
I ~~~~~~~~~~~~~~~~~~~~~~~~ _

!r rz
HI
I
I _____

I
_

H
RESEARCH ON DEDUCTIVE

I INFERENCE FOR LARGE DATA BASES

I FINAL TECHNICA L REPORT
Covering the Period

1 1 April 1916 through 30 December 1918

: 1
1=

I CHARLES KELLOGG AND IRIS KAMENY

MAR 26 1919
31 JANUARY 1919

Prepared for:

I Office of Naval Research, Arlington, Virginia 22211
and Defense Advanced Research Projects Agency

I Arlington, Virginia 22209

~~~~ ~~~~~~~~ A
I ~ 

Approved for public re1 Qs~L Diatributi Unlimi~.4 --  
j

I CONTRACT N00014—76—C—0885 TM-62631000100

1 79 03 01 057
— - — ~~~~~~~~~~~~~ ~~~~~ —

- - -~~~~~~~- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1’P 1

I

RESEARCH ON DEDUCTIVE
INFERENCE FOR LARGE DATA BASES

FINAL TECHNICAL REPORT
; I Covering the Period

1 April 1976 through 30 December 1978

i.
1 CHARLES KELLOGG AND IRIS KAMENY

1 31 JANUARY 1979

Prepared for:
Office of Naval Research, Arlington, Virginia 22217

and Defense Advanced Research Projects Agency
Arlington, Virginia 22209

CONTRACT N000 1 4—76--C—0885 TM•62631000100

H 

_ _  _ _ _ _ _ _ _J
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I J I~~~~~~~~~~~~~J


F

SECURITY CLASSI FICATION OF THIS PAGE (IPh n SM. •.,. ~~
.

I
_ _ _ _ _ _ _ _ _ _ _ _ _r REPORT DOCUMENTATION PAGE READ INSTRUCT I ONS

BEFOR E COMPLETING FORM

I TM— 6263/0OO7~~~]
12 GOVT ACCESSION NO. 3. RECIPIENT S CATALOG NUMBERL~~~ !oRT NuueEP

4 TITLE (i d Subsist ~~~~~ t~S . ? A

Final technical Jf~p~~t~ —

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 1~~p~?~~~~76— $~Dec 71Data Bases .,j S. PERFORMING ORG. REPORT NI~(MBER

_________________________________________________ 
SDC Project RC700

7. AUTHOR(.) S. CONTRACT OR GRANT NIJMSER(.)

1 
~~~ j

Charles/Kelloss ris/ICameny] ~~~~~~~~~~~~~~~~~~~ARPA Older ~~~~~~~~~~
S. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASKI system Development corporation

AREA I WORK UNIT NUMBERS

2500 Colorado Avenue
Santa Monica, CA. 90406 ____________________________1 II. CONTROLL ING OFFICE NAME AND ADDRESS ,.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Jan~~Office of Naval Research
• PAGES

I Arlington , Virginia 22217 134
14. MONITORING AGENCY NAME I ADDRESS(II dllt.~unI horn ConSvoUffi4 Otflc•) IS. SECURITY CLASS. (at hi. v.po$)

Unclassif led

3 ~~~~ IS.. DECLASSIFICATION/DOWNGRADING
SCHEDULE

N/A
IS DISTRIBUTION STATEMENT (ot thu Rip en)

1
‘4 Dist ribution as instructed by the Office of Naval. Research

. 1 •
I?. DISTRIBUTION STATEMENT (oI th. .b.(r.ct .nt., .d in Stock 20. U dJl t.r inl Iron. R.port)

55. SUPPLEMENTARY NOTES

IS. KEY WOR DS (Condnu. on n.y.,.. aid. ii n•c...My ond id.ntlfy by block nswb.r)

Deductive Inference, Data Base Access, End User Facilities , Decision Aids ,
Natural Language Processing , Coninand and Control , Artificial Intelligence,
DADM, EUFID.

\\~ 20. ABSTRAC T (Conttnu~~~~iavau. o14. U onceii~~’ ~~~~~~~~ by block m b.r)
The research ’i~mmarized in this report has as its major goal the construction
of software tools to aid on—line decision makers and data base users in acces—

‘
sing information relevant to their needs , in understanding the full data base
search implications of their requests , and in reviewing and evaluating the
utility of derived answers.

1 The conceptual framework within which this research has been carried out is
based upon mathematical logic . It is becoming increasingly clear ‘that logic ~~~~~~~~relevant not only to reasoning about data but to query language design.

SECURITY CLASSIFICATION OF THIS PAGE (J~,on SM. Z , ØI DO , ~~~~~~
1473 EDITION OP I NOV 05 IS OBSOLETE ~~~

~~~~~

‘ 9’ ,/)~ ,.,,i%6 

~~~~~~~~~~~~~~~~~~ 
. ‘-, . . r~~~~~~~~~~~~ on is

1,

-. -.
- ~~~~~~~ ~~~~~~~~~~~~~~~~ -

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~.- ..---- . . - - .  ~~~~~~~~~ ::~~~~~“

SECURITY CLA$IIPICATION OP THIS PAOE(IS~.u SM. 5~5 j ~~)

• 
~to data structuring, to the support of high level user views, to maintaining
the integrity of data bases , and to making the transition from present day
data—based systems to future knowledge—based systems.

The main software tool that has been implemented as part of this research is
called DADM (for Deductively Augmented Data Management). This report describes
the design, implementation, and current capability of this prototype system.
DACK adds a general knowledge base and a deductive processor to a data
management system. These components are used to control the creation of
intelligent data base access strategies and the construction of evidence to
support derived answers.

The DACK prototype has beesNesigned with logical completeness, performance
and usability in mind. Completeness assures that all answers will be found ,
Performance has been stressed by developing new techniques for relevant
premise selection, creation and verification of inference plans before data
base searching, and by the use of efficient structure sharing techniques.
Usability features include the use of simple structured forms for knowledge
and query input , computer guidance and help when desired, and the incorporation
of easy to read displays of plans, answers, and evidence. The prototype is
currently operational on a DEC—10 computer in INTERLISP and on an ANDABL
470/V6 computer in SDC LISP 1.5.

Additional work under this contract on certain aspects of the EUFID language
processing system is discussed in a second section of this final report.

.5

a.

• SECURITY CLASIIPICATION OP THIS P*GE(~~ on C.,. ~~‘.‘.. I 
* 1

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --


~~
--

~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _

I System Development Corporation
31 January 1979 —1— TM—6263/000/00

FOREWARD

This final report consists of two main parts. The first part describing

[ research on deductively augmented data management (DADM) was written by

Charles Kellogg. The second part describing several tasks carried out

in support of the EUFID system was written by Iris Kameny.

~.

I

I.

I . .

L

1,

Ii
I~ JI

v o~sis So~Im

~ 1 1 I ov/*v*~uv’un cUES

• . ; 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

H
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _

I System Development Corporation
31 January 1979 —ii— TM—6263/000/00

~ I

I

I ii

~ iH
PART I

Ii

I ~:

....... ..~‘ .a~.nn... . • ,• • —

—-~~~~~~~~~~~~~~~ ~~~ ~~~~~ ~~~~~~~~~~~~~~~~ -

1 31 January 1979 System Development Corporation
-iii- TM—6263/000/O0

‘1
_ _ _ _ _ _ _
TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1

2. AR ON—LINE SESSION WITH DADM 4

• 2.1 Answering Questions with General Declarative Knowledge . 4

2.2 Answer Questions with General and Specific Knowledge . . 6

2.3 Derive Alternative Courses of Action to Support
On—Line Decision Making: Reasoning About Coiiuand

I and Control 14
•

-

2.4 Deriving Multiple Chains of Evidence to Support High
• Level Conjectures: Reasoning about Scientific

Cosinunication . . . 22

2.5 Reasoning with Computable Functions 42

3. DESCRIPTION OF THE DADM SYSTEM 54

3.1 Overview 54

3.2 Approach 54

3.3 DADE’! Deductive Processor Components . 56

3.4 Premises, Queries, and Data Structures 58

3.5 Deductive Pathfinding . . 64

3.6 Generation of Inference Plans 74
I I

~
3.7 Verification of Inference Plans 85

3.8 Data Base Search 87

3.9 Recursive Premises and Special Purpose Generators .. . 87

3.10 DADM Print and Control Modes 89

4. SPECIFIC TASKS ACCCR1PLISHED 90

5. FUTURE PLAN S AND RECO~~~NDATIONS
93

--
APPENDIXA—REFERENCES . A—l

Jb

I
I
I

— ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ . - won.~. ’- - ~~~~~~~~~~~~~~~~~

— -— ~~~~~~~~~~~~ - ~~~~~~~~ ——~~ ——~~~~~~~~~ —~~— - ~~~~~~—~~~~~~~~~

r _ -__-
_

•
;

_

- _____ — —.--~

31 January 1979 System Development Corporation
—iv— rM—6263/000/00

Figure Title Page

1 Deductively Augmented Data Management . 2

2 Reasoning with premises 5
3 Relating a classic deduction to data base searching . . . • 10

4 Relating a classic deduction to data base searcth~ng. . . . 11

5 Finding deductive support for a FIND type question 12

6 Finding deductive consequences for a ,GI~EN type question . 15

7 Alternative courses of action: Implications of Request . . • 15

8 Alternative courses of action: Search strategy for external
data base . . . • • 16

9 Alternative courses of action : Conditional answers and evidence 17

10 Alternative courses of action: Incompletely specified FIND
type question 18

11 Alternative courses of action: The Briscoe can replace
the John—Hancock if the latter returns to port 19

12 Alternative courses of action: Given that a SHIP—l employed
in the ASW—SCREEN returns to port a SHIP—2 may replace it
if certain conditions are met • • • . . . 20

13 Alternative courses of action: Deductive queries with negation 21

F 14 Multiple chains of evidence: Base Relation Searching • • . 24

15 Multiple chains of evidence: Relation, Domain, and Premise Names 25

16 Multiple chains of evidence: The conjecture and initial usage flow 27

17 Multiple chains of evidence: Plan—l . . 28

18 Multiple chains of evidence: Chain—l • • . . • • 29

19 Multiple chains of evidence: Plan—4 . • . • • . 30

20 Multiple chains of evidence: Chain—4 • • . . • . 31

21 Multiple chains of evidence: Search plan and chain—2 32

22 Multiple chains of evidence: Search plan and chain—3 . . • . 33 •

23 Multiple chains of evidence: Search plan and chain—5 34

24 Multiple chains of evidence: Search plan and chain—6 35

25 Multiple chains of evidence: Final usage flow for first 6 plans 36

26 Multiple chains of evidence: Plan—i • 37

27 Multiple chains of evidence: IL Request and chain—7 . . • . 38
•

28 Multiple chains of evidence: Plan—8 • • 39 -.
29 Multiple chains of evidence: IL Request for plan—8 . . • . . 40

30 Multiple chains of evidence: Chain—8 41
—‘5


~~~~~~~~~~~~~~~~~~~ . ,.;a;_; 

~~~~~~~~~~~~~~~~~~~~~~~~ 
—

r~~~
~~~~~~~ 

--
~ — 

-
~~~~~~~~ -~~~~~~~~~~ _. —--_________-_-S. ~~~~~~~~~~-.--.~ •

‘1’
31 January 1979 System Development Corporation

TM—6263/000/O0

• r
t •0

- Figure Title Page

a .

31 Multiple chains of evidence: Deletion of 4 premises 43

32 Multiple chains of evidence: REDO of Conjecture; Partial Plan—i 44

33 Multiple chains of evidence: Partial Plan—2 45

34 Multiple chains of evidence; Generalized navigation;
ORIGINATES ——— KNOWS, Plan—1 46

35 Multiple chains of evidence: Plan—2 47

36 Multiple chains of evidence: Plan—3 48

37 Multiple chains of evidence: Plan—4 49

38 Multiple chains of evidence: Recursive navigation; Plan—i,
—- Plan—2 50

39 Multiple chains of evidence: Plan—4 and chain—4 51

1. 40 Multiple chains of evidence: Generalized navigation with KNOWS 52

41 Deductively driven searching and use of compute functions • . • 53

42 DADM deductive processor components

43 Link restrictions within chains 70

44 Queries and their initial problem graph 78

I

~

.

f l

L I
.

1’
___________ii—’ — __-S. _.~~_S. ~~~_ _ .~sS• ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 5’ 51

_________-
— - - 1 -‘,-— —— ~~~~~~~~~~~ •~~~~~~~~~

••
~~••S ~~

__•_~~•• .—~•• •_ _ _ S_ S ___________

----S-S.- - 5~~. •.S ~~~~~~ --

• 31 January 1979 System Development Corporation
—1— Th—6263/000/O0

1. INTRODUCTION

The research summarized in this report has as its maj or goal the construction

• of a software tool to aid on—line decision makers and data base users in accessing

information relevant to their needs, in understanding the full data base

search implications of their requests, and in reviewing and evaluating the

utility of derived answers.

The conceptual framework within which this research has been carried out is

based upon mathematical logic. It is becoming increasingly clear that logic

is highly revelant not only to reasoning about data but to query language

design, to data structuring, to the support of high level user views, to

maintaining the integrity of data bases, and to making the transition from

present day data based systems to future knowledge based systems*.

The software tool that has been implemented as part of this research is

called DADM (for Deductively Augmented Data Management) and the main body

of this report describes the design, implementation, and current capability

of this prototype system. The DADM environment is illustrated in figure 1

where the DADM Controller, Deductive Processor, and Answer and Evidence

Generator are interfaced between a user and a relational data management

system. . -

DADM adds a general knowledge base to a data management system. According to

•
logic relational concepts may be specified in intensional or extensional form.

Relations specified in extension correspond to the tuples or specific facts that

comprise the records in a relational data base. Intensionally specified

relations , on the other hand, are represented by general declarative statements
(premises) and/or by computable procedures.

• A major use of DADM is to quickly find intensionally specified general knowledge

relevan t to a user ’s information request and to then reason with and combine

*A recent book LOGIC and DATA BASES , Plenun Press , New York , 1978, H. Gallair~
• • and J. Minker (Eds) presents the first comprehensive description of how logic

can be used as both a practical tool. and as a unifying formalism f or data
base system design.

_ _

~~~
‘
~~~~~~~~~~~~~~~~~~~~~~

5 _

~~~~~~~~~~~ 
.; !~~~~~~~~~~— ~~~~~~~ — 

-~~~~~ -~~~~~~~~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S •S_ S

~~~~

SS-S

~

31 January 1979 System Development Corporation
—2— TM-6263/000/00

w

_ _
2
U- . - S

.~wo z 0..
1/)

~~ UJ LiJ ~~ Is- LU I— C —

~~ LU C— .~~ s ~n - -

_ _
•

H S

_ _ _ _ _

j

~~~~~ s-a

• •~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~



55 
~~~~~ .~..______~~_..____. . ___ ~

_ S.-•;.- •~ “~•••~ • - ,
~~~~ 5 5 5 ~~~~~~~~~~~~~~~~~

T

..
System Development Corporation

31 January 1979 .• —3— TM —6263/000/00

this information in order to create intelligent data base access strategies

and find evidence for derived answers.

As data bases become larger and more complex and serve a more diverse set

of users, the ability to reason with general knowledge about the data base
domain may become critical. This is because reasoning ability becomes more

and more essential in bridging the gap between the high level concepts in which

the user frames his query and the low level concepts which are used in

describing the data base.

In implementing the DADM prototype we have emphasized logical completeness,
performance, and usability . Completeness assures us that all answers will

be found. Performance has been stressed by developing new techniques for

relevant premise selection, creation and verif ication of inference plans
before data base searching, and by the use of efficient structure sharing

techniques. Usability features include the use of simple structured forms
for knowledge and query input , computer guidance and help when desired, and

• the incorporation of easy to read displays of plans, answers, and evidence.
(.. The prototype is currently operational on a DEC—10 computer in INTERLISP

and on an AMDAH L 470/V6 computer in SDC LISP 1.5.

I 

.

1
1~1

- - - 5 -  
_ _ _ _  ____ 1 .

5 . ~I. ~~~~~~~~~~~~ S~~~~~~~~~ S~5~s- 5 ____________________________________________________________________ 
- - - S_-—-~~~- 

--
~~~ ~~~~~~~~~~~~~~ 

-
~~~~

— 
j



5 - . . .- 5-

System Development Corporation
31 January 1979 —4— TM —6263/000/00

2. AN ON—LINE SESSION WITH DADM

• 2.1 ANSWERING QUESTIONS WITH GENERAL DECLARATIVE KNOWLEDGE

DAD14 usually reasons with general declarative knowledge (premises) in

order to create inference plans and intelligent data base access strate-

gies (search/compute plans). In some cases, however , as shown in Figure
2, DADM can respond with specific answers derived directly from general
declarative knowledge. First two elementary premises are added to the

system by use of the INSERT mode. The first premise states that for

every man:x and woman:y if x is the husband of y then x is married to y

S (Every man who is a husband Is married to a woman). The second states

that for every man:x, woman :y and place:p if x is married to a y who lives
in p, then x also lives in p (read IF THEN for the IMP
sign used in specifying premises and GIVEN 

-— 
FIND for its use in queries).

With this knowledge DADH can directly answer the question: Given that

Socrates is husband of Xanthippe and Xanthlppe lives in Athens, where does

Socrates live (lives—in Socrates P)? This particular bit of reasoning
• is of course obvious from “common—sense”. However , DADM could just as

well have been searching for and combining knowledge from a imich larger

set of more complex premises. Since DADM is a logically complete deductive
system users can be assured of getting all possible answers within the user

controllable effor t limit (currently set at 6 deductive paths —— see third

line of printout in figure 2).

The second question in figure 2 illustrates DADM ’s ability to find
deductive paths linking two partially specified relational con-
cepts (HUSBAND and LIVES—IN). Variables are automatically supplied for

the missing arguments and a partial (i.e., incomplete) inference plan

is produced that indicates MAN—l lives—in PLACE—l j~j~ it is the case that

WOMAN—l lives—in that place (given they are married to each other and

MAN—i IS the husband). DADM’s ability to interpret incompletely

specified queries and reason with incompletely specified knowledge (in
the premise base , in the procedure base, and in the data base) is one



—I-- - 
‘
~~~~~~~

—
. -

1’
* 31 January 1979 System Development Corporation

TM—6263/000/0U

.1 1. DADMI
• I ENTERED IN D . A . D . M . VERSION l~.

- . CURR ENT IPPORT LIMIT SETTING : 6
MOD !: ?
o~.ot :• Query:
Insert

I J
Delete

~ I
- adjust
Show
Find info

-- Garbag e collect
Lisp

• • Exit
Keep
Teach
Help
ASsistant.
INSERT: Premise . Enter pr emise :
((MAN X) (WOMAN Y) (HUSBAND X Y)INP (MARRIED X Y))
PREMISE INPUT FOR PREMISE (1) ACKNOWLEDGED .
INSERT: Premise . Enter precise :
((MAN X) (WOMAN Y) (PLACE p)(AND (MARRIED Xl)

- (LIVES—IN ~
‘

IMP -

(LIVES—IN X P))
- . PREMISE INPUT FOR PREMISE (2) ACKNOWLEDGED.

INSERT: end insert.

MODE : Query :

• .((AND (HUSBAND(SOC RATES) (XANTHIPPE)) (LIVES—IN (XANTHIPPE) (ATHENS)))
S IMP (LIVES—IN (SOCRATES) P))

ANSWER SUMMARY ——
VARIABLES :
(P)

I I - ANSWERS:
4 I.. (ATHENS)

(5 MODE : Query:
.((HUSBAND) IMP (LIVES—IN))
(HUSBAND HAS MISSING ARGUMENTS. 2 HAVE BEEN SUPPLIED.)
(LIVES—IN HAS MISSING ARGUMENTS. 2 HAVE BEEN SUPPLIED.)
DEADEND SUBPROBLEMS THAT REQUIRE NEW pREMISE/TUpLE/PROCEDURE:

I (LIVES—IN.2.2)
1.. PARTIAL PLANS?Yes

1 PATHS 2 PROBLEMS 1 PLANS

j NEXT?Fu ll plans

(<INFERENCE PLAN 1 PLAUSIBILITY: 99

~~s ts = a SSS SS a __ s

e*1

1 ASSUME HUSB AND (MAN -i WOMAN -l)
CONCLUDE MARRIED (IIAN-l WOMAN—i)

1 SUPP-REQ LIVES—IN (WOMAN-i PLACE—l)
CONCLUDE LIVES—IN (MAN—i PLACE—i)

==s _ s _ =_ =_ s =ss =sssS =

I Figure 2. Reasoning with premises - -

-S. —-

--- S.-— —_-
~~—_•--

— —

~
~-

— - ~~~~~~~~ S.S.SS. S. - ~~~~~~~~~~~~~~~~~ - —~ ~~~~~~. .s-.. .~ S.
—5———---- S.— ~~~~~~~ _~~_.55 . — -.5..’ - -—5 —5,- ~~~~~ - - —.— - - 5- - - - -;, - - • -

System Development Corporation
3]. January 1979 —6— TM-6263/000/OO

Before proceeding to several less elementary examples, a few words on
DADM/User dialog are in order. DADM queries and premises are currently

input in a formal yet simply structured language consisting of relation

names, function names, domain (i.e., variable—type) names, constants
(i.e., objects, numbers) , variables, logical connectives (such as IMP, - •

AND, OR, NOT) and (optionally) quantifiers (SOME, ALL). At any point

in using DADM a user can type a “?“ or “H” to obtain a list of (MODE,
SUBMODE, etc.) options at that point or help in using the System. In

the first example the top level (query, insert, delete, etc.) modes

are shown. These simple syntax and explanatory features make DADM easy

to learn and use. -

2.2 ANSWERING QUESTIONS WiTH GENERAL AND SPECIFIC KNOWLEDGE

Creation of a general declarative knowledge base can take place before
or after creation of a data base. While the latter situation is most S

likely in practice in tLis next example we follow the former course
— since we wish to illustrate how a “classic” deduction can be carried out

by DADM and related to the searching of a data base. The source of the

following deduction is Sherlock Holmes “Adventure of the Dancing Men”:

“So, Watson,...You do not propose to invest in South African securities?”

“How on earth do you know that?” I asked.

It was not really difficult, by an inspection of the groove
5

- between your left forefinger and thumb, to feel sure that you did
not propose to invest your small capital in the goldfields.”

S .

“Here are the missing links of the very simple chain:

1. You had chalk between your left finger and thumb when you

returned from the club last night.

2. You put chalk there when you play billiards to steady the cue.

3. You never play billiards except with Thurston. - .

- -
~~~~S~S. - 

~~~~~~ --~~~~~ L.~_._.-
_ - • .

—S.--

1
I

System Development Corporation
31 January 1979 —7— TM-6263/000/OO

4. You told me four weeks ago that Thurston had an option on some

South Af rican property which would expire in a month, and which
he desired you to share with him.

5. Your cheque—book is locked in my drawer, and you have not asked

for the key.

6. You do not propose to invest your money in this manner.”

“How absurdly simple!” I cried.

“Quite ~~!“ said he.

We can attribute Holmes successful deduction in this case (and many

others) to his amazing ability to selectively retrieve facts from a large

data base of specif ic world knowledge and his ability to construct
plausible (yet relatively shallow) inferences from this information. In

this example, for instance, Holmes needs to “search” for only two pieces
of specific information: (1) the fact that Thurston wanted Watson to

share his South African securities and (2) the fact that Watson did
not have his cheque book.

In sentential logic —— a-logic in which each relation is zero—place

((i.e., has no arguments) the “Holmes” deduction can be formulated as
• shown below in terms of a “Query” expressing the desired conclusions,

an “Inference Plan” composed of three premises, and two “Find” state-
ments that must be shown to hold in the data base.

QUERY: If Holmes observed chalk in groove then

Holmes knew Watson did not buy securities.

INFERENCE PLAN :

PREMISE: If Holmes knew Watson played billiards with Thurston

and Holmes knew Thurston wanted Watson to share

securities and Hol.mes knew Watson did not have

cheque book then Holmes knew Watson did not buy

securities.

PREMISE: If Ho lmes observed chalk in groove
then Holmes knew Watson played billiards

1 1 ;

-- - --
_ _

-- _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



‘-5’

System Development Corporation -

31 January 1979 —8— TM —6263/000/00 
-

PREMISE : If Holmes knew Watson played billiards
then Holmes knew Watson played billiards with

Thurston

FIND : Holmes knew Thurston wanted Watson to share -

securities.

FIND: Holmes knew Watson did not have cheque book.

ANSWER : Yes --
Bringing this Hoimesian deduction one step closer to data base searching,

we can def ine two one place BASE (Search) relations, one two place
PROCEDURAL (compute) relation, and four one and zero place VIRTUAL
(deduce) relations:

5 -

BASE (SEARCH) RELATIONS :

Bi: HOLMES—KNEW -THURSTON-WANTED—WATSON—TO—SHARE—SECUR ITIES (DATE) - - .
B2: HOLMES-KNEW -WATSON-DID-NOT-HAVE-CHEQUE-BOOK (DATE)

PROCEDURAL (COMPUTE) RELATION:

Cl: DIFFERENCE-BETWEEN (DATE1 DATE2 TIME—INTERVAL)

VIRTUAL (DEDUCE) RELATIONS :

Vi: HOLMES-OBSERVED—CHALK—IN—GROOVE (DATE)

V2: HOLMES—KNEW-WATSON—PLAYED—BILLIARD S (DATE)
V3: HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON (DATE)
V4: HOLMES-KNEW-WATSON-DID-NOT—BUY-SECURITIES -

The three premises shown below describe and interrelate these four

virtual relations. Each of the premises is assigned a numeric

plausibility weight of between 0 and 100 tha t may be used in computing -,

the plausibility of inference plans and proofs (evidence chains).

PREMISES: -
•

P1: ((HOLMES-OBSERVED-CHALK-IN-GROOVE T2)

IMP

(HOLMES-KNEW-WATSON—PLA YED-BILLIARD S T2) 99)

I__ S. S.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ — -—5.~~~~~~~~ ~~J__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Si ~~~~~~~~Li~ 
-



System Development Corporation
31 January 1979 TM—6263/000/0O

P2: ( (HOLMES-KNEW-WATSON—PLAYED—BILLIARDS T2)

IMP
(HOLMES-KNEW-WATSON-PLAYED—B ILLIARDS-WITH—THURSTON T2) 99)

P3: ((AND (HOLMES-KNEW-WATSON-PLAYED—EILLIARDS—WITH—TRURSTON T2)

(HOLMES-KNE W-THURS TON-WANTED—WATSON—TO-SHARE—SECURITIES Ti)

(HOLMES-KNEW-WATSON-DID-NOT-HAVE-CHEQUE--BOOK T2)

(DIFFERENCE—BETWEEN T2 Ti (ONE—MONTH)))
(IMP (HOLMES-KNEW—WATSON-DID—NOT-BUY—SECURITIES) 99)

Upon entering the three premises into DADM along with appropriate tuples

in the data base and a LISP function to compute DIFFERE!UZ-BETWEEN the
HOLMES query was typed in (notice spelling corrector at work) and

inference and search/compute plans were produced as shown in figure 3.

DADM “answers” queries by treating them as problems to be solved. In

this case there is one top level (Holmes—Knew--Watson—Did—Not—Buy—Securities)

problem and three sub—problems (one compute, two search). One deductive

path (middle—term chain) suffices to link together the three relevant

premises into a single inference plan.

This inference plan states that in order to conclude that Watson didn’t

buy the securities (step **O), it is necessary to conclude that Watson
played billiards with Thurston (step **l) and in order to reach that

conclusion it is necessary to conclude that Watson played billiards

(step **2). These conclusions are forthcoming if the search/compute
- 

- - 
plan shown below the inference plan can be satisfied.

That it is satisfied is shown in figure 4 where the answer (YES) and

- - 
evidence chain supporting the answer is shown. It will readily be seen

that an evidence chain has the same overall structure as an inference

plan. Each evidence chain is an “instance” (or instantiation) of an

inference plan where the inference plan’s variables (e.g., THING—l) are

-

~ replaced by found or computed values (e.g., JUNE 27 , 1898) and SEARCH
and COMPUTE are replaced by FACT and COMPUTED respectively.

-5

L I - - 

~

,- • - - - - -.
~~~~~~~~~~~~~~~~

-- -

~~

- -
I

- — —-—-~~~~~~ —-——-- --- ——- - —-5---•.,- - - ~-—~-- — - -.-—--‘~~~-5---- S.
- —— - —rn—

— ._~ _ — --.-‘, —~~ -
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~. 

— - ____________________

31 January 1979 System Development Corporation
—10— TM—6263/000/00

MODE: Query:
((HOLMES—OBSERVED—CHAL K—IN—GROOVE (JULY27, 1898))

IMP
(HOLMES—KNEW—WATSON—DID—NOT—BUY—SECURIRIES) )
HOLMES-KNEW-WATSON-DID-NOT—BUY-SECURIRIES
HOLMES—KNEW—WATSON—DID—NOT—BUY SECURITIES 7 Yes

1 PATHS 4 PROBLEMS 1 PLANS

NEXT?Fu ii plans -

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

as . rS.S.OSSS SaSS —

ASSUME HOLMES—OBSERVED—CHALK—IN—GROOVE (JULY27, 1898)
CONCLUDE HOLMES—KNEW—WATSON—PLAYED—BILLIARDS (JULY27 ,1898)

CONCLUDE HOLM ES-K NEW-WATSON-PLAYED -BI L LIARDS —WITH THURSTON (JULY27, 1898)

S .

- .

