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1.0 INTRODUCTION

In recent years the techniques of estimation theory have been applied to

many problems associated with ballistic missile flight testing. In particular,
trajectory reconstruction, weapon system analysis, metric sensor evaluation,
and geodetic and geopotential model refinement are examples o problem areas
to which estimation theory has been successfully applied.

In practice, estimation theory is used in two ways; namely to estimate various
trajectory and system parameters using available measurement data, and to
perform an error analysis of the estimation process itself.

Test range activities, such as pre-mission planning and post-mission analysis,
are strongly influenced by requirements imposed for trajectory reconstruction
and system performance analysis. Planning for mission support usually involves
error analyses based on alternative range instrumentation configurations.
Post-mission activities include estimation of trajectory and system parameters
and associated error analyses.

Future test range activity is projected to involve more accurate guidance
systems, advanced reentry systems, and range instrumentation with more
accuracy and precision. The ability to meet future range testing requirements
will depend to a great extent on the fidelity and generality of the estimation
techniques employed.

Computer programs currently in use at SAMTEC for estimation and error analysis
are of the batch processing variety and, as such, have certain deficiencies.

In the first place, whenever the trajectory constraints are noisy, such as
when derived from noisy guidance,data or during uninstrumented reentry, it is
not practical to perform optimum trajectory reconstruction with batch proces-
sing techniques. Secondly, the types of estimation problems which arise in
connection with range operations involve nonlinear equations, and the iterative
methods of solution these problems require often converge slowly, or even

diverge, when implemented in a batch processor.




The alternative to batch processing is recursive processing which not only
admits optimum trajectory reconstruction when the trajectory constraints
are noisy, but also provides excellent convergence properties which can
result in considerable computational superiority over batch processing when
the latter requires many iterations [1].

Because of the limitations of existing programs vis-a-vis projected future
requirements, an effort has been initiated at SAMTEC to develop a new pro-
gram (TRAM) to meet these requirements. The TRAM program employs recursive
processing so that more general optimum estimation techniques can be imple-
mented and better convergence properties achieved than are possible with
batch processing.
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2.0 SCOPE OF THE REPORT

In Section 3.0 of the report, a system viewpoint is adopted for the aggregate :
functions of tracking and estimation. This viewpoint provides insight which i
is useful in estimator implementation.

Ao oy ~pe

In Section 4.0 an overview of TRAM oreration and its applications is provided.
The discussion, although purely qualitative, illustrates the processing
techniques employed in TRAM and the capabilities therein achieved.

Section 5.0 provides the mathematical development on which TRAM is based.
The fundamental estimation and error analysis equations are developed in f;

i3
this section.

A discussion of computationa] techniques and trades is given in Section 6.0.
Included are specific algorithms and methods for computer implementation.

Section 7.0 is a discussion of program requirements which must be satisfied
by TRAM. Guidelines for program development, rather than detailed specifi-
cations are given in this section.

The report also includes a set of appendices. In the main, the appendices
provide support for the material in Sections 5.0 and 6.0. However, some
discussion of vehicle and metric instrumentation systems, together with
mathematical models, is also included.




3.0 SYSTEM CONSIDERATIONS APPLIED TO ESTIMATOR IMPLEMENTATION

The processing which is implemented in TRAM is based on the theory of
optimal linear estimation. The fundamental assumptions required for
optimality, together with the basic algorithms of linear estimation,
are discussed in Appendix A. In order to implement these algorithms
in a manner which most nearly satisfies the conditions required for
optimality, it is advantageous to view the tracking and estimation
functions as a composite system.

P R Y e

The utility of the system viewpoint is that it enables a clear distinction
to be drawn between tracker and estimator functions. This in turn leads

to the establishment of system interfaces which facilitate the implementa- i?
tion of the estimator in an optimum form. 5

In order for an estimator to be optimum, its mechanization must be based
on models for all processes which have occurred in the generation of the
measurements at its input. Thus, if the interfaces between the estimator
and the functions which precede it are not carefully selected, the result-
ing estimator either will be overly complicated or it will perform sub-
optimally.

Much of the discussion in Appendix C is directed to establishiag the inter-
faces between the tracking and estimation functions by identifying the
most useful outputs from tracking instrumentation. These outputs are
shown to include data from both the encoder and the sensing element of
each tracking channel.

In Appendix C.3, the effect of collecting and processing only the encoder
data is analyzed. It is shown that this results both in suboptimum smooth-
ing and in the introduction of tracking error, neither of which can be
fully compensated in the estimator.

Since an optimum estimator inherently performs smoothing of noise process
errors and compensation for modeled systematic error, pre-processing of
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track data for either of these purposes is superfluous. In particular,
pre-smoothing of track data may destroy information and result in degraded
estimator performance.

The above considerations are reflected in the formulation of TRAM processing
algorithms. Considerable emphasis has been placed on minimizing the intro-
duction of processing error. Also, the algorithms have been devised to
allow optimum processing of joint encoder and sensing element outputs when-
ever both are available.




4.0 OVERVIEW

The purpose of this section is to provide an overview of the principal TRAM
operations, and develop a framework for subsequent mathematics and program
requirements sections. To illustrate TRAM operation a multiple reentry
vehicle (RV) mission will be considered. A typical mission is depicted in
Figure 4.1. Illustrated there are the trajectory segments of the boost
vehicle (BV) and the RVs from launch to impact. Also noted are the separa-
tion and pierce points of each RV.

During the mission, off-board data is collected by various metric sensor
systems and on-board data is collected by telemetry systems.

Post mission processing of the metric and telemetry data is performed by
TRAM. The objectives of TRAM processing are twofold:

Optimal estimation of selected trajectory, instrumentation,
geodetic, geopotential, and aerodynamic parameters.

Error ana]ysis'of the estimated parameters.

4.1 Estimation

The parameters to be estimated are selected from a state vector composed of
the following groups:

DYNAMIC (TIME VARYING) TRAJECTORY GROUP

a. position and velocity for each vehicle
b. time correlated IMU or aerodynamic parameters
induced by random phenomena

METRIC SENSOR GROUP

sensor and pedestal
beacon

refraction
geodetic

timing
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3. INERTIAL MEASURING UNIT (IMU) GROUP

a. timing
b. platform, gyro, and accelerometer

4. . STATIC (CONSTANT) TRAJECTORY GROUP

a. geopotential
b. aerodynamic

In essence the state vector consists of all parameters which appear in
either trajectory or instrumentation equations. The reasons for partition-
‘ ing and ordering the state vector elements into the above groups will be-
- come clear in Section 6.0.

e Gl i

The subset of state vector elements which are estimated are called the
estimated states. The remaining state vector elements are called the
constrained states.

4.2 Error Analysis , '
L i The error in an estimated parameter is defined in general by !
error = estimate - true.

The purpose of an error analysis is to quantify, to the extent possible,
the errors which remain after estimation. Since the true values of the
parameters are not generally known (except in simulations) the best that
can be done is to provide a probabilistic description of estimation error.
An example of such a description would be the means, variances, and cross
correlations of the set of estimation errors.

An estimation error analysis is a two stage process. The first stage, which
is performed concurrently with estimation, consists of calculating the
sensitivities of the parameter estimates to each of the error sources to be
considered. The second stage combines these sensitivities with an error
budget (i.e., a statistical description of the errors for the sources being
considered) to obtain a probabilistic characterization of the estimation
errors. The second stage can either be performed concurrent with or sub-

i sequent to estimation.
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The sources of error considered in the error analysis generally include sensor
and trajectory noise errors and state vector initialization errors.

The subset 6f states whose initialization errors are included in the error
analysis are called propagated states. The set of propagated states, which
always includes the estimated states, may, in addition, include any subset
of the constrained states.

4.3 Sequential Linear Estimation

In general, an optimal linear estimator can be implemented by means of a

two stage sequential algorithm. The two stages are, respectively, filter

and smoother. The application of a sequential two stage linear estimator

to the multiple RV mission is illustrated in Figure 4.2. Examination of

the flow diagram shown in this figure reveals that all trajectory segments
for boost and reentry vehicles are first filtered, and then each segment is
smoothed. The order in which the segments are filtered is somewhat arbitrary,
but the order of smoothing is the exact reverse of the filtering order.
Furthermore, the filter operates on each segment by processing the data in
the direction of increasing time. The smoother, on the other hand, processes
the filter outputs in the direction of decreasing time.

The filter provides estimates utilizing only the data processed up to and
including estimation time. The smoother provides estimates utilizing all

of the data, by adjusting the filter estimates. It should be noted, however,
that only the dynamic parameter estimates (i.e., those in Group 1) require
adjustment by smoothing. The estimates of the static (constant) parameters
which are obtained at the end of the filter stage are unaffected by smoothing,
since these estimates are already based on the entire data set.

For processing convenience and flexibility, each trajectory segment can be
partitioned into regions of powered flight, freefall, and reentry and these
regions can be further partitioned into intervals over which sensor coverage
does not change.

In addition, in order to facilitate and enhance the efficiency of bulk
storage (i.e., disk or tape) input/output (I/0) operations, the intervals
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mentioned above can be further partitioned into subintervals at the junc-
tures of which all I/0 operations are performed. The size of these sub-
intervals can be selected small enough such that the instantaneous storage
capacity in the computer memory is not exceeded and large enough to maintain
the number of I/0 operations sufficiently small that computer efficiency
does not suffer.

During filtering, the input operations entail reading metric and telemetry
data, and the output operations consist of writing filter estimates of the

whole state and the sensitivities of these estimates to the propagated states.

During smoothing, the input operations read filter outputs, ard the output
operations write smoother estimates and the sensitivities of these estimates
to the propagated states.-

4.4 Nonlinear Sequential Estimation

In order to apply linear estimation to the multiple RV mission, a further
refinement is necessary, because the equations governing such missions
are, in fact, nonlinear. The refinement to be discussed is analogous

to the use of the Newton-Raphson method for solving nonlinear algebraic
equations. The algebraic method uses relinearization and iteration to
obtain a solution. On each iteration a set of linear equations is solved,
and the solution is used to relinearize the nonlinear equations to obtain
the set of linear equations to be solved on the next iteration. The pro-
cess is terminated when convergence occurs, i.e., when identical solutions
are obtained on successive iterations.

In the estimation problem, the nonlinear equations are linearized about a
nominal value of the state vector at each step in the sequential process.
The nominal value of the state vector is an arbitrary approximation to the
true state vector. The resulting equations are linear in the state vector
variation which is defined component by component by

variation = true - nominal.

The linear estimation equations are applied to estimate the variation. The
estimate of the whole state vector is then given component by component by

whole estimate = nominal + variation estimate.

T RV
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For each component in the subset of constrained states, the whole estimate
is by definition equal to the constrained value of the component.

The technique for nonlinear estimation consists of iterating the entire
two stage sequential filter/smoother operations. On each iteration, the
variation estimate obtained upon completion of the filtering and smoothing
of operations is added to the nominal to obtain an estimate of the whole
state vector. The whole state estimate thus obtained is then used as the
nominal state vector on the next iteration. This relinearization and
iteration process continues until the variation estimates converge to zero,
i.e., the whole state estimates on two successive iterations are identical.

On the first pass the nominal state vector is initialiied with the best
prior estimate available. Then during the filter stage the nominal state
is reset periodically by equating the nominal state to the whole value
estimate obtained by the filter.

The questions regarding convergence of the above procedure are not easily
answered. While there are well known necessary and sufficient conditions
for convergence, they are not easily verified for the class of trajectory
estimation problems of interest here. However, experience has shown that,
in well formulated problems of this nature, convergence generally occurs
within several iterations provided the nominal state is initialized suf-
ficiently close to the true state. The periodic nominal reset procedure
described above is designed to maintain the variation sufficiently small on
the first pass that convergence occurs quickly thereafter.

4.5 Recapitulation

The estimation procedure and the error analysis which can be parformed
concurrently with estimation are concisely represented by the flow diagram
of Figure 4.3. The diagram illustrates an outer loop for relinearization
and iteration, middle loops for interval processing, and inner loops for
processing of subintervals. Counters I, J, and K control the outer, middle
and inner loops, respectively.
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FIGURE 4.3 FLOW DIAGRAM OF ITERATIVE ESTIMATION AND
' ERROR ANALYSIS FOR MULTIPLE RV MISSION
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‘Each interval, it will be recalled, consists of a trajectory segment portion,

The outer loop is repeated until convergence is achieved or the maximum
allowed number of iterations has occurred. The middle and inner loops are
traversed in a forward direction (counters increasing) during the filter
stage and in the reverse direction (counters decreasing) during the smoother
stage. Although it is not shown in the diagram, within each subinterval

the filter processes input data sequentially with time increasing, and the
smoother processes filter data sequentially in the reverse (i.e., time
decreasing) direction. : '

which is exclusively powered flight, freefall, or reentry, over which sensor
coverage does not change. The interval discrete functions control filter/
smoother configuration over each interval by specifying sensors to be
processed, parameters to be estimated, times of discrete events within the
estimator, and so forth.

The subinterval discrete functions consist entirely of bulk storage I/0
operations.

It was stated earlier that the error analysis and estimation procedures can
be performed concurrently. This is accomplished by augmenting the filter
and smoother with error propagation functions. However, because of the
iterative feature of the estimator, it is more efficient to allow the
estimator to converge before performing the error propagation functions.
Thus, with reference to Figure 4.3, after convergence, one more pass through
the outer loop is taken in which only the error propagation functions are
performed.




5.0 MATHEMATICAL DEVELOPMENT

In Section 4.0, the major TRAM functions of estimation and error analysis
were discussed in qualitative terms for a multiple RV mission. The concept
of a state vector was introduced, and its composition by various groups was
presented. The state vector consists of parameters which affect either
trajectories or measurements. For purposes of estimation, two subvectors
of the state vector are defined. The first contains the estimated states.
The second contains the constrained states. For the error analysis, a sub-
vector of propagated states is defined which contains all the estimated
states and, in addition, some subset of the constrained states.

In this section, the basic equations for both estimation and error analysis
will be developed using the state vector concept.

The state vector, denoted by x, satisfies a nonlinear differential equation
(1) x(t) = fx(t), t]+w(t), t >t ,

called the state equation. The metric sensor measurements, denoted by y,
are functions of state at discrete times and satisfy a nonlinear equation,

(2) y(ts) = hix(ty), t;1+v(ty), i=0,1,2, ...,

called the measurement equation. The quantities w and v are called the
state (or plant) and measurement noise processes, respectively.

While the TMIG measurements can also be expressed in the form given by (2),
it is more convenient to express these measurements in a form suitable for
introduction in the right hand side of (1) as a direct measurement of
vehicle dynamics.

If the state vector is ordered and partitioned into the four groups defined
in Section 4.0, equation (1) becomes




o -y - , - po -
%3 falxa(t)s X x o 1] w,(t)
kb 0 0
(3) = +  t2t
kc | 0 0
i kd ] i 0 ]l L 0 )

where the groups are identified as follows:

x., dynamic trajectory group

a’
Xps metric sensor group

X ., inertial sensor group

C’
X4 static trajectory group

Similarly, equation (2) becomes
(4) y(ti) = h[xa(ti)’ xb’ ti] + v(t-i), 1 = o’ ], 2’ se e

Equation (3) shows explicitly the dynamic behavior of the first group and
the static nature of the remaining groups. Also shown is the fact that in
general the dynamic behavior of Xa depends on Xas X¢ and Xqe However, the
dependence of X, On X, occurs only in inertially instrumented trajectory
spans. Equation (4) shows that the metric sensor measurements depend

only on x_ and Xy

a

The state noise component wa(t) represents the effect of random forces,
such as aerodynamic forces, on those trajectory spans which are not
inertially instrumented. On inertially instrumented spans, a'l {nertial
forces, including random forces, are sensed and incorporated into fa; and
wa(t) represents noise in the inertial instruments.

5.1 Estimation

In this subsection, equations (1) and (2) will be used as a point of
departure. However, explicit dependence on the subvector of constrained

16



states will be suppressed, and x will denote only the subvector of estimated
states.

To apply linear estimation techniques, equations (1) and (2) must be linearized
with respect to the state vector. This can be accomplished over any time
interval of interest, say [t', t"], in the following manner.

Let ; denote the solution of the differential equation

-~

(5) x(t) = fIx(t), tl, t' < t<t*,

with ;(t') arbitrarily specified. x is called the nominal state vector.
Then, expansion of equations (1) and (2) to first order about x leads to

(6)  x(t) = fIx(t), ]+ F(t)Ix(t) - x(t)] + w(t) ,

(1) ylty) = hDx(ty)s ]+ H(EDDx(E)) - x(8)] + v(Ey)
where

8 Fie) = [255)- .

(8) (t) (;ﬁxﬂht

and

9 H = (2h.).

Now define the state and measurement variations, respectively, by

(100 &x(t) = x(t) - x(t) ,
and
1) eyl = y(t) - nix(t), ] .

From (5), (6), and (7) it then follows that




(12)  &x(t) = F(t)sx(t) + w(t) ,
and

(13) Sy(ty) = H(tyax(ty) + v(t;)
for all t and t; in the interval [t', t"].

The solution of (12) can be expressed in a convenient form using the
transiticn matrix, ¢, defined by

(14) o(t, s) = ¥(t)¥ (s)

for all t and s in [t', t"], where ¥ is the so-called fundamental matrix
defined by the differential equation

(15) ¥(t) = F(t)¥(t), ¥(t') = I, t' <t<t".

The existence of ‘y'](_t) is guaranteed for all t' < t < t", and thus ¢ is well
defined by (14).

In terms of &, the solution of (12) is expressed by
t
(16) sx(t) = &(t, s)dx(s) + f o(t, r)w(r)dr
3
for all t and s in [t', t"]. In particular, for t; and t, ., in [t', t1,

(17) 6x(ti+]) = q’(tiﬂ’ ti)Gx(ti) + u(ti) ,
where
tin
(18) u(ti) = / ¢(t1+], rw(r)dr .
t
i

By specifying x at a finite set of times and using (5) to obtain x in the
intervals between these times, the linear equations obtained above can be




extended to hold for all times of interest on the multiple vehicle trajectories.
Thus the linear state and measurement equations become

(19) Sx(tyy) = oty ty)ex(ty) +u(ty) ,
(20) dy(ti) = H(ti)sx(ti) + v(ti), i=0,1,2, ...,

with the provision that whenever x is reset, 8x must also be reset by the
relation

(21) sx(t') = ex(t7) - [x(th) - x(t)],
where t~ and t+ denote values before and after reset, rgspéctive1y.

Equations (19) and (20) provide the model basis for application of the two
stage (filter/smoother) linear estimation procedure which will now be
developed. With somewhat briefer notation, the estimation model is given
by

(22) X541 = B58%, 4+ ui ,

(23) Gyi = HiGXi + v i = 0, .I’ 2’ s e

1'9

The sequential filtering and smoothing algorithms of linear estimation,
together with the assumptions on which they are based, are discussed fully
in Appendix A.

The filter algorithm for (22) and (23) is given by

(28) K, = PIHI[H,PTHI +R.TT
(25) 6x; = 6xy + Ki(dy, - Hiox])
(26) P. = PJ - KH:PS,

(27) a;qﬂ = <1>1‘s;<1 .

19
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(28) Pi"'] - °1Pi¢i + Qi’ 1 0, 1’ 29 L Y

Qi and Ri are the covariances of Uy and Vi respectively. 6x; is the estimate
of 6x; based on the set {y,, ..., y;_;1, while 6;1 is the estimate of ox;
based on the set {yo, cees yi}. P; and Pi are the respective filter covariances

of 6xi and Gxi. K,

j is the filter gain matrix.

The estimates 6x and the filter covariances P are computed sequentially. At
each step Gx;, based on measurements {yo. vers yi_]}, is updated using y; to
obtain éx;, and P; is updated to obtain P;. Then éx; is extrapolated to
obtain 6x;+], based on measurements {yo, cens yi}, and Pi is extrapolated

to obtain Pi+]'

The smoother algorithm, to be considered here, has two forms, one of
which can only be used in the special case in which there is no state
noise. In either case the smoother is employed after the complete
measurement set {yo, cees yN} has been filtered.

The most general form of smoother, to be used here, is the fixed interval
smoother, and the algorithm for this form is given by

- aT(pm -]
(29) Ay o= Pi(Pr)T

(30) in = X AR - X))

- - T 4=\
(31) i = Pim AP - Pag WA =T L0

' Ai is the smoother gain matrix, inN is the estimate of X5 based on the

complete measurement set {yo, cees yN}, and PiIN is the smoother covariance
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The fixed interval smoother is initialized by the final values of the filter.
That is

*NIN T XN
and

P = P

N[N N
The smoother quantities are computed sequentially but in reverse order to
the filter. At each step xilN is obtained from Xi411N and filter outputs.

Similarly PilN is obtained from Pi+1IN and filter outputs.

The filter estimates of the whole state, required in the smoother, are
obtained during the filter operation by simply computing and storing
the quantities

(32) Xy = x5 + P
and
(33) X; = x5 + X i=0,1, ..., N.

It should be noted that, unlike the filter covariances, the smoother
covariances are not required to obtain the smoothed estimates of the state
vector. However, the smoother covariances are required for the error
analysis. In fact, if all the conditions stated in Appendix A were
satisfied, the smoother covariance would be equal to the covariance of
estimation error.

The second form of the smoother which can be used only when state noise is
zero is the retrograde intergation smoother. This method of solution consists
of simply solving equation (1) (where w(t) = 0) by reverse or retrograde
integration from tN to to using the final value estimate from the filter to
initialize the integrator. The smoother covariance is similarly obtained

by retrograde integration using the final value of the filter covariance
for initialization.

P P - . . e v pa—




The retrograde integration algorithm is given by
(34) x(tltn) = f[x(tltN)’ tl, x(tNItN) = XN ’

(35)  P(t|ty) = F(tt )P(t]ty) + P(t|ty )F (tity)s P(tylty) = Py, t, < t < t,,

where

~

o= Ot xity),

. f{of
(37 F(elty) - (;1') o, e

(36)

;(tltN) is the whole value state estimate based on {yo, cees yN}, and
P(tItN) is the smoother covariance of ;(tltN).

A flow diagram for the two stage estimator illustrating the basic functions
of the filter and both smoother types is illustrated in Figure 5.1. The
diagram is somewhat simplified, but serves the purpose of demonstrating the
essential structure of the estimator.

There are two major filter functions, update and extrapolate, which are -
prepared by measurement processing and integration functions, respectively.
Notice alsé, that in the filter stage the variation estimate must be reset
whenever nominal reset occurs (Cf. equation (21)).

