" AD=A066 370 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/6 17/1
EVALUATION OF A SIGNAL PROCESSING TEST BED.(U)
DEC 78 6 T VRABEL

UNCLASSIFIED
| or2

Iy 5

ABA0 66370

al

DDC Fie copy

NAVAL POSTGRADUATE SCHOOL

Monterey, California

 PAXS DOCMEE o o 70 Do £ TATNER
o OOFY FURIISEE o pas et 0 MR

A T
FORIPICHNT Hone
%cm LRCYBLY .

THESIS

EVALUATION OF A SIGNAL PROCESSING
TEST BED

by
George Thomas Vrabel

December 1978

Thesis Advisor: George Rahe

Approved for public release; distribution unlimited

79 03 26 062

s il ot e e s S e i

Sl e 2l o
.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

unc
SECURITY CLASSIFICATION OF THIS PAGE (When Dets Rniered)

REPORT DOCUMENTATION PAGE AR e e o
NUM [ﬁ.wm.m 3. RECIPIENT'S CATALOG wumstr |

4. TITLE (and Subtitle)

p
(p Evaluation of a Signal Processing
Test Bed,

6. PERFORMING ORG. REPORT NUMBER

T S

}r..uuoﬂ(n) 3. CONTRACT OR GRANT NUMBE e)

George Thomas [Vrabel *Zi 3

. ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
PERPORMING ORGANIZATION NAME AND AD AREA & WORK UNIT NUNBENS

Naval Postgraduate School ! 13
Monterey, California 93940 i

1. CONTROLLING OFFICE NAME AND ADDRESS
|| | Decpmber—is7s

Naval Postgraduate School T YT WY VT T g
Monterey, California 93940 107
. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office) 18. SECURITY CLASS. (of thie rdport)

!
Naval Postgraduate School Unclassified
Monterey, California 93940 Tl " U DO ORACNS

e eee———————————
16. DISTRIBUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited

149 po

| KE2 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i{ different frem Report)

10. SUPPLEMENTARY NOTES

Array processing

’ 19. KEY WORDS (Centinue on reverse oslde Il necessary and identily by block number) :
a Signal-processing

i

| A

“~__ |20, ABSTRACT (Centinue en reverse side If necescary and identify by block mumber)
—-—

: This thes@s was undertaken to examine an acoustical
signal processing test bed, similiar to the one installed
at thg Naval Postgraduate School, to be used primarily for
experlmentgl applications. The major components include two
PDP-11l series computers, at least one array processor, a
mass storage unit as well as assorted input and display

S Wl DR ST

v+ "J'::"" 1473 eoiTion oF 1 NOV 68 18 OBSOLETE

cOtee Unclassifj
e 1) B 1 ucmm%rﬁéﬁimmrﬁ.
383 450 .

ERERAT, T A

B .~ e

Slbiands, Lacie \ . il i : "

MPY CLASSIFICATION OF TwIS PAGE/"en Nete Bntered-

equipment. Of major interest were the computer selection,

array processor selection and basic signal routing to
facilitate real-time utilization

£

- . . - et -~
T T S TR M N A O R A

DD %orms 1473 Uncl ified
S/l‘} 1%2‘-014-6601 SECUMTY CLASSIPICATION QF THIS PAGRhen Data Entered)

Approved for public release;

Aythor:

Approved by:

Submitted

distribution unlimited

EVALUATION OF A SIGNAL PROCESSING
TEST BED

by

George Thomas Vrabel
Lieutenant, United States Navy

in partial fulfillment of the
requirements for the dearee of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1978

¥ /.,.a ‘/]:»Z.//
L ’1":* /—:7: L

-----“m--------

Dean of Information/and Policy Sciences

P T —— N e

kst

#
b

ABSTRACT

This thesis was undertakgn to examine an acoustical
signal processing test bed, similiar to the one installed at
the Naval Postgraduate School, to be wused primarily for
experimental applications. The major components include two
PDP-11 series computers, at least one array processor, a
massS storage unit as well as assorted input and display
equipment. Of major interest were the computer selection,
array processor selection and basic signal routing to

facilitate real=time utilization.

o

I.

II.

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION.....'......'..............'......‘....

COMPUTERS......'.......'...................'...O.‘

A.

B.

GENERAL...O.........."...........I.'.I..'.....

PDP-II FAMILY'I..........'.....O.......I'....I.

1.

2.

PDP-Il/oa.....O'..........I...........‘....

PDP-Illsancooﬂ...0'..'.O.......o.o.o.......

PDP-Il/aSQooooo'oC0..'...'.0...'...0..000..

pr-ll/ss.lcco...C'l.!o..'.Q..O...-o.l.!.t.

PDP-Il/bo...........O.......'..l.......OO'.

PDP-l1/70.......I.I.....I......'O.Q......CO

ARRAY pRocEssOR...........'...'.......IO...O.'I..

THE AP-IZOB ARRAY PRUCESSOR.'........O.C....'.....

A,

CHARACTERISTICS AND HARDWAPE.....'...'...'0.'..

1.

2.

NUr‘tiolier...ooo...n-.’...n....o--'.o.oo.o..

Adder.....-............'.'."'.l.‘.'O.‘l...

S_pad.-l'.o'ooo......0.'.!..0.......00.."'

Table Memory..l....".‘......Q..C'l...‘l'.‘

Data Padx aﬂd Y.0.0o.......Q..Q..Q...o....

'Main Data Me'ﬂoryo.....‘.o.l........o...l...

pl‘O'gl'am Source ModUl @sesoesosvsecsosscsasesane

Interface with PDP=1]1 Seri@Seccececcceccscsccscs

b.

Front Pane‘....Q.......Q...............

DMA contro‘....'........Q...'..........

15

21
21
22
23
24
25
26
26
27

28

34
35
37

40

49

Se

Trera

T ——

B. SOFTWARE.;.............-....................;.. S4
1. Executive and Associated RoutineSeeecescses 54]

Sa APMATH,.conconcssnvssssossnsssssssonsnen D4

Be APEXssncsecnssssssssssssssnsrsdonstassas 59

c. APAL‘.....'...I..I.'...-'....'..'.‘.l... 55

d. APLINK'O..OOOOOOOOO'..o.l.ooo‘-.-a..occ Sb
e. APSIM...‘.l.l.‘......0.."..0'...'..... 57

f. APDEBUG.......‘..O..........l.......... 57

Ge TesSting SaftwWare,.recesvasnssosansaassns 5? ¥

2. Programming LaNguage.cesceccscsesscssccsscsess 98 Z;

3. Page Select OptiONececccsssescscsassscscnsssnse 959 51

Li 4. Programmaole [/0 Procesorfecececscsasscscees 00 *]

C. PROGRAMMING, OPERATION AND EXECUTION...cecesees 61

v- MAP-}OO'................Q..'..'........l....l...... 6°
A. CHARACTERISTICS AND HARDNARED...Q............Ol 70

1‘ CSPU.....I...‘l......'.'.I................. 70

2. Arithmetic ProcesSSOlf.ccsccccecccssacccnsccs 13
8s APUssessisvssvscasossssvsnanissconsssnses 13
Be BPS e us venis e aivisiay ¢ benes vvicsishsveisicioies; 10
3. Host Interface Scrolleccescecccacscancsnsss 81

a' Memory-..O.oo--...I'....-ll.'....o..l...... 83

Bo SOF[WARE SUPPORTO.....OI..O‘..D'..o....'..o‘..- au

1. Executive and ASSOCﬂated Routines-ocgoooooo 85
a. Assemb‘er.........'........'.'......... 85
b. Simu]ator ® @ Q@ O P 909 O PP OO OO 0SP890 85

Ce Loader...‘..Q..O.o-..0..'.1.'.-.‘.....- 80

d. Debug Packaqec..o.o.......o...0....0... 87

2. SNAP-II...'.I.....'."..'..............‘....

3. Programming LanQuag@.cececescscssccccscscss 88

a. I/O scro‘ls....'.......‘...........'....'.. qo

a. Analog Data Acquisition Modul€eeececese 91

C. PROGRAMMING, OPERATION AND EXECUTIONeeeoeaaneas 92
VI. DISCUSSION OF FINDINGS.eeesoeccsccccccccccccccsass 95
VII. CONCLUSIONS AND RECOMMENDATIONS:cccecoescsescaseal03
VIII. REFERENCES..icsvassnnsssssssssanessasvvasnssnssalid

INITIAL DISTRIBUTION LIST..'.....'.".-..OO.........000107

e A R e S M RN Y A S A 50000505 i NN B

~~
9
~
0
el
)
£
o
pe
t
&
&
o
()
&
o,
17}
o~
2
&
N

RTI PR ER RO TPV E WSS BN i L s D s, s R e e s Al &

ACKNOWLEDGEMENTS

The continual support and critical help provided by
thesis advisor Professor G. Rahe and systems orogrammers A.

Wong and Ad. Thomas is gratefully acknowledged.

The preliminary text of this thesis was preoared using

5
¢
{
é
B
§

the software of the UNIX cperating system, operating on a

PDP=11/50 of the Naval Postgraduate School Computer

Laboratory.

PR o,

R W T ARt N N R A S 2 sl A T (v

ABBREVIATIONS

Al x*xx AP=-120B Adder Register One

A2 x* AP=-120B Adder Register Two

A/D *x Analog to Digital

ADAM x* Analog Data Acquistion Module

ALU ** Arithmetic Logical Unit

ANSI ** American National Standards Institute

AP x*x MAP=-300 Arithmetic Processor

‘

APGET xx Get Data From the AP-1208B

APPUT xx Put Data Into the AP-1208B

APl x*x MAP=300 Arithmetic Processor One

AP2 *x MAP=300 Arithmetic Processor Two

AP=120B8 *x Floating Point Systems Array Processor

Model 120-B

APAL x* AP=1208 Cross=Assembler

APEX x* AP=120B Executive Routine

APDMA %% AP-120B AP Direct Memory Adaress Register

APLINK #*x AP=-120B Linker and Loader

AR e B — . - s T

APMATH »x AP=120B Math Library

L APMAE *x AP=120B Memory Address Extension

APSIM xx AP-120B Simulator

APTEST xx AP=-120B Path Tester Proaram

APS xx MP=300 Addresser Processor Section

APU xx MP=300 Arithmetic Processing Unit

CVMUL x* Complex Vector Multiply

CPU *x Central Processing Unit

CSPU xx MAP=300 Central System Processing Unit

CSn xx MAP=300 Control Status Register or C=State

word

CTL x*xx AP=-120B Control Register

DCB x*x MAP=300 Driver Control Block

DIO ** Direct Imout/Output

DMA x%* Direct Memory Access

DPA *%x AP=120B Data Pad Address Register

DPX *x AP-1208B Data Pad X

OPY xx AP=1208B Data Pao Y

E 1§ FA #* AP=-1208 Adder Result Register

e s o B 2 audsn S e F—
SEu. e e . ———— " e e s o ———— - oy ik A ML s A O 7

i FCB *x* MAP=300 Function Controi Block

s B 5

FFT % Fast Fourier Transform

FIFFT x*x Forward/Inverse Fast Fourier Transform Test

FIFO x*x First In First Out

FL xx AP=-1208 Adder Results Less Than Zero

FM %% AP=-120B Multiclier Result Register { |

TS AP

FMT xx AP=-120B Format Register

FN *x AP=-1208 Function Register

FO ~x AP=1208 Adder Exponent QOverflow

FUU »* AP=1208B Adder Exponent Underflow

FZ «x AP=1208 Adder Results Equal Zero

HMA xx AP-120B Host Memory Access Register

HIC ** MAP-300 Host Interface Controller

HIM ** MAP=300 Host Interface Moaule

HIS ** MAP=-300 Host Interface Scroll k

I0S *% MAP=300 Input/Outout Scroll

IQ xx MAP-=300 Input Queue

LIFO ~x Last In First Out

12

e . e T 9 18 e 307 g o £ T T T AT A SIS © 44 il 4 o s 4o ——

e R T T AT

sy (g A

b2

PSPPI E SRS S PSS TS—————

LITES »x AP=-1208 Lights Register

M1 xx AP-1208 Multiplier Unit Number One

M2 xx AP=120B Multiclier Unit Number Two

MAP *%x Macro Array Processor

MAP=300 x*x CSPI Macro Array Processor Model 300

MD *%* AP=120B Main Data Memory Output Buffer Register

MI %*%* AP=-120B Main Cata Memory Inout Buffer

MOS xx Metalic Oxide Semiconductor

MTBF x*x* Mean Time Between Failure

MTTR xx Mean Time To Repair

NOP xx No Operation

0Q ** MAP=300 Outout Queue

P0=P3 *xx MAP=300 Program Counters One Through Three

P x* MAP=300 Multiplier Results Register

PIOC **x AP~120B Programmable Input/Outout Channel

PIOP *x AP~120B Programmable Input/Output Processor

R % MAP=300 Adder Results Register

RAF x** MAP-300 Read Adaress FIFO

e - - s A e g N VSR By 1

o

RAMP xx Reliability And Maintenance Program

RFFT »x Real to Complex FFT

RFFTSC x* Real FFT Scale and Format

ROM xx* Read=Unly Memory

S=Pad *%* AP=-120B Scratch Pad

SNAP=I1 x*x MAP=-300 Systematic Notation For Array

Processing Version II

SPFN #x AP=120B S-Paag Output Buffer Register

SRA x* Subroutine Return Address

SWR *x AP-120B Switch Register

SYSFLG xx MAPxx300 System Flaa Register

werss o

TM ~x APx%x120B Table Memory

TMA xx* AP-120B Table Memory Address Register

oA MY

TMRAM xx AP-120B Random Access Table Memory
VAC ** Volts Alternating Current

VMUL %** Vector Multiply

WAF xx MAPx%300 write Address FIFO

WC »x AP=-120B Word Count Reqgister

E | | 14
1

e e e T R TR T RS) i LR e gl P proven B e e

i e

TP R By A

e e T

I. INTRODUCTION

The purpose of this study is to begin evaluation of a
proposed signal=-processing test bed similiar to the test bed
being installead at the MNaval Postaraduate School, Monterey,
California. The basic test bed consists of an analog
subsystem (fig 1), data=-processing subsystem (fig 2),
signal=processina subsystem (fig 3) angd display subsystem

(fig 4) to be usea for general=purpose Naval research.

The amnaloa subsystem of the test bed was designed for
signal reception and cocnditionina. This 1is basically
accomplished by a 128=-line input into a oprogrammeda matrix
switch which emits 32 Jlines of outout. These 32 lines
continue through a program=controlled filter issuing output

from the subsystemn,

The signal=-processing suosystem receives results from
the analog subsystem via an AN=S400 A/D converter. This
information can then oe stored in an Ampex Megastore unit to
be later processed by one MAP-300 array processor. A
PDP=11/34 computer controls the mass storace device, the
array processor and input functions. Output is directed to

the data=processing subsystem.