COMPUTE DIFFERENCE—BETWEEN (JULY27,1898 THING—i ONE—MONTH)
SEARCH HO LMES -KNEW-WATSON-DID—NOT-HAVE —CHEQUE—BOOK (J ULY27 ,1898)
S EARCH HOL MES -KNEW-T HURST ON—WANT ED—WATSON-TO — SH ARE—SECUR I? IE S (THING— i)
CONCLUDE HOLMES -KNEW-WATSON-DID-NOT—BUY-SECURITIES

f l~~nf l... as.. a.flas

•1

SEARCH/CO M PUTE PLAN:
SEARCH *HQLMES KNEW~THURS~~N—WAt4TED WATSON—~~ —5HARE—SECURITIE5

THING—i
SEARCH •RO LM ES -KNEW -WATSON—D ID—NOT—HAV E-CH EQU E—BOOK

JULY27 ,iS~8
• COMPUTE *DIPFERENCE BE~V!!N JULY27,iS~ S THING—i ONE—MONT H ..~~

1!
Figure 3. Relating a classic deduction to data base

searching

S.

~

_• I



— ~~~~~~~~~~~~~~~~ -5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~: —— — ——

31 January 1919 System Development Corporation
—11— TM —6263/000/00

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY —-
YES

- :  EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY: 99
- - aa.aa.asaasasa a_a__a

(
S. 5*2

ASSUME IIOLMES—OBSERVE D—CHALX—IN—GROOVE (JULY27 ,1898)
CONCLUDE HOLMES-KNEW-WATSON-PLAYED—BILLIARDS (JULY27 ,1898)

5*_i
CONCLUDE HOLMES-KNEW-.WATSON-PLAYED—BILLIARDS—WITH—THURSTON (JULY27,1898)

- -S 5*I
COMPUTED DIFFERENCE-BETWEEN (JULY27 ,iS98 JUNE27,i898 ONE—MONTH)
FACT HO LMES — K NEW-WATSON—D I D—N OT —HAVE—CHEQUE BOOK (JULY27 , 1898 )
FACT HOLMES—KNEW-THURSTON—WANTED—WATSON TD-SHARE SECURITIES (JUNE27 ,1898)

t CONCLUDE HOLMES—KNEW—WATSON—DID—NOT—BUY—SEC URITIES

I.
- -

NEX??Ueage flow . Enter plan number or list of plan numbers:

-
~~~~~~~~~~~~~~~ 1

.1.
STEP NT USES
• 2 99 PREMISE 3

I ~i 99 ~2 PREMISE 5
••S 99 ~~1 PREMISE 4
NEXT?
Done.

1 *5

I Figure 4. Relating a classic deduction to data base
search (continued)

_________ _ _ _ _ _ _ _ _

_ _
_______ _____ - ‘ - - -

- -
-

— _
S.~~~~~~~~~~--5-5_~ -5—. - .~ i15~~ •~~5S.~~~~~- - ~ S.~~~~. ~~~ ~lljSs ~J•II~~ ~~~~~~~~~~~~~~~~~~~~~~~ - - -~ --.-

— ~~——~~~~ — -5-5 _ _

31 January 1979
—12—

Syst em Development Corporation

NODE: ASsistant.
USE ()
JON (HOLNES—OBS$ ——)

•ffOLMES—OBSERVED—CHALK-IN—GROOVE

DEADEND SUBPROBL EMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE:
(HOLMES—OBSERVED—CHALK—IN—GROOVE . 3 .1)
PARTIAL PLA NS?Yes

3 PATHS 7 PROBLEMS 1 PLANS

NEXT? Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

sas, a a asaaaaaaaaa .,

SUPP—REQ HOLMES-OBSERVED—CHALK-IN—GROOVE (T HI NG—2)
CONCLUDE BO LME S-KNEW -WAT SON-PLAYED—B II. LIARDS (TRING —2)

*51
—

-

CONCLUDE HO L MES-KNEW -WATSON—PLAYED—BILLIARDS—WITH—THURSTON (TH I NG—2)

COMPUTE DIFFERENCE—BETWEEN (T H ING—2 THING— i ONE—MONTH)
S EARCH HOLMES-KNEW-WATSON-DID—NOT—HAVE-CHEQUE—BOOK (TB ING- 2)
SEARCH HO L MES-KNEW-THURS TON-WANTED -WATSON-TO—SHARE-SECURIT IES (THING-i)
CONCLUDE HO LMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES

a5~~5 a flaa fla.SSsas as

SEARCH/COMPUTE PLAN: ‘
-

SEARCH *ffOLMES KNEW . TflURSTOW _WANTED -$ATSON T~~~SffARE ..SECU pITIES
THING—i - -

- - •
~

SEARCH •HO LM E S-KN EW ~WATSON-DI D—NOT—HAVE—C HEQUE—BOOK TB ING-2
COMPUTE 5DIFP ER ENC E— BE TWE EN TH I NG—2 TH I NG—i ONE—MONTH

DADM keeps a history list of all user inputs that is accessible by
thc assiotant. In thio cxamplc the asoiotant io inotructcd to
rc~ lacc the given clause (!!OTfl~S—ORS———)

by 0 turninR the GIVEN ——
FIND -- aucry into a FIND -— type query. -We end up with a deadond
subproblem , a par tial plan (note SUPPORT—REQUIRED in step **2) and
a SEARCH/COMPUTE plan in two variables (THING— i, THING—2).

U H
Figure 5. Finding deductive support for a FIND type

question. ‘I I
Li

——-~~~~~~~ ~~ J

_____— S.-—--- -5 ~~~~~~~~~ — --
~~~~~~~~~~ _ _ .  

—- ‘r ~ ——~~~~w----’~- — - —-S— -S.-- —S.--—-
-

~

-

~

S - ~~~~~
‘•1

— —

31 January 1979 System Development Corporation
—13— Th-6263/000/OO

NODE : ASsistant.
USE U

FOR (HOLMES—K N $ ——)
• . . IN (HOLMES—CBS ——)

—HOLMES-KNEW-WATSON-DID—NOT—BUY—SECURITIES

3 PATHS 7 PROBLEMS 1 PLANS

NEXT?Full plans -

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

*aa sas rSSSs,asas s s s

MAIN FORWARD CHAINS :

*51
ASSUME HOLMES-OBSERVED—CHALK-IN-GROOVE (THING—2)
CONCLUDE HOLMES-KNEW—WATSON-PLAYED—BILLIARDS (?HING—2)

**2
CONC LUDE BOLMES-KNEW-WATSON-PLAYED SI LLIARDS—WITH-THURSTON (THING-2)

*53
SEARC H H OLM ES-KNEW-THURS TON -WANTE D-WATSON TD-SBARE SE CURI TI E S (THING— i

*5)

SEARC H HOLMES -KNEW-WAT SON-DID—NOT HAVE—CHEQ UE BOOK (TH ING-2)
COMPUTE DIFFERENCE -BETWE EN (TBING —2 THING—i ONE—MONTH )
CONCLUDE HOLMES —KNEW-WATSON-DID—NOT -BUY—SECURITIES

a__aaa._aaas_as aa__s

The assistant is used again to convert the GIVEN —— FIND —— type
query into a GIVEN —— type query. In this situation DADM reasons
from the given assumption forward through the premises until a
complete plan is constructed or until a deductive limit is reached.
GIVEN type queries as especially useful for testing working
hypotheses and for generalized navigation (browsing) through virtual
relations.

Figure 6. Finding deductive consequences for a GIV EN type
- question .

- ~~ - •--~~~~~~~~~~~~~~~~ - - -— - — --. ————-



- - 
..~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~

-
~
- • - - - -

~~~ .
-- - -

- .- 
~~~~~~~~~~~~~~~~

b i;-. ~~~~~~~

System Development Corporation
31 January 1979 -

14 TM—6263/000/00

After the NEXT? prompt the user types “U” (the rest of the characters

being supplied by DADM type ahead) and then “1”. DADM responds with a

list of steps in the plan, the plausibility weight associated with each

step, and the premises and previous steps used in deriving each step.

Usage flow information has been separated from r-lan/evidence information

because many times it is not of interest to users.

2.3 DERIVE ALTERNATIVE COURSES OF ACTION TO SUPPORT ON-LINE DECISION
MAKING: REASONING ABOUT COMMAND AND CONTROL

DADM’s ability to reason about data can be a considerable aid to the on—line

decision maker. Given a question (problem) to be answered (solved) DADM

can quickly select relevant modular chunks of declarative knowledge and

combine them into plans which upon execution produce answers and evidence

articulating the alternative courses of action (ACOA ’s) open to the decision
maker. These ACOA ’s will , of course, only be as good or relevant as the

knowledge in the knowledge base. Since DADM adds new dimensions of

descriptive, deductive, and planning capabilities to on—line data base

searching it has the potential for becoming a major new form of on—line

decision aid. As a short example of the possibilities in this area,

consider a Task Force Commander who asks the question: “How can I achieve

ASW—SCREEN ready status if the Peterson returns to port?” The Commander ’s

aide would normally have to formulate a series of complex requests about the
Peterson ’s function in the screen, the availability of suitable replacement
ships, their ready status etc. Using DADM the question could be formulated

as shown in figure 7. DADM then displays the full inferential and search

implications of the request which include the Peterson leaving the Task—

force , causing a gap in the ASW—SC~EEN and a CONFIGURATION—i type hole that
must be filled by a SHIP—l that has the right equipment, status, etc.

The complexity of the DADM produced search plan is further illustrated in

figure 8. Here the Intermediate Language (IL) control mode is turned on,

the question repeated (REDO Q), and a lengthy relational algebra form of

~~~~1T~~~1J~~1J ~~~~~~~~
~—



- —-5— ~~~~~~
---5- -5 - • -

~~~~~~~~~ 
-

~~~~~~
—— , - -

~ -5 _ _ _ _ _ _ _

r 

r-.~~~ - -~~~~~~~ - ________________I _ - I
• 31 January 1979 System Development Corporation

TM —6263/000/00

5.

- MODE: Query:

- 

. ( ( R E T U R N S (PETERSEN) (PORT) ) IM P(STATUS (ASU—SCREEN) ( R E A D Y ) ) )

2 PATHS 11 PR OBLEMS 1 PLANS

- NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

a a* , s s s s S s a s s 5 5~~ ssSa

- • 5*3
• SEARCH READY—STATUS (SHIP—i READY)

SEARCH AVAILABLE—FOR—ASSIGNMENT (SHIP—i CONFIGURATION—i )
SEARCH ASW EQUIPMENT (CONFIGURATION—i ASROC)
SEARCH CLASS (CONFIGURATION—i ADAMS)
SEARCH TYPE (CONFIGURATION—i DD)

- - CONCLUDE AVA IL&BLE—FOR-ASW (SHIP—i CONFIGURATION—i)

ASSUME RETURNS (PETERSEN PORT)
- 

CONCLUDE LEAVES (PETERSEN TASK—FORCE)

I - 
CONCLUDE NOT PA RT-OF (PETERSEN TASK—FORCE )

- 5*4 -
SEARCH EMPLOYED—IN (PETERSEN ASW SCREEN)

a. CONCLUDE CAUSE —GA P (PETERSEN ASW—SCREEN )

- - 5*2
- SEARCH ASSIGNED—TO (PETERSEN CO NFI GURAT I ON—i)

• j . CONCLUDE HOLE ( CONFIGURA T I ON—i ASH—SCREEN )

•~~1SEARC H AUTHORIZE—TRANSFER (CAPTAIN SHIP—i ASW—SCREEN ) - •
CONCLUDE FILL—HOLE (SHIP—i ASH—SCREEN) -

*50 
—

SEARCH COMPLETE (ASW—SCREEN)::::_::::_ ::~~~~~~t~ READY)

SEARCH/COMPUTE PLAN:
SEARCH *EMPZ4 )YED -IN PETERSEN ASW— SCR EEN

I SEARC H *ASSIGNE D_TO PETERSEN CO NFIGURAT ION—i
SEARCH •TYPE CONF IGU RA TION —I DD
SEARCH *CLASS CONF I GURATION—i ADAM S
SEARCH *ASW—EQUIPMENT CO NFI GURA TION-i ASROC

I SEARCH •AVAILA BL E-FOR— A SSI GNME NT SHIP—i CONFIGU RATION -i
SEARCH •READY—ST ATUS SHIP — i READY
SEARCH AUTHORI Z E -TRANSFER CAPTAIN SHIP —i ASH-SCREEN
SEARC H *COMP LETE ASW- SCREEN

I Figure 7. Alternative courses of action —

Implications of Request.

S. -— -



- - - ________ • — _ - 
— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________

‘ I
’

31 January 1979 System Development Corpora tion
—16— TM—6263/000/OO

ADJUST: Control. Enter list of control modes:

k)
ADJUST: end adjustment.

*5
MODE: ASsistant.

REDO Q

2 PATHS 11 PROBLEMS 1 PLANS -
~~

NEXT?PL a n display. Enter plan number or list of plan numbers: -

PLAN NUMBER: 1

SEARCH/COMPUT E PLAN :
SEARCH EMPLOYED-IN PETERSEN ASH—SCREEN •

SEARCH 5ASSICNED—TO PETERSEN CONFIGURATION—i
SEARCH ?YPE CONFIGURATION-i DD - -

— SEARCH 5CLASS CONFIGURATION—i ADAMS
SEARCH 5ASW-EQU I PMENT CONFIGURATION-i ASROC - - -

SEARCH 5AVAILABL.E—FOR—ASSIGNMENT SHIP—i CONFIGURATION—i
SEARCH 5READY—STATUS SHIP— i READY
SEARCH 5AUT H ORIZ E— TRAN SFER CAPTAIN SHIP—i ASW—SCREE N -

SEARCH 5CONPLETE ASW—SCR EEN -.

EXECU?E ?Yes
re t r ieve (ASSIGNE D-TO .CONFIGURATION ,AVAILABLE—FOR—ASS IGNPIENT .SHIPJ

wher e (EMPLOY ED_ IN.SH IP_ UPE TE RSEN U )
and (EMP L OYED—IN • FUNCTIONa’ASW—SCREEN )
and (ASSIGNED—TO.SH IP ’ PETERSEN ) •: 

-

and (TYPE .CONF IGURATION ASSIGNED-TO.CONFIGURATION) 
- 

-;
and (TYPE.CA TEGORY_ N D D )
and (CLASS. CONFIGURATION—ASSIGNED—TO. CONFIGURATION )
and (CLASS.SHIP . ’ADAMS ) -

and (ASW -EQUIPMENT .COt1FIGURATION5ASSIGNED—TO.CONFIGURATION)
and (ASW_EQU IPMEN T.MIS SILE a ASROC ) -

and ( AVAILABLE-FOR-ASSIGNMENT.CONFIGURATION ’ASSIGNED-TO.COWFIGURATION ) 
-

and (READY—STATUS . SHIPaAVAILABLE_FOR~ASSIGNMENT. SHIP)
and (READY_STATUS .VALUEa READV) 

-

and (AU?HORI ZE-TRANSFER .RANKs CAPTAIN )
and (AUTHORIZE—TRANSFER. SHIP ’AVAILABLE—?OR—ASSIGNMENT .SHIP)
and (AUTHORIZE-TRANSFER . PUIICTION’ASW—SCREEN )
and (COMPLETE .FUNCTION5 ASW—SCREEN ) - - —

Figure 8. Alternative courses of action — Search 
- -

~~ strategy for external data base. - -

_ _ _ _ _ _ _ _ _ _



-—

r 31 January 1979 System Developmen t Corporation
- 1 7 —  TM—6263/ 000/OO

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY -—
CONDITIONAL ANSWERS :
YES IF —— H

*AU THORIZE _ TRANSFER CAPTAIN SPRUANCE ASW—SCREEN
- ;  *COMPLETE A SW—SCREEN

YES IF ——
*AUTHORIZE ..TRAN SFER CAPTAIN KINKAID ASW—SCREEN
5COMPLETE ASW—SCREEN

5 * 5 5* 5 * 5 * 5 5* 5 5*

EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY: 99

*53
FACT READY-STATUS (SPRUANCE READY)
FACT AVA I LABLE-FOR-ASSIGNMENT (SPRUANCE ATTACK—MODE)
FACT ASW—EQUIPMENT (ATTACK—MODE ASROC)
FACT CLASS (ATTACK-MODE ADAMS)
FACT TYPE (ATTACK—NODE DD)
CONCLUDE AVAILABLE—FOR—ASH (SPRUANC E ATTACK—MODE)

• 5*6
ASSUME RETURNS (PETERSEN PORT)
CONCLUDE LEAVES (PETERSEN TASK—FORCE )

**5
CONCLUDE NOT PART—OF (PETERSEN TASK—FORCE)

5*4
• FACT EMPLOYED-IN (PETERSEN ASH—SCREEN)

CONCLUDE CAUSE-GAP (PETERSEN ASW-SCREEN)

5*2
FACT ASSIGNED-TO (PE TER SEN ATTACK-MODE)
CONCLUDE HOLE (ATTACK—MODE ASW-SCREEN )

•~~1
FACT-REQ AUTHORIZE—TRANSFER (CAPTAIN SPRUANCE ASH-SCREEN)
CONCLUDE FILL—HOLE (SPRUANCE ASH-SCREEN)

*50
FACT—REQ COMPLETE (ASH—SCREEN)
CONCLUDE STATUS (ASW—SCREEN READY)

s s s Ss s a sa as a s s as 5~~ss

NEXT?Usage flow . Enter plan number or list of plan numbers:
1

PLAN 1
STEP WI USES
*53 99 PRE MISE 12

~6 99 PREMISE 10
* *5  99 ~~6 PREMISE 7
*54 99 ~~5 PREMISE 9*52 99 *54 PREMISE 8
5*1 99 ~ 2 5*3 PREMISE 6

~~ 0 99 ~~ 1 P R E M I S E  11
NEXT?
Done .

rigure 9. A l t e rna t ive c9urses of action — Conditional
• answers and evidence.

- - - - - - -_______ - — -5-- -— -——
- - - —— -  - -  ~~~~~~~~~~~~~~~~~~

-— -- -~~~~~ ~~~~ - - - —-~~ - ~—--- - • -~~ --~~~~— ~~~~~ -—- ~~~~~~~~~~~~~~~~~~ -~~~~~ -— — - ~-- A



-- ----- --—— 
. 

- 
—

~

--

~~~~~~~

-5- -

~~~~~~ 
~~~~~~~~~~~~~~~~~

31 January 1979 System Development Corporation
—18— TM-6263/000/OO

5*
NODE : Query:
.(OII4P (STATUS))
(STATUS HAS MISSING ARGUMENTS. 2 HAVE BEEN SUPPLIED.)

CHAINS LIMIT REACHED
- - FURTHER DEDUCTION REQUIRED:

(LEAVES .7.l)
TRY RARDER ?Ye S
TRYING HARDER:
DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE

(RETURNS.i0.1)
PARTIAL PLANS?Yes

7 PATHS i7 PROBLEMS 1 PLANS

NEX T?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

seas = = as = canons ass

*53
SEARCH READY—STATUS (SHIP—2 READY)
SEARCH AVAILABLE—FOR—ASSIGNMENT (SHIP—2 CONFIGURATION—i)
SEARCH ASH-EQUIPMENT (CONFIGURATION-i ASROC)
SEARCH CLASS (CONFIGURATION—i ADAMS)
SEARCH TYPE (CONFIGURATION—i DO)
CONCLUDE AVAILABLE-FOR-ASH (SHIP-2 CONFIGURATION-i)

SUPP—REQ RETURNS (SHIP—I PORT)
CONCLUDE LEAVES (SHIP—i TASK—FORCE)

**5
CONCLUDE NOT PART-OF (SHIP-] TASK-FORCE)

5 *4
SEARCH EMPLOYED—IN (SHIP— i ASH—SCREEN)
CONCLUDE CAUSE—GAP (SHIP—i ASH—SCREEN)

*52
SEARCH ASSIGNED—TO (SHIP—i CONFIGURATION—i)
CONCLUDE HOLE (CONFIGURATION— i ASH—SCREEN)

5*1
SEARCH AUTHORIZE—TRAN SFER (CAPTAIN SHIP—2 ASH—SCREEN)
CONCLUDE FILL-HOLE (S H I P — 2 ASH—SCREEN)

**0
SEARCH COMPLETE (ASH—SCREEN)
CONCLUDE STATUS (ASW—SCREEN READY)

snaassnsassaass.s S

SEARCH/COMPUTE PLAN :
SEARCH 5EMPLOYED—IN SHIP—i ASH-SCREEN
SEARCH *ASSIGNED_TO SHIP—i CONFIGURATION—i
SEARCH 5TYPE CONFIGURATION-i DD
SEARCH 5C1.ASS CONFIGURATION-I ADAMS
SEARCH *ASW_EQUIPMENT CONFIGURATION-i ASROC
SEARCH •AVA ILABLE—FOR—ASSIGNMENT SHIP—2 CONFIGURATION—i
SEARCH *READY_STATUS SHIP—2 READY
SEARCH 5AUTHORIZE—TRANSPER CAPTAIN SHIP—2 ASH—SCREEN
SEARCH COI4PLETE ASH-SCREEN

Figure 10. Alternative coutses of action — Incompletely
specified FIN 1) type question .

—-5 — —- -‘— -5— -5’— ----- —S. ~~~~
_________ - —S.- -5-

~~~~ 
- -



1-5--
~~~~~~~~~~~~

. - --~ ----~ --5--------~~- ~~~~~ _,.
_ _

~~~~~~~~ 1

31 January 1979 System Development Corporation
— 19— TM—6263/000/0O

~

DATA—BASE SEARCH SUCCESSFUL

***************
ANSWER SUMMARY —-
CONDITIONAL ANSWERS :

J YES IF ——
*AUTHORIZE_TMN $FER CAPTAIN BRISCO! ASH-SCREEN

P.5W-SCREEN
YES IF ——

*AUTHORIZE_ TRANSFER CAPTAIN SPRUANCE ASH—SCREEN
*COMPLETE ASH—SCREEN

YES IF —— *AUTHOR IZE-TRANSFER CAPTAIN KINKAID ASH—SCREEN
COI~PLETE ASW-SCREEN 

- 
-

EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY : 99

= s aSsa f l eSs  55505550

**3
FACT READY—STATUS (BRISCOE READY)
FACT AVAILABL E—FOR—ASSIGNMENT (BRISCOE DEFENSE—MODE )

• FACT ASH-EQUIPMENT (DEFENSE—MODE ASROC)
FACT CLASS (DEFENSE—MODE ADAMS)
FACT TYPE (DEFENSE—MODE DD)
CONCLUDE AVAILABLE-FOR—ASW (BRISCOS DEFENSE-MODE)

5*6
SUPP-REQ RETURNS (JOHN-HANCOCK PORT)
CONCLUDE LEAVES (JOHN—HANCOC K TASK—FORCE)

- - 5*5
CONCLUDE NOT PART-OF (JOHN-HANCOCK TASK-FORCE)

*54
FACT EMPLOYED-IN (JOHN—HANCOCK ASH-SCREEN)

— CONCLUDE CAUSE—GAP (JOHN—HANCOC K ASH—SCREEN )

FACT ASSIGNED-TO (JOHN-HANCOCK DEFENSE -MODE)
CONCLUDE HOLE (DEFENSE—MODE ASH—SCREEN)

PACT—REQ AUTHORIZE—TRANSFER (CAPTAIN BRISCOE ASH—SCREEN)
-- - CONCLUDE FILL—HOLE (BRISCOE ASH-SCREEN)

- - **0
FACT—REQ COMPLETE (ASH-SCREEN)
CONCLUDE STATUS (ASW—SCREEN READY) —

.__ S_ s_ _ _= a a _ a a a = a a s a

Figure 11. Alternative coursc~ of action — Tho Briscoc
can replace the John—Hancock if the latter
returns to port.

______

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I -


- - 1

System Development Corporation
31 January 1979 —22— TM—6263/000/OO

• search strategy is generated . IL search requests of this form will

• eventually be sent to external data management systems over a network

connection.
-

Figure 9 shows the several alternatives that have been found as a result

of deductively guided data base search . Two ships , the Spruance and

the Kinkaid , have been located that conditionally satisfy the intent of

the original request. The condition is that the Captain (Commander) must

authorize transfer of the ship to the screen and there must be no other

holes in the screen (it must be complete). Conditional answers illustrate

yet another important aspect of DADM ’s ability to return useful results in

the face of incomplete information. The conditional evidence chain for the

first answer is shown where FACT—REQ indicates facts that are required to

convert the chain from conditional to complete status .

The usage flow at the bottom of figure 9 illustrates how the steps in a
moderately complex deduction are derived from various premises and

preceeding steps.

Figures 10 to 13 are included to show backward reasoning (f igures 10, 11),
forward reasoning (f igure 12) , and reasoning with negation (figure 13)

variations on the original command and control query. Note the utility

of the TRY HARDER and PARTIAL PLAN facilities for coping with incomplete
plans .

- -

2.4 DERIVING MULTIPLE CHAINS OF EVIDENCE TO SUPPORT HIGH LEVEL CONJECTURES :
REASONING ABOUT SCIENTIFIC CO~~ UNICATION

In the last section we demonstrated how DADM produced answers and evidence
- -

chains could be interpreted as distinct patterns of information representing

alternative courses of action. In this section we will illustrate how DADM
produced inference plans and search strategies of varying plausibility may
produce multiple threads of evidence relevant to the same high level conjecture .

In many cases these threads of evidence have a mutually reinforcing effect

I
I

-5—

-

—-5 -—

-5

____ - -5

pwong
Text Box
Missing pages 20 & 21 from original film

- - — -5_~ _~~_~S.•-5-5~ -
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ 
_____________________

1’
~~

System Development Corporation
31 January 1979 —23— TM —6263/000/00

that can markedly improve on—line performance in judging how strongly the

evidence supports or refutes the user’s conjecture. We will also see

that DADM generates inference pa ths , answers, and evidence in a most
plausible, shortest path order so the most concise and credible
information is viewed first.

Consider a bibliographic data base that contains in addition to the usual

author , publication, citing , and subject matter relationships other
information on scientist—authors such as the name and location of their

research laboratories, information about their academic backgrounds , and
information about their attendance at various scientific conferences. The

two queries in figure 14 are typical requests of such a data base. The

first request provides a list of scientists and their laboratories by

year and country, while the second reveals that Barker , who studied under
Wilkins, is the author of a series of publications on bubble memory

technology.

Now let us suppose that an analyst familiar with this data base wants to

find out if a certain scientific result achieved in 1978 but not yet

published in the general scientific literature may also be known by

research workers at British laboratories. Notice our use of “may” in the

last sentence. It is unlikely that our analyst can establish directly ,

given the kind of data base he has , that a British laboratory knew about
- - the particular result. However, through the use of mechanized inference, J
• - he may be able to build a rather strong body of evidence to support a -i

conjecture to that e f f e c t .

In order to respond to queries of this form , premises must be formulated
that somehow relate information about the originator of a result to

scientists and laboratories that may know about the result. Premises and

relations relevan t to this problem have been def ined and entered into
— DADM as shown in the printout of DADM ’s inventory of relations, domains ,

and premise names shown in figure 15. First we see the HUSBAND, MARRIED ,

- 1
L—— 

- -- - 

~

- - - - -~~~~- ‘~~~ -~~ - ~~I I U~~~ ~~~~~~~~~~~~~~~~~~~ ‘ —~~~~‘~~~~~~~~~ -~

— —  —- -- ~~~~~~~~~~~ -~~~—~~~~~—~~- - —-~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S.


-5 —-5 ~— - --~ -—---.-- - -- - S. —-- ~~~~~~~~~~~~~ -5~~~ - 5 S .~~~S.~~~~ S.~~-5 - - — -

31 January 1979 System Development Corporation
—24— TM—6263/000/0O

Query :
.(-()IMP(AND(CONDUCTS—RESEARCH—AT SCI LAB YR) (LOCATED-ZN LAS CTRY)))

I PATHS 2 PROBLEMS 1 PLANS

NEXT?Fu li plans

SEARCH/COMPUTE PLAN:
SEARCH 5CONDUCTS—RESEARCH—AT THING—Sd THING—LAB THING—YR
SEARCH *~~~~ATE~~~IN THING—LAB TBING—CTRY

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL
- -

*5*5*5*5*5*5*5*
ANSWER SUMMARY —-
VARIABLES: -
(SCI LAB YR CTRY) I -
ANSWERS;
(AUDLEY—CHARLES STRATHCLYDE 1978 UK)
(BARTON—BROWN E MIT 1951 USA)
(BARTON—BROWNE LANCASTER 1978 UK)
(MACKENZIE CAMBRIDGE 1978 UK)
(SMITH IMPERIAL—COLLEGE 1978 UK)

- - (KILLICK—KENDRICK LANCASTER 1978 UK)
(HALLIDA Y EDINBURGH 1978 U K)
(SOUTHWOO D CAMBRIDGE 1978 UK)

MODE: Query:
.(OIMP(AND(STUDIED—UNDER X (WILKINS))(AUTHOR X PUBS)))

• PATHS 2 PROBLEMS 1 PLANS

NEXT?Full plans

SEARCH/COMPUTE PLAN:
SEARCH 5STUDIED—UWDER THING—X WILKINS
SEARCH *AUTHOR THING-X THING-PUBS

ENTERING DATA BASE •

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY —-
VARIABLE S:
(X PUBS)
ANSWERS:
(BARKER VISCOUS—FLOW-IN—BUBBLE—MEMORIES)
(BARKER FUNDAMENTALS—OF-BUBBLE—MEMORIES)
(BARKER [ADrICE—ARCHITECTURE-FOR..BUBBLE...WALL...STORAGE) - -

~ ! ~~r~~~~~~
T1ON_OF_BUBBLE_CHI PS—US ZNG—G3)

Figure 14. Multiple chains of evidence: Base Relation
Searching.

_ -~, —‘--

_ _i___-5_

~

_-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

31 January 1979 System Development Corporation
—25— TM—6263/000/O0

MODE : Show
SHOW : Relation tree.
(RELATIONS (HUSBAND )

(MARRIED)
(LIVES—IN)
(HOLMES—OBSERVED—CHALK-IN—GROOVE)
(HOLMES—KNEW-WATSON—PLAYED—BILLIARD S )
(HOLMES—KNEW-WATSON—PLAYED-B ILLIARDS—WI TH—T HUR STON )
(HOL .MES-KNEW—T HURSTON-WANTED— WAT SON-TO- SHARE—SE CUR ITIES)
(HOLMES-KNEW-WATSON-DID-NO T-HAVE-CHEQUE—BOOK)
(DIFFERENCE—BETWEEN)
(HOLMES-KNEW—WATSON-D ID—N OT—BUY—S ECDRI TIES)
(IC—VIRTUAL-RELATIONS (ORIGINATES)

(MEMBER—SAME—IC)
(SCIENTIF IC—INFORMATION—FLOW )
(KNOW S))

( IC—BASE—RELATIONS (STUDIED— UNDER)
(MASTER—T EACHER)
(ABOUT)

- 
(ATTEND )
(CONFERENCE—ON)
(CONDUCTS—RESEARCH—AT)
(LOCATED—IN)
(AUTHOR)
( C I T E S ) )

(ASW—VIRT U AL—RE LA TI ON S (RET URNS )
- (CAUSE—GA P)

(PART—OF)
(LEAVES)
(FILL—HO LE)
(HOLE)
(AVA I LABLE—FOR—ASH)
(STATUS))

(ASW-BASE-RELATIONS (COMPLETE)
(AUTHORIZE—TRANSFER)
(READY-STATUS)
(AVAILABLE-FOR—ASSIGNMENT)
(EMPLOYED—IN)
(ASSIGNED—TO)
(TYPE)
(CLASS)
(ASW-EQUIPMENT) )

SHOW : Domain t ree . SHOW : Premise tree .
(DOMAINS (MAN) (PREMISES (STUDENT—MBR)

(WOMAN) (AUTHOR-MBR)
(PLACE) (CITE-AU THOR-MBR)
(CONFIGURATION) (CITE PUB M B R)
( S H I P )  ( O R I G — I C )
(LOC) (CONF— IC)
(SCIENTIST)  ( I C — L A B )
(PUBLICATION) ( I C — I C ) )
(RESULT ) SHOw : end show.
( Y E A R )
(MEETING)
(SUBJECT )
( L A B ) )

Figu re iS. M u l t i p l e  chains of evidence: Relation , Domain ,
and Premise Names.