5.2 Error Analysis

The estimation equations which have been developed in the preceding subsection
deal exclu$ively with the set of estimated states. In the lirearization
procedure, it was tacitly assumed that the variation (i.e., true - nominal)
was zero for each constrained state. Since this subsection deals with all
error sources, including constrained states, nonzero variations of these
states will be considered. '

E c

Let x~ denote the subvector of estimated states, and let x~ denote the
subvector of constrained* states to be included in the error analysis.

*It is assumed that each of the constrained states is a static state.
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Then repetition of the linearization procedure used in the preceding
subsection leads to analogous equations which include the variations in
the constrained states. The analogues to equations (12) and (13) are

(38) ax(t) = F(t)ext(t) + a(t)axd + wt) ,

(39) sy(ty) = H(ti)éxE(ti) + J(ti)dxg +v(t,) , !

where ' :

@) &) = (). j
v 3(xg) x(t), t
= and ' [«

(a)  agey) = (=2-) :

2xe) [t ¢,
The analogues of equations (22) and (23) are

E _ E C
(42) Gxiﬂ = 9;8x; + 916"0 tug . . ]
N (43) dy; = M +aaSev,i=0,1,2, ...,
b
- where ]
i i E
: (44) 8; = / Q(tiﬂ, r)G(r)dr . |

ty

Now equations (42) and (43) can be used to develop the error propagation
equations for the filter and smoother. The filter errors are defined by

(85) e; : fo - GxE ,

(46) e, = 6xt-oxE,i=0,1,2, ....N. ¥
i § - oy




The fixed interval smoother error is defined by

= < E .
(47) e.ilN - x.‘IN'xi,i-0| ], 2, -o-.N,

and the retrograde smoother error is defined by
(48) e(tity) = xE(t|ty) - xE(t), t <t<t
N N >0~ "= "N~
From the error equations'and the filter algorithm, it follows that

= - c

- = ¢

Similarly for the two smoother types
(51)  eyyy = ey * Ajlegyyn - el
and
: c
(52) e(tItN) = F(tItN)e(tltN) - G(tltN)Gxo R

where

F(t{t = of ~ ’
(tlty) (B(xE)T> x(tlty), t

6(t|ty) 2 :
W ( 3(xg) ) x(t]ty), t

The estimation error at any point in the estimation process is a linear
combination of initialization errors in the estimated and constrained states
and errors due to measurement and state noise. Define

(3) a(:g)I
0

(54) oo
0




Then the initialization error propagation equations are

(55) D, = (I-KM)05,0]=1,

(56) = (- KHIE] + Kydy, E; = 0,

(57) D5, = &0, |
(38)  Eq o= oE -9, ;
(59)  Dyy = Dy * Ai[Dyuqqy - Dy ds Oy = Dy ;
(60)  Eyv = By * AilEqy - B By = By i:
(61)  D(tlt,) = F(t]t)D(t]t,), D(tylty) = Dy , i'j‘
(62)  E(tlty) = F(tltE(tlty) - G(tlty), E(tIty) = Ey -

A procedure for the error analysis using the above error propagation equations
together with the filter and smoother error covariance equations will now be
developed. The error analysis will provide the mean and covariance of the
estimation error based on an error budget.

The error budget specifies the mean and covariance of initialization error:

£ EE  EC
j ' by U Yo
| c CE ,CC
' bO UO UO
»

9‘; It also specifies the state and measurement noise process covariances
’ Qs i20,7,2,...,and Ry, 120, 1,2, ..., and it is assumed that
} these noise processes are sequentially uncorrelated and mutually independent
with each other and the initial value of the state.

i ;.\.i.au‘»zf.a
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The mean or bias estimation error is given by
(63) by = Dyub5 *+ Eyjnb »

in the fixed interval smoother, and by

(64)  b(tty) = D(t|ty)bE + E(t|ty)bs
in the retrograde integration smoother.

The covariance of the estimation error due to initialization error is given
by

EE | EC T
b % il
(65)  Uin = Do i B | e e T

0 (1 i

in the fixed interval smoother, and by

(66) U(tItN) = [D(tltN) E(tltn)]

in the retrograde integration smoother.

The covariance of estimation error due to the noise processes is most easily
computed by an indirect method using the smoother covariance. The method is
valid only if the error budget values of the noise process covariances,

Qi’ i=0,1,2, ..., and Ri’ i=0,1,2, ...., are used in the filter
algorithm (Cf. equations (24) and (28)). Under this assumption, the esti-
mation error covariance due to noise processes is given by

T

(67) v .'IN )

iIn = Pin T Dy aPol
or

(68)  V(t|ty) = P(t[ty) - D(t]ty)P:D'(t]ty)




where P; is the fnitial covariance used in the filter.

In the special case in which state noise is zero and the retrograde integration
smoother is used, an alternate direct method of calculating the estimation
error covariance due to measurement noise may be used. This method is valid
regardless of whether the error budget values of measurement noise are used

in the filter. The first step is to compute V. and V; by

T

T - -

(69) Vi = (I - KHVG(T - KH,

- - T -
(70) v1+] - °1v1°1, i - 0, ], 2’ e e

Then the estimation error covariance due to measurement noise is given by

(7). V(tly) = F(elg)V(tlty) + V(tlty) FI(tity), Vitylty) = vy .

Finally, the total estimation error covariance due to combined inftialization
and noise process error is given by either

(72) Hil" = U‘IN + vi'N’ i = 09 ]. 2, s e
or

(73) () = UGty + Vit ty st sty .

A flow diagram for the computation of the error propagation quantities D, E,
and V is presented in Figure 5.2. The alternative calculation of V is shown
as an option to be exercised only when state noise is zero and the measurement
noise error budget values differ from those used in the filter algorithm.

The sequential nature of the error propagation equations is in one to one
correspondence with the filter and smoother equations. 'Consequent1y, the
error propagation equations could be easily computed in parallel with the
estimation equations. However, because of the iterative process used to

minimize error due to nonlinearity, it is most efficient to defer the
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calculation of the error propagation equations until the estimation process
converges.

Once the error propagation quantities have been calculated and the initiali-
zation error budget has been specified, the error analysis is completed using
equations (63) or (64) to compute the estimation bias error, and (65) and
(72) or (66) and (73) to compute the covariance of estimation error.




6.0 COMPUTATIONAL CONSIDERATIONS

fn\order to effectively select and implement an algorithm in a computer
program, due consideration of several factors is required. These factors
include the numerical precision of the computer and the accuracy, stability,
and efficiency of the algorithm.

VI T G R .

The numerical precision of a computer is determined by the number of digits
allocated to the mantissae“of numbers rep. - :ented in the machine. The error
which occurs because of limited numerical precision is called roundoff error.

A1l other computational errors are inherently due to the algorithm itself.
The most common of these is truncation error. Truncation error results when
higher order terms in a Taylor series expansion are neglected.

The stability of the algorithm is determined by how roundoff and truncation
errors propagate. If these errors propagate in an unbounded or oscillatory
manner the algorithm is unstable.

Efficiency of an algorithm is a relative concept based on execution time
and storage requirements. Gross estimates of execution time and storage
requirements must be considered in selecting candidate algorithms. and
relative efficiency can be used as a tradeoff basis for otherwise comparable
algorithms.

In the remainder of this section, the computer implementation necessary to
satisfy the functional requirements, developed in Section 5.0, for estimation
and error analysis will-be discussed based on consideration of the compu-
tational factors mentioned above.

6.1 Scalar Measurement Update

The update equations of the filter algorithm developed in Section 5.0 are
given by

T

+R]7,

a3
1)

P"H [HPH




§x = &x + K(Sy - Hox) ,
P = P - KHP

where the time index i has been dropped. The function of theseﬂequations

is to process the measurement variation Sy and thereby update Sx and P~ to
obtain 8x and P respectively. As written these equations are valid for a
measurement vector of arbitrary diminsion. For example, if 8y is an m-vector
and P is nxn, H-~is mxn, R is mxm, and K is nxm.

The update equations are based in part on the assumption that the measurement
variation is given by

dy = Héx + v,
where the covariance of v is the matrix R.

In the particular case where R is diagonal*, the vector update procedure
can be replaced with an entirely equivalent scalar update procedure which
is more efficient.

To illustrate theLscalar update procedure, assume

w o ]
5%, Hy R11 O
syz H2' R2

8y = . s H = 1}. , and R =

Lsy'". LHm.- Q .RmJ

Thus for each j =1, ..., m, 8y is the j-th scalar element of &y, Hj. is the
j~th row of H, and Rjj is the j-th diagonal element of R. Now the scalar
update procedure consists simply of applying the update equations sequentially
to the elements of S8y as illustrated in Figure 6.1.

*If R is, in fact, the covariance matrix of the measurement noise vector v,
then R is diagonal if and only if the elements of v are mutually uncorrelated.
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In the figure, dummy variables GE and T were used for immediate results
which need not be saved. The final values of these variables yield the

same values of 6xi and P1 that would have been obtained by the vector update
procedure.

The gain matrices Ksj), j=1, ..., m, must all be saved for use in the |
error propagation equations. Furthermore, equations (55), (56), and (69) P B
in Section 5.0 must also be processed sequentially for each fixed i at which i i
the scalar update method is employed. The reason for this is that ‘
iximy !

K # [k

The sequential error propagation equations are illustrated in Figure 6.2.
Dummy variables are once again use¢r for intermediate results which need not
be saved.

6.2 Square Root Filter

The standard filter algorithm which was developed in Section 5.0 includes
sequential calculation of the error covariance matrix, P. A necessary
condition for an nxn matrix P to be a covariance matrix is that it be
nonnegative, i.e., PT = P and

aTPa >0

for all n-vectors a. However, careless computation of P in the standard
filter can resuit in violation of the nonnegativity condition because of
roundoff error. When this occurs, filter instability can result.

There are a number of methods typically employed to preserve the nonnegativity
of P in filter implementations. However, some of these methods increase
execution time by as much as 100%. Worse, they sometimes fail to preserve
nonnegativity, expecially if P becomes i11-conditioned, i.e., nearly singular.
An alternative to employing any of these methods is provided by the square
root filter.
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The square root filter, which can be realized by any of several algorithms,
is mathematically equivalent to the standard filter. The square root filter
requires sequential calculation, not of P, but a square root of P, designated
here by S.

.....,.._....,,1_.—4—.-".'.‘-,4
¥

An nxn matrix S which satisfies the condition

Bl S S

; p = ss¥

is called a square root of P. If P is nonnegative, then a real valued square
root of P exists, but it is not unique. Conversely, for any real valued
nxn matrix S, the nxn matrix product SST is nonnegative, since

et iy
YR N

aT(SST)a = (STa)T(STa),z_O gs;

for all n-vectors a. This property is important in square root filtering,
because it guarantees the nonnegativity of the filter error covariance matrix P.

Square root filters have two distinct advantages. First they are much less
sensitive to roundoff error than standard filters. In fact empirical computer 4
studies have demonstrated in some instances that square root filters have i
single precision accuracy that can be achieved with a standard filter only by
using double precision arithmetic. Second, and most important, filter
instability due to.violation of the nonnegativity condition cannot occur,
since the error covariance matrix P (which need not be computed but which is
implicitly defined by the square root matrix S) is guaranteed o be
ndnnegative.

e WA e

Of the available square root filter algorithms, the one selected for application
in TRAM is due to Carlson. This algorithm, which is given in detail in Appendix
A, is very efficient. The required execution time is comparable to the most
efficient standard filter algorithm.

‘,-,_,
&

The Carlson algorithm has the distinctive feature that the square root matrix
2 S is maintained in triangular form. S may be either upper triangular or lower
; triangular at the option of the user. Recall that a matrix is upper (lower)

T
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triangular if all elements below (above) the main diagonal are zero. The
importance of triangularity is that it reduces the computational and storage
requirements of S by nearly 50%.

The Carlson algorithm parallels the sequential operations of the standard
fiiter, except that it propagates S instead of P.

The matrix S is initialized by extracting a triangular square root of P;
using the Cholseky decomposition algorithm given in Appendix D.

The update operation is constrained to scalar measurement processing as
discussed in Section 6.1. If the measurement covariance matrix is nondiagonal,
a linear transformation must be performed on the measurement vector in order
to decorrelate the measurement noise components.

The extrapolation operation can partially or totally destroy the triangularity
of S, and as a consequence a retriangularization procedure may be required.

To illustrate the use of Carlson algorithm consider the m-dimensional measure-
ment vector variation at time tis

6yi = H.i‘Sx.i + vj

with measurement error covariance Ry It is assumed that 6;; and S; are
available where S; is a triangular square root of P;.

If Ri is nondiagonal, the first step is decorrelate the measurement noise
components. This is accomplished by applying Gaussian elimination with
complete pivoting (Cf. Appendix D) to Ri' This procedure yields a lower
triangular matrix L and an upper triangular matrix U such that

LnRinT =,

where I is an invertible matrix constructed by row permutations on the
identity matrix.

WV




The matrix L has all ones on its main diagonal, and thus, by virtue of !
triangularity, L™V exists.

i Now consider the transformed measurement equation

1 ] [} [}

%- cy1 = Hicxi + vy

;

4 where

[ Qyi = LIIG,y.i !

' -
Hi = LnHi s }

3 v% = an1 s

. [
and the covariance of vj is simply

R; LR UL

Using the fact that (Ln)’] exists, it is easily shown that the standard
filter update with 6y;, H;, R; is entire]y equivalent to update with 8Y5s
Hi’ Ri' But it is readily seen thaF Ri is diagonal, since it is both
symmetric and upper triangular. (Ri is symmetric since it is a covariance
matrix, and it is upper triangular since it is the product of two upper
triangular matrices, U and LT.) In fact, element by element, the main ;
diagonal of R; is equal to the main diagonal of U. That is, é

As a consequence of R; being diagonal, the transformed measurements can be ,
processed by the scalar measurement update procedure of Section 6.1.




The next step is to process the individual scalar components of the trans-
formed measurement vector using the Carlson update algorithm. Suppressing
both the subscript i and the prime notation, let the transformed measurement
quantities be given by

o T o T -
&Y, Hy R1y 1

Sy . », H = . , R = .
Gym Hm. O Rmn
d

The scalar update procedure consists of applying the Carlson update
equations sequentially to the elements of §y. The combined decorrelation
and Carlson update procedures are illustrated in Figure 6.3.

In the figure dummy variables have been used for intermediate results which
need not be saved. The starred box contains the key calculations of the
Carlson update procedure, and the detailed algorithm for the functions in
this box is provided in Appendix A. Notice that the matrix Ji of measurement
partial derivatives with respect to constrained states, required for error
propagation (Cf. (43), (56) of Section 5.0), is also subject to the decorrelation
transformation L. The quantities which must be saved for smoothing and error
propggatign functions include H, J, Kga), J=1, ..., my and R in addition

to Gx;, 85 S;, and S;.

The final step is the extrapolation operation. The nominal state and the
state variation are extrapolated in the same way in the square root filter

as in the standard filter. To extrapolate Si’ a triangular matrix S;+]

must be found such that

T = ST (53.4)T
Pivt = Sin(Sin)
where (Cf. (28), Section 5.0)

- T
Pisy = 9P+ Qy
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and

Py = SSI.
This could, of course, be accomplished by computing P;+] directly and applying
the Cholesky decomposition to obtain S;+1. But this would defeat the purpose
of the square root filter which is to avoid sequential computation of P and
thereby gain certain advantages with respect to computational efficiency,
numerical precision, and filter stability.

The indirect calculation of S;+] is performed in the following manner. Let
Iy be a square root of Qi’ and observe that

. . T L e
[ogS; & Tyl [o3Sy ¢ Tyl = oPyoy + 0y = Py .

Thus the augmented matrix [°isi : ri] satisfies one property required of
S;+] but it is not square.

Now let T be orthogonal matrix, i.e., T"l = TT, of the proper dimension to
allow pre-multiplication by [<I>1.Si E ri] and observe that

] (] T - [ 1 T - -
{[«»1.51. : I‘,i]T} {II<1>1.Si : ri]T} = [@iSi : ri] [<p1.s]. : ri] = PM

Thus if T is selected such that
then S' is a square root of P;+].
By applying the modified Gram-Schmidt (MGS) process (Cf. Appendix D) to the

rows of [¢isi ' Fi], augmented by the rows oflé ?], an orthogonal matrix T
can always be constructed such that

[ogs¢ & 1y JT = [s' 1 0],




where S' is triangular. The order in which the rows of [tbis,l ' riJ are
processed to obtain T determines whether S' is upper triangular or lower
triangular.

In the particular case where Qi =0, it is clear that the matrix °isi is
itself a square root of P;+]. However, depending on the structure of ¢i, the
product @isi is not necessarily triangular. Consequently, even when Qi =0,
the MGS process, applied to the rows of ¢isi augmented by the rows of I if
necessary, may still be required to obtain a triangular square root of P;+].
In this case the procedure is appropriately referred to as retriangularization.

The efficiency of the square root covariance extrapolation is greatly influenced
by the structure of °i and Qi which in turn is dependent on the ordering of the
elements within the estimated state vector.

To illustrate efficient extrapolation, assume that the upper triangular form
of S has been selected and that x, &, and Q can be partitioned as follows:

Xa %2a %ab %ac Qa 0 O
X = xb 'Y ¢ = 0 @bb @bc 'Y Q = 0 0 0
X. 0 0 I 0 0 0

This form, which can always be achieved by proper ordering of the elements of
x, has grouped all dynamic states which are driven by noise in Xy all dynamic
states which are not driven by noise in Xps and all static states in x
Denote the respective dimensions of Xas Xps X¢ by Nas Nps Ne-

¢’

The corresponding partitioned form of S is given by

%a %b %c
S =10 Spp Spe |
0 ~0 Scc
where Saa’ Sbb’ and Scc are each upper triangular.

ez
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Now define

I = ¢S.

Then, in partitioned form

aa “ab “ac
L = 0 be Zbc
0 0 zcc

where zaa and zbb are not necessarily triangular. However, ch is upper

triangular; in fact zcc = Scc'

Using the above partitioned forms it follows that

zaa zab zac E I'aa 0 0
[¢S i T] = 0 I, I, E 0o 0 O .
0 0 zcc E 0 0 0

where raa is a square root of Qaa'
Now an orthogonal matrix T, such that
[zirlT = [z 0],
where I~ is upper triangular, can be computed in partitioned form as follows:

1. Apply the MGS process to the rows of

z

aa r

aa

proceeding in the order from bottom to top, skipping linearly dependent rows, and

stopping when n, orthonormal vectors have been obtained. Denote by [T{] 5 TI]]

TN S A B o,



the matrix whose rows are given by the n

a orthonormal vectors placed, from

bottom to top, in the order in which fhey are computed.

The matrix [TII i TI]] is naxZna. Denote by [T.]r4 E TI4] the naxZna matrix
whose rows are given, in any order, by the ny orthonormal vectors which were

not computed.

2. Apply the MGS process to the rows of

)

proceedirg in the order from bottom to top, skipping linearly dependent rows,
until the full set of n, orthonormal vectors is obtained. (In the special

case where n, = 0, the process can be terminated when the rows of Lpp are
exhausted.) Denote by ng the matrix whose rows are given by the n, orthonormal

vectors placed, from bottom to top, in the order in which they are computed.

The complete matrix T is given by

Ty O 0 Ty O 0
0 T, O 0O 0 0
0 0 I 0 0 0

T = s
Tqp 0 0 Ty 0 0
0o 0 0 O 1 0
L0 0O 0 o0 O IJ

but only T1], T22, T4] are actually computed. Now the resulting product

(z"i0] = [zir]T,




with upper triangular I , is expressed in partitioned form by

e o
Zaa 2:ab zac

o= (0 I, I |
L_o 0 z;c i

where

Z;a B ZaaTII * I1aaT4l

Tab = Zaplzz

o = Zpplz2

z;c = Zac

ch ) zbc

2Zc = ch *

The complete square root covariance extrapolation is illustrated in Figure 6.4.
The inputs are LI Si’ and Qi’ and the output is S;+1. The partitioned form
of computation is very efficient in those cases where n, + N, << n.. Note 1in
particular that the partitioned block of S represented by SCc does not change

during the extrapolation process.
6.3 Computation of Nominal State Vector and Transition Matrix

The mathematical development of Section 5.0 requires that solutions be obtained
to several differential equations. The state vector differential equation is
integrated to obtain the nominal state vector. Then the state vector differential
equation is linearized about the nominal state and this linear equation is solved
to obtain the transition matrix.

Let the state vector be permuted and partitioned into dynamic states Xqs static
states Xp which affect the dynamic states, and static states X.. which do not
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APPLY CHOLESKY DECOMPOSITION TO Q. :

- T
%Ga "Faa Taa

!

¢n sab + ¢’ab sbh

zdl = ¢Il S“

Zap *
Zac ™ %aa Sac * %ab Sbe * ac See
Zob ™ Bob Spp

Epe * %ub Soe * Pbe Sec

]

cc 7 cc
)
APPLY MGS TO [Za. : r.‘] OBTAINING:

T T
My Tyl

!

APPLY MGS TO Iy OBTAINING

T
T22

3

Zaa " ZIa T‘I’I + F“ TM

zab " Zab TZZ
%
z

ac * Zac
bb = Zpb T22

2bc ‘tbc

Tee v Zee

FIGURE 6.4 SQUARE ROOT COVARIANCE EXTRAPOLATION
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affect the dynamic states. (Note this is not the same partition as used in

Section 6.2.) Then the differential equation for the nominal state vector
is given by

£ (8), x,, t]
0
0

where the notation (~) has been suppressed.

Linearization of (1) about the nominal state vector leads to the differential
equation for the fundamental matrix

-

&aa(t) @ab(t) &ac(t)— Faalt) Fap(t) 0[] ¥, (8) ¥, (t) ¥, (t) ]

¥, (t) ¥, (1) ¥, (t) |= ¥pa(t) ¥, () ¥ (t)

¥, (t) ¥ (t) ¥ (t) ¥ealt) ¥op(t) ¥  (t)

- - -

L

with initial condition
F.waa(t') wab(tl) wac(tl)
Ypa(t') ¥pp(t') ¥, (t')

Wca(t') ch(tl) ch(t')




It is clear that vac(t) = 0, wba(t) =0, vbb(t)
vcb(t) =0, vcc(t) =1 for all t in [t', t"].

Consequently,

(3) Palt) = Faltle . (t), t' <t <t"

and’

(4) Yap(t) = Fo(t)y (t) + F (t), t' «t < t"

Once the solution
integration. Thus

of (3) has been obtained, (4) can be solved by direct

t
. -1
ro® = o ©nlnF, (e .
tl
Now the transition matrix is given by

(5)

—

p—

0y, (t:8) 0 (t.8) o, ()] [w(0) v () 0] [e,00) v () o]

(6

e’

°ba(t’s) obb(t,s) ¢bc(t,s) = 0 I 0 0 I 0

oca(t,s) ocb(t,s) ¢cc(t,s{J 0 0

IJ 0 0 |

for all t, s in [t',t"]. From (6) it follows immediately that

3,5(tss) 0, (t,s) 0

(7) o(t,s) =| O I VI I
o0 0 I |

where

(8) 9,a(tss) = ‘vaa(t)\";;(s)

=1, wbc(t) = 0, wca(t) =0,




(9) ¢ab(tss) Yab(t) = °aa(t’s)wab(s)

for all t, s in [t', t"].