The data=processing subsystem receives the processed

data and controls the ooperation of the display subsystem.

15

=T

AT R TSN A L ——— . "
B TP S ————— -
i s i At s e i " simd bl e, e v

T @2anbtg

WLSASENS SOTVNY

STIVHI WY
. 03t

? ey

~——yrrmr T
7 YIZISSHINAS
_ an | an vaan wivd LS
Lameaunt) Lampcuxt N | gyt
AoLINH ooLINH
i vauue &
\
WALNIA0) O/Y 0L : x| WWONBXRL - WoIV¥INI9
: T e o i x - i b 310N
. x urve (z@) v 1NdNT 821 - wLvd Hvé
1nant s | | ma ining oM il Wi
e N0 g W DN v o mmmk | w
>] /104100 . FOLIAS XTUIWN gt e -
: KLt Tiawenrou 1L
ﬁ Q0/0VN
TIW4 WLV 3 3003 311

© 1ndNg 321430

16

> N S e e U T aotienk U R A e -
o S 5 e - pr S Bl s

Z 2anbtga

vm._..gmm:m ONISS3204d TVNOIS

son
(24 5°2)
510 .
AN
. $I232 23
woE3/04
v [
._ : : _ : : 1
) %530 0056 1S A 2 _
Wo¥4/04 T) RN 303 |
FITYC) Siim | oN ; : Y20065 ¢N m
M ehey %300 i
, YIT0ULNDY 2 MINEAYS i
| 2510 = ol Bl K - = ;
_ Lo Bl | BE HHEEREERE
. “ W 5 0 12 | =} - ﬂ el e -.U
2 SRR EREE
HEE
| a !
t q] 3 .
ki L yJ . vaun - |y
[Ml P— ¥3104100 1Y
| csnw,..&%—a nds) {f TOISVI3R : 0015 1Y
il W z 3407 J1A8 WUS :
.m w Ilm Teud ILAG NS o et
R : 3907 143 X213
&] 3909 3140 XS N/S 0md 91
SOW 14 X0 8 /7 0C35 WY
|
Y sonws w1 ﬁ
i ¥vi0die 10 SIXVR) 02%)
[} WPLI0 X m <3INIS U
wWodie Xp -
e AN
3 15 191 ~
[TE
tsol i g T —

B A RIS R, Ao Ve i e - T
ias B B

TN

€ @2axnbtyg

WILSASENS ONISSIO0Yd Y.ivD

i TR o i IiEAT e
P b

¥R
18

WXI/CL

YITIUANGI %10 1510
L 1A AV4S10 0301A 41 VL Eo L)l 3201¥1¥0
.ama_. : NO¥4/04 e SOy SOy
lf *
L 2 =gy
¥ $
HO-096H 0L/ 40d
T g SNEINN $Ne SSw
3l &lwlw glz 33
BEELELE 2l g | E 4 = e
P EEBIEL , SRty B
g| | 1Blzlz(ZF : g8 |8 22l 3
1 &7
R .
¥OSSIO0¥S TS
. u vl
WYLINGY XS10 ¥0SS3I0¥E WKIIS
0056 1S e 10 HO¥3/01
LS

¥ {xnbrg

W3LSASENS AV1dSIA

19

3105N0) ¥01V¥3d0
vy Teiiniea
TININS
EIEL V009l e GUVOSADS Ve 208163 OV
oy X3LVSEIA A
ne NILWd . i
s A
BOLINOM YOLINOH
00 %0700 39NIS
)
104100 104100
0301A 0301A
(ot * o9 x 215)
AUOKIH NSTWIN
{oocs w3tw) -
[¥ITWOULNGD AVI¢SIO 0301A
R
INIS$10%4 i
VG -
WOB3/0L —m
TR B S—

B R

e T ot

Display devices presently include a Ramtek 9300 Video
Display Unit (color and shades of gray), the Versatec 1600A

printer/plotter and an EPC 2300 Gram Writer.

The goal of this study was to examine the major system
components, computers, array processors and major data paths
to determine feasibility for various uses and suggest
possible alternative methods, especially in the real=time
environment. The basic task of the test bed was assumed to
be general with no suagestion of specific tasks although it
was recognized that many wuses and data rates may be

utilized.

Chapter II discusses specific computer manufacturers
and computer types. Chapters III, IV and V deal with the
two most popular general=-puroose array processors on the
market, discussing the pros and cons of each. Chapter VI
aives final conclusions 3ana recommendations concerning the

proposed test bed.

20

B

T T T e rron

T

R g v

II. COMPUTERS

A. GENERAL

For the test bed evaluation, choosing the proper
computer is important since a varying amount of
computational power is required for each subsystem. Also, a
gambit of functions and uses may be tried necessitating a
system that must realistically emulate many speed, cost and
memory constraints. A common and popular system affords
better software support while still maintaining a low price.
The ability to rely on system supoort is an important issue
when considering long term use. A popular system tends to
develop newer, more efficient software packages earlier and

more frequently than co less used systems,

For Jlarge array processing applications with many
display devices the ideal situation would be for one
computer to initially load the array orocessor and then act
as a "whole system” monitor and statistician. It could also
perform the information gqgathering function while another
computer would act as the output processor for the array
processor and control the cisplay devices. That situation
would be similiar to that of a test bed where flexibility
may be the key and being computer=bound would be hiahly
undesirable and possibly unjustly influence the evaluation
of the array processor. An ultimate goal might ¢to be to

choose the smallest computer capable of operating the array

21

U 7 DT v SRR TSR YR - \1!?‘-""‘5 -
S e—" - et L

- —

s o i e

S ——————

{
i
£
!
.

o e
e b]

A A B S IR~ s+ Bl - e A B S o i B i e

processor and associated oisplay devices in the desired
fashion while oproviding for oproduct expansion. It is
realized that for test and research activities more
computing power may be necessary than would be needed for

normal production activities.

In October 75, the Computer Family Architecture
Selection Committee was formed to evaluate computer
architecture canagidates as a basis for a fam;ly of
software=comcatible military computers. Ter Arm; and 17
Navy oraanizations were represented on the selection
committee (11). The purpose was to select an architecture
which could be used as a standard, had a proven instruction
set and an architecture which <could be usea in advanced

technologies.

B. PDP=11 FAMILY

The committee voted that the PDP=11 had the best
architecture for use 1in the Military Computer Family.
However, it aenerally contained a small address space and
possible floating point instruction compatability problems
with existing systems. The IBM gsystem 370 was ranked second
with the Interdata 8/32 ranked third ([(12). The Digital
Equipment Corporation PDP-l1 series orovided a popular
example of both the oprice ana performance excellance in
available computer systems. lheir popularity is evioenced by

the shipping of 10,000 POP=-11/04 and 10,000 POP=-11/34

D AP Rl A5 s o U LT " AN S T 2419 - s G A AN 6 W A B N St 6 S i A G S

b :
5 Y — e et Mt

o T T TR

computers as of 1975, 1976 respectively [(28]. relevant
PDP=11 computers considered were the PDP=-11/04, PDP-11/34,
PDP=-11/4S5, PDP-11/55, PDP=11/60, and the PDP-11/70 (listed
from least powerful to most powerful). What follows is a
;. : brief description of each system, Unless otherwise stated,
it will be assumed that the more powerful system will
contain all the features of systems less powerful. The
PDP=11/03 and the LSI-11 series were not consideread due to

their not having the advantages of the UNIBUS (28],

1. POP-11/04

The PDP=11/04 is the smallest computer of the PDP=11

series, containing the entire central processing unit on one

board permitting room for crastic expansion due to unused

chassis area. The system contains self=test logic to
determine system ooerability every time the oprocessor has

power applied, the console emulator is used or the bootstrap

A A e a4

routines are initiated. The <console emulator allows the 1
operator to control the system from a terminal without

ohysically throwing switches or reading lights on the front

panel of the wunit. The bootstrap loader automatically
restarts the system from various peripheral devices without
need of physical switch throwing. Memory size varies from
j 8K bytes to SbK bytes (8 tbtits = 1 byte) of either MOS
(metalic oxide semiconductor) or core type with an average
access time of S00=-nanoseccnds and system cycle time of

725=nanoseconds [(30]. A typical <cost of this system is

23

v

e 1 e b M) At A - e T 5 A AR hmwf.@w&.’i*

e ~ = = 3

$8,950 (29]).

2. PLUP=11/34

The PDP=11/34 is the next size of the PDP=-11 family
and is the lowest architecture to contain a memory
management routine to provide program protection so user
prcgrams cannot access or change system memory space. (In
the 11/04 it is the programmers resoonsibility to maintain
and protect this area.) Memory management also allows
virtual memory paging of uc to 16 pages ranging in size from
64 bytes to 8K bytes for a total possible memory of 256K
bytes of which 128K is physical. (The highest 4K of adaress
space on the PDP=11/34/45/55/60/70 is used for registers
that store I1/0 data or status of individual peripheral
devices. This means that the 11/34 can physically address
124K bytes but virtually address 256K bytes.) The 11/34
allows both core memcry and M0OS memory to be used

concurrently.

The PDP=11/34 also contains a memory option called
cache memory which is a 2K high speed (300=-nanosecond cycle
time) memory used to store a copy of the the most recently

selectead portions of main memory affording faster access of

instructions and data. The "hit" ¢time or time the next

access 1is resident in cache is approximately 86 percent for
the 11/34., Time is saved by less area to access, therefore
less search time, and shorter Jless complicatea data

transmission. Since MOS memory is volatile (loses

24

L i B At Loy Al L

A AT

P ep—

information when power is removed), the 11/34 has a battery
back=up option which will retain information in the MOS
memory for approximately two hours. The PDP=11/34 can
operate in two modes, Kernel and User. This two mode
concept is important in security since the User mode is
prevented from executing certain instructions that could
cause modification of the Kernel program, halt the computer
or use memory space assigned to the Kernel or other users.
Monitoring and Super#isory routines are executed 1in the
Kernel mode. The Kernel/User concept is important since if
the Kernel can be made secure, the overall security of the
operating system from accidental harm 1is much easier to

achieve. Prices range from $11,080 to $53,800 (29]).
3., PDP=11/4S

The PDP=11/45 system is designed for speed. The
high=-speed central processor allows program execution of
three million instructions per seccnd ana has either
300-nanosecond bipolar memory or 980=nanosecona core memory
available. MOS memory is also available as an "adc=-on"
option. Total memory space is the same as the 11/34, There
is an optional floatina point oprocessor to handle double
precision arithmetice. The system is especially gooa for
multiple~task apolications, otherwise it is the same as the

11/34, ihe price is $41,800 (29).

4

T ——————————— - R A g S T O it T AR AR A

ks, " " P

NEUDIPIAEN

e

A T

4, POP=-11/55

The PDP=-11/55 system imoroves on the 11/45 by
insertinag a dual bus structure to allow intermixing core and
bipolar memory (up to 248K with memory management) to
optimize system performance. Two separate semiconductor
controllers allow simultameous data transfer for increased
system throughput. Both the 11/45 anad 11/55S hardware have
been optimized towards a multiprogramming environment by
installing & third mode, Supervisor, to control system
operation while oroperly handling multi-user operations

(30}, The price is $50,400 to 380,780 (291.
S. PDP=-11/60

The PDP=~11/60 system is the 1interface between the
mid=range mini and the more powerful mini. With the 11/60
we see the first capability to microprogram and four levels
of priority interrupts. The system was also designed with
the engineering trade~off between ease of maintenance and
reliability in mind. A system that is very difficult to
recair after failure may be less useful than an easy system
to repair that fails more often. [The availability of the
system is a measure of mean time between failure divided by
the quantity mean time between failure plus mean time to
repair [MTBF /(MTBF + MTTR)I] {30). Digital Equipment
Corporation has tried to allow for a more complex
architecture (probable higher failure rate) by oproviding a

Reliability ando Maintenance Program (RAMP) software packaaqc

26

B e T S

to help locate software anad haradware errors, decreasing the
MTTR thereby increasing availability. The price ranges from

$42,400 to over $200,000.
6. PDP=11/70

The PDOP=11/70 is the largest of the PCP=-11 series
and gives the power of a large computer at the cost (363,000
to $144,880 (29]) of a minicomouter. It was designed to
operate in high-performance systems and is igeally suitead
for real-time systems due to the high speed of execution and
the 80-95 oercent "hit" ratio of cache memory. Adaressing of
over four Megabytes of physical memory is theoretically
possible with the 22 bit addresser, although 256K of this 4M

must be used for the UNIBUS referencing. {(The UNIBUS can

only address 18 bits, therefore the memory management

routine must convert the 4 Megabyte adaresses as if it were

——

a virtual location.) At the present time however only 2M of

Sp—

physical memory can actually be accommotated by the UNIBUS.

There 1is the option to use 64 pit floating point numbers in
caiculations. WNith two megabytes of main memory there 1S
little concern for memory constraints during a multi=task
environment. The option of attaching high speed mass
storage devices to tne central processing unit through
dedicated paths is available. The system has eight Jlevels
of opriority and a large amount of flexibility 1in its
programming making it possible to run several levels of

display devices under varying loading conditions.

I e AL

o

III. ARRAY PROCESSOR

An Array Processor is an wunit capable of performing
floating point operations on large data arrays or data
streams. It usually operates as a peripheral device to a
"host" computer system and best performs the repetitious
reiterative operations requiring a large number of
summations and multiplications tyoically encountered in
matrix calculations such as correlations and fast fourier
transforms, This system is special purpose and cannot
"think" for itself since it has no executive functions
exceot those necessary to control the mathematics required

to perform additions, multiplications and data movement

(18il.

with anm array oprocessor, large transforms can be
achieved dependent only on memory capacity. These
transforms can be done faster than in the normal CPU since

the array processor performs only one function at a time
(here function 1is wused 1in the broader sense as in
transposition) and there is no need for the normal overhead
control logic of a general puroose computer [(8]). This s
more advantageous than a scecial purpose computer in that an
array processor can be programmed to execute various array
processing applications and can also act as a peripheral.
Ideally a system would be wanted that could handle any size

arrays including the possibility of very large arrays if the

28

st i Tibiita oo Sl L iea s U e

R VN VPR SO d R P R

TR L T e e A e AR A A G R DR DN - AR S

t

Y Ry TN T AW

i
3
3
B
4

situation warranted. This is theoretically possible by using
sequential processing anc stringing a series of array
processors together having each perform a specific
operation. That would only be qgoodr, however, for
applications not needing results of data processed in step N
to be wusead in step N=1i. Using one array processor,
efficient and'sufficient cerformance of large arrays is
possible due to the special architecture and memory of the

array orocessore.