~~~~~~


System Development Corporation
31 January 1979 —26— TM—6263/000/0O

LIVES—IN, and HOLMES relations along with the ASW example BASE and
VIRTUAL relations. Next is a list of new “IC” BASE and VIRTUAL relation.

where IC stands for the notion of Invisible College (i.e., scientific

in—group or clique) . To support the IC VIRTUAL relations (ORIGINATES,

MEMBER-SAME—IC, SCIENTIFIC—INFORMATION-FLOW, KNOWS) we have constructed
eight premises, and given them the names shown near the bottom of figure
15. Four of these premises formalize criteria for membership in an

invisible college and the rest relate scientists and laboratories to
knowledge shared by the members of an invisible college. Two sample

premises are expressed in English below :

SCIENTISTS WHO CO-AUTHOR A PUBLICATION MAY BE MEMBERS OF THE

SANE INVISIBLE COLLEGE.

A SCIENTIST WHO ORIGINATES A NEW RESULT DURING A YEAR IS LIKELY

TO TRANSMIT KNOWLEDGE OF THAT RESULT TO MEMBERS OF HIS INVISI BLE
COLLEGE DURING THAT YEAR.

In figure 16 the conjecture that UK laboratories know about a magnetic
bubble result originated by Barker is input to DADM and 6 deductive paths

and plans requiring solution of 21 problems and subprobleme are found
before the chains limit is reached. The initial usage flow for the 6

plans is displayed and we imeediately notice that plans 1 and 4 have the
highest plausibility weight.

In figures 17 to 24 the plans and evidence chains are shown in user

preferred order and format. In the next figure the final usage flow

information details the plausibility weights and deductive support for the

steps in each of the 6 plans. -
-

In f igures 26 through 30 the DADM system “trys harder” and two additional
but less plausible plans are found. Then the IL control mode is turned

on to demonstrate the generation of more complex forms of IL search requests.

Next the four invisible college membership premises are deleted in order to

-: -

_ _ _ _ _ _ _ _ _ _

-5 — - ---5 - — - -

~~~1

31 January 1979 —27— 
System D e v e l o pm e n t C r t O n

MODE : Query:
.((f.AB L)

- - (ORIGINATES (BARKER) (HAG—BUBBLE) (1978))
IMP
(AND (KNOWS L (NAG—BUBBLE) (1978) )  (LOCATED—IN L (UK))))

CHAINS LIMIT REACHED
- 

6 PATHS 21 PROBLEMS 6 PLANS

NEXT?Usage flow . Enter plan num ber or list of plan numbers:
(1 TO 6)

PLAN 1
WY PREMISES
95 (16 17 19)

PLAN 2
Wi’ PREMISES
80 (15 17 19)

PLAN 3- WT PREMISES
— 

- 
71 (14 17 19)

L PLAN 4
WY PREMISES

- 95 (16 17 lB 19 21)

- PLAN 5
- 

WT PREMISES
81 (15 17 18 19 21)

PLAN 6
- - WY PREMISES

• - 70 (14 17 18 19 20)

i’s

I 
~ 1 Figure 16. Multiple chains of evidence : The conjecture and

initial usage flow.

f l  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - - -5 
- — - - -  - -

- - -  ~~~~~~~~ - - - - -
~~~~~~~~~~ - - - - ~~~~~~~~~~~ —-5—I-~~ ~~~~~~~~~ - ____


- —-5 — -r — — , _ .
~-.,., ~~~~~~~~

31. January 1979 System Development Corporation
—28— TM—6263/000/OO

NEXT?P Lan display. Enter plan number or list of plan numbers: -

(1 4)
PLAN NUMBER: 1 -

(<IN FERENCE PLAN 1 PLAUSIBILITY: 95

2 SUBPLANS:
- -

asses_nfl sssseflsss
-

*52
-

SEARCH CITES (PUBLICAT ION—l PUBLICATIOW—2) - .
SEARCH CITES (PLIBLICATION—2 PUBLICATION—i)
SEARCH AUTHOR (SCIENTIST-i PUBLICATION—i)
SEARCH AUTHOR (BARKER PUBLICATION—2)
CONCLUDE MEMBER—SAME—IC (BARKER SCIENTIST—i) - -~

5*1
ASSUME ORIGINATES (BARKER NAG—BUBBLE 1978) -
CONCLUDE KNOWS (SCIENTIST— i MAG—BUBBLE 1978) -

5*0
SEARCH CONDUCTS-RESEARCH—AT (SCIENTIST—i LAB—L 1978) -

CONCLUDE KNOW S (LAB—L NAG—BUBBLE 1978)
- -

assss ssss s sees sesse a

SEARCH LOCATED—IN (LAB—L UK) - -

s _ s _ s _ _ a_ s ss =sSe.ase -
-

SEARCH/COMPUTE PLAN :

SEARCH AUTHOR BARKER PUBLICATION 2 - .

SEARCH *AUTHOR SCIENTIST—i PUBLICATION—i —
SEARCH 5CITES PUBLICATION-2 PUBLICATION—i - ‘

SEARCH CITES PUBLICATION—i PUBLICATION—2
SEARC H 5CONDUCTS—RESEARCH—AT SCIENTIST—i LAB—L 1978 - .

SEARCH *LOCATBD~ IN LAB-L UK - - -
-

Figure 17. Multiple chains of evidence: Plan—i.

LL
- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - -

- - -—- -- ~~
- _--5~,t=_ -~~~~~’

_____ -

-~~~~~~~ • -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--— —-—— —--—‘-- -— --

~~~~~~~~::_~~~ WPuu!
~~

31 January 1979 System Development Corporation
—29-- TM —6263/000/00

EXECUTE?Yes

ENTER INC DATA BASE

DATA—BASE SEARC H SUCCESS FUL

ANSWER SUMMARY ——VARIABLES:
(L)

ANSW ERS:
(EDINBURGH) -

EVIDENCE CHAIN i PROM PLAN I PLAUSIBILITY: 95

2 CONCLUSIONS:
ssssss.ses ~~aassss. .s

5*2
FACT CITES (B USRLE—I1EN ORIU —RE VISIf lD VI SCOLJS -?L O W—IN—BUBBLE—MEMORIE S)
PACT CITES (VISCOUS—PLOW—IN—BUBBLE—NEMORIES BUBBLE—MEMORIES-REVISITED)
PACT AUTHOR (HALLIDAY BUBBLE—MEMORIES—REVISITED)
PACT AUTHOR (BARKER VI SCOUS-?i.OW-IN—BUBBLE-NEMOR IES)
CONCLUDE MEMBER-SAME—IC (BARKER RALLIDAY)

ASSUME ORIGINATES (BARKER NAG—BUBBLE 1978)
CONCLUDE KN OWS (HALLIDAY NAG—BUBBLE 1978)

•~~0
FACT CONDUCTS—RESEARCH—AT (HALLIDAY EDINBURGH 1978)
CONCLUDE KNOWS (EDINBURGH HAG—BUBBLE 1978)

se. sassss snsesssss
—

PACT LOCATED—IN (EDINBURGH UK)

e s _ s _ s_ s _ _ s _ _ e s s_ s _ s

Figure 18. Multiple chain. of evidence: Chain—i.

~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~

—

—
~~~~~~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~- . —

31 January 1979 System Development Corporation
—30— TM —6263/000/00

PLA N NUMBER: 4

<<INFERENCE PLAN 4 PLAUSIBILITY: 95

2 SUBPLANS :
s _ s _ s e _ _ s_ s 5 5 = 5 5 = 5=5

5*3
SEARCH CONFERENCE—ON (MEETING—i SUBJECT—i 1978)
SEARCH ATTEND (SCIENTIST—i MEETING—i 1978)
SEARCH ATTEND (SCIENTIST—2 MEETING—i 1978)
CONCLUDE SCIENTIFIC—INFORMATION—PLOW (SCIENTIST—2 SCIENTIST—i SUBJECT—i 1978)

5*4
SEARCH CITES (PUBLICATION—i PUBLICATION—2)
SEARCH CITES (PUBLICATION—2 PUBLICATION—i)
SEARCH AUTHOR (SCIENTIST—2 PUBLICATION—i)
SEARCH AUTHOR (BARKER PUBLICATION—2)
CONCLUDE MEMBER—SAME—IC (BARKER SCIENTIST—2)

5*2
ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KN OWS (SCIEN TIST—2 MAC—BUBBLE 1978)

SEARCH ABOUT (MAC— BUBBLE SUBJECT— i)
CONCLUDE KN OWS (SCIENTIST— i HAG—BUBBLE 1978)

5*0
SEARCH CONDUCTS—RESEARCH—AT (SCIENTIST—i LAB—L 1978)
CONCLUDE KNOWS (LAB—i. NAG-BUBBLE 1978)

55555 = 555555e55 = = -

SEARCH LOCATED—IN (LAB—L Uk)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SEARCH/COMPUTE PLAN:
SEARCH AUTHOR BARKER PUBLICATION—2
SEARCH AUTHOR SCIENTIST—2 PUBLICATION—i
SEARCH *CITES PUBLICATION—2 PUBLICATION—i
SEARCH *CITES PUBLICATION—i PUBLICATION—2
SEARCH *ABOUT NAG—BUBBLE SUBJECT—i
SEARCH *ATTEND SCIENTIST—2 MEETING—i 1978
SEARCH •ATTEND SCIENTIST—i MEETING—i 1978
SEARCH *CONFERENCE_ON MEETING—i SUBJECT—i 1978
SEARCH *CONDUCTS _RESEARCH_AT SCIENTI ST—i I.AB—L 1978
SEARCH *j ~~~ATE~ _~~ LAB—L UK

EXECtJTE?Yes

Figure 19. Multiple chains of evidence: Plan—4

L _____________________ _ _ _ _ _ _ _ _



_____ - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —_ - —~~~ —_-~ -‘-•- ---------~,----- - , - - - — --I--

31 January 1979 System Development Corporation
—31— TM—6263/000/00

DATA—BASE SEARCH SUCC ESSFUL

ANSWER SUMMARY ——- - VARIABL ES:
(I.)

ANSWERS:
(CAMBRIDGE)
** 5* ** 5* * * * * * * *

EVIDENCE CHAIN 1 FROM PLAN 4 PLAUSIBILITY: 95

2 CONCLUSIONS:
n.ssss.ss .s.sseasSs

*53
PACT CONFERENCE—ON (APS BUBBLE—MEMORIES 1970)
PACT ATTEND (SOUTHW OOD APS 1978)
FAC T ATTEND ( BOYCE APS 1978)
CONCLUDE SC I ENTI PIC -INP ORII ATION PLOW ( BOYC E SOUTHWOOD BUBBLE—MEMORIES 1978)

*54
PACT C ITES (HIGH—SPEED—BUBBLE-MEMORIES VISCOUS-PLOW-IN-BUBBLE NENORIES)
FACT CITES (VISCOUS—PLO W—IN—BUBBLE—MEMORIES HIGH—SPBED—BUBBLS—NENORIES)
PACT AUTHOR (BOYCE HIGH-SPEED-BUBBLE—MEMORIES)
PACT AUTHOR (BARKER VISCOUS—PLOW-IN—BUBBLE—MEMORIES )
CONCLUDE MEMBER—S AME—I C ( BARKER BOYCE)

*52
ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KNOWS ( BOYCE NAG—BUBBLE 1978)

5*1
FACT ABOUT (HAG—BUBBLE BUBBLE—MEMORIES)
CONCLUDE KNOWS (SOUTUWOOD HAG—BUBBLE 1978)

*5p

PACT CONDUCTS—RESE ARCH-AT (SOUTHW000 CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE NAG—BUBBLE 1970)

5 5_ s e_ _s e _ _ e s  5.5.555 _2

PACT LOCATED-IN (CAMBRIDGE UK)

Figure 20. Multiple chains of evidence: Chain—4.

- -~~~~ -_ ~~~~:-~~~ ~~~~~:~~~ - ~~~



- 
-—fl—--— -

~~ 
- •--- -— --— —-- r— _

~~~~~-- - —-—----5- --—-5——--— —_—--—-- -5- ------5—- _
~~r~~~~~- -~~- _ —--

I

31 Jan uary 1979 System Development Corporation
-32— TM —6263/000/00

NEXT?Exec ute plan . Enter plan number or list of plan numbers: —

(2 3 5 6)
PLAN NUMBER: 2
SEARCH/COMPUTE PLAN :

SEARCH 5AUTHOR BARKER PUBLICATION—2
SEARCH *AUTHOR SCIENTIST—i PUBLICATION—i
SEARCH CITES PUBLICATION—2 SCIENTIST—i
SEARCH 5CITES PUBLICATION—i BARKER
SEARCH 5CONDIJCTS—RESEARCH—AT SCIENTIST-i LAB—i. 1978
SEARCH 5LOCATED-IN LAB—i. UK

ENTERING DATA BASE
-

-

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY -- - -
VARIABLES :
(L)
ANSWERS:
(STRATHCLYDE)

EVIDENCE CHAIN i FROM PLAN 2 PLAUSIBILITY: 80

2 CONCLUSIONS :
55 = ss s = = Sn = fi = ss s s s

FACT CITES (CAGE-MATERIAL-FOR—BUBBLE—MEMORIES BARKER)
FACT CITES (FABRICATION-OP-BUBBLE—CHIPS—USING—G3 AUDLEY—CHARLES) - - -

FACT AUTHOR (AUDLEY-CHARLES CAGE—MATERIAL—FOR—BUBBLE—MEMORIES)
FACT AUTHOR (BARKER FABRICATION—OP—BUBBLE—CHIPS—USING—G3)

-
CONCLUDE MEMBER-SAME-IC (BARKER AUDLEY—CHARLES)

5*1 - -

ASSUME ORIGINATES (BARKER MAC—BUBBLE 1978) —

CONCLUDE KN OWS (AUDLEY—CHA R LES NAG—BUBBLE 1978)

5*0 -
PACT CONDUCTS-RESEARCH—AT (AUDLEY—CRARLES STP.ATHCLYDE 1978)
CONCLUDE KNOWS (STRATHCLYDE HAG-BUBBLE 1978) - .

_ _ _ e_ es s _ s _ s _ es s _ •_ e
—

FACT LOCATED-IN (STRATHCLYDE UK)

555555555= e s _ a s s_ _e s -.

— T
Figure 21. Mul tiple chains of evidence: Sear ch plan

and chain—2.
— I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~ :



-~ - 

~
-
~

-—
~
-
~~~ 

-
~

-

~~~~ I
F

31 January 1979 System Developmefl~~~~~ O~~~~ fl

— 
- PLA N NUMBER: 3

SEARCH/COMPUTE PLAN:
- • SEARCH *AUTHOR BARKER PUBLICATION—i

SEARCH AUTHOR SCIENTIST—i PUBLICATION—i
SEARCH CONDUCTS—RESEA RCH—AT SCIENTIST— i LAB—L 1978
SEARCH LOCATED—IN LAB—L UK -

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY ——
VARIABLES :
(L )
ANSWERS :
(LANCASTER)

EVIDENCE CHAIN 1 FROM PLAN 3 PLAUSIBILITY : ii

2 CONCLUSIONS:
5_ s _ s  = = = 5555=5 55=  s_s

5*2
PACT AUTHOR (KI LLICK—KENDRICK FUNDAMENTALS—OF—BUBBLE—MEMORIES)
FACT AUTHOR (BARKER FUNDAMENTALS—OF—BUBBLE—MEMORIES)
CONCLUDE MEMBER—SAME-IC (BARKER KILLICK-KENDRICK)

*51
ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KNOWS (KILLICK—KENDRICK MAC—BUBBLE 1978)

•~ 0
FACT CONDUCTS-RESEARCH-AT (KILLICK—UNDRICK LANCASTER 1978)
CONCLUDE KNOWS (LANCASTER NAG-BUBBLE 1978)

=5 z =5=5 5 5 5 5s55 assess

PACT LOCATED—IN (LANCASTER UK)

_sas s essess_  555,55s5

1

Figure 22. Multiple cha ins of evidence: Search plan
and chain—3 .

-- - - -~~~~~~~~~~ ----- ~~~~~~~~~~~~~~~~~~~~~~~ 
—— _ _ —_-i — —

~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - ~~~~~~~~~
-

~~~
-— ---

~~~~~~~~~~- 

-

---—-~~~~~ _-

—~~~

31 January 1979 System Development Corporation
—34— Th—6263/000/00

PLAN NUMBER: 5
SEARCH/COMPUTE PLAN :

SEARCH 5AUTHOR BARKER PUBLICATION—2
SEARCH 5AUTHOR SCIENTI ST—2 PUBLICATION—i
SEARCH 5CITES PUBL ICATION—2 SCIENTI ST—2
SEARCH *CITES PUBLICATION—i BARKER
SEARCH *ABOUT MAC—BUBBLE SUBJECT—i
SEARCH 5ATTEND SCIENTIST—2 MEETING—i 1978
SEARCH 5ATTEND SCIENTIST—i MEETING—i 1978
SEARCH 5CONFERENCE—ON MEETING-i SUBJECT—i 1978
SEARC H 5CONDUCTS—RES EARCH—AT SCIENTIST—i LAB—L 1978
SEARCH 5i.OCATED-IN LAB-i. UK

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY -—
VARIABLES:
(L)

ANSWERS :
(LANCASTER) -

(CAMBRIDGE)

EVIDENCE CHAIN 1 FROM PLAN 5 PLAUSIBILITY: 80

2 CONCLUSIONS :

*53
FACT CONFERENCE—ON (I E E E BUBBLE—MEMORIES 1978)
FACT ATTEND (BARTON—BROWNS IEEE i978)
FACT ATTEND (YOSH IDA IEE E 1978)

— CONCLUDE SCIENTIFIC-INFORMATION-FLOW (YOSHIDA BARTON—BROWNE BUBBLE—MEMORIES 1978)

* 54
FACT CITE S (CONTIGUOUS—DISK-BUBBLE—MEMORIES BARKER)
FACT CITES (LATTICE-ARCHITECTURE-FOR—BUBBLE—WALL—STORAGE YOSHIDA)
FACT AUTHOR (YOSHIDA CONTIGtJCZ~S—DISK—BUBBLE—MEMORIES)FACT AUTHOR (BARKER LA TTICE—ARCHITECTURE—FOR—BUBBLE—WALL—STORAGE)
CONCLUDE MEMBER-SAME-IC (BARKER YOSHIDA)

**2
ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KNOWS (YOSHIDA MAG—BUBBLE 1978)

~~ 1
-

PACT ABOUT (NAG—BUBBLE BUBBLE—MEMORIES)
CONCLUDE KNOWS (BARTON—BROWNE MAC—BUBBLE 1978)

•~ 0
FACT CONDUCTS-RESEARCH-AT (BARTON-BROWNE LANCASTER i978)
CONCLUDE KNOW S (LANCASTER NAG—BUBBLE i978)

5 5 5 5 5 5 5 5=_ s 5 5555555 5

FACT LOCATED—IN (LANCASTER UK)

s s s s s Ss s S s S 5 5 5 5 55 5 5

Figurc 23. Multi ple chains of evidence: Search plan and
chain—S.

-: -

_
____ — - -

- N .

31 January 1979 System Development Corporation
—35— TM— 6263/000/00

PLAN NUMBER: 6
SEARCH/COMPUTE PLAN:

SEARCH *AUTHOR BARKER PUBLICATION—i
SEARCH *AUTHOR SCIENTIST— 2 PUBLICATION—i

- - SEARCH ABOUT NAG—BUBBLE SUBJECT-i
SEARCH 5ATTEND SCIENTIST—2 MEETING—i 1978
SEARCH ATTEND SCIENTIST—i M EETI NG—i 1978
SEARCH CONFERENCE—ON MEETING—i SUBJECT—i 1978
SEARCH CONDUCTS—RESEARCH—AT SCIENTIST—i LAB—L 1978
SEARCH 5LO CATBD— IN LAB—i. UK

ENTERING DATA BASE

• - DATA—BAS~ ~EARCH SUCCESSFUL

5*5* 5*5* * 5* * *5*
ANSWER SUMMARY ——VARIABLES :
(L)
ANSWERS :
(CAMBRIDGE) -

* 5* * * * *5*5 5*5*5

:
EVIDENCE CHAIN i FROM PLAN 6 PLAUSIBILITY: 70

2 CONCLUSIONS :
=s _ s s s _ s s e s s e _ _ s _ _ _ _

FACT CONFERENCE—ON (APS BUBBLE—MEMORIES 1978)
FACT ATTEND (SOUTHWOOD APS 1978)
FACT ATTEND (BOYCE APS 1978)
CONCLUDE SCIENT IFIC—INFORMATION—FLOW (BOYCE SOUTUW000 BUBBLE—MEMORIES 1978)

-~~~ 5*4
FACT AUTHOR (BOYCE VISCOUS—FLOW—IN—BUBBLE—MEMORIES)

• - FACT AUTHOR (BARKER VISCOUS-FLOW-IN-BUBBLE—MEMORIES); CONCLUDE MEMBER—SAME—IC (BARKER BOYCE)

5*2
ASSUME ORIGINATES (BARKER NAG—BUBBLE 1978)
CONCLUDE KNOWS (BOYCE NAG—BUBBLE 1978)

5*1
PACT ABOUT (HAG—BUBBLE BUBBLE—MEMORIES)
CONCLUDE KNOWS (SOUTHWOOD NAG-BUBBLE 1978)

5*5
PACT CONDUCTS—RESEARCH—AT (SOUTHWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE NAG—BUBBLE 1978)

-~ e s_ _s _ _s 555ss5.55s 55

PACT LOCATED—IN (CAMBRIDGE UK)

55.5_s_s_s SSS..SSSSS

Figure 24. ~tultip1e chains of evidence : Search plan
and chain—6 .

-— I ~~~~~~~~~ _ _ _ _ _ _ _

—-5—- -5 - - --- ----
~~~~~~~~~~ ‘ —---—— ~

—--- - --—- -_~~
_ _ j - _ - -—_ -—~~~ — --~~~~~ ---~ —— —i

31 January 1979 System Development Corporation
—36— TM —6263/000/00

NEXT7U5egS flow. Enter plan number or list of plan numbers:
(l TO 6)

PLAN I
STEP WT USES
~~~2 95 PREMISE 16 -

5*1 9~ *52 PREMISE 17 - -
5*5 99 *51 PREMISE 19

PLAN 2
- -

STEP N? USES
*52 88 PREMISE iS
*51 99 5*2 PREMISE 17

-

~~~ 99 5*1 PREMISE 19

PLAN 3 - - -

STEP WT USES
2 70 PREMISE 14 -

*51 99 *52 PREMISE 17 - -

*55 99 *51 PREMISE 19

PLAN 4
STEP WT USES
*53 99 PREMISE 18 -

5*4 95 PREMISE 16
*52 99 •~4 PREMISE 17 - -
*51 99 *52 *53 PREMISE 20
5*5 99 *51 PREMISE 19 - -

PLAN S
STEP WT USES
*53 99 PREMISE 18
*54 80 PREMISE 15
**2 99 *54 PREMISE 17 .

~*51 99 ~ 2 *53 PREMIS E 20
5*5 99 **1 PREMISE 19

PLAN 6
STEP WT USES -*53 99 PREMISE 18
~~ 4 70 PREMiSE 14
*52 99 5*4 PREMISE 17

~~A 99 •~ 2 *53 PREMISE 20
5*5 99 •~1 PREMISE 19
NEXT?Tr y harder
TRYING HARDER:

~~~ 
_ _

_ _ _

•1
Figure 25. Multi ple chains of evidence : Final usage flow

for f irst 6 plans.

_ _ _ _

— — — - - -5 — - ---— -~- --—-- --~~~~~~~ ---~~~~~-- ~~~~~~~~
__ _-_

~~~~
_ _

~~~~ 4


_____ iT~~~~ ’— — ~~~~~~
”
~~~~~~ 

-
~~ ~~~~~~~~~~~~~~~~~~~~

-s

5—’ 
__~

‘_
~

_
I~ I

31 January 1979 System Development Corporation
—37— TM—6263/000/00

7 PATHS 24 PROBLEMS 8 PLANS

NEXT?PLan display. Enter plan number or list of plan numbers:
(7 8)
PLAN NUMBER: 7

< (INFERENCE PLAN 7 PLAUSIBILITY: 70

2 SUBPLANS :
5 5 5 5 5 5 5 5 5 5_ s  5=555555

*53
SEARCH CONFERENCE—ON (MEETING—i SUBJECT—i 1978)
SEARCH ATTEND (SCIENTIST—i MEETING—i 1978)
SEARCH ATTEND (SCIENTIST—2 MEETING—i 1978)
CONCLUDE SCIENTIFIC—INFORMATION—FLOW (SCIENTIST—2 SCIENTIST—i SUBJECT—i 1978)

5*4
SEARCH AUTHOR (SCIENTIST—2 PUBLICATION—i)
SEARCH AUTHOR (BARKER PUBLICATION—i)
CONCLUDE MEMBER—SAME—IC (BARKER SCIENTIST—2)

5*2
ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST—2 HAG—BUBBLE 1978)

**i
SEARCH ABOUT (NAG-BUBBLE SUBJECT—i)
CONCLUDE KNOWS (SCIENTIST—i NAG—BUBBLE 1978)

**0
SEARCH CONDUCTS—RESEARCH—AT (SCIENTIST—i LAB—L 1978)
CONCLUDE KNOWS (LAB-i. HAG—BUBBLE 1978)

5 5 5_ 5=5 5_ s s e es S = 5555

SEARCH LOCATED—IN (LAB—L UK)

SS S 5 S S 5  = Sn 555 555f l55

SEARCH/COMPUTE PLAN:
SEARC H *AUTHOR BARKER PUBLICATION-i
SEARCH *AUTHOR SCIENTIST—2 PUBLICATION—i
SEARCH *ABOUT HAG—BUBBLE SUBJECT-i
SEARCH *ATTEND SCIENTIST—2 MEETING—i 1978
SEARCH •ATTEND SCIENTIST—i MEETING—i 1978
SEARCH CONFERENCE—ON MEETING—i SUBJECT— i 1978
SEARCH *CONDUCTS..RESEARCH_AT SCIENTIST—i LAB-i. 1978
SEARCH *LOCATED_IN LAB-i. UK

Figure 26. HultiDle chainR of evidence~ Plan—7. 

—-- -~~~~~--



-, ;~~~~~
— 

_____  
n

--5
~~~~~~~ 

- - - - -

- -
-
~~~~~~

---- -

) _  .