To summarize the procedure for constructing the nominal state vector and the
transition matrix, denote the dimensions of Xas Xps Xo by Nas Nps Nes

respectively. The steps are:

1. Given the nominal state initial condition

g

xa(t')_ ”ng

) _ (o}
Xb(t ) = Xb [y
) o

solve the n, - vector differential equation

x(t) = fIx (t), xp, tl, x,(t') =

and put xb(t) = xg, xc(t) = xg for all t in [t',

2. Evaluate the partial derivative matrices

F = Efg
aa T

axa

F = E_fi
ab T

Bxb

on [t', t"] using the nominal state vector.

xg, t'<tet" ,

t“].




i i i

3. Solve the naxn, - matrix differential equation
Yaalt) = Fo(t)y,(t), v,(t) = It ct<t

4. Compute W;;(t) on (t', t") by direct matrix inversion or, alternatively,
by solving the differential equation

.'] - '] "] - ) n
Vialt) = ~¥o(t)F, (t), v (t') = I, ' st<t

[34)

Compute ¢aa(t,s) for t, s in [t', t"] by

. -1
0,a(tss) = ¥, ()Y, (s)

6. Integrate the n xn, matrix
t
-1 _ -1 ' "
e, 0 = f R, (rar, e <t <t
tl

~
.

Compute ¢ab(t,s) for t, s in [t', t"] by

o,p(ths) = ¥, (1) {L¥g v, 1(t) - [¥3lv. 1(s)) .

8. Put ¢ac(t,s) = 0, °ba(t’s) =0, ¢bb(t,s) =1, ¢bc(t,s) =0, @Ca(t,s) =0,
Ocp(tss) = 0, ¢, (t,s) =T fort, s in [t', t"].

In the above procedure, standard numerical integration methods can be used
to obtain solutions to the differential equations at discrete points in the
interval [t', t"]. Then, standard interpolation methods can be used to
obtain solutions at arbitrary points in [t', t"].

The results of a TRAM related computer study, in which a fourth order
Runge-Kutta integration method was used and in which fifth order spline
functions were used for trajectory interpolation and third order spline
functions were used for interpolation of the fundamental matrix. is reported
in [2]. The study, which was 1imited to an investigation of a freefall
case, demonstrated that (with a step size of 5 seconds) the integration
algorithms and interpolation methods were efficient and sufficiently
accurate for TRAM applications in freefall.
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6.4 Numerical Calculation of Partial Derivatives

Partial derivatives expressions are required in conjunction with the
linearization of the state and measurement equations. If a function to be
differentiated is represented by a closed form analytical expression, its
derivatives can be calculated directly using standard formulas and the chain
rule. If, on the other hand, the function in question cannot be expressed
in closed form, then numerical calculation of some of its derivatives may

be required.

In some cases where direct calculation of derivatives by formuia is
feasible, it may be undesirable for several reasons. First, ir order

to use direct methods, analytical expressions for each partial derivative :
must be developed, and then these expressions must be programmed. Often, f;
this is a tedious and error prone process for analyst and programmer alike.
Second, in many cases, the complexity of partial derivative expressions
greatly exceeds that of the primative function, and consequently the execution
time required for derivative evaluations can greatly exceed that required for
prime function evaluation.

Calculation of partial derivatives by numerical methods can be accomplished
very simply using only primative function evaluations. These functions must
be programmed regardless of how their derivatives are calculated, and the
additional analysis and programming required for numerical differentiation
is trivial. However, caution must be exercised to prevent the introduction
of excessive amounts of either roundoff or truncation error.

To illustrate the numerical differentiation procedure and bound its errors,
let g be a function whose derivative at z, is approximated by

g(z, + a) - g(z,)
o 3

mn

g'(z,)

for some a > 0.
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The roundoff error in this approximation is given by

rlg'(z,)] = I trlglz, + a)] - rla(z;)]}

where r(g) denotes the roundoff error in the evaluation of g.

If g' is continuous on [zo, z, + a] and g" is finite on (zo, z, + ¢), the

truncation error in the approximation of g'(zo) is, by Taylor's formula
with remainder,

tlg'(z,)] = 59"(z)

for some 2 in (zo, 2., +a).

o’

Observe that roundoff error magnitude increases with decreasing o, while
truncation error magnitude increases with increasing a. Consequently,
judicious selection of a is essential in order that the total error in
the approximation to g'(zo) not be excessive.

wWhen g' is required in conjunction with a linearization procedure, a
rationale for the selection of a can be developed.

Linearization of a functional relation

w = g(z)
about a point z implies that the approximation

w = g(z) +g'(z)sz
is invoked, where 5z = z - ;. When this representatiog is used for
computation there are, in addition to the error in g'(z), errors in w
due to both roundoff and truncation. Excluding any error in g'{z), the

roundoff error in w is given by

riwl = rla(2)] ,
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and, assuming g' is continuous and g" is finite, the truncation error in
w is given by

thw] = 5 g"(z)(62)°
for some ¢ interior to the interval joining z and z.

Now let z_ = z and assume g" is continuous on some closed interval [a, b]

Y T vy 1w v 2o g

0
containing 25, 2, + a, and z. Define
llrle]|| = max [rlg(z)]]
a<rgz<hb L
i.
and !
lg"[| = max |g"(z)]
a<gs<h .

Then the total roundoff and truncation error in the representation of w is
bounded by

le(w)| < I1rlall] + 3 19" (s2)°
2 "
e {2 1IeLall |+ $ 11e"l1} (s2)
where only the terms involving o are due to error in g'(zo).
Now suppose o = 8z. Then

le(w)| < 3[Irlal]| + |1g"]] (s2)% .

Thus, with a = 6z, the roundoff error bound does no worse than triple, and

the truncation error bound no worse than double, when errors in g' are added

to the errors which already exist in w. Consequently, if the algorithm for

evaluation of g has negligible roundoff error, and if the linearization of

g has negligible truncation error, then g' has negligible round>ff and |
truncation error when o = §z.
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The above discussion shows that when g'(zo) is approximated by

9(z, + o) - olz))
o L]

9'(zy) =
the roundoff error is bounded by H

IMe'1l < 21irall]

and the truncation error is bounded by
Itlg')l < % llg"l] .

If g'(zo) is approximated by the symmetric formula

9(zy + o/2) - g(z; - o/2)
a

g'(z,) =

it can be shown that the roundoff error is likewise bounded by

Irle’1l < £ (Irlgll] ,

and the truncation error is bounded by

2
tlg'l] < % [leml]

provided g'' is continuous on [a, b] (this time selected to contain
z, + a/2 and 2, - a/2).

The roundoff error bound is the same for the two formulas for g-(zo), but

the truncation error is one order higher in the symmetric formula. Consequently
in comparison with the truncation error of the linearization process, the
truncation error of the symmetric differentiation formula should be negligible.

Since g(z) is required in the linearization procedure, calculation of g'(;)
by the unsymmetric~formu1a requires only one additional evaluation of g.
Calculation of g'(z) by the symmetric formula requires, two additional
evaluations of g, but the additional computation is worth consideration
because of the truncation error protection it affords. ;
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The use of a = 82 in the above discussion was not intended for any purpose
other than error analysis. In practice it is desirable to select fixed
values of o for each variable with respect to which numerical partial
differentiation is to be performed. For each state variable, a value of
a roughly equal to the magnitude of the anticipated estimation error in
that variable should be selected.

Ep———y

6.5 Transit Time, Refraction, and Doppler Calculations

~ap s e

Let t' denote the time at which a signal leaves a target vehicle and let t
denote the arrival time of the signal at a sensor which is tracking the
vehicle. The time difference

T = t-t' ?i
is called the transit time from target to tracker.

The apparent range to the target at time t' is defined in terms of transit
time by

RA(t') = ¢t ,

where c is the speed of light in a vacuum. The apparent range RA(t')
and the true range R(t') differ only because of refraction.

If the true range and the range refraction error are known functions, then
both transit time T and time of transmission t' can be computed for any time
of reception t by applying Newton's method to the function

g(t') = Ry(t') - c(t - t')

This results in the algorithm

Ry(t - 1:) - ct;
+ A j i

AR TS Y

c+ éA(t - Ti)




which is solved iteratively beginning with Ty = 0 and ending when the
condition

T340 = 7l <m
is satisfied for an arbitrary n > 0, or alternatively, when two successive
values of 1 differ by less than computer roundoff error.

In a two way doppler system in which the vehicle transponds (repeats an
exact replica of the signal received) with negligible delay, the doppler
frequency is defined as the difference between the transmitted and received
frequencies at the tracker. This difference frequency is expressed by

D(t) {m(t)}

N =t
=
Q.'Q.
ot

™| =
Ay
[~ YW
(a4

{on(t) - o (0)f

i

Q.] o

Q

{Z'nfo(t - 2t) - ZTTfOt}

iy

"

U
N
-

[=]
&
|-

where fo is the transmitted frequency.

Now, since t satisfies the relation
CT = RA(t - T) Py

it follows that

dr _ | dr
Ca‘ = RA(t-T) [1-&].

Thus
at Ry(t - 1)

and consequently

I3

9




Ry(t')

D(t) = -2f |————o
c+ RA(t') t

0

t-1

The transit time-and doppler calculations involve apparent rance and apparent
range rate, which in turn involve refraction errors.

Under the usual assumptions regarding time inyariance and spherical symmetry
of the refracting medium it follows that

RA = R + p[R, E]
AA = A
EA = E + ¢[R, E]

. ap il
R+gR+oFE

o
1]

where R, A, E, are true range, azimuth, and elevation of the target relative
to the tracker, p and ¢ are range and elevation refraction errcrs, and RA’
AA’ EA are apparent range, azimuth, and elevation. Observe that p and ¢

are functions of true range and elevation only.

The usual method of computing refraction errors involves "ray-tracing" through
the refractive medium with an assumed spherically symmetric refraction profile.
Viewed as a black box, such a refraction algorithm performs in the following
manner. The inputs are the apparent values RA and EA, and the cutputs are

the true values R and E together with the errors p and €. Within the black
box operation begins by tracing a ray from the tracker with elevation angle

EA and continuing until the apparent range along the ray equals RA' Then R
and E are computed from the endpoints of the ray.

Now if the refraction algorithm produces smooth values of p and €, the

algorithm can also be used to obtain numerical partial derivatives of p and ¢

with respect to R and E. However, since the inputs to the refraction algorithm
are RA and EA’ rather than R and E, it is necessary to employ the chain rule. Thus
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B 3 3 3 Ry Ry
3R 3 aR, oE, aR ot
e 3¢ % &y, 3K
3 aE 2 3E 3R 3E
I 1 L Al L i
or
- — -1 [ -1 !
F_B_e 3p dp_ 3P R R
: R 3E 3Ry 3E, Ry 3, ‘
& e & de 3E JE
3R I R oE 3 3E !
i i | A Al LA A
1 But since
] 3p 1 -8R _ 2 . 9R_
¢ . _9E 3 _ 4 _3E
3R, 3R, * 3E, oF,

it follows that only p, €, and the partial derivative matrix

Fgﬂ_ aR W
Ry 3E,
3E 3 |
R of '
! A A i i
need be computed.
The complete procedure, using the symmetric central difference formula, © 4

is outlined below.

1. At the tracker, trace a ray with elevation angle EA ;o appar2nt ranges

RA - a/2, RA and RA + a/2, and compute the corresponding true ranges and
elevations:




3R RV - R™ o Y -k

3Ry B a i BRA a

3. At the tracker trace a ray with elevation angle EA - a/2 to apparent

range RA and compute the corresponding true range and elevation: R, E .

4. Repeat 3. with elevation angle EA + a/2 and compute the true range and

elevation: R+, E+.

5. Using the results of 3. and 4. compute

R _ R -R 3 E -
BEA a 'BTE
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6. Put 4 = <g§A> <g§A> - <§,§A) <§§A)
(3 (%%) -1
- ) <-g§—A>
- () (%)
(1) (—3—2—; -1

6.6 Measurement Processing

The measurement variational equation for a four channel metric tracking
radar is given by (19) in Appendix C.2, and is repeated here for convenience.
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The variation 8y is formed-as the vector difference of the actual and
nominal measurements.

Thus

1
J
L

J

al € &t =3

L4 ]
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But if only the encoder measurements are available for processing, the
dynamic error terms replace the actual measurements, and
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The expressions for the dynamic error terms are given in Appendix C.3. )

The nominal measurement vector ; is computed by evaluating the measurement }
equation using nominal values for all states. The form of the measurement b
equation which is suitable for this purpose is called the dynamic measure-
ment equation. The algorithm for the dynamic measurement quation is

given below. The inputs are the encoder values RE’ AE’ EE’ RE’ sensor
indicated measurement time es, and nominal values of state variables. It
is assumed also that the range and elevation refraction corrections and
their respective partial derivatives, together with the true range and
elevation at which they apply, have been obtained by the procedure outlined
in Section 6.5. These quantities are denoted by o, €, %%3 %%3 %%3 %%3 R, E,
respectively. The outputs of the algorithm are the nominal measurement
variables, r, ¢, ¥, d.

6.6.1 Dynamic Measurement Algorithm

—t
.

Correct sensor time by solving
-y T 5y «
es =t+m (t) Xq
for ;, iteratively if necessary by Newton's method.

2. Compute the coordinate transformation from the geocentric
to the topocentric system at the~sensor site using astro-

b nomic longitude Ap and latitude eA:
~ - -
T -sin XA cos AA 0
Cg = -sin eA cos AA -sin eA sin iA cos BA
] cos eA cos xA cos eA sin xA sin EA




Compute the geocentric Soordinates of the sensor sige using
the geodetic longitude XG’ latitude eg, and height HG:

a cos eG ~ - ~ -
XS 2 — c0S AG + HG cos eG cos XG’

\/———..
1 2

acos o
v - 6

S ‘/—‘_.,
1-e2 sin o

sin AG + HG cos GG sin A

G’

a (l-ez) sin BG ~ -

l = + H. sin ©
S ol o 6

1-e® sin

%

G’

where a is the mean equatorial radius of the ellipsoid and
e 1s its eccentricity.

Apply the iterative procedure developed in Section 6.5 to
solve for transit time, refraction and doppler:

~

() Initialize: v = 0, t' = t.

(£2) In the nominal trajectory time tags have been corrected
for nominal vehicle timing errors, put t" = t'; other-
~Il _~I T ~l N
wise t" = t' + m,, (t') Xg - )
(7Z2) Interpolate the nominal_trajectory to t" obtaining
geocentric coordinates x, y, z, X, ¥, 2, and compute:

1T

! €l £

/]

B! ©! £
1

b~ I




-1 ,~ -

sin"! (WR)

(ﬁu + v + ww)/R ,

LK}

LI
2, 2

m
n
T |E

(Zv) Compute apparent coordinates in presence of refraction

= % (n . ¥ (F .
o= o+ ®(R-R)+ B(E-F)
e = e+ (R-R)+ 3E(E-E)
T dpp o4 B
e R Rt 3FE
§A=li+f>
AA = A
EA=|~E+E
RA = h + p

(v) Compute transit time increment:
R, - ct
61' - i———-

~

¢tk

(vi) Test for convergence:

IF (867 = 0) GO TO (viid).
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(vit) Adjust transit time and retarded measurement time and
repeat above steps:

~ ~

T+« 1T+ 6T

t' = t-=<
GO TO (ii).
(vii<) Compute apparent doppler shift:
Y 5 - -ZfoRA
where fo is the transmitter frequency.

5. Apply target dependent errors at t':

Ry = Ry + DRy i
;R = RA + A;T %
; By = E, + 0E;
; B = Dy + by .

6. Recover doppler encoder value:

-2 R
_ oE
DE -

e R

7. Correct encoder angles for encoder errors.

Ag = Ag - M,

iteratively if necessary using Newton's method.




8. Denote the tracker outputs by

o]

RF = - AR

~

DF D0 - AD

F ?

and compute the topocentric (locally level) to electronic

boresite coordinate transformation, CEE.

Compute the discriminator outputs:

~ ~

r =RR-RF’

~

d = DR - DF 'Y
~ -1
9 = tan (ex/ey) R

tan'](ez/ey) .

e sinAR cosER
. EB M p
e = cLL cosAR cosER

sinER

B T
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10. Apply the sensor errors to obtain the nominal sensor outputs:

r = rs = ro + Ars

d = ds = d° + Ads

Y1 %] | %] | %Fee Sfaw || %

I L R -

] Vg Yo SF¢¢ SFW Yo
6.6.2 Measurement Equation Partial Derivatives

The coefficients of the state vector variations in (1) constitute the total
or dynamic partial derivatives of the measurement with respect to the
respective state variables. Thus

;Z
3
i
L
?
1
g;
E.

EL = H - Hax; ﬁ
T a o T
axa C + RA axa
; Q.LT = Hb
.
axT Hc
C
- . 'm
axT c + é' Haxams
d A
EL = H ;'mT
T S, aav
axe c + RA
)
: EL = H,_ - Haxa ?.:R_A-
T f S T
axf c + RA axf
66
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The quantities Ha’ Hb’ Hes Hf and Hg, appearing in the above expressions,
are called static partial derivatives of the measurement with respect to
the respective state variables.

The total partial derivatives of the measurement can be calculated by
numerical differentiation using the dynamic measurement algorithm specified
in the preceding subsection. Alternatively, the total partial derivatives
can be constructed from the static measurement partial derivatives, where
the static partial derivatives are computed by numerical differentiation
using the static measurement algorithm to be given below. The latter

method of obtaining measurement partial derivatives is useful in conjunction
with the measurement variation averaging processing method to be

considered in Section 6.6.5.

The static measurement algorithm is very similar to the dynamic algorithm,
except that, in addition to the other inputs, t and t' are specified, and
thus it is not necessary to solve for transit time by iteration. Steps

in the static algorithm which are identical with corresponding steps in
the dynamic algorithm will be listed without elaboration.

6.6.3 Static Measurement Algorithm

Compute the coordinate transformation from the geocentric
to the topocentric system. '

Compute the geocentric coordinates of the sensor site.

If the nominal trajectory time tags have beeg corrected
for nominal vehicle timing errors, put t" = t'; otherwise
t" =t + ml(t')xe.

Interpolate the nominal trajectory to t" obtaining geocentric

coordinates, and compute E, A, E, ﬁ, é.

L LRER TS SESR e
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Compute apparent coordinates EA’ RA’ EA’ éA' i
Compute apparent doppler shift BA'

Apply target dependent errors at E'.
Recover doppler encoder value.

Correct encoder angles for encoder error.

o O [« ~ (=) o
. . . . . .

Apply range and doppler feedback errors, and compute the

coordinate transformation EEE.

11. Compute the discriminator outputs o do, L io'

12. Apply sensor errors to obtain sensor outputs ;S, ES, ;s’ ;s'
In using either measurement algorithm for the purpose of obtaining partial
derivatives by numerical differentiation, computational efficiency can be
enhanced by judicious application of the chain rule. For example, if

B = X4 denotes sensor timing bias, it follows that
1

e dai LUG

- Bxd -,
Y - _ Y T
o] 58 My(t') -
xe

Thus differentiation with respect to the scalar B suffices to compute the
derivatives with respect to the vectors X4 and Xq -

6.6.4 Measurement Processing with Adjustable Estimation Times

The measurement variation equation, which has been the subject of this
section, can be concisely written as follows

e e v T




2) oy(t) = oo (v) + Voax(th) + ooax (1)
X X ax
a b c
+ QZT 8 t ) £ )
xd(t) + -17 éxe(t ) + fo
X oX ax
d e f
+ QXT &x_ + v(t) .
X 9
g

For purposes of illustration all states except those pertaining to survey
and refraction have been represented as time varying. Obser!e that there
are three~categories of states in (2); those which apply at t', those which
apply at t, and those which are constant.

Now Tet x denote all states which relate to the vehicle or its trajectory
(including navigation and geopotential error states which do not appear

in (2)), let Xg denote all states which relate to the metric sensor system,
and let Xy denote geodetic and refraction error states. Then the measure-
ment variation can be expressed by

(3) sy(t) = %-YTsxa(E-) v Woger) ¢ P () 4+ w(t)
X, axB axY

Assume there is no state noise, let t* be arbitrary, and observe that

‘”‘a(f') <I>w(t',t*) ~0 0 Gxa(t*)
ch(t) 0 ¢BB(t,t*) 0

GXY(t) 0 0 I

e nnad e

GxB(t*)

6xy(t*)

-— G -

Substitution of (4) in (3) yields

(5) sy(t)

= |25 0 (8" ,t%)
axa




in which the measurement variation at time t is related linearly to the state
vector variation at an arbitrary time t*.

Equation (5) forms the basis for several processing options in which a
collection of measurements is used to update the estimate of the state
vector at an arbitrarily specified time. For example the state estimation
times can be made periodic, even though the measurement times are aperiodic.
It must be remembered, however, that (5) is valid only in the absence of
state noise.
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6.6.5 Processing with Measurement Variation Average

A suboptimal method of processing will now be considered in which the
measurement variations, in each channel of each sensor, are averaged

over a specified time interval and collectively used to update the state
estimate at a specified time within the interval. An important distinction
here is that it is the measurement variations, not the measurement them-
selves, which are averaged.

The averaging technique to be deve]obed here is based on (5) of the
preceding subsection and consequently is valid only in the absence of
state noise.

Averaging of the measurement variations prior to update of the state vector
estimate reduces the filter processing rate and thus enhances computational
efficiency. Also, averaging tends to reduce the magnitude of the serial
correlation coefficients of the filter input noise without deletion of

any measurements. Thus when serial correlation of measurement noise is a
potential problem, such as when encoder measurements are used exclusively,
averaging can be used to more nearly satisfy the requirement that the
measurement noise be serially uncorrelated (Cf. Appendix A).

The reason that the technique of measurement variation averaging is sub-

optimal is that higher order terms in a Taylor series for the averaged :
variation are ignored. The error introduced by the neglected terms in-

creases with the duration of the time interval over which the averaging




M i R e ivid oo

takes place. To maintain the truncation error within acceptable limits,
processing intervals are partitioned into subintervals and the measure-
ment variations on each subinterval are separately averaged.