Two general purpose array processors oresently seem to
dominate the market. These are the CSP Inc. MAP=-300 (Macro
Array Processor) ana the Floating Point Systems AP-1208.
While the ©basic function of each is similiar, tne actual

operation is quite different,

The theoretical advantage/disadvantage of each
processor will be aiscussed in detail comparing
architecture, operatiornal characteristics, software support
and programapility. Cnaoter vil, Conclusions and
Recommendations, will agiscuss the actual problems
encounteread with the installation of the MAP=30U system to
be used in the evaluation here at the MNaval Postgraduate

School.

29

-

L TSR T T 5 A 3 T o 317 S

e —

T — G kISl i At AR S

Iv. THE AP=-120B ARRAY PROCESSOR

The AP=-120B Array Processor (fig S) is manufacturea by
Floating Point Systems Inc., Portland, Oregon. It orerates
synchronously using a 167=nanosecond cycle time master clock
synchronized with a S0 percent safety margin every cycle for
worst-case temperature and voltage. The system uses ore-
conditioned meagium=scale 1inteqrated circuitry, large=scale
integrated circuitry and transistor=to-transistor Jlogic.
The AP=-120B is capable of operating in temperatures frcom 10
to 40 degrees centigrade at 0 to 90 percent relative
humidity. This processor is also able to operate using one
of these various power ootions; 105/125 VAC at 120 amps,
1807228 VAC at 10 amps or 210/250 VAC at 10 amps with either

S0/60 hertz or 50/400 hertz available (7).

The AP=120B employs a technique known as pipeline
processing to increase throughpute. Pipeline oprocessing
utilizes a combination of the elements of both secuential
processing and parallel processing. A single basic
processor, like an adder, is logically divided into integral
units that <can each perform a specific and separable
function while another wunit of the adder simultaneously
performs another function of the addition task. When one
task is completed, it will move on to the next step 1in the
seauence allowing the just vacated section of the aader to

be filled with the next task in the Qqueue. Throughout is

§
§
3
45
{
i
E

HOST

'__q“[—‘_r 70 e |
DiA
G

[INTERFACE |

MULTIPLE 6 BITS
ke s e)
38-BIT DATA PATHS [
J’ 9 v *
TABLE DATA DATA MAIN | S-PAD
MEMORY PAD PAD DATA MEMORY|
X Y MEMORY "S—PAD
ALU
]
{
|
|
1 Y |
5 s, el
P MULTIDLE :
38-BIT DATA PATHS 16 BITS
E | !
M1 | M2 A1) az |°
STAGE 1 FLOATING STAGE 1 FLOATING
MULT IPLIER ADDER
STAGE 2 ; STAGE 2
STAGE 3
) 4 MULTIP

General AP-120B Block Diagram

‘ Figure 5
| 31

T St i e R SR A 1

increased by insuring that the entire system is always full.
This technique works with both the adder and the multiplier
in the AP-120B. Pipelining is good for vector operations
since vectors are basically independent and a solution of
vector N is not needed before vector Nt1 can be started.

However scalar operations are basically sequential

T ———

operations and cannot make use of pipelining (1]. By
carefully considering every operation, especially those in

loops, the programmer can sSqueeze more operations per time

interval by pipelining thamn would be possible using standard
sequential techniques. The time is generally limited by the

multipolication time (14].

The AP=120B instruction word is up to 64-bits long ana
can perform a maximum of ten different operations in a
single cycle. As an examole, an add, a multiply, a move to
and from each data paad (there are two) and an address
increment or decrement can all be performed 1in the same
cvcle. Any one instruction or combination of the above can
be performed as long as the resource required is not being
used in another ooeration (some operations are multi=cycle

and "lock=out" the resource until they are complete). It is

the proarammers obligation to insure that all required

resources are available when they are requested or else they

will be lost (71. As an example; a read from a data pad

takes at least two cycles. If cycle N wanted to read from

e e s i

Data Pad X and cycle N=1 already initiated a read from Data

Pad X, the entire instruction word for cycle N woula be

delayed one <cycle waiting for the resource to become
available. This ability to perform more that one basic
operation per <cycle allows a theoretical 30 million
instructions per second to be executed. Due ro memory size
limitations and algorithms not needing ten operations per
instruction word for sustained periods this rate can never
be fully attained exceot possibly for short bursts (306},
Since some of these operations are housekeeping functions,
the maximum number of arithmetic operations per second
theoretically possible 1is twelve million for vectors and
five million for scalars (scalar speed is much lower since
it requires sequential processing and cannot take advantage

of pipelining) (1],

The AP=-1208 uses a 38«bit data word which Floating
Point Systems contends cenerates better accuracy than the
32-pit word commonly used by other systems (7). This 38-bit
word consists of a ten-pit biased exponent and 28-bit twos
compliment mantissa thereby allowing numbers in a range of
3.7 x 10 #* =155 to 6.7 * 10 **x |53 to be represented. The
28=bit mantissa allows for extensive calculations without
significant truncation errors or a8 maximum relative error of
aporoximately 7.5 * 10 ** =<9 per arithmetic operation or
about 8 decimal digit accuracy. Floating Point Systems Inc.

also employes a3 technique known as convergent rounding which

they assert forces the roundoff error to approach zeroe.

———

o T r——

The AP=120B does not contain the normal bus structure
of other array processors but instead uses dedicated 38-bit
data paths for the movement of data. There are two paths
available to the adder (one for each input register), two
paths to tﬁe multiplier anc three paths available to the
ﬁemory and data pads. This allows seven independent data
words to be transferred each cycle. (This coupled with an
add, multiply and address increment/decrement, equals the
ten instructions per cycle possible.) These separate data
paths eliminate the neeac for a handshaking arrangement
between logic elements, although hankshaking s reaquired

when the AP=-120B communicates with the host (7,36].

The price of a unit which includes the AP~1208 array
processor, interface with the PDP=-11, 16K words of
333-nanosecond interleaved MOS memory, expansion chassisy
installation, 256 words of program source memory, S12 words
of Read Only Memory (ROM) table memory, a linker, loader,
simulator, debugger, algorithm 1library and executive is
$50,970.00 [(10). This includes a 90=-day warranty with a
servicing agreement available at extra cost. The fiela test

mean time between failure is 3500 hours (3].

The following section explains the hardware of the

AP=120B in getail.

A, CHARACTERISTICS AND HARDWARE

34

1. Multiplier

The Multiplier unit (fig 6) consists of two 38=bit
multiplier registers Ml and M2, three multiplication stages
and a 38-pbit register to store the result (FM), To receive
a resultant after initiating the multiply, three cycles or
S00-nanoseconds are required. Inputs to the Ml register can
come from Data Pad x (DPXx), Data Pad Y (DPY), Table Memory
(TM) or the Muyltiplier result register (FM), Inputs to M2
are either from DPX, DPY, Agder result register (FA) or Main
Data Memory Output Buffer (MD). Results from the multiplier
can go to M1, the Adder input reqgister (Al), Main Data

Memory input buffer (MI), CPX or DPY.

Stage one of the multiplier starts the product of
fractions by beginning the multiplication of the two 28=-bit
mantissas. This multiplication is completed 1in stage two
resulting 1in a Sé6-bit mantissa. Stage three adds the
exponents as it normalizes and convergently rounds the
Se-bit mantissa to 28=bitse This stage also detects
exponent overflow/underflow and if either exist will set the
FO of FU bit in the status register. The status register
can be read by the program to determine; if conaitions are
met from an arithmetic oceration, to specify errors, or to
be used in branching logic. These bits are available for

testing one cycle after completion of the multiply.

This three stage multiply allows pipelining to be

used since each staage is independent of the other two which

35

e N Tt T

S) T e e s
S L W S SR NS I A

| ‘, e

DPX DP
fx DPY TM FA DPX

i R N SR WA M bt 5 0 D o AN B BN AT N

D?Y

T

FM

|

¥ r
Ml M2

Start product
of fractions

-Buffer 2

Complete
product of
fractions

Buffer 3
Add exponent
Nbrmaxfz N

Round

1(1?34)

Stage 1

Stage 2

Stage 3

BE

Ml A1l MI DPX

Floating Multiplier
Figure 6

36

- o A TP T O, 1l v o

DPY

e R R R i R i 1 S LT A e Rt - e Saia

permits a multiplication result to be oresent at the result
register every 1b7-nanoseconds once the pipeline becomes
full (three cycles required to fill). Note that
S00=-nanoseconds are recuired if the result of the
multiplicétion is required in the next multiplication as is

the case with scalar arithmetic.

A readily apparent problem with the multiplier is
that M1 receives inputs from both the Table Memory (TM) ang
the Myltiplier Result reagister (FM) while M2 receives inputs
from neither, Therefore, if a3 constant from TM were to be
multiplied by the result of a just-completea multiolication,
it would require an extra two cycles since either FM or TM
would first have to be written into DPX or DPY and then
written 1into M2. This disadvantage is overshadowea by the
fact that even though dedicated data lines cause the above
problem, in most cases they present a distinct advantage by

allowing multiple data transfers in any given cycle [(32].
2. Adder

The operation of the adder (fiag 7) is similiar to
that of the multiplier and consists of two 38-bit adder
registers Al and A2, two adder stages and an adder result
register (FA). The “adaition of two numbers requires
333-nanoseconds (two cycles). Inputs to Al are from Table
Memory (TM), Multiplier Output register (FM), Data Pad X
(DPx), Data Pad Y (DPY) anac the ZERO constant while inputs

to A2 are from the Adder Output register (FA), Data Pad X

37

e

, ..
——

Al
L

ZFRO

DPX DPY T FM FA
| | | | |

D{F

DPY MD ZERO
o

A2

. ¥

Al A2

Align
fractions
and add

Buffer

Normalize
and
round

(FA)

. SR SR Y
M2 A2 MI DPX

Y
DPY

Stage 1

Stage 2

Floating-Point Adder Unit

Figure 7

38

e e G SRS Y i S i L e it~ — i L T T
. e — w— T S

| E o

k
: > B

(DPX), Data Pad Y (DPY) anc the ZERO constant. The results
from the adder can go to A2, M2, DPX, DPY or MI., Stage one
aligns the mantissas by shifting the smaller value, based on
the value of the exponent, to the right until both exponents
are equal then adding or subtracting these mantissas. JStage
two normalizes and convergently rounds the mantissa and

adjusts the exponent. This stage also sets four bits in the

S e R ————

status register to denote results equal zero (FZ), results

less than zero (FL), exponent overflow (FO) or exponent

underflow (FU). These bits may be tested by other program

instructions one cycle after the addition 1is completed.

(Note that FO and FU are the same bits that are set by the

multiplier on exponent overflow or underflow.)

As with the multiplier, the two~-stage adder allows

pipelining and a result can be generated every
167=-nanoseconds. The adder does not have the disadvantage
of inputting Table Memory (TM) values at the same register
! as FA but does have the multiplier result FM at the same

agder input register (A2) as TM values. There is therefore

not the ability to immediate!y add a FM value with a TM

value without first goina through DPX or DPY (32].

For both the adder and the multiplier there would be
a two cycle time loss if FM was just loaded with a new value
from the multiplier when it was needed for the
addition/multiplication process (time N) and only a one

cycle loss if it was ready the cycle betore needea (time N =

v

1 cycle). Otherwise there would be no loss of time since
steps could be taken to move the value in FM through the DPX
or DPY which would make it be available at the
adder/multiplier input register when necessarye.
(Presupposing of course that the data paths to or from

memory were not needed for other uses.)
3. S=Pad

The S=-Pad (fig 8) (pseudonym for scratch pad)
consists of the S~Pad Memory, S-Pad Arithmetic Logical Unit
(ALU), Data Pad +31dress Register (DPA), Memory Address
Register (MA) and the lable Memory Address Register(TMA),
The sole purpose of the S=Pad is to compute addresses for
Table Memory, Main Data Memory and the Data Pads. The S=Pagd
can operate concurrently with the memories, Multiplier and

Adder [(7].

The S~Pad Memory is made upo of 16 registers each 16
bits wide giving the ability to compute an effective address
of 64K, These registers may be assianed label names like
"pointer" DDy the use of tseudo=operators, to make programs

more readable, or may be directly addressed by number.

The S=Pad Arithmetic Logical Unit forms the operand
addresses and also automatically 1loop counts, shifts the
addresses left once (divide by two), shifts the addresses
right once (multiply by two) or right twice (multiply by

four). There is also the ability, if reauired, of bDbit

40

Sl b

————

e — . T ———— B

PRI " T ——

-

Dy
S-Pad A : £1
Registers h{?fta Pad Address (DPA) Register e
1
16 Memory Address (MA) Register
] .
[Bit Rev.
¥S % : tl
i S=Pad |~ Table Memory Address (TMA) Register | |
| ALU/Shifter
, (SPFN)
: J
[
Data Pad Bus (DPBS)

S-Dad Unit

Figure 8

41

T dad @ ek

reversal, to swap bits while accessing data in a scrambled
order after a Fast Fourier Transform. The results of the
S-Pad arithmetic logic unit, called SPFN, set bits in the
status register to indicate whether the resuilts were less
than zero (N), zero (Z) or if there was a carry bit (C).
These bits are available for testing by orogram instructions

at the next instruction cycle.

TMA, DPA and MA stcre the computed address from the
S-Pad ALU, The contents of each can either te changed by
the value of SPFN or incremented by one. One cycle s
required to comoute the address and load it into the oroper

register [32]).

4, Table Memory

Table memory is a S12 word, 38-bits per word bipolar
read=-only memory used toc store important and much used
constants. This memory has a l67-nanosecond cycle time but
requires two cycles to get the value from memory to the
output register TM [7]. values in IM are available for wuse

by 0OPX, OPY, MD, M1 and Al. These values may be requested

every machine c¢cycle and are initiated by changing the

contents of the Table Memory Address Register (TMA) in the
S=-Pad. The programmer must control the timing necessary to
insure the correct constant is at TM when needed due to the

2 cycle access time requirement.

42

In the Fast Fourier Transform Mode, the address in

TMA s interpretted by the hardware to be the angle which
points to the appropriate root of wunity for a particular
step 1in the FFT alogrithm. Therefore, in a single aquadrant

of cosines, a full table can be represented (32].

There is an ootional Random Access Table Memory
(TMRAM) containing 1K of random access memory [8). This
allows loading of special constants necessary for special
applications without the overhead of computing them every
time or using valuable data pad space to store them. The

price of this option is apcroximately $1850,00 (7).

S. Data Pad X ana Y

The Data Pads (fig 9) consist of sixty four 38=bit
accumulators, four of which are available from the 16
addressable each instruction cycle (7). These 64
accumulators are divided into two 32-register blocks called

Data Pad X (DPX) and Data Pad Y (DPY). From each Data Pad,

one register can be read and another written during the same

cycle.