31 January 1979 System Development Corporation
—38— TM—6263/000/0Q

EXECUTE?Yes
put (retrievelAUTHOR.SCIENTIST AUTHOR .TITLE]J into 0082;
put t r et r i eveL AT T E ND .SC I ENT I ST , ATT END.CONPER ENCE ,AWE ND.DATE ) J into 0083;
r . t r ieve I AUTHOR.T I TL E , 0 08 2 .0 , ABOUT .MAJOR ARE A 1ATTEN D.CO NFER E NCE , 1083.0 ,
CONDUCTS—RESEARCH—AT. L~~ATION)
where (AUTHOR.SCIENTIST5 SBARKERU)
and ( 0082.1 AUTNOR.TITLE)
and (~~ OUT.TOPIC=

5MAG_BUBBLEu)
and(ATTEND.SCIENTIST— 0082.0)
and (ATTEND. DATE-1978)
and (_0083. 1—ATTEND.CONFER EN C E )
and ( 0083.2.1978)
and (~~~NFER ENCE—ON. CONFERENC E sATT EN b.CO NF EREN CE)
and (CONFERENCE—ON.TOPIC—ABOUT .NAJOR—AREA)
and (CONFERENCE-ON YEAR-1978)
and (CONDUCTS —RESEARCH—AT.SC IE NT I ST a 0 0 8 3 . 0)
and (C O NDUCTS—RESEARCH—AT .YEAR s 1978)
and(LOCATED—IN - PLACE1sCONDUCTS—RESEARCH—AT. LOCATION)
and (LOCATED—IN.PLACE2s UK )

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

***************
ANSWER SUMMARY —-
VARIABLES :
(L)

ANSWERS:
(CAMBRIDGE)
* *5* 5* * * *5 * * * *5

EVIDENCE CHAIN 1 FROM PLAN 7 PLAUSIBILITY: 70

2 CONCLUSIONS :
_ s 5 _ s~~ S -t = = = =5 = = =5 = S=

*53
FACT CONFERENCE—ON (APS BUBBLE—MEMORIES 1978)
FACT ATTEND (SOUTHWOOD APS 1978)
FACT ATTEND (BOYCE APS 1978)
CONCLUDE SCIENTIFIC—INFORMATION—PLOW (BOYCE SOUTNWOOD BUBBLE—MEMORIES 1978)

*54 —

FACT AUTHOR (BOYCE VISCOUS—FLOW—IN—BUBBLE—MEMORIES)
FACT AUTHOR (BARKER VISCOUS—FLOW—IN—BUBBLE—MEMORIES)
CONCLUDE MEMBER-SAME—IC (BARKER BOYCE)

5*2
ASSUME ORIGINATES (BARKER NAG-BUBBLE 1978)
CONCLUDE KNOWS (BOYCE HAG—BUBBLE 1978,

•~~1
PACT ABOUT (HAG—BUBBLE BUBBLE—MEMORIES)
CONCLUDE KNOWS (SOUTHWOOD HAG—BUBBLE 1978)

5*0
FACT CONDUCTS—RESEARCH—AT (SOUTHWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE P~A (,-bUBBLE 1978)

5_ s _ s _ s s _ _ s * as  es_ S_s

PACT LOCATED—IN (CAMBRIDG E UK)

5_s_ a_S  Ses S__ s SS_ es  5

Figure 27 Multiple chains of evidence : IL Request
and chain-7. 

_ _ _ _  _ _ _
-5- --.-5— -—-- • -—-----5-- S _____



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

.5

1.
31 January 1979 System Development Corporation

- ~~~

- —39— TM —6263/000/00

t 

‘.

~ 1.

1 PLAN NUMBER: 8

I <<INFERENCE PLAN B PLAUSIBILITY: 60

2 SUBPLANS:

- SEARC H CONFERENCE—ON (MEETING—i SUBJECT—i 1978)
SEARCH ATTEND (SCIENTIST—i MEETING—i 1978) 

•

SEARCH ATTEND (SCIENTIST—3 MEETING—i 1978)
CONCLUDE SCIENTIFIC—INFORMATION—FLOW (SCIENTIST—3 SCIENTIST— i SUBJECT—i 1978)

-

• 
- 5*4

- SEARCH MASTER—TEACHER (SCIENTIST—2)
SEARCH STUDIED—UNDER (SCIENTIST—3 SCIENTIST—2) - - -
SEARCH STUDIED—UNDER (BARKER SCIEtITIST—2)
CONCLUDE MEMBER—SAME—IC (BARKER SCIENTIST—3)

r *52
ASSUME ORIGINATES (BARKER MAG-%UBBLE 1978)
CONCLUDE KNOWS (SCIENTIST— 3 NAG—BUBBLE 1978)

I *51
SEARCH ABOUT (NAG—BUBBLE SUBJECT—i)
CONCLUDE KNOWS (SCIENTIST—i NAG—BUBBLE 1978)

*50
SEARCH CONDUCTS—RESEARCH—AT (SCIENTIST—i LAB—i. 1978)
CONCLUDE KNOWS (LAS—L HAG—BUBBLE 1978)

5_S_ see_S  S _ _5S S _  SeSS

SEARCH LOCATED-IN (LAB-L UK)

_ s s S _  SSSssesSSssseSS

Figure 28. Multiple chains of evidence: Plan—8.

~1 __________________ _________ ______ 
______________

~

L T - 5

~

-- 5

~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- - - - -~~~~~ - IS~~~~~~~~ - • • ~~~~~~~~~ -5~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ SS_-5-5 - - -

-

31 January 1979 System Development Corporation
—40— TM —6263/000/00

SEARCH/COMPUTE PLAN :
SEARCH 5STUDIED—UNDER BARKER SCIENTIST—2
SEARCH ~STUDIED —UNDER SCIENTIST-3 SCIENT IST— 2
SEARCH *MASTER_TEACHER SCIENTIST—2
SEARCH 5ABOUT NAG—BUBBLE SUBJECT—i
SEARCH *ATTEND SCIENTIST—3 MEETING—i 1978
SEARCH •ATTEND SCIENTIST—i MEETING—i 1978
SEARCH 5CONFERENCE-ON MEETING—i SUBJECT—i 1978
SEARCH 5CONDUCTS—RESEARCH—AT SCIENTIST-i LAB-i. 1978
SEARCH *LOCATED IN LAB-L UK

EXECUTE?Yes -?
MASTER-TEACHER IS NOT AN EXTERNAL RELATION.
put (retr ieve (STUDIED—UNDER.STUDENT ,STUDIED—UNDER.TEACHERJ) into _0084; *
put (retrieve (ATTEND.SCIENTIST,ATTEND.CONFERENCE,ATTEND .DATE)j into 0085;
retrieve [STUDIED-UNDER.TEACHER , 0084.0,ABOUT.HAJOR—AREA,ATTEND.COWPERENCE, ••8s.•
CONDUCTS-RESEARCH-AT .LOCATIONJ

— —
where (STUDIED—UNDER. STUDENTs BARKER)
and (0084. 1sSTUOIED—UNDER.TEACI ER)
and (~ XSTER—?EACHER. isSTUDIED—UNDER.TEACHER)
and (ABOUT.TOPIC ”MAG—BUBBLE)
and (ATTEND.SCIENTIST= 0084.0)
and (ATTEND. DATE=i978)
and (0085.1-ATTEND.CONFERENCE) -
and (0085.2si978)
and (~~ NFERENCE—ON. CONFERENCEsATTEND.CONFERENCE)
and(CONFERENCE-ON.TOPIC-ABOUT.MAJOR—AREA)
and (CONFERENCE—ON .YEAR—1978)
and (CONDUCTS—RESEARCH—AT.SCIENTISTs 0085.0)
and (CONDUCTS—RESEARCH—AT .YEAR—1978)
and (LOCATED-IN. PLACEi-CONDUCTS—RESEARCH-A?. LOCATION)
and(LOCATED—IN.PLACE2~~ U K)

ENTERING DATA BASE - -

DATA—BASE SEARCH SUCCESSFUL

Figure 29. Multiple chains of evidence: IL Request for
plan—B.

31 January 1979 System Development Corporation
—41— TM —6263/000/00

5*5* 5 5*5*5 *5*5 *
ANSWER SUMMARY -—
VARIABLES:
(L)
CONDITIONAL ANSWERS:
(LANCASTER)

INFORMATION NEEDED:
5MASTER—TEACHER WILKINS

(CAMBRIDGE)
INFORMATION NEEDED:

5MASTER—TEACHER WILKINS
5 5*5* *5*5* *5 *5*

EVIDENCE CHAIN 1 FROM PLAN 8 PLAUSIBILITY: 60

2 CONCLUSIONS :
555 = S S S 5 SS S = SSSSSSSS

5*3
FACT CONFERENCE—ON (IEEE BUBBLE-MEMORIES 1978)
FACT ATTEND (BARTON—BROWNE IEEE 1978)
FACT ATTEND (HOFFMAN IEEE 1978)
CONCLUDE SCIENTIFIC-INFORMATION-FLOW (HOFFMAN BARTON—BROWNE BUBBLE—MEMORIES 1978)

5*4
FACT-REQ MASTER—TEACHER (WILKINS)
FACT STUDIED-UNDER (HOFFMAN WILKINS)
FACT STUDIED—UNDER (BARKER WILKINS)
CONCLUDE MEMBER-SAME-IC (BARKER HOFFMAN)

ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KNOWS (HOFFMAN NAG—BUBBLE 1978)

FACT ABOUT (NAG—BUBBLE BUBBLE—MEMORIES)
CONCLUDE KNOWS (BARTON—BROWN E NAG—BUBBLE 1978)

**0
PACT CONDUCTS—RESEARCH-AT (BARTON—BROWNE LANCASTER 1978)
CONCLUDE KNOWS (LANCASTER NAG—BUBBLE 1978)

55 5 Sn 55 5 5s 5 5 s 5 5 5*55

PACT LOCATED-IN (LANCASTER UK)

=5S555==s=.s sss S_ a ss

Figure 30. Multiple chains of evidence : Chain—8.

- —-== —~~ - - — -t— __________________
- - -

System Development Corporation
31 January 1979 —42— TM —6263/000/00

-

illustrate the results of searching for evidence with partial plans.

(figures 31 to 33).

The use of DADM as a powerful tool for “generalized navigation” among

relational concepts is explored in figures 34 through 40.

A review of these examples will, we believe, provide the reader with an
appreciation of the utility of adding virtual relations to a data base and
describing them in a declarative form as premises that can be combined

according to the rules of symbolic logic.

2.5 REASONING WITH COMPUTABLE FUNCT IONS
The descriptive and deductive capabilities of DADM are further expanded as

illustrated in figure 41 by the addition of computable functions as

arguments to relations. In general, DADM will replace a computable

function by its value as soon as it can be evaluated i.e., as soon as its

arguments are all constants. This means that some functions will be
evaluated before data base search and others (such as those in figure 41)
must be evaluated after suitable values are supplied by data base search.

~4 1
~T4 4

4 - I

- _•__A_ • ~~~~~~~~~~~~ ~~~ - - -- — -- — —-5———

____ _ _ _ _ _ _ _
-- ---5 - — —

31 Janua ry 1979 System Developmen t Corporation
—43— TM—6263/000/O0

MODE: Delete
DELETE: Premise . Enter premise or list of premise names or numbers:
(STUDENT—MBR AUTHOR—HER CITE—AUTHOR—NBR CITE—PUB—MBR)
PREMISE: STUDENT—MBR:
(((ALL (SCIENTIST . X64)) (ALL (SCIENTIST . X65)) (ALL (SCIENTIST . X66))
(AND (STUDIED—UNDER 164 166) (STUDIED—UNDER 165 X66) (MASTER—TEACHER X 6 6))
IMP (MEMBER—SAME—IC 164 X65))

S TtJDENT—MBR)
DELETED.

PREMISE: AUTBOR—MBR:
(((ALL (SCIENTIST . 167)) (ALL (SCIENTIST . X68)) (ALL (PUBLICATION . X69))
(AND (AUTHOR X67 169) (AUTHOR X68 X69))
IMP (MEMBER—SAME—IC 167 168))

AUTHOR—MBR)
DELETED.

PREMISE: CITE—AUTHOR—MBR:
(((ALL (SCIENTIST . X70)) (ALL (SCIENTIST . X7i)) (ALL (PUBLICATION . X72))

(ALL (PUBLICATION . 17 3))
(AND (AUTHOR X70 X72) (AUTHOR X7i X73) (CITES 172 X7l) (CITES X73 170))
IMP (MEMBER—SAME—IC 170 X71))

C ITE—AUTHOR—MBR)
DELETED.

PREMISE: CITE—PUB—MBR:
(((ALL (SCIENTIST . X 7 4)) (ALL (SCIENTIST . X 7 5)) (ALL (PUBLICATION . X76))

(ALL (PUBLICATION . X 7 7))
— (AND (AUTHOR X74 X76) (AUTHOR X75 X77) (CITES 176 X77) (CITES 177 X76))

IMP (M EMBER—SAME—IC X74 X 7 5))
CITE—PUB—HER)
DELETED.

RELATION: MASTER—TEACHER DELETED.
DELETE: end delete .

Figure 31. Multiple chains of evidence : Deletion of

4 premises.

~~~~~~~~~~~~~ —_ ~~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
- __

~~~~~_I_I~~
. ~Th

— — - -5 - - -
- - =~~r~

— — ~~~~~- —~~~

3]. January 1979 System Development Corporation
—44— TM —6 263/000/00

MODE: Assistant.

—
REDO Q

DEADENO SUBPROBLEMS THAT REQUIRE NEW PRENISE/TUPLE/PROCEDURE:
(MEMBER—SAME—IC.l7.2)
PARTIAL PLANS?Yes

3 PATHS 11 PROBLEMS 2 PLANS

NEXT?Puli plans

ADJUST: Cont rol. Enter list of control modes:

()
OK
ADJUST: end adjustment.

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

2 SUBPLANS:
Ss__ssss s e_aSe_ss_s5

SUPP—REQ MEMBER—SAME—IC (BARKER SCIENTIST—i)
ASSUME ORIGINATES (BARKER HAG—BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST-i NAG—BUBBLE 1978)

*50 -

SEARCH CONDUCTS—RESEARCH—AT (SCIENTIST—i LAB—i. 1978)
CONCLUDE KNOWS (LAB—i. HAG—BUBBLE 1978)

5_ s s s _ _ _ s_s _ s—s s e e s _

SEARCH LOCATED—IN (LAB—i. UK)

55_ssesss—s_s—5_fl ss

SEARCH/COMPUTE PLAN:
SEARCH *COND (JCTS.RESEARCH_AT SCIENTIST—i LAB— i. 1978
SEARCH 5LOCATED—IN LAB—L UK

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

5 ** * * * 5*5 0 * * 0

ANSWER SUMMARY -—
VARIABLES:
(L)
ANSWERS:
(STRATHCLYDE)
(IMPERIAL—COLLEGE)
(LANCASTER)
(EDINBURGH)
(CAMBRIDGE)

Figure 32. Multiple chains of evidence: REDO of Conjecture;
Partial Plan—l .

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -‘- -
~~

---
~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.
31 January 1979 System Development Corporation

45 TM 6263/000/00

<<INFERENCE PLAN 2 PLAUSIBILITY : 99

2 SUEPLANS:
sssSsss .s .ssssesssss

*53
SEARCH CONFERENCE—ON (MEETING-i SUBJECT—i i978)

- - SEARCH ATTEND (SCIENTIST— i MEETING —i 1978)
SEARCH ATTEND (SCI!NTIST 2 MEETING—i 1978)
CONCLUDE SCIENTIFIC—INFORMATION—FLOW (SCIENTI ST— 2 SCIENTIST—i SUBJECT—i 1970)

SUPP-REQ MEMBER-SAME—IC (BARKER SCIENTIST—2)
ASSUME ORIGINATES (BARKER NAG-BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST— 2 NAG—BUBBLE 1978) 4

SEARCH ABOUT (MAG—BUBBL~ SUBJECT—i)CONCLUDE KNOWS (SCIENT I~ T—l NAG-~-BUBBLE 1978)

•
~~~0

SEARCH CONDUCTS—RESEA RCH—AT (SCIENTIST—i LAB—L 1978)
L CONCLUDE KNOWS (LAB-i. NAG-BUBBLE 1978)

_Ss Ss s Ss S s s s ss .s Ss es

SEARCH LOCATED—IN (LAB—L UK)

5 5 5 5 5 5 5 5 5 5 5_ s 5555555

SEARCH/C OMPUTE PLAN:
SEARCH *ABOUT NAG—BUBBLE SUBJECT—i
SEARCH *ATTEND SCIENTI ST—2 MEETING—i 1978
SEARCH ATTEND SCIENTIST—i MEETING—i 1978
SEARCH 5CONYERENCE—O N MEE TING—i SUBJECT—i 1978

Figure 33. Mult iple  chains of evidence: Partial Plan—2.

L

_ _  _ _ _  _ _  _ _



—~ ~~~- - - --- ~~~~~~~~~~~~ --

-
~1

~i t

31 January 1979 System Development Corporation
—46- TM —6263/000/00 - -

MODE :
Query: -

((ORIGINATES ) IMP(KNOWS))
(ORIGINATES HAS HISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED .)(KNOWS HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)
DEADEND SUBPROBLEM5 THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE.
(MEMBER—SAME—IC.17.2)
PARTIAL PLANS?Yes -

5 PATHS 14 PROBLEMS 4 PLANS -

NEXT?PLan disolay . Enter sian number or list of sian numbers: -(1 2 3 4)
PLAN NUMBER : 1 

- -

<<INFERENCE PLAN 1 PLAUSIBILITY: 99 - -

nss Sss  = = s =s S Ss s s S s s  -
5*0
SUPP—REQ MEMBER—SAME—IC (SCIENTIST—2 SCIENTIST-I)
ASSUME ORIGINATES (SCIENTIST—2 RESULT—i YEAR—i) 

-CONCLUDE KNOWS (SCIENTIST-i RESULT-i YEAR—i)

S* SS f l S S S S  = = = S S SS S 5S

EXECLJTE?No - - 
—

Figure 34. Mul tiple chains of evidence: Generalized
Navigation ; ORLCtNATES ——— KNOWS. Plan—i — .

-~~~~--~~ ~~~~~~~~~ -—

-

~~~~~~~ ~~~~~~~~~~~~~~~
J_rn ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.“.‘
~~
‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
—-5—.---— --— —

~ —- -

31 January 1979 System Development Corporation
- —47— TM —6263/000/00

PLAN NUMBER: 2

(<INFERENCE PLAN 2 PLAUSIBILITY: 99

s555*—s5555555555_ .5

•~~1
SUPP—REQ MEMBER-SAME—IC (SCIENTIST—i SCIENTIST—2)
ASSUME ORIGINATES (SCIENTIST— i RESULT—i YEAR— i)
CONCLUDE KNOWS (SCIENTIST—2 RESULT—i YEAR—i)

*55
SEARCH CONDUCTS—RESEA RCH—AT (SCIENTI ST—2 LAB-i YEAR-i)
CONCLUDE KNOWS (LAB-i RESULT—i YEAR-i)

55_5555555.5_5555555

SEARCH/COMPUTE PLAN:
SEARCH 5CONDUCTS—RESEA RCH—AT SCIENTIST—2 LAB—i YEAR— i

EXECUTE?Yes

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL
-
~ 

I ___
ANSWER SUMMARY —-
YES
5*5*  *5* *5 * *5 *5*

EVIDENCE CHAIN 1 PROM PLAN 2 PLAUSIBILITY: 99
5s 5555555555555•5• .5 —

5*1
SUPP-REQ MEMBER—SAME—IC (SCIENTIST—i SOUTHWOOD)
ASSUME ORIGINATES (SCIENTIST—i RESULT—i i970)
CONCLUDE KNOWS (SOUTHWOOD RESULT—i 1978) I 

-

•.0
PACT CONDUCTS-RESEARCH-AT (SOUTNWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDG E RESULT—i 1978)

.—55...55.55_55.5.ss

>>

Figure 35. Multiple chains of evidence: Plan—2. 

— -——- ~~~~~~ fl~~~~--— - - —--5— — - — - - - - - —------—------—- — —- . —

- - - - -
-5—-— —  — - -- --- - — — — —-~~--—~ - ----5-—-——-— —-~~~~



- -- -~- ‘ r-~~~~~ ~~~~~~~~~~~~~~~~~ -
~~~~~~~~~~~ —— -

~~~~~‘•

31 January 1979 System Developmen t Corpoz’ation
—48— TM —6263/000/00

PLAN NUMBER: 3

<<INFERENCE PLAN 3 PLAUSIBILITY: 99

SSSSSSSSS5 5SSSSSSSS5

SEARCH CONFERENCE—ON (MEETING—i SUBJECT—i YEAR—i)
SEARCH ATTEND (SCIENTIST—3 MEETING—i YEAR—i)
SEARC H ATTEND (SCIENTIST—i MEETING-i YEAR—i)
CONCLUDE SCIENTIFIC—INFORMATION—FLOW (SCIBNTIST—3 SCIENTIST—3 SUBJECT—i YEAR—i:

5*1
SUPP—REQ MEMBER—SANE-IC (SCIENTIST—2 SCIENTIST—i)
ASSUME ORIGINATES (SCIENTIST—2 RESULT—i YEAR-i )
CONCLUDE KNOWS (SCIENTIST—i RESULT—i YEAR—i)

SEARCH ABOUT (RESULT—I SUBJECT—i)
CONCLUDE KNOWS (SCIENT1ST—3 RESULT—I YEAR—i)

55S5S=S5SSS 555=55555 
-

SEARCH/COMPUTE PLAN:
SEARCH 5ABOUT RESULT-I SUBJECT-I
SEARCH 5ATTEND SCIENTIST—i MEETING-i YEAR—i
SEARCH 5ATTEND SCIENTIST-3 MEETING—i YEAR-i
SEARCH *CONFERENCE_ON MEETING—i SUBJECT--i YEAR—i

EXECUTE?Yes

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY —-
YES

EVIDENCE CHAIN 1 FROM PLAN 3 PLAUSIBILITY: 99

S=5SSSS.S555  flsSaSSs -

*52
PACT CONFERENCE—ON (APS BUBBLE—MEMORIES 1978)
FACT ATTEND (SOUTHWOOD APS 1978)
PACT ATTEND (BOYCE APS 1978)
CONCLUDE SCIENTIFIC—INFORMATION—PLOW (BOYCE SOUTHWOOD BUBBLE—MEMORIES 1978)

5*1
SUPP—REQ MEMBER-SANE—IC (SCIENTIST—2 BOYCE)
ASSUME ORIGINATES (SCIENTIST-2 NAG—BUBBLE i978)
CONCLUDE KNOWS (BOYCE HAG—B UBBLE 1978)

••0
PACT ABOUT (HAG-BUBBLE BUBBLE-MEMORIES)
CONCLUDE KNOWS (SOUTHWOOD MAG—BUBBLE 1978)

555555555 555_ 555_s  55

Figure 36. Multiple chains of evidence: Plan—3

~ 

1I1



—

- 

- -—-— 
____

• a .

31 January 1979 System Development Corporation
—49— TM -6263/000/00

PLAN NUMBER: 4

- 
- <<INFERENCE PLAN 4 PLAUSIBILITY: 99

_55555_ 55_sss_ 55_ 55s

- - 
5*3
SEARCH CONFERENCE—ON (MEETING—i SUBJECT—i YEAR—i)
SEARCH ATTEND (SCIBP1TIS T—2 MEETING—i YEAR—i)
SEARCH ATTEND (SCXENTI ST— 3 MEETING—i YEAR—i)

- CONCLUDE SCIENTIFIC—INPORMATION—PLOW (SCIENTIST—3 8CIBNTIST—2 SUBJECT—i YEAR—i)

5*2
SVPP-REQ MEMBER-SAME-IC (SCIENTIST—I SCIENTIST—3)
ASSUME ORIGINATES (SCIENTIST—i RESULT—i YEAR—i)
CONCLUDE KNOWS (SCIENTIST-3 RESULT—i YEAR—i)

SEARCH ABOUT (RESULT—i SUBJECT—i)
CONCLUDE KNOWS (SCIENTIST—2 RESULT-i YEAR—i)

5*0
SEARCH CONDUCTS—RESEARCH—AT ( SCIENTIST—2 LAB—i YEAR— i)
CONCLUDE KNOWS (LAB-i RESULT—i YEAR—i)

s _ s _ s  snsssss*s 55555

- SEARCH/COMPUTE PLAN: 
-

SEARCH •ABOUT RESULT—i SUBJECT—i
SEARCH *ATTEND SCIENT IST—3 MEETING— i YEAR—i

- - SEARCH *ATTEND SCIENTIST 2 MEETING—i YEAR—i
SEARCH 5CONFERENCE—ON MEETING—i SUBJECT—i YEAR—i

f - SEARCH 5CONDUCTS-RESEARCN—AT SCIENTIST—2 LAB—i YEAR—i

1 - DATA—BASE SEARCH SUCCESSFUL

5* *5*5  *5*5*5  * 5*
- ANSWER SUMMARY —-

YES

EVIDENCE CHAIN 1 FROM PLAN 4 PLAUSIBILITY: 99
ss sss s sss  ssssf lssSs s

5*3
PACT CONFERENCE—ON ( IEEE BUBBLE—MEMORIES 1978)
PACT ATTEND (MACKENZIE IEEE 1978)
FACT ATTEND (YOSHIDA IEEE 1978)
CONCLUDE SCIENTIFIC—INFORMATION -PLOW (YOSHIDA MACKENZIE BUBBLE—MEMORIES 1978)

- -  *52
SUPP—REQ MEM BER—SA ME —IC (SCIENTIST—i YOSHIDA )

- - ASSUME ORIGINATE S (SCIENTIST-i NAG-BUBBLE 1978)

- 
CONCLUDE KNOWS (YOSHIDA NAG—BUBBLE 1978)

5*1
FACT ABOUT (NAG—BUBBLE BUBBLE—MEMORIES)

F CONCLUDE KNOWS (MACKENZIE MG—BUBBLE 1978)

5. 5*0
PACT CONDUCTS—RESEARCH—AT (MACKENZIE CAMBRIDGE 1978)

. - CONCLUDE KNOWS (CAMBRIDGE NAG—BUBBLE 1978)

Figure 37. Multiple chains of evidence: Plan—4

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
- - ——----—.

~
-
~~~~~~~~~~~~~~~~~~

--

--—-- --5—— -~~~~~
--—------—- - — - —-‘-5— — - -------‘—- -- -_ -- --~~~- -- -5-



~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~T~~~~~-- -
-

31 January 1979 System Development Corporation
—50— TM—6263/000/OO

- -

a .

NODE : Query:
• .((ZNONS) IMP (INOWS))

(KNOWS HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)
(KNOWS HAS HISSING ARGUMENTS . 3 HAVE BEEN SUPPLIED.)

S PATHS ii PROBLEMS 4 PLANS

NEXT?PLan display. Enter pian number or list of plan nu.bers:
(12 4)
PLAN NUMBER: 1

<<INFERENCE PLAN 1 PLAUSIBILITY: 100

_ .• •s__ss_s ssssass s_ .._ j -

*5I
ASSUME KNOWS (THING—2 THING—i THING— 3)
CONCLUDE KNOWS (THING—2 THING—i THING—3)

55555555•55555555555

EXECUTE?No
PLAN NUMBER : 2

I

<<INFERENCE PLAN 2 PLAUSIBILITY: 99 - -

_ s s _s s s_ s _ 5___ 5 5 5_ 5 5

•~ 0
SEARCH CONDUCTS—RESEARCH—AT (SCIENTIST—i LAB—i YEAR—i)
ASSUME KNOWS (SCIENTIST—i RESULT—i YEAR—i)
CONCLUDE KNOWS (LAB—i RESULT—i YEAR—i)

sss*sassn sSssss sfl s

SEA RCH/COMPUTE PLAN :
SEARCH CONDUCTS—RESEA RCH—AT SCIENTI ST-i LAB-i YEAR— i

EXECUTE?Yes

ENTERING DATA BASE

DATA—BASE SEARCH SUCCESSFUL

ANSWER SUMMARY --
YES

EVIDENCE CHAIN 1 PROM PLAN 2 PLAUSIBILITY : 99

5555__55.ss555s .s_5_

5*•
PACT CONDUCTS-RESEARCH-AT (SOUTHWOOD CAMBRIDGE 1978)
ASSUME KNOWS (SOUTHWOOD RESULT-i 1978) 1)
CONCLUDE KNOWS (CAMBRIDGE RESULT—i 1978) Ii
u.555ss55_555555___

Figure 38. ?lultiple chains of ev idence : Recursive naviga— - I
tion; Plan—i, Plan—2.