To develop the technique of measurement variation averaging, consider a
single channel of an arbitrary metric sensor. Let an interval be selected
over which the variations are to be averaged. Let {ti’ icI} denote the set
of measurement times in the interval, and similarly let {t%; iel} denote
the set of corresponding retarded measurement times. Let tI denote the
state estimation time specified for the interval. Then from (5) it follows
for each icl that

-
5% (1)
_13 " P AY_ s v oy |- \
(6) ‘S.Y(t.i) = ;:Tq’w(t.istl) E axT BB(t ,t ) i axT ?f@ff!z + V(ti)
o ' B ' Y. ny(tl)
= Bisx(tl) + v(ti) .
where
_13 t ] \ QL
B =T 0yt tp) E‘YT“’BB“P"I -
U. 1 )
and _
r& (t )—1
2
sx(ty) = ox(tp)
8x_(ty)
I
R

Since (6) is written for a single channel, B1 is a row vector. In fact,
B, is the total partial derivative of y(ti) with respect to x(tI), i.e.,

dy(t)

By = —t—
i axT(tI)




o a4 At A - e

1f Bi is viewed in terms of its constituent static partial derivatives, as
evidenced in (1), and transition matrix components, it is found that, for
fixed tl’ Bj is a function of xa(ti), xa(ti), xB(ti), xB(tf)' % s t;, ty
and the encoder measurement vector z(ti).

Let ?&, iu, X,» ;B' t, t', Z be arbitrary and expand B to first order in (6).

B
Thus
(1) Sy(t;) = Box(t))
o - - P
eoaxilep) | Be Gt -5+ Br i - x)
b X
a a
P s ST
Pl gl T+ B ) - x)
XB 3XB

8§ BT & &
tar (5 -8 ¢ St - )

+ —_T (z(t‘i) = -Z-) + V(ti) [

where B and its derivatives are evaluated at 1;, X, s X, Xgs 2}, t, t', 2

_ B
with xY z xY(tI).

Now let < > denote the operator which performs simple averaging over I,
Thus if N(I) is the number of elements of I, then

<g.>

I 'T')'Nliz & -

el

Next put
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X,o= <x(t)y |

;a - <;G(E: >, |
ié = <;B(;;.)>I Eé
i; = <;B(;.)>I ‘i
T = <t > ;;
tt = <~t!>I {f
z = <(t.)g i

Then to first order
(8) <Sy(t.)>; = §8x(t1) + <v(t.)>I .

Extending the above analysis to all channels of a given metric sensor and
reverting to earlier notation it follows that

6xa(t1)
- 5— T3 : 5— ry : 5—— _______
(9) <Sy(t.)>p = ;ﬁf¢w(t 'ty) :;ffcbss(t.tl) : ;)l(-r Sxg(tr) |+ <v(t.)>y
o ' 78 TR |}
SxY(tI)
n J
where the total partial derivatives ] T » 9 T s 3 T are evaluated at
- - X, axB axY

— —

S,
xa, Xy XB’ xB, xY, t, t', z.

Because of the decoupling of ?& and ia, Xg and ;B’ and t and t' which

occurred in the above development, it is necessary that the total partial

derivatives QXT-, ng-, QXT be computed from static partial derivatives
'} X X
a 8 Y

using the expressions given at the outset of Section 6.6.2.
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Finally, the measurement error covariance matrix for use in conjunction with
measurement variation averaging must be computed. Extending (8) to include
the measurements from all channels of a given sensor which are to be processed
over the interval I, let

Ry = EDv(t,v(t;)]

iJ
It then follows that

1

cov (<v(t.)>;) = —= I I R,.
I N(I)2 fel jel W

In the particular case in which the measurement noise is serially uncorrelated,

1 1
cov (<v(t.)>;) = —— L Ry = N(TT <R..>
6.7 Augmentation and Permutation of the State Vector

At any stage of the filtering operation it is possible to augment the state
vector with additional states. For example, when an RV is deployed it is
appropriate to augment the state vector with the RV position and velocity
states.

Moreover, when the filter operation is switched from one RV to another, the
trajectory states of the new RV become active while those of the old RV
become inactive. Consequently, in order to use the partitions defined either
in 6.2 or 6.3, it is necessary to permute the trajectory states of the two
RVs in question.

To illustrate the state augmentation procedure at RV deployment, assume the
state vector prior to augmentation is partitioned in the form

where x, includes all dynamic states of the bus vehicle (BV) and Xe includes
all static states. Lex Xp denote the dynamic states of the RV.

oo cale e




For a specified deployment configuration, a separation model based on energy
and momentum relations can be developed. In general the model has the form

[ 4] i T :
Gxa Qaa g
= Gxa + p + W g

+ .

6x o _ g

where ¢aa and ¢ba are known matrices, p is a known vector, and w is a zero
mean random vector with covariance

qQ = rrl.

5x; is the variation of X3 prior to deployment, and Gx;, 6x; are variations
after deployment.

S The state vector is augmented to include X}« Thus
‘ *a
x=lx |-
*e
ﬁ g After deployment, the variation estimates are given by
- — r —
o+
Gxa %aa
: = 8xg + P
i 4
X 9
T B R
and
A+ _ A-
| ch - ch

The square root covariance matrix prior to deployment is given in upper
trisngular form by
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The augmeﬁted square root covariance matrix after deployment can be obtained
by applying the extrapolation technique developed in Section 6.2 to the matrix

e N e

0 <l’aasaa <I’aasac : ;

v T ;

- - ' ;

0 Qbasaa ¢basac ! j
------------------------------ T----- i1
- :  §
50 0 SCc ' 0 i é&
.

-, + + !

0 aa Saa : aa Sab H 0
'T to obtain :

. - ! + '

0 ¢ba Saa 1 0 Sbb : 0

The resulting square root covariance matrix is given in upper triangular

form by
+ + + ]
Fsaa Sab Sac
+ +
0 Sbb Sbe
3 ' ‘ +
f LO 0 SCC
+ - + - + -
where Sac = ¢aa Sac’ Sbc = ¢ba Sac’ and Scc = Scc'

To illustrate the state vector permutation procedure, assume the state vector
prior to permutation has the form
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and the square root covariance is given in upper triangular form by
B

L.

Assume further that the state vector permutation consists of an interchange

of X3 and Xpe

Permutation of the state vector variation estimates is accomplished by simply
interchanging Gxa and 6xb. Similarly the square root covariance matrix is

S

0

0

aa

Sab
Sbb
0

-

Sac

Sbc
Scc
-

permuted by a simple row interchange to obtain

Since the row interchange destroys the triangularity of S, the retriangulari-

-

0

Saa

0

S
Sab
0

Soc |

Sac

S
cc |

zation method of 6.2 is applied to the submatrix

to obtain

Thus the permuted and retriangularized S matrix is given by

Saa

Sbb
S

ab

+
Sba

+

Saa




aa ac
0 0 See |
where Sy = Sp, Sy = S, and S;_ = S
6.8 General Partitioned Structure of the State Vector, Transition

Matrix, and Measurement Sensitivity Matrix

Extensive use of vector element permutation and matrix partitioning has been
employed throughout this report for the purposes of illustrating theoretical
features and demonstrating computationally efficient algorithms. To this
point, the partitions which have been used were selected on a case by case
basis and no general structure has been evident. The purpose of this
section is to consolidate the piecemeal use of permutation and partitioning
into a general TRAM structure.

The state vector may be augmented with additional elements when an RV 1is
launched, dnd the state vector elements may undergo a permutation when the
estimation process passes from one trajectory segment to another. For a
given processing interval, the general structure of the state vector and
transition matrix depends on whether TMIG data is used to construct the

trajectory over the interval in question. The structure of the measurement
sensitivity matrix depends further on the measurement processing option which
is selected.
When TMIG data is used to construct the trajectory, the general structure of
the state vector is as follows.
|
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X, - trajectory states of vehicle on segment in process including dynamic
IMU states

Xp - trajectory states of other vehicles which have been augmented including
dynamic IMU states of those vehicles so equipped

Xe - metric sensor states including timing, survey, and refraction states*

Xq - static IMU states, including timing, of other vehicles which have
been augmented

Xo = IMU timing of vehicle on segment in process

Xe - static IMU states of vehicle on segment in process

xg - geopotential states.

The corresponding partitioned structure for the transition matrix is given by

[ %aa 0 0 0 %2e  %af Qag
0 I 0 0 0 0 0
0 0 I 0 0 0 0
$ =10 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
| 0 0 0 0 0 0 I i

*Throughout this subsection, it is assumed that all metric sensor states are
static, since SAMTEC sensors can be modeled in this fashion.
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I1f the measurements are processed asynchronously, the general structure of
the measurement sensitivity matrix is given by

RE PR R T
ai ¢y 1 7Te

However, 1f either adjustable estimation time processing or measurement
variation averaging is employed, the structure is

] ]
nof e foidniofi i,
axa 'axc E ' axe axa
]

o
QL
»
-
-]
-"
Q>
>
]
4
=]

When a trajectory segment is constructed without the use of TMIG data, the
general structure of the state vector is given by

Xa
Xp
x =1 x|
Xq |
| Xe J Ijl
where i

x. - trajectory states of vehicle on segment in process

- trajectory states of other vehicles which have been
augmented including dynamic IMU states of those
vehicles so equipped.

X_. - metric sensor states including timing, survey and i
refraction states :

- static IMU states including timing, of all augmented
vehicles so equipped

Xo - geopotential states.

The transition matrix for this case has the structure

o T Y e M ~

o PR >
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If the measurements are processed asynchronously,

RS L NDBR s e e T et

Ho= |2 to0i&ioio
Tl [ 3 Tl 1
9X. 1 s X H
} a . ' C '

But if adjustable estimation time processing or measurement variation
averaging is employed, then

= | 3y_ gt Y Va3 ,
H axT %aa : 0 H 3 T 0 i 5 T %ae
a | |Xcl |Xa
' ] 1 t

6.9 Suboptimal Processing in the Presence of IMU Noise

In the development of the navigation variational equations in Appendix B, it
was necessary to introduce additional states to account for the noise in the
IMU velocity output. The function of these additional states is to model

the propagation of velocity noise into position and velocity variations.

In an optimal processor, the IMU noise states are included in the state
vector and are estimated. If, however, the position error induced by
velocity noise* is negligible in comparison with metric sensor position
errors, a suboptimal processing scheme in which the IMU noise states are
deleted can be employed with only slight degradation in estimation accuracy.
The principal advantage of the suboptimal processor is that computational
efficiency is greatly enhanced.

*For MMIII, this error is estimated to be less than one foot at boost termination.
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Although the IMU noise states are deleted and the effect of IMU noise

on position error is neglected in the suboptimal processor, IMU velocity
noise is not ignored, but is fnstead treated as an equivalent measurement
error in each of the metric sensor doppler channels. As a consequence
the measurement error covariance matrix of the collective doppler channels
is modified by the addition of another matrix to represent IMU velocity
noise. Since this results in a nondiagonal measurement error covariance,
the decorrelation process developed in 6.2 must be applied if scalar
measurement update is to be used.

In order to achieve a substantial increase in computational efficiency, it
is necessary to employ measurement variation averaging in conjunction with
the suboptimal processor. (Note that this is made possible by the deletion

of the IMU noise states, since this eliminates state noise in the navigation
variation equations.)

An algorithm for calculation of the measurement error covariance induced by
IMU velocity noise is developed below.

Let Dl’ cees DM denote the doppler channels to be processed on an interval
over which the measurement variations are averaged. Let to’ ey tN denote
the discrete readout times of IMU velocity in the averaging interval (to,
tN), and assume the IMU velocity noise is sequentially uncorrelated.

1. Foreachi =1, ..., M, compute the retarded measurement times
t%], cees t%L(i) of the i-th doppler channel which are in
the interval (to, tN).

2. Foreachi=1,...,Mandeach j =1, ..., L(i), determine
k such that ¢, _, 5_t%j < t, and set Cij equal to the
3x3(N+1) matrix

b -ty gt oo
05! ...} 0 :(——J—" 1 )13:(—1—i k")13:03: {0,
A R I A R v3 T 3x3(N+1)

kth block (k+1)th block
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3. Foreachi=1, ..., M, put

_ , L)
SR () NN |
where N(i) is the number of measurements in the averaging ‘
i
interval from the i-th doppler channel. f
4. Foreachi=1, ..., M, evaluate the partial derivative g
of the i-th doppler channel measurement with respect to é
velocity at the mid point of the averaging interval. 3
Denote this by ﬂ
a1 i
.
vl ;,
5. Construct the Mx3(N+1) matrix C given by }
&
{—)] C
i/ .
T =
T ¢
avT M |
6. Partition T into Mx3 blocks, i.e.,
T = [Cb [ oo | CNJ
where each’f‘fk is Mx3.
Now denote the IMU velocity noise sequence by For »+os T\s and observe that j}
equivalent measurement error in the doppler channels is given by
]
1'
|
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Then if the IMU velocity noise covariance is given by
¢, = E[r,ril, k=0 N
v kk 9 9 o 9

it follows that the covariance of the equivalent doppler measurement error
is given by
= =]

AR = Co VCO

T

+ see + CNCV N

The total doppler measurement error covariance is then formed by adding AR

to the doppler measurement error covariance due to receiver noise.




1.0 PROGRAM REQUIREMENTS

The purpose of this section is to establish guidelines for TRAM program
development. These guidelines are intended to insure that on the one hand
the functional requirements of estimation and error analysis are satisfied,
and on the other, the program structure is designed to be sufficiently
flexible and modular to provide for analysis of future as well as current
types of test vehicles and range support instrumentation.

The end-to-end execution of the TRAM program requires essentially three
phases of operation, consisting of respectively, data preparation, estimation,
and error analysis.

In the data preparation or pre-processing phase, metric sensor and
telemetry data are organized into files suitable for use in the estimation
phase. Included in this phase are computation of refraction errors and
their partial derivatives, gross editing, and statistical analysis of raw
metric data. Also included is the extraction of trajectory information
from the telemetry data.

In the estimation phase, the recursive filtering and smoothing operations
are performed iteratively until the estimates of the state vector elements
converge.

In the error analysis phase, error propagation parameters and error budget
values are combined to obtain estimates of the mean and covariance of the
state vector estimation error.

The error propagation parameters, required in the ervor analysis phase, can
be obtained during the estimation phase. This is accomplished by augmenting
the filtering and smoothing equations to include the sensitivity of the
estimation error to initialization errors (in all estimated states together
with a selected subset of the constrained states) and, in certain cases,

the estimation error covariance due to random measurement error.

However, the option should exist to exercise the filtering and smoothing
equations in an error propagation mode in which no measurements are processed,
but in which all error propagation parameters are obtained.
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In the sequel, the three phases of TRAM operation will be considered separately
and in more detail. Functional requirements, program modules and structure,
user options, and alternative modes of operation will be evident from the
discussion.

To maintain perspective, only those program operations which are essential
for estimation and error analysis will be considered. Auxiliary operations
required to provide analyst aids, in the form of various kinds of program
output, are not discussed. The reason for this is that the types of
auxiliary operations required are somewhat dependent on the user, and the
capability to perform these operations should reside in separate program
modules which are readily augmented or modified.

7.1 Pre-Processing Phase

The purpose of the pre-processing phase is to prepare files of data for use

in the estimation phase. The particular operations which must be performed
are highly dependent on the data source. However, since the estimator
performs operations of filtering, smoothing, and systematic error compensation,

these operations should not be performed by the pre-processor, on data to be
supplied to the estimator, regardless of the data source.

7.1.1 Metric Data Pre-Processing

The required pre-processing functions for metric data are:

(i) gross editing
(i1) refraction calculations
(iii) statistical analysis
(iv) file organization

The gross editing function serves first to identify intervals over which
each metric station is tracking properly. Second within each track interval,
subintervals are identified over which each sensor channel is tracking.
Finally, isolated points are identified by means of an edit flag, where loss
of data or transmission error occurs.




In order to avoid aliasing of data, the level at which isolated points are
edited must be well above the level of systematic and random measurement
error. Thus, if M is a measurement, R is the reference used for editing,

o is the rms value of total measurement and reference error, and the measure-
ment is edited whenever

IM'R|>L,

then L should be at lTeast as great as 10 o.

Refraction calculations are required in the pre-processor in order to
avoid repeating the time consuming ray trace operations on each iteration
during the estimation phase.

The refraction parameters are computed as functions of geometric, rather
than refracted, range and elevation angle. These parameters are required
at each point where a range, elevation or doppler measurement is to be
processed. Since the independent variables, i.e., geometric range and
elevation angle, are known only approximately for each measurement, the
partial derivatives of the refraction parameters with respect to the
independent variables are also required.

For the purpose of calculating the refraction parameters only, the raw
measurements should be corrected to obtain the best a priori value of
geometric range and elevation angle, and the refraction parameters should
be evaluated at this point.

Furthermore, when ionospheric refraction is significant, both group and
phase refraction parameters must be computed for each affected measurement.

The statistical analysis of the metric data is required to determine the
variances due to random measurement error. Unlike the measurement error
proper, the variances are smooth functions of time. Accurate estimation

of measurement error variances requires smoothing and calculation of sample
statistics over intervals of sufficient duration to reduce statistical noise
to a negligible level.
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When both sensor element outputs and encoder outputs are included in the
measurement set for a given channel, the variance of the sensor element
measurement noise is required at each sensor element measurement point.
If only encoder outputs are available, the variance of the encoded random
error is required at each encoder measurement point.

,{ The raw data, refraction parameters, and measurement variances are organized
1 into separate files for each tracking station. A header must be applied
to each file which defines the tracking intervals over which the individual
‘channels of the station maintain track.

The data in each file is stored sequentially, in the order of increasing }
time. The data to be stored includes:

encoder data: T, R, A, E, D g

L2 2 2 2 |
encoder variances: Ors 9as OF» 9p A

sensor signals: t, r, ¢, ¢, d
.2 2 2 2
sensor variances: Ops c¢, OW’ o
refraction parameters: p, €, 3 3 e o . R, E
track indicator flags
edit flags

signal strength
7.1.2 Telemetry Data Pre-Processing

The pre-processing of telemetry data involves nothing more than extraction
of trajectory data and file organization. A file header must be generated
which defines intervals of data loss, and the times of guidance system
initialization, staging events, vehicle deployment, and system shutdown.

The data in the file 1s stored sequentially, in the order of increasing
time. The stored data includes: a

major cycle data: time, position, velocity

minor cycle data: time, accelerometer, rate gyro and platform gimbal
angle outputs |

time insertion data: time of receipt at TM station

. . B
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7.2 Estimafion Phase

The operations which are performed in connection with the estimation phase
of the TRAM program can be categorized as follows:

Input
Initialization
Filter

Smoother
Convergence Test
Reset

mmawm:—-

Input operations include those which must be performed by the user in order
to initiate the estimation phase.

Initialization operations consist of those which must be performed by the
program before any filter or smoother operations can occur.

Filter operatiors consist of measurement processing and/or error propagation
calculations. Each time the filter is activated, it performs operations

over the entire trajectory. The filter operations are recursive, and

proceed in the direction of increasing time on each trajectory segment.

Each segment is partitioned into intervals over which the filter configuration
is fixed. Thus the measurement coverage and state dynamics do not change

on an interval, and all state vector augmentation and permutation operations
occur at interval junctures. Finally, the intervals are partitioned into
subintervals, and all bulk storage I/0 operations are performed at sub-
interval junctures.

Smoother operations consist of filter output processing and/or error
propagation calculations. The smoother is activated at the conclusion of
each set of filter operations over the entire trajectory. The smoother
operations, once activated, are also performed recursively over the entire
trajectory, but in precisely the reverse order to those of the filter and
in the direction of decreasing time*.

*There is one exception to this which will be explained later.

E
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A convergence test is performed at the conclusion of each set of smoother
operations over the entire trajectory. This test determines if the state
vector estimates have converged or if the maximum number of iterations has
occurred. If neither part of the test is satisfied, the program performs
another iteration of the filter and smoother operations.

The reset operation is performed whenever an iteration of the filter and
smoother operations is required. The reset operation is required to
reinitialize the filter state vector and square root covariance to the
original input values. Also the nominal state vector is equated to the
estimated state vector obtained by the preceding smoothing operation.

T

The requirements for each of the above operational categories will now be
considered.

7.2.1 Input Requirements
A.  Schedules ;

The user must define the order in which the trajectory segments are to be 3
processed. A measurement schedulie for each tracking station, a schedule '
indicating portions of the trajectory which are inertially instrumented,
and a schedule indicating thrust termination and reentry points on the
trajectory. (Some of these schedule items are derivable from the file
headers generated in the pre-processing phase.)

The schedule inputs are required in order to develop processing intervals
over which the filter configuration is invariant.

B. Parameters

The user must specify the complete set of parameters to be employed in the
program. These include a priori estimates of all state vector elements and
the state covariance matrix. Parameters which are not included in the state
vector but which enter either the state or measurement equations must be
specified. Also, the state noise covariance must be specified, and if a
measurement covariance is to be used which differs from that implied by the
measurement variances included in the data files, it must also be specified.
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C. State Vector Categorization

The user must specify, for each state vector element, whether it is to be
estimated or constrained. From the subset of constrained elements, the
user must specify those which are to be propagated for error analysis.

Measuremeni Processing

For each filter processing interval, the user must specify the type of
measurement processing to be used. The options are:

1. asynchronous
2. adjusted estimation time

3. measurement variation averaging

The first may be used in any case. The latter two are recommended only
when state noise can safely be ignored.

When the adjusted estimation time option is to be employed, the user must
specify the estimation times.

When the measurement variation averaging option is to be employed, the
user must specify the intervals (within the filter processing subintervals)

over which the averaging is performed and the estimation time within each
averaging interval.

In addition to the above, the user must also indicate whether the processing
is to be restricted to the use of encoder outputs. If this is to be the

case, the user must specify the dynamic error coefficients to be used for
each sensor.

Nominal State Vector

For the initial set of filter operations, the user must specify the nominal
state vector. (On subsequent iterations the nominal state vector is
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automatically set by the program.) The user must always specify the initial
condition for the nominal state vector, but he also has the option of
specifying the nominal state vector at arbitrary times over the entire
trajectory. When the user specifies only the initial condition of the nominal
state vector, he has the option of allowing the program to reset the

nominal state vector at arbitrary times by equating it to the filter

estimate of the state vector. “

It should be noted, that although the user can in effect specify nominal
state vector resets arbitrarily, the program will actually restrict the
occurrence of resets to certain points within the filter cycle.

F. Convergence Criteria

The user must specify the convergence criteria of the estimator. The user
must also specify the maximum number of iterations of the fiiter/smoother
which are to be allowed in attempting to satisfy the convergence test.