The restrictions are that the same reaister cannot
be read and written simultaneously ano that a read and write
operation during the same <cycle must occur on registers
whose addresses differ by no more than 7 due to base=
address=plus~offset addressing. (However a register in DPX

may be written at the same time as a register in DPY even it

INBS VALUE Dfx DPY MD SPFN TM

| | AR |
ata Pad Bus = DPBS)
y FA M
FA FM] B
; Write Ind ¥
rite Index Write Index
: DPX k—— DPA — Dpti
: Read Index ' Read Index
(DPX) (DPY)

FE PN i S R G
M2 Al A2 DPBS M1 M2 Al A2 DPBS

Data Pad
Figure 9

44

ey - P—

they both have the same address.) In the S-Pad, the Data Pag
Address Register (DPA) supplies the base address to be used
by the read/write instruction to locate the proper Data Paag

register, The DPA supplies both DPX and DPY concurrently.,

The instruction uses this base address and an offset in the
form DPX(offset) or DPY(offset) and can address =4 to +3
offset ;rom the base in each Data Pad to find the effective
aadress. Therefore if the DPA contains decimal value 20,
reqgisters 16, 17, 18, 19, 20, 21, 22 and 23 can be addressead
in each data pad. The register addresses of both Data Pads
range from 0 to 37 (base 8) and are arranged in a circular
addressing scheme. Therefore 37 (base 8) +1 = 0 and the
programmer need not be concerned about writing into a non=
existant location but must only be concerned with

overwriting previously written information.

DPX and DPY receive information from MD, FA, FM,

DPX, DPY, output of the S-Pad arithmetic logical unit (SPFN)

£
¥
i
E
i
i
;
f
$
£
i
i
i

and VALUE (an immediate value used by immediate instructions
arriving from the command buffer). DPX and DPY supoly

values to M1, M2, Al, A2, CPX, DPY and MI- (32].

6. Main Data Memory

Main Data Memory (fig 10) contains 64Kk 38=bit words

used primarily to store inputted data which will be operated

on by the orogram. This memory is available in two forms,
167=-nanosecond nardware interleaved M0OS with 4K word

segments or 333=-nanosecond hardware interlieaved M0S with 8K

4s

™) oty dpuaiiots T i e S SRR .‘1
chamiiei g il e nckien e\l i i i -

——— —

MD SPFN ™

ﬁ} gy IﬁPS VA;?E Dg} DgY ; A !

L { : (Data Pad Bus)

MI :

Main

Data MA

Memory %h————J

5 ‘

r
DPBS A2 M2

Data Memory Unit

L R A W 5 e ’

Figure 10

Program +
Source Program Source Address (PSA)
Memory o
(PS) €

Subroutine

Return

SRA . Stack
A i

Control
Buffer(CB)

Control Unit
Figure 11

46

.o ‘ R N

wora segments. Both memories have a two bit parity option
available (7] and a one megaword page selection option (9].
With memory limited to 64K, the largest complex=to-complex
Fast Fourier Transform possible is 32K, which may not be

accepntable in some applications.

Main Data Memory receives input information into its
Memory Input Bufter (MI) from FA, FM, MD, DPX, DPY, TM, SPFN
and VALUE. It can output via the Memory Data Buffer to DPX.

DPY, A2 and M2.

Memory read or write may be requested every other
cycle by changing the value of the Memory Aaddress Register
(MA) in the S~Pad. This yields an effective memory cycle
time of either 333-nanoseconds (167-nanoseconds plus one
machine cycle) or 5S00~nanoseconds (333 plus one machine
cycle) dependent on the type of memory installea (32]. By
special programming technicues and proper chip procurement,
this overhead can be reduced to the advertisec memory speed
with the restrictions that the memory alternate between
chips or alternate between even and odd boundaries. If
effective speed is essential, it Dbecomes the programmers
. responsibility to insure data location s known to the
program at all times(8l. A read reaquires three cycles for
information to be present in the MD if using 333=-nanosecond
memory and two cycles if using 167=nanosecond memory. This
information will be available until a new value overwrites

ite If a write or read is initiated before two memory

47

B TN T A O e S S W g S s =

e ;
e 2 - it e b e A skl

¢

cycles (unless special chips and techniques of above are

used), the request will not be lost but the memory will
automatically provide a hardware lockout (wait until memory

available for read/write) [14).

The value in the Memory Address Register (MA) points
to the desired location in main data memory. MA may be
either set to a specific value or incremented/decremented by
one in the S=-Pad. Since there is a slight time lag between
when a value is reqguested to be olaced in MD and when it

actually gets there, the programmer must always be aware of

" L

what values are in MI and MD, to allow the proper set up
time to get these values to either the Adder, Multiplier or

correct DPX, DPY or MI address (32]).

7. Program Source Module

The Proaram Source Module (fig 11) consists of the
Prcgram Source Memory (PS), Proaram Source Address Register
(PSA), Control Buffer (CB) anma the Subroutine Return Stack

(SRS) (32].

The PS is a high speed, 50-nanosecond, bipolar
memory addressable to 7K 64=~pit words and is available in
256 worao increments [4). The PSA contains the address of
the next 1instruction anao s 1incremented by one after
instruction execution unless modified by either the Control
Buffer (new aadress as a result of a branch or jump

instruction) or the Subroutine Return Stack. The SRS saves

the current PSA when a Jump Subroutine instruction s
performed and increments the value of the Subroutine Return
Address (SRA), When a Return instruction is performed, the
SRA is decremented by one making nested subroutines
possible. The Control Buffer decodes and executes the
instruction as the CPU would in a general purpose computer

~

(32l.

8. Interface with PDP=-11 Series

The interface unit with the PDF-11 series contains
two major segments, the Front Panel and the DMA Controller
and Formatter. The Front Panel contains three registers and
is used mainly as a debugging aid while the DMA Controller
and Formatter contains five registers and is used for

program and data entry or removale.

a. Front Panel

The Front Panel (fig 12) consists of three
le=pit registers, the Switch Register (SWR), the Lights
Register (LITES) and the Function Register (FN). The Front
Panel is wused for bootstrapping and debugging of user
programs., JIThese three registers can be examined by the host
and take the place of the toggle switches normally on the
front panel of the console (32]. NWith the wuse of the
Debugger proaram, these registers can effectively breakpoint
the AP=120B at a selected crecgram locaticn or data address.

This Front Panel allows each program to be single=stepped

49

R A R i M T80 /K A
= i

g e g

R S—
I3
) 1

Z1 @2Inbtg

dOVAYALNI LSUH UNV TANVd 4-GZldV

Ing v3eq uyen _ —

vjvq s1918133Yy do
SS8appy_A1owoy UFsW + ___ H0ZT-dV 402 1-dv
_ oY ¥9a17d - 1 j S8dq ! H
T ﬂﬂ;ﬂmﬂL 4 4
- .
4021 -dy axeduwo)
VA4V i TVIucaomxaoun
+ < 4 A 4 L 4 L 4
4 4 .ﬁ A 4 A
ey ...c..r&.w s 140 oA —_ S1HOI'T STHOLINS NOLION
i
b 4 2 4 > 3 4 +* “”
uv & 4 & :
) sng uvieq 1Sl
’ Shg 5554PPV VAd 3500

50

: through its execution sequence [(6,7]).

The Switch Register is written by the host
computer but can be read by both the AP~120B or the host.
The SWR is wused to enter data and addresses into the
AP-120B, oprimarily for debuggina. Its contents can be fed

to the DPx, DPY, MD or the S-Pad.

The Lights Register simulates the front panel
lights of the console. This reaister is set by the AP-1208B
and can only be read bv the host. LITES is used to display

E' selected contents of the internal registers of the AP-120B.

. The final register 1s the Function Register
which orovides front rpanel toggle-like controls to the

AP=-120B. The Fiv can stop, start, step or reset the AP=-1208.

It can also continue operation resuming at the current value

of the PSA, examinme a register, examine a portion of a
register or memory contents of a selectea area, geposit the
contents of SWR into a selected reaister or memory location

and then breakpoint according to the values of TMA, MA or

DPA. The FN can also increment the TMA, MA or DPA after

completion of an instruction to facilitate stepping throuah

memory lecations (32).

The Front Panel is advertised to be invaluable
in troubleshooting when used in conjunction with the

interactive Debuager routine.

-y

b. DOMA Control

The DMA Control is the second half of the
interface ana consists of three 16=-bit registers, one 18<bit
register and one 38-bit register, DMA Contrel is
responsible for transferring programs and data between the
AFP=120B and the host comouter. This section of the Front
Panel! will also do format conversion "on the fly" which
should effectively alleviate time lags [(32). Four types of
data transfer combinations are possible, host DMA to AP=-120B
OMA, host DMA to AP=-1208 Programmed I/0, host Programmed 1/0
to AP=120B Programmed I/0 and host Programmed I/0 to AP=-120B

CMA with a maximum theoretical burst transfer rate of three

megawords per second for all tyoes of transfers [7].

The Format Register (FMT) is a 38-bit double-
buffered register used to perform all transfers of
floating=point numbers from the host to the AP-1208 [32].
The FMI will! convert 1l6=bit integer numbers to 38=-bDit
unnormalizea floating=point numbers, 32-bit PDP=-11 integers
to 32-bit AP-120B integers and 32=bit floating=point numbers
to 38-bit floating=point numbers. All these operations are
in reverse for the AP=1208B to host direction (7). Since the
PDP=11 is a l6-bit computer, it will access the Formatter in
lo=bit half=-words to be compatible. It must be noted that
for some applicaticns, such as difference filtering, there

is a possiblity of extreme accuracy loss due to lo=bit

integer to 38=bit floating=point conversion. The synthetic

precision aenerated by such a conversion can cause certain
coeffiecient combinations, such as +1 and =1, when
multiplied by mirrored arrays, to result 1in errors when
reconverted to lb-bit format. 1Tihe programmer must be aware
of these possible losses and test tor them before faith s

placed in the result,

The AP Direct Memory Aodress Register (APDMA)

points to consecutive locations in AP=120B Main Data Memory

during DMA transfers. This register can be automatically

incremented/decremented allowing blocks of information to be

read into consecutive locations with minimal overhead.

The Host Memory Access Register (HMA) operates
similiar to the APODMA excect it points to consecutive memory
locations in the host memory. In the PDP=11l this memory is
256K so the HMA is 18-bits to allow for this addressing

capability.

The Word Count Register (WC) counts the number
of words transferred during a DMA operation. This register
must pe oreset to the required number of words and will stop
DmaA transfer when the prescribed number of words s

transferred.

The fimal and most inportant register 1in the
interface is the Control Reaqister (CTL). It controls the
direction and mode of transfer, type of format conversion

and provides certain status bits pertaining to the transfer.

o

This register, with the use of HMA and/or APDMA, allows the
host to execute other programs and be interrupted when the
DMA is completed. This CTL also allows either the host or
AP=120B to control the data transfer. (The AP-120B must
control transfer from a loaded program since the executive

alone is not powerful enough to control data transfer (32].)

B. SOFTWARE

Various software supcort, executive and development

proarams are available with the AP-120B.

1. Executive and Associated Routines

The AP=1208 provides executive and housekeeping
routines to increase the effectiveness of operation ana

enhance program development.

a., APMATH

APMATH is a series of aoproximately 150 (8]
library functions, vector and matrix subroutines and signal
processing algorithms (7] written in AP=1208 assembly
language [(8]. These routines are callable from either host
Fortran, host Assembly or AP assembly lanauages (36] with
the wuse of the AP Executive. These programs can reduce the
run time and decrease programming time by presenting some of
the most common array grocessing functions in subroutine
callable form. These routines include: data transfer and

control? pasic vector arithmetic; matrix operations anad Fast

54

- g o Ao T S g eSO
rrener R I R e e SR RN s s i e e S——

Fourier Transform; all of which are able to work with both {
real and complex data. {
bo APEX :

APEX is the AP Executive routine which s

resident in the host computer ano allows the AP=1208 to

communicate with the host computer via Fortran or host
Assembly language calls. APEX decodes subroutine calls from
the host computer [36) and airects the AP-1208B to perform
the specified action., Both APMATH routines and user written

routines may be called by the AP=1208B from the host computer

[32).
Ce APAL
The AP Cross Assembler (APAL) 1is a two Ppass
» y assempler written in Fortran IV which reauires 24K memory in

the host computer to operate. APAL assembles source text

written in AP Assembly) anauage into object code

understandable by the AP=1208B. The assembler also
optionally oroduces an AP Assemply listing containing errors
in both passes: location counters, assembled data, the

symbol table amd source statements.

APAL recognizes signed constants ranging from
-32768 to 32767 and unsigned constants from 0 to 65535 both

of which may be represented in binary, octal (default base).,

decimal or hexadecimal. It allows free formatting but
recognizes the qeneral source statement form: optional
5SS

ekl

ot ok 40 . e " . g ,
‘amumm-‘unaﬂmw PLAR-S e A B U A B k5 AT

label followed by a colon, multiple op codes separated by
semicolons (one to ten operations which total no more than
64=-pits. Sixty four=bits is the maximum dictated by seven
data transfers, one add, one multiply and one address
increment/decrement), and an optional comment statement

~

denoted with leading double gquote (").

Once the modules are written, APAL an be

operatea dynamically, allowing the programmer to build the
program at assembly time. APAL will aqsstion the operator
about the source file name, destination file name etc. ana

subseqguently will orompt him concerning missing itgms. ; If

there are errors in the module, these can be changed

ol il e

dynamically without reassembling the entire module [4].

d. APLINK

The AP linker (APLINK) is written in Fortran IV

.

and requires aporoximately 10K of memory in the host

computer, APLINK performs functions similiar to those of

v cwamac

any other link editor which include relocation and assigning
absolute addresses to the object module, correlation of 1@
global entry sympols in one module with external symbols in
the other modules, loadinc the module from the program

library and oproduction of the final l1oad module. These

functions are performed interactively with dialogue between

APLIMK ana the user at the console.

R, SR TN SREIRENE T T < R S O S A A 2 P ms . o7 o

R - — o ——— o o IO S —— T i

e i i, . e it i i Sy TSN B S o AR S K 0 it

SR S S T R AR SPGBk A 51 G AN T~ A g b

Besides linking the modules, APLINK returns to
the console any symbols in a file which are undefinea, will
output the symbol table and locations when requested and
returns the high address and starting address to be used

with the Debugger routine ([5].
e. APSIM

APSIM is the AP-1208 simulator and 1is designed
to be used when gevelopinc programs when use of the AP=120B
is impractical or impossible due to production schedules.
APSIM emulates all haraware and timing characteristics of
the AP-1208B as well as performing the mathematical routines
as closely as possible to the way the AP=-1208 uoul& perform
them [32). APSIM requires 32K words of memory in the host

computer (11].
f. APDERUG

APDEBUG is the AP=-120UB interactive debugger
program to be used for dynamic debuggina of AP=1208
applications programs at run time. Changes can be made when
the prooblem 1is identifieoc and APDEBUG will call the APLINK
and APAL routines to insert the new object module then
continue with program develooment. APDEBUG can work in

conjunction with the simulator or the actual hardware [(6].

ag. Testing Software

57

There are three software modules available to

completely test the AP=-1208B hardware operations.

APTEST is the AP=-1208B path tester. This
software exercises the panel, DMA interface, internal

registers ana memory to check for proper operation.

APPATH tests the 1internal data paths of the

AP=-120B and returns diagnostics upon finding any errors.

Forwarada/Inverse Fast Fourier Transform Test
(FIFFT) verifies correct operation of the AP=-1208B's
arithmetic units by performing Fast Fourier Transforms and

inverses them comparing results with standard answers [(32].

These packages can be used to help insure proper
operation of the AP-120B before development or actual
operation and also helo with the hardware fault locating

effort during system maintenance.

2. Programming Language

The Math Library of AP functions can be <called by
the host Assembly Language, Fortran or the AP Assembly
Language [(36]. However to write a custom library function.,
AP Assembly Language must be used and the cross-assembler

will translate it into an executable routine.

Investigating the programming language is not

important here except tc say that it is similiar in

58

S — oy AR YA . N SN QSRR e TS s L0

a0 LY G L W il 1oy g Vil o 10 g b

characteristics to other assembly languages. There are
sufficient commands available to write a program to properly
contrgl AP=-120B execution in an efficient manner, Bit
testing, conditional branching, flag setting and arithmetic é
instructions all are part of the instruction repertoire

which allows varied aoplications programs to be written.

B IR T PR T - v

3., Page Select Option

The AP=-120B can alternati&ely be eauipped with a
Page Select Option. This provides the ability to address ﬂ
one megaword of main memory in the AP=120B by using host
main memory and virtual memory techniques. Each page can be
up to 64K words long (full Main Data Memory size but each
page must be at least B8K) and 16 pages are available. The
Page Select Cption increases the ability for the AP-1208B to
js . work. on larger transforms, but due to paging overhead, it
may not increase the throuchout rate due to increased host

involvement.

This option modifies the AP Direct Memory Address
Register (APDMA) located in the DMA Control section of the
interface by extending it from 16 to 20 bits therefore 2xx20

addressing capability (acproximately one megaword). This

virtual memory ability 1is c¢3alled ¢the AP Memory Address

Extension (APMAE) and new addresses can only be loaded by

the host. Since the host will control all paging
operations, the AP=120B commands will not change inasmuch as

it will only recognize 64K word locations [(9).

59

4, Programmable I/0 Procesor

The Programmable 1/0 Processor (PIOP) 1is a micro-
codable micro=processor which acts like a high speed channel
program controlliina an input/output port. It is capable of
transferring data at a six megahertz burst rate or at a
three megahertz sustainec operation rate (assuming 167
nanosecond Main Data Memory). The PIOP can be usea with up
to eight external devices (like A/D converters or mass

storage devices) thereby actina as an I/0 bus controller.

The PIOP interfaces directly with the DMA Controller
in the interface unit. It has a 38=bit instruction word, a
20=-bit arithmetic logical unit and is capabale of agdressing
to one megaword of memory making it compatible with the Page
Select Option. Communication with the AP=-1208B is
accomplisned via one of eight flags and four interruptse.
The micro code supports subroutines ana has the logic to

perform jumps within its own code.

The PIOP must hancle all handshaking and timing
considerations with both the external devices and the host
program to insure data integrity. This can be complicated at
times so a Programmable [/0 Channel (PIOC) is also available
which decreases flexibility but eases the programming burden

(331.

Neither tne PIOP nor PIOC orovides a methoa of

connecting two AP=120B8's together in series without host

60

RIS WA 110 BB Tk S i

intervention which tends to limit some of the possible

applications of the AP=1208,

C. PKROGRAMMING, UPERATION AND EXECUTION

The AP=120B can utilize the parallel oreration
capability cf the adoer, multiplier ana gata transfers to
increase execution of the progqram and throuahput on larqge
Jata arrays. These parallel oceraticens must e controllea
sO that ootimum execution speed can be realizec without
causina interlock or lockout. Lockout coula eventually leaa
tc a prcaram stocpage {11. Since most scientific aata can
best be structured iQto an array form, the array processor
is 3ble to work cn it cuicklv ana efficiently in its natural
state where a general purrose comouter must, in most cases,

restructure it (36].

Refore the AP=120B can work on data, the gata must first
be transferread from its memory locations in the host to Main
Data Memory in the arrav processer (or movead to Main Data
Memory from an external device via the FPIUP. That situation
w#ill not pe aealt with here since the PI0OP s programmable
and therefore cath and data options associated with it are
many.). The data is transferred via the interface with the
use of the APPUT(HOST, AP,N,TYPE) command (Fut Data into the
AP=120RB)., As with aragurents of other AP=-1208 CALL
statements, rn0OST AP, N and TYPE need not be explicitly

stated but can be expressicns, integers or variables.

61

e .Au_e.u.," ASMRR i S5 IS O W U o i e b AR AR v i

The host and AP=120B must be synchronized 1in their
operations so computations can not go on while data is still
being transferred to memory. APWD (Wait on Data) causes the
host to wait wuntil data transfer is completed before it
resumes executing the program, APWR (Wait on Running)
causes the host to wait until the AP=-120B is completed with
one command before another is sent over. APNAIT is a
combination of APWD and APWR. One difficulty encounteregd
using these commands 1i1s that the host to mcnitor the
orogress of the execution if polling is used to cetermine
APWU, APWR or APAATT completion or the AP=120B must wait if

priority interrupts are used, which 1i1ncreases the time

necessary to complete the crograme.

Some of the overhead of the host can be eliminated by
not wusing the AP Wwait on Running (APWR), AP wait on Data
(APwD) or AP wait (APWAIT) commands. This technicue may
speed up program execution ang should only be used when it
is absolutely necessary ana when there is no chance that the
results will ©be processec before they are actually present
in the AP=-120B Main Data NMemory. Floating Point Systems
suggests that the orogram first be written and executed with
the APWR, APAWD and APWAIT commands present and the results
gotten. Then removing a few of those instructions at a
time, the results can be checked to see if they match the
original results. This only works for specific applications
and does not conform to mocern proqramming practices. It is

also extremely dangerous since it does not allow for speed

62

B -

y AN A S SO i M B i e A o S SO VS 1 B B M
e s — - S B SEESIEEE————

p—

fluctuations due to temperature variations.

When processing is complete, the data can be transferred

back to the host via the APGET() command which operates in

3 the same manner as the APPUT,

The application program resides in the host memory and
the host executes this program. The host will determine
which routines must be passed to the AP-120B and if the data
necessary is present in the array orocessor. When a routine
is called, the host will jump to it and execute it but if

the routine called is part of the math liorary (whether from

APMATH or a user written math routine), the host first jumps
to APEX. APEX then loaags the 64=-bit instructicns into the
AP=1208B Program Source Memory, calculates the remaining
space available in the Program Source Memory, updates the PS

location table, loads the parameters and 1initiates the

execution. If the same routine is called again immediately,
it will not be reloaded since it is already present but only
the new parameters will be loaded. If a agifferent routine
is called, APEX will first check the PS location tabtle to

see if there 1is enough unused space available to load it

without aqgestroying any routines currently residing in
Program Storaqge. If not enough soace is available, the
last=written program will be overwritten with the newly

called routine (Last In First Out (LIFO)).

The overhead required for each math library routine

called is between 100 and 1000 microseconds. Une hundred

63

el g b o

microseconds is the minimum time required to check the table

and move parameters. This minimum ¢time is required for

every call, even in looping ooerations. During this period,

the host must be available to the AP=-1208 which would cause
unnecessary host overhead. While the AP=12UB is executing
any specific routine, the host <can be freed to do other
tasks and treat the AP=-1208 as a peripheral device. The
host can either be interrupted or can use polling technigues
to determine if the array processor requires assistance. In
either case, the programmer must be aware of when a break
occurs sc he can i1nsure that the proper sequence of routines
is wused to allow the host to perform other operations and

not be burdened by many AP=-120B services.

Several ways to increase available free time in the host
are to transfer more than one vector with each APPUT or
APGET command, use cotimum AP=-120B library calls to perform
given operations (it is the programmers responsibility to
determine which AP routines are best for each situation) and
overlao host ana AP=-120B operations whenever possible.
Since every call of a routine reaquires host intervention,
several routines can be combined into one by writing a
special macro combining those routines, which will
effectively eliminate some host overhead by using only one
"call" statememt. (But these macros must be small due to
limited AP=1208 program memory.) Since host overhead varies
between 100 and 1000 microseconds, with the higher value

being dcue to the maximum amount of data and program

64

P e S - S A AT

e e _—

transfer, some overhead can be eliminated by loading the
most used routines first, since overwrite is accomplished by
LIFO. APEX must also be a part of the interrupt priority

scheme of the host (interrupt or polling); therefore, by

having the AP=120B at a high priority, the overall wait time

of the system due to interrupt wait can be minimized (8].

V. MAP=30Q0

The MAP=300 (Macro Array Processor) (fig 13) is manufactured
by CSP Incorporated, Burlington, Massechusetts. The basic
structure consists of three independent busses, an executive
routine, two parallel arithmetic units, an addresser and an
input/output handler, each having its own clock * and
operating in a parallel asychronous fashion. The basic
logic units are the Central System Processor Unit (CSPU),
the Arithmetic Proceessor (AP) (consisting of the Arithmetic
Processing Unit (APU) and the Agdresser Processor Section
(APS)), the Host Interface Scroll (HIS) and amn optional
Input/ Output Scroll‘(IOS). A1l except the CSPU use micro-
coded routines stored 1in their own small memories and
communicate with each other via flags set in registers.
(The CSPU stores its micro coded routines in main MAP
memory.) The Host Interface Module (HIM) section of the HIS,
the I0S ang the CSPU are built around a standara Intel 3002

bit slice micro processor.

The representation of MAP<300 numbers 1is usually a
32=-bit floating=point format with a one-bit sign, a seven
bit exponent (giving a range of 16 ** «pd to 16 *x 63 biased
by 64 therefore 0 to 127 are the actual numbers stored) and
a 24 bit mantissa allowing a total range of 10 *x =77 to 10
*x T6. Sixteen=bit floating=point and lo=-bit fixed=point

numters are also available. MAP=300 main memory is

PRI < A -

HOST

" - ————————— — — ——

PERIPHERALS
N 1 HOST NOSY
S COMPUTER MEMORY
ot ey, I e g IR TR e S TR U e SEEE A o R [s Y S e ey
/ MAP PROCESSOR
| HOST
I INTERFACE
{
: MEMORY s oy
: p e MEMORY
|
|
Lot = o Fosaeon
! 108) ADAM (C8PU) (AP) 22-817
| { FLOATING POINT
\\-——“-‘P‘_-'—————"“ e e e T . —————— ———— —— ——— —— — ———
1
DIGITAL ANALOG
DEVICES DEVICES

t‘...

MAP Configurati-n

Figure 13

67

R

addressable in either 32-bit full=words or lé6=-bit half=-words
but eight=bit bytes can be accessed by packing pairs into a
to=-oit half-word (18}, SNAP=-II commands like VFIX8 assume
this packing exists [34]l. The ability to address in half=-
words and/or bytes is important as it may increase the
efficiency of the program and array processor, allowing
cperations to be performed which may not have otherwise fit

in @ word=-only addressable memory.

Although the MAP=300 is asychronous, the advertised
average CSPU cycle time is approximately 70=-nanoseconds with
about S00-nanoseconds recuired for a memory read/write
operation when using 500=nanosecond MUS memory
(125-nanoseconds using bigolar). Full=word operands ano
results starting on an odd address bounagary, however,
require about two S500-nanosecond memory cycles. A pseudo-
operation c¢an be wused to 1insure even=boundary locations

exist (18].

The MAP=300 is capable of operating in temperatures
from 0 to S0 oegrees centigrade at 10 to 90 percent
humidity. The power requirements are either 115 VAC or 230
VAC single phase plus or minus ten percent at 47 to 63

hertz, The weight is aporoximately 80 pounas.

The MAP relies heavily on internal parallel processing
to increase throughput and Jlimit wait time. The MAP=300
stores the executive and array routines in its oOwn memory

(as ooposed to storing it in the host memoryl. With the use

68

of functibn lists and statements like "MPwWHL" (MAP version
of the "DU WHILE"), the MAP can operate independently of the
host after initial loading of the program (191, With the
three bus structure., the MAP theoretically can
simultaneously input into one memory, output from the second
while doing computations on the third and never utilize the

host except for initialization.

The MAP has a separate instruction set for the Central
System Processor Unit (CSPU), Arithmetic Processor Unit
(APU), Addresser Processer Section (APS), and Host Interface
Scroll (KIS). Inasmuch as these processors work
indepenaently, the instruction Ssets are not as complicated
as may have been necessary 1if operation was controlled
totally from a central site. The total number of
instructions per second attainable by the MAP=300 is data
dependent. whenever all steps necessary to perform the
operation are completed, as witnessed by oroperly setting
the correct flags in pseudo-memory (to be discussed later),
the operation will perform to completicn, while the
addition/multiplication operaton is being carried out in the
AP, preparation for the next word (half=word) of
information can be conducted in the wunaffected processors.
System flags are used to communicate between the processors.
These flags include General Purpose flags available to the
programmer for general system communication, Control flags
to control processor modes and operation sequencing, Status

flags to indicate processor status and Hardware

69

R R LT ————

Confiquration flags (18].

The MAP=300 system installed for evaluation consisted
of: the MAP=-300 processor, interface with the PDP-11
computer utilizing the RSX=11M operating system, 24K words
of 500-nanosecond MOS master memory (8K for each memory),
power oanel; expansion chassis, installation, I/0 driver,
SNAP=-II algorithm library, cross assembler, simulator and

loader. The price of the system was $44,500 (27].

A. CHARACTERISTICS AND HARDWARE

1. CSPU

The Central Processor Unit (CSPU) (fig 14) is the
"Command Central"” of the MAP=300 array processor. The CSPU
responds to commands from the host, transfers data to and
from the host, assists the APS in address calculations anag
loads the orogram memories of the Arithmetic Processor and
Host Interface Module. The CSPU performs the functions of a
front-end micro computer to control the actions of the

system.