~

--

~

- -
_ _ _

P - -
~~~~~~~~~~ 

-
~
---

~
-

~ 

----i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-5,-

31 January 1979 System Development Corporation
—51— TM —6263/000/00

< (INFERENCE PLAN 4 PLAUSIBILITY: 99

S S ss s SS S S sS a s _ s_ s _ _ s

-

SEARCH CONFERENCE—ON (MEETING—i SUBJECT—i YEAR—i)
SEARCH ATTEND (SCIENTIST— 2 MEETING—i YEAR—i)
SEARCH ATTEND (SCIENTIST—i MEETING—i YEAR—i)
CONCLUDE SC I ENT IF IC—INFORMATION-FLOW (SCIENTIST—i SCIEW?IBT—2 SUBJECT—I YEAR—i )

•~1SEARCH ABOUT (RESULT—i SUBJECT—i)
ASSUME KNOWS (SCIENTIST-i RESULT—i YEAR—i)
CONCLUDE KNOWS (SCIENTIST— 2 RESULT—i YEAR—i)

*50
SEARCH CONDUCTS—RESEARCH—AT (SCXENTIST—2 LAB—i YEAR—i)
CONCLUDE KNOWS (LAB-i RESULT—i YEAR-i)

S S S S S Z S S S  5 5 5 5 5 555 555

SEARCH/COMPUTE PLAN:
SEARCH *ABOUT RESULT—i SUBJECT—i
SEARCH 5ATTEND SCIENTIST—i MEETING—i YEAR—i
SEARCH 5ATTEND SCIENTIST—2 MEETING—i YEAR—i
SEARCH *CONFERENCE_ON MEETING—i SUBJECT—i YEAR—i
SEARCH *CONDUCT$_RESEARCH_AT SCIEPITIST—2 LAB—i YEAR—i

EXECUTE?Yes

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

ANSWER SUMMARY ——
YES

EVIDENCE CHAIN 1 FROM PLAN 4 PLAUSIBILITY: 99

SSS5SSSSSf l s.S SSSS

*52
FACT CONFERENC E—ON ( IEEE BUBBLE—MEMORIES 1978)
FACT ATTEND (MACKENZIE  IEEE i978)
PACT ATTEND (YOSHIDA IEEE 1978)
CONCLUDE SCIENTIFIC—INFORMATION—PLOW (YOSHIDA MACKENZIE BUBBLE—MEMORIES 1978)

PACT ABOUT (HAG—BUBBLE BUBBLE—MEMORIES )
ASSUME KNOWS (YOSHIDA NAG—BUBBLE 1978)
CONCLUDE KNOWS (MACKENZIE HAG—BUBBLE 1978)

PACT CONDUCTS—RESEARCH—AT (MACKENZIE CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE HAG—BUBBLE 1978)

sSs s s s S S  Cs . 55555....

Figure 39. Multiple chains of evidence: plan—4 and chain—4 

~~~~~~~~ - - -5~~ -~~~~~~ -5—- - -5-- - - -—~~~~~~~~~~~~~~~—


_ _ _ — -~~~~- ~~ ~~~~~~~~~
-- ~~--

31 January 1979 Systen Developmen t Corporation
— 52— m —6263/000/00

MODE: Query:
-

-
- .((XNOWS)IMPU)

(KNOWS HAS HISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)

4 PATHS ii PROBLEMS 2 PLANS

NEXT?Pul i plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99 - -

s.5555ss_sss__sss_55

— MAIN FORWA RD CHAINS: - -

•
~~~1 -

ASSUME KNOWS (SCIENTIST—2 RESULT—i YEAR-i)
SEARCH ABOUT (RESULT—i SUBJECT—i)
CONCLUDE KNOWS (SCIENTIST—i RESULT—i YEAR—i) - 

-

5*2
SEARCH CONDUCTS—RESEARCH—AT (SCIENTIST—i LAB—i YEAR— i)
CONCLUDE KNOWS (LAB—i RESULT—i YEAR—i) - -

SUPPORTIVE CHAINS: 
-

*53
SEARCH CONFERENCE—ON (MEETING—i SUBJECT—i YEAR—i)
SEARCH ATTEND (SCIENTIST—i MEETIN G—i YEAR—i) -
SEARCH ATTEND (SCIENTIST—2 MEETING—i YEAR—i)
CONCLUDE SCIENTIFIC—INFORMATION—FLOW (SCIENTIST— 2 SCIENTIST—i SUBJECT—i YEAR—il

.(UIMP(NOT (XNOWS))) 
- - I

(KNOWS HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)
DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE :
(KNOWS. i9 .3~
PARTIAL PLANS?Yes 

_

4 PATHS ii PROBLEMS 2 PLANS - -

NEXT7Pu11 plans - 
-

<<INFERENCE PLAN 1 PLAUSIBILITY: 99 
-

_ 555s 5s s_s_ SsSs __sss

5*2
SUPP—REQ NOT KNOWS (LAB—i RESULT—i YEAR—i)
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-i LAB—i YEAR-i)
CONCLUDE NOT KNOWS (SCIENTIST—i RESULT-i YEAR-i)

•
~~~1 

-

-
SEARCH CONFERENCE—ON (MEETING-i SUBJECT-i YEAR-i) -

SEARCH ATTEND (SCIENTIST-i MEETING—i YEAR-i)
SEARCH ATTEND (SCIENTIST-2 MEETING—i YEAR-i) -.CONCLUDE SCIENTIFIC—INFORMATION—PLOW (SCIENTIST—2 SCIENTIST—i SUBJECT-i

5.

YEAR—i)

••. 5.

SEARCH ABOUT (RESULT—i SUBJECT-i)
CONCLUDE NOT KNOWS (SCIENTIST-2 RESULT-i YEAR-i)

.s5a ss.5s e..~~.e.ss. —.

Figure 40. Multiple chains of evidence: Generalized Navigation

-
with KNOWS

~~~~~~~~ ----~~



_
~~~~~~~~~~~~~~ ‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~ ~~~~~~~~

-
~
--- -- -~~~~

I

31 January 1979 System Development Cororation

—53-- Th—6263/000/00

- - MODE: Query:

(() IIIP(AND(CLOSER-THAN SHIP (KITTYHAWI) PORT) (HONE—PORT (RITTYHAWE) PORT)))

1 PATHS 6 PROBLEMS 1 PLANS

N!XT?Puii plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

2 SUBPLANS: -

•~i
COMPUTE GREATER—THAN ((DISTANCE—BETWEEN KITTYRAWI THING—PORT) (DISTANCE—B ETWEEN THING—SHIP
THING—PORT))
SEARCH PORTS (THING-PORT)
SEARCH SHIPS (THING—SHIP)
SEARCH SHIPS (KITTYHAWX)
CONCLUDE CLOSER-THAN (THING-SHIP KITTYHAWI THING—PORT)

s__ 5 5s 5 _a _ a _ _a__ 5 5_s

SEARCH HOME-PORT (KITTYHAWE THING—PORT)

555.55555 ss s ass a s_ _ s

SEA RCH/COMPUTE PLAN :
SEARCH SHIPS KITTYHAWE
SEARCH 5SHIPS THING—SHIP
SEARCH *PORTS THING-PORT
SEARCH 5HOME-PORT KITTYHAWK THING—PORT
COMPUTE *GREATER_THAN

(DISTANCE-BETWEEN KITTYRAWE THING-PORT)
(DISTANCE-BETWEEN THING—SHIP THING—PORT)

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

** *5 *5*5* * *5 * 5*
ANSWER SUMMARY --
VARIABLES :
(SHIP PORT)
ANSWERS:
(GRIDLEY SAN—DIEGO)
(PORRESTAL SAN—DIEGO)
* 5*5* 5*5* *5 5* *5

EVIDENC E CHAIN 1 PROM PLAN 1 PLAUSIBILITY: 99

2 CONCLUSIONS:
_ss a.s._ssssa_.5.55a

a..
COMPUTED GREATER—THAN (370 211)
PACT PORTS (SAN—DIEGO)
PACT SHIPS (GRIDLEY)
PACT SHIPS (KITTYHAWK)
CONCLUDE CLOSER-THAN (GRIDLEY XITTYHAWK SAN—DIEGO)

555555555555555 555S5

- -
PACT HOME—PORT (KITTYHAWZ SAN—DIEGO)

__S_ 5_ 5_ . C555555555C

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ TJ

31 January 1979 System Development Corporation
—54— TM —6263/000/00

3. DESCRIPTION OF THE DADM SYSTEM

3.1 OVERVIEW

The DADM deductive processor (DP) has been designed to interface with existing
and emerging relational data management systems (RDMSs). Given this orien—

tation, we have made a sharp distinction between specific facts (n—tuples)
which reside in an RDMS data base and general declarative statements (premises)

that are directly accessible to the DP. Since the number of general statements
that may be required for a practical application is likely to be large (perhaps

hundreds or thousands of premises) , par ticular attention has been paid to the
development of techniques for the rapid selection of relatively small sets of

premises relevant to answering a user’s specific request. Premise—selection

techniques are automatically invoked when deductive support is necessary to
respond to a user ’s request; otherwise , queries “fall through” the DP and
directly drive the RDMS.

This “deductive inference by exception” pr inciple suggests that the DP be viewed
as an add—on or enhancement to existing data—base searching capabilities. Such

an enhancement can result in a major increase in the power of a data management
system by providing a means for extracting and deriving implicit information
from data bases of explicit facts.

3.2 APPROACH

Previous approaches to adding deductive capabilities of data management have
occurred primarily in the development of question—answering systems (Simmons (14],

15] reviews many of these). The primary deductive methods that have been used

are set—inclusion logic, e.g., CONVERSE [2] and SYNTHEX (11] ; techniques based
on the “resolution” principle [10], e.g., QA3 (1] and NRPPS (9]; procedural—
oriented deduction, e.g., SHRDLU [18]; and goal—oriented backward chaining,
e.g., MYCIN [16].

J

- -
• -~~ - - — - — - -~~~~:

- - ____

31 January 1979 System Development Corporation
—55— TM —6263/000/00

-

- A major difference between these systems and our DP is in our use of p lanning.
Our system creates deduction plans to guide the generation of full deduction..
We believe such planning to be essential for cutting through the massive

number of dead ends and irrelevant inferences which have impaired the performance
of earlier systems. Planning becomes even more important f or systems involving

large numbers of premises. Selection of a manageably small set of possibly

relevant premises can be based on such planning.

To this end we have designed and implemented a deductive processor that first

builds derivation skeletons which represent possible deduction plans. Once

such plans are generated, the system will attempt to instantiate and verify the
plans (examine substitutions for variables in premises). We have thus separated

the premise—selection process from the process of verifying the consistency
of variable substitutions.

The generation of inference plans makes use, when possible, of an efficient
technique for middle—term chaining [6]. This process finds implication chains

from assumptions to goals through the premises. Middle—term chaining combines

the processes of forward chaining from the assumptions in a query and backward

chaining from the goals in a query. As chaining proceeds in the two directions

intersections are performed on the derived sets. When a non—empty intersection

occurs , the system has found an implication chain from an assumption to a goal.
The resulting chain is passed on to the inference plan generator, which extracts
the premises whose occurrences are involved in the chain . Subprobleme may
result, requiring further deduction or data—base search.

A chaining (pathfinding) process does not operate on the premises themselves

but on a net structure called the predicate connection graph (PCG). This

graph is abstracted from the premises. When a premise is introduced into the
system, the deductive connections existing among the predicate (relation)

occurrences in the premise are encoded into the PCG. Further, the deductive

interations (i.e., unifications [10]) between predicate occurrences in the

new premise and predicate occurrences in existing premises are pre—computed

-5

-
_ ~~~~~~~~~~~~

—--- I -
- _ _ _ _ - _ _ _ _ _

31 January 1979 System Development Corporation
—56— TM-6263/000/00

and encoded into the PCG. The variable substitutions required to effect the

unifications are stored elsewhere , for latter use by the verifier . Thus, the
PCG contains information on the dependencies within premises and the deductive

interactions among the premises. During the generation of middle—term chains

and plans , the system is aware of the existence of unifications among the
premises, but it does not need to generate the unifications nor does it need

to examine and combine the variable substitutions associated with the interacting

unifications. The former is done by a pre—processor, while the latter is done

by the verifier after plans have been generated.

Although some connection graphs used in theorem—proving systems also contain
information on the un i f ica t ions among general assertions (resolution clauses
in these systems), they are not used as a planning tool as is the PCG. The

PCG most resembles Sickel’s clause interconnectivity graph [13] in that both

graphs represent the initial deductive search space and are not changed in the

course of constructing deductions. Other graph procedures [7, 121 involve

adding nodes to graphs as deductions are formed.

3.3 DADM DEDUCTIVE PROCESSOR COMPONENTS

The major DADM Components are illustrated in figure 42. At present users - -

coninunicate directly with the Controller. At a later date the Controller will

communicate with an end user interface such as EUFID The Controller

accepts premises, procedural knowledge (as LISP functions), advice rules ,
queries, and commands. It accesses and coordinates the use of an external
RDMS as well as the seven major processing components of DADM:

(1) Array maintenance: This module inserts, deletes, retrives , and
compacts (i.e., garbage collects) most forms of information
used by the system in LISP arrays. For example, information
abstracted from the premises is segmented into seven internal

arrays. This segmentation contributes to good system struc—

tur ing and processing ef f ic iency. Each predicate (relation)

-- — -— -~~~ -~ -5 - ---- -.~~ - -

~~ ~ ~~~~~~~~~~~ ~~~~~~~~-~~~~--
~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -  -~~ 

a

3] January 1979 System Development Corporation

19 —0 

~~

/ _

H 

_

L.Et~~J 

-5 --- --5---
~~~ 

--5--_ _- 5 - - -~~~~~~
_ _

- - - ~~~~~~~~~ - -
-

- .—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

31 January 1979 System Development Corporation
—58— TM—6263/000/0O

- 

- 
occurrence is assigned a unique integer Index. Information

about a particular predicate occurrence is obtained from the
array containing the kind of information needed by indexing
into the array with the Integer associated with the occurrence.

(2) Pathf inder: This module uses the connection graph to quickly
find the deductive paths necessary to support forward , backward ,
and middle—term chaining processes .

(3) Planner: This module uses deductive paths , premises, and the
concept graph to construct plans and find inf ormation relevant
to user requests.

(4) Verifier: This module examines the variable substitutions

required by the unifications In an Iiiference plan for consistency.
Plans that do not Verify (I.e. , contain inconsistent variable

substitutions) are rejected.

(5) Plan, Evidence Display: This module supports the wide variety of

display options that are available to monitor the operation of

the deductive system, to examine deductive paths , plans, answers,
evidence, etc.

(6) Answer Construction: This module extracts answers from the data

values returned by data base search and compute operations.

(7) Assistant: This module essentially incorporates the INTERLISP

Programmers Assistant into the INTERLISP version of DADM . The

assistant remembers Its inputs and supports the modification and
repetition of user supplied operations.

3.4 PREMISES, QUERIES , AND DATA STRUCTURES

When a query is entered , the general flow of the system proceeds as follows : - -

(1) The query is sent to the Planner which initializes plan

generation:

a. The query is broken down into a set of assumptions and a
set of goals.

b. The argument strings associated with the relations in the

query are extracted and stored for later use. 

-—  

— __s___ — — -5 - 11____ -



- 
~~~~~~~~ _ 

~~~~~~~

I
31 January 1979 System Development Corporation

—59— TM —6263/000/00

c. A problem graph representing possible inference plans is

initialized.

(2) The Pathfinder Is called to find chains of middle—term predicate

occurrences, via the predicate connection graph, linking assump-
tion predicates to goal predicates. These chains represent attempts

to find key predicate occurrences (middle terms) that deductively

connect assumptions to goals (via the premises containing the

occurrences). Semantic advice-in the form of premise and predicate

alert lists and the use of variable and constant “types” may also

play an Important role in the chain generation process.

L (3) Using the predicate occurrences within a chain, the Planner

extracts the premises containing the given occurrences , The
resulting set of premises represents the beginning of an inference 

- -

plan.

(4) With this set of premises, the Planner examines the predicate

occurrences (in the premises) that are not part of the middle—

term chain and determines which of these are “unresolved” and

need further deductive or data—base support. Each unresolved

literal results in the formation of a subproblem and a new node

in the problem graph.

(5) An evaluation function examines the nodes in the Problem graph
and decides which of these nodes to operate on next. All nodes

are considered for selection, those that are subprobleas as
wil as those that are top—level problems (from the input query) .
Thus, the system may decide to find another middle—term chain
for a query goal prior to working on the subprobleas resulting
from a previously constructed chain. Middle-term chain ing
continues until all remaining subgoals require data—base support ,
or until no more chains can be found, or until the chain limit

is reached.



31 January 1979 System Development Corporation
—60— Th —6263/000/00

(6) After all middle—term chaining is completed , the Verifier attempts

to verify the plans in the problem graph. The verifier examines the

variable—flow classes of chains comprising each plan to check for

inconsistency (no variable taking on two different constant values).

(7) The Data Management System is called for each successfully
verified Inference plan. The RDMS searches over the data base
of specific facts for the remaining subproblems that need data—
base support. If data—base search is successf ul, values for the
variables occurring In the search requests are returned and
answers are formulated.

REPRESENTATION OF PREMISES AND QUERIES

The basic representation of premises and queries in our system is the - -

primItive conditional. It is a Skolemized , quantifier—free form. However ,

instead of being a conjunctive normal form as in resolution systems, the ..
primitive conditional retains the implication sign. Primitive conditions

have the folivoing possible forms :

(1) &( ... )J V ( ... ) - -

(2) &( ... )J &( ... )

(3) V( ... )J V( ... )

(4) V( ... )J &( ... ) .

Within the parentheses are literals (negated or positive predicates and - .

their arguments). The primitive—conditional format has the full expressi—

bility of the first—order predicate calculus, i.e., every first—order - -

predicate calculus expression can be represented by one or more primitive
conditionals. Note that in resolution, only expressions of type (1)
are allowed. They are further modified by transforming the implication

into a disjunction with the literals in the antecedent becoming negated,

e.g.,

&(A , B)J V(C,D)

ji ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ---—--5

1

~

.

~ 

- - 
— -5-



- -5-—— 

——-. - .

I
31 January 1979 System Development Corporation

—61- TM—6263/000/OO

is represented as:

(‘A v~~B v C v D ) .

One reason for choosing the primitive—conditional form is to maintain at
least some part of the original formulation of an expression as input by a
user. Many input expressions map naturally into an implications], form.
If they are put into a normal form which does not maintain this implication

explicitly, significant clues contained within an expression as to its value

for a particular proof or strategy are lost, both to the user and to the
system. Furthermore , we want to enable a user interacting with and advising
the system to be able to read and understand the evolving inference plans as

easily as possible. The use of the primitive—conditional form appears to
contribute substantially toward this end.

DATA STRUCTURES

Information abstracted from premises is stored in seven internal arrays.

Structural information about the general statements is segmented into four
arrays as follows :

(1) The premise array contains all of the general descriptive state—

ments accessible to the system. Each element in the array is a

list containing three elements:

a. A list of predicate occurrences in the premise. The

occurrences are represented by unique integerd which are

used to index into the predicate—occurrences array, the
arguments array, the unification—arcs array, the variable—

substitutions array, and the links array. Information about

the structure of premises , argument strings , deductive
interactions, etc., are all found in these other arrays.

b. A measure of the plausibility of the premise (for dealing
with plausible inference as well as strict inference).

Currently , only a very rough measure of plausibility is used . 

~~~~~~- -~~~~~~~~~~~~ _ _ _ _ _ _ _


— - -- -- -
~~~~~~~~~ :~~~~~

-
~~~~~~~~~~~~~~~~~~~

-—
~
-

~~~~~~~~~~~~~~~~~ - -—~~~
-- 

~~~~~~ 
-

31 January 1979 System Development Corporation
—62— TM -6263/000/00

c. The complete premise in primitive—conditional form. This

is for purposes of printout not for analysis and evaluation

during the process of deciding whether to use the premise
in a possible proof. The information needed for this

decision is much more easily available in other arrays.

(2) Each predicate occurrence In the set of premises is given a

unique position in the predicate—occurrences array. An entry

in this array Is a bit vector containing information on the

predicate name of the occurrence, the premise which contains the

occurrence, the occurrence’s numerical position within the premise,
whether the occurrence is in the antecedent or consequent of the

premise, the connective under whose scope the occurrence lies,
and the sign of the occurrence.

(3) The argument string of each predicate occurrence is stored in

the arguments array in the position corresponding to the integer

index assigned to the occurrence.

(4) Every predicate name occurring in the premises is stored in the

predicates array. (Predicate names should not be confused with

predicate occurrences which are particular instances of predicate

names within the premise set. For example, SCIENTIST is a predicate,
bu t in a premise referring to Einstein as a scientist , the parti—
cular occurrence of the predicate, SCIENTIST (Einstein) , must be
identified and distinguished from the predicate in general.)

Each predicate has a property list containing the indices of all
occurrences of that predicate in the premise set.

Possible deductive interactions between expressions exist as “unifications”

as described by Robinson in his developmen t of the resolution principle [10].

Unification is a matching procedure that finds necessary substitutions for

variables in order to effect deductive interactions . For example, if we know
that Joe is a man , i.e., MAN (Joe) , arid that all men are humai~, i.e.,

Y
~
(MAN (x) 3 HUMAN(x)),

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



r , — - 
---

- 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

- ________

31 January 1979 System Development Corporation
—63— TM —6263/000/00

then we can conclude that Joe is human, i.e., HUMAN(Joe). The unification

procedure determines that the substitution Joe for the variable x is needed

in order to make the desired conclusion. In most resolution—type inference

systems, procedures to detect and compute unifications are executed repeatedly .
In contrast , our deductive processor pre—computes all possible unifications
that exist among premises and stores them.* This is done when premises are

first introduced into the system. The inference planning process uses the

information about the existence of unifications but is not charged with the

formation of them. Once inference plans have been formed, the Verif ier
examines the unifications within the plan to determine if there are any

variable substitution conflicts.

Two internal arrays store information about unifications:

(5) For each predicate occurrence, a list of the indices of the

predicate occurrences that unify with it are stored in the
unification—arcs array in the entry corresponding to the

index of the occurrence. -

(6) The variable—substitutions array stores the substitution
lists associated with the unifications in a one—to—one
correspondence with the entry of unifications in the

unification—arcs array. Substitution lists specify

varibles and constants that must be made identical for

unifications to take place.

The final array contains information on the predicate dependencies of occur-
rences within premises. This “links” array will be discussed in the predicate

connect ion graph description.

*In resolution jargon , this would be stated as computing all possible
unifications that exist among original clauses.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— -5—----,

31 January 1979 System Development Corporation
-64- TM —6263/000/00

3.5 DEDU CTIVE PATHFINDING

MIDDLE-TERM CHAINS -

The concept of a middle—term chain is central to the operation of the DADM

inference system. Syntactially, a chain is a list of predicate occurrences.

A given input query contains a set of assumptions and a set of goals. The

first element in a middle—term chain is an occurrence, within the premise set, -

that unifies with an assumption predicate. The last element in a chain is an

occurrence, within the premise set, that unifies with a goal predicate. A

goal predicate is either a query goal or an internally generated subgoal.

The other elements in the chain are produced by the chain generator as it
alternately finds links and unification—arcs (u—arcs). Links connect

occurrences within premises while u—arcs connect premises with one another
-
- through predicate occurrences that deductively interact.

Consider , for example , the query “A 3D?” and suppose the following premises

were known to the system (argument strings have been suppressed for simpli—

city) :

- ,
-

(1) A
1JB1 - - - -~

(2) B
2
DC

2
..

(3) C~ DD3 . -

The subscripts serve to distinguish the predicate occurrences by identifying

the premises in which they occur. Unifications might exist between B1 and 8
2

-

and between C2 and C
3
. Links (discussed shortly) exist between A1 and B2,

between B
2

and C2, and between C3 and D3. From the query, the assumption -

predicate is A, and the goal predicate is D. Within the premise set we find -

A1, an occurrence of the assumption predicate A, and D, an occurrence of the . -
goal predicate D. Assume unifications exist between A and A1 and between D . : —

and D3. The chain generator would produce the chain:
-

A B B C C D - .
l,, ,, l..~~~~, 2..,, 2._, ... 3...._ ..- 3

link u--arc link u—arc link
.~

‘I

-~ -
- — --5-— -5—-—- -- — --

-5 - - -— -—— -— -— ~~ -~~—— ~~~ —~~~-5-— -~~~~~ -- -—~~~ - -- —— .---- ~~—- - - ~- -~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~ k— -


~~~~

- 

~~
--
~~~~~~~

—------
~~~~~~~~~~~~~~~~~~~~~~ 

- - 
—~ ~~~~— 

- ________________________ _____

31 January 1979 System Development Corporation
—65— TM —6263/000/00

1. The predicates B and C are considered “middle—term” predicates, i.e.,

predicates that are needed to link the assumption A to the goal D. The

predicate occurrences ~~ 82, C2 and C3 are middle—term predicate occurrences.
A1 and D3, the chain end points a, are occurrences of the assumption and goal,
respectively.

Some earlier researches in the field of mechanized inference have built

deductive mechanisms that rely primarily on generating implication chains.

We have extended these earlier efforts by allowing more complex pre.is.s, by

specifying and using different types of logical dependency among concept.,
by combining these with unifications of predicates between premises, and by
using the chains not as final products but as a means of generating derivation

plans for a general—purpose inference system.

CONNECTION GRAPH

The predicate connection graph is contained within two arrays, the links

array and the unification—arcs (u—arcs) array. The u—arcs array contains

the unifications that exist within the premise set. All possible unifics—
tions among the premises are pre—computed and stored. The links array contains

information about predicate occurrences as they relate to each other within a
premise. The information involves the concepts of dependency and linkages

which are discussed in this section. These two arrays we used by the Path—

• - finder to generate middle—term chains.

PREDICATE OCCURRENCE DEPENDENCIES

The concept of dependency discussed here involves the relationship between
predicate occurrences within a particular premise. A predicate occurrence

in a particular premise can be, but is not necessarily, truth—functionally

dependent on other predicate occurrences in the same premise. Dependency

does not extend across premises. It is the unification—arcs that are involved

in premise to premise interaction.

A premise is considered to be indivisible if it cannot be broken up into

two or more disjoint premises. Two predicate occurrences are dependent on
one another if they occur within an indivisible premise.

- . -



31 January 1979 System Development Corporation -~ -

—66— TM —6263/000/00

Consider the premise 
-

(a) v(P, Q)DR. 
-.

It can be divided into two distinct indivisible premises which are logically

• equivalent to the original premise when conjoined, namely, 
- -  

-

PDR andQDR.

Thus, P and R are dependent on each other as are Q and R. However, P and Q

are independent even though they both occur within the same original premise.
- A similar situation arises in the premise -

(b) RD& (P, Q). ..

Once again there is no dependency between P and Q. Such is not the case in
the premises -

(c) &(P, Q) DR and - 
-

(d) RD v ( P , Q).

These premises cannot be subdivided and are thus indivisible. Dependencies

exist between P and Q in both cases as do the other two dependencies (between 
-

P and R and between Q and R).

- - The procedure for identifying dependencies among predicate occurrences in

premises is straightforward given the primitive—conditional form for premises.

- - Predicate occurrences within a disjunction on the lefthand side of an 1mph — -.

cation are not dependent on each other , nor are predicate occurrences within
a conjunction on the righthand side. All other predicate occurrence pairs
within a premise entail a dependency.

LINK TYPES
a’

Four types of links are used to represent dependencies between predicate -

occurrences wi thin a premise represented in the primitive—conditional 
-

~

format. 
-.

~i -i 

~~~~~~~~~~~~~~~~~ • _ _ _ _ _ _


_ _ _ _

31 January 1979 System Development Corporation
v —67— TM —6263/000/00

(1) Implication (I) Links -

This type of link can be represented in its simplest form
as:

A D B

or, more generally, as

a. c1(... A ...) D c2(. . . B ...).

where c1 and c2 can be either of the two connectives “6” or “V’1

-
(as will be the case in all subsequent examples). The dots

-
represent either the empty expression or other atomic components

- of the antecedent or of the consequent. It is to be understood

that the predicates shown do not fall within the scope of any
negation sign not explicitly shown. Type I links are asy .tric

and are referred to as a link from A to B in the above examples.

Type I links also exist from A to B in the following expressions:

b. &(...A , 18 ...)DC1
(..)

- .
c. c1

(.. .) D v(... 1A, B ...)

1] d. c1(...
1B ...)D c 2

(... 1A ...).

. - Note that the main connective in the antecedent in b. must be 6

-
for a link to exist between A and B; otherwise A and 8 would be

-
independent. Similarly, the connective in the consequent of c.

inust be v.

(2) Reverse Implication (RI) Links

Whenever a type I link exists from one predicate occurrence to

another, as from A to -B in the above examples, a type RI link
exists in the opposite direction, from B to A. Such links are

- needed because of the one—directional aspect of the type I link.
-~ The addition of the RI link enables the predicate connection

1 graph to be traversed both from and to any given predicate occur—

1 rence. Looking at the examples above for -I links from A to 8,

we note that in all cases an RI link exists from B to A. The-
~ 1

_ _ _ _

_ I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- --__



_ _ _ _ _ _ _ _  - -5— -5 — - -5 ---—-— --5’— ‘-5 -5—.’

31 January 1979 System Development Corporation -

—68— Th—6263/000/OO •

simplest form of the RI link (from B and A) derives from

- - • (3) Conjunction (C) Links

The basic primitive—conditional form in which a C link occurs -

(between occurrences A and B) is

A, B ...) D c1( ... ). - .

Other representations in which C links occur include

c1( . . .  A . . .  )Dc2( ... ~B ... ) , 
- -

which is its simplest form is

and -

c1
( . . .  ) D v( ... ‘A , ‘B ... ).

Type C links are symmetric in that if A is linked to B by a 
-

type C link, so is B to A.

(4) Disjunction (D) Links - -

The basic primitive—conditional form in which a D link occurs 
- 

-

(between occurrences A and B) is -.

c1
( . . .  ) D v( . . .  A, B ... ) .

Other representations in which D links occur include

c ( ... ‘A ... )Dc ( ... B . . .  ) ,  -•1 2

which in its simplest form is -‘

and

&( ... ‘A , ’B . . .  ) D c1( ... ). ::
Type D links are also symmetric.

_______________ 

- 

I

— 
T~~~~

-
~~~~~~~~~~~~~~~~~:~-


•
~~~~~~~~~ - ______ - -- - -~~~~ -

31 January 1979 System Development Corporation
- .. 

- —69— Th—6263/~~~/00

The links array contains information on all of the links within the set

of premises. Indexing into this array is similar to the indexing into the

other array.. The unique integer identifying a predicate occurrence in the

• premise set is used to index into the links array in which is entered, for
each occurrence, the dependency links which emanate from it. Each entry 1.8
a list of four subhists: the I—Linked, the C—linked, the D—hinked, and the

RI—linked predicate occurrences.

Specifications of link types provides an efficient means of storing information
about predicate occurrence dependencies and greatly facilitates the chain

generation process. Figure 43 lists link restrictions that must occur within

chains in order to effect logical validity. Row 1 indicates that if an

assumption predicate is positive, the first link in a chain must be of type
I or C. For example, if A is an assumption, a link such as one f ound in the

premises A DB (type I), AD IB (type C), &(A, B) D D (type C between occur-
rences A and B), etc., could be used in initializing a chain. The PfI~CG would
thus examine the links array for links of type I or C out of occurrences of
the predicate A. If the assumption were negative ( iA) , the MTCG would -

locate RI and D links.

If the goal predicate is positive (row 3 in Figure 43), the last link in a
chain must be of type I or D. For example, if C is a goal, the last link in
a chain could be found in premises such as E ) C (type I) ,~~~E ?G (type 10,
etc. Note that in actual operation, the Pathfinder would be working backward

from the goal and would be looking for an RI or D link out of C (which would
result in an I or D link into C).