The convergence criteria will be based on the differences between elements
of the estimated states obtained on successive iterations. For each estimated
state element, a test of the form "Is ]x£1+]) - xé‘)l < € ?" will be applied,
where i denotes the iteration count, k denotes the state vector element, and
€y > 0 is specified by the user.

7.2.2 Initialization Requirements

Initialization operations consist of those which are performed prior to
the first set of filter/smoother operations and which are not repeated
on subsequent iterations.

A. Control Logic

The operations to be performed by the filter and smoother are dependent on
user inputs and program constraints. The control of these operations can
be accomplished by the use of various logical variables (flags) and the
specification of times at which discrete transitions in processing are to
occur.
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Each state vector element has a flag to indicate in which of three distinct
categories it falls:

1. Estimated
2. Propagated
3. Constant

S Nty

The constant states are invariant throughout all program operations. The

propagated states are constant for all program operations other than those 1
involving numerical partial derivative calculations with respect to these iy
states as required for error propagation. g'

The estimator state vector configuration is fixed on each processing interval,
and includes all estimated states which have been augmented up to and including
the epoch of the interval in process. A permutation array, or its logical
equivalent, must be generated for each processing interval to indicate (i)
which elements are in the estimated state vector and (ii) the order of these
elements within the estimated state vector.

The beginning and ending times for each processing interval must be set, and
flags must be generated to indicate the measurements to be processed. The
specification of measurements includes the designation of trécking stations
and the sensor channels to be processed.

Flags to indicate the type of measurement processing and the type of smoother
to be used on each interval must also be set.

Finally within each processing interval, the beginning and ending times for

- the I/0 subintervals must be set.

At the juncture of processing intervals, augmentation and/or permutation of
the elements of the estimated state vector can occur. This requires discrete
processing of the estimator state vector and square root covariance matrix.
The logic to control these discrete operations must be set during
initialization.
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On the first filtering pass only, the nominal state vector is reset at
arbitrary times which have been designated during initialization.

Filter logic will inhibit nominal state vector reset except at designated
points within its cycle, and a reset will actually occur at the first of
these poifits to be reached after the designated reset time.

As an alternative to the specification of arbitrary reset times, flags must
be available which provide for either of two extreme cases:

(1) no reset

(ii) reset at the highest possible rate, i.e., at every allowable
point of reset in the filter cycle.

A flag must also be set to indicate whether the nominal state vector is to
be reset externally or internally. In the former instance, the reset is
accomplished by interpolation of the external reference to the actual reset
time. In the latter case, the reset is accomplished by equating the
nominal state vector to the value obtained from the filter estimate at the
actual reset time. (In either casé, the state variation estimate must be
reset such that the whole state vector estimate at reset is invariant.)

Finally, flags must be set to indicate whether error propagation calculations
are to be performed during the estimation phase or postpon.d until the error
analysis phase, and to control the optional calculatiors assoc-ated with
error propagation.

B. Calculation of Constants

Depending on the assigned category for each state, a number of program
variables may actually be constant during either the estimation phase or
the error analysis phase, or both. For example, station coordinates,
coordinate transformations, geopotential parameters, and so on, may be

constant during an entire phase of program operation. i i

It is important to compute, to the extent possible, all program constants
during initialization. Furthermore, the structure of-the routines which
are used in the TRAM program should be designed so that the flags which
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define the category of each state element can be used to bypass program
blocks whenever these blocks serve only to recompute constants.

Filter Initialization

Prior to filter operation, the filter nominal state vector, state vector
variation estimate, and square root covariance must all be initialized.

The filter nominal state vector is equated to the initial condition which

the user has specified for the nominal state vector. However, the initial
condition of the nominal state vector must be brought into time commensuration
with the a priori state vector estimate, if this condition is not already
satisfied. Thic is accomplished by interpolation if possible; otherwise it

is accomplished by integration of the state differential equation using

the nominal state vector initial condition.

The state vector variation estimate is equated to the difference (estimate
minus nominal) between the’a priori state vector estimate and the initial
value of the nominal state vector.

The square root covariance is initialized by applying the Cholesky
decomposition to the a priori covariance of the state vector estimation
error. The object matrix to which the Cholesky decomposition is applied is
obtained by row/column permutations of the a priori covariance to conform
with the initial state vector configuration.

7.2.3 Filter Requirements

At interval junctures, elements may be augmented to the filter state vector,

and the filter state vector may then undergo a permutation. Correspondingly,
augmentation and permutation operations must be performed on the square root

covariance matrix of the filter, which must also be retriangularized.

A1l filter I/0 operations are performed at subinterval junctures. The

inputs include measurement data and the nominal trajectory. The required
outputs are dependent on the particular processing options in effect, but
basically include all filter outputs and error propagation parameters required
by the smoother.




Within each subinterval the filter operates in & cyclical manner performing
functions of extrapolation, update, error propagation, and nominal resets
when required. The specific filter requirements will be considered
separately for each of the measurement processing options.

Asynchronous Processing

Asynchronous measurement processing is recommended on each interval over
which state noise is not neglibible, but it may in fact be used on any
interval.

Consider an interval on which asynchronous measurement processing is to
be employed. On this interval, the measurements from a fixed set of
tracking stations are scheduied for processing.

The processing is performed recursively on blocks of measurements, each
consisting of one measurement from each scheduled sensor channel of each
scheduled tracking station on the interval under consideration.

The first step in the processing of a block is to check the edit flags
and delete those channels which have been edited during the pre-processing
phase.

Next, for each measurement that remains in the block, the nominal measurement
is computed along with the nominal receive time and retarded time of the
measurements at each station, and measurement variations are formed.

The measurement variations of each station are then processed in turn,
where the order of station processing is the same as the order of increasing
retarded measurement times. ‘

For each station, the processing consists of extrapolation operations followed
by update operations. The extrapolation operations are performed to bring

the filter and error propagation parameters up to the station retarded
measurement time. Then, filter and error propagation update operations are
performed fcr each sensor channel of the station.
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If nominal state vectur resets have been scheduled on the first filter pass,
they only can occur immediately followiny the processing of one measurement
block, prior to computing the nominal retarded measurement times of the
next block. Thus at the conclusion of the processing of each measurement
block, on the first filter pass only, a test is performed to determine if

a scheduled reset time has been passed during the processing of that block.
If so, the nominal state vector and state variation estimate are reset at
the time corresponding to the end of the block.

On subsequent filter passes, nominal state vector resets do not occur,
since the nominal state vector is always equal to the whole state estimate
obtained on the preceding smoother pass.

ORI Ty Wprey—-= omemagrn

However, when fixed-interval smoothing is employed an operation which

resembles reset must be performed as a part of each extrapolation. This ;
operation is required because the variation estimates are extrapolated o
with state noise equal to zero. ’

Thus when fixed-interval smoothing is employed, the nominal state vector
and the state variation estimate are each extrapolated (to the retarded
measurement time of the station in process) with state noise equal to zero.
Then the difference between the extrapolated state vector and the nominal
state vector, irterpolated to the retarded time, is computed (extrapolated
minus nominal), and the difference is added to the extrapolated state
variation estimate to obtain an adjusted state variation estimate at the
retarded measurement time. The adjusted state variation estimate is used

in subsequent processing, and the extrapolated state vector and extrapolated
state variation estimate have no further use.

Intermediate filter outputs are required on processing intervals in which
fixed-interval ¢moothing is to be employed. In this case filter outputs
must be saved before and after the update operations for each station in
every processing block.

Thus, within each processing block, when the extrapolation operations for
a given station are complete, the nominal state vector and state variation
estimate along with the nominal received and retarded measurement times,
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» the filter square root covariance matrix, the filter transition matrix,

and the error propagation parameters must be saved. Then when the update

) operations for all sensor channels of the station are complete, the state

‘ variation estimate, the filter square root covariance matrix. and the error
propagation parameters must again be saved.

T i - ¢

B. Processing with Adjustable Estimation Time

Adjustable estimation time processing is recommended only when state noise
is negligible*.

Adjustable estimation time processing is identical with asynchronous
processing to the point where the measurement variation, receive time,
and retarded time have been computed for each measurement in a block.

At this point, extrapolation operations are performed to bring the filter
and error propagation parameters up to the estimation time which has been
designated for the measurement block as a whole.

Then, filter and error propagation update operations are performed on the
- entire block of measurement variations in any convenient order.

If nominal state vector resets have been scheduled on the first filter pass,
they can only occur immediately following the completion of the set of update
operations for an entire measurement block. Thus, whenever, on the first
filter pass only, a scheduled reset time has been passed during the processing
of a measurement block, the nominal state vector and the state variation
estimate are raset at the estimation time associated with the block.

On subsequent filter passes, nominal state vector resets do not occur.
However, when fixed-interval smoothing is employed, the same reset-like
operation described for asynchronous processing must be performed at the
close of each extrapolation.

*Although the actual state noise process may be negligible, this does not i 4
preclude the use of a nonzero state noise covariance matrix in the filter
mechanization and subsequent use of the fixed-interval smoother. This type
oft@ecganization can be useful in reducing unmodeled error growth in the
estimates.
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On processing intervals in which fixed-interval smoothing is to be employed,
filter outputs must be saved before and after the set of update operations
for each measurement block.

Thus when the extrapolation operation for a measurement block is complete,
the nominal state vector, the state variation estimate, the designated
estimation time, the filter square root covariance matrix, the filter
transition matrix, and the error propagation parameters must be saved.

Then, when the set of update operations for the block as a whole is complete,
the state variation estimate, the filter square root covariance matrix,

and the error propagation parameters must be saved.

C. Processing with Measurement Variation Averaging

Processing with measurement variation averaging is an extension of
adjustable estimation time processing, and is likewise recommended only
when state noise is negligible.

When measurement variation averaging is employed, each processing subinterval
is partitioned into averaging intervals. Then, for each averaging interval,
a block of measurements is formed, and an estimation time within the interval
is designated.

The measurements which constitute a block consist of all measurements, within
the averaging interval of the block, from all scheduled tracking stations
for the interval in process.

Once a block is “ormed, edit flags are tested, and individual measurements
which have been edited during the pre-processing phase are deleted from
the block. Then, for each measurement remaining in the block, calculation
of the nominal measurement and nominal receive and retarded measurement
times is performed.

Next the measurement variations for the block as whole are computed and,

for each sensor channel, the average measurement variation over the
averaging interval is computed.

|
?




Extrapolation operations are now performed to bring the filter and error
propagatipn parameters up to the estimation time which has been designated
for the averaging interval.

After extrapolation, the filter and error propagation update operations are
performed on the entire block of averaged measurement variations (consisting
of at most one per sensor channel) in any convenient order.

If nominal state vector resets have been scheduled on the first filter pass,
they can only occur following the completion of the set of update operations
for an entire averaging interval. Thus, on the first filter pass only, at
the conclusion of the set of update operations, a test is perfarmed to
determine whether a nominal reset has been scheduled at any time within the
averaging interval.

If no nominal reset has been scheduled within an averaging interval, the
filter processing described above is repeated for the next block of measure-
ments and the next averaging interval.

But if a nominal reset has been scheduled within the averaging interval, it
is now performed. Moreover, regardless of the designated reset time, the
actual reset takes place at the estimation time of the interval. If the
nominal is to be reset from an external source, the source value is first
interpolated or integrated to the interval estimation time. Then the
nominal state vector and the state variation estimate are reszt, and the
filter processing described above is repeated for the next block measure-
ments on the next averaging interval.

On processing intervals in which fixed-interval smoothing is to be employed,
filter outputs must be saved before and after the set of update operations
for each averaging interval.

Thus when the extrapolation operation for an averaging interval is complete,
the nominal state vector, the state variation estimate, the designated
estimation time, the filter square root covariance matrix, the filter
transition matrix (from the preceding estimation time to the current
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estimation time), and the error propagation parameters must be saved. Then,

when the set of update operations for the averaging interval is complete,

the state variation estimate, the filter square root covariance matrix, and N
the error propagation parameters must be saved. k Q

As in all other cases, between the points at which filter outputs before
and after update are saved for the smoother, no nominal reset is allowed.

2w plm -y o

7.2.4 Smoother Requirements

i
The two smoother types which may be employed in the TRAM program differ %
substantially in mechanization and operation, and, for this reason, the :A
two will first be considered separately. {

A. Retrograde-Integration Smoother 1ﬂ

This smoother is by far the simpier of two types, but it can be effectively
employed only wh2n state noise is negligible.

- On intervals in which retrograde-integration smoothing is to be employed, 1
‘ it is only necessary to integrate the dynamic states and the error {
propagation parameters. The integration process is initialized at the |
end of the interval and proceeds in the direction of decreasing time. -
Static states are held fixed during each retrograde-integration.

This type of smoother requires no intermediate filter output, but its own
output can be stored at the same subinterval junctures as used for filter
inputs.

If the retrograde-integration smoother is used on an interval &t the end

of a trajectory segment, then it is initialized by the final filter estimate :
of the whole state on that interval. When this case occurs, the final time A
on the interval, i.e., initial time for the retrograde-integrator, must be

adjusted by applving to the nominal vehicle time tag at the end of the

interval, the difference between the filter estimate of and the nominal 4
value of the vehicle timing correction at the end of the interval. ;
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B. Fixed-Interval Smoother i

The fixed-interval smoother is employed on processing intervals in which
state nofse is not negligible. It may also be used at interval junctures,
coinciding with vehicle deployment, where random separation errors occur.

The fixed-interval smoother operates recursively on filter outputs and
error propagation parameters, but in reverse order to the filter recursion.
The smoother requires the filter estimates of the whole state vector before
and after each filter update. These are obtained, respectively, by
combining the noninal state vector and the filter estimates of the state
variation before and after each update. The subinterval structure used

for filter I/0 operations is also used for smoother I/0.

At each stage in fixed-interval smoothing, the time tag of the filter
estimate must be adjusted by applying the difference between the smoother
estimate and the nominal value of the vehicle timing correction at the
estimation time.

At the conclusion of the entire smoothing process, the smoothed estimates
can be interpolated to any convenient set of times, designated by the user,
and stored for future use. For this it is only necessary that the stored
smoothed estimates be sufficiently closely spaced such that smcothed
estimates at arbitrary times can be accurately obtained using low order
interpolating splines.

C. Comments on the Smoothing Process for the Trajectory as a Whole

The smoothing operation is performed over the trajectory as a whole in
exactly the reverse order to the filtering operations. At irterval junctures
the smoother may change from one type to another, but the process is
essentially continuous. Furthermore, when discontinuities occur at interval
juncture such as with separation errors at deployment, the fixed-interval
smoother is used to make the transition, regardless of the smoother types
used in either of the intervals forming the juncture.




It was mentioned earlier that there is one exception to the rule that the
smoother operates in reverse order to the filter. The single exception
occurs, as a processing option, when state noise is negligible in the
inertial guidance system of the boost vehicle.

In this case, at the conclusion of the filter pass on any iteration, the

initial conditions for the smoother estimate of the boost vehicle trajectory

are completely known, and since there is no state noise, the smonthed boost
vehicle trajectory can be reconstructed by forward integration o7 the navigation
equations. (It is tacitly assumed that the launch point survey error has been
estimated, or it is negligible, in which case the uncertainty in the navigation
initial position and velocity is zero.)

When this option is exercised on the boost segment, the smoother processing
on all other segments is unaffected, except that it terminates at points just
after vehicle deployment, and it is no longer necessary to smooth the dis-
continuity at deployment events.

7.2.5 Convergence Test

The number of filfer/smoother iterations which are performed during the
estimation phase is determined by the convergence test which is performed
at the end of each iteration.

The first part of the test is performed by comparing differences. in each
of the components of the estimated state vector, obtained on successive
iterations. For convergence, each element of the estimated state vector
must satisfy the convergence criterion which has been specified by the
user. This part of the test is performed on the second and all subsequent
estimation cycles.

The other part of the test simply counts the number of estimation cycles

which have been performed and compares this with the maximum numter the
user has allowed
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If the maximum number of cycles permitted by the user is attained without
satisfaction of #he convergence criteria, program operation is halted and
an error message to this effect is generated.

7.2.6 Reset

When the convergence test results in another iteration of the estimator, it
is necessary tn perform a reset operation.

The reset is required to set the nominal state vector and reinitialize the
filter.

The nominal state vector is equated to the estimated state vector obtained by
the smoother. For this purpose, the smoother trajectory estimates can be
interpolated to a designated set of time points. Then, for intermediate
points required on the next filter cycle, spline interpolation car be used
between the designated time points.

Reinitialization is required for the filter state variation estimate and
the filter square root covariance matrix. The state variatior estimate is
equated to the difference between the a priori whole state vector estimate
and the value of the new nominal state vector at initialization time.

7.3 Error Analysis Phase

In this phase of orocessing an error analysis of the estimation process is
performed. This is accomplished by processing an error budget, specified

by the user, with the error propagation parameters of the estimation process.
The result of the error analysis is the bias and covariance of estimation
error based on the specified error budget.

In its complete form the error budget must include a schedule of state and
measurement noise covariances as well as the mean and covariance of the

initial value of the vector whose elements are the estimated and propagated
states.




The error propagation parameters may be obtained during the ectimation phase.
However, it is usually more efficient to defer calculation of these parameters
until the estimation process converges. Also, it may be required for planning
purposes to perform an error analysis in advance of the estimatior phase.

For these reasons, an error propagation mode is required in which the error
propagation paramaters are obtained separately from the estimation phase.

In the error propagation mode, the nominal state vector is supplied externally,
and it is necessary to perform all estimator functions, except measurement
processing, as well as the error propagation functions. In the particular
case in which the error propagation mode follows the estimation phase, the
externally supplied nominal state vector is equal to the whole state vector
estimate obtained during the estimation phase.

In order that the noise induced errors be properly accounted far, the filter
and smoother gains actually used for estimation must, with one exception, be
based on the noise covariance schedules in the error budget. The one ex-
ception occurs on intervals in which state noise is negligible, in which case
the covariance of estimation error due to measurement noise can be computed
by the alternate method given in Section 5.0, regardless of how the filter
gains are obtained.
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A. LINEAR ESTIMATION
Consider a linear stochastic system described by
(1) X.“_-' = °1xi + ui. 1 = 0, ], RN ] N"] 'y

(2) y; = Hixi +v i=20,1, ..., N

i’ ' ’ i
In these equations x is the state vector, and y is the measurenent vector.
{”i’ i=0,1, ..., N-1} is a sequence of random vectors called the state
noise process, and {vi, i=0,1, ..., N} is a similar sequence called the
measurement noise process. These processes are assumed to be zero mean,
sequentially uncofrelated, and mutually uncorrelated with each other and Xq
Mathematically these assumptions are expressed as follows:

e AL AT T

] E(u'i) 0’ E(uiu}) Qiaij; 1’ j 09 1, ceey N-1 N

_ T, _ s e L
E(Vi) = 0, E(Vivj) - Riﬁ_ij, 1, J b 0’ ], ss ey N
and
: E(uiv}) = 0, E(xyu]) = 0,'E(xov}-) = 0;
where

s; = 4 1=
J 0, i#

Q and R are the state noise and measurement noise covariance matrices, re-
spectively. To ccmplete the system description: it is assumed that the ]
a priori mean and covariance of Xg denoted by x; and P;, respectively, are 4
also specified. 24

The estimation procedures to be considered in the remainder of tais appendix
will apply to the linear system given by (1) and (2).
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Al Optinal Linear Estimation

For the system (1), (2), let ;(1|J) denote a function which is in the form
of a constant plus a linegr function of the measurement set Yor =v°s yj and
which has the property E[x(i}j)] = E(xi). Such a function is said to be a

linear unbiased estimate of X; given Yos =+s yj.

Let ;(iIJ) be a linear unbiased estimate of X; given Yor =0 Yo and suppose
x(i]j) has the property*

ELLIx(41) - %1121 < ELIIx(i13) - x;112]

for all linear unbiased estimates ;(ilj) of Xy given Yor ++es Y- Then

~ J
x(i]j) is said to be an optimal linear estimate of x4 given Yor ++o0 ¥y

It can be shown that an optimal linear estiTate of X; given Yoo oe» yj
always exists and is unique. The notation x(i|j) will be used exciusively
to denote the optimal estimate defined above, and the notation P(i|j) will
be used to denote the error covariance of ;(ilj) defined by

POISY = EL(x(i14) - xg) (x(ild) - x)T1 .

P(i|j) is also called the state covariance of X; given Yor AL

A.2 Kalman Estimation

A recursive procedure for realization of the optimal linear estimator for
the system (1), (2) has been developed by Kalman [3], [4]. The procedure
consists of two stages. The first stage employs a filter algorithm, while
the second uses a smoother algorithm**,

T

* The notation ||z||2 = z z denotes the ordinary Euclidean norm of z.

**The terminology employed here is due to N. Wiener and has been adopted by R.

Kalman. An estinator which estimates X5 given measurements with indices up
to and including j is called a filter 'if i = j; it is called a predictor
if 1 > j, and it 1s called a smoother if i < j.

10
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Application of the Kalman filter to the system (1), (2) yields x(i|i) = X3
and P(i]i) = P, by recursion. The algorithm is

o - -1 3

(5) Pi = Pi - KiHiPi’ i = 0’ ], ces ey N s 2
(6) X1 T %% e 4
’

- T . ¥

(7) Pi+] - ¢ipi°i + Qi’ 1 - 0, ..I, cesy N-] . :

The smoother algorithm is initiated when the filter stage is complete. The
smoother uses the filter outputs in a recursive process, which runs in reverse
order to the filter recursion, to compute ;(ilN) and P(i|N), i =0, 1, ..., N.
The algorithm for smoothing is given by

: _ Tio- -1
] (8) Ay = Pyos(Py)
X (9) x(1[N) = x; + Ai[x(i+1|N) - x;+]] .

. . - T
(10) P(i|N) P, + A;IPGI+IIN) = PTTAL, i = N-T, ..., 0

A.3 Carlson Square Root Filter Formulation ‘ ' 2?

There are several algorithms which are mathematically equivalen: to the
Kalman filter algorithm, but which recursively compute a square root S of
the state covariance matrix P, rather than the covariance matri. itself
(5], [6], [7]. In each of these algorithms, the condition

b
p = ss',

m
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which is the defining relation for the square root of P, holds. “hese
algorithms differ markedly because of the nonuniqueness of S. The
distinctive feature of the Carlson algorithm is that S is maintained in
triangular form.

The Carlson algorithm is initialized by applying the Cholesky decomposition
and, if necessary, the Gram Schmidt process (Cf Appendix D) to P; to obtain
the appropriate (i.e., upper or lower) triangular form of S;.

The Carlson algorithm will be given for the case where the measurement

ijs a scalar. When the measurement is a vector, the Carlson aljorithm can
be applied sequentially to each scalar component of the measur=ment vector
by the procedure developed in Section 6.2.