The CSPU has a fast, fixed-point arithmetic unit for
address calculations, an instruction register, an eight
register accumulator file and a priority interrupt network.
It has access to the three main memories via the memory
busses and suoplies the other MAP processors with the

program instructions they need from main memory. Reentrant

70

e ———— L s e ——

SHOSS3J04d TVNOILIAQY WO¥4/0L
Y
W LINR V21907/91LIWHLINY, i 154 S¥315193¥
T

.
| : , L e
w i s < Lol s 21907 3IN3NO3S 3
4 o 14 walsioay ¥3INNOD WVN90Yd
| o i
H £ ‘ {
4 = $S330QvV
| % 3714 43151938 e
q 1n0 NI r Ko ﬂ
! PR = a@i3i4 ai3r4 141
" m 3009 dO

C ¥ LINN “T0¥1NOD
« G| waLsie3 X3GN1 By
l 43151934 NOILINYLSNI
;..,. F
_ L ¥315193¥
b $SIYAAY ANOWIW

SIHOLIMS SN vivd

e < e

21907 T0Y¥LINOJ Sng

HOLIMS Snd SS3yaayv

v s e 4
M X

s o

SNd AYOW3IW

L B

*

¢ SNY AYOW3W

Bt

L SNE AYOW3W

CSPU Block Diagram

Figure 14

71

subroutines and multi=level ingirect addressing are
recognized by the CSPU. It has no 1I/0 capability but
instead instructs the Host I[nterface Scroll (or I/0 Scroll)
to perform input or output operations to or from the host
(or external devices). The CSPU will never halt but will
always be in the WAIT state after its instruction seguence

is completed,

An important register in the CSPuU 1is the Control
Status Register or C=State Wword (CSW). It is a 32-bit
register containing the status of prior operations, the
orogram counter as well as the source and gestination
locations for block memory transfers., Fields of the
register can be combinec to give hardware condition codes
for use in conQitional operations, branches, jumps or
executes. The CSw also stipulates on which bus instructions
or gata are present and controls the interrupt responses for

other units.

The CSPU is the only oprocessor able to be
interrupted 1in the MAP (other processors can either Halt or
Wait) and contains a 64 level interrupt priority system with
one interrupt device per level and three lines per device
(192 possible combinations). The CSPU may only be
interrupted between instructions. It will also nest ang
queue lower opriority interruots iif a higher priority
interrupt is preceived a¢curing the servicing of a lower

priority interrupte. These interrupts are detected by

72

e —

e T S . N e A s A a0 iy e Sl R S A N A Pt 5 30N B

|
polling and levels are polled only if they are above the
current interrupt level. Lower level interrupts will
: ! {
continue to exist but will not be recognized wuntil the !
higher priority interrupts are serviced. f
i
i
The CSPU contains no memory but uses main memory to ;
store its instructions. When fetchea, these instructions f
are stored in the instruction register until execution. The %*
1 CSPU may also address a pseudo-memory location called System | I3

Flag Register (SYSFLG) whicnhn is the orimary inter=processor

|

i

i
communication system. By testing the bits of SYSFLG, the é
CSPU can sense the status of any of the other processors. j
(Pseudo=Memory reférs to memory physically located within é
the sub-processors but which acoear on the bus as a memory

address similiar to the PDF=11/34/745/55/60/70.) [(18].

2. Arithmetic Processor

The Arithmetic Processor consists of two components,
the Arithmetic Processor Unit (APU) and the Addresser

Processor Section (APS).
a. APU

The Arithmetic Processor Unit (APU) (fig 1S) s

responsible for the computation required in array orocessing

- and executes programs relatively independent of the other
MAP processors, operating under the general control of the

CSPU . The APU consists of two adders, two mu]tipliers (the

main distinction between the MAP=300 and the MAP=100 or

73

s A R A g e AT

ik sdnsivia, i tcssmsa s i bt a skl i il e et

.......... snd snd |
NVHOVIG 102074 dV NOTLOMULSNI NOTLDMYLSNI
NOILD3S : ||||Muqllq v
40SSID0Ud ’
yassayaav RERk:

1dV SV FWVS ZdV s11g 91| site o1
................................ SQYOM 957 K——-
AIOWAN
WV490dd NdV
g = L
_ — -
mmzmsmuuﬁ_ D= @ILSTON d m
: - IR REL] -
= JONYHOXH o
-3 z N <
dgaav Y1 TdILTNN o A
‘ = sng | vivd sng v.iva -
¥ zdv TdV _
C YALSTON W—r IS1O7Y @3 _
= |
anand anand _
LNdNI 1ndino “
|
|

N

snd vivad 1dv

L

f HOLIMS vlva snd

g€ Snd._
¢ Snd
T Shd

MAP=200 1is that the former contains two adders and

multipliers while the others contain only one each), 34

a2 e

various registers and three First=In=First=0ut (FIFO)

buffers for input and output storage. The two adders and

two multipliers permit parallel processing of data to

increase throughput. APU programs are stored in main MAP
memory and are sequentially block-transferred to the APU

program memory under control of the CSPU,

The main units of the APU are the arithmetic

processors (AP1 and AP2). Each arithmetic processor

O S KM S I SR o 5o | 55

consists of an acdder and multiplier that may operate

el s o

1 ' simultaneously ana independently of each other. Each adaer
is fed by eight registers and each multiplier by four

multiplicand registers and four multiplier registers. The

results of the adder are routed to the result register R and]

the multiplier loads the product register P. To transfer

data between the separate arithmetic processors, an exchange

S —————

register is proviaed.

APU memory ccnsists of two 2S56=word lo=bit
sids~by~side memories, The memory is initially loaded by
the CSPU from MAP memory and the APU is then out into the
run state. Instructicons are sequentially decoded in the APU
to perform the specified algorithm. The instructions are
le=pits for each board (AP1 and AP2) and are executed in

parallel. They c¢can perform addition, multiplication,

transfer of data and the setting of flags. These

. i i b o A g NS Il S g - - ‘B s N o VP Ty
Baa e . ————— 4T - —

instructions are decoded and the operation started as sSsoon
as all necessary conditions are met. Immegiately, the next
instruction is retrieved and decoded and attempts to be
executed. If either the P/R register is involved in a
multiplication/addition operation which has not vyet been
completed, the Input Queue(IQ) is emoty or the Output Queue
(0Q@) is full, the APU will go into a "wait" state. It will
remain in this "wait" state until the
multiplication/addition instruction is comoleted or the
other conditions are satisfied. There is a problem that can
exist due to the sids-by=-side 16=-bit memories used for
program storage. Since there is only one proqramAcounter
and the AP1 and AP2 processors work in parallel the sias=-
by=-side memory acts as two halves of a 32~bit instruction

register. Therefore if one board (APl or AP2) is forced to

wait, the other must also wait since the mext instruction
may not be retrieved until the proqram counter can be

incrementede.

The Input Queue is a four=deep FIFO buffer which

services both AP1 and APZ2. To get the next input data
field, the IQ must be advanced before the data is
transferred. If both boards request data without advancing

the queue, they will receive the same A data, which may be

qoou for certain applications. If they both simultaneously
try to advance the [IQ, it will advance only once and give an
APl priority, then advance the second ¢time after the

transfer has been completea to give data to AP2.

76

. i Bkl i AR 0 0 T £ A A A) AR bt 6 i Hgon bl s LAt oI N s 0l S e R " . w
Bt ———————— - X S R v s

There are two Output Queues each of which 1is a
four-deep FIFO buffer. These queues allow maximum capacity
of the adder and multiplier to be utilized,since it is less
likely that the processor will have to wait for either
buffer to have a vacancy due to a busy bus system. If both
processors try to act on any sinale 0OQ, processor APl will

be given the priority.

A typical multiplication takes approximately six
cycles (420-nanoseconds) ana a typical ada takes about three
cycles (210=-nanoseconds). Therefore, to increase
throughput, "hiding" adds, moves, etc. behind multiplies
will accomplish operations in the time it takes to do the
multiply alone. The most efficient method to program the
MAP=300 is to treat successive samole sets in alternate
% processors; this effectively produces a multiply every
l 210-nanoseconds. Since there 1is one input Qqueue, this

method allows both to have access to the same information

N S S -

(by not incrementing the queue) and also gives a greater

chance to use hiding effectively.

The APU can usually operate in two modes. Mode
Ones the normalized moce, can either wuse normalized or
unnormalizea floating=point numbers as 1input with the
results being a normalized floating=point number. Using
unnormalizea floating=point numbers as input can Jlead to
precision loss since the normalization process will shift

the mantissa to the left (values less than .1) or to the

E | 77

A SN i, e s s A e g - S —
s S A S R —— e S o e

A Al o A RS I) N i

right (values greater than 1.0). The vacancies created by
these shifts will be filled with zeros, which, after
computation, could possibly produce an wunusual truncation.
The wunnormalized mode will accept unnormalized numbers as

input and will return unnormalized numbers as output (18],

b. APS

The Addresser Processor Section (APS) (fig 16)
computes both the adaress in MAP memory for the location of
input data words to be processed by the APU and the MAP
memory addresses for the output from the APU. [t operates
indepenaently of other processors, within status and control
flag constraints of SYSFLG, The APS contains a 128-word
25-bit memorv, four program counters (two for read and two
for write), eight address buffers (to be used as inputs to
the adder), four First=In=First=0ut (FIFO) buffers, an
arithmetic logic wunit (adder), and associated logic and

control unitse.

The APS programs are stored in MAP main memory
and are loaded by the CSPU. Certain absolute aacress
locations must be known to a APS proaram at run time which
are not availlable during proaram writing. [Ihe assembler
computes them at assembly time and the CSPU inserts them
into the oroper location curing this orogram transfer. The
CSPU then initiates APS operation by setting the proper

flags. The APS may be loaded with new information by the

CSPU during run time by cycle stealing, thereby not causing

78

S i T N A S SR s P Aoy ¢ At

. a0 RS et W R AN DI SR WS = o i

WRITE i |
DATA/ADDRESSES §
L

APS PROGRAM |
PROGRAM COUNTERS !
MEMORY ;;
128 WORDS ;5
25 BITS EACH : ;
é

|

INSTRUCTION ff
REGISTER 1
{3

ARITHMETIC

AND LOGIC UNIT[— FLAG LOGIC

OUTPUT
REGISTER

|

18 BIT ADDRESS
2 BIT BUS
2 BIT MODE

ADDRESSER PROCESSOR SECTION
Figure 16

79

o e SN R R s s " ety R - 5 P i A sl ,F,, § a5 N S i

the APU to slow and wait for a vaiue in the IG or a space in
the 0Q. Because the instructions in MAP memory are 32-bits
long ana the APS instruction is only 25-bits long, the seven
bits left over are used to store the APS memory address for
that instruction. This allows the CSPU to increase
throughput by immediately installing the instructiaon into

the correct location in a pre=computed order.

The adder computes addresses dependent on prior
computational results, literals or specified increments.
All agdress additicon and subtraction is considered to be
modulo 2 **x 17 so that only positive addresses in that range
will be computed. Results are queued 1in either the Read
Address FIFO (RAF) or WNrite Address FIFO (WAF). Along with
the address is a code to delineate whether the address is
full=word, nalf-word or byte (pair of bytes in a l6=bit half
wora address) and if it is a eight=bit fixed=point number,
lo=bit fixed=point number, !6 bit floating=point numbter or a

32=-bit floating=point numter.

The distinctive feature of the APS is that there
are four program counters (PO, Pl, P2 and P3). These allow
four separate programs to te stored in the APS angd executed
in an interleaved manner. Seauencing of these programs is
controlled by the status of the WAF and RAF in conjunction
with the APS instructions. These proaram counters also
proviage a looping ability allowing the APS to work with the

Host Interface Scroll or I/0 Scrolls to keep data flowing.

S st . |

Atter one memory has been processed and reloaded, the APS
need not De reinitiated but can continue operation on the

new data oy this looping feature [(18].

3. Host Interface Scroll

The Host Interface Scroll (HIS) consists of two
subsections, the Host Interface Module (HIM) (fig 17) which
is located in the MAP=-300 and the Host Interface Controller
(HIC) which s located in the host memory. The host
Interface Module transfers MAP programs, unprocessed data,
host status and Host Interface Controller commands from the
host to the MAP, Processed datar, MAP status and processing
commands are also transferred from the MAP to the host via
the HIM, A programmable scroll processor is provided for
computing MAP and host memary locatians duriﬁo a Direct
Memory Access (DMA) operation. Other pertinent ogcevices
include a memory=-bus interface, controllers for host memory.,
format conversion hardware, status and control logic along

with interruot logice.

Thne HIC controls the handshaking necessary between
the host and the MAP, The handshaking consists of interrupt
Ingic trom MAP to host and logic necessary for contrelling
the transfer of data with either Direct Input/Output (DIOQ)

tacr sty or DYA transfer (18].

w mos: gemerally interrupts the MAP to initiate

e Al T “owever, when the MAP is completea, it

8l

MAP MEMCRY
BUSSES
TO/FROM ALL MAP BOARDS T

rTT

mMA T T 1
PRS j PRI ’ BUSRESET

MAPONLN ¢— t

16 DATA BUS

DATA QUT ¢— A— DATA FORMAT DRIVERS AND ‘

; CONVERTER RECE [VERS :

HIMLDRO
DATA IN
HIMLDR1

HOST & HOST i
DMA MEMORY !
CONTROL CONTROL E

20 MAP BUS
HOST — v CONTROL AND

] ADDRESS) ADDRESSER

SCROLL PROCESSOR

A [MSTRT AND CONTROL -
MAP BUS 1
L]
s 4 i [NTERFACE
SETPAUSE 4— :
CLRPAUSE j : L]
A A 3
HIMRUN
MAPRDY ¢
HIS STATUS
AND CONTROL —
3
ITYPE & e
HDN OR WFQ
HICINT = T
I DINT |
MAP [NTERRUPT s =
INTERRUPTS FROM MOST 3 conTaoL —F— T0 csey
(FCBAV +BUFRDY . NSTRDY) L

Q Indicates a fating function,

Simplified HIM Block Diagram
Figure 17

82

e e R kA 3y N 0 R b N BT AR DR R Sty e e « Mo, b & VAR Lk

P o o AU

s v ——— N ——— ——-

will jnitiate communication (interrupt) with the host for
further worke. When the 1interrupt is acknowledged by the
host, more data or programs are sent to the MAP depending on
the flags. (If all MAP processors are in a loop operating
on data suopclied from external devices and delivered to
external devices via I/0 Scrolls, the host will not be
interrupted unless there is an error. 1his frees the host
to do any other unrelated processing necessary.) The
maximum response time to initiate an interrupt is 15V
microseconds for the HIM and 250 microseconds for a user

CALL routine (35].

4, Memory

M3in memory in the MAP=300 consists of three

independent busses each having the capability of 256K words

ot S00=-nanosecond MUS memory or 64K words of bipolar memory.
Memory types may not be intermixed on any given bus but each E
bus may have a aifferent type from another bus. Memory can 3

also be either master or slave, master memory ceing used to

control program execution, arpitrate and observe system
protocol while slave memory stores the data. Etach memory
bus containing memory is required to have at least one }
master memory module (available in either 4K or 8K blocks

for M0OS or 1K, 2K, or 4K blocks for bipolar).