•-1

- T



----5 — - ,—-—— - ;;— w—— -
~~~~~

— -— —,------— -
~~

- —-.--——

-

31 January 1979 System Development Corporation
— TM—6263/000/O0

If assumption First link in chain
predicate is must be of type

- -
(1) + Ior C

(2) — RI or D

If goal Last link in chain
prediate is must be of type

(3) + l o r D

(4) — RI or C

From link The link following
of type it must be of type

(5) I ; Ior C

(6) RI RI or D

(7) C RI or D

(8) 0
- I o r C - ,

Figure 43. Link Restrictions within Chains.

liii

_ _ - ----— - --- - - - -—~~~~~~~~~~~~-

~
1’!

~ z t M J’•-5 —~~~- ,.-~~-~~— - _ -_ -- ,.-r
~~r,.w ~~~~~~~~~ r ’ -5~~~

-5-5
~~~V~~’-~ 

=—-

31 January 1979 System Development Corporation
—71— TM —6263/000/00

Rows 5 through 8 in Figure 43 list the restrictions of what link types may

directly follow other link types in a middle—term chain. For example, given

a type I link in a chain, as in ADB, the next link must be of type I, as in

BDC, or of type C, as in B)~~C. Given a type RI link in a chain, as in

~DD 1E, the next link must be of type RI, as in ‘ED’W , or of type D, as
in 1E DF. The restrictions on successive links apply for finding links

out of both assumptions and goals. As an example of the latter case,

consider the goal ‘G. The last link in a chain to this goal must be of type

RI or C (row 4). The Pathfinder thus looks for links of type I or C out of C.

Suppose it picks up the C link between E and C in ED~~ . Now, the Pathfinder

must find links of type RI or D out of E (resulting in links of type I or D

into E) .  No te that this is precisely the restriction specified in row 7. Thus, -
:

the restrictions in rows 5 and 8 apply to links out of assumptions and to

links out of goals -

SEMANTIC INFORMATION

Semantic Advice 
-

A data—base administrator may enter semantic advice in the form of “Condition

Recommendation” rules. For example, one could advise that a ship return to

its home port if it is damaged by specif ying:

~- 

- 
(ASSUNPTION : DAI4ACED(SHIP)) ~~~~RETURNS(SHIP PORT)

The system would try using premises containing the RETURNS relation when the

DAMAGED relation occurs as an assumption. Advice rules are stored in an

advice array, where they are automatically selected and applied whenever their

condition par t holds for input queries . In addition to such advice rules,
the user may supply advice for a particular query by stating only the advised
recommendation for that query .

Advice most typically involves recommendations on the use of particular

premises or predicates in finding deductions. For advised premises, the

system will try using them whenever possible in the course of constructing

a proof. For advised predicates, the system will try chaining through occur—

rences of them in premises. In the case of negative advice, specified

r premises and predicates are avoided in plan construction.

- _ _

-5- --i-. ——-----5- — ——-- -j-- 
-5 — --5—



r-__ _ ’ - r~~~~~~~~~’ T ~~~~~~~~~~~~~~~~ 
- - - - - —

31 January 1979 System Development Corporation
—72— TM —6263/000/00

Advised premises and predicates are placed on the premise and predicate alert
- • lists. These lists are used in two ways. During the chain construction

process, the Pathfinder considers several possible predicate occurrences in

its search for links and u—arcs. Those occurrences that represent instances

of advised predicates or that occur within advised premises are given prefer—

- - 
- ential status in chain generation. In addition, completed chains for query

goals are examined and only those chains having premises or predicates that

occur on one of the alert lists are passed on to the Planner (Chains that

are formed for subgoals need not pass this test since the subgoals resulsted

from chains which did use advice.) Advice is thus used both for pruning

within chain generation and as a basis for evaluatively filtering chains.

Advice given by a user might be based on his knowledge of the domain,

concepts or predicates most frequently used in plans, premises that have
previously been successful in plans, and intuition (which should not be

underestimated). Also, the user may direct the system to use a particular

proof strategy by advising the use of a particular premise, e.g., the premise

v(X, Y) for a proof—by—cases strategy. If no usable inference plans are

developed from some given advice , the user may re—input (redo) the query with

diff erent or no advice.

Variable and Constant Types
When entering a premise or query into the system, the user may specify a

class membership “type” for any variable or constant in the expression. Class

membership is typically specified by one—place relations in predicate calculus

representations. For example, to specify that a variable x ranges over
scientists, one enters an expression such as SCIENTIST(x) . Similarly for
constants, as in SCIENTIST(Einstein). We have allowed the specification of

these membership constraints within premises and queries without the need

for these one—place relations.



-- 
— ~~

-
~~ r’~—- —

~ —_~~~~r ____ --

31 January 1979 System Development Corporation
—73— TM—6263/000/O0

Compound types , consisting of set union , in tersection, and difference

operations over simple types, may also be used to specify more complex

semantic restrictions on predicate domains. The Concept Graph is used

to represent set relationships between types. Class inclusion paths with—

in this network are used, for example, to permit unification of instances

of type SCIENTIST with instances of type MA~*fAL. As new premises are

entered into the system, this semantic network is automatically updated

to reflect new predicate—domain associations.

The use of such semantic information aids the deductive process in three

ways. First , p remises and queries may have fewer relations by the elimin—
ation of some one—place relations. This results in fewer goals and sub—

— problems to solve because of fewer unresolved literals. The size of the

problem graph would correspondingly be reduced.

Secondly, there is a reduction of the storage space required for these

one—place relations within the various arrays of information. It is
- 

- 

possible to eliminate predicates, such as SCIENTIST, and occurrences of

these predicates in the premise set. This results in the elimination of

links and unifications for such occurrences.

Thirdly, the number of possible unifications among the remaining occurrences
in the premises is reduced. There is also a reduction in the number of

unifications beteen query predicates and premise occurrences. We have

modified the unification algorithm to check for variable and constant types

as it matches argument strings. Added to unification is the constraint

that two arguments being matched must be of the same type or one argument

must be typeless. The reduction of unifications enhances the operation of the

s y s t e m, since it has less unifications to consider within the chaining

process. 

~~~~~~~~~~~~~~~~~~~


31 January 1979 System Development Corporation
-74— TM —6263/000/00

3.6 GENERATION OF INFERENCE PLANS

PROBLEM GRAPH

- .~- Structure

Inference plans are stored in a problem graph. Nodes in the graph are

created initially from the input query when the assumption and goal sets
are extracted. Later, during the derivation planning process, the gener-

ation of middle—term chains often results in the creation of subproblems

f rom the unresolved literals in premises associated with the chains . New

nodes a~e created for these subproblems.

Two types of nodes are distinguished in the problem graph. “Goal nodes”

contain query goals or system generated subgoals that need to be established.
The Planner sends the information residing in one of these goal nodes

to the Pathfinder which returns a middle—term chain. The Planner determines

the subproblems associated with the chain and creates goal nodes for them.

The nodes hang f rom the particular node that was used for creating the

chain. The Planner may later decide once again to use the same node in
calling the Pathfinder to find an alternative chain. The subprobleas

resulting from this new chain also hang f rom the same goal node . Thus , a

goal node may have several branches hanging below it , one branch for each

chain and the set of subproblems resulting from it. The branches are

implicitly diajoined , i.e., each branch is one possible derivation of the
goal and only one of them need be considered for a particular proof.

Since each branch represent8 one middle—term chain and a set of subgoals,
the need for a second type of node, the “dummy node” , arises . Dummy nodes

serve to specify a set of conjunctive elements (conjoint subproblems) within

a disjunctive set of branches (alternative chains). (Dummy nodes are also

used to specify a set of disjunctive elements falling under a conjunctive

set of branches (alternative chains). (Dummy nodes are also used to specify

a set of disjunctive elements falling under a conjunctive set of branches.)

Consider the problem graph.

I

_

——-5— ——--- —-5 -5 -5 —-5— — ~-----5 --5— - ~~~~~~~~~~~~~~~~~
—----- 5-5

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~ --~
__

I

31 January 1979 System Development Corporation
—75— TM—6263/000/00

Cl

-. or

66
D2

and

- G3 G4 CS

(Nodes are labeled for reference purposes and do not show the information
contained within them.) Cl is a goal node containing a set of assumptions

and a goal from the input query. The branch to the dummy node D2 results

from a middle—term chain derived from the information in Cl. The three

subproblems , goal nodes G3, 64, and CS, hanging from D2, are created from

the unresolved liaterals in the premises containing the links of the

middle—term chain. These subproblems must all be solved if the branch to
D2 is used in a proof. The branch to G6 is formed from an alternative

middle— term chain . In this case , however , only one subproblem is formed

and it is contained in G6. A dummy node is not needed.

Each dummy node created by the system has a property list consisting of

two elements: the node ’s successors (63, G4, and 65 for the node D2
above), either AND ’d or OR’d, and the node’s parent (Cl for D2 above).

Each goal node also has a property list which contains the following

elements:

(1) The successors out of the node, always implictly OR’d. One
successor is created for each chain that was generated from this

- node. (When a node is “closed”, indicating no subgoals result
from a chain, or when a node contains a goal that is to be

-

-

-
resolved via the fact file, an integer flag is placed in this

position.)

~

~~~~____: -— — -~~~—-.~ -- - --



— ~~~~~~~~~~~~~~~~~ 
- 

- 
- - - - - - - - - - -

31 January 1979 System Development Corporation
—76— TM —6263/000/OO

(2) The assumptions associated with the node. - *

(3) The goal associated with the node .

(4) A list of the middle—term chains that have already been

generated for this node. This list is needed so duplicate

chains will not be generated each time the node is used for

chain generation. -

(5) The verification classes associated with the chain that formed
this node .

(6) The node’s parent. - -

Items 1 and 6 and the information on the property li t s of the dummy nodes
de termine the structure of the problem graph. Items 2, 3, and 4 are used

by the Pathfinder for chain generation. Item 5 is used during verification.

Initialization
A query in the primitive—conditional form is input by a user. The antecedent

(left—hand side of the implication) and the consequent (right—hand side of - !
the implication) are extracted from the query. The predicates in the

antecedent are considered assumptions. Those in the consequent are consid—

ered goals. If the main connective in the antecedent is AND, the predicates

under its scope are included in the set of assumptions for each of the

goals in the consequent (examp les 2 and 3 in Figure 44). Any or all of the 
- -

assumptions may be used in deducing the goals. If the main connective is -i

01, a conjunctive dummy node (e .g . ,  Dl) is created in the t ree such that

each predicate in the antecedent is treated individually with respect to
Oi. goats, i.e., a subproblent is created for each assumption predicate with

,. ..p. t to etch goal pre itcate. All of the subproblems would need to be -.
-.‘.4,II.~,.d. Thu can be seen in the sixth example query in Figure 44. The

.. .  • .~ .t vm tent  to:

—



31 January 1979 System Development Corporation
—77- TM—6263/000/OO

((A ~ C) & (B 3 C)).

To establish it , we need to show that A implies C and that B implies C.

Within the consequent, if the main connective is AND, each predicate is
considered a goal to be deduced from the assumption set. A conjunctive

dummy node is created, all of whose goals must be establi8hed (examp le 3
in Figure 44) . If the main connective is OR, a disjunctive dummy node is

created where each consequent predicate is a goal , but only one of the
specif ied goals need be established (examples S and 7 in Figure 44). The

assumption set for each goal also includes the negation of the other

consequent predicates. This results from the equivalence of:

A 3 v(B , C),  &(A , ‘B)QC , and &(A,’C) 3 B.

Thus , if the f i rs t  expression were input as a query, two disjoined goals

would be formed , one wi th an assumption set (A, 1B) and a goal set (C),

the other with an assumption set (A,~~~C) and a goal set (B).

Other examples queries and their corresponding initial problem graphs
are also shown in f igure 44. In particular , the query in example 4 contains
no assumptions. Example 8 gives an example of the most complicated type
of initial problem graph , i.e., one for a primitive—conditional query

having a disjunctive antecedent and a disjunctive consequent.

NODE EVALUATION AND SELECTION

Given a problem graph, the Planner must decide which of the goal nodes should

be used in calling the Pathf inder , i.e., which subproblem to work on next.
Two measures used for determining this selection are: the age of the node

and the number of subproblems.

I

—- -—----~~~~~~~~~~~~~~~- -- 

- 

-



-5—

V 
-

31 January 1979 System Development Corporation 
-

—78— TM —6263/000/00

Query Problem Graph

(1) A oB 
-

AS: (A) -

GS: (B) -

(2) &(A, B)3C (
~j )AS: (A,B) -

CS: (C) -

1
(3) &(A, B)3&(C,D)

and

AS: (A,B) AS: (A,B) - :
CS: (C) CS: (0)

(4) 0 ~ &(C , D) 
D 

-

(No assumptions) 

AS: 0 AS: 0
CS: (C) CS: (0) 1

(5) A3v(C, 0)

AS: (A, ’D) AS: (A,’C)
GS: (C) CS: (D) 7)

Figure 44. Queries a-id their Initial Problem Graph (1 of 2)
(AS: indicates Assumption Set; CS: indi-
cates Coal Set)

I-

----5—---— —- 5. - -

—-5—..-



:-
~~~~

-—-
~~~~~~~~~~ -—— ~~~~~~~~ - -- --; ~~

- 
~~

- -

31 January 1979 System Development Corporation
* —79— TM —6263/000/00

Query Problem Graph

(6) v(A, B)3 C 

,
4l
l
1;~~~~~ 4

\

AS: (A) AS: (B)
CS: (C) GS: (C)

(7) &(A , B ) 3 v ( C , ’D , E)

AS: (A,B, AS: (A,B, AS: (A,B,
D I ’E) ~~C , lE) —i C ,D)

CS: (C) GS: (~D) CS: (E)

(8) VC’A, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— AS: ( ‘A ,D) AS: ( 1 A , ’C) AS: (B ,D) AS: (B , ’C)
CS: (C) CS: (~~D) CS: (C) CS: ( 1D)

Figure 44. Queries and their Initial Problem Graph (2 of 2)
(AS: indicates Assumption Set, GS: m di—
cates Goal Set )

H



- -5 -~~~ -5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- -  —--- - . .  - _______  _____

31 January 1979 System Development Corporation
—80- - TM—6263/000/OO

In experimenting with various functions that combine the measures of age 
-

and number of subproblema , we found that the evaluation function:

- 
- (2 x age) — (number of subproblems)

serves well in node selection. Nodes are not allowed to become too old,

F and nodes with a high number of associated subproblems are temporarily -

set aside but are not forgotten. - -

Two types of goal nodes are not considered for node selection: closed or - .

terminal nodes , and nodes containing goals whose predicates have complete - -

data—base support. Closed nodes result from middle—term chains that 
- -

yield no unresolved literals and hence need no further deductive processing.
Similarly , no further deductive processing is needed f or goals containing

predicates with data—base support . The truth or falsehood of these goals
can be determined directly from the data base of specific facts . -

The Planner continues its deductive processing on the various goal nodes

- 
- until there is no more goal expansion, i.e., until all nodes are either -

closed or have compute or data—base support, until no further middle—term -

chains can be generated, or until the limit on the number of middle—term 
-

chains is reached. This limit specifies the maximum number of chains to
— be generated for a given query.

UNRESOLVED LITERALS AND SURPROBLEM GENERATION

Given a middle—term chain, the Planner extracts the premises containing

the links of the chain. For each link, the premise containing it is

examined to determine which of the literals in the premise are unresolved,

i.e., those needing further deductive or data—base support. These unresolved I
literals result in the creation of subproblems. -

1_I
— 

1_ i

- _ _ _ _ _ _



- -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ________________ ‘~- - -r~~~

—- -:-- -- — - -- - -

31 January 1979 System Development Corporation
—81— TN —6263/000/00

The notion of predicate occurrence dependency , discussed earlier, can be

used to determine which of the literals in a premise are unresolved .

Dependency between any two occurrences in a premise is based on the side

of the implication sign on which the occurrences reside and on the main
connective governing the occurrences. (The positive or negative signs

of literals are needed to determine link types between occurrences but

are not needed for establishing dependency). Whether an occurrence in a

particular premise is unresolved is based on its relationship to the two
premise occurrences involved in a link in a middle—term chain.

A literal in a premise is unresolved if it is dependent on both of the

two linked occurrences in the premise. The literal must be dependent

on both; otherwise the premise can be subdivided such that the literal

- does not occur in the sub—expression involving both linked occurrences.

The sub—expression containing the link is the one needed in the derivation.

A literal not occurring in this sub—expression need not be considered in

the proof . For example, suppose a chain included the link between A and

C in the premise

&(A , B) 3 &(C, 0).

The occurence B is dependent on both A and C and is therefore unresolved

The occurrence D is dependent on A but independent of C and is therefore
not unresolved. Dividing the premise into

&(A, B) ~ C and &(A, B) ~ D,

we note that the first expression includes the link between A and C and

is therefore the one required for the derivation using this link in a
middle—term chain. This expression does not contain D.

Once the Planner has determined which literals in a premise are unresolved,

it must then examine the dependencies among the set of unresolved literals. —

Consider the premise:

&~~~~, B) 3 &(C , D),

~~~~~~~~~~ _ _ _ _ _ _



_ - 5 -  - - - .-
~~
w,.. - - -——

~- ——-—
~~~~~~~~~~~ - --5-v-- -----— - -  - - 

~~~~ -~~~~~
--5— 

31 January 1979 System Development Corporation
—82— TN —6263/000/ 00

and suppose the link between A and B occurs in a middle—term chain.

Occurrence C is dependent on both A and B and is thus unresolved. The

- 
- same is true for D. The premise, however, is not indivisible since it

can be divided into the two expressions - 
-

&(A , B) ~ C and &(A B) 3 D.

Both expressions contain the link between A and B reconfirming that both

C and 0 are unresolved . Because ~iese expressions are premises in them—
selves (resulting from the original premise), only one of them need exist

in a derivation involving the link between A and B. Thus , the Planner
need resolve C or D but need not resolve both. This is due to the

independence of C and D. The subproblems would result in the creation

of a disjunctive branch in. the problem graph. In the more general

case, those occurrences in the unresolved set that are independent of

one another will fall under a disjunctive branch; those that are dependent

will fall under a conjunctive branch where all the unresolved occurrences

must be resolved

The Planner creates a subproblem for each unresolved literal. If the literal

occurs in the antecedent of a premise it remains unchanged as it becomes
a subgoal . If the literal occurs in the consequent, however , the literal
is negated when it becomes a subgoal. This is done so that when the

unresolved literals are established, they will correctly unify with literals

in other premises in the proof.

Consider a link between A and B in the premise

(a) &(A, B, C) 3 &(D , IE).

Occurrences C , 0, and E are unresolved with D and E independent. The

following branch would be added to the problem graph under the node
from which a middle—term chain involving the premise was formed (only

the goal is shown for each node). 

1 

-5 

_ _ _ _ _



- - : -
~ 

- -

31 January 1979 System Development Corporation
—83— Th ...6263/000/O0

(b) 

C

~~~~~~~~~~~~~~~~;r

E

This branch is conjoined with other branches resulting from unresolved

literals in other premises associated with the chain. Suppose the link

between B and H in the premise:

- - - v(F, ~G) ~ v(B , H, I)

-
occurs in the same middle—term chain as the link in premise (a) above I -

—
-

with a u—arc existing between the B occurrences. Occurrences F, C, and
I are unresolved with F and C independent. The following branch would

be created for the two premises:

~~~

~~D E  F~~~~G

-

~~~~~~

_ _ _ _ _ _ _ _ _ _ _

-
——--~~~~~~~ -- --

~~~~- --
~~~~
“- - i-- - - - -—-

~~~~~~~

- —---- - - - - -5 - -  ~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~—— --- 
~~~~~~~~~ ~~~- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

31 January 1979 System Development Corporation
—84— m-6263/000/00

EXTRACTING INFERENCE PLANS

The problem graph contains all the inference plans generated by the system.
A particular inference plan is a subgraj!~h within the problem graph. A

plan may contain unresolved literals , i.e., subproblems not yet resolved.
The unresolved literals in such a plan will be treated by the system as

needing data—base support, compute support, or in some cases (partial

plans) deductive support.

The following set of rules specify the requirements for extracting an

inference plan from the problem graph. One begins by applying the rules
to the top—level node in the graph.

(1) If the node under consideration is a goal node and the node -

is closed (no unresolved literal exists in the node) , the
inference plan must contain the node.

— (2) If the node under consideration is a goal node and the node has

an unresolved literal which needs data—base or compute support,

the inference plan must contain the node.

(3) If the node under consideration is a goal node and the node has
successors, the inference plan must contain the node and one
and only one of its immediate successor nodes*. The five . -

-

rules are then applied to the successor node chosen. . -

(4) If the node under consideration is a conjunctive dummy node
- -

(indicating that a set of conjunctively related branches hang

below) , all of the immediate successor nodes must be part of
- .

-

the inference plan. The five rules are then applied to each of

the immediate successors.

*Recall that the set of branches hanging from a goal node is disj oined ,
one branch for each middle—term chain generated for the node.

k .

-

~ c _ __ _~~~~~~~~~~~~~~~ _ _ _ _ _ _

,~~_-_- - - --- --.
~~~~

- - “~~
.
~~~~~~~~~ 

-
~~
-

~~~~~~~:
--:---7L:-5=-:-:_ ——-- -----

=-—-
~ —----- — -5 - 5 - ----

31 January 1979 System Development Corporation- - —85— TM —6263/000/00

- - (5) If the node under consideration is a disjunctive dummy node

(indicating that a set of disjunctively related branches hang
below) , one and only one of the immediate successor nodes

must be part of the inference plan . The five rules are then

applied to the immediate successor node selected .

3.7 VERIFICATION OF INFERENCE PLANS

A unification, or -deductive interaction, between two predicate occurrences

of the same relation name has a substitution list associated with it. This

list specifies what substitutions for the variables in the occurrences are

needed to make the argument strings of the occurrences identical. A typical

inference plan involves several unifications. The primary function of the
verifier is to examine the substitut ion lists of the unif ications and
check for substitution consistency.

The procedure used in the verifier examine variable flows within the

unifications and combine variables and constants that must be equal into

var iable flow or verification classes. Whenever a variable—flow class has

two or more difference constants in it, the inference plan is “blocked”

and verification fails. Each variable in an inference plan can take on at

most one constant value.

As an example, consider the unification of the two literals A(a x ,y) and
A(x ,b ,w) ,  where “a” and “b” are constants and “w” , “x” , “y”, are “ z ” are
variables. The substitution list for this unification is (a/z , b/x , y/w) ,

which reads ~~~ substituted for “z” , “b” substituted for “x” , etc. Also

consider the unif ication of the literals B(w ,z) and B(c ,v), where “c”
is a constant and “v” is a variable. The substitution list is (c/v . v i z ) .

Now suppose both of these unif ications occur within an inference plan ,

such as in: 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— —-~~~~~~~~~~~~~—— - 5 -~~~ ~~~~~~~~~~~
—

~~~~
-- I



31 January 1979 System Development Corporation
—86— TM —6263/000/00

... oA(a ,x,y)
i i

A(z ,b ,w) 3B(w ,z)
- - 2~

B(c ,v ,)3

The variable “z” must be identical to the constant “a” according to unifica-
tion 1, and identical to the variable “v” according to unification 2. - -
Combining these unifications within the proof, we obtain the variable—flow

class (a , ~, v). Other variable—flow classes for the above example are

(b , x) ,  according to unification 1, and (c, w, y), according to both unif i— 
- 

—

cations.

The var iable—flow classes serve to monitor variable substitutions within a

middle—term chain and within a set of chains comprising an inference plan.

When a variable is required to be substituted by two difference constants, - 
-

a blockage results. If this occurs in a chain, no further planning will

involve the chain. If a blockage occurs in an extracted inference plan,

the plan fails and data—base search requests are not formed for the remaining

subproblems .

One other type of blockage can occur during verification. In combining

classes within verification, the verifier must examine the variable and

constant “types” of the elements within the classes. If an element has a
specific type, other elements in the same class must have the same type or

be typeless. Otherwise a blockage occurs.

~



_ _  - ~~
- - -

~~~~~~~ 
_ _- --5 --5 - —

3]. January 1979 System Development Corporation
—87— TN_6263/000/O0

3.8 DATA BASE SEARCH

A given inference plan may have remaining subproblems that need data—base

support, i.e, support from the file of specific facts. These remaining

subproblems are set up in the form of search requests for the Data Manage-

ment System (RuMS). The RDMS, in turn, searches the data base to find facts

that are instances of these search requests. If all search requests are

satisfied, the inference plan becomes a complete proof and answers can be

generated. If data—base search fails, the inference plan is unsuccessful.

One important mechanism the RDMS has is the ability to generate conditional
answers. This will occur under certain circumstances if RDMS search is

partly successful and there is insufficient information available for the
remaining search requests. The R~ 4S can then notify the user that certain

specific information is needed to complete the inference plan. Thus the

system can be utilized, in some cases, to tell the user What facts are

needed to answer his query.

To search an external (i.e., non—LISP) data base each relation associated

with the data base must be marked as EXTERNAL and have data base field

names supplied through use of the adjust mode. Then if Control mode: IL

is turned on relational queries in an Intermoderate Language format will

be printed out at the user’s terminal and also be sent to a disk file for

transfer to the external data base system.

3.9 RECURSIVE PREMISES AND SPECIAL PURPOSE GENERATORS

Premise of the general fotm :

) & 3 P()

are recursive and can lead in some circumstances to excessive growth of
search space in deductive systems. In addition to advice and variable

typing DADM uses a third technique to reduce the problems caused by

recursive premises . -

_

~~~~~~~~~~~~~~~~~~~~~ 
___ -

31 January 1979 System Development Corporation
88— m —6263/000/00

Unification between multiple occurrences of a predicate within the same

premise may often be avoided by res tating the premise’s assertion by use of
logical properties.* For example, the predicate “North—of” could be
characterized by the premises:

VxVy (North—of(x,y) &North—of(y,z) 3 North—of(x ,z ) )

VxVy (North—of(x ,y) 3 North—of (y,x))

Vx ( North-of(x ,y))

The first premise specifies that North—of is transitive. This premise can

deductively interact with itself and the other premises to cause a rapid

expansion of the deductive search space . To help avoid this problem, DADM
permits bina ry predicates to be characterized by their logical properties
(for example North-of would be assigned the logical properties: transitive,
asymmetric , and irreflexive). Generators can then be called to effect

special—purpose inferences associated with various groupings of logical

properties. Recursive premises describing logical proper ties of predicates
are therefore replaced , where possible, by special—purpose subroutines.

-

- 
Logical properties of binary relations are identified by a user—system dialog

illustrated below, for the pred icate “North—of” (user input is preceded by
an asterisk) :

* Define (North—of)

Suppose one thing is North—of a second thing that in turn

is North—of a third thing. Is the first thing North—of the

third ?

* yes

If one thing is North—of a second thing, will it always be
the case that the second is North—of the first?

* No

*Examples are :
reflexive (equal—to), irreflexive (greater—than),
symmetric (equal—to) , asymmetric (North—of ) ,
transitive (located—in), 1—leader (mother—of),
1—follower (weighs), noregrovth (son—of), and
unlooped (mo ther—of) .

- - - 5 - -

—--5 - - - -  ~~~-
-
~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- ~~—~~-— -~~ -- --5- -- —-- -~~~~~~~~~~~~~
-5--

_ _— - - ___ -5
_ _ _ _ ~~~~~ - -~~~ — - - - ~~~ --- ~~~~~~~~~~~~~~~~~~ --5--5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~

31 January 1979 System Development Corporation
—89— TM—6263/000/O0

Night it ever be the case?

* No

Afte r the third yes/no response , the system is able to identify “North—of”
as a transitive, asymmetric, irreflexive, and unlooped relation.

in one use of this technique a series of recursive premises were replaced by

an equivalence class generator. A proof that had required eleven premise

statements was reduced to one containing only fiv e premises plus the equiv-

alence class generator. Similar savings appear to be possible in many other

recursive premise situations.

3.10 DADM PRINT AND CONTROL MODES

DADM can run in several different control modes and can printout or display
a wide range of information about paths , plans , verification classes ,

answers , evidence , etc . The following print and control modes can be
easily set by the use of the adjus t mode :

• DA1~4 PRINT MODES

PADVICE Print advice alert lists -

PPATH Print all middle—term chains

PT-lAIN Print main chain paths only

PPATNO Print occurrence indices for each chain printed

PEFFORT Print effor t indicators for each chain printed

PPREN Prin t premises for each chain printed
PVERC Print verification classes for each chain printed

PSUBC Print subgoals for each chain printed
PVERP Print resultant classes for verified plans

- and final classes for each successful data—base

search
PSR Print search requests and compute relations for

each verified plan
PDV Print data values for each successful data—base

search

~~~~~~~~~~~~~~~~~~

. 

_ _



p —

31 January 1979 System Development Corporation
—90— TM -6263/000/00

DAUM PRINT MODES (cont ’d)

PISR Pr int instantiated search requests for each
successful data—base search

PANSWER Pr int answer information for each successful
data—base search

PDVALL Print si~nmary of data values found during data-

base search
PANSALL Print answer summary
PROOFA Automatic proof display

PROOFM Manual proof display

PPLAN Print inference plans (includes PSR)
PSENT Print plans , proofs in external format
PDIS Print plans , proofs in internal format

PLANREPT Print plans using same premises as previous plans

DADN CONTROL MODES

NODMS No data management search

VER1 Verify oneplan at a time

DMS1 One data—base search at a time

AQ Automatic query when entering DERIVE 0,
or DADM()

NOVER No verification of plans

IL Generate and print IL search requests

4. SPECIFIC TASKS ACCOMPLISHED

During the per iod of perf ormance (1 April 1976 to 30 December 1978) we have
accomplished the following tasks:

(a) Implemented the DADM prototype in SDC LISP 1.5 on the IBM 370/158
and AMDAHL47O/V6. This prototype consists of the following modules:

controller , array maintenance , pa thf inder , planner, verif ier ,
plan—evidence ~fisp1ay, and answer construction.

q H

--—-- -
~
—

~~~~~~~~~ 
_~ L ~~ZIiIIJ~J ~~~~~~~~

r.- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~
—

~
- -— •• •—-- -—— —

• 31 January 1979 System Development Corporation
—91— T14-6263/000/O0

(b) Converted the DADM prototype for operation in INTERLISP under

TENEX for use on DEC—10 computers. As part of this process

restructured LISP code, converted to INTERLISP FOR macros and
CLISP.