The measurement update relations for the Kalman filter are given by (3), (4),
and (5) and the time update, or extrapolation, relations are given by (6)

and (7). The corresponding update and extrapolate relations will now be
developed for the Carlson square root filter.

Assume that x;, S;, and y, are given, where S; is triangular and satisfies

S |

Assume further that Y; is a scalar measurement of the form

Yi = Rixy vy
where Vi has mean zero and variance ry- Then the Carlson update algorithm
can be used to compute X; and Si, where Si is triangular and setisfies

T = = --
S;8; = Py =P - Kh.P]
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The Carlson update algorithm will be derived for the case ir which S is
maintained in upper triangular form. However, by a simple reversal of
index order, this algorithm can also be used to maintain S in lTower tri-
angular form.

For notational brevity, the index i will be dropped. Thus

y = hx+v, E(v) = 0, C(v) = r,

and
P = s(sT)T .
Put
g = ()T
and
o = WP +p = ng +r.

-

If a =0, then x = x_and S = S™, and the update process is complete. If
a # 0, it follows from (3) that

(1) K = (%)S-g.
Then from (4)
(12) x = x +Kly-hm),

and from (5)

p = s7(s)T - (;]‘-)S'gt.aT(S')T ,




or

(13) P = ST[I-algg'](sT)'.

Now let U be an upper triangular square root of [I - a’]ggT], i.e.,
[1-alg"] = w'.

Then with

(14) s = Su,

it follows that

P = ssT.
Since the product of two upper triangular matrices is itself upper triangular,
it is clear that S is the desired form of the updated square root covariance.

Al11 that remains to complete the development of the Carlson update procedure
is to compute U. To this end let
T

g = (0, ..., 0’9mﬂ""’gn)

~

where 0 <m < n-1. (If 9; = 0 for all i, thenU =1, K=0, x = ;', and
$=5".)

Then, by the Cholesky decomposition,
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where W is upper triangular and
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s k

m¥l, ..., i-1, i=m+2, ..., n.

i 2 2
\/V (r+ 2 g3) (r+ & g%)
jei 9 j<i 9

Now let

Bi = ,/ai, i = my ...on,

and observe that

Wi = Bi-]/Bi’ i = ml, ..., n,
Wi = -gkg;/(si_]Bi), k = ml, ..., i-1, i = m+2, ..., n,
and
@ = e, :
Define 3
1 s i<m,
c; =
B'i-]/ﬁ'l s 1 = m+]! s N i i
}
0 s T <m1 i
di = !
gi/(s-i_]B-i)’ i = m+2, e ey n Y 3
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Now with the cclumn partition notation

[sy 1.1 5,1,

[sq |.-.1 5,3

it follows from
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that

s. = ¢;5; -d, (I g.5;) .
i L | j<i AR |
Define
Piey = Pj * gis;, i=m, ..., n, Py = 0, % <ml .

Then Si=cisi-dipi,i=1’ cov’no

Moreover, since

n
Pre1 = g;s: = Sg,
n+1 jep 373
and
a S 0,

it follows from (11) that

_ -1
A

From the above development, it is seen that the Carlson update procedure can
be carried out with recursive operations on the columns of S. An auxiliary
sequence of vectors {pi, i=1, ..., nt1} is computed, and the Falman filter

s el s _ =1
gain is given by K = % Ppere

The complete algoiithm, valid for both upper and lower triangular forms is
summarized below. For the upper triangular form i1=1, in=n, and id=+1,
while for the lower triangular form, i1=n, in=1, and id=-1. Notice that
the algorithm includes tests to prevent divisions, as well as certain mul-

tiplications, by zero.




Carlson Update Algorithm

1. gT z (g], cens gn) = hS

[Ye] [} ~ [+)] (53} Lo w N
. . L] L] . . - L]

N - o
. . .

13.

15,
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

K=20, ip =0
a=r,y =,/u
i-= i]

IF (r > 0) GO TO 1
IF (gf > 0) 60 TO 12
s'i:S'i

IF (i

in) GO TO 35
i«i+ id

GO TO 6

IF (g2 = 0) PUT s, =
a=r+ g?

B =y

y= o

IF (g > 0) GO T0 18
$; = 0

GO TO 20

¢ = B/a

K = gis;, ip = 1
IF (i=in) GO TO 34
i« i+ id

IF (gf

0) PUT $; =
a<«at g%
Bz

y
y=Jo

s; AND GO TO 21

s; AND GO TO 33
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27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

¢ = B/y

IF (ip = 0) GO TO 32
d = g,‘/(B‘Y).

$; ¢ S5 -dK
i ip =]
IF (i # in) GO TO 22

IF (i) =1) K = o1 K

X =X

K<+« K+ 9;s

IF (i) = 1) X< X"+ K (y-hx")
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To develop the extrapolation relations for the Carlson square root filter,
assume that Xis Si are given, where Si is triangular and satisfies

_ T
Pi - Sisi .
Assume also that
S 10 I b B T

where Uy has mean zero and covariance Qi' Then x;+] = ¢ixi, and all that

is required of the Carlson extrépo]ate algorithm is to compute S1
S;+] is triangular and satisfies

41’ where

N T
SinnlSind = Pig = 4P Gy

The Carlson extrapolate procedure is based on the Gram-Schmidt orthogonalization
procedure which is discussed in Appendix D. To illustrate the procedure, drop
the subscripts for brevity and let the dimension of S and Q each be nxn.

The first step in the procedure is to apply the Cholesky decomposition to
obtain a square root of Q, i.e.,

Then the nx2n matrix
[¢s | ]
is formed. Finally, an orthogonal 2nx2n matrix T is determined such that

(15) [s" |01 = [es | TIT

where S” is an nxn triangular matrix. Since
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3 T.7T
] s(sT)T = [es | rrTT |2%
r
TT
sTe |
= ) r .
[es | r] -;jr;] :
= oSsTel + ! = oPel +Q,

A

it is clear that S° is the desired form of the extrapolated square root
covariance.

Thus all that remains is to construct an orthogonal matrix T which satisfies
(15). This is accomplished by application of the Gram-Schmidt process to
the rows of [¢S | I'], augmented as necessary by the rows of the 2nx2n
identity matri». IZn’ to obtain a set of 2n orthonormal vectors. These
orthonormal vectors then form the columns of T.

If S~ is to be upper triangular, the Gram-Schmidt process is applied to the

rows of
E I 0
4 In
0 In
@S T
b

in the order from bottom to top, until a complete orthonormal set is obtained*,
to form the columns of T in the order n, ..., 1, n+l, ..., 2n.

If S~ is to be lower triangular, the orthonormalization procedure is applied
to the rows of

$S T
I 0
0 I

. - A o S "V Dl arte b e i b e A = mee M e e A WS S L o e —_—i e e T
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in the order from top to bottom, until a complete set is obtained, to form
the columns of T in the order from left to right. |

That T satisfies (15) follows by construction. Also, it should be noted
that at most, n columns of T need be computed since the products involving
the remaining columns of T in (15) are all zero.

i
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B. VARIATIONAL FORM OF THE NAVIGATION EQUATIONS

In this appendix, the variational form of the navigation equations with
three degrees of treedom (DOF) will be developed. The reference coordinate
system is taken as earth fixed (EF), and the 3 DOF are the EF position
coordinates of the navigation system. Extension of the results in this
appendix to 6 DOF can be readily accomplished by augmenting. the three
position coordinates with the three Euler angles which express the spatial
attitude of the navigation system with respect to the EF coordinata frame.
Extension to 6 DOF is required when the navigation system is of the "strap-
down" variety comnonly used to provide on-board instrumentation data during
reentry.

Let P denote the position vector of the navigation system relative to the
earth center of mass. Denote by [%TJI and [ngE’ the time derivatives
with respect to inertial and earth fixed frames, respectively. Tren

(1) ¢’ P = A.(P) +A
- = +
dtz I G F

where AG(P) is the acceleration due to gravity at P, and AF is the acceler-
ation of the navigation system due to all forces except gravityv.

The velocity vector of the navigation system relative to the earth is de-
fined by

1]
.

(2) v

[$0e P

But

(51 P = (Gl P+ wxp

V+ wxP,

where w is the angular velocity vector of the earth with respect to an
inertial frame.

~ e wea?
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Consequently
d? d
(3) SS1op = [ (V+ )
dt™ | I
= [%EJE (V + wxP) + wx(V + wxP)
!
1 = V + 2wxV + wx(wxP)
= A+ AR(P, V),
where

i | A = [%TJE vV = 0

and

3 AR(P, V) = 2wxV + wx(wxP) .

The quantity AR(P, V), due to earth rotation, is the sum of Coriolus and
centripetal accelerations.

Now from (1), (2), and (3), the navigation system equations of motion (EOM)
are expressed by

P o=y

V = AG(P) = AR(P’ V) + AF ’
or
(4) P =V

vV = AO(P, V) + AF s
where

Ay(Ps V) = Ac(P) - Ag(P, V) .
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B.1 Boost Phase

Let to denote the time at which the navigation system is initialized. Then
the solution of (4) can be expressed by

o R PT "

T

(5) = dt' + +

P(t) t v(t') 0 P(t,)
v(t) /A°[P<t-). V()] vety| | ity

where

t
Ve(t) = f AR(t))dt' .
t
(o]

The navigation system constructs a solution of the form given in (5) using
outputs from an inertial measuring unit (IMU) which senses AF and a clock v
which measures time. 3

The acceleration sensed by the IMU, denoted by AFN’ is given by
AFN(t) = AF(t) + M[AF(-)s t]bI

where bI is the vector of IMU error coefficients* and M is a matrix which
is a function of t and a functional of {AF(T), t, <t < t}. But if the
IMU accelerometers are of the integrating variety, the output of the IMU
is sensed velocity which is given by

t
Vey(t) = t/_AFN(t-)dt- + by + ()
(]
where bo and r(t) are the respective bias and zero mean random conponents
of instrument output error. Thus for integrating accelerometers, the IMU
output is given by

t
(6) Vey(t) = Vg(t) + by +t/ MIAC(.), t'Jdt'by + r(t) .
0

*The components of b, include coefficients of initial platform misalign-
ment error, uncompeLsated gyro precession, and uncompensated accelerometer
error.

P
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The time measured by the navigation clock is given by

(7) o(t) = t+at(t) = (1+ Aty)ot

where t denotes t-ue time (i.e., time indicated by an earth fixed master
clock) and AtN(t) is the navigation clock error. This error can be ex-
pressed in the form

(8) aty(t) = m'(t), ,

where bc is the vector of clock error coefficients and m is a vector
function of t.

If the IMU and navigation clock outputs are given at discrete times ti’
i=0,1,2, ..., a navigation solution of the EOM can be obtained by
numerical integration. Similarly a nominal solution (about which the
variational equations are obtained) can be obtained by applying nominal
corrections to the IMU and clock outputs prior to integration. Assuming
the integrator truncation error is negligible, the nominal solution is
expressed by

(9) = t')dt' +|- +

P(t) -ft v(t') : 0 P(t,)
v(t) A IP(t'), V(t')] Ve(t) v(t,)

[s]

where V and t denote the nominal corrected values of Ve and 0y, respec-

tively, and Ao denotes A0 evaluated using the nominal geopotential model.
Observe that

t(t) = (1 + AtN)‘1°eN(t) ,
or, approximately,

He) =t e T, ,

and thus

13
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~

t(t) = 1+ rhT(t)ebC .

Also, note that

[

Ve(t)

t -
Ve(t) + sby + ff MIA:(.), t'] dt'sb; + er{t)
()
The geopotential function can be expressed by

PR W Tt

~ BAG -
(10) AG(P’ C) = AG(Pn C) +(—T) ~ (C - C) ’

oc / ¢

where ¢ is the vector of true geopotential coefficients and ¢ is the value g‘;
of these coefficients used in the nominal solution. Thus :

AP, V) = AP, C) - AR(P, V) ,

and

( ) - ARl ) A ( ) (fﬂg)
A.(P, c) - P, V) = A (P, V) + .~ 8C .
G R (4] BcT c

Ay (P, V)

The solution expressed by (9) is called the on-board nominal solution. In
order to relate this solution to off-board measurements, it is necessary to
use the navigation clock (corrected for nominal errors) and ccnstruct an
off-board nominal solution. The off-board solution is given Ly

P*(t) PLE™'(t)] -
(M) ~ = |-~ s t> t(to) .

V' (t) vit™ (t)]
The variational equations will be developed exclusively for the on-board
solution, and (11) will be used to relate on-board trajectory variations
to off-board measurement variations.

In order to obtain the variational equations, (9) is subtracted from (5)
and the right hand,side of the resulting difference is expanded to first
order about the nominal. The variational equations thus obtained are given

by
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— 7 r' qr .
8P(t) t 4] I sP(t')
(]2) = ~ ~
(t) "o " v(t')
sV(t . . '
t P PE) v V(t') i
— - = - —
0 v(t') )
| o s - | ) mT(t')GbC dt*
. - A[P(t'), v(t')] .
acl P(t'), 0
| ] - _
- [~ - -1
0 0 0
- b, -| t sby -
; I J A, et sr(t)
, t
, - | © | g
t _
’f sP(t,)
E
F +
L_6V(to)

The above equation expresses the trajectory variations in integral form.
Differentiation of both sides and augmentation with the error ccefficient
variations yields the complete set of navigation variational equations in
differential form. Thus

- T - O I— .
5P 0 I Q0 -vo' 0 O &P ' 0
: A oA Y'Y .
T G
v -2 S o -Am -M 2 sV sr(t)
- ° 5¢)
(13) sby=] o o o o 0 .0 sby| - | ©
ri | sb, o 0 ©0 0 0 O 8b, 0
561 0 o o o0 0 b, 0
sc 0 O 0 0 0 s¢ 0




Equation (13) is exact only for the case where VFN is provided continuously
wit? reSpgct to time. When VFN is given only at discrete times. the form
of M and r will depend on the method of interpolation of VFN used in inte-
grating the EOM. For example, suppose VFN is given at to, t], tos .ous and '
linear interpolation is used in the intervals [t,, tiggds 20,1, 2, ... {
That is, for ti <t< ti+1‘ i=0,1, 2, ..

t
.y !

(14) Ve(t) = Vo(ty) + (= | V() - Veit)]
F Flts (i) - Vit

Then ignoring velocity interpolation error,

sV = [ - - } J{ M[AF(.), t']dt'SbI + 6r(ti+1) - Gr(ti)
ttyq) - et IL Y

: tivl
<t1.+1 ~ t1'> f M[AF(.), t' 1dt abl + e.r(tm) cr(ti) . .

t

and therefore, in (13) it follows that the substitutions

. t. .
(15) M+<Z%-;> /‘” M[AR(.), t'1dt"
1
t:
1

: and
: 1
where At, = t... - t;, must be made for all t in the interval [ti’ ti+1]‘

Suppose also that the navigation system is initialized while the vehicle is
at rest on the launch pad. In this rase

VFN(to) ) VF(to) =0

and thus
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Furthermore, if \7F(t°) -0 ,

Gr(to) = -Sbo

Now define the state noise process
U- = r(ti+-‘), i = o’ -l, 2. s o0y

b

and introduce the correlated noise states £ and n defined by:

£(t)

"
‘o
-»

n(t)

"
o
-

for

ti <t < ti+1 , and

£(t]) o 1| &) 0
= + .
n(t;)J 0 0 n(t3) uj

i=0,1, 2, ..., with initial condition
£(t7) 0

n(to) 0
Then from (16)

K%)BMU-GﬂﬂLti<t<q”,i=L2,””

sr(t) = ( i

1
(Ato )[Gn(t) + 8b,l1s ty<t<ty

Thus, augmenting the variational equations with the correlated noise states,
it follows that (13) can be expressed by:




&V
5€
6n
b
b,

GbI

| sc |

L

—P(t}')
V(t:)
£(t})
n(t:)
by(t:)
be(t3)
by (t]

+
c(t;)

0

for ti < t< ti+1’ where

§ =‘0,1’-
*

together with

—b(t;)—

V(t;)

£(t3)
n(t;)
by (t5)
b.(t;)

by (£)

c(t;)




for i =0, 1, ..., with initial condition

ey | [eeey
v(ty) v(t,)
E(ty) 0
(19) ) | = | o
)| |
b.(t,) b,
by (t,) by
R

If Uy i=0,1,2, ..., is a sequence of uncorrelated random vectors, then
equations (17), (18), and (19) provide the desired structure for application
of the linear estimation results discussed in Appendix A and Section 5.0.

If, on the other hand, the sequence of random vectors is correlated, additional
correlated noise states must be augmented to the system given by (17), (18),
and (19) in order to obtain the structure required for the estimator to be
optimal.

B.2 Free-Fall Phase

The position and velocity of an RV at deployment can be computed from (9)
using vehicle Euler angles and their rates together with a separation model
based on energy and momentum relations. Following release, the position
and velocity of the RV can be computed using an equation analogous to (9)
with VF = 0. Thus if td is the time of deployment,
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Pry(t) T Vet Pry(ty)
(20) = / dat' + s t2t,

Vpy(t) ts A [Pry(t'),s Vo, ()] Vpy (tg)

Now (20) is the nominal on-board solution for the RV. The oniy timing error
associated with this solution is that which exists at td. Thus the nominal
off-board solution for the RV is given by

e e AT TR 1 et

5§v(t) ERv(t +ty - E(td))
(21) i =1 i » txt(ty)
Vay(t) ' vRv(t +ty - t(td))

The variational equations for the RV on-board solution are given in differential
form by

- . T = T o
SPpy o I 0§ ]8Ry
. 3A 2A 9A
G

(22) sV = 2= 2 2] ]ev , t>t, ,

RV L vl acl RV d

RV 3VRy
_6C _l L 0 0 OJ _GC N

with

GPRv(td) aP(td) €p
(23)

"
+

szv(td) GV(td) €

v
at deployment.

where €p and e, are due to attitude, attitude rate, and separation errors

B.3 Reentry Phaée with On-Board Instrumentation

If the RV includes on-board instrumentation for use during reentry, the
procedure used for the boost navigation system can be used to Jdevelop
nominal and variational equations for the reentry navigation system.
These equations will be initialized by the free fall solution at or near
pierce point, and the initialization procedure will be subject to both
the free fall timing error and the reentry navigation clock error.
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The time measured by the reentry clock is given by

eR(t) = t+ AtR(t) = (1+ AtR)ot .

where t is true time. Correction of the reentry clock for nominal errors
yields

ta(t) = (1 +at) 7 agp(t)
and if
Ato(t) = mi(t)b
R R Rc °

then

- . T
tR(t) ¥t + mp(t)dbp,

The nominal on-board reentry solution is initialized at time t
nominal off-board freefall solution as follows.

p using the

Palt) Pay(ta(t,)
(24) . =1 . .

VR(tp) V,'w(tR(tp))
But from (21)

PRt | [ Pryltalty) + 4 - tltg))

Vi (B(t0) | | Veyltplty) + tg - tlty)




Therefore

~

Palt)) 5Rv(tp)“ I faRv(tp)1 ) )
ARy ol . [iglty) -t + t - Htg)]
Vplty) L Vev(tp) | | Vav(tp) ]
5wl e ey
RV'"p RV*"p T T
= ) + - (mR(tp)GbRC -m (td)GbC)
i vRv(tp)_ I vRv(tp)_

L s B ot oSS AR o g St ST A
8 A e

Consequently
(25) = -1 . (mg(t))ebp. - ' (tg)eb.) 1
sVp(ty) SVay(ty) Vay(tp) 1

Observe that (24) is used to initialize the nominal- on-board reentry solution,
while (25) is used to reset filter estimates and covariances (or square root
covariances) at the outset of reentry.

Finally, in order to relate the reentry navigation solution to off-board sensor
measurements, the nominal off-board reentry solution is required. This solution 1
is given by ' ]

-.. -~ ~_~| E
Pa(t) Palty (t)) ) f
» t > tR(tp)

V3 (t) Ve(t2' (1))

(26)




C. METRIC SENSOR SYSTEMS

The diagram shown in Figure C.1 depicts the general structure of a metric
sensor system, the signal flow through the system, and the sources and in-
jection points of various errors. The sensor elements genera:ly have rather
narrow operational limits, and for this reason, it is necessary to control

the sensor with a servo mechanism. The loop which includes the senéor elements,
servo electronics, feedback elements (and in some cases the enccder) performs

a tracking func:ion which maintains the target within the sensor operating
Timits.

S AR PRI TR ks e

In an angle tracking system, the sensor elements consist typically of a
monopulse receiver. The receiver senses the apparent displacement of the
target relative to the receiver boresite (or tracking axis) in the form of
two angles. The servo electronics and control elements contain amplifiers,
filters, and antenna drive motors. The inputs to this block are the sensed
angles out of the receiver, and the outputs are motor shaft angles. The
feedback element is an antenna which is positioned by the motors, and the
sensor input elements are rigidly mounted to the antenna. Tae motor shaft
angles are encoded outside the loop, i.e., the encoders are not within the
control loop.

In a range tracking system, the sensor element is typically a device which
measures the time difference between the leading edge, centroid, or some i
other point on the received pulse, and a timing pulse output from the feed-
back element. The sensor element output is an analog signal which is input
to the servb electronics and control elements. This block consists of
amplifiers, filters, and integrator circuits. The output of this block is
roughly proportional to target range and is digitized in the encoder which _
js typically inside the control loop. The feedback element prodices a .
timing pulse delayed in time (relative to pulse transmission time) by an
] amount controlled by the encoder.
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In a range rate or doppler system, the sensor element producas a signal with
phase equal to the difference of the phases of the received signal and a
frequency controlled oscillator in the feedback element. This phase modulated
signal is input to the servo electronics and control block which consists of

a frequency discriminator, amplifiers, filters, and integrators. The output

of this block (vhich is roughly proportional to the doppler shift of the
received signal relative to the transmitted signal) is digit.zed in the encoder.
Then depending on whether the oscillator in the feedback elenent is controlled
by an analog or digital signal, either the servo output or the encoder output
is input to the feedback element.

In a pulse radar system, the optimal sensor element is a matched filter, but

in practice the implementation is usually a suboptimal approximation to a

matched filter. The output of the sensor element (regardiess of whether it
includes a matched filter) consists of a sequence of pulses which is synchron-
ous with the received pulse sequence. This sequence of pulses contains target
information corrupted by various systematic errors and sequertially uncorrelated
noise. Since the information in this pulse sequence is relative to the sensor
track point which is monitored by the encoder, it is necessary to use the encoder
measurements to relate the sensor outputs to a reference coordin:te system.

C.1 Metric Sensor Measurement Equations

From the foregoing discussion, it is clear that the sensor element (i.e., receiver)
outputs in the range, doppler, and angle channels constitute the fundamental
measurements of a metric sensor, while the encoders merely provide the means
whereby these measurements are related to a reference coordinate system.