Access to each memory is via a common bus having 11

ports and two priority levels. Three ports are reserved to

83 [

B e e T " B 2 For Ol e

J
|
; {
3 t
: !‘
b | 5 -
" : .

- ~pr—— - e

be used with the absolute opriority scheme leaving eight
ports with a sequential round=robin (polite) opriority
scheme. Absolute priority is the highest priority ana is
intended to be wused with high sceed minimally=buffered
devices such as disc units or tape units where loss of data
may result. Sequential round=robin priority handling is
used for slower buffered devices and 1is a roundg=robin
: (circular) aueue which 1is checked each memory cycle. The
device first in the aueue will get the next memory cycle.
Scanning for the next queued device will commence
immediately upon the previous device starting tranfer. When

the next memory cycle occurs the new device will be known

keeping overhead minimal., Of these 11 ports, the HIS ana

CSPU each have one dedicated port and the AP has two %‘
dedicated ports on each bus with seven ports remaining for

the I0OS and other uses.

Psuedo=-memory (alluded to earlier) is the wupper 4K
words on Bus 1| <containing addresses of certain registers
used for status and control. These registers are located in

the sut=processors but appear as addresses on the memory

bus. Any sub=-processor may alter the contents of these ‘
locations so it is important that the programmer not try to

overwrite these addresses with programs or data (18},

: B. SOFTWARE SUPPORT

As with the AP=-1208, there are software routines to aig

in program development and execution.

S

1. Executive and Associated Routines

a. Assembler i

The MAP=300 assembler, written in ANSI Fortran

IV, takes a source proaram written for either the CSPU, APU,

o i

APS, HIS or I0S and creates an executable object module. A
listing file ana errors file can also be created. Editing
and updating can be accomplished from the last source file
by chanaing and assemkhling only the incorrect line (or

lines) of code, thereby avoiding the reassembling of the

entire program (18l]. The assembler will also allow change

! of the HIM memory to enable it to handle necessary

bufferinge.

be Simulator

The MAP Simulator Program simulates model 200

and model 300 processors by executing MAP object code. The

simulator permits the programmer to develop or debug

% , software off=line so as not to disturb production schedules.

The MAP Simulator Program has the capability of
simulating the operation of the APU, APS, CSPU, Memory ana
| the interrupt handler. It nhas not been updated to handle
certian new commands ana flags (listed 1in the front of

refl(25)) nor does it have the ability to simulate the APU

e ——— T

test mode. Memory size ana tyoe can be specified either in
the initial loading of the simulator or while running to

tailor it for current or proposed configurations.

When used as a debugging aid, the MAP Simulator
Program allows the operator to: install breakpoints and
execute macro instructions at these breakpoints; detect
program errors and execute macro instructions after their
discovery:; examine register contents; run programs from
difterent processors (APU, CSPU, etc.) independently; and,
patch loaded programs. Input/output may be obtained from a
terminal, printer, tape(magnetic or paper), cards or
cassette. A batch mode is also available. Actual program
timing can be estimated by installing breakpoints and

individually timing small sections of code (25].

c. Loader

The MAP Loader 1is a Fortran orogram which
acceots object code procduced by the Assembler and create
blocks of binary code in MAP machine language. This code is
transmitted to the MAP memory via the MAP driver through the
Host Interface G3croll. Errors in transmission are
detectable since check=sum digits are transmitted to the MAP
along with the blocks of code. The Merge operation creates
and updates the tables and addresses necessary if the loaded

module is to be usead with the SNAP-II executive [22]).

]
;
i

d. Debug Package

The MAP=300 diagnostic package is designed to
verify hardware operations and isolate any malfunction, to a
specific card. One module is resident in the host while
another, which contains the test modules and test programs
necessary to determine proper system operation of the CSPU
and other sub-processors, 1is present in the MAP, This
software can run interactively or wunder batch processing

(18l.

The MAP=300 LUOK program permits the programmer
to examine MAP memory (or pseudo-memory) from any computer
capable of operating under ANSI Fortran IV. This is also an
interactive routime and provides the ability to "patch"
coded program segments or enter entire machine language
programs. The programs or segments can then be stepped

through to examine the results closely (20].
2. SNAP-II

Systematic Notation for Array Processing Version II
or SNAP-I1I is a single=command high-level macro-=type
language used to program the MAP=300 array processor. The
SNAP=II package consists of a Host Support Module, Host/MAP
driver module, SNAP=-I] Executive, SNAP=II Function Modules

and an Installation test and Acceptance test Module (18].

The. SNAP=]1 executive permits the user to define

buffer size, and the structure and location of programs in

87

MAP memory. The executive also structures the routines to
4 operate at maximum speed by insuring that the maximum
possible parallelism exists between sub=processors (for CSPI
written functions), thereby accentuating "hiding". The
SNAP=11 subroutines are written in ANSI Fortran and passed
to the MAP via Function Control Blocks (FCB)., The MAP
Driver, which is located in the host, directs the loading
and operation of the programs. (In a looo or "Map While"
condition the driver need only load and initiate the

2 sequence then return control to the host operating system.)

SNAP=II allows the programmer to build his own
function 1lists with the Fortran type statement "Map Begin

Function List" (MPBFL()) which permits the host to remain as

free as possible from the ooeration of the MAP. Two-
dimensional arrays are dJdemultiplexed by SNAP-II thereby
increasing speed of execution in the processor by not having
to compute two-dimensional address structures. SNAP=-11
functions are callable from either ANSI Fortran or Host
assempbly language orograms and are able to operate on both

real and complex data (1S].

3. Programming Language

If SNAP=-II functions are not specific enough to
satisfy the oprogrammer's needs or if they do not exist in

the SNAP-II library, new routines may be written in an

assembler type language. The CSPU, APU, APS and HIS each

have their own instructions to ootimize each sub=processor's

a8

capabilities.

The CSPU instructions are broken into 10 groups
which have the ability to perform all the functions that a
general purpose computer is normally visualized as
performing. They include: generic (performs interrupt
system coding and looping); single register; move; logical;
push and pop; hop and jumo (a hop is within 256 half-word
locations and a jump can be to any new location); skip anag
bit manipulation; compare:; and maintenance and test console
instructions. The APU can perform: two-argument adder;
single argument adder (like approximate reciprocal
instructions); multiply; data transfer; jump and call; and
control operation instructions. The APS performs: load;
address increment; register arithmetic and control type

instructions. The HIS reccgnizes: single register; logical

register; arithmetic register; literal and control

instruction types ([18].

Since each sub=processor is designed to perform a
special ooperation and c¢can be programmed to optimize that
desian, the overall performance of the system is 1increased.
All processors perform in parallel and stay in "sync" by the
use of flags. A sub=-processor will wait until the proper
flag is set before continuing, thereby insuring integrity.
The waiting also relieves the proarammer of "counting
cycles" with No Operation (NOP) instructions which could

possibly cause lost data. The arawback is that he does have

an increased complexity by insuring that proper flags are
set At the proper time [lbl. Most of these encumbrances are
eliminated by the executive however. Flags are available in
oseudo memory and are easily tested. The complexity issue
is minimal since for most applications only APU and APS
routines need be written. Only under soecial circumstances

is a CSPU or HIS routine required.

Pseudo-operatijons are also available to ease the
programming burden. They perform such tasks as naming
character strings, insuring that information is olaced into
memory on a word boundary., generating constants and making a

test Control Status WwWord (CSwW).

4. I1/0 Scrolls

The I1/0 Scrolls (I0OS) control block=transfers to or

from external oerioheral devices (including other MAP's)
without interferring with the MAP=300 processing cycle by
using a sub=-processor which can be pre=programmed. The I0S
contains three functional elements: protocol logic necessary
to interface the external device directly to the MAP=300
memory busses; a orogrammable processor to compute MAP
addresses and issue control signals; and, the transfer logic

necessary to interface with peripheral devices.

There are five basic I0S models. I0Sl, also known
as the maintenance ana test console, is capable of

transferring eight=bit single words to MAP bus number one at

R e P

a 5 KHZ rate. I0S2 has two transfer rate options and two
word size options available. Word size option one utilizes
the block=transfer of 8 or l6-bit words to any of the three
MAP busses while option two uses either 16 or 32-bit words.
] Transfer rate option one conveys information at a 1 MHZ rate
as compared to the 2.5 MHZ rate of option two. Either

transfer rate option may be combined with either word size

;
!
P
:
!
£
i
.

option; however, only one combination is available at a time
since they are hard-wired. Under orogram control, I0S3 can
transfer either 1o or 32-bit words to any of the three
busses at a 750 KHZ sustained rate. I10S3 can also perform
format conversion, monitor data with a basic ooeration

similiar to the HIM ana surport indirect addressing. [0S4 is

a high speed (up to 40 MHZ) scroll, allowing block transfers

only of 8, 16, 32 or 64-bit words to any bus (64=-bit words

- must be transferred simultaneously to bus 2 and bus 3).

I0S4 also allows packing and buffering of data (18], 10S8S

is a airect memory=-to=-memory bus=connect option for direct

data transfer between user devices and the MAP-300. The]

module requires no software (and will not support software).
Its operation is controllea by hardware ano three interrupt

request lines (21].

a. Analog Data Accuisition Module

The Analog Data Acquisition Module modgel S120
(ADAM=5120) 1is a programmable analog interface capable of

accepting from 2 to 16 channels of analog information. This

91

P

- T TS < T SN T AN e AN R s —— mae—

y

information is then digitized to 12-bit resclution at a 270
KHZ throughput rate for the l6=channel case (125 KHZ for
single channel). As with the I/0 Scrolls, the A/D operation
may take place simultanecusly with the MAP=-300 processing.
The ADAM is functionally eauivalant to the I0S2 with only
added analog=to-digital circuitry. This allows the ADAM to

be SNAP=-I1 compatible.

The operation cf the ADAM is carried out via a
set of up to 16 sample-ana~hold units which then make their
siqnals available to a 16:1 multiplexer. Each channel of
the multiplexer is the consecutively sampled by the A/D
converter which outputs either a 16=bit sign-magnitude or
lo~bDit floatina~-ooint number. Performance accuracy is

specifiead a 0.2 percent of full=scale resolution (2].

C. PROGRAMMING, UPERATION AND EXECUTION

The MAP=300 can not only utilize parallel operations of
the adder and multiplier in the APU, but also the parallel
sub=processor operation of the APS, HIS, I0S, APU and CSPU
to increase total throughput. The programmer, by breaking
the oroblem into smaller independent programs of addressing,
arithmetic, I[I/0 and management, can theoretically more
easily proaram the entire problem than by adherring to
internal communication protocol and flags [(18]). The
respective programs should be easier to write with much of

the 1increase in overhead due to the added handshaking and

92

arcespreny §

S i TP R

protocol requirements being assimulated by the executive.

(16l.

CSPI recommends that a modified top=down programming
technique be used initially by writing the APU routine first
to insure the optimum execution speed. Then adding the other
necessary routines (generally just the APS routines) to
insure the information is cresent when the APU needs it.
The APU should be programmed to treat subsequent sample sets
in alternate adder/multiolier modules and arrarge data so
that as many adds can be "hidden" as possible (18). By
proper execution, sequencing total time can be shortened to
equal the time to multiply only, with all other operations
"hidden" under these multiclies. This "hiding" operation
becomes easier in the MAP=300 than in the AP=~120B since
cycles need not be counted and NOP’s need not be inserteo
for unused <cycles due to flags being set to signal the
availability of resources [(1l6]). The orogrammer must be
aware that the timing 1is not absolute, therefore the
executive will tightly control synchronization by flags to

insure one adder/multiplier does not get ahead of the other.

The oprograms are initially loaded from the host to the
MAP via the operating system interface and driver. The
MAPDVR ,MAC routine makes tha stannard interface through the
operating systm and MPDRV.MAC makes the MAP aprear as a
standara RSX=11M device to the computer. Initial

communication from the host to the MAP is done via a four

93

R NTs L S i R o R R Gl R 337 L AR R i Sl S st L

AT TS

word Driver Control Block (DCB) [261. When the Central
System Processing Unit is initialized by the host, it will
load the other sub=processor programs and commence program

execution.

Subsequent MAP commands are sent to the MAP from the
HOST via Function Control Blocks (FCB) which require host
intervention to send. (Function lists and the MPWHL macro
treat multiple FCB's as a single entity). These FCB's
transmit host to MAP status, interrupts and functions to
perform and can be aueued in the HIS buffer. Wwhen it is no
longer necessary for the host to send or receive a FCB, it
can perform other operations [(3S]. Therefore, with
efficient use of the [0S and the possibility of stringing
MAPs in series, the host can be free to either perform other

tasks or act as a system monitor.

94

—— -

 AD-A066 370 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/6 17/1
EVALUATION OF A SIGNAL PROCESSING TEST BED.(U)
DEC 78 6 T VRABEL

UNCLASSIFIED NL

N

AD
ADBBS3TO

e
END

DATE
FILMED

.57

boc

- =

VI. DOISCUSSION OF FINDINGS

In the test bea, the PDP=11/34 was chosen to perform
the front=-end functions which consisted of buffering the
data, formatting it and then passing it to the array
processor or mass storage device (or from the mass storage
device to the array processor). This Jlimited front=enda
inputting function did not dictate that the computer be
large. The <choice of the PDP=-11/34 computer for this
application seems adequate. The PDP=11/04 would normally
contain enough speea to handle the necessary omerations but
may be unsatisfactory since it does not have a resident
memory cantrol and protection routine to ease the
programmers burden and help insure system integrity, nor
does it contain the 2K cache memory to iJincrease speede. A
computer larger than the PDP-11/34 may not increase the
efficiency of the system although it would increase the

cost.

The test bed utilizea the PDP~-11/70 for the output
computer, The output comouter would be reguired to receive
{nformatiOn from the array processor, manipulate the data
and store it for future display on one or more devices. For
this aoolication, the POF=11/70 seems best for several
reasons. The system is much like the 11/34 except that the

current maximum memory is 2 megabytes to allow for better

utilization of 1information, There are dedicated paths to

RO A TR ISR WA AT >

m

e csieaate daei

hiagh performance storage devices that would allow more

information to be processed per unit of time. To further

process arrays for output, there is a 32=-bit or a 64=bit

floating=point arithmetic wunit available. The PDP=11/70

gives large=computer performance and expansion capabilities

with the cost and space requirements of smaller ‘units (31).

Using the same manufacturer for the output function as was

used for the input function reduces interface oroblems and

contributes to the oproficiency of the programmers by

increasing overall knowledae of the architecture.

The proposed test bed uses of the 11/34 and 11/70 can

be greatly modified by the choice of the array processor.

The MAP=300 wutilizing an Apnalog Data Acquistion Module

and/or I/0 Scroll <can eliminate the need for the input e

functions (including 16 channel analog=to=digital

conversion) therefore permitting the 11/70 (or possibly a

less costly model) to perform input, output and monitor =

functions in the test bed. In fact, the 11/70 will probably

be large enough and fast enough to facilitate combining all

subsystems, except the display subsystem, under one

computer, The 11/34 and 11/70 combination should provige

SRS —

for the full range of computers necessary to properly

emulate and evaluate just how much comouter cavability will

actually be needed for any specific apolicatione.

The question arises as to which 1is ¢the best array

processor for the aoplication. The AP=1208 is synchronous,

96

theretore some may say safer, has a 38-=bit word which could
mean greater accuracy, more standard library functions (such
as vector log base 10 and vector log base e) and a 3500 hour
mean time before failure. The MAP=300 is a newer system
which, due to the minimal host involvement, three separate
busses, [/0 Scrolls and the ADAM, can provide aoreater long

N

run throughput and more flexibility.

For the non real=time environment where simple
programming and host involvement <can be tolerated, the
AP=-120B may be a good choice. It can provide facilities tc
tailor algorithms to specific needs; these facilities are
not yet too complex to tax the normal programmer. However,
new programs cannot be added directly to the AP math library
(APMATH) out must be linkec and loaded for every usage as
would any application program. This creates an excessive
time overhead. Therefore, the AP=120B should be wused only
where simplicity and ease of use are paramount and utility

can be sacrificed.

For applications recuiring real=time computations
(which the test bted most likely will eventually demand)
innovative design, high throughput rates and generally
greater flexibility, the MAP=300 provides the answer. The
imoroved performance of both array=processing potential and
computer 'availability is offset by the increased cost of

program development if non=library routines must be written.

These routines however may be added ¢to the library

e s

TR

e e e

effectively reducing overhead. Reference (23] reports that
the MAP=300 also complies with MIL=-E=-16400, MIL=-E~-S400,

MIL=-STD=-401A, MIL=-STD=7048B and MIL=-STD=-1399.

During the installation of the MAP-300 at the Naval
Postgraduate School, it was noted that the installation
documentation was extremely poor. As of this writing, three
weeks were required to install the system. This was due
mainly to the poor documentation in the installation package
received with the unit. Not only was the package
incomplete, but changes to the software were performed that
were not changed in the original documentation, nor was an

eratta sheet provided.

It is realized that for many companies involved in data
processing equipment manufacture, documentation 1is not a
chief concern. However, CSPI seems to have far inferior
installation documentation than would reasonably be
expected. This situation made it impossible to do a good
test of the system operation but allowed only a cursory

reviewe.

Even with the evident shortcomings of the documents,
theoretically the MAP=300 1is far superior to the AP=1208B.
If CSPI would upgrade their documentation and perform the
installation at the site, their sometimes negative public
image could be eliminated and confidence in tneir equipment
could be increased. It must be noted however that ref (18]

and the publication "Simple Notation For Array Processing,

98

e

S
L R

Version II, Reference Manual", are excellently written.
There,fore in the following discussion, the wuse of the
MAP=300 will be a§sumed. I will now look at each subsystem

closely and attempt to determine alternate designs.

The analog subsystem obtains data from one of four
sources: time code read/generator, l4=-track recorder
(Honeywell 96), signal synthesizer (Rockland 5100) and/or a
noise generator (HP 3722A). Up to 128 channels of inmnput are
amplified, sent through a programmable matrix Sswitch
resulting in 32=-channel output signals to a programmaole
32=channel filter. These analog signals then leave the
analog subsystem to be input to the signal processing

subsystem.

The AN=S400 analog-to=-digital converter performs a
12=bit A/D conversion and is then loaded the Ampex Megastore
mass storage device through the PDOP=-11/34 computer. The
output of the array processor will then be sent to the data

processing subsystem.

I suggest it may be easier, more flexible and cheaper
to inout the 32 channels as before to the orogrammaole
filter, but then the 32 channels may be better handled by
two Analog Data Acaquisition Modules airectly into the MAP
for processing or via an I/0 Scroll, model 3, be sent to the
PDP=11/70 storage devices for future use. This will
eliminate the expense of the A/LC converter, Ampex Megastore

and the PDP=11/34 but more important, it will be relatively

99

S 2

e S

e

e e g - - e - S

easy to perform calculations in real-time. Once the MAP=300
is started, it can perform without host intervention until
interrupted and with an assumed input of 40 KHZ, the system
should not be taxed. The output of the MAP can then be sent
directly to the data-processng subsystem. The entire system
can also be less complex, affording easier system

development.

Assume that a fictional system with a 40 KHZ input
requires a FFT and discrete diqital filter to be cone on the
information. The timing of a 1024 real to S16 complex
Fourier transform reaquires 3.0 milliseconds (23] and a 40
KHZ input rate would require 39.1 FFT's per second on the
average. This would consume 117.,3 milliseconds and assuming
a S0 percent overhead yielc 175.95 milliseconds to perform
the Fourier transform. Discrete filtering would reguire
another 39.1 x (1024 * (2 * S00 nanoseconds + 12 =* 70
nanoseconds)) or 73.67 milliseconds. Again assuming SO
percent overhead, 110.51 milliseconds would be necessary for
the filtering. The total time consumed by the two functions
would be 286.5 milliseconus, leaving 713.5 milliseconds for
other work. (Fifty percent overhead is an over=estimation.)
Loadina data into the MAP=300 would be hidden behind the FFT
operation (except for the initial case) and woula not

contribute to overall execution time.

This would effectively eliminate the entire signal=

processing subsystem with th exception of the MAP=300. The

100

i ST

Iy

PDP=11/70 computer in the data processing subsystem could
control the MAP along with its other intenced function of
controlling the display subsystem, Any storage necessary
for output or any taped input data could be handled by the
tapes and disks associated with the 11/70 and execution
could be performed on the MAP=300 along with the above
calculations. However, for expanded utilization, not
specifically adaressed, the above use of only one MAP and no
POP=-11/34 may have to be modified to accomodate the new
requirements if these new requirements are significantly

larger.

If after extensive testing the MAP=300 proves to be too
costly due to unreliable software, the AP=120B can perform
the same functions although at an increased hardware and

time cost.

For example, in tée AP=1208B, to perform the above real
to complex FFT, it requires 5.08 milliseconds for the FFT,
0.8 microseconds to rescale and 1.7 microseconds to reformat
the result for a total of S.09 milliseconds per 1024 sample
FFT. To this must be a&ged 100 to 1000 microseconds
overhead for each of the four call statements: Get data
from the AP=120B(APGET), Put data into the AP=1208(APPUT),
real to complex FFT(RFFT) and real FFT scale and
format (RFFTSC). I will use the arithmetic average of 550

microsecends per call for an added 2.2 milliseconds

resulting in a subtotal of 7.29 milliseconds oer FFT. APPUT

and APGET have no specific times in ref (8], but according
to Floating Point Systems the PDP=11 interface transfer rate
is 750 KHZ, This would therefore reauire approximately 2.67
milliseconqs_ for each 1024 element transfer giving a total

of 9.96 milliseconds each for 39.1 FFT's, 1This results in a

389.5 millisecond execution and transfer time. Again,

allowing for S0 percent overhead safety margin, the total

becomes S574.16 milliseconds per second. To perform the

discrete filtering would require an additional APGET, APPUT,

! RFFT, RFFTSC as well as a vector multiply(VMUL) and a
{‘ complex vector multioly(CVMUL) bringing the time to compute

one seconds worth of data to well over one second.

Therefore another AP=120B must be installed to insure
1 that speed. requirements are met. Also., since the host

computer must be interrupted many times, it may be necessary

to retain the PDP=11/34 in the siagnal processing subsystem.
There is also the consideration that if a math routine is

custom written, it wil)l not be able to be loaded in the math

S —————

library which will generate considerable overhead each time

it is called. (The amourt of this overhead time is system

dependgent.)

102

g "

{
- ——— — S R T A TR T -

VII. CONCLUSIONS AND RECOMMENDATIONS

The test~-bed as prooosed seems to be a workable design,
although for most applications a more efficient and

economical architecture may be constructed.

For many uses the neea for the PODP=11/34 computer andg
the AN=S400 A/D converter seem unnecessary when used in
conjunction with the MAP=300 array processor. The Ampex
Megastore may be requirec for a few applications but would
not be suitable for the majority of applications (including
real-time) since a disk perioheral attached to the PDP-11/70

would be cheaper anag still perform the same functions.

It is felt that the increase in complexity and possible
confusion using the MAP=300 over the AP=]120B <c¢an be

overshaagowed by the reduction in equipment recuired by the

MAP=300. This 1increased preoficiency should even te more
greatly felt (assuming a normal learninag curve) with
subsequent installations. Also, with the time savina in

execution, extra calculation$ coula be performea on the MAP
in a real-time environment} thereby increasing efficiency.,

operapbility and soectrum,

It is recommendea that further tests be conducted using
the actual applications, data types and speed requirements
to fully evaluate the most economical and efficient minimum

design necessary.

103

e oo it o SR RN AR TN

-

s e S

VIII. REFERENCES

1. A PIPELINED PARALLEL SYNCHRONOUS PROCESSOR FOR HIGH=-
THROUGHPUT ODATA REDUCTION, Floating Point Systems, Inc.,
FPS=7324, February, 1977,

2. ADAM Model S120 Analog Data Acquisition Module, CSP
Inc.s Document number S=-13, 1978,

3. AN INTRODUCTION TO THE MAP SERIES MODELS 100, 200, AND
300, CSP Inc., Document number S-02, December, 1975,

4, AP=-1208 APAL = ARRAY PROCESSOR ASSEMBLY LANGUAGE,
Floating Point Systems, Inc., FPS~7275=-01, February, 1976.

S. AP=1208 APLINK = ARRAY PROCESSOR LINKING LOADER,
Floating Point Systems, Inc., FPS=7276=01, Fecruary, 1976.

6. AP=120B DEBUG - ARRAY PROCESSOR DEBUGGER, Floating Point
Systems, Inc., FPS=7277-01, February, 1976,

Te AP 1208 FLOATING POINT ARRAY PROCESSOR, Floating Point
Systems, Inc., Form 7244, Revised January. 1977.

8. AP=12uB MATH LIBRARY, Part One, Floating Point Systems,
Inc.r FPS=7288-03, August, 1977.

9., AP=120B PAGE SELECT OPTION (PRELIMINARY), Floating Point
Systems, Inc.,» FPS=7326, February 14, 1977.

10. AP-120B PRICES, Floating Point Systems, Inc., Form 7293
January 76.

11, CUMPUTER FAMILY ARCHITECTURE SELECTION COMMITTEE:
FINAL REPGRT, Vol I, Burr et al, | December, 1976.

12. COMPUTER FAMILY ARCHITECTURE SELECTICGN COMMITTEE:
FINAL REPORT, Vol VIII, Clearwaters et al, 1 December, 1976.

13. DATA ACQUISITION WUNIT FOR SATCOM SIGNAL ANALYZER,
Thesis by Marvin J, Langston, June 1978,

14, HOW TO PROGRAM THE AP=120B, Floating Point Systems,
Inc., FPS=7303, March, 197¢.

1S. INTRODUCTION TO ARRAY PROCESSING wITH SNAP=-I1, CSP
Inc., Document number S=03, Revised March, 1978.

16, IT'S SIMPLE TO PROGRAVWV SNAP=11 ARRAY FUNCTIONS, CSP
Inc.» Document number S=04, Revised December, 1977,

17. LOOK PROGRAM USER's MANUAL, CSP Inc., Document number
Dw8004=001=01, June, 1977.

18, MACRQO ARITHEMITIC PROCESSOR SYSTEMS (MAP=100/200/300),
PRUOGRAMMER'S REFERENCE MANUAL, CSP Inc., Document number
JB6000=-001~-03, May, 1977.

19. MAP APPLICATION NOTE 1, CSP Inc., Document number
MAN=001-01, February, 1978.

20, MAP CROSS ASSEMBLER MODEL 8001 = SOFTWARE INSTALLATION
BUOKLET, CSP Inc., Document number DW8001=-001-00, May, 1977.

21. MAP [/0 Scroll Model S Interface Booklet, CSP Ince..,
Document number DE4QB0=-000-00, May, 1977,

22. MAP Loader in Fortran, CSP Ince., August, 1978,

23. MAP - Macro Arithemitic Processor, Magnavox,
FwWD77-1591, Fort Wayne, Inciana.

24, MAP MODEL 3 I/0 SCROLL (I0S3) INTERFACE MANUAL, CSP
Inc.» Document number DE6403=000-01, August, 1977.

25. MAP Simulator Program Model 8002 Reference Manual, CSP
Inc., Document number JW8002=-001-02, October, 1978,

26, MAP SOFTWARE INTERFACE DESCRIPTION FOR THE CEC RSX=11M
SYSTEM, CSP Inc., Document number 8901-000-00, July, 1977.

S ——

e e i i iz e 3 e s s S\ B o s SN s = S S e i

27. MAP STANDARD PRICE LIST, CSP Inc., January, 1977.

28. MINI AND MICRO COMPUTER SURVEY, Datamation, Knottek,
August, 1978,

29. PDP=11 END USER PRODUCT SUMMARY, Digital Equipment
Corporation, January, 1977,

30. PDP=11/04/34/45/55/60 PROCESSOR HANDBOOK, Digital
Equioment Corporation, 1978,

31. PDP=11/70 PROCESSOR HANDBOOK, Digital Equipment
Corporation, 1976.

32. PROCESSOR HANDBOOK, Floating Point Systems, Inc., Form
7259-02, May, 1970.

33, PROGRAMMABLE I/70 PROCESSOR PIOP, Floating Point
Systems, Inc., FPS=7350, June, 1977.

34, SMAP-II Reference Carac, CSP Inc., Document number S-11,
1978.

35, SOFTWARE FUNCTIONAL SPECIFICATION = SNAP=-I1 HQOST/MAP
DRIVER MODULES, CSP Incer Document number Dw6000-006=00,
Augusts 1976,

36, THE AGE OF ARRAY PROCESSING IS HERE, Floating Point
Systems, Inc., Form 7345, 1977.

106

REEIR——

TR A P e sy

INITIAL OISTRIBUTION LIST

No.

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Library, Coage 0142
Naval Postagraduate School
Monterey, California 93940

Department Chairman, Code S2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

Professor George Rahe, Code 52 Ra
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

Philip Mylet, Code PME=124
NAVELEX
Washington, D.C. 20360

LT. George T. Vrabel
86 Norseman Drive
Portsmouth, Rhode Island 02871

Professor John E. Ohlson, Code 62 01
Department of Electrical Engineering
Naval Postgraduate School

Monterey, Catlifornia 93940