(c) Added a user assistant module to INTERLISP version of DADM.

(d) Implemented ability for DA~ 4 to control and access local REMS

(in LISP) as veil as remote DMS (via Intermediate Lanaguage

• j queries).

(e) Implemented an extensive series of user prompt, guidance, hslp,

I and break (interrupt) facilities.

(f) Implemented array garbage collection routines to support additions,

deletions , and changes to knowledge base (advice, premises,

relations, functions, domains , etc.)

(g) Storage of premise deductive interactions and dependencies in

a connection graph.

(h) Storage of conceptual associations among relations, domains,

functions, and premises in a concept graph.

~ I (i) Storage of deductive subproblems in a problem graph that makes

extensive use of structive sharing to eliminate duplicate nodes.

(j) Construction of over three hundred premises representing biblio-

graphic , kinship, naval ship, and shipping/receiving data base

applications.

(k) Extensive testing and checkout of DADM prototype with premises,
adv ice rules , and associated data bases and compute functions.

(1) Implemented techniques to find the shortest-most plausible

1. inference plans first.

1 (in) Implemented “Try—Harder ” feature to grow deductive search space

4 upon user request .

1

_ _ _- - - - - ~~~ _ __ _

ii

~

_ _ _ _

-—
~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

— —-

31 January 1979 System Development Corporation
—92— TM -6263/000/00

-
. (n) Implemented techniques to effectively deal with incomplete

information in queries (e .g . ,  missing ar guments), in p lans

(e.g., missing support for subprobleins), and in answers (e.g.,

missing facts in data base) .

(o) Implemented techniques to deductively decompose query problems

into deduce, search , and compute aubproblems and order sub—

problems for efficient solution.

(p) Implemented a deductive apparatus that is expressionally and

derivationally complete. This assures that all answers to a

users query may be found.

(q) Implemented a global planning strategy to quickly zero in on

relevant subsets of premises to support user queries.

(r) Implemented a semantic advice (i.e., meta rule) file that automatically

invokes premise and relation selection strategies as necessary to

enhance system performance.

(s) Implemented forward , backward, and middle term chaining techniques

that are automatically activated as appropriate.

• ( t) Implemented techniques to identify logical properties of binary

relations and assign special purpose deduction routines to avoid

the “recursive premise” problem.

(u) Wrote “DADM Function Description” (TM—6035 , Philip Klahr ,

March 1978) that briefly descr ibes the LISP functions comprising

DADM.

(v) Wrote “Alternative Architectures for Deductively Augmented Data

Management Systems” (TM—6005 , Charles Kellogg , December 1977)

that describes a migratable module architecture to support various ; 
-

realizations of user centered, deduction cen tered , and data

centered versions of DADM.

(v) Published four papers (references 3 , 4, 5, and 6) on our research

results.

-~ —•— —•-• — —~ —.•—•—---~ -•-~-—• ~~~~~~~~~~~~~~ ~~~~_ ‘ ~~. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



rr —
~~~~~ -~ - - _—_  ~~~~~~~~~~~~~~~ -

~~~~

31 January 1979 System Development Corporation
—93— m —6263/000/00

5. FUTURE PLANS AND RECOMMENDATIONS

• Over the past two a d  one—half years DADM has grown into a robust developmen—
tal prototype that demonstrates considerable utility as an on—line

decision aid , as a supporter of high level user views, and as a data analysis
- 

- 

and evaluation aid.

The next step seems clear; to interface DAD1I with one or several backend data

base systems and one or several user—oriented frontend language processors.
Once this is done DAD?1 can be moved into test bed envirooments in which its
capabilities can be throughly evaluated and feedback can be obtained from

actual users about necessary and desirable improvements.

In addition , we believe a cont inuing research effort should support investi-
gations In the following areas :

• • (a) Use of richer, higher level forms of semantic advice.

(b) Further investigation of recursive premises and ways of
avoiding them through use of higher order logical constructs

•H (
~ and abstraction mechanisms such as abstract data types.

(c) Investigation of techniques to discriminate between productive

and non—productive deductive paths and plans. This information

could then be stored for later use in avoiding non—productive
paths and following productive paths.

• (d) Investigate the use of DM14 to support semantic integrity checking
and the application of data security constraints.

(e) Investigate use of DADM in distributed data base environ—

- 
ments as an intelligent planner, controller , and generator of

- 
data base access strategies .

- U) Develop additional special features to support future knowledge/

- - - data base administrators (such as semantic tuning to specific
applications).

0~~

±~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘

~~~~~~~~~~~~~~~~


________ —~~~~~~~~~~~~~~~ ~=— ___

31 January 1979 • System Development Corporation
—9 4— TM—6263/000/O0

• (g) Investigate Láproved user displays and user interfaces.

(h) Investigate advantage of converting DADM programs to another

high order language (PASCAL , C, etc.).

-H •
-

• 1~’

-
~~

•

•.• /1:
•T (i:

I

— - — - —
_ _ _

~~~~~~w~~~~~~~-r~--•- 
~
--~~~~~~—- —-

I:. 

-

31 January 1979 System Development Corporation
A— i TM —6263/000/00

APPENDIX A - REFERENCES

1. Green, C.C., Theorem Proving by Resolution as a Basis for Question
• Answering Systems”. In Machine Intelligence 4, Meltzer, B. and

Michie, D. (Eds.), Edinburgh University Press, Edinburgh, 1969,
183—205.

2. Kellogg, C. H., Burger, J., Diller, T., and Fogt, T. The CONVERSE

natural language data management system: current status and plans.

• Proceedings of the Sympos ium on Information Storage and Retrieval,
• ACM , New York, 1971, 33—46.

3. Kellogg, C., Klahr, P., and Travis, L., A Deductive Capability for
• Data Management . In Systems for Large Data Bases, Lockemann , P.C.

and Neuhoid, E.J. (Ed~ .), North Eolland, Amsterdam, 1976 , 181—196.

4. Kellogg, C., Klahr, P., and Travis L., “Deductive Methods for Large
• Data Bases.” Proceedings of the Fifth International Joint Conference

- on Artifical Intelligence, MIT, Cambridge, 1977, 203—209.

5. Kellogg, C., Klahr , P., and Travis L., “Deductive Planning and
• Pathfinding for Relational Data Base.” In Logic and Data Bases,

i 

Gallaire H., and Minker , J. (Eds), Plenum, New York, 1978.
- 6. Klahr , P. ,  “Planning Techniques for Rule Selection in Deductive
• Question—Answering .” In Pattern—Directed Inference Systems~

Waterman, D. and Hayes—Roth, F. (Eds.), Academic Press, New York , 1978.

7. Kovaiski , R. ,  “A Proof Procedure Using Connection Graphs . Journal of
the ACM, 22 , 1975, 572—595.

• 

~~

- 

8. McSkImin , J. R. ,  “The Use of Semantic Information in Deductive Question—
Answer systems. TR—465 , University of Maryland , College Park , 1976. •

~i I  
_ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _



I
• U

31 January 1979 System Development Corporation
• A—2 TM —6263/000/O0

• 9. Minker, J., Fishman , D. H. ,  and McSkimin, J.R. , “The Q* Algorithm——
a Search Strategy for a Deductive Question—Answering System .”
Artificial Intelligence, 4 , 1973, 225—243.

• 10. Robinson , J. A., “A Machine—Oriented Logic Based on the Resolution
Principle.” Journal of the ACM, 12, 1965, 23—41.

11. Schwarcz , R. M .,  Burger , J. F., and Simmons , R. F.,  “A Deductive
Question—Answerer for Natural Language Inference” , Communications
of the ACM, 13, 1970, 167—183.

12. Shostak , R. F., “Refutation Graphs. Artificial Intelligence, 7,

1976 , 52—64.

13. Sickel , s., “A Search Technique for Clause Interconnectivity Graphs.”
IEEE Transaction on Computers , C—2 5, 1976 , 823—835 .

14. Siiiunons, R.F., “Answering English Questions by Computer: A Survey.”

• Communications of the ACM, 13, 1965, 53—69.

15. Simmons , R.P.,  “Natural Language Question—Answering Systems: 1969 .”
Communications of the AQ4, 13, 1970 , 15—30.

16. Shortliffe, E.H., Computer—Based Medical Consultations: MYCIN.

American Elsevier, New York, 1976.

17. Travis, L., Kellogg, C., and Klahr, P.,”Lnferential Question—Answering

Extending CONVERSE.” SP—2697, System Development Corporation,

Santa Monica, California, 1973.

18. Winograd , T., “Understanding Natur al Language.” Academic Press ,
New York , 1972. 

- •

19. Zadeh , L. A. Fuzzy Sets . Information and ContrOl , 8, 1965 , 338—353.

~~~~~~~~~~~~~~~~~~ -~~~~~~-~~~~~~
-——-

~~
—

~~~~~~~~~ - — --- --



F ;— 
—

~~

——- - -•-— -

~~~~~~~

- —•- — -

~~

-

~

,--

~~~

• • - •- - .v-,~ ~~~~~~~~~~~~~~~~~~~~~~~~ -, •.—

~1

• System Development Corporation

1 31 January 1979 Th 6262/000/OO

I

a.

F
•t ~~:

- •

1~ 
•

-I

• 

• 

. _ _ _ _  _.
~~~~~~~~~~~~~~~~~~ 

_ _ _

— •-~~~~~~~ •.—• — —— -•-- .-
‘—•—~~~~~~ — ~~~~~-•----

.
~~~~~.•_•1 -~~~-•-- — - -_~~_____~~~~~~ •__•_,~ _ _•_ ~~~~~ 

— 
~~~~~

—•-
~•-

_L ~

•
•~~~~~

.-,- —‘- •
~~~

•- •,•~~~-~• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ •• ~~~~~~~~~~~~

I
I

~ I
System Development Corporation

31 January 1979 jj.... TM -6263/000/00

• I TABLE OF CONTENTS

I Section Page
-

1. REVIEW OF WORK ACCOMPLISHED 1

• r 1.1 TASK 1: Installation of EUFID with the METRO
- Application at the Customer Site 1

1.2 TASK 2: Construction of the Conceptua l and Semantic
Tables for the Customer ’s Prototype I Application . . 1

1.3 TASK 3: A Study of Phonetic Spelling Correctors . 2

1.4 TASK 4: Study of Negation 2
2. THE CURR ENT EUFID SYSTEM 3
2.1 Overview 3

L 2.2 Structure and Use of the EUFID Tables 7
2.3 EUFID Question Answering System 13

3. FUTURE PLANS 24

•

-

APPENDIX A — REFERENCES A—l

l i i
F ~~~~~

- -

LI


~~~~~~~~~~~ ______ - -
~~~

System Developmen t Corpora tion
31 January 1979 _j j j Th 6263/000/OO

Figure Title P~ge
1 EUFID Opera tion and Control 6
2 Example of Case Structure 11 --
3 Figure 3 15
4 Figure 4 16

5 Figure 5 17 -I
6 Figure 6 18

,f
• -a

• — .

— S

I • .5

—

1~
I

____ — -

• -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•

•

-

-
• •

—

~

—

• ~~~ ~~~~~~~~~~~~~~~~ -~~~•-

• -•-- •~~ - _ -- — -- - - ~~•• • •• •~~_ • _ _ • •~~~ w~~~~~_ • • - ••~~ -•— .~~~

System Development Corporation
31 January 1979 —1— TM—6263/000/0O

1. REVIEW OF WORK ACCOMPLISHED

• During the contractual period from October 1977 through 31 January 1979 ,
several EUFID tasks were accomplished. The original proposal called for

the following EUFID tasks:

(1) Task 1: Installation of EUFID with the METRO application at the

Customer site;

(2) Construction of the conceptual and semantic tables for the cus-

tomer’s Prototype I application;

(3) Task 3: Study of phonetic spelling correctors; and

• (4) Tas~c 4: Study of Negation.

• 1.1 TASK 1: INSTALLATION OF EUFID WITH THE METRO APPLICATION AT THE
• CUSTOMER SITE

EUFID was installed at the customer ’s site in December 1978. The system
installed was the first demonstrable version of EIIFID and a later version
is planned for installation in March 1979. During installation we dis—
cov -red that the F~FID system resulted in the customer ’s UNIX exhausting
its swap space. This was not a EIJFID—INGRES problem but rather a prob-

lem caused by t~e under—allocation of disk resources under UNIX. The

swap problem occurs when there are so many processes running on UNIX

that there is insufficient disk room in a pre—allocated disk segment to

store core images of swapper~—out processes. The customer is currently

exploring a solution to th~ problem which would involve increasing the
size of the swap space.

1.2 TASK 2: CONSTRUCTION OF TEE CONCEPTUAL AND SEMANTIC TABLES FOR THE

CUSTOMER ’S PROTOTYPE I APPLICATION

We aided the customer with the construction of the conceptual tables (i.e.,

data base tables). The set of representative queries and applica tion
description necessary in order to build the semantic dictionary were not
defined by the customer and delivered to us until November 1978. There

•
• __________• •• •

___i_ _
- --

-
~~~~~~~~~~~~~~~~~~~~~~~

•
~~~~~~~~~~•- —----~~~~~-••-•- -~~~~~~~~~~••-- • - •

System Development Corporation
31 January 1979 2- Th—6263/000/OO

vere neither funds nor time left to complete the building of the Proto-
type I sementic dictionary at that t ime. It will be possible to per-
form this work at a later date.

1.3 TASK 3: A STUDY OF PHONETIC SPELLING CORRECTORS

A study of phonetic spelling correctors was performed. The document

TM—571l/400/OO, “A Phonetic Spelling Corrector for EUFID,” was delivered

in October 1978. The study examined the character—based INTERLISP

spelling corrector , and the SOUNDEX and IBM ALPHA phonetic name encoding
procedures. For EUFID applications in which proper names occur fre—

quently, it is suggested that the IBM ALPHA algorithm be implemented

with modifications representing additional systematic orthographic—to—

pronunciation rules.

1.4 TASK 4: STUDY OF NEGATION

A study of negation was performed. The document SP—3996, “Enabling

EUFID to Handle Negative Expressions,” was delivered in October. As a

first step toward selecting negative expressions to be added to the

EUFID vocabulary, a list of expressions categorized as negative in the

linguistic literature was compiled. We then used as many as possible

of these expressions in formulating questions for METRO, one of the

applications being used as a testbed for EUFID. Additional negative

expressions were found by constructing paraphrases of those questions.
EUPID staff members rated each of the questions and its paraphrase(s)

according to the likelihood that a question of that form would be asked

by a EUFID user. On the basis of these ratings, 21 of the highest—

scoring negative expressions were selected for detailed study. As a

result of this detailed study, it was proposed that negative expressions

be added to EUFID in the following order:

Stage 1: The pure negatives: “non— ” , “not ” , “n ’t” , “un—”, “outside ’.

Stage 2: Negative qualifiers: “fever ”, “the fewest ”, “the least ” , “less”,
“never”, “no”, “not...anything”. (A few of these such as “the

least” and “less” are already being handled in the prototype
version of EUFID.) L.

~~~~~~~~~~~ -~~~• ~~~~~~~~~~~~~~~•~~~i••~~~~~~i 
-



I
S.

System Development Corporation
• 31 January 1979 3 TM— 6263/000/00

Stage 3: Negat ive conjunctions : “but not”, “neither...nor”, “not
• ( . . .) both...and” , “not( . . . )  either...or ” , “not on.ly...but

also”.

Stage 4: Restrictives: “only”.

• Stage 5: Except/other expressions : “apart from”, “besides”, “except”.

2. THE CURRENT EUFID SYSTEM

The prototype EUFID system is currently undergoing extensive system

~heckout at SDC in Santa Monica. A well tested version is expected to
be installed at two customer sites by March 1979. A paper on the
EUFID system was presented at the Fourth International Conference on
Very Large Data Bases (1].

2.1 OVERVIEW

EUFID is a man—machine interface system that will permit users of data
management systems to comeunicate with those systems in natural lan-

guage. At the same time, EIJFID will act as a sec’~city screen to pre-
vent unauthorized users from having access to particular fields in a

data base. The specific objective is to build a system that will be
• practical, efficient, and widely usable in existing, real—world appli-

cations. The approach is to ~ode1 the restricted set of linguistic
structures and functions required for each application , rather than the
manifold linguistic properties of natural language per se. This allows

the system to be powerful enough to efficiently process English queries

against specific data bases without attempting to understand forms of

English that have little or no function in the contexts of those data

bases.

Why is a natural language interface necessary? Data bases are growing

in number, size, and complexity. Data management systems have been

built to accommodate this growth, but there is no standardization among
DMSs as to language and the functions they perform. The number of

casual users who need to retrieve information from data bases is also

• • • • • • - •  • • • - _ • - • •  •• • •• • • •~~-•~~~~~~——~~~~ ~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~
-• •• •



-
~~~~ ~~~~ •~~~~. ~~~~

-- ‘~~
-
~

• • • - - —

System Development Corporation
31 January 1979 —4— TM —6263/000/00

growing. Currently, the approach of attempting to train groups of casual
users to learn how to use one or more DMS languages and to become familiar
with the data bases they need to access has not been successful. Moreover,

as the cost of computer terminals continues to drop , it becomes increas-
ingly more practical to make terminals available to casual users and

enable them to easily retrieve their own information——an advantage they

cannot now avail themselves of. A natural language interface will allow

the casual user this easy access to data base information.

EUFID has been designed to be interactive and “friendly” to the user. We

expect the typical EUFID user to have little experience with computers, data
management systems, or even the organiza tion of the da ta base from which he
needs answers. It is necessary, however, that the user be competent in his

application area, that the application area be veil defined and bounded, and

that all users competent in the application area share a common language of

communication.

EUFID is a table—driven system . To support a new application in EUFID, we
• I implement a new set of tables. The tables contain two different descriptions,

or represen tations, of the application. One is that of the data base——its

structure and semantics. The other is that of the syntax and semantics of the

language a competent user uses to ask questions about the application .

EUFID has been designed to: (1) be a friendly interface to the casual user;

(2) achieve a separation of the application into a user ’s view and a data
base view; (3) handle the interfacing to both network and relational DMSs;

-

-•

(4) be application independent; (5) be portable; and (6) be able to reside

on a minicomputer. The advantage to having a natural language interface re-

side in a minicomputer front—end machine is a practical one in that such an

interface does not add to the usual overloaded conditions of the large frame

computers.

I-

r —
~~~~~~~~~ ____—— —---

~~~~~~~~~ 
-~~~~~~~~~ -

_
—~Z

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

- 

•

• S.

- System Development Corporation

1 31 January 1979 —5— TM—6263/000/00

There are two main groupings of EUPID modules: The table—building modules and

• the question—answering system. The table—building modules include the Applica-
tion Definition Module, which builds the three main tables , and the Concept
Graph Editor, which supports the editing of these tables for security reasons.

• These modules are used by the Data Base Administrator (DBA) or the Application

• Expert (AE) to build or edit the epplication—specific tables . All changes to
the tables must be made through these modules. For integrity and security

- reasons, none of the EUFID users have direct access to these tables . The WElD
question—answering system reads the system .tables but cannot alter tbe~. Through—

out this description we refer to the table containing infotIation about the data baa-

as the “data base table”; the table containing the users ’ view, of the applica-
tion as “the semantic dictionary”, and the table that maps the semantic dictionary

into the data base as the “mapping table.”

The EUFID system supports three types of interactive activity: question answer—

I ~ ing, synonym editing, and provision of help. Question answering is the main

- activity. When the EUFID user types a question on his terminal, the EUFID Con-

troller reads It and forwards it to the Analyzer. The Analyzer interprets the

question and produces a semantic representation of it. The mapper maps the

seman tic representation into a data base representation and generates - an inter—

I mediate language (IL) representation . The Transla tor translates the IL
into formal query—language statements for the specific data management system

(DMS) and submits the query statements to the 114$. The 114$ processes the

query statements, accesses the data base, and sends the answer back to the

• EUFZD user. The Analyzer and the Application Definition Module are the

• same for all DMSs and applications; a separate Translator is needed for each

• separate DMS. The effort required to build a Translator is directly propor—
tional to the complexity of the DMS language used. A specialized set of tables

is required for each application, and, again, the effort involved in building

the application tables is related to the complexity of the application,



I—.. ~~~~~~~~~~~~~ -____•••.____~_.__-•- —~— - • - - • - -- • •:~~‘-~~
-
~ ~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~~

—-
~ :-: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—~

—•— •-—- — - •— • - ~~ —••--• • ••—- •

System Development Corporation
6 TM —6263/000/0031 January 1979 - -

-

•

- _

$

1

~1

i~i~ k
• 5’U

~~~~~~~- 

•

~~~~~

‘-

~~~~~ 

•

~~~~~~~~~~~

.• - - - •---

~~~~

- - - - • - • - •

~~~~~~~ 

•• • -
- --~--~~~~~ -~~~- •-~~~- • • • -• • • •— rn ~--- - — — — — a- ___


~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• System Development Corporation
31 January 1979 —7— TM 6263/000/00

The •econd type of user activity, synonym editing, is supported by the Synonym

Editor Module. Each user of each application is allowed to create his own

synonym dictionary to enable him to redefine words in the semantic dictionary.

When the Analyzer is invoked it searches the synonym dictionary f or words from

the input question before it tries to find them in the semantic dictionary.

A third type of user activity is supported by the Help Module. When the user

requests help, this module explains how EUFID operates and what it is capable
of doing and not doing; it also provides a detailed explanation of the types of

responses EUFID makes when it has been unsuccessful or has encountered some
sort of failure. The Help Nodule is essentially an on—line users’ manual .

Each EUFID user session generates a separate journal file. The journal

consists of all interactions between the user and the EUrID.

2.2 STRUCTURE AND USE OF ThE EUFII) TA BLES

Building a EUFID Application requires a negotiation process between an applica-

• 
• tion expert and a EUFID consultant. This process is extremely

• important, and we are developing techniques for handling it [2]. The

first step in the negotiation is for the application expert to prepare a
description of the application and to collect a representative set of ques-

tions that competent users ask of the application. The next step is for the

EUFID consultant to extract from the set of questions and the application

• description, a pictorial representation of the application wor1d~ this is a

free—hand graph that shows the entities in the application and bow they connect

to each other by means of verbs, prepositions, etc. The EUFID consultant and
the application expert then review the pictorial representation to ensure that

it contains as complete semantic information as possible for eventual inser-

tion into the application tables. When an adequate pictorial representation

has been agreed upon, the data base is examined to ensure that all structures

in the pictorial representation can be mapped into data base fields. When

there are structures that do not map, then either new data fields need to be

added to the date base or the application needs to be redefined to exclude

~~~~~~~~ 
~~~~~~~~~~~~~

-
~~~~~~~~~

-
~~~
---

~~~~~~~ 


-
• _: • •-~~~~ • • _ — — _

~~~
- _

~~~~~ _~~
,

_ - _ _______. ~~~~ —~-—— -
~~~~~~ - • - • • •  ______________________

• System Development Corporation -

• 31 January 1979 —8— TM— 6263/000/00

these semantic structures . This procedure also brings to light data base -

fields that have not been represented in the pictorial representation. The

application expert may choose to build a representation for these fields in

the pictorial representation or to ignore them if they are really not part of 
-

the application.

At the conclusion of the negotiations, the data base table , the semantic

dictionary, and the mapping table are built. -

Access to EUFID is controlled through a user profile table, which contains •

information about legal EUFID users, the applications and data bases they
• may access, and their table environment for a given application. The con-

struction of this table is not part of the negotiation process , but is con—

t rolled by the Data Base Administrator . 
-

The data—base table is composed of two parts: the CAN (canonical) and -

REt (relational) tables. They provide a common form for describ— -

ing the logical structures of data bases implemented under different

DM5.. All DMSs are designed to represent collections of data pertaining

to entities and their attributes and the relationships between entities.

A large variety of terms are used in existing DMSs to refer to these elements.

The terms we are using are gro,~~ aggregate, field, link, and domain. In

general, a group corresponds to an entity, an aggregate to a name for a set

of fields, a field to an attribute, a link to a relationship, and a domain to

fields having comeon values.

Each CAN table entry contains identifying information about a group, aggregate,

or field in the data base, such as: its name; its identification as a group,

aggregate or field; for aggregates and fields the iuvnediate group or aggregate

to which they belong; a unit code for fields whose values refer to unit - -

• • • -  •



__ - “ ‘_ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — —~~~~~rr~ —-~~~~ • -• • ••• ~~~~
•
~~~• ~~~~~~~~~~~~~~~~ 

—
~~~~ - . •

~~~~~~~~~~ 
• •

System Development Corporation
• 31 January 1979 —9— TM —6263/000/00

measures such as feet, miles, etc., the domain to which the values of
a field belong (if appropriate); an upper/lower case flag; an alpha-

numeric flag; and an English name (or phrase) to be used as an output
• identifier for each field.

• The REL table contains an entry for each group and lists every other
group with which it has a primary or secondary link(s), and the linking

field(s) in each group. For network data bascs the link is the chain

name for a chain that connects the master and detail records. If there

are multiple chains between the master and detail, only one will be
present in the REL table. The full set of chains are available to the

Translator, and the choice as to which chain is applicable in the par-
ticular instance is made by the Translator. The REL table also contains

a list of the f ields that uniquely identify a group entry and a list of
the fields that need to be included In the output answer whenever a

• question is asked about the group.

One of the purposes of the REL table is to define secondary or non—

• . primary links between groups. An example of a secondary link is the

date domain. When users ask questions such as “What warehouses were
built after Ajax began shipping to Colonial?”, the connection is made on

the basis of date (I.e., the names of warehouses whose completion date is
greater than the date when Ajax began shipping to Colonial) . Secondary
link inf ormation is semantic information about data base fields that
is not easily elicited from the data base users. Most users, when asked
how one data base group relates to another , are quick to mention the
primary link relation but are not overtly aware of the secondary links
until they need to use them to answer a question. The identification of

f ields belonging to the same domain, which is obtained dur ing the negotia—
tion process, furn ishes this important linking informa tion to the system.

Semantic Dictionary

The semantic dictionary is the most complicated table structure in the

EUPID system. Words used to communicate about the application are defined

— ----

~

--— —~~~~~---• - -- • ~~~ —~~~~~~~~~,—~~--•-- • -~-‘ ~~~~~~~~~~ ---~~~~~•~---~~---~

T~~ ’TT~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~

-

Li

System Development Corporation
• 31 January 1979 — 10— TM—6263/ 000/O0 -

as to how they connect to each other in a generalized case gramma r

structure.

There are seven entry types in the semantic dictionary: (1) entities -

(e.g., nouns) ; (2) events (e.g., verbs) ; (3) functions; (4) parts of a
phrase or idiom; (5) connectors (e.g., prepositions); (6) system words -

•

• (e.g., conjuncts, auxiliaries, determiners); (7) anaphores (words that
refer to previous words). All attributes are defined as entities.

-

Entities that have no case structure beneath them are called ‘primitive’
-

• entities. It might seem unusual to refer to the case structure of an
entity, but in the semantic dictionary entities and events both have a

similar case structure. Funct ions also have a case structure The -

cases of functions are filled by their arguments.
-

The two main types of entries are entities and events . The orthographic
spelling of the entry is followed by its type . (If an entry can be used
as more than one type, then it is multiply defined.) A set of one or

more senses is listed for each definition of the entry. Each sense has

a node name to identif y it , a pointer to a set of cases tha t define the

(
sense, and the number of cases that need to be filled for this sense to

-
• be accepted (by the Analyzer in “understanding” a question) as the mean-

ing of this sense of the entry. For each case, there is a set of one

or more node names that can fill the case; an indication of whether the

case is optional or obligatory; an indication of whether the case filler
word occurs before or after the entry; a pointer to a set of acceptable
connectors , any of which can connect the case filler word to the entry;
an indication of whether or not this case filler word merges with the
sense of the entry to determine its meaning; and a default indicator

and default case fillers.

Figure 2 shows two examples of senses of the event “ship” (one active

and one passive) and an example of the entity “shipment ” , which is recog— •

nized as a nominalized form of “ship” Notice that the cases have been - -

arbitrarily labelled “CASE A” , “CASE B” , and “CASE C” , rather than being -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _



!‘~~ ~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~

- -

~~~~~

‘

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

--

~~~~~

- ‘ -

~~~~

-

~~

-

~~~~~~ ~~~~~~~~~~~~~~~ 

— — —

1~

•
1 System Development Corporation

31 January 1979 41 TM—6263/000/00

1. called the agentive case, the objective case, and the destination case.

The case is whatever it is defined to be by its case filler, connector,

etc., and by the sense for which it is a case. If we look at the active

t sense In detail, we can see that CASE A has the case filler of “shipping
- company”, it Is obligatory, and it must occur in a question logically

before “ship”. CASE B has the case filler of “part”, it is optional,

and it occurs logically after the word “ship”. CASE C has the case

filler “receiving company”, it La obligatory, it must occur logically
after the word “ship”, and it requires the connector “to”.

ACTIVE

J_
SI~ P _ 5111PS SOLTS TO RJAfl

CASE A ,“c~L! \~~ CASE C

1 OUL I GATOIYJ’ ~ ~PTIsIM~\ 1. OULIGATmY

~:
AC~~~~~

/

f : 1FTEA \z~~AcrEV

SVIIPPIPG CO~PAAV PMT U(CEIVfl~ C~~P*RY

- • CASE A CASE C I 4ET C~~~MI(S ME SNIPflO TO IV

~~~~~~GATORY 
~/
‘ I - OAt.IGAT~~Y COLONIAL?

