe that equation (8) indicates the mechanism by which vehicle timing

variation enters the measurement variation equation.

Now, the partial derivatives in equation (6) can be obtained readily by

numerical differentiation using the dynamic measurement algorithm, and in

many instances this is the preferred method. However, it is possible, and

sometimes more convenient, to express the measurement partia: derivatives

in terms of partial derivatives of the function h in equation (5). The

partial derivatives of h with respect to the state variable elements are

called static measurement partial derivatives, and, when clarifization is

desired, the partial derivatives in equation (6) are called dynamic

measurement partial derivatives.

The remainder of this subsection is devoted to expressing the dynamic

measurement partial derivatives in terms of the static measurement partial

derivatives. The latter can of course be obtained by numerical differentiation

using the static measurement algorithm.

In the calculation of measurement partial derivatives it is most useful to

adopt the viewpoint that these derivatives are of y(t) with respect to

Xa(t'), xb, ..., Xg, rather than derivatives of y(t) with respect to

Xa(t'), xb, ..., 9X, evaluated at the nominal state. (These alternative
viewpoints are entirely equivalent.) Also, for the sake of n)tational

brevity, the (-) notation will be dropped in the sequel with the understanding

that it applies to all quantities other than variations, i.e., all quantities,

except variations, are understood to be nominal values.
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Now, except for the evaluation of the partial derivative with respect to

xe, it may be assumed, because of (8), that

.xa(t') = Xa(t')

Let xi be any component of the nominal state vector, except a component of

xe. That is xi is any component of [xa(t'), xb, xc, Xd, xf, Xg]. Then

from (5),

(9) + x at'
axi  ax T a axi

Now

at' at a
axi axi  axi

and

at - T aXd
axi s ax i

Thus

at' T aXd 3T
ax1  s ax1  ax.

But

aT aRA at'
ax1  + axi Aa

Therefore

aT = 1 aRA m T axd]

a 1  i As ax '

and thus
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(10) at,= 1 RA c M T ad
Ujc RA c R~ A -

From (9) and (10), using the notation

ax

it follows that

(11)~ x 3 a RA
~~a a C A

(12) =YT a Taxbc+R a

(13) 2y- =HT cax~

(14)a a mT
T sax d C +RA

(1H .a-= xa aR A
T Hf -ax f c +R A ax f

H ax aDRA
(16) ay. H - a

axT g C+ R ax T

The evaluation of the partial derivative with respect to x e can accomplished

most readily by indirect means.

First, observe that if a denotes a bias in the vehicle clock, it follows by

the chain rule of partial differentiation that

(17) 2X mT
ax T 3
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Then from the measurement algorithm and equation (8), observe that if a bias

a is introduced into the sensor clock and an equal bias a is introduced into

the vehicle clock, there is no change in the calculated value of y. (Recall

from Appendix B that a vehicle clock bias has no affect whatsoever on the

on-board nominal trajectory xa.) Consequently

z + 2- = 0

and it follows by equations (14) and (17) that

(18) CHaXa mT

C+RA v

To conclude this ;ubsection, the complete measurement variation equation,

in terms of static partial derivatives and with complete notation, is given

for reference. 1
Haxat aRA

(19) 6y(t) Ha --- Sxa-t-)

Hb6xb + Hc6X c

ca xa  
T  Ca a T

--mS(t)6SX d  + 7-m mV(tm)6xe

c + R c + R

HRA

+ [~f - Haxa aRA] X

+ Hg HaXa 6Xg + v(t)

c+Rj

C.3 Measurement Processing Using Only Encoder Measurement

The mathematical development to this point has been based on the assumption
that measurements at both the sensor element output and the encoder are made
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in each metric information channel. In many cases however only encoder measure-

ments are made, and an alternative measurement processing scheme must be employed.

It should be noted at the outset that there is no method of procersing encoder

measurements alone which can completely compensate for the lost information

carried in the sensor element output. If encoder measurements alone are to be

processed in an optimal estimator, the best that can be done is to augment the

estimator state vector with additional dynamic states which characterize the

servo plant (i.e., all system components between the sensor element and the

encoder input), and treat the encoder output as the fundamental metric sensor

measurement. But this approach requires explicit knowledge of the differential

equations for the servo plant, and such knowledge is not always readily available.

Moreover, if this approach were used for every sensor channel, the number of

additional states would greatly increase the computational burden of the estimator.

Consequently, the servo state augmentation method of processing encoder measure-

ments will not be considered further.

A commonly used method of processing encoder measurements (and the only method

which will be given further consideration) is based on the use of a set of

so-called servo dynamic error coefficients to approximate the quasi steady

state following (or lag) error of the servo. This approximation 's then used
in lieu of the actual sensor element output in the measurement processing

operation.

In the sequel, a linear model for a metric tracking system will be used to

develop the theoretical basis for the use of dynamic error coefficients. Then

comparisons will be made between three alternative schemes in which the measure-

ments processed consist of, respectively:

(i) both sensor element and encoder outputs,

(ii) encoder output compensated by the dynamic error coefficient

approximation to sensor element output,

(iii) encoder output alone.

It will be seen that both (ii) and (iii) suffer from certain deficiencies in
comparison to (i).
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A linear model for a single channel metric sensor is depicted in Figure C.3.

The variables in the diagram are identified as follows:

xA - apparent value of channel coordinate

AXT - target dependent error

XR - received (or input) value of coordinate

x F - feedback value of coordinate

y - sensor element output

AyS  - systematic sensor error

v - measurement noise

AxF - feedback error

xo  - output value of coordinate

Ax0  - output error including servo noise

z - encoder output

AxE - encoder error

G(s) - servo plant transfer function, i.e., Laplace transform

of servo plant impulse response.

Although the diagram is drawn for the case where the encoder ib outside the

tracking loop, it can be applied to cases where the encoder is inside the loop

by simply equating x. and z and combining Axo and AxE.

From the diagran it follows immediately that

(1) y + z = x A +Ax T +Ax F +Ax E +Ay s + v.

Now the quantity (y + z) may be regarded as the sensor measurement when both
y and z are measured, since the measurement variations obtained from either

y or (y + z) are identical. That is

6(y + z) E (y + z) - (y + z) 6 cy
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The expression for the encoder measurement is also readily obtained from the

diagram. Thus

z = p*x+Ax + Ax + Ay + v] + q*Ax + AXE

or

(2) z = P*XA + p* [AxT + AF + AY] + q*Ax0 + AXE + p*v

where

P =s G "Gs)
I + s

Q(s)
1l+ G(s)

p(t) = S'- {P(s)}

q(t) = - {Q(s)}

denotes the inverse Laplace transform, and * denotes the convolution

operation defined by

(p*x)(t) = f p(u)x(t - u)du = f. p(t - u)x(u)du
-CO -w

The constraints imposed on servo design are typically such that in (2) p acts

as a low pass filter, and q acts as a high pass filter. The term p*xA is a

delayed and distorted version of xA. The term p*v is a smoothed version of v

which exhibits serial correlation, where the correlation time is roughly equal

to the reciprocal of the bandwidth of the filter p. If, as is the usual case,

AxT , AxFs and Ays are very low frequency in character, the term p*[AxT + AxF + 6ys1

is approximately just [AXT + AXF + AYs]. Since q is a high pass filter the term

q*Ax0 will contain only the high frequency servo noise content in Axo , and the

low frequency servo noise will be rejected.

Now the approximation to the sensor element output obtained with dynamic error

coefficients will be derived. From the diagram of Figure C.3, it follows that
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(3) y = q*[xA + A xT + xF -Ax o + Ays + v]

Since q is a high pass filter, while AxT, AxF and Ays are typically low frequency

terms, it follows further that

(4) y = q*[x A - Axo + v]

Deletion of the noise and error terms in (4) leads to the quantity

(5) y = q*xA

which contains all the information in y regarding xA. The procedure is now

aimed toward approximation of y.

The expression for Q(s) is first expanded in a Taylor series about the origin.

Thus

!! 1_ + s 2 3

(6) Q(s) 1+ +  +  i +
1+ G(s) l 1 +K 0 K1 K2  K 3

where Ki is the dynamic error coefficient of order i for i = 0, 1, 2

If the function G(s) has a pole of order n at the origin, then

Ki = 1O , 29 ... n-1

lim snG(s), i =n

In this case the system in Figure C.3 is said to be of t ..

Type 0 systems are of little interest. In fact, most metric tracking systems

are either type 1 or type 2. If type 0 systems are excluded, then Ko = c and

thus

(7) Q(s) + s2  s3-K1 ++ +

Using (7) in (5) it follows from elementry properties of Laplace transforms

that
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(8) 1xA(t) + XA(t) +XA(t)8(t) = i1 7 3

At this point the assumption is made that xA is a sufficiently smooth function

that the series in (8) can be truncated after the second or third term with
negligible error. Thus assuming a nominal trajectory is specified for xA, the

resulting approximation for y is

(9)(t) A (t) + RA(t) 'A(t)

K1  + 2 K3

Combining (9) with (2) there results

A X(A xAi

(10) px + + + K3

+ p*[AxT + AxF + Ays ] + q*Ax o + AXE + P*v

At this point the three measurement processing schemes can be compared to

determine their relative merits. The first alternative, which is feasible

only when both encoder and sensor element outputs are available, provides a

measurement expressed by (1). In this case the measurement has a simple

linear dependence on the measured coordinate, systematic error terms, and

measurement noise. The systematic error terms can be expressed as linear

functions of state variables, and the measurement noise in the sensor element

is sequentially uncorrelated. Thus the measurement given by (1) satisfies

all assumptions required in the development of the optimal estimation equations

in Appendix A.

The next alternative to be considered is the case in which the uncompensated

encoder output is used, and the measurement is expressed by (2). In this case,

as has been mentioned, the measured coordinate is delayed and distorted by
filtering, the measurement contains high frequency servo noise, and the noise

which originated in the sensor element or receiver now appears as smoothed

and sequentially correlated measurement noise. It is clear ttat the measure-

ment in this case does not satisfy the assumptions required by the estimator

for optimality, and some degradation in estimator performance will result.
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The last alternative is the case in which the encoder output is compensated

using dynamic error coefficients, and the measurement is given by (10). Com-
parison of (2) with (10) shows that all the objectionable features present

in (2) are also present in (10), except that, to some extent in the latter,

the delay in xA -as been compensated by the introduction of the dynamic

error terms.

The application of dynamic error coefficients in the single channel range

and doppler trackers is straight forward. Each of these trackers is typically

of type 2. Thus the dynamic error terms are given by

RA + RA

and

DA +DA

2 3

respectively, where RA and DA are derived from the off-board nominal solution.

The application of dynamic error coefficients in angle trackers must account

for the fact that the sensing element output which drives the azimuth servo

senses angle in the traverse plane. Consequently the gain of the azimuth

servo is multiplied by a factor G(Es ) to ensure uniform servo response in

azimuth for all elevation angles except those in a small region near zenith.

E s is the elevation shaft angle, and

sec Es , Es <Emax

G(Es )

sec Emax, Emax < Es < /2

For operation with Es > w/2, G(Es ) = -G(w - Es).
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The dynamic error approximations in traverse and elevation are given by

and

E T A E
A E E

1I K'

respectively.

161

Cal,.



D. MISCELLANEOUS TOPICS IN LINEAR ALGEBRA

The results in this appendix can be found in many standard mathematics and
numerical analysis texts (9], (10], (11]. They are included here to provide
a concise and readily accessible supplement to the algorithms developed in

the text.

D.1 Gauss Elimination

Let A be an nxn matrix. Assume for the moment that A has full rank. The
Gauss elimination procedure applied to A consists of a sequence cf operations
on the rows of A which yields an upper triangular matrix U. To be specific,

let

ao a(0) ... a (o)

A(O) =A = a (a) a (o) ... a (o)
21 22 2n

(o) (0) (o)anl a ai

L .n2 nn

Using the elements of the first column of A(O) define

$0 ,k I
Lki = (o)

al-I k = 29 ...,. n

a11

and put

1 0,o...o

= "t2l

I 'n-l
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Then l et

A(' L-lA(o)

and observe that A(') has the structure

a (o) a (o) aCO)11 12 In

A(' 0 () a'22 2n

o a0) . . . al
n2 nn

where
%(o).(o)

a(l) a (o) -k ,I J, k 2, n.,f
kj kj a11 )

1(1

Similarly, using the elements of the second column of A(' define

o k 1~, 2

Lk2 ()
ak2  3

Sm , k 3, n.

22

and put

1 0o o. .. o0
L-1  = 0 1 0. .. 02

o -132

n-2

0O *Zn2 :-
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Then with

A (2 2Al L2'i'A(o)

it follows that A 2has the structure

a (o) a (o) a (a) a (o)
1 12 13 in

o a(1l) a~i) ... a(l)
22 23 2n

(~2 ) (2 . .a.2 a2
33 3n

(1 (1)a(1)
where a (2 ) a~1  -k 2 2 ' j, k 3

kj kj ka=3,)
22

In general, for 1 1, .. ,n-i, define

( 0 k ,..
tki

a(i-1)

aii

put

1 :0

---------- +-------- ----------O -ti+i 'i

'(n-I)

L tni,i
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and let

A(' LV ... V-IA(O)1

Then A(1 )has the structure

a(0).

0

A(' 0 (-i) 0-i1)

0 6 *.. 0 a

0(1 a(i)-i)

and in particular

ao) a . .0 a~~)

11T In



Using the definitions introduced above, the Gaussian elimination procedure

can be represented in matrix form by

(1) *** LVA = U

Now let ei denote the i-th column of the nxn identity matrix and for each

i = 1, ..., n-l, let Xi denote the n-vector defined by

Z1 i 0

(2) i t 2i
• 0

Z t i+l ,i
ni

L -1 t- ni

Then for each i = 1, ..., n-1,

(3)= I-xe

and it is obvious that

T

(4) L = I + iei

Finally let

(5) L = L1  Ln. 1

and observe that

n-I

(6) L = I+ Tei
ii

Then from (1) it follows that

(7) A = LU

where

166
|i -_: . : ... ---.. ... -..... ... - --- : -: . L . ... -,



1 0 . ... 0

(8) L t 1 0 ... 0

t " 32 " . "
• °0

n tn2 ... 1

'11 '12 ... Uln a .. .. .. aln

0 u2 zn0 a 11  a ( 1 )

0 ". . . 0 . 2n

(9) U . 0

0 . .. 0 Un0 0 0 .. (n-l)0_.... n ..... 0an
L.. nnl

Since an explicit expression for L"1 does not appear in the sequel, it is

perhaps worth while to note that

n-i
L-1 X I- z xieT

i
n= 1

and hence C"I cannot be obtained by simply changing the sign of the elements

below the main diagonal in (8).

The Gauss elimination procedure has led to the factorization of A into a

product of triangular matrices in (7). This form is particularly useful in

solving equations of the form

(10) Ax = b

A two step process is used to solve (10) for x. From (7) it follows that (10)

is equivalent to the pair of equations
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(11) Ly = b

(12) Ux = y

Now it is a simple matter, because of triangularity, to first solve (11) for

y by forward substitution and then solve (12) for x by backward scbstitution.

In the course of the Gauss elimination process, the columns of L ire formed

sequentially using the results of previous calculations. Thus the i-th
(i-1) If a 1'l )

column of L requires division by the diagonal element al) If a

is zero the process fails outright. And if amagnitude,

it can contain a relatively large roundoff error. In such cases the

relative error in the i-th column of L, and hence in successive computations,

can be quite large.

Since A is nonsingular, there must exist a nonzero element a for some

j > i and k > i. This fact provides the basis for a means not only of

avoiding division by zero, but also of reducing the amount of roundoff error

buildup in Gauss elimination. The procedure is called pivoting, and the

idea is to interchange rows and columns in the object matrix to bring an

element of large magnitude into the i-th diagonal position prior to computing

the i-th column of L. The larger this element, relative to other elements

of the matrix, the smaller will be the roundoff error in the i-th column of

L and in subsequent calculations.

The theoretical justification for the pivoting process will now be given.

To this end, the notion of a permutation matrix is formulated.

An nxn matrix P is called a permutation matrix, if for any n-vector x,

the vector y defined by

y = Px

is obtained by interchanging at most two elements of x. Thus either, y = x,

or there exist two distinct integers j and k such that
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x Vkij ,

Yl xj, ik ,

xi , otherwise

It is easily estiblished that if P is a permutation matrix, then it is

symmetric and orthogonal, i.e.,

p = p =p

Observe also that, if P is an nxn permutation matrix and B is an arbitrary

nxn matrix, then

PB

is a matrix which differs from B by at most an interchange of two rows,

while

BP

differs from B by at most an interchange of two columns.

To illustrate the use of pivoting in Gauss elimination, the row and column

interchande operations will be represented by permutation matrices. For

each i = 1, ... , n-l, just prior to calculation of the elements in L-l 9

a row permutation Ri and a column permutation Ci are performed on the object

matrix to place an element of large magnitude in the i-th position on the

diagonal. To preserve triangularity it is necessary and sufficient that

Ri permute rows i and j and Ci permute columns i and k, where j > i and
k > i. Thus the row and column interchanges bring the element in position

(j, k) to position (i, i) in the object matrix.

In matrix form, the sequence of elimination operations can be represented

as follows

169

A6b



L1R AC i _(I)

EV1R L-R AC C A (2)
2 2 1 1 1 2

L Rn_1 (n-R)AC C
n-i n-l- 11 i Ri~ *ni- A

Now with the definitions

U 1 ACI...Cn.

_ (n-1) ,

and

R Rn2 -...R RIn.n_1

it follows that

A: = [U .

But by induction

= Rni. R 2 1R2L2.-.R

= Rn_. R L R (R3 ..-RnI )(Rn 1 ...R3)L2 ...Rn1L 

-[R 2 1...RR...Rn['R.. .R3 2 -... nn_

n-l- 21 1 n- -n-i 33 n-I n-11

TT T
[I + R 2nI..R2 Ae 1 .. [I + n-i -n2en_2][I + An len .1

or
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El+ T T T[I + lel][I + 32 e2] ... [I + nlen.]

n-i

- TI + i iei,

1=1

where

= n R ... R.~l A1, i = 1, .. ,n-2

Xn- i =n-1

A simple bookkeeping procedure for factorization of A into LU is now obvious.

On the i-th elimination the entire nxn object matrix is subjected to the

appropriate row and column permutation. Then the elements of i are computed

and the elimination operation is performed. Finally the nonzero elements of

Xi are placed in the corresponding eliminated positions in the i-th column

below the main diagonal. That is eki is placed in position (k, i) for each

k = i+l, ... , n. After the (n-l)-th elimination, the object matrix is of

the form

Ull U12  " " Uln

Z2 1 u2 2  " 2n

tnl Zn2 . n,n-I Unn

wfere
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1 0 0

21 1 0 0

E? 31 3  1

0

7-.l 7,2 . '..4n.-1.

and

ul1 u12  .... Uln

* . IO . .. . ."

Lo 0. :0 Urnj

The solution of equation (10) using Gauss eliminations with pivoting is

quite direct. First observe that the system (10) is equivalent to

(10') T = ,

where

= RnI..R 1ACI'll.Cnl 1

= Rnl. ..R1b

and

x Cn-l.. .Clx

But (10') can be solved using the factorization
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by solving the equivalent system

(11') jy =b,

(12') u- = y

from which x is ,btained simply by

x - C1. C

The pivot erocedure described above is sometimes called complete Pivoting.

In the special cases in which either Rl = ... = Rn l =I orC l = . CnlI,

the procedure is called partial pivoting.

If the matrix A is of rank r < n, then of course A is singular. In this

case the Gauss elimination process with pivoting will terminate immediately

after the r-th elimination and the object matrix will be of the form

u11  U12  Ulr Uln

t21 u22  0 -. . -2n

z 31  432

rl Zr2 r . z - ..rr rn

£--r+l,r 0..0

Ln1 1n2' 1n,r-l Zn,r 0 ...
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D.2 Cholesky Decomposition

A real valued nxn matrix A is said to be nonnegative if A is symmetric and

the condition

xTAx > 0

holds for every n-vector x.

A real valued nxn matrix S which satisfies the condition

A = SS
T

is called a square root of A.

It is obvious that the matrix product SST is nonnegative for any real valued

nxn matrix S. Conversely, as will be shown, if A is a nonnegativE matrix

then a real valued square root of A exists, but is not unique. The proof

of the existence of a square root of a nonnegative matrix will be by con-

struction using Gauss elimination. This constructive process is also called

Cholesky decomposition.

Let A be a nonnegative nxn matrix. It is readily shown that

(i) akk > 0 for all k = 1, ... , n

and

(ii) a = max {akk; k = 1, ... , n} implies a = max {lajk,; , k = 1, ... , n}

that is, all diagonal elements of A are nonnegative, and no element of A has

a magnitude greater than the maximal diagonal value a.

Gauss elimination with pivoting will now be applied to A, and the first

permutation matrices R and C1 will be selected such that

R = Cl = P1
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and

a at(= maximal diagonal value of A)

where

A(o) = P1AP1

The first elisi-ination matrix L1 is formed such that

I OT

and(o) ..o) (o)

where

-(1) ;p )22 a 2n

(1) (1)

an2  a nn

(In case a 0, take X 1 0 and P1 = I.)

It follows immediately, by symmetry, that

I(o) oTa 11
1lWo 1' j

Lo (
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(l I

and since A is nonnegative, B(1) must also be nonnegative. But since B(1)

is nonnegative it follows by induction that the Gauss elimination process

can be continued with R C =Pi chosen at each stage to place a maximal

value element, from the remaining diagonal elements, in the (i, i) position.

If for some io < n, the remaining diagonal elements are all zero, take
Ii = 0 and Ri  CI = P i = I for all I = io, ..., n-l.

Thus when A is nonnegative, the sequence of elimination operations can be

performed with symmetric pivoting and represented as follows.

V1IP AP i

L.lp lpl P AP p j(2)
2 2 1 1 1 2

n- n-l" 1 P 1APl.**Pn.1 -

Then with the definition

T Pnl.. P1APl.. Pn.l

U _ A(n-l)

and

P n-Il I2LlP 212 ... Pn.lLnI

it follows that

T = L

But it is also true that

A= U(C~) D

which implies Dis nonnegative (hence symmetric) and upper triangular. Thus

Sis a nonnegative diagonal matrix.
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Now let if112 denote the (unique) nonnegative diagonal matrix which is a

square root of D, and put

Then

X = );T ,

and thus f is a lower triangular square root of r. It follows immediately

that

A =SS
T

where

S - Pl*PnI "

Thus S is a square root of A, and the construction is complete. Note that

S, unlike ', is not necessarily triangular. A method of transforming S into

a triangular square root of A using the Gram-Schmidt process is described
in D.3.

When the Cholesky decomposition is applied to a nonnegative matrix A, a

simplified bookkeeping procedure can be used which takes advantage of

symmetry. First, recall that

D= i(-1)T

Then since 'I has unity diagonal values so does C" . Consequently, D is

simply the diagonal part of U, i.e.,
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0 0 . 0

0

* * 0

O . 0 Unn
Thus since

U =

it follows that

Ujk = u~j kj for k > j, j = 1, ... , n-I

Now if A is of rank r, then u > 0 for j < r and = 0 for j > r,
.j = 1, ... , n.

But if A is of rank r, it also follows that kj - 0 for k > j > r. Consequent-
ly, the entries in U below the main diagonal are determined from U by

ujk j r

Z kj =

0 j>r

for j < k < n, j = 1, ... , n-l.

Second, recall that

Then if A is of rank r, the elements of S on and below the main diagonal are
given by

ujk j<r

Skj j

0 ,j>r
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for j <k < n, j = 1, ... , n.

Since -and _K are readily computed from U, the Cholesky decomposition can

be carried out without bothering to compute and store U. Furthermore, be-

cause of symmetry the entire process can be performed using only the upper

triangle of the object matrix. Also, the square root normalizations used

to obtain S from U can be performed in conjunction with the eliminations,

so that the object matrix contains _9T (rather than U) when the process is

complete. Conceptually, the bookkeeping method used in Cholesky decomposition
differs from that given for Gauss elimination as follows:

1. Only symmetric pivoting is used, and P1 is chosen to bring a

maximal valued element, from the remaining diagonal elements,

into position (i, i).

2. Instead of computing Zkil k = i+1, ..., n, for the i-th elimination,

the elements in the i-th row of the object matrix are no.malized by

the square root of the diagonal element in that row. That is

-- )
(i-1) aik
a. ,k--1 k=i, ..., n

a

3. The i-th elimination is performed as follows:

)ji = 0, j = i+1, ..., n

-0i) -(0-1) --0-1)a --1)
JK a ajk "aij 1k j <k~nj=i+1, ... , n

and

_(i) 0akj a jk j < k < n, j M, . n-l

When all elimination steps are complete and the object matrix contains 3T

Thus if A is of rank r, the object matrix contains
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- )

s11 • . rl • . .Sn1

0 "

.o

0..:0 5rr *** r
• 0 . . . . 0

S...0 0 .... 0

If the nonnegative matrix A satisfies the stronger condition,

XT 0.~ Ax > 0

for every nonze.ro n-vector, then A is positive. In this case, Cholesky

decomposition can be applied without pivoting, theoretically, although it

may be inadvisable to do so because of roundoff error buildup. Nonetheless,

if pivoting is not used, a simple formula for S, due originally to Cholesky,

follows by induction from the Gauss elimination method, modified as above to

take advantage of symmetry. The formula is

_ (a E s k i n

sji - i'-(aii - li k ) j = i+l, ... , n, i = 1, ... , n-l
ii l<k<i

As a final observation, it is noted that the Cholesky decomposition can be

applied to obtain

where S is upper triangular. All that is required is that the row elimination

operations be applied to the object matrix from the right (instead of left)

and proceed from bottom to top (rather than top to bottom).
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D.3 6ram-Schmildt Orthonormalizatlon

The Gram-Schmidt orthonormalizatlon process is a method of constr;jcting an

orthonormal set of vectors from an arbitrary set of linearly independent

vectors. In thi: appendix, the treatment is limited to real valued n-vectors.

For a complete treatment, the reader is referred to [12], [131.

The inner product of two real n-vectors x and y is given by

(xy) xTy = x = (y, x)

and x and y are said to be orthogonal if

(x,y) = 0

The norm of an arbitrary vector x is defined by

Ilxil = (x, x)1/2

A set of vectors xi, ..., xm is said to be linearly independent if the

relation

cl1x + ... + cmxm = 0

holds only when c= ... =cm = 0.

A set of vectors ul, ... , um is said to be orthonormal if

(1 i=j

(ui, u ) =
0 i 1d

, j M.I



A set of vectors which is orthonormal is necessarily also linearly indepen-

dent, but the converse does not hold. The Gram-Schmidt algorithm for

constructing an orthonormal set of vectors from an arbitrary linearly

independent set of vectors x,, .... xm is developed below.

Define a set of vectors yl' ""' Ym as follows

Yl = Il

Yl

Y2  x2 - (x2, yl) il~lll 2

Yl__ _( yi-I
Yi= xi (xi 1 y1  xi. yi-1 ) llyi_lTj

Yl x Ym-l
Ym= xm - (xm' Y) 1 " " (XmO 2M-1 ) 2l

HyIJl) 11

It follows, by linear independence, that 11YilI > 0, i = 1, ... , in.

It is easily shown, by induction, that yl, ..., ym is an orthogonal set of

vectors. Furthermore, for each i = 1, ..., m, the set y, ... , yi and the

set x1, ..., x i span the same subspace, that is every vector which can be
expressed as a linear combination of members of one set can also be ex-

pressed as a linear combination of members of the other set.

Now define the set u , , um by normalization of the set yl, Ym'

that is,

Yi

Then uI, ... u m is an orthonormal set of vectors, and for each i 1 1, ... ,

the sets x1, ..., xi and u 1, ... , ui span the same subspace.
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The above algorithm for obtaining the set u1, ..., u is the ordinary Gram-
Schmidt process. For computational reasons, a slightly iodifled form of the
algorithm is preferred. This algorithm, which is called the modified Gram-
Schmidt process, is given below. The modified algorithm is entirely
equivalent to the ordinary algorithm, theoretically, but is numerically
more accurate when executed on a computer.

XP i ==1
I

xf1 = y1/1y11
=-((l), Ilul i 2, m.,i

(2)x2

u2 y2/11Y 211

x{k) = (k-1) - c~k-1), u-)u, i' k, .. ,m

= (k)
Xk k

Uk =Yk/IIykII

=m ~(m-l) - (x (in1), )u i

(m)

Urn Ym/IIymII
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To illustrate an application of the Gram-Schmidt process which is of

particular interest, let S be an arbitrary square root of an nxn non-

negative matrix A, that is

• S S T

A =

T TNow denote the rows of S by the set of n-vectors x, ... , x. Thus

X~n j

Apply the Gram-Schmidt process to the set of vectors xl, ... , x augmented

if necessary by the columns of the nxn identity to obtain the orthonormal

set ul, ...I un*

Augmentation with columns of In is necessary only if xl, ..., xn is not

linearly independent. In this case the Gram-Schmidt process is carried

out as before, skipping any vector xi which is linearly dependent on the

set xl, ..., xi_. Only when the original set is exhausted dees augmentation
occur. Thus, in general, the orthonormalization process is applied to the

set x1l, .., xn, el, ... , en, and terminates when a complete crthonormal

set ui, ... , un is obtained.

Now let T be the orthogonal matrix whose columns are given by the set

ul,  ...,I un' Thus

T = [u11...lun ]

By the Gram-Schmidt construction, it follows that
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(xluI) 0.. • • 0

ST • S ' ,

*• 0
S(xnul) u . (Xn-Un)

that is S' is lower triangular. But since T is orthogonal, it also follows

that

SI(sI)T = A

and thus S' is a lower triangular square root of A.

By simply applying the Gram-Schmidt process to the rows of A ir the reverse
order and similarly forming the columns of T in the reverse order, an upper
triangular square root of A can be obtained. Thus with

T

and

T - (u I... lull

it follows that

(XnUn) . . . (Xn,U1)

S 1 - ST- •"
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