Consider a four channel tracking radar, and let y denote the measurement vector
at time t. The components of y are simply the receiver outputs in range, doppler,
and angles at t. Let t denote the transit time of the signal which is received
at t, and let t' denote the time when the signal left the tarjet. Then

(1) t" = t-1 ,

and it is the target position and velocity at t' which ultimately affect the
measurements made at time t.
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Let the rdnge, azimuth, and elevation of the target be defined with respect
to the topocentric coordinate system located at the sensor as shown in Figure
C.2. Now define apparent values of these spherical coordinates to be equal
to true values modified by refraction.

Thus

(2) Ry(t') = R(t') + o[R(t"), E(t')] ,
(3) At') = A(t)

(4) Ea(t') = E(t') +e[R(t"), E(t)] ,

where the apparent values are subscripted, true values are unsubscripted, and
p and e dénote range and elevation refraction, respectively. Cbserve that for
a specified refractivity between target and sensor, the apparent values of
target position relative to the sensor are functions only of true position
relative to the sensor. Note also that

() o = Ryt

and thus for a given t, (1), (2), and (5) together with the true target
trajectory relative to the sensor suffice to determine transit time.

The apparent range rate is given by
. : R(t')
9
©) ke = R (5@) of
and this quantity determines apparent doppler by
-2f Ry(t')
(7) py(t) = —A——
C"'RA(_t')

where fo is the transmitter frequency.
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The apparent quantities given by equations (2), (3), (4), and (7), possibly
corrupted by target dependent error, provide the inputs which generate y.
Thus the input quantities of interest are the received values

(8)  Rp(t) = Ry(t') + aRp(t') ,
(9) Ag(t) = Ap(t') +aAL(t')
(10) Ep(t) = Ep(t') +aEl(t') ,
(1) Dp(t) = Dp(t') + aDf(t')

where ART is due to beacon delay, AAT and AET are due to phase front distortion,
and ADT is due to beacon oscillatur drift.

In the range channel, the sensor element forms the difference
(]2) ro(t) = RR(t) - RF(t) s

where RF(t) is the output of the feedback element. Assuming the range encoder
is inside the triicking loop,

(13)  Re(t) = R(t) - aR(t)

where RE(t) is the encoder output and ARF(t) is the error intrcduced in the
feedback path. If the feedback error is due oniy to a bias and 2 scale factor,
then

(14) ARF(t) = BR + SFR . RE(t)

Now the sensor element output consists of the range difference o corrupted
by sensor errors and receiver noise. Thus

(15) r{t) = ro(t) + ar(t) + v (t) ,

where Ars(t) is the error introduced by the sensor and vr(t) is tne receiver
noise error. If the sensor error is due only to a scale factor, then

A - TR A -




(16) ar (t) = SF . ro(t)

In the doppler channel the sensor element produces a signal with phase equal
to the difference in the phase of the received signal and the phase of a
frequency element. In an optimum mechanization, this phase difference would
be measured dir:ctly and would constitute one component of the measurement
vector. Typically, however, this phase modulated signal is Filtered and
input to a frequency discriminator which forms the differenc2

(7)) dy(t) = Da(t) - D (t) .

where DF(t) is the doppler modulation in the feedback element. Because of

the filtering operation, the frequencies in (17) are not instantaneous
quantities. Inctead they are approximately equal to the average frequencies
over a time interval determined by filter bandwidth. (Actua:ly, if the filter
and discriminator parameters are known, a state variable representation can

be used to relate the frequency output given by (17) to the phase difference
of the received signal and the feedback oscillator. This approach will not

be taken here, however.)

Now assuming the doppler encoder is inside the tracking loop,
(18)  Dp(t) = D(t) - AD(t)

where DE(t) is the encoder output and ADF(t) is the error introduced in the
feedback path. In general the feedback error may include bias and scale
factor terms. However, because DF(t) in (17) is an average value due to
filtering in the sensor element, ADF(t) will also include a term which
accounts for the average lag error of the feedback oscillator in response to
inputs from the encoder. In a pulsed doppler radar, with period Tr’ in which
the feedback oscillator is reset only once each period, the average lag error*
is approximately given by TrﬁR(t)/Z [8 ]. Thus accounting fcr bias, scale
factor, and lag errors,

*The existence of this error has been verified both experimentaliy and
analytically for the SAMTEC C-Band systems.
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(19) BD(t) = By + SFy . Dg(t) + 5 Dpl(t)

The frequency discriminator output consists of do corrupted by sensor errors
and filtered receiver noise. Thus

(200 dy(t) = do(t) + ad (t) + vy(t) .

where Ads(t) is the error introduced by the sensor and vd(t) is receiver
noise error. Assuming the sensor error is due only to a scaie factor,

(21) Ads(t) = SFd . do(t)

In the angle channels, angles of arrival of the received signal with respect

to the tracking axis (i.e., electronic boresite) are sensed. In order to
develop expressions for the sensed angles, it is convenient to first define

an electronic boresite coordinate system. This system is defined by a sequence
of rotations applied to the locally level (i.e., topocentric: coordinate system
located at the sensor. The transformation from the locally 'evel system to

the electronic boresite system is denoted by CEE(t).

Assuming the angle encoders are outside the loop, CEE(t) is a function of the
encoder outputs, encoder errors, and feedback errors. This functional
representation of CEE(t) will now be developed.

The shaft angles of the tracking system are related to the eincoder angles by

At || Aty || aAg(t)
(22) = - ’
ES(t) EE(t) AEE(t)

where AAE(t) and AEE(t) are the encoder errors, which include bias and
nonlinearity terms.

The azimuth shaft angle measures the antenna pedestal rotation in a plane
which is determined by the North and East mislevel cqefficients, My and Mg
These coefficients define the total mislevel, p, and the azimutr angle of
the mislevel axis, Am, by means of
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The transformation from the locally level system to the mislevei system is
then given by

(23)

cosAm sinAm 0 cospy 0 -sinu cosAm -sinAm 0
(24) Cr% = -sinAm cosAm 0 0 1 0 sinAm cosAm 0
0 0 ] singu 0 cosp 0 0 1

Now an azimuth shaft coordinate system is defined by a rotation of the mislevel
system through the angle As(ﬁ).

[ This rotation is given by

cosAS(t) -sinAS(t) 0 '
‘ (25) Gu(t) =|sinAg(t) cosAg(t) O
- 0 0 1

Next a nonorthogonality coordinate system is defined by a rotation of the
azimuth shaft system through an angle, n, equal to the nonorthoginality of
the elevation trunnion. This rotation is given by

cosn 0 -sim
(26) cht) =| o 1 o

simm 0 cosn

Now an elevation shaft coordinate system is defined by a rotatior. of the
nonorthogonality system through the elevation shaft angle Es(t). Thus

1 0 0
(27)  CRa(t) =| 0 cosEg(t) sinEg(t)
0 -sinES(t) cosES(t)
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A mechanical boresight coordinate system is now defined in terms of mis-

alignment angles in traverse and elevation, denoted by My and me respectively.

Thus

1 0 0 cosimy -sian 0
(28) ng =10 cosme sinmE sian cosm, 0

0 -sinmE cosmE 0 0 1

Next a gravity droop coordinate system is defined. The droop anyle, § is a
function of the true elevation angle of the mechanical boresight, and it is
a rotation abou. an axis which 1ies in the horizontal plane and is orthogonal
to the mechanical boresight. The transformation from the mechanical bore-
sight to the gravity droop system is given by

cosy 0 siny 1 0 0 cosy 0 -siny
(29) ¢ = 0o 1 o0 [|0 coss sims|| O 1 o |,
-siny 0 cosy 0 -sin§ cosé siny 0 cosy

where y and & are determined as follows.

Define unit vectors e, e , e, by

y
1 0 0
. _ MB
ex = 0 9 ey - ] [ ev = CLL 0
0 0 1
GD

If fe, x eyl = 0, then 8 = 0, and Cyp = I.

Otherwise, define

e xXe€

€ = TE%‘?’EﬁT

oy
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and the elevation angle of the mechanical boresite is given by

EMB = tan <T——'Y-revxe >.

y

with -n/2 < eyg < n/2. Assuming a simple cantilever model for droop, it
follows that

§ = GocosEMB s

where 60 is the coefficient of droop.

Finally the electronic boresite coordinate system is defined in terms of i
electrical misalginment angles in traverse, elevation, and skew, denoted
by €1s Ep» and Eqs respectively. Thus

coseS 0 -sineS 1 0 0 cosey -sineT 0 3
(30) ng = 0 1 0 0 coseg sinsE sine.r coser 0 }
sines 0 cose 0 —sineE coseg 0 0 1

The transformatiin from the locally level system to the electronic boresite
system is given by the product of successive rotations. Thus

EB _ .EB 6D MB -ES .NO -AS M.
(31) CL = Cgp Cma Ces no Cas ML L

Let e(t) denote the unit vector defined by the angles of arrival of the
received signal. Expressed in the topocentric, or locally level coordinate
system, this unit vector is simply
sinAp(t) cosEp(t)
(32) eLL(t) = cosAR(t) cosER(t)
sinER(t)

Therefore, in the electronic boresite system this unit vector is given by
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Peés(t)w -sinAR(t) cosER(t)-
(33)  egglt) = | efpt) | = CFP(t) | cosap(t) cosEg(t)
eEa(t) stnEp(t)

Now, define the discriminator traverse and elevation angles in the electronic
boresite system by

(38)  4y(t) = tan '[eXg(t)/edg(t)]
and
(35)  w(t) = tan[efp(t)/edg(t)] ,

respectively. Observe, however, that these angles may be approximated by

(36) ¢°(t) = eéB(t)
and
(37) bolt) = QEB(t) s

where the truncation error is third order. Consequently, if g and b, are
less than ten milliradians, the errors in these approximations are roughly
one microradian or less.

The outputs of tte sensor element are.given by o and Yo corrupted by sensor
errors and receiver noise. Assuming the sensor errors consis< of scale factor
and crosstalk, the sensed angles are given by

¢ (t) o (t) SF_ SF_ {4 (t) v (t)
(38) S . o N oo oy || 7o ' ¢ 1

e (t) Polt) SFW srw Yo (t) V‘P(t) jl

where SF¢¢ and Sk, are scale factor errors, SF.  and SFW are cross talk
errors, and v¢(t) and vw(t) are receiver noise errors.
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c.2 Nominal and Variational Measurement Equations

The measurement equations for a four channel tracking radar were developed
in the preceding subsection. If the sensor element outputs at time t are
denoted by rs(t). ¢s(t), ws(t), and ds(t) in range, traverse, elevation, and
doppler, respectively, then the measurement vector is defined by
™ a
r (t)
(1) y(t) =] o (t)
Ws(t)
dg(t)

By introducing appropriate state variables for vehicle dynamics and the
various vehicle and measurement related error sources, the measurement vector
at time t can be expressed in the following algorithmic form:

(2) t = o (t) - ml(t)x

(3) t o=t

(4) ct = Ry(t')

(5) y(£) = RIX3(E')s Xys Xos «oes Xge 2(E)] + ¥(E)

The staté variables which appear in the algorithm are defined bLelow.

x; - vehicle trajectory states (off-board)

Xy = vehicle dependent measurement error states

X, - sensor measurement error states

Xq - sensor timing error states

Xo - vehicle timing error states

Xg - refraction profile states

xg - sensor survey states (coordinates of geodetic

position and astronomic vertical)
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In equatioﬁ (2), es(t) denotes the sensor clock indicated time at t, and ms(t)
is a known vector function of t.

Ty TR wwmemy T T me

Equation (3) expresses the relation between the measurement time t, transit
time t, and the retarded measurement time t'.

The transit time constraint is expressed in equation (4), where the apparent
1 ' R ' [

range RA(t ) is 4derived from xa(t )s Xgs and Xg:

Finally, the measurement y(t) is expressed by (5), in which z(t) is the

; encoder measurement vector at t, and v(t) is the measurement aoise vector

at t.

The complete set of equations, (2) through (5), constitutes the dynamic
measurement algorithm, while equation (5), in and of itself, is called the
static measuremeat algorithm,

The sequence of operations in the dynamic algorithm is as foliows. First the
sensor clock measurement is corrected to obtain t from equation (2). Next
equations (3) and (4) are solved iteratively, using the off-board trajectory
x; to determine 1, t', and x;(t'). Finally, the measurement vector y(t) is
obtained from equation (5).

If nominal values of the state variables (including a nominal c¢ff-board
trajectory x;) are specified, the gynamic measurement §1goritnm can be used
to obtain the nominal measurement y(t), computed with v(t) = J, and the
partial derivatives which appear in the measurement variation equation:

(6) sy(t) = _ sx (t*) + A sx 4 ...+ sx 4 vit) ,
o] a T % T %%
Xa Bxb BXg

where 8y(t) = y(z) - ;(t). and the partial derivatives are evaluated at the
nominal state.

The relationship which exists between the nominal off-board~and on-board
trajectories of Appendix B, denoted respectively by x; and X,» can be
expressed in terms of the vehicle timing varfation. Let ev(t') be the




vehicle clock indicated time at t', and suppose that
] - [} T [}
(7) o (t') = t' +m(t)x, ,

where mv(t') is a known vector function of t'. Then if %' is the nominal
value of t' obtained from the measurement algorithm, it follows that

(8) X (t') = xy(t' - ml(t')ex,)

Observe that equation (8) indicates the mechanism by which vahicle timing
variation enters the measurement variation equation.

Now, the partial derivatives in equation (6) can be obtained readily by
numerical differentiation using the dynamic measurement algorithm, and in
many instances this is the preferred method. However, it is possible, and
sometimes more convenient, to express the measurement partia‘ derivatives
in terms of partial derivatives of the function h in equatior (5). The
partial derivatives of h with respect to the state variable elements are
called static measurement partial derivatives, and, when clarifization is
desired, the partial derivatives in equation (6) are called dynanic
measurement partial derivatives.

The remainder of this subsection is devoted to expressing the dynamic
measurement partial derivatives in terms of the static measurement partial
derivatives. The latter can of course be obtained by numerical differentiation
using the static measurement algorithm.

In the calculation of measurement partial derivatiye§ it is most useful to _
adopt the viewpoint that these derivatives are of y(t) with respect to ]
ia(i'), ;b’ cees ;g’ rather than derivatives of y(t) with respect to
Xa(t')s x5 oees Xgs evaluated at the nominal state. (These alternative :
viewpoints are entirely equivalent.) Also, for the sake of nntational

brevity, the (~) notation will be dropped in the sequel with the understanding
that it applies to all quantities other than variations, i.e., all quantities,
except variations, are understood to be nominal values.
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Now, except for the evaluation of the partial derivative with respect to
Xg» 1t may be assumed, because of (8), that

'x;(t') = x,(t7)

Let X; be any component of the nominal state vector, except a component of
- 'y ]
Xg° That is x; is any component of [xa(t )s Xps Xgo Xgs Xgs xg]. Then

from (5),
h sh : at'
(9) _aL = 9 + X
axi axi axT a axi
a
!
' Now
1
at' . 8t _ 3t
axi axi 3"1
F and '
5 st . T % |
Thus i
?_tl = -mT_a_x_d - .a:."-_ 1
! X; s axi X;
But 3
3R . ]
9T A ot' 4
C—— = —=—— + R, —
axi axi A axi
Therefore
ot _ 1 G S N I ]
11
and thus
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3t ] Ry c T
(10) X, X, .
] c+ RA i c + RA i

From (9) and (10), using the notation

oh

Ho= 98,

o T
axa

Sy —

it follows that

Hox. oR !
(1) oooop - 28 —’; |
a o
axa c + RA axa f %
(12) A -y N
ax L
b
(13) Ao =y
ax ¢
c
cH_x
(14) QZT = . —aa mZ
axd c + RA
H 3R
as) U - o4 .22 A
axf c+ RA axf
H.x. R
(16) o - Hy - —22- -2
axg c + RA axg

The evaluation of the partial derivative with respect to Xo can Se accomplished
most readily by indirect means.

First, observe that if 8 denotes a bias in the vehicle clock, it follows by
the chain rule of partial differentiation that

3y . 3y T
(7) ™ 8 My
xe
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Then from the measurement algorithm and equation (8), observe that if a bias
a is introduced into the sensor clock and an equal bias B is introduced into
the vehicle clock, there is no change in the calculated value of ». (Recall
from Appendix B that a vehic!e clock bias has no affect whatsoever on the
on-board nominal trajectory xa.) Consequently

ay Ay -
aa + 9B 0

and it follows by equations (14) and (17) that

(8) A

: ]
i cHaxa T
)
axe c + RA

My

To conclude this subsection, the complete measurement variation equation,
in terms of static partial derivatives and with complete notation, is given
for reference.

~

- Hx' @R -
(19) sy(t) = | n, - 23 _—% 8x,(t")
c+ RA axa
+ Hbeb + Hcéxc
cﬁ ;' ~ cﬁ x! -
a’a T a“a Tron
- ——— m(t)oxy + ——— m(t')sx,
c+ RA c+ RA
.7 .
~ H. x! aR
s |n, - 22 AL g
f . axT f
L c + Ry f=
- H.x!  oR
+ |0 - 22 -# 5x. + v(t)
9 . ax.' g
L ¢+ Ry ]
c.3 Measurement Processing Using Only Encoder Measurement

The mathematical development to this point has been based on the assumption
that measurements at both the sensor element output and the encoder are made
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in each metric information channel. In many cases however only encoder measure-
ments are made, and an alternative measurement processing scheme must be employed.

It should be noted at the outset that there is no method of processing encoder
measurements alone which can completely compensate for the lost information
carried in the sensor element output. If encoder measurements alone are to be
processed in an optimal estimator, the best that can be done is to augment the
estimator state vector with additional dynamic states which chtaracterize the
servo plant (i.e., all system components between the sensor element and the
encoder input), and treat the encoder output as the fundamental metric sensor
measurement. But this approach requires explicit knowledge of tha differential
equations for the servo plant, and such knowledge is not always readily available.
Moreover, if this approach were used for every sensor channel, the number of
additional states would greatly increase the computational burden of the estimator.
Consequently, the servo state augmentation method of processing encoder measure-
ments will not be considered further. '

A commonly used method of processing encoder measurements (and *he only method
which will be given further consideration) is based on the use of a set of
so-called servo dynamic error coefficients to approximate the quasi steady
state following (or lag) error of the servo. This approximation *s then used
in lieu of the actual sensor element output in the measurement processing
operation.

In the sequel, a linear model for a metric tracking system will be used to
develop the theoretical basis for the use of dynamic error coefficients. Then
comparisons will be made between three alternative schemes in which the measure-
ments processed consist of, respectivé]y:

(i) both sensor element and encoder outputs,

(ii) encoder output compensated by the dynamic error coefficient
approximation to sensor element output,

(ii1) encoder output alone.

It will be seen that both (ii) and (iii) suffer from certain deficiencies in
comparison to (i).
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A linear model for a single channel metric sensor is depicted in Figure C.3.
The variables in the diagram are identified as follows:

Xp - apparent value of channel coordinate
Bxp - target dependent error

xq - received (or input) value of coordinate
Xg - feedback value of coordinate

y - sensor element output

Ays - systematic sensor error
v - measurement noise

AxF - feedback error

Xy - output value of coordinate
Ax, - output error including servo noise
z - encoder output

AxE - encoder error

G(s) - servo plant transfer function, i.e., Laplace transform
of servo plant impulse response.

Although the diagram is drawn for the case where the encoder i: ouiside the
tracking loop, it can be applied to cases where the encoder is inside the loop
by simply equating X5 and z and combining Ax0 and Bxc.

From the diagram it follows immediately that

(1) Y+ z o= Xg ot Axp tAxp tAxp + Ayt

Now the quantity (y + z) may be regarded as the sensor measurement when both
y and z are measured, since the measurement variations obtained from either

yor (y + z) are identical. That is

sly+z) = (y+2)-(y+2) = sy
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The expression for the encoder measurement is also readily ob<ained from the
diagram. Thus ' i

2 = prlxg + Axp + Axp + Ay V] b QA+ Axp Y

3

(2) z = p*xA +p* [AxT + Axp + AyS] + q*Axo +oaxp + p*v :
where ;%
P(s) = Es’s ,

Q(s) = l 5T ° 'i

p(t) = g1 {P(s)} i

a(t) =271 s :

g'] denotes the inverse Laplace transform, and * denotes the convolution
operation defined by

(p*x)(t) = fw p(u)x(t - u)du = fm p(t - u)x(u)du

The constraints imposed on servo design are typically such that in (2) p acts
as a low pass filter, and q acts as a high pass filter. The term p*xA is a
delayed and distorted version of Xp- The term p*v is a smoothed version of v J
which exhibits serial correlation, where the correlation time is roughly equal

to the reciprocal of the bandwidth of the filter p. If, as is the usual case,

Axys BXps and by, are very low frequency in character, the term p*[AxT + Oxp + AyS]
is approximately just [AxT + Mxp + Ays]. Since q is a high pass filter the term
q*Ax0 will contain only the high frequency servo noise content in Axo, and the

low frequency servo noise will be rejected.

Now the approximation to the sensor element output obtained with dynamic error ,
coefficients will be derived. From the diagram of Figure C.3, it follows that j
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(3) y = q*[xA + Dxp + AxF - Bx, + ayg + v]

Since q is a high pass filter, while Axy, Axp and Ays are typically low frequency
terms, it follows further that

(4) y = a*[x, - ax  +v]
Deletion of the noise and error terms in (4) leads to the quantity
(5) y = a*x,

which contains all the information in y regarding Xp- The procedure is now
aimed toward approximation of y. ‘

The expression for Q(s) is first expanded in a Taylor series about the origin.
Thus

) s) = Tgre

where Ki is the dynamic error coefficient of order i for i =0, 1, 2 ....
If the function G(s) has a pole of order n at the origin, then

w"1=0’ 'I, 2, cvey n-] [y

1im s"G(s), i = n
S0 :

In this case the system in Figdfe C.3 1s said to be of type n.

Type 0 systems are of little interest. In fact, most metric tracking systems
are either type 1 or type 2. If type 0 systems are excluded, then Ko = o and
thus

2 3
(7) Us) = = + = + = +

1 K K3

Using (7) in (5) it follows from elementry properties of Laplace transforms
that
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At this point the assumption is made that XA is a sufficiently smooth function
that the series in (8) can be truncated after the second or third term with
negligible error. Thus assuming a nominal trajectory is specified for Xp s the
resulting approximation for y is

L R Rt (b
O R T e &

Combining (9) with (2) there results

~ ~

% % %

— A A

(10) y+z=p*x+—A+——+—
Ak KK

+ pr[Axp + Axp + Ay ] + q¥Ax) + Axg + prv

At this point the three measurement processing scheémes can be compared to
determine their relative merits. The first alternative, which is feasible
only when bDoth encoder and sensor element outputs are available, provides a
measurement expressed by (1). In fhis case the measurement has a simple
linear dependence on the measured coordinate, systematic error tems, and
measurement noise. The systematic error terms can be expressed as linear
functions of state variables, and the measurement noise in the sensor element
is sequentially uncorrelated. Thus the measurement given by (1) satisfies

all assumptions required in the development of the optimal estimation equations
in Appendix A.

The next alternative to be considered is the case in which the uncompensated
encoder output is used, and the measurement is expressed by (2). In this case,
as has been mentioned, the measured coordinate is delayed and distorted by
filtering, the measurement contains high frequency servo noise, and the noise
which originated in the sensor element or receiver now appears as smoothed

and sequentially correlated measurement noise. It is clear tkat the measure-
ment in this case does not satisfy the assumptions required by “he estimator
for optimality, and some degradation in estimator performance will result.

sl
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The last alternative is the case in which the encoder output is compensated
using dynamic error coefficients, and the measurement is given by (10). Com-
parison of (2) with (10) shows that all the objectionable features present

in (2) are also present in (10), except that, to some extent in the latter,

the delay in X 1as been compensated by the introduction of the dynamic
error terms.

The application of dynamic error coefficients in the single channel range
and doppler trackers is straight forward. Each of these trackers is typically
of type 2. Thus the dynamic error terms are given by

-~ ~

ﬁ. 'ﬁ.

= - A, A

ro= -g + KR

K> 3

and .

a:i-bgﬁ

e

2 3

respectively, where ﬁA and BA are derived from the off-board nominal solution.

The application of dynamic error coefficients in angle trackers must account
for the fact that the sensing element output which drives the azimuth servo
senses angle in the traverse plane. Consequently the gain of the azimuth
servo is multinlied by a factor G(Es) to ensure uniform servo resnhonse in
azimuth for all elevation angles except those in a small region n2ar zenith.
ES is the elevation shaft angle, and

sec Es’ ES S-Emax s
G(E]) =

sec E .o <E < m/2

x* ~max

For operation with E, > /2, G(ES) = -G(w - Es)'
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The dynamic error approximations in travérse and elevation are given by

-

- L MM A
LA {50 I B S S
; .8 1 @ 3
- and . . .
K Kk K
respectively.
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D. MISCELLANEOUS TOPICS IN LINEAR ALGEBRA

The results in this appendix can be found in many standard mathematics and
numerical analysis texts [9], [10], [(11]. They are included her: to provide
a concise and readily accessible supplement to the algorithms developed in
the text.

D.1 Gauss Elimination

Let A be an nxn matrix. Assume for the moment that A has full rank. The
Gauss elimination procedure applied to A consists of a sequence cf operations
on the rows of A which yields an upper triangular matrix U. To be specific,

ey

let !
ra{?) a{g) . .. a%:)
ale) - - aé?) (0) (0)

622 .« . . a2n
R

Using the elements of the first column of A(°) define

0 . k = ] Y
Z =
ki (0)
3%17 k =2 s N,
31‘1)
and put
1 '0...0
S —
L' = | 4y
[}
: E In-l
| Ly ]
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\Then let

A(]) = L;IA(°)

and observe that A(]) has the structure

[~ i
a{o) alo) . afo)
LR T 1) S LU
1 1
i 0 aéz) . .. agn) |
where
A . (o) e
akj = akj --—-;¥§Tl— s Js k=2, cc.un

Similarly, using the elements of the second column of A(]) define

0 , k=1,2
L 2
—%27 k=3 n
32;
and put
1 0 !'0...0 |
1 olo 1 Yo 0
I
0 -£55 i
-
o In-2
: '
- [ ]
LIE>S i
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Then with

2) _ -1 - -1
A A N P BUALY

it follows that A(z) has the structure
(o) (o) (o) (o)
M N2 3 - - - 4y

1 1 1
0 aéz) a£3) e e . aén)

2 2 2
A( ) = 0 0 a§3) .- .. agn) s

2 2
0 0 a£3) . e aén)

| .
_}
(2) _ .(1) a|(<1z)a§]')
where akj = akj - ———;11%—- s Jo k=3, ...sn
22

In general, for i = 1, ..., n-1, define

b 7}
E%E:;;- k = 1+1 s N,
all-
i1
put - : -
b 0 :
iy 1 E
Y '
5 I It | ettt Ymosmsemsee-
L. =1]o0 o ! 1 'o 0 >
L I L demecnnnneea-
IR
O 5 b 1)
e,




and let
a) o 21 sTale)
i 1
Then A(i)has the structure !
i
i (o) ] i
a{?)' SO TP b -
(1) (1) j
0 359" . . . . . . . .32n :
o :
IR B . (i-1) (i-1) p
A - . . a_ﬁ . . . . ain 3 3;
H
(i) (1) b
S R L H i
: : i
(i) (i) '
_-0 0 0 an,i+1 SREPIE A .
@) _ e e ey
1) 2 1- - 1 1 s Js = j+1, eesy N,
i ;
and in particular i
(o) () ]
ay - “1n
(1) (1)
0 a22 ..... aZn
- ’ 0 .
A(n ]) = U = . e . .
. (n-1)
i 0 0 + 0 ann
’ i '
165 i
i

o ————— T~ UBMEA L ™ [ Py




B T T St

Using the definitions introduced above, the Gaussian elimination procedure
can be represented in matrix form by

-1 -l -
(]) Ln_] LR L-I A - U

Now let e, denote the i-th column of the nxn identity matrix and for each
i=1, ..., n-1, let A5 denote the n-vector defined by

B T B 7
L5 0

L | =

Then for each i =1, ..., n-1,

(3) LIRS S W g

and it is obvious that

1

i } (4) L, = I+ Aie} . 1
Finally let
(5)

and observe that
n-1
(6) L = I+ I As€
i=1
Then from (1) it follows that

I
i

I e e b i,

(7) A = LU ,

where



S bkt 4

1 o0 . . . . 0]
(8) L = £21 1 . 0 ... 0
Y :
. . ‘0
Lgnl £n2 Ln,n-l' 1 4
- T r -
(o) (o)
u]] u]z u]n a]] ......... a]n
(1) (1)
0 Usy Uop 0 Ay ... a5,
(9) U = 0 = 0
. * . .o ) * . : . (n_])
I 0...0 unm,_ | 0 o. . ... 0 apn ]

Since an explicit expression for L'] does not appear in the sequel, it is
perhaps worth while to note that

n-1
-1 T
n=1
and hence L'] cannot be obtained by simply changing the sign of the elements

below the main diagonal in (8).

The Gauss elimination procedure has 1ed to the factorization of A into a
product of triangular matrices in (7). This form is particularly useful in
solving equations of the form

(10) Ax = b

A two step process is used to solve (10) for x. From (7) it follows that (10)
is equivalent to the pair of equations
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[[]
o
-

(1) Ly

(12) Ux

"
<

Now it is a simple matter, because of triangularity, to first salve (11) for
y by forward substitution and then solve (12) for x by backward scbstitution.

e Fran e T

In the course of the Gahss elimination process, the columns of L ire formed
sequentially using the results of previous calculations. Thus the i-th

column of L requires division by the diagonal element a(i']). If agé’])

- ii
is zero the process fails outright. And if ag}'l) is small in magnitude,

it can contain a relatively large roundoff error. In such caces the
relative error in the i-th column of L, and hence in successive computations,

can be quite large.

P " i Ty

Since A is nonsingular, there must exist a nonzero element agl']) for some

J>1and k >i. This fact provides the basis for a means not only of
avoiding division by zero, but also of reducing the amount of roundoff error
. buildup in Gauss elimination. The procedure is called pivotirg, and the
3; idea is to interchange rows and columns in the object matrix to bring an
element of large magnitude into the i-th diagonal position prior to computing
the i-th column of L. The larger this element, relative to other elements
of the matrix, the smaller will be the roundoff error in the i-th column of .
L and in subsequent calculations.

The theoretical justification for the pivoting process will now be givéﬁ.
To this end, the notion of a permutation matrix is formulated.

An nxn matrix P is called a permutation matrix, if for any n-vector x,
the vector y defined by

y = Px

is obtained by interchanging at most two elements of x. Thus either, y = x,
or there exist two distinct integers j and k such that




Xy s i=§j ,

Yy = xj. i=k ,

Xis otherwise

It is easily established that if P is a permutation matrix, then it is
symmetric and orthogonal, i.e.,

P-l

Observe also that, if P is an nxn permutation matrix and B is an arbitrary
nxn matrix, then

PB

is a matrix which differs from B by at most an interchange of two rows,
while

BP
differs from B by at most an interchange of two columns.

To illustrate the use of pivoting in Gauss elimination, the row and column
interchande operations will be represented by permutation matrices. For
each i = 1, ..., n-1, just prior to calculation of the elements in L;],

a row permutation Ri and a column permutation Ci are performed on the object
matrix to place an element of large magnitude in the i-th position on the
diagonal. To preserve triangularity it is necessary and sufficieat that

Ri permute rows i and j and Ci permute columns i and k, where j > i and

k > i. Thus the row and column interchanges bring the element in position
{j, k) to position (i, i) in the object matrix.

In matrix form, the sequence of elimination operations can be represented
as follows

g T P Yy Y e G R




-1, -1 - a(2)
L2 RZL] RJAC,C, = A

~=1 -=1 _ 3(n-1)
¥ Now with the definitions
K = Rn_]...R]Ac]...Cn_l 'y :
oo
7 = A1) , *
1
and ]
T =R L

-+ -RolyRolpee Ry (L4

it follows that
A =10

But by induction

" R2L]R2L2. . .Rn-'ll_n-ll

L

Rn

-~

n-]Ln-l

Ry ZL]RZ(R3...Rn_1)(Rn_]...R3)L2...R

[Ry_1-- -RolqRge Ry (R yev-Ralpee iR Lo 1]

[1+R _jRoAel IR co-RgLRaLar R SL 1]

-7 -7
[T+ Ry qeeRpheq] oo [T+ R 3 pen 10T+ ‘18] o
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T = (1+XelI+Xel] ... [1+X, el ;]
n-1
_ = T
= I + z Aiei s
i=1
_ ‘ Rn‘]...Ri+1Ai’ i = ], s ey n-2
A l .
Ap-1 s i =n-]

A simple bookkeeping procedure for factorization of A into LU is now obvious.
On the i-th elimination the entire nxn object matrix is subjected to the
appropriate row and column permutation. Then the elements of A; are computed
gnd the elimination operation is performed. Finally the nonzero elements of
li are placed in the corresponding~eliminated positions in the i-th column
below the main diagonal. That is £L,; is placed in position (k, i) for each

k = i+1, ..., n. After the (n-1)-th elimination, the object matrix is of
the form

—1
U-n U]z . . . u]n

21 Y2 - - - Uy

&)

2 - ",

o
=

nl "n2 e’ n,n-1 “nn

where

m

o




o YT TR

B 0
T, 1 0 0
L=1% I3 1
: 0
T T e Tt 1|
and
BT W)
0 622 Eén
U- 0 \
I 0 Ty |

The solution of equation (10) using Gauss eliminations with pivoting is
quite direct. First observe that the system (10) is equivalent to

(10') A = b ,

where
X = Rn-l"'RlAC]"'cn-l s
b = R -1 Rib s

and
X =- Cn_1...C]x

But (10') can be solved using the factorization




by solving the equivalent system

(') Iy = b ,

(12') Ux = y ,

from which x is >btained simply by

X = C]...C X

n-1
The pivot procedure described above is sometimes called complete vivoting.
In the special cases in which either R] = ... =R =1 or C1 = ,.=¢
the procedure is called partial pivoting.

n-1

If the matrix A is of rank r < n, then of course A is singular. In this
case the Gauss elimination process with pivoting will terminate immediately
after the r-th elimination and the object matrix will be of the form

pra— ———

u-” u'lz . . . U-lr « o . u'ln
/ez-‘ U22 3 . . qu . . 3 Uzn
z . .

31 %32
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D.2 Cholesky Decomposition

A real valued nxn matrix A is said to be nonnegative if A is symmetric and
the condition

xTAx.g 0

holds for every n-vector x.

A ST~ i - g i

A real valued nxn matrix S which satisfies the condition

A = SST

is called a square root of A.

It is obvious that the matrix product SST is nonnegative for any real valued
nxn matrix S. Conversely, as will be shown, if A is a nonnegative matrix
then a real valued square root of A exists, but is not unique. The proof
of the existence of a square root of a nonnegative matrix will be by con-

L struction using Gauss elimination. This constructive process is also called
Cholesky decomposition. 4

Let A be a nonnegative nxn matrix. It is readily shown that

(i) 3 20forallk=1,...,n
and
(i1) o = max {a ;5 k=1, ..., n} implies o = max {lajkl; k=1, ..., n} ,

that is, all diagonal elements of A are nonnegative, and no element of A has i,
a magnitude greater than the maximal diagonal value a. '

Gauss elimination with pivoting will now be applied to A, and the first
permutation matrices R] and C] will be selected such that

o B




e

and

;fg) = o= maximal diagonal value of A) |,
where

alo) = ppp,

The first climination matrix L;] is formgd such that

X 1o
H e
-A] I
d '~ ~
" o a%?) g agg) . .. agg) )
L;]A(o) =) emme- ,:- ------ semmmeeea- = A(])
o i (M
where
[ -(1) ~(1)
aéz “ e agn
{',(1)= : :
-0 -1
aéz) aén)

(In case a = 0, take A] = 0 and P1 =1.)

It follows immediately, by symmetry, that

o
[;1;(0)([;1)T - ,
o gl

TP

it
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and since A is nonnegative, E(” must also be nonnegative. But since E(”
is nonnegative it follows by induction that the Gauss elimination process
can be continued with Ri = Ci = Pi chosen at each stage to place a maximal
value element, from the remaining diagonal elements, in the (i, i) position.
If for some i0 < n, the remaining diagonal elements are all zero, take

A; = 0 and Ri =C; = Pi =1 foralli=1i, ..., n-1.

o’

Thus when A is nonnegative, the sequence of elimination operations can be
performed with symmetric pivoting and represented as follows.

= = all)
e - a(2)
L2 P2L1 P]AP]P2 = A

o1 S 1(n-1)
Ly 1Paoye oLy PiAP- o Py = A

Then with the definition

K o= P -PyAPL.P g
T - Al
and
T = PoqeePolyPolye P gl g s

it follows that
A = L0
But it is also true that

E']K(E'-’)T = ! )7

1t
o

which implies D fs nonnegative (hence symmetric) and upper triangular. Thus
D is a nonnegative diagonal matrix.

AT Sy e &y




Now let 5/2 gdenote the (unique) nonnegative diagonal matrix which is a
square root of D, and put

T = [5]/2

X = 3§ ,

and thus S is a lower triangular square root of A. It follows immediately
that

Thus S is a square root of A, and the construction is complete. Note that
S, unlike §, is not necessarily triangular. A method of transforming S into

a triangular square root of A using the Gram-Schmidt process is described
in D.3.

When the Cholesky decomposition is applied to a nonnegative matrix A, a
simplified bookkeeping procedure can be used which takes advantage of
symmetry. First, recall that

p = gL'

Then since L has unity diagonal values so does L1, Consequently, D is
simply the diagonal part of U, 1i.e., '




Uq1 0. 0
E- = 0 L
- * o
_0 0 umU
Thus since
u = OO

it follows that
ujk = Ujjzkj fOY‘k>J,J='I, ceay n-1

j=0for3>r,

Now if A is of rank r, then Ejj >0 for j <r and Uj
j=1, .c.on.

But if A is of rank r, it also follows that ij 20 for k>j>r Consequent-
1y, the entries in L below the main diagonal are determined from U by

© —

Uy
3

'k

si<sr

LA =

0o ,ji>r ,

\
for j<k<n, j=1, ..., n-1.

Second, recall that
T = ]_—61/2

Then if A is of rank r, the elements of S on and below the main diagonal are _
given by “i




for j<k<n,j=1,

Since L and S are readily computed from U, the Cholesky decomposition can

be carried out without bothering to compute and store L. Furthermore, be-
cause of symmetry the entire process can be performed using only the upper
triangle of the object matrix. Also, the square root normalizations used

to obtain S from U can be performed 1n conjunction with the eliminations,

so that the object matrix contains §' (rather than U) when the process is
complete. Conceptually, the bookkeeping method used in Cholesky d°compos1t1on
differs from that given for Gauss elimination as follows:

1. Only symmetric pivoting is used, and P1 is chosen to bring a
maximal valued element, from the remaining diagonal 2lements,
into position (i, i).

2. Instead of computing zki’ k = i+l, ..., n, for the i-th elimination,
the elements in the i-th row of the object matrix are normalized by
the square root of the diagonal element in that row. That is

. ;1)
LR =

3. The i-th elimination is performed as follows:

~(i) . C e

aji = 0, =1+, ..., n

(i) _ T(-1)  T(@-1)C(i-1) C o

3k T Ak T ¥y gk kw3, m
and

2l _ 30) s a3 -

akj - Jk ’j<k_<. n’J 1+1’ ...,n] .

When all elimination steps are complete and the object matrix contains §¢.

Thus if A is of rank r, the object matrix contains




- — - -
S19 - rl . SmT
0 a
0 <0 srr - Spp
. 0....0
0 .0 0 0

If the nonnegative matrix A satisfies the stronger condition,
xTAx > 0

for every nonzero n-vector, then A is positive. In this case, Cholesky
decomposition can be applied without pivoting, theoretically, although it
may be inadvisable to do so because of roundoff error buildup. Nonetheless,
if pivoting is not used, a simple formula for S, due originally to Cholesky,
follows by induction from the Gauss elimination method, modified as above to

take advantage of symmetry. The formula is

- ) 2\172 . _
Sii - a_i,i 2 S.ik . 1 "], LR n H]
1<k<i
s.. = 4 fa.. - £ s.s j o= i+l n, i=1 n-1
Ji Sii i jk7ik |°? 2 ooy T 2o
1<k<i

As a final observation, it is noted that the Cholesky decomposition can be
applied to obtain

where S is upper triangular. A1l that is required is that the row elimination
operations be applied to the object matrix from the right (instead of left)
and proceed from bottom to top (rather than top to bottom).
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D.3 Gram-Schmidt Orthonormalization

The Gram-Schmidt orthonormalization process is a method of constructing an
orthonormal set of vectors from an arbitrary set of linearly independent
vectors. In thi: appendix, the treatment is limited to real valued n-vectors.
For a complete treatment, the reader is referred to [12], [13].

The inner product of two real n-vectors x and y is given by

(x,¥) = xy = y'x = (v, x)

and x and y are said to be orthogonal if
(x,y) = 0

The norm of an arbitrary vecfor x is defined by
Hxll = (x, 0212

A set of vectors Xys oo Xp is said to be linearly independent if the
relation

holds only when Cp = e =Cy = 0.

A set of vectors Ups =oes U is said to be orthonormal if

m
1 i=j ,
(“i’ uj) =
0 itj ,
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A set of vectors which is orthonormal is necessarily also linearly indepen-
dent, but the converse does not hold. The Gram-Schmidt algorithm for
constructing an orthonormal set of vectors from an arbitrary linearly
independent set of vector; X1s ees Xp is developed below.

Define a set of vectors Y13 +ees Yy 28 follows

N ="

.y2= (zsyl)m
y=x-(xy)—y]——- -(y)y]
L T T TN
Yo = - (x5 yq) — - e = (xs Yo q)

n T e Yer HyH m -1 ll,.,_]llz

It follows, by linear independence, that llyill >0, i=1, ..., m

It is easily shown, by induction, that Y9s -o0s ¥y is an orthogonal set of
vectors. Furthermore, for each i =1, ..., m, the set Yy oees ¥4 and the
set X1s ++-s X SPaAN the same subspace, that is every vector which can be
expressed as a linear combination of members of one set can also be ex-
pressed as a linear combination of members of the other set.

Now define the set Uys oees Up by normaiization of the set Yys oees
that is,

m’

YT T T e

Then Ups oees Up is an orthonormal set of vectors, and for each i =1, ..., m,
the sets Xps eees X and Ups +«+s Uy SPanN the same subspace.
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The above algorithm for obtaining the set Ups «oes Uy is the ordinary Gram-
Schmidt process. For computational reasons, a slightly modified form of the
algorithm is preferred. This algorithm, which is called the modified Gram-
Schmidt process, is given below. The modified algorithm is entirely
equivalent to the ordinary algorithm, theoretically, but is numerically

more accurate when executed on a computer.

xgl) = Xi i=1, ..., m
noew xgl)
Uy = .Y]/H.Y]“

x$2) = x1(1) - (xg'”, U dups T2, oo m

Y2 © ng)
U, = .Yz/l l.Yz”

xgk) = xgk'” - (,xgk'”, uk_])uk_], i=Kky ouus

e = %

U = .Yk/l I.Yk“

x'gm) = x'gm-” - (xlflm-])’ um-l)“'m’—l
e
u =

Al

—




To illustrate an application of the Gram-Schmidt process which is of

particular interest, let S be an arbitrary square root of an nxn non-
negative matrix A, that is

A = ssT .

Now denote the rows of S by the set of n-vectors x}, eees X . Thus

X

Apply the Gram-Schmidt process to the set of vectors X1 sees Xpos augmented
if necessary by the columns of the nxn identity to obtain the orthonormal
set Ups oees Up.

Augmentation with columns of In is necessary only if Xps eens Xp is not

- linearly independent. In this case the Gram-Schmidt process is carried

out as before, skipping any vector X5 which is Tinearly dependent on the

set Xys sees X5 qe Only when the original set is exhausted dces augmentation
occur. Thus, in general, the orthonormalization process is applied to the
set Xys +ees Xps €15 o0ns €5 and terminates when a complete crthonormal

n
set Ups «oes Uy is obtained.

Now let T be the orthogonal matrix whose columns are given by the set
Ups oens U Thus

T = [u]I...Iun]

By the Gram-Schmidt construction, it follows that
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_(xI,u]) 0....0 ]

ST s' .

_(xn’ul) c .. '(xn,un)J

that is S' is lower triangular. But since T is orthogonal, it also follows
that

s'(s)T = A,
and thus S' is a Tower triangular square root of A.
By simply applying the Gram-Schmidt process to the rows of A ir the reverse

order and similarly forming the columns of T in the reverse order, an upper
triangular square root of A can be obtained. Thus with

T
*n_
: s = |
| T
é and
] T = [lul...lud
{ it follows that i
: _ ;
(xn’un) . . (Xn,u])
s = ST = Lo
R ]
i . 0 (X.l,u]) !

is an upper triangular square root of A.
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