~: ~~~~~~ ~: 
rTu \~~~~~ 

BEFORE

SHIPPING CONPANY PART BECEIVING CO~ VNY

~~SNI~~(\ NO$ ’MLIZATION
CASE A 

/
‘ 

ç~$.! 
‘
\ ~~~~~~~~~ ~ 4AT IS TIlE TUIISACTION IBJUER FOR TIlE

• • 1 . .QSLIGATORY/ 3 ~PTI5III. 
\ 

1. OBL I GATORY SHIPNGNT OF BELTS F~~ COLORIN. TO AJAR?
• 2. AFTER / 2. 4FTER \~~. AFTER

• 3. -rRsr
,
/ 3 fOP

. 3\~~
O. (

FEAi E
T
stT To ;OU NALIZEIr ) i -

SHIPPING CONPORT PART IIC(I VINE CWIPA*IV

Figure 2. Example of Case Structure



______ • - - — -  • — —  - — -—--~~~~ - - — — ~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ - ~ - 
-———__________

System Developmen t Corpora tion
31 January 1979 —12— TM —6263/000/00

If we compare CASE A of the active sense of “ship” with CASE A of the passive
sense of “ship”, we can see that they have the same case filler, “shipping
company”, and they are obligatory, but for the active CASE A, “shipping company”

occurs before “ship” and takes no connector, while for the passive CASE A of - .
“ship” , “shipping company” occurs after “ship” and takes the connector “by”. - -
The same kind of comparison can be made for CASE B and CASE C and for the cases
of the sense of “shipment”. By lining the cases up the way they are presented
in Figure 2 , we could even label both the active and passive senses of “ship”
and the sense of the nominalized form of “shipment” with the same node name.

The sense of “shipment” shown in Figure 2 allows the Analyzer to handle the

meaning of any of the following sentence constructions: - .

“What is the transaction number for the shipment
of bolts from Colonial to Ajax?” ..

of bolts to Ajax from Colonial?”

f rom Colonial to Aj ax of bolts?”
from Colonial of bolts to Ajax?”

to Ajax from Colonial of bolts?”

to Ajax of bolts from Colonial?”

Because the case fillers are node names of en tities, they could each have a struc—

ture of cases hanging off of them. The question, “What is the transaction

number for the shipment of number 3 bolts from Colonial in New York City, to

Ajax in San Francisco?” would be analyzed similarly to the example in Figure

2.

Mapping Table :~The mapping table is used to map the node names, or structures in the completed
sentence tree, into data base field names. Each entry in the table has a node

name followed by two parts. The first part describes the pattern of cases and

their case fillers for that noda name ; the second part describes the production

• for each of the case fillers in the pattern part. A production may result in

mapping a case filler to a da ta base f ield name, which is the des ired f inal
.ff set. When the sentence tree is several levels deep , it may be necessary to

• • : ~~~~~



— ~~~~_.L -.•_ -~_--- — - — ~~~~~~~~~~~~~~~~~~~~~~~~~ —-S ~~~~~~~~~~~ — •-_— __________

F I T
S.

• System Development Corporation
31 January 1979 —13-. TM —6263/000/00

map node names at lower levels of the tree to themselves or to synthesized
variables. At higher levels, these node names will be cases on other node
names and will even tually be mapped into data base field names. The reason

for this complexity is that the data base field that the node name maps to

may be dependent on the case that the node name fills for a higher—level node

name. For instance, “company name” may map to a d ifferen t da ta base field
name if the question is “Wha t companies are located in Los Angeles?” than it
would if the question were “Wha t companies ship to Los Angeles?” In the f irst
question, “company” may map to a data base field name in a group containing

information about companies in general, i.e., their addresses , phone numbers,
presidents, etc. in the second question, “company” has the role of “shipping
company” and may map to a data base field name of a group containing information H

about a shipping—receiving relation between companies.

2.3 EUFID QUESTION ANSWERING SYSTEM

Whenever EUFID is ready to accept an input from the user, it types “ready” on

the user terminal. There are three words recognized as special words by EUFID:

“help”, “synonym”, and “comment”. “help” activates the help module, “synonym”
activates the Synonym Editor, and “comment” results in EUFID asking the user

to enter a comment into the system journal. If the user has not typed in any

of the three special words, the Controller assumes the user has asked a ques—
• tion and It sends the question to the Analyzer.

Analyzer

The Analyzer is composed of two parts: the scanner and the Analyzer.

Scanner

The scanner begins liy breaking up the user ’s input question into tokens and

en tering them in to consecutive entries of the sentence list tha t are called
word boxes. The Analyzer keeps the sentence list from previous questions (if

there were any) to use in resolv ing anaphor ic refer ences tha t may occur in
interpreting the current question. The scanner then looks up the definition

for each token , first in the synonym dictionary and then in the semantic
dictionary. When a definition is found , it is entered in the appropriate word

box. If a definition cannot be found, then a morpholog ical analys is [31 of the
token is performed to split the token into a root and an ending . If this is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~:•• 
~~~~~~~



— -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 1— ~~~~~~~~~~~~~~~ — =—~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-— — —

System Development Corporation
31 January 1979 —14— TM —6263/000/00

successful, the root is looked up in the dictionaries; if a definition for it
is found , the definition is entered in the word box for the token along with
inflectional information about the ending. If the morphological analysis is

unsuccessful, the token is interpreted as a pattern , and the pattern is looked
• up in the semantic dictionary.

Pattern identification is a special feature of EUFID used for value inference.

The semantic dictionary does not contain all the unique values present in the

data base; it is designed to contain only those values , for particula r doma ins ,
tha t form a fairly closed , small set (i.e., the values in the set will not change - -

often). Other types of values, such as social security numbers, dates, trans-

action numbers, etc., which may be changing constantly, ar e inf erred from their
patterns. For example, if the question “What is the name and address of •

123-45—6788?” were asked, the scanner would not find 123—45—6788 in either

dictionary, nor would the morphology routine be able to split it into a root and

ending. Instead, It would be interpreted as the pattern N(3)—N(2)—N(4) , which
would be looked up in the semantic dictionary and found to be a pattern for the
node name “social security number.” The definition for “social security number”

would be entered into the word box for token “123—45—6788”, so that a data base

containing specific social security numbers can be successfully queried. The

decisions as to which sets of values will be inferred and which will be entered

into the dictionary are made during the negotiation process between the applica-

tion expert and the EUFID consultant. If a token pattern cannot be found in the

dictionary, then the last attempt is to assume that a word was incorrectly

spelled and apply the spelling corrector to it. It should be noted that the

spelling corrector cannot be used for those applications in which value inference

• is applied to values having a completely alphabetic pattern (i.e., if value

inference is applied to values of completely alphabetic patterns , then mis— •

spelled words will fit the alphabetic pattern and will not make it to the spelling

corrector phase). - •

When the scanner has processed all tokens in the sentence list, it makes a roots

list of all the trees——each tree pointing to a unique word box.



• System Development Corporation
31 January 1979 — 15— TM —6263/000/0O

Analy zer

The purpose of the analysis is to find a way to connect all the trees in the

• - 
roots list into a single tree.

The analysis is performed by processors , each of which handle connections
between a specific group of entry types. The names of the different processors

are: entity , event, function, anaphore , and conjunct.

The analysis is done by making left to right passes through the roots list.

Regions are demarcated by right and left boundaries that are set by the various

processors. The most important rule governing the analysis is tha t a tree may

be connected only to a tree that is to its immediate left or right. Where a
connection is made, the dominant tree becomes the tree top or fa ther , and the
other tree becomes the son. The connections are made on the basis of the case

structure contained in the semantic dictionary.

For entity processing, the case connections are handled as described above,

except in a situation where two adjacent entities can each fill a case on the

other. When this situation arises the ambiguity is resolved using an algorithm

taken from the conceptual processing work done at SDC [4-].

• The analysis is probably easier to understand if we demonstrate it by analyzing

the simple question: “What companies in Chicago are shipping to Ajax?”

The output from the scanner would be a roots list of connected trees, each

• pointing to a word box as shown in Figure 3.

Final Final
L e f t  A.biguoua Region Ri ght

Boundary Boundary

) : ~~ 

~~~~~~~~~~~~~~ [ ~~~~~~~~~ 

~~~~~~~~~~~

.. ~~~~~~~~~ L~r’~ ~~~~~~ ~where: Q Ia a tree

La a word box

Figure 3. 

— -~~~~~~



— _____________________________________________________________
• -— • • •—- - • -~~~—- — • — • — • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~r~— •-~•~------.-1

System Development Corporation
31 January 1979 —16— TM —6263/000/00

A single region is defined by boundaries before the f i r s t tree and after the

las t tree. The region is ambiguous because it has not yet been processed.

Beginning at the left boundary, the definitional type of the first token “what”

is inspected. It is a system word type that is a determiner and causes the

entity processor to be run. The entity processor begins by finding a right

• boundary that will define the region within which it will process. In the

example , the boundary is found at “are;’ which is a system word type that
• because it is an auxiliary , is processed by the event processor .

• The entity processor then makes tree connections within the region “What

companies in Chicago” , based on the case structure defined in the word box

definitions (See Figure 4) .

!-in~tl Final
Left Entity Region Boundary Ambiguous Region Right

• Bounoapt I Boundary

• __
_ _ _ _

~~~~~~~~~~~ 
— ,. -- 7 •.t.~~- I-- ” .-- 

~] &~tp pa., 1 i& 
~~~~~~~ “co.p.ay .i.

TYPE: TYPE TYP E : TYPE: TTPE~ TYPE: TYPZ : TYPZ~
en t i t y • I r . ,t t ty I lynn. wor d i eve nt cvln,nct ot I ..tity

VALUE: ~vSiLt.Ey : :
I ______ — -- -~~•~~~~~~~~ L~~~~ •~~~~~~~~~

L L_
-

Figu re 4.

The tree s t ruc tu re now shows “companies ” with “what ” connected to it through
one case and “city ” with the value of “Chicago ” connected through another
case. “In” has been used as the connector to make the case linkage between
“city” and “companies” and no longer is attached to the roots list. •

Beginning at the left boundary of the ambiguous region, the entry type of the

first token, “are”, is inspected; as noted above , it is a system word type
that is an auxiliary and causes the event processor to be run. The event
processor begins by finding a right boundary that will define the region
within which it will process. This boundary is a f t e r the event “shipping ”
and before the connector “to”.

Pr!— - - •
11 ~~~~• —~~~~~~ ~- -

_
~~~~~~ -~ — • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

I
System Development Corporation

31 January 1979 —17— , m —626 3/000/00

• The event processor subsumes the auxiliary “are ” into the event “shipping”, and
“are ” no longer is attached to the roots list . Part of the event processing

• involves looking across boundaries into unambiguous regions in order to deter—
mine if the event can be attached to a neighboring tree. The event processor
looks to the left and finds that “companies” can fill a case of “shipping”
and makes that connection . The roots list now looks like this.

The event processor continues processing to the left but finds only the final

left boundary . It then tries processing to the right but is stopped at the
boundary of the ambiguous region as shown in Figure 5.

Aga in, beginning at the left boundary of the region , the en t ry
type of the fi rst token,”to”, is inspected. It is a connector type and causes
the entity processor to be run. The entity processor runs and defines its

• enti ty region to be from “to ” to the final right boundary. I t is unable to
make connections within its region, since it cannot connect the connector “to” to

• the entity “comp~ny name”. There is a final right boundary after “company name”,
and detection of this causes the driver to examine the roots list. The roots

• list contains more than one tree, and processing begins again at the final left
boundary.

I:inal Boundary Boundary Final
Lvft Entity Region Event egion ‘Ambiguous Right
Ik uncf ~ ry~~~ Re ion~~~ Boundary

_ _ _ _ _ _ _ _ _ _

1 9 9 1

“~
ei*s
~1 f ~~~4L1 ~~~~

~~.YAL L~~ I T~ ~ ~~~~~~~~~~~ 1 i~;~ 1F i g u r e 5.

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_____ • • 
• • 

~~~•

System Development Corporation
• 31 January 1979 —18— TM—6263/000/00

The entry type of the first token , the tree top “shipping ” is inspected.
It l.a of type event end causes the event processor to run. The

even t processor looks to the lef t and f inds only a f inal boundary , . -

it looks to the right and finds an entity region. It tries to connect to the

entity region but there is no case connection between “shipping” and “company

name”. The event processor stops. Beginning at the left boundary, the

entry type of the f irst token “to” is inspected . It is a connector and

causes the entity processor to run . The entity processor again cannot make a - .
connection. Since the entity processor ends at the f inal right boundary, the

driver is called. It inspects the roots list and detects that no connections

were made during the previous pass and that there are two regions, one of which

is an entity region. The entity processor is called, and it checks to see if

an entity within the region is a name identifier for another entity. If so, it

creates a new node that is the entity for which the entity name is a name

identifier.

.A

Processing again begins from the left. The event processor is called and again

• tries to make a connection to the right. This time it is successful, since
“company” fills a case of “shipping”, through the connector “to”. The connection
is made , the final right boundary is detected , and the driver examines the roots - .

list and finds there is only one tree. The analysis is complete, and the f inal
roots list is shown in Figure 6.

_ c0.pany_’
TYPEt
.ahity

Figure 6.

~~~~~~~~ - — rn — - ~~~~

—-—



!L~
J

System Development Corporation
31 January 1979 —19— TM— 6263/000/00

• M~pper

The purpos e of the Mapper is to take the sentence tree output (or roots
list) of the analysis expressed in the node names and to (1) restructure

• the tree, (2) redefine it through the mapping function s into a data base
tree expressed in data base group and field names , and (3) build the
intermediate language (IL) representation of the question by applying

IL syntax rules to the data base tree.

The restructuring of the tree is mainly concerned with the logical

distribution of conjuncts, which is necessary in order to produce an IL
representation that is translatable into DMS query statements . For
example, restructuring the sentence tree for the question “What companies

ship perishables to Ajax and Colonial?” produces a new sentence tree that

would have been produced if the question asked had been “What companies

tha t ship perishables to Ajax, ship perishables to Colonial?” This needs

to be done because “Ajax” and “Colonial” are both values f o r  the same case
filler, “company name.” A company cannot ship, in the same shipping

transaction, to two different companies.

Mapping fun ctions are then appl ied to the node names on the tree to map the

semantic dictionary structures into the data base fields, groups, and func—

• 
• 

• • tions. It is through the mapping functions that the company cases of “ship”
• 

• acquire the meaning “shipping company” or “receiving company”. A graphical

representation of a mapping function for “ship” is:

SHIP c===*

,~/ \\ CCT .SC—C .NA~€ CCT.RC— C.NA }~
C. C. I

C. C. 
•

The mapping fun ction for “company named X” is:

• . •
~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~ •~ • • 

-- --•-* — - • -•

~

—-.- • •-

-- - -—- —- ~~~~~~ — —-- — — —-- - •11

• System Development Corporation
• 31 January 1979 —20— ~~~—6263/O00/00

coNrY c===~~~
C.

COMPANY NAME “X” C .NAIIE—X

The data base group and field names refer to a relational data base where

C. is a company relation in which C.NMIE is the company name field and C.CITY

is city field in which the company is located. CCT. is a company to company

transaction relation where CCT.SC is the shipping company name and CCT.RC is

the receiving company name.

Below is a sentence tree of node names from the roots list output of the

Analyzer for the question “What companies in Chicago are shipping to Ajax?

SHIP
\

COMPANY
\COMPANY NAME

After the mapping functions are applied, the same tree expressed in terms of
data base groups and fields looks like this:

. NAME —CCT . SC

C.CITY — ”CHICAGO”

CCT.

CCT.RC C.NAME

L

•
LNAIIE— ”AJAX”

• •.
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• . • 
~~~~~~~~~~~~~~~~~~~~ 

- -—- --. . — • - • • - - — -~~~~~~~~ ‘..-.- .--- —-—-- -—-——~~~~~~~~~ _ : •
______________________________ ___________________________________ • . - _ -•- -- •_ ~—,•-~-,.- •---- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ ~~ ~~~~~
—-

~
—

~~~~~~~
-

• • - ‘: •

System Development Corporation
31. January 1979 —21— TM -6263/000/00

After output identifiers are added, logical “and” and “or” inserted, and

• 
¶ 1$ unnecessary structures el iminated , the tree looks like this.

C.NAME

C.CITY”CHICAGO” C.NAM~~CcT~SC

CCT.RC”AJAX”

The IL syntax rules are applied to the tree to produce the statements:

- 
- 

t 
RETRIEVE LC.NAMEJ 

•

WHERE (C. CITY— ”CHICAGO”)
AND (C.NAME—CCT.SC)

AND (CCT.RC— ”AJAX”) -

The translator translates the IL representation of the user’s question

into a DMS query and submits that query to the DMS. Though all Trans-

lators employ the same basic structure and purpose, a different Trans—

lator is required for each DMS. The complexity of the Translator design

and implementation is directly related to the complexity of the query

language of~ the DMS.

We are curren tly producing Translators for two different UMSa: WWDMS (World

Wide Data Management System), which runs under GCOS—TSS on the Honeywell H—6000

computer, and INGRES,which runs under UNIX on the PDP— ll/70 computer. The
query input language to INGRES is called QUEL.

A comparison of the complexity of the two Translators is shown by the

difference in the DMS formal query statements for the question, “What are the

names and addresses of the executive secretaries in R&D?” For the INGRES data

base we assume two relations: division and job. For the WWDMS data base we

assume a master record of division and a detail record of job.

I- — — —_______ —
~~~
.— —

~ •- .-

— ——- -—- --—--- _ _ _ _ _ _ _ _ _ _ _

System Development Corporation
31 January 1979 —22— TM —6263/000/00

The INGRES query would be:

• range of d is division
range of j is job
retrieve (J.employee , j.address)

where d .name R&D
and d .job — j . name
and j.naine “secretary”
and j.class — “executive”

The WWDIIS query would be:

INVOKE ‘WWDMS/PERSONNEL/ADF’
REPORT EUFID—1 ON FILE ‘USER/PASSWD/EUF ID ’

FOR TTY
Qi. LINE “EMPLOYEE NAME— ”,EMPLOYEE
Q2. LINE “ADDRESS— ”, ADDRESS
Rl. RETRIEVE E—DIVISION

WHERE DNAME - “R&D”
WHEN Ri.

R2. RETRIEVE E-JOB
WHERE JNAME - “SECRETARY”
AND CLASS — “EXECUTIVE”

• WHEN R2.
PRINT Ql
PRINT Q2
END

• The WWDMS query language is procedural and allows much of the expressive
capability of higher—level programming languages. The INGRES language is

basically non—procedural and does not allow for such things as report

formatting.

Although the WWDMS Translator supports only a subset of the WWDMS query

language, it is a much more complicated module than the INGRES Translator.
One of its most complex features is the selec tion of an access path to the
necessary data base fields.

In addition to the data definition for the I—D—S type data base, WWDMS

supports a separate application definition f i le (ADF) that contains the
names for the different access paths through the data base. Part of the

application definition process for a WWDMS application involves defining T
•

a query ADF tha t enables the WWDMS Translator to selec.t the optimal access • I -

_____________________ ____________ _________

Li
~~1—~~~’~~~

- - - ---__— - - • - • • -— — - -- -• - -••-•—---•__

-
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —‘-~~~--‘~ --~~~~-—‘ - ---——~~~ —-- — —
~~~~

System Development Corporation
31 January 1979 —23— TM —6263/000/00

• path for a query based upon the query ’s pattern of selector and qualifier

record—types. The selector record—types are those that contain fields

- -
having values that the user wishes to see. The qualifier record—types

are those for which the user has specified the field values.

The INGRES Translator begins its operation by passing the intermediate

language through a lexical analyzer that identifies tokens as being
specific types. The parser operates on the token list by rule. If a

sequence of tokens f its a rule pattern , then a series of actions takes
place. The purpose of these actions is to build a tree that structurally

represents the QUEL output. When the QUEL tree is completed , the QUEL

generator operates it to produce a QUEL query to send to INGRES. The

rules and actions are built by using YACC (Yet Another Compiler Compiler).

[5].

The WWDMS Translator uses the same lexical analyzer as the INGRES Trans—
lator to identify the intermediate language tokens. Its parser is also

built by using YACC. It uses rules similar to those used by the INGRES

Translator but takes different actions. All data base group and field

references are passed onto an entry selection process that finds an opti-

mal path solution for the pattern of selector and qualif ier record s for
the particular query. The solution may involve nested retrieves or more

than one independent retrieve. The query name(s) and other output from
the parser are then brough t together in the WWDHS procedure generator ,
which generates the statements, orders them properly, and writes them into

a file to be compiled and run by WWDMS.

A question often asked is , “Why the elaborate process of building and pro-

viding the intermediate language only to have it immediately relabelled
and interpreted by the Translator parsers?” The reason is that, because
the Analyzer serves all DMSs, it can build output that is not trans-

latable for a particular DMS. For example, the Analyzer could have

“understood” the input question in terms of the user’s semantics, but the

intermediate language produced is an itnbedded query. The answers from

the iimer query need to be saved and used as qualifiers for the outer query.

1-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


,‘• I ~~~~~~~~

- - • -- -•
~
—----

~~
------—•—---

• -
~~

- - - •— — -
•.—-

System Development Corporation
31 January 1979 —24— TM—6263/000/O0

If a particular Translator cannot build the query structure to save

the output of the imbedded query, it is not able to handle this type

of situation and tells the user “EUFID can understand your question ,

but your data management system cannot handle it as one query . Please

restate it by breaking it into multiple queries.” A-n example of this

type of situation is given by the question, “What employees earn more
than John Doe?” Some DMSs require the question , “What is John Doe’s

salary?” followed by the DMS answer , “John Doe Salary $XXX” , followed

by a second question, “What employee’s earn more than $XXX?”

In the EUFID system, each Translator assumes the responsibility of

defining that subset of intermediate language it can translate into its

DM5 query statements. If the responsibility were not placed with the

Translator, then the Analyzer could not be DMS independent.

3. FUTURE PLANS

EIJFID is currently running under UNIX on the PDP—ll/70 computer as an

interface to INGRES, a relational data management system. The applica—

• tion is METRO; the relational data base contains shipping—freight trans—

action information.

EUFID is also currently running under UNIX on the PDP—ll/70 computer as

an interface to the World Wid e Data Management System (WWDMS) which

resides on a Honeywell H—6000 computer. The application is AIREP; the

network—type data base contains information about software failure reports.

EUFID accepts questions from the user and produces WWDMS queries tha t are

then sent to WWDMS on the 11—6000 computer for processing .

All EUFID components are written in RATFOR (a preprocessor for FORTRAN

that allows some degree of structured programming) except for the

Controller and the INGRES and WWDMS Translators which are written in •

C—language.

_ _

14

~

•- --

~

--

~

--- - -•-- --- -
~~~~~~~~~~~~~~~~~~~~~~~~~



___;~~ ~~~~~~~~~~~~~~~~~~~~~~~ - --•-— ___________________________________________
•1

System Development Corporation
31 January. 1979 —25— TM_6263/000/0O

- • One of the most important tasks required in the immediate future is to

perform EUFID operational testing. This task will require implementation

of EUFID on additional operational data bases that may be accessed by

• WWDMS , INGRES or different  data management systems. Operational testing
• will require the enlistment of the EIJFID users in the evaluation of

EUFID performance and use. Tuning of the Help module, Semantic Refusal

and Guidance, use of the Synonym Editor and other features, viii be done

as a result of user evaluation.

• Another top priority task in the future is to rewrite the Analyzer and
• Mapper in C—language. The C—compiler not only produces more optional

code than the FORTRAN compiler but maintains separate data and instruc—

tion space and produces reentrant modules. Currently the Analyzer and
Mapper reside in 6 separate modules because of space restrictions. The

space restrictions of the Analyzer impose constraints on the length and

type of questions that can be asked. For instance, the Analyzer is

capable of handling compound verbs and relative clauses such as in

questions like “What companies have been shipping light freight to ware—

houses in Lakeland?” or “Wha t companies tha t ship light freight to

Supreme ship perishable freight to Discount?” However these questions can—

not currently be handled because the definitions for the words (i.e., the
• - semantic net) is too large for the module size of the Analyzer. The re—

writing in C—language would allow us to demonstrate the full capability

of the Analyzer and the richness of the semantic dictionary (i.e.

semantic net) and the mapping functions .

Another high priority task is in the table building area. In order to

efficiently and effectively interface EUFID to new appl ications, work has
to be done to (1) develop a more vigorous methodology for conducting the

negotiations and (2) design and implement more automated ways of getting

the acquired knowledge into the application tables. Currently, the know—

ledge acquired through negotiation is organized by hand, f illed out on
detailed forms, and keyed into a file from which the tables are built.

What is needed is an intelligent module that can interact with the

- -

I-



r- ‘ -- ----
~~~~~~~ ~

—— -
~~~~~~~~~~~~

— -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -~~~~- -

31 January 1979 System Development Corporation
- —26- TM -6263/000/00

• application expert to help organize the knowledge, ask questions about

the relations between entities, events and data base fields, and to the

bookkeeping tasks involved in building semantic dictionary entries and

mapping table functions.

We are also studying ways to bring the EUFID and DADM (Deductively Augmented
Data Management , refer to final report) systems together. The EUFID

Analyzer and IL would have to be expanded to handle modals and conditionals

and DADM would read IL and produce IL for data base query . A more complicated Li

version of the joining would be a EUFID-DADM front—end machine with multiple

Translators able to comiminicate eith several DMSs on a single system or

distributed over a network of computers . There is no inherent reason why
an application needs to be confined to data fields in a single data base;
the EUFID-DA~~f system could conceivably distribute a user’s questions into
a number of different queries to separate DMSs accessing various data bases

and combine the multiple answers back for the user into an organized result.

In the future, we also plan to expand the Analyzer to handle negation and

ellipses over multiple questions and improve the handling of anaphores.

We would also like to study the problems of: temporal and spatial concepts;

accepting answers back from the DMS and resturcturing them for the user
(perhaps even in special ways such as graphs); helping the user to browse

through his data base via the semantic dictionary; and handling multiple

sentence questions. -

1

a~~
i
~~

i.w ’ ~~~~~~~~~~~~ - -

-

•

• — ______
—--— —.———..--.--

~~-—--— - -
-

[TT~

- . - _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --

31 January 1979 System Development Corporition
A—i TM —6263/000/00

APPENDIX A - REFERENCES

~ Kameny, I., Weiner, J., Crilley, M., Burger, J., Gates, R., Brill, D.

• 
I ~ “EUFID: The End User Friendly Interface to Data Management Systems,”

Fourth International Conference on Very Large Data Bases, West Berlin,

September, 1978.

2. Weiner, J. L. “Deriving Data Ease Specifications from User Queries” ,

• presented at the Second Berkeley Workshop on Distributed Data
-

; - 
Management and Computer Networks, May 25—27, Berkeley , California.

3. Winograd, T., “An A.I. Approach to English Morphemic Analysis”, MiT
• Al Lab, Memo No. 241, -February 1971.

4. Burger, J., Leal, A., Shoshani, A. “Semantic Based Parsing and a

Natural—Language Interface for Interactive Data Management,” AJCL
Microfiche 32 , 1975, 58—71.

5. Johnson, S. C. “YACC : Yet Another Compiler—Compiler,” Bell

‘j 
f Labora tor ies, Murray Hill, New Jersey 07974 .

LI

LP r ;
~ ii

~1
i 

_ _ _ _  

_ _ _ _ _ _ _ _  
~~~~~~~~~~~~—r~~~~~• • -

~

- - - -~~~ •• - • - - - - -

________________________ —

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

31 January 1979 System Development Corporation
TM—6263/000/0O

• DISTRIBUTION

Defcnse Docume~rLation Center 12 copies
Cameron Station

- - 

Alexandria , -VA 2233i1

Office of Naval Research 2 copies
Information Systems Program
Code )37
Arlington, VA 22217

Offici of Navr.1 Research 6 copies
Code 1O2IP
z~i.~n~ton , Vet ~ g’~~J (

Office of Naval Research 1 copy I -

Code 200
.Ar1in6to~, VA 22217 

-

Office of Naval Research • 1 copy
Code ~e55
Arlington, VA 22217

- • Office of Naval Research 3. copy
Code 1~58
Arlington, VA 22217

Office of Naval i~esearch 1 copy
Branch Office , Boston •

1~95 S .mci’ Street
Boston , 14A 02210

Office of Naval Research 1 copy
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

El

—•

~ 

~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  ~~~~
- --- - - - ~~~~

-• --

Lr . ~~
—---

-~~~

T.~ T~~~~~~~~~~~~- - ~~~~~~~~~ ~~~~~~ -
~~~~~~~~~~~~~ 

- -  
~~~~~~~~~~~~

-- --—----- —----- - •
~1

31 January 1979 System Development Corporation
TM-6263 /000/00

• DISTRIBUTION (cont’d)

Office of Naval Research 1 copy
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

•

New York Area Office 1 copy
715 Broadway - 5th Floor
New York , NY 10003

Naval Research Laboratory 6 copies
Technical Information Division , Code 2627
Washington , D.C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of- the Marine Cor”~s (Code RD—i)
Washington, D.C. 20380

Naval Electronics Laboratory Center 1 copy
Advanced Software Technolog~ Division
Code 5200 -

San Diego, CA 92152

U.- W W, fl1.issy~p~ 1 copy
;a~.~1 S1.l~ Research !. Devei cpmen! Cent~r

• Computation and Mathemat1c~ Department
Bethesda , ~~ 200814

Captain Grace M. Hopper 1 copy
NAICO M/MI S Planning Branch (OP—916D)
Office of Chief of Naval O~-erations
Washington, D.C. 20350

Mr. Kin B. Thompson 1 cupy
Technical Director • •

Information Systems Divis~on (OP—91T)
Office of Chief of Nays]. Operations -

Washington, DC. 20350 -
-.

Advanced Research Projects Agency 3. copy
Information Proce3sing Techniques
11400 Wilson Boulevard
Arlington, VA 22209

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _




