ADA0 66364

—

DDS FILE copy

- System
Development
Cerporatlon

¢

RESEARCH ON DEDUCTIVE
INFERENCE FOR LARGE DATA BASES

FINAL TECHNICAL REPORT

Covering the Period
1 April 1976 through 30 December 1978

| ™
NEIE

MAR 26 1979

CHARLES KELLOGG AND IRIS KAMENY

31 JANUARY 1979

A |

e e - st 8 e« P

Prepared for:

Office of Naval Research, Arlington, Virginia 22217
and Defense Advanced Research Projects Agency
Arlington, Virginia 22209

Approved for public release
Distribution Unlimited :

DISTRIBUTION STATEMENT A J

CONTRACT N00014-76—-C—0885 TM-6263/000/00

79 03 01 057

—— e~ . S b e ¢ S BB ¥ o o e IS— I ——

s

el e

s e S

8oy

B, §

RESEARCH ON DEDUCTIVE
INFERENCE FOR LARGE DATA BASES i

FINAL TECHNICAL REPORT

Covering the Period
1 April 1976 through 30 December 1978

CHARLES KELLOGG AND IRIS KAMENY
31 JANUARY 1979

Prepared for:

Office of Naval Research, Arlington, Virginia 22217
and Defense Advanced Research Projects Agency
Arlington, Virginia 22209

CONTRACT N0O0014—-76-C—0885 TM-6263/000/00

79 03 03 HX4

T T P T T, S TR R W S

e v— ———— —

e . 2 " Lo " "o

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
REPORT NUMBER / 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
A 6263/,005 076p

4. TITLE (and Subtitle)
f/ Research on Deductive Inference for’farge? 7
Data Bases ,

~\

4=
S (¥

J 6. PERFORMING ORG. REPORT NUM'
SDC Project RC700 .

7. AUTHOR(s) 8. CONTRACT OR GRANT NUM.EI(I)

\ 7 N@O014-76-C-9885,

yCharles/Kellogg &R Iris/l(.ameny / fARpA oéer Ml

s p:nronm:s ORGANIZATION NAME AND ADDRESS 10. ';:827.‘?&“55:‘7 T JEECSTW
| System Development Corpewetdem
' 2500 Colorado Avenue e

Santa Monica, CA. 90406
11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research @_fms

Arlington, Virginia 22217 134 g. i
I3, MONITORING AGENCY NAME & ADORESS(i! different from Controlling Olfice) | 15. SECURITY CLASS. (of thie report) |

(E“ Unclassified

/A

16. DISTRIBUTION STATEMENT (of this Report)

bd - &

Distribution as instructed by the Office of Naval Research

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

(o T -

v: P 19. KEY WORDS (Continue on reverse side 1f Y and identily by Blogk number)
E > Deductive Inference, Data Base Access, End User Facilities, Decision Aids,
8 Natural Language Processing, Command and Control, Artificial Intelligence,

DADM, EUFID.

\ 20. ABSTRACT (Continue on raverae elde il necesssry ify by block number) i
The research summarized in this report™has as its major goal the construction

of software tools to aid on-line decision makers and data base users in acces-
sing information relevant to their needs, in understanding the full data base
search implications of their requests, and in reviewing and evaluating the
utility of derived answers.

The conceptual framework within which this research has been carried out is

based upon mathematical logic. It is becomi increasingly clear' r.hat logic is
highl l1:)e1evam: not onl tg reasoning about :llgta but tongqu la: e des 3 "/

w 3 :g:“,’ “73 EDITION OF 1 NOV 65 IS OBSOLETE

e el e g

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

P oA i

2 TR T A e VUL T R P41V . G AR . G Sz 3 % 3
| ¥ e B i, 1L el A AT A D R M I Vb TR s T TR LM ANG TIP3

o

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entored)

to data structuring, to the support of high level user views, to maintaining
the integrity of data bases, and to making the transition from present day
data-based systems to future knowledge-based systems.

The main software tool that has been implemented as part of this research is
called DADM (for Deductively Augmented Data Management). This report describes
the design, implementation, and current capability of this prototype system.
DADM adds a general knowledge base and a deductive processor to a data
management system. These components are used to control the creation of
intelligent data base access strategies and the construction of evidence to
support derived answers.

The DADM prototype has b:i:\designed with logical completeness, performance

and usability in mind. Completeness assures that all answers will be found,
Performance has been stressed by developing new techniques for relevant

premise selection, creation and verification of inference plans before data
base searching, and by the use of efficient structure sharing techniques.
Usability features include the use of simple structured forms for knowledge

and query input, computer guidance and help when desired, and the incorporation
of easy to read displays of plans, answers, and evidence. The prototype is
currently operational on a DEC~10 computer in INTERLISP and on an AMDAHL

470/V6 computer in SDC LISP 1.5.

Additional work under this contract on certain aspects of the EUFID language
processing system is discussed in a second section of this final report.

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

- “ s i
- . » .

yr. sl b

31 January 1979

System Development Corporation
TM -6263/000/00

e

FOREWARD

This final report consists of two main parts.
research on deductively augmented data management (DADM) was written by

Charles Kellogg.

The second part describing several tasks carried out

The first part describing

in support of the EUFID system was written by Iris Kameny.

2ISTRUBUTION /AVAILABIL(TY CODES
T ot AVAL andier SPECMAL

B i e e

System Development Corporation
[31 January 1979 -ii- : TM-6263/000/00

e T S S
e

PART I

-

v

B T s e o e

£ i
,l) [
¢
:
L
; l

[
. .

P
.

————— e e R T O T I AR AT — Sl

31 January 1979 System Development Corporation
-iii- TM-6263/000/00

Pt e

TABLE OF CONTENTS

3: Section Page
E 1. INTRODUCTEION & & alis s @ wie 5 o o ol desbeusiiedisss sisise 1
;’ 2. AN ON-LINE SESSION WITH DADM , ¢« « ¢« o ¢ & ¢ o & 4

F 2.1 = Answering Questions with General Declarative Knawledgeb. 4

S 3 2.2 Answer Questions with General and Specific Knowledge . . 6

, =t 2.3 Derive Alternative Courses of Action to Support

% On-Line Decision Making: Reasoning About Command
| and COnttOl e o o o . e o o e o o o o o e o o e o e o . 110

2.4 Deriving Multiple Chains of Evidence to Support High
Level Conjectures: Reasoning about Scientific
' Communication .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o o o o o 22

: 2.5 Reasoning with Computable Functions . . « « « « « « o & 42
3 3. DESCRIPTION OF THE DADM SYSTEM . . ¢ ¢« ¢ « ¢ &+ o o o o o 54
3.1 OVETUTaw & v oo o el o et e A R R e e s Ol

3.2 Approach o ey e ¢ ‘o cie el o itet s ol eliel e e e el 54

3.3 DADM Deductive Processor Components . « « « « « « + « o« 956

3.4 Premises, Queries, and Data Structures . . . « « ¢ o« o« & 58

L) 3.5 Deductive Pathfinding ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o o o o & 64

§ = 3.6 Generation of Inference Plans . . « ¢« « ¢ « ¢ ¢ « o o« « 74

% l 3.7 Verification of Inference Plans . . . « + o« ¢ ¢ o ¢ & & 85

% : 3.8 T el SR MR SR L Dl BRI LR i B SESER,

% é 3.9 Recursive Premises and Special Purpose Generators 87

; 3.10 DADM Print and Control Modes . « « « « « o« « « « « « o o 89

i ¥ 4, SPECIFIC TASKS ACCOMPLISHED « ; a0 e 90
‘ S. FUTURE PLANS AND RECOMMENDATIONS « « « « « « o o o o o« » 93

APPENDIX A — REFERENCES e o o o & o e o o o o o e o o o o o o o A-l

31 January 1979

Figure

0 N OO N & W -

11

12

13
14
15
16
17
18
19
20

22

24
25
26
27

29
30

Deductively Augmented Data Management

System Development Corporation
T™-6263/000/00

-jv-

Title

Reasoning with premises . . .

7 RRRRC TR SRR ARSI SR BRI TARRRC (N

Relating a classic deduction to data base searching

Relating a classic deduction to data base searcHing.

Finding deductive support for a FIND type queetion

Finding deductive consequences

Alternative courses

Alternative courses
data base « . « . o«

Alternative courses

Alternative courses
type question . . .

Alternative courses
the John-Hancock if

Alternative courses

of action:

of action:

of action:

of action:

of action:

of action:

Alternative courses of action:

Multiple chains of

Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple

chains
chains
chains
chains
chains
chains
chains
chains
chains
chains
chains
chains
chains
chains
chains

chains

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:
evidence:

evidence:

for a\leEN type question . .

Implications of Request . . .

Search strategy for external

Conditional answers and evidence

e o o o o o o o .

Incompletely specified FIND

The Briscoe can replace
the latter returns to port. . . « « . .

Given that a SHIP-1 employed
in the ASW-SCREEN returns to port a SHIP-2 may replace it
if certain conditions are met

e © o o o o

Deductive queries with negation

e o o o o o o o .

Base Relation Searching . . .
Relation, Domain, and Premise Names 25

The conjecture and initial usage flow 27

Plan-1 . . .
Chain-1. . .

e e o o e e o e o

e o e o ® « o e o

Plan-a . . . L] . . . * o . .

Chain-4 . .
Search plan
Search plan
Search plan
Search plan
Final usage
Plan-7 . . .

and chain-2. . . .
and chain-3. . . .
and chain-5. . . .
and chain-6. . . .

flow for first 6 plans

IL Request and chain-7. . . .

Plan-8

IL Request for plan-8.

Chain-8 . .

L I L D D B]

Page

10
11
12
15
15

16

18

19

20
21

24

28
29

30
31
32
33
34
35
36
37
38
39
40
41

it

e

N ETNT | R O

31 January 1979

Figure

31
32
33
34

35
36
37
38

39
40
41
42
43
44

-\ -

System Development Corporation
TM-6263/000/00

Title

Multiple chains of evidence:
Multiple chains of evidence:
Multiple chains of evidence:

Multiple chains of evidence;
ORIGINATES --- KNOWS, Plan-1

Multiple chains of evidence:
Multiple chains of evidence:
Multiple chains of evidence:

Multiple chains of evidence:
Plan- 2 e e o © e s o e © o

Multiple chains of evidence:
Multiple chains of evidence:
Deductively driven searching

Deletion of 4 premises
REDO of Conjecture; Partial Plan-1
Partial Plan-2 . . « . « « . o«
Generalized navigation;

Plan"’z e o o o o o o ° o e & e o
Plan-3 e ® e e & o e o e e s e
Plan—4 e ® & o o e e ° e o ® o

Recursive navigation; Plan-1,

Plan-4 and chain-4
Generalized navigation with KNOWS

and use of compute functions .. .

DADM deductive processor components . . « « « « « ¢ o o o o o
Link restrictions within chains . . « . « ¢« « ¢« ¢ ¢ o « ¢« ¢

Queries and their initial problem graph . . . « « « . « . . .

46
47
48
49

50
51
52
53
57
70
78

N 4 P TSP MY S A e S TN

T A T A e

31 January 1979 System Development Corporation
-1- TM -6263/000/00

1. INTRODUCTION

The research summarized in this report has as its major goal the construction

of a software tool to aid on-line decision makers and data base users in accessing
information relevant to their needs, in understanding the full data base

search implications of their requests, and in reviewing and evaluating the

utility of derived answers.

The conceptual framework within which this research has been carried out is
based upon mathematical logic. It is becoming increasingly clear that logic
is highly revelant not only to reasoning about data but to query language
design, to data structuring, to the support of high level user views, to
maintaining the integrity of data bases, and to making the transition from

present day data based systems to future knowledge based systems*.

The software tool that has been implemented as part of this research is
called DADM (for Deductively Augmented Data Management) and the main body
of this report describes the design, implementation, and current capability
of this prototype system. The DADM environment is illustrated in figure 1
where the DADM Controller, Deductive Processor, and Answer and Evidence
Generator are interfaced between a user and a relational data management

system.

DADM adds a general knowledge base to a data management system. According to
logic relasional concepts may be specified in intensional or extensional form.
Relations specified in extension correspond to the tuples or specific facts that
comprise the records in a relational data base. Intensionally specified
relations, on the other hand, are represented by general declarative statements

(premises) and/or by computable procedures.

A major use of DADM is to quickly find intensionally specified general knowledge

relevant to a user's information request and to then reason with and combine

*A recent book LOGIC and DATA BASES, Plenun Press, New York, 1978, H. Gallaird
and J. Minker (Eds) presents the first comprehensive description of how logic
can be used as both a practical tool and as a unifying formalism for data
base system design.

s gs

§8
-l N
£8 m
8L
&5 juswabeuey ejeq pajuawbny A1aAi3onpag ‘| 34nbi4
33 _j
& m_ _
! m 3Svg 3903TMONM
(=% r
.m 39503 MO J13123dS 3903 TMONY 1V43INI9]
® _
(=]]
m 3903 THONA 3903 THONN m_
2 viva VdNa3204d IATLVAIVIO30 M
|
_mgauuo& _ SISIW3Yd _ ,

\._IllllLL

&

|
| L]
WILSAS ¥0S$390¥d
i INIWIOYNYW fe— 3AILONGIC
V1Y@ Wava
, YOLYYINI9
i & INIQIA3 | —p| ¥ITI0HLNOD
~ 5 3 YINSNY
H ~ Hava Wava ‘
3 >
; ’
- m
E o
g =
A —

™

Bl e o s o aeae o

I
i
i

System Development Corporation
31 January 1979 _ -3- T™ -6263/000/00

this information in order to create intelligent data base access strategies

and find evidence for derived answers.

As data bases become larger and more complex and serve a more diverse set

of users, the ability to reason with general knowledge about the data base
domain may become critical. This is because reasoning ability becomes more

and more essential in bridging the gap between the high level concepts in which
the user frames his query and the low level concepts which are used in

describing the data base.

In implementing the DADM prototype we have emphasized logical completeness,
performance, and usability. Completeness assures us that all answers will
be found. Performance has been stressed by developing new techniques for
relevant premise selection, creation and verification of inference plans
before data base searching, and by the use of efficient structure sharing
techniques. Usability features include the use of simple structured forms
for knowledge and query input, computer guidance and help when desired, and
the incorporation of easy to read displays of plans, answers, and evidence.
The prototype is currently operational on a DEC-10 computer in INTERLISP
and on an AMDAHL 470/V6 computer in SDC LISP 1.5.

R e

System Development Corporation
31 January 1979 -4~ TM -6263/000/00

2. AN ON-LINE SESSION WITH DADM

2.1 ANSWERING QUESTIONS WITH GENERAL DECLARATIVE KNOWLEDGE

DADM usually reasons with general declarative knowledge (premises) in

order to create inference plans and intelligent data base access strate-

gies (search/compute plans). In some cases, however, as shown in Figure

2, DADM can respond with specific answers derived directly from general
declarative knowledge. First two elementary premises are added to the

; system by use of the INSERT mode. The first premise states that for

every man:x and woman:y if x is the husband of y then x is married to y

(Every man who is a husband is married to a woman). The second states

. that for every man:x, woman:y and place:p if x is married to a y who lives

: in p, then x also lives in p (read IF __ THEN __ for the IMP

sign used in specifying premises and GIVEN _ FIND __ for its use in queries).

With this knowledge DADM can directly answer the question: Given that
Socrates is husband of Xanthippe and Xanthippe lives in Athens, where does
Socrates live (lives-in Socrates P)? This particular bit of reasoning
is of course obvious from 'common-sense'. However, DADM could just as
well have been searching for and combining knowledge from a much larger

set of more complex premises. Since DADM is a logically complete deductive

system users can be assured of getting all possible answers within the user
controllable effort limit (currently set at 6 deductive paths -- see third
line of printout in figure 2).

The second question in figure 2 illustrates DADM's ability to find
deductive paths linking two partially specified relational con-
cepts (HUSBAND and LIVES-IN). Variables are automatically supplied for
the missing arguments and a partial (i.e., incomplete) inference plan
» is produced that indicates MAN-1 lives-in PLACE-1 if it is the case that
WOMAN-1 lives-in that place (given they are married to each other and
MAN-1 is the husband). DADM's ability to interpret incompletely

specified queries and reason with incompletely specified knowledge (in

the premise base, in the procedure base, and in the data base) is one

of its unique and major strengths).

T

e AN

.

31 January 1979

DADM)
ENTERED IN D.A.D.M. VERSION 19.
CURRENT EPPORT LIMIT SETTING: 6
NODE: ?
one or:
Query:
Insert
Delete

* AMdjust

Show

Pind info

Garbage collect

Lisp

Bxit

Keep

Teach

Help

ASsistant.

INSERT: Premise. Enter premise:

((MAN X) (WOMAN Y) (HUSBAND X Y) IMP (MARRIED X Y))
PREMISE INPUT FOR PREMISE (1) ACKNOWLEDGED.
INSERT: Premise. Enter premise:

((MAN X) (WOMAN Y) (PLACE P) (AND (MARRIED X Y)
(LIVES-IN Y P))

IMP

(LIVES-IN X P)) 7

PREMISE INPUT FOR PREMISE (2) ACKNOWLEDGED.
INSERT: end insert.

MODE: Query:
.((AND(HUSBAND(SOCRATBS)(XANTHIPPE))(LIVES-IN (XANTHIPPE) (ATHENS)))

IMP(LIVES-IN (SOCRATES) P))

ARRRARRRRNRRRAAS
ANSWER SUMMARY --
VARIABLES:

(P)

ANSWERS :

(ATHENS)
RERRRARRANRRANE

MODE: Query:

. ((HUSBAND) IMP (LIVES-IN))

(HUSBAND HAS MISSING ARGUMENTS. 2 HAVE BEEN SUPPLIED.)
(LIVES-IN HAS MISSING ARGUMENTS. 2 HAVE BEEN SUPPLIED.)
DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE:

(LIVES-IN.2.2)
PARTIAL PLANS?Yes

1 PATHS 2 PROBLEMS 1 PLANS

NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

*]
ASSUME HUSBAND (MAN-1 WOMAN-1)
CONCLUDE MARRIED (MAN-1 WOMAN-1)

27
SUPP-REQ LIVES-IN (WOMAN-1 PLACE-1)
CONCLUDE LIVES-IN (MAN-1 PLACE-1)

Figure 2. Reasoning with premises

System Development Corporation
=3 TH-6263/000/00

é

System Development Corporation
31 January 1979 B T™M-6263/000/00

Before proceeding to several less elementary examples, a few words on
DADM/User dialog are in order. DADM queries and premises are currently
input in a formal yet simply structured language consisting of relation
names, function names, domain (i.e., variable-type) names, constants
(i.e., objects, numbers), variables, logical connectives (such as IMP,
AND, OR, NOT) and (optionally) quantifiers (SOME, ALL). At any point
in using DADM a user can type a "?" or "H" to obtain a list of (MODE,
SUBMODE, etc.) options at that point or help in using the system. In
the first example the top level (query, insert, delete, etc.) modes

are shown. These simple syntax and explanatory features make DADM easy

to learn and use.

2.2 ANSWERING QUESTIONS WITH GENERAL AND SPECIFIC KNOWLEDGE

Creation of a general declarative knowledge base can take place before
or after creation of a data base. While the latter situation is most
likely in practice in tlis next example we follow the former course
since we wish to illustrate how a '"classic" deduction can be carried out
by DADM and related to the searching of a data base. The source of the
following deduction is Sherlock Holmes '"Adventure of the Dancing Men":

"So, Watson,...You do not propose to invest in South African securities?"
"How on earth do you know that?" I asked.

"...It was not really difficult, by an inspection of the groove

between your left forefinger and thumb, to feel sure that you did

not propose to invest your small capital in the goldfields."”

"Here are the missing links of the very simple chain:

1. You had chalk between your left finger and thumb when you
returned from the club last night.

2. You put chalk there when you play billiards to steady the cue.

3. You never play billiards except with Thurston.

i R ¢ TRt o T A A S AN A s 1 A S A, S AN 0% el B A S R,

e R BAPY

- System Development Corporation
31 January 1979 -7- TM-6263/000/00

"

4. You told me four weeks ago that Thurston had an option on some
South African property which would expire in a month, and which
he desired you to share with him.

5. Your cheque-book is locked in my drawer, and you have not asked

for the key.

6. You do not propose to invest your money in this manner."

"How absurdly simple!" I cried.

"Quite so!" said he. |

We can attribute Holmes successful deduction in this case (and many
others) to his amazing ability to selectively retrieve facts from a large
data base of specific world knowledge and his ability to construct
plausible (yet relatively shallow) inferences from this information. 1In
this example, for instance, Holmes needs to "search" for only two pieces
of specific information: (1) the fact that Thurston wanted Watson to ' 3
share his South African securities and (2) the fact that Watson did

not have his cheque book.

In sentential logic -- a-logic in which each relation is zero-place
(i.e., has no arguments) the "Holumes" deduction can be formulated as
shown below in terms of a "Query" expressing the desired conclusions,
an "Inference Plan" composed of three premises, and two "Find" state-

ments that must be shown to hold in the data base.

QUERY: If Holmes observed chalk in groove then

Holmes knew Watson did not buy securities.

INFERENCE PLAN:

PREMISE: If Holmes knew Watson played billiards with Thurston
and Holmes knew Thurston wanted Watson to share
i securities and Holmes knew Watson did not have

cheque book then Holmes knew Watson did not buy

P —

securities.

PREMISE: If Holmes observed chalk in groove
then Holmes knew Watson played billiards

R R R P O o M . P A S— e P — - - - R— -

S e ot A A Ml b, it sl e

. Gl e o o ko TR ™ i i " 3 L e o dnbel o Sl o nb g Jadl

System Development Corporation
31 January 1979 =8~ TM -6263/000/00

PREMISE: If Holmes knew Watson played billiards
then Holmes knew Watson played billiards with

Thurston
FIND: Holmes knew Thurston wanted Watson to share
securities.
FIND: Holmes knew Watson did not have cheque book.
ANSWER: Yes

Bringing this Holmesian deduction one step closer to data base searching,
we can define two one place BASE (Search) relations, one two place
PROCEDURAL (compute) relation, and four one and zero place VIRTUAL

(deduce) relations:
BASE (SEARCH) RELATIONS:

Bl: HOLMES-KNEW-THURSTON-WANTED-WATSON-TO-SHARE-SECURITIES (DATE)
B2: HOLMES-KNEW-WATSON-DID-NOT-HAVE-CHEQUE-BOOK (DATE)

PROCEDURAL (COMPUTE) RELATION:

Cl: DIFFERENCE-BETWEEN (DATE, DATE, TIME-INTERVAL)

1 2

VIRTUAL (DEDUCE) RELATIONS:

Vl: HOLMES-OBSERVED-CHALK-IN-~GROOVE (DATE)

V2: HOLMES-KNEW-WATSON-PLAYED-BILLIARDS (DATE)

V3: HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON (DATE)
V4: HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES

The three premises shown below describe and interrelate these four
virtual relations. Each of the premises is assigned a numeric
plausibility weight of between O and 100 that may be used in computing
the plausibility of inference plans and proofs (evidence chains).

PREMISES:

Pl: ((HOLMES-OBSERVED-CHALK~IN-GROOVE T2)
IMP
(HOLMES-KNEW-WATSON-PLAYED-BILLIARDS T2)99)

*a

i iz,

System Development Corporation
31 January 1979 =g TM~6263/000/00

P2: ((HOLMES-KNEW-WATSON~PLAYED-BILLIARDS T2)
IMP
(HOLMES-KNEW-WATSON~PLAYED-BILLIARDS-WITH-THURSTON T2)99)

P3: ((AND (HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON T2)
(HOLMES-KNEW-THURSTON-WANTED-WATSON~-TO-SHARE~-SECURITIES T1)
(HOLMES-KNEW-WATSON-DID-NOT-HAVE-CHEQUE~BOOK T2)
(DIFFERENCE-BETWEEN T2 T1 (ONE-MONTH)))

(IMP (HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES)99)

E Upon entering the three premises into DADM along with appropriate tuples
’ in the data base and a LISP function to compute DIFFERENCE-BETWEEN the
£ HOLMES query was typed ‘in (notice spelling corrector at work) and

inference and search/compute plans were produced as shown in figure 3.

DADM "answers" queries by treating them as problems to be solved. In

this case there is one top level (Holmes-Knewwwatson-Did-Not-Buy-Securities).
L problem and three sub-problems (one compute, two search). One deductive
path (middle-term chain) suffices to link together the three relevant

premises into a single inference plan.

This inference plan states that in order to conclude that Watson didn't

L TR 20 g 3

buy the securities (step **@), it is necessary to conclude that Watson
played billiards with Thurston (step **1) and in order to reach that
conclusion it is necessary to conclude that Watson played billiards
(step **2). These conclusions are forthcoming if the search/compute

plan shown below the inference plan can be satisfied.

That it is satisfied is shown in figure 4 where the answer (YES) and
evidence chain supporting the answer is shown. It will readily be seen
that an evidence chain has the same overall structure as an inference
plan. Each evidence chain is an "instance”" (or instantiation) of an
inference plan where the inference plan's variables (e.g., THING-1) are
replaced by found or computed values (e.g., JUNE 27, 1898) and SEARCH
and COMPUTE are replaced by FACT and COMPUTED respectively.

w SO B TV ST A ARO[S e R T AN, RN s A

B . I N ey

31 January 1979 System Development Corporation
-10- TM-6263/000/00

MODE: (Query:
. ((HOLMES-OBSERVED-CHALK~-IN-GROOVE (JULY27,1898))

IMP

(HOLMES~-KNEW-WATSON-DID-NOT-BUY-SECURIRIES))
HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURIRIES=
HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES ? Yes
1 PATHS 4 PROBLEMS 1 PLANS

NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

1))
ASSUME HOLMES-OBSERVED-CHALK-IN-GROOVE (JULY27,1898)
1 CONCLUDE HOLMES-KNEW-WATSON-PLAYED-BILLIARDS (JULY27,1898)

'3
CONCLUDE HOLMES~KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON (JULY27,1898)

wnp
COMPUTE DIFFERENCE-BETWEEN (JULY27,1898 THING-1 ONE-MONTH)

SEARCH HOLMES-KNEW-WATSON-DID-NOT-HAVE-CHEQUE-BOOK (JULY27,1898)

SEARCH HOLMES-KNEW-THURSTON-WANTED-WATSON-TO-SHARE-SECURITIES (THING-1)
CONCLUDE HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES

SEARCH/COMPUTE PLAN:

SEARCH *HOLMES~-KNEW-THURSTON-WANTED-WATSON-TO-SHARE-SECURITIES
THING-1

SEARCH *BOLMES~-KNEW-WATSON=DID=-NOT-HAVE-CHEQUE-BOOK
JULY27,1898

COMPUTE *DIFPERENCE-BETWEEN JULY27,1898 THING-1 OME-MONTH

Figure 3. Relating a classic deduction to data base
searching

e

w
Poswa,
L

- o N e

31 January 1979 System Development Corporation
-11- T™ -6263/000/00

ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSPUL

(2222222222222

ANSWER SUMMARY --

YES
SEAREARNRRRRRNS

EVIDENCE CHAIN 1 PROM PLAN 1 PLAUSIBILITY: 99

LA]

ASSUME HOLMES-OBSERVED-CHALK-IN-GROOVE (JULY27,1898)
CONCLUDE HOLMES-KNEW-WATSON~PLAYED-BILLIARLS (JULY27,1898)

we)
CONCLUDE HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON (JULY27,1898)

*eg
COMPUTED DIFFERENCE-BETWEEN (JULY27,1898 JUNE27,1898 ONE-MONTH)
FACT HOLMES-KNEW-WATSON-DID-NOT-HAVE-CHEQUE-BOOK (JULY27,1898)
FACT HOLMES-KNEW-THURSTON-WANTED-WATSON-TO-SHARE-SECURITIES (JUNE27,1898)

CONCLUDE HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES

>

NEXT?Usage flow. Enter plan number or list of plan numbers:
1

PLAN 1

STEP WT USES

**2 99 PREMISE 3

**1 99 *%2 PREMISE 5
**g 99 **]1 PREMISE 4
NEXT?

Done,

.

Figure 4. Relating a classic deduction to data base
search (continued)

i o

8 T AR5

e ————

R e =

e O TR

3
Hi

System Development Corpaeration

1979
31 January 12~ TM-6263/000/00

MODE: ASsistant.

_USE () |
...POR (HOLMES-OBS$ --) I
=HOLMES-OBSERVED-CHALK-IN-GROOVE . ' I
DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE: {4
(HOLMES-OBSERVED-CHALK-IN-GROOVE.3.1) e |
PARTIAL PLANS?Yes .

3 PATHS 7 PROBLEMS 1 PLANS

NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99) 3

2
SUPP-REQ HOLMES-OBSERVED-CHALK~IN-GROOVE (THING-2)
CONCLUDE HOLMES~KNEW-WATSON-PLAYED-BILLIARDS (TRHING-2)

*w]

CONCLUDE HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON (THING-2) $.4

*ap
COMPUTE DIFFERENCE-BETWEEN (THING-2 THING-1 ONE-MONTH)

SEARCH HOLMES-KNEW-WATSON-DID-NOT-HAVE-CHEQUE-BOOK (THING-2)

SEARCH HOLMES-KNEW-THURSTON-WANTED-WATSON-TO-SHARE-SECURITIES (THING-1)
CONCLUDE HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES

e

SEARCH/COMPUTE PLAN:

SEARCH 'HOLHBi-KNEH-THURSTON-WANTED-WATSON-TO-SHARE-SBCURITIBS g

THING- ‘ . E
SEARCH *HOLMES~KNEW-WATSON-DID-NOT~-HAVE-CHEQUE-BOOK THING-2 !
COMPUTE *DIFFERENCE-BETWEEN THING-2 THING-1 ONE-MONTH

DADM keeps a history list of all user inputs that is accessible by

the assistant. In this cxample the assistant is instructed to

ronlace the siven clause (MOLMES-NRS-~-) by () turning the GIVEN ==

FIND -- query into a FIND -~ typc query. - We end up with a dcadend :
subproblem, a partial plan (note SUPPORT-REQUIRED in step *%2) and

a SEARCH/COMPUTE plan in two variables (THING-1, THING-2).

Figure 5. Finding deductive support for a FIND type
question. ¥

N A O P RS ATyt TV R T Yy e

31 January 1979 System Development Corporation
=1 3= T™-6263/000/00 §

5 §

i 5

E

¥

b ' MODE: ASsistant. f
_USE ()

-.. POR (HOLMES-KN$ --) ii

...IN (HOLMES-0B$ ~--)
=HOLMES-KNEW-WATSON-DID-NOT~BUY-SECURITIES

3 3 PATHS 7 PROBLEMS 1 PLANS

| NEXT?Full plans

<CINFERENCE PLAN 1 PLAUSIBILITY: 99 .

MAIN FORWARD CHAINS:

we]
ASSUME HOLMES-OBSERVED-CHALK-IN-GROOVE (THING-2)
CONCLUDE HOLMES-KNEW-WATSON-PLAYED-BILLIARDS (THING-2)

1y
CONCLUDE HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON (THING-2)

*%3
SEARCH HOLMES-KNEW-THURSTON-WANTED~WATSON-TO-SHARE-SECURITIES (THING-1

.t)

SEARCH HOLMES-KNEW-WATSON~DID-NOT-HAVE-CHEQUE-BOOK (THING-2)
COMPUTE DIPFERENCE-BETWEEN (THING-2 THING-1 ONE-MONTH) i
CONCLUDE HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES :

The assistant is used again to convert the GIVEN -~ FIND -- type

query into a GIVEN -- type query. In this situation DADM reasons

: from the given assumption forward through the premises until a

- complete plan is constructed or until a deductive limit is reached.
N GIVEN type queries as especially useful for testing working

] hypotheses and for generalized navigation (browsing) through virtual

relations.

TP~

Figure 6. Finding deductive consequences for a GIVEN type
question.

oy

- T TR T NN e i —_—

. i “~
System Development Corporation
31 January 1979 ; -14- TM-6263/000/00

After the NEXT? prompt the user types "U" (the rest of the characters
being supplied by DADM type ahead) and then "1". DADM responds with a
list of steps in the plan, the plausibility weight associated with each
step, and the premises and previous steps used in deriving each step.
Usage flow information has been separated from rlan/evidence information

because many times it is not of interest to users.

2.3 DERIVE ALTERNATIVE COURSES OF ACTION TO SUPPORT ON-LINE DECISION
MAKING: REASONING ABOUT COMMAND AND CONTROL

DADM's ability to reason about data can be a considerable aid to the on-line
decision maker. Given a question (problem) to be answered (solved) DADM

can quickly select relevant modular chunks of declarative knowledge and
combine them into plans which upon execution produce answers and evidence
articulating the alternative courses of action (ACOA's) open to the decision
maker. These ACOA's will, of course, only be as good or relevant as the
knowledge in the knowledge base. Since DADM adds new dimensions of
descriptive, deductive, and planning capabilities to on-line data base
searching it has the potential for becoming a major new form of on-line
decision aid. As a short example of the possibilities in this area,
consider a Task Force Commander who asks the question: '"How can I achieve
ASW-SCREEN ready status if the Peterson returns to port?" The Commander's
aide would normally have to formulate a series of complex requests about the
Peterson's function in the screen, the availability of suitable replacement
ships, their ready status etc. Using DADM the question could be formulated
as shown in figure 7. DADM then displays the full inferential and search
implications of the request which include the Peterson leaving the Task-
force, causing a gap in the ASW-SCREEN and a CONFIGURATION-1 type hole that
must be filled by a SHIP-1 that has the right equipment, status, etc.

The complexity of the DADM produced search plan is further illustrated in
figure 8. Here the Intermediate Language (IL) control mode is turned on,

the question repeated (REDO Q), and a lengthy relational algebra form of

SR v

e L g IR T

L L

I
!
i
l
1

T e

31 January 1979

MODE: Query:
. ((RETURNS (PETERSEN)

2 PATHS 11 PROBLEMS 1 PLANS

NEXT?Full plans

CCINFERENCE PLAN 1 PLAUSIBILITY: 99

*x3
SEARCH READY-STATUS (SHIP-1 READY)

SEARCH AVAILABLE-FOR-ASSIGNMENT (SHIP-1 CONFIGURATION-1)

SEARCH ASW-EQUIPMENT (CONFIGURATION-1 ASROC)

SEARCH CLASS (CONFIGURATION-1 ADAMS)

SEARCH TYPE (CONFIGURATION-1 DD)

CONCLUDE AVAILABLE-FOR-ASW (SHIP-1 CONFIGURATION-1)

tag
ASSUME RETURNS (PETERSEN PORT)
CONCLUDE LEAVES (PETERSEN TASK-FORCE)

*k5

CONCLUDE NOT PART-OF (PETERSEN TASK-FORCE)

why ;
SEARCH EMPLOYED-IN (PETERSEN ASW-SCREEN)
CONCLUDE CAUSE-GAP (PETERSEN ASW-SCREEN)

)
SEARCH ASSIGNED-TO (PETERSEN CONFIGURATION-1)
CONCLUDE HOLE (CONFIGURATION~1 ASW-SCREEN)

*h]

SEARCH AUTHORIZE-TRANSFER (CAPTAIN SHIP-1 ASW-SCREEN)

CONCLUDE FILL-HOLE (SHIP-1 ASW-SCREEN)
1Y)

SEARCH COMPLETE (ASW-SCREEN)
CONCLUDE STATUS (ASW-SCREEN READY)

SEARCH/COMPUTE PLAN:

SEARCH *EMPLOYED-IN PETERSEN ASW-SCREEN

SEARCH *ASSIGNED-TO PETERSEN CONFIGURATION-1

SEARCH *TYPE CONFIGURATION-1 DD

SEARCH *CLASS CONFIGURATION-1 ADAMS

SEARCH *ASW-EQUIPMENT CORFIGURATION-1 ASROC

SEARCH *AVAILABLE-FOR-ASSIGNMENT SHIP-1 CONFIGURATION-~1
SEARCH *READY-STATUS SHIP-1 READY

SEARCH *AUTHORIZE-TRANSFER CAPTAIN SHIP-1 ASW-SCREEN
SEARCH *COMPLETE ASW-SCREEN

Figure 7. Alternative courses of action -
Implications of Request.

System Development Corporation
-15- T™ -6263/000/00

(PORT)) IMP(STATUS (ASW-SCREEN) (READY)))

T N e S R T Ry s

B s v —r—

B ot st i acd

31 January 1979 System Development Corporation
-16- TM-6263/000/00

ADJUST: Control. Enter list of control modes:
(1L

OK

ADJUST: end adjustment.

L 2

MODE: ASsistant.
_REDO Q

2 PATHS 11 PRCBLEMS 1 PLANS

NEXT?PLan display. Enter plan number or list of plan numbers:
;LAN NUMBER: 1 .
SEARCH/COMPUTE PLAN:

SEARCH *EMPLOYED-IN PETERSEN ASW-SCREEN
SEARCH *ASSIGNED-TO PETERSEN CONFIGURATION-1
SEARCH *TYPE CONFIGURATION-1 DD
SEARCH *CLASS CONFIGURATION-1 ADAMS
SEARCH *ASW~EQUIPMENT CONFIGURATION-1 ASROC
SEARCH *AVAILABLE-FOR-ASSIGNMENT SHIP-1 CONFIGURATION-1
SEARCH *READY-STATUS SHIP-1 READY
SEARCH *AUTHORIZE-TRANSFER CAPTAIN SHIP-1 ASW-SCREEN
SEARCH *COMPLETE ASW-SCREEN
EXECUTE?Yes

retrieve [ASSIGNED-TO.CONFIGURATION,AVAILABLE-FOR-ASSIGNMENT.SHIP]
where (EMPLOYED~IN.SHIP="PETERSEN")
and (EMPLOYED-IN.FUNCTION="ASW-SCREEN")
and (ASSIGNED-TO.SHIP="PETERSEN")
and (TYPE.CONFIGURATION=ASSIGNED-TO.CONFIGURATION)
and (TYPE.CATEGORY="DD")
and (CLASS . CONFIGURATION=ASS IGNED-TO.CONFIGURATION)
and (CLASS.SHIP="ADAMS")
and (ASW-EQUIPMENT . CONFIGURATION=ASSIGNED-TO.CONFIGURATION)
and (ASW-EQUIPMENT.MISSILE="ASROC")
and (AVAILABLE-FOR-ASSIGNMENT . CONFIGURATION=ASS IGNED-TQ.CONFIGURATION)
and (READY-STATUS . SHIP=AVAILABLE~FOR-ASSIGNMENT.SHIP)
and (READY-STATUS . VALUE="READY")
and (AUTHORIZE-TRANSFER. RANK="CAPTAIN")
and (AUTHORIZE-TRANSFER.SHIP=AVAILABLE-FOR-ASSIGNMENT.SHIP)
and (AUTHORIZE-TRANSFER. FUNCTION="ASW-SCREEN")
and (COMPLETE. PFUNCTION="ASW~SCREEN")

Figure 8. Alternative courses of action - Search
strategy for external data base.

Rians e
L

RN NIRRT = g

i

31 January 1979 Systen Development Cornoration

-17- TM-6263/000/00
ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

(2222222222222

ANSWER SUMMARY --

CONDITIONAL ANSWERS:

YES IF --
*AUTHORIZE-TRANSFER CAPTAIN SPRUANCE ASW-SCREEN
*COMPLETE ASW-SCREEN

YES IP =
*AUTHORIZE-TRANSFER CAPTAIN KINKAID ASW-SCREEN

*COMPLETE ASW-SCREEN
RRRRR R RN RN RN

EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY: 99

.*3

FACT READY-STATUS (SPRUANCE READY)

FACT AVAILABLE-FOR-ASSIGNMENT (SPRUANCE ATTACK-MODE)
FACT ASW-EQUIPMENT (ATTACK-MODE ASROC)

FACT CLASS (ATTACK-MODE ADAMS)

FACT TYPE (ATTACK-MODE DD)

CONCLUDE AVAILABLE-FOR-ASW (SPRUANCE ATTACK-MODE)

*xg
ASSUME RETURNS (PETERSEN PORT)
CONCLUDE LEAVES (PETERSEN TASK-FORCE)
*x5
CONCLUDE NOT PART-OF (PETERSEN TASK-FORCE)

tk g

FACT EMPLOYED-IN (PETERSEN ASW-SCREEN)
CONCLUDE CAUSE-GAP (PETERSEN ASW-SCREEN)

*kD

FACT ASSIGNED-TO (PETERSEN ATTACK-MODE)
CONCLUDE HOLE (ATTACK-MODE ASW-SCREEN)

LA D

FACT-REQ AUTHORIZE-TRANSFER (CAPTAIN SPRUANCE ASW- SCRBEN)
CONCLUDE FILL-HOLE (SPRUANCE ASW-SCREEN)

7))
FACT-REQ COMPLETE (ASW-SCREEN)
CONCLUDE STATUS (ASW-SCREEN READY)

J EESSESEESIISEEESSSRS

NEXT?Usage flow. Enter plan number or list of plan numbers:
1

PLAN 1
STEP WT USES
**3 99 PREMISE 12
: | *+6 99 PREMISE 10
k| **5 99 *%*6 PREMISE 7
' **4 99 **5 PREMISE 9
**2 99 **4 PREMISE 8
**]1 99 *%) **3 PREMISE 6
**g 99 **] PREMISE 11
NEXT?
Done.

Tigure 9. Alternative courses of actlon - Conditional
answers and evidence.

e 7 b S s 30 e 0 b -

R AN e

31 January 1979 System Development Corporation
-18- TM-6263/000/00

L2

MODE: Query:
. (() IMP(STATUS))
(STATUS HAS MISSING ARGUMENTS. 2 HBAVE BEEN SUPPLIED.)

CHAINS LIMIT REACHED
PURTHER DEDUCTION REQUIRED:
(LEAVES.7.1)

TRY HARDER?Yes

TRYING HARDER:
DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE:

(RETURNS.10.1)
PARTIAL PLANS?Yes

7 PATHS 17 PROBLEMS 1 PLANS

NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

a3
SEARCH READY-STATUS (SHIP-2 READY)

SEARCH AVAILABLE-FOR-ASSIGNMENT (SHIP-2 CONFIGURATION-1)
SEARCH ASW-EQUIPMENT (CONFIGURATION-1 ASROC)

SEARCH CLASS (CONFIGURATION-1 ADAMS)

SEARCH TYPE (CONFIGURATION-1 DD)

CONCLUDE AVAILABLE-FOR-ASW (SHIP-2 CONFIGURATION-1)

LT3
SUPP-REQ RETURNS (SHIP-1 PORT)
CONCLUDE LEAVES (SHIP-1 TASK-FORCE)

T
CONCLUDE NOT PART-OF (SHIP-1 TASK-FORCE)

*k4
SEARCH EMPLOYED-IN (SHIP-1 ASW-SCREEN)
CONCLUDE CAUSE-~GAP (SHIP-1 ASW-SCREEN)

*%D
SEARCH ASSIGNED~TO (SHIP-1 CONFIGURATION-1)
CONCLUDE HOLE (CONFIGURATION-1 ASW-SCREEN)

*x)
SEARCH AUTHORIZE~TRANSFER (CAPTAIN SHIP-2 ASW-~SCREEN)
CONCLUDE FILL-HOLE (SHIP-2 ASW~SCREEN)

27
SEARCH COMPLETE (ASW-SCREEN)
CONCLUDE STATUS (ASW-SCREEN READY)

SEARCH/COMPUTE PLAN:

SEARCH *EMPLOYED-IN SHIP-1 ASW-SCREEN

SEARCH *ASSIGNED-TO SHIP-1 CONFIGURATION-1

SEARCH *TYPE CONFIGURATION-1 DD

SEARCH *CLASS CONFIGURATION-1 ADAMS

SEARCH *ASW-EQUIPMENT CONFIGURATION-1 ASROC

SEARCH *AVAILABLE-FOR-ASSIGNMENT SHIP-2 CONFPIGURATION-1
SEARCH *READY-STATUS SHIP-2 READY

SEARCH *AUTHORIZE-TRANSFER CAPTAIN SHIP-2 ASW-SCREEN
SEARCH *COMPLETE ASW-SCREEN

Figurc 10. Alternative courses of action - Incompletely
specified FIND type question.

31 January 1979 System Development Corporation
-19- TM-6263/000/00

DATA-BASE SEARCH SUCCESSFPUL

(223X S22 82 22 8 J

ANSWER SUMMARY --
CONDITIONAL ANSWERS:

YES IF --
*AUTHORIZE-TRANSFER CAPTAIN BRISCOE ASW-SCREEN
*COMPLETE ASW~SCREEN

YES IF =-- :
*AUTHORIZE-TRANSFER CAPTAIN SPRUANCE ASW-SCREEN
*COMPLETE ASW-SCREEN

YES IF --

*AUTHORIZE-TRANSFER CAPTAIN KINKAID ASW-SCREEN
*COMPLETE ASW-SCREEN e

[Z2 2222222222 2)

EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY: 99

*%3

FACT READY-STATUS (BRISCOE READY)

FACT AVAILABLE-FOR-ASSIGNMENT (BRISCOE DEFENSE-MODE)
FACT ASW~EQUIPMENT (DEFENSE-MODE ASROC)

FACT CLASS (DEFENSE-MODE ADAMS)

FACT TYPE (DEFENSE-MODE DD)

CONCLUDE AVAILABLE-FOR-ASW (BRISCOE DEFENSE-MODE)

*%g
SUPP-REQ RETURNS (JOHN-HANCOCK PORT)
{ CONCLUDE LEAVES (JOHN-HANCOCX TASK-FORCE)

113 3
CONCLUDE NOT PART-OF (JOHN-HANCOCK TASK-FORCE)

x4

FACT EMPLOYED-IN (JOHN-HANCOCK ASW-SCREEN)
CONCLUDE CAUSE-GAP (JOHN-HANCOCK ASW-SCREEN)

i #*2
FACT ASSIGNED-TO (JOHN-HANCOCK DEFENSE-MODE)
CONCLUDE HOLE (DEFENSE-MODE ASW-SCREEN)

wn]
PACT-REQ AUTHORIZE-TRANSFER (CAPTAIN BRISCOE ASW-SCREEN)
CONCLUDE FILL-HOLE (BRISCOE ASW-SCREEN)

*ag

PACT-REQ COMPLETE (ASW-SCREEN)
CONCLUDE STATUS (ASW-SCREEN READY)

Figure 11. Alternative courses of action ~ The Briscoe

can replace the John-Hancock if the latter
returns to port.

——
|I\/Iissing pages 20 & 21 from original film |
System Development Corporation
31 January 1979 -22- TM-6263/000/00

search strategy is generated. IL search requests of this form will
eventually be sent to external data management systems over a network

connection.

Figure 9 shows the several alternatives that have been found as a result
of deductively guided data base search. Two ships, the Spruance and
the Kinkaid, have been located that conditionally satisfy the intent of

the original request. The condition is that the Captain (Commander) must
authorize transfer of the ship to the screen and there must be no other
holes in the screen (it must be complete). Conditional answers illustrate
yet another important aspect of DADM's ability to return useful results in
the face of incomplete information. The conditional evidence chain for the
first answer is shown where FACT-REQ indicates facts that are required to

convert the chain from conditional to complete status.

The usage flow at the bottom of figure % illustrates how the steps in a
moderately complex deduction are derived from various premises and

preceeding steps.

Figures 10 to 13 are included to show backward reasoning (figures 10, 11),
forward reasoning (figure 12), and reasoning with negation (figure 13)
variations on the original command and control query. Note the utility
of the TRY HARDER and PARTIAL PLAN facilities for coping with incomplete

plans.

2.4 DERIVING MULTIPLE CHAINS OF EVIDENCE TO SUPPORT HIGH LEVEL CONJECTURES:
REASONING ABOUT SCIENTIFIC COMMUNICATION

In the last section we demonstrated how DADM produced answers and evidence
chains could be interpreted as distinct patterns of information representing
alternative courses of action. In this section we will illustrate how DADM
produced inference plans and search strategies of varying plausibility may
produce multiple threads of evidence relevant to the same high level conjecture.

In many cases these threads of evidence have a mutually reinforcing effect

P PO R TR Y s o

pwong
Text Box
Missing pages 20 & 21 from original film

e e A GB35 D A3 A RIS i b 5 e)

System Development Corporation
31 January 1979 ~23- TM~6263/000/00

that can markedly improve on-line performance in judging how strongly the
evidence supports or refutes the user's conjecture. We will also see
that DADM generates inference paths, answers, and evidence in a most
plausible, shortest path order so the most concise and credible

information is viewed first.

Consider a bibliographic data base that contains in addition to the usual
author, publication, citing, and subject matter relationships other
information on scientist-authors such as the name and location of their
research laboratories, information about their academic backgrounds, and
information about their attendance at various scientific conferences. The
two queries in figure 14 are typical requests of such a data base. The
first request provides a list of scientists and their laboratories by
year and country, while the second reveals that Barker, who studied under
Wilkins, is the author of a series of‘publications on bubble memory
technology.

Now let us suppose that an analyst familiar with this data base wants to
find out if a certain scientific result achieved in 1978 but not yet
published in the general scientific literature may also be known by
research workers at British laboratories. Notice our use of "may"” in the
last sentence. It is unlikely that our analyst can establish directly,
given the kind of data base he has, that a British laboratory knew about
the particular result. However, through the use of mechanized inference,
he may be able to build a rather strong body of evidence to support a

conjecture to that effect.

In order to respond to queries of this form, premises must be formulated
that somehow relate information about the originator of a result to
scientists and laboratories that may know about the result. Premises and
relations relevant to this problem have been defined and entered into
DADM as shown in the printout of DADM's inventory of relations, domains,
and premise names shown in figure 15. First we see the HUSBAND, MARRIED,

P TRIFRPREPERTERIO

i

R R S U 5 R

31 January 1979 System Development Corporation
=24~ TM-6263/000/00

Query:
. (() IMP (AND (CONDUCTS~RESEARCH-AT SCI LAB YR) (LOCATED-IN LAB CTRY)))

® PATHS 2 PROBLEMS 1 PLANS
NEXT?Full plans

SEARCH/COMPUTE PLAN:
SEARCH *CONDUCTS~-RESEARCH-AT THING~-SCI THING-LAB THING-YR
SEARCH *LOCATED-IN THING-LAB THING-CTRY

ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSFUL

(22222222222 222

ANSWER SUMMARY ~--

VARIABLES:

(SCI LAB YR CTRY)

ANSWERS:

(AUDLEY-CHARLES STRATHCLYDE 1978 UK)
(BARTON-BROWNE MIT 1950 USA)
(BARTON-BROWNE LANCASTER 1978 UK)
(MACKENZIE CAMBRIDGE 1978 UK)

(SMITH IMPERIAL-COLLEGE 1978 UK)
(KILLICK-KENDRICK LANCASTER 1978 UK)
(HALLIDAY EDINBURGH 1978 UK)
(SOUTHWOOD CAMBRIDGE 1978 UK)

(2222222 22 d s 2 I

MODE: OQuery:
- (() IMP(AND(STUDIED-UNDER X (WILKINS)) (AUTHOR X PUBS)))

@ PATHS 2 PROBLEMS 1 PLANS
NEXT?Full plans

SEARCH/COMPUTE PLAN:

SEARCH *STUDIED-UNDER THING-X WILKINS
SEARCH *AUTHOR THING-X THING-PUBS

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

AR RRRAR RN R AR

ANSWER SUMMARY --

VARIABLES:

(X PUBS)

ANSKERS:

(BARKER VISCOUS-FLOW-IN-BUBBLE-MEMORIES)

(BARKER PUNDAMENTALS-OF-BUBBLE~MEMORIES)

(BARKER LATTICE-ARCHITECTURE-FOR-BUBBLE-WALL~-STORAGE)

(BARKER P -OF = - - -
.........QEEESQTION OF~BUBBLE-CHIPS~-USING-G3)

Figure 14. Multiple chains of evidence: Base Relation
Searching.

31 January 1979

MODE: Show

SHOW: Relation tree.

(RELATIONS (HUSBAND)
(MARRIED)
(LIVES-IN)

System Development Corporation
-25- TM-6263/000/00

(HOLMES~-OBSERVED-CHALK-IN-GROOVE)
(HOLMES-KNEW-WATSON-PLAYED-BILLIARDS)
(HOLMES-KNEW-WATSON-PLAYED-BILLIARDS-WITH-THURSTON)
(HOLMES-KNEW-THURSTON-WANTED-WATSON-TO-SHARE-SECURITIES)
(HOLMES~KNEW-WATSON-DID-NOT-HAVE-CHEQUE~-BOOK)
(DIFFERENCE-BETWEEN)
(HOLMES-KNEW-WATSON-DID-NOT-BUY-SECURITIES)
(IC-VIRTUAL-RELATIONS (ORIGINATES)
(MEMBER-SAME-IC)
(SCIENTIFIC-INFORMATION-FLOW)
(KNOWS))
(IC-BASE-RELATIONS (STUDIED-UNDER)
(MASTER-TEACHER)
(ABOUT)
(ATTEND)
(CONFERENCE-ON)
(CONDUCTS-RESEARCH-AT)
(LOCATED-IN)
(AUTHOR)
(CITES))
(ASW-VIRTUAL-RELATIONS (RETURNS)
: (CAUSE-GAP)
(PART-OF)
(LEAVES)
(FILL-HOLE)
(HOLE)
(AVAILABLE-FOR-ASW)
(STATUS))
(ASW-BASE-RELATIONS (COMPLETE)
(AUTHORIZE-TRANSFER)
(READY-STATUS)
(AVAILABLE-FOR-ASSIGNMENT)
(EMPLOYED-IN)
(ASSIGNED-TO)
(TYPE)
(CLASS)
(ASW-EQUIPMENT))

Domain tree. SHOW: Premise tree.
(DOMAINS (MAN)

(PREMISES (STUDENT-MBR)

(WOMAN) (AUTHOR-MBR)
(PLACE) (CITE-AUTHOR-MBR)
(CONFIGURATION) (CITE-PUB-MBR)
(SHIP) (ORIG-IC)
(LOC) (CONF-IC)
(SCIENTIST) (IC-LAB)
(PUBLICATION) (IC-IC))
(RESULT) SHOW: end show.

(YEAR)

(MEETING)

(SUBJECT)

(LAB))

Figure 15. Multiple chains of evidence: Relation, Domain,
and Premise Names.

System Development Corporation
31 January 1979 -26- TM-6263/000/00

LIVES-IN, and HOLMES relations along with the ASW example BASE and
VIRTUAL relations. Next is a list of new "IC" BASE and VIRTUAL relations
where IC stands for the notion of Invisible College (i.e., scientific
in-group or clique). To support the IC VIRTUAL relations (ORIGINATES,
MEMBER-SAME-IC, SCIENTIFIC-INFORMATION-FLOW, KNOWS) we have constructed

eight premises, and given them the names shown near the bottom of figure

15. Four of these premises formalize criteria for membership in an
invisible college and the rest relate scientists ard laboratories to
knowledge shared by the members of an invisible college. Two sample

premises are expressed in English below: []

SCIENTISTS WHO CO-AUTHOR A PUBLICATION MAY BE MEMBERS OF THE
SAME INVISIBLE COLLEGE.

A SCIENTIST WHO ORIGINATES A NEW RESULT DURING A YEAR IS LIKELY
TO TRANSMIT KNOWLEDGE OF THAT RESULT TO MEMBERS OF HIS INVISIBLE
COLLEGE DURING THAT YEAR.

In figure 16 the conjecture that UK laboratories know about a magnetic
bubble result originated by Barker is input to DADM and 6 deductive paths
and plans requiring solution of 21 problems and subproblems are found
before the chains limit is reached. The initial usage flow for the 6
plans is displayed and we immediately notice that plans 1 and 4 have the
highest plausibility weight.

In figures 17 to 24 the plans and evidence chains are shown in user
preferred order and format. In the next figure the final usage flow
information details the plausibility weights and deductive support for the
steps in each of the 6 plans.

In figures 26 through 30 the DADM system '"trys harder" and two additional
but less plausible plans are found. Then the IL control mode is turned
on to demonstrate the generation of more complex forms of IL search requests.

Next the four invisible college membership premises are deleted in order to

1979 System Development Corporation
S -27- T™ -6263/000/00

MODE: Query:

.((LAB L)

(ORIGINATES (BARKER) (MAG-BUBBLE) (1978))

IMP

(AND (KNOWS L (MAG-BUBBLE) (1978)) (LOCATED-IN L (UK))))

CHAINS LIMIT REACHED
6 PATHS 21 PROBLEMS 6 PLANS

NEXT?Usage flow. Enter plan number or list of plan numbers:
(1 TO 6)

PLAN 1
WT PREMISES
95 (16 17 19)

PLAN 2
WT PREMISES
80 (15 17 19)

3
PREMISES
(14 17 19)

4
PREMISES
(16 17 18 19 28)

5
PREMISES
(15 17 18 19 28)

6
PREMISES
(14 17 18 19 29)

Figure 16. Multiple chains of evidence: The conjecture and
initial usage flow.

S e e At At

o

31 January 1979 System Development Corporation

-28- TM-6263/000/00

NEXT?PLan display. Enter plan number or list of plan numbers:
(1 4)
PLAN NUMBER: 1

<<INFERENCE PLAN 1 PLAUSIBILITY: 95

2 SUBPLANS:

")

SEARCH CITES (PUBLICATION-1 PUBLICATION-2)
SEARCH CITES (PUBLICATION-2 PUBLICATION-1)
SEARCH AUTHOR (SCIENTIST-1 PUBLICATION-1)
SEARCH AUTHOR (BARKER PUBLICATION-2)
CONCLUDE MEMBER-SAME-IC (BARKER SCIENTIST-1)

k]

ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE ENOWS (SCIENTIST-1 MAG-BUBBLE 1978)

weg
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-L 1978)
CONCLUDE KNOWS (LAB-L MAG-BUBBLE 1978)

SEARCH LOCATED-IN (LAB-L UK)

SEARCH/COMPUTE PLAN:

SEARCH *AUTHOR BARKER PUBLICATION-2
SEARCH *AUTHOR SCIENTIST-1 PUBLICATION-1 3
SEARCH *CITES PUBLICATION-2 PUBLICATION-1

SEARCH *CITES PUBLICATION-1 PUBLICATION-2

SEARCH *CONDUCTS~RESEARCH-AT SCIENTIST-1 LAB-L 1978

SEARCH *LOCATED-IN LAB-L UK

ki s il

Figure 17. Multiple chains of evidence: Plan-1.

1 January 1979 System Development Corporation
oo e TH -6263/000/00

4y IS vaa:é.v.:g«m;m,;“;_;;: e

e S

E | EXECUTE?Yes
ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSPUL

thtbhtbtRtadtdRd

k| ANSWER SUMMARY -~
E | VARIABLES:

: (L) :
ANSWERS:

(EDINBURGH) : i b

i ARBRRRRRRNARENS

o EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY: 95

2 CONCLUSIONS:

i a2

E | FACT CITES (BUBBLE-MEMORIES-REVISITED VISCOUS-FLOW-IN-BUBBLE-MEMORIES)
i PACT CITES (VISCOUS-FLOW-IN-BUBBLE-MEMORIES BUBBLE-MEMORIES-REVISITED)

FACT AUTHOR (HALLIDAY BUBBLE-MEMORIES-REVISITED)

FACT AUTHOR (BARKER VISCOUS-FLOW-IN-BUBBLE-MEMORIES)

CONCLUDE MEMBER-SAME-IC (BARKER HALLIDAY)

]
ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (HALLIDAY MAG-BUBBLE 1978)

teg
FACT CONDUCTS-RESEARCH-AT (HALLIDAY EDINBURGH 1978)
CONCLUDE KNOWS (EDINBURGH MAG-BUBBLE 1978)

|
| = =

| FACT LOCATED-IN (EDINBURGH UK)

>»

Figure 18. Multiple chains of evidence: Chain-1. i]

o i A N v S LN e s ST NI i P s M o AL

31 January 1979 System Development Corporation
i -30- TM -6263/000/00

PLAN NUMBER: 4

<<INFERENCE PLAN 4 PLAUSIBILITY: 95

2 SUBPLANS:

*23
SEARCH CONFERENCE-ON (MEETING-1 SUBJECT-1 1978)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 1978)

: SEARCH ATTEND (SCIENTIST-2 MEETING-1 1978)

: CONCLUDE SCIENTIFIC-INFORMATION~-FLOW (SCIENTIST-2 SCIENTIST-1 SUBJECT-1 1978)

*xy
] SEARCH CITES (PUBLICATION-1 PUBLICATION-2)

4 SEARCH CITES (PUBLICATION-2 PUBLICATION-1)
SEARCH AUTHOR (SCIENTIST-2 PUBLICATION-1)
SEARCH AUTHOR (BARKER PUBLICATION-2)
CONCLUDE MEMBER-SAME-IC (BARKER SCIENTIST-2)

1 1)) ‘a
3 ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST-2 MAG-BUBBLE 1978)

*x]

SEARCH ABOUT (MAG-BUBBLE SUBJECT-1)
CONCLUDE KNOWS (SCIENTIST-1 MAG-BUBBLE 1978)

1‘

SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-L 1978) ;
CONCLUDE KNOWS (LAB-L MAG-BUBBLE 1978) ‘!

SEARCH LOCATED-IN (LAB-L UK)

e s

SEARCH/COMPUTE PLAN:

SEARCH *AUTHOR BARKER PUBLICATION-2
3 SEARCH *AUTHOR SCIENTIST-2 PUBLICATION-1

SEARCH *CITES PUBLICATION-2 PUBLICATION-1

SEARCH *CITES PUBLICATION-1 PUBLICATION-2

SEARCH *ABOUT MAG-BUBBLE SUBJECT-1 | 8

SEARCH *ATTEND SCIENTIST-2 MEETING-1 1978 “*
E SEARCH *ATTEND SCIENTIST-1 MEETING-1 1978 3
: SEARCH *CONFERENCE-ON MEETING-1 SUBJECT-1 1978
3 SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978

SEARCH *LOCATED-IN LAB-L UK

EXECUTE?Yes

Figure 19. Multiple chains of evidence: Plan-4

31 January 1979 System Development Corporation
-31- T™-6263/000/00

DATA-BASE SEARCH SUCCESSFUL

ttbbdbdbotttdted

ANSWER SUMMARY -~
VARIABLES:

(L)

ANSHWERS:
(CAMBRIDGE)

ettt fadentatdtee

EVIDENCE CHAIN 1 FROM PLAN 4 PLAUSIBILITY: 95
2 CONCLUSIONS:

..3

PACT CONFERENCE-ON (APS BUBBLE-MEMORIES 1978)

PACT ATTEND (SOUTHWOOD APS 1978)

PACT ATTEND (BOYCE APS 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (BOYCE SOUTHWOOD BUBBLE-MEMORIES 1978)

eny

PACT CITES (HIGH-SPEED-BUBBLE-MEMORIES VISCOUS-PLOW-IN-BUBBLE-MEMORIES)
FACT CITES (VISCOUS-PLOW-IN-BUBBLE-MEMORIES HIGH-SPEED-BUBBLE-MEMORIES)
FACT AUTHOR (BOYCE HIGH-SPEED-BUBBLE-MEMORIES)

PACT AUTHOR (BARKER VISCOUS-FLOW-IN-BUBBLE-MEMORIES)

CONCLUDE MEMBER-SAME-IC (BARKER BOYCE)

"2 e
ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (BOYCE MAG-BUBBLE 1978)

we)]
FACT ABOUT (MAG-BUBBLE BUBBLE-MEMORIES)
CONCLUDE KNOWS (SOUTHWOOD MAG-BUBBLE 1978)

FACT CONDUCTS-RESEARCH-AT (SOUTHWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE MAG-BUBBLE 1978)

z

PACT LOCATED-IN (CAMBRIDGE UK)

Figure 20. Multiple chains of evidence: Chain-4.

ORI B 35 b i S i .. 5 s s i - T —

System Development Corporation

31 January 1979 9
-32- ™ -6263/000/00

i e)

NEXT?Execute plan. Enter plan number or list of plan numbers:
(2 35 6)

PLAN NUMBER: 2

SEARCH/COMPUTE PLAN: E

i

SEARCH *AUTHOR BARKER PUBLICATION-2 3
SEARCH *AUTHOR SCIENTIST-1 PUBLICATION-1

SEARCH *CITES PUBLICATION-2 SCIENTIST-1

SEARCH *CITES PUBLICATION-1 BARKER

SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978

SEARCH *LOCATED-IN LAB-L UK

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

AR R AR AR R AR ANRR
ANSWER SUMMARY --
VARIABLES:

(L)

ANSWERS:

(STRATHCLYDE)
RRARRRRR AR AR RN,

EVIDENCE CHAIN 1 FROM PLAN 2 PLAUSIBILITY: 8@

2 CONCLUSIONS:

*h D
FACT CITES (CAGE-MATERIAL~FOR-BUBBLE-MEMORIES BARKER)

FACT CITES (FABRICATION-OF-BUBBLE-CHIPS-USING-G3 AUDLEY-CHARLES)
FACT AUTHOR (AUDLEY-CHARLES CAGE-MATERIAL-FOR-BUBBLE-MEMORIES)
FACT AUTHOR (BARKER FABRICATION-OF-BUBBLE-CHIPS-USING-G3)
CONCLUDE MEMBER-SAME-IC (BARKER AUDLEY-CHARLES)

LD

ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (AUDLEY-CHARLES MAG-BUBBLE 1978)

27
FACT CONDUCTS-RESEARCH~AT (AUDLEY-CHARLES STRATHCLYDE 1978)
CONCLUDE KNOWS (STRATHCLYDE MAG-BUBBLE 1978)

FACT LOCATED-IN (STRATHCLYDE UK)

Figure 21. Multiple chains of evidence: Search plan
and chain-2.

R T R SR em——— - - - e ———

- —~——— S e P 5 S S P e, 4 e

System Development Corporation
N I o -33- 5 T™-6263/000/00

E PLAN NUMBER: 3
L' SEARCH/COMPUTE PLAN:
SEARCH *AUTHOR BARKER PUBLICATION-1
SEARCH *AUTHOR SCIENTIST-1 PUBLICATION-1
SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978
: SEARCH *LOCATED-IN LAB-L UK

3 ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSFUL

L L2222 2222222

ANSWER SUMMARY --
VARIABLES:

3 (L)

% ANSWERS:

(LANCASTER)
ERRRRARRRRRARAS

EVIDENCE CHAIN 1 FROM PLAN 3 PLAUSIBILITY: 70

2 CONCLUSIONS:

*%

PACT AUTHOR (KILLICK-KENDRICK FUNDAMENTALS-OF~-BUBBLE-MEMORIES)
FACT AUTHOR (BARKER FUNDAMENTALS-OF-BUBBLE-MEMORIES)

CONCLUDE MEMBER-SAME-IC (BARKER KILLICK-KENDRICK)

*k]

ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (KILLICK-KENDRICK MAG-BUBBLE 1978)

2T
FACT CONDUCTS-RESEARCH-AT (KILLICK-KENDRICK LANCASTER 1978)
CONCLUDE KNOWS (LANCASTER MAG-BUBBLE 1978)

PACT LOCATED-IN (LANCASTER UK)

>>

Figure 22. Multiple chains of evidence: Search plan
and chain-3.

31 January 1979 System Development Corporation

=34~ TM-6263/000/00

PLAN NUMBER: 5
SEARCH/COMPUTE PLAN: ?

SEARCH *AUTHOR BARKER PUBLICATION-2

SEARCH *AUTHOR SCIENTIST-2 PUBLICATION-1

SEARCH *CITES PUBLICATION-2 SCIENTIST-2

SEARCH *CITES PUBLICATION-1 BARKER

SEARCH *ABOUT MAG-BUBBLE SUBJECT-1

SEARCH *ATTEND SCIENTIST-2 MEETING-1 1978

SEARCH *ATTEND SCIENTIST-1 MEETING-1 1978

SEARCH *CONFERENCE-ON MEETING-1 SUBJECT-1 1978

SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978

SEARCH *LOCATED-IN LAB-L UK
ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

L2222 222222222 2)

ANSWER SUMMARY --
VARIABLES:

(L)

ANSWERS :
(LANCASTER)
(CAMBRIDGE)

LA 2222222222222

EVIDENCE CHAIN 1 FROM PLAN 5 PLAUSIBILITY: 80

2 CONCLUSIONS:

*%3

FACT CONFERENCE-ON (IEEE BUBBLE-MEMORIES 1978)

FACT ATTEND (BARTON-BROWNE IEEE 1978)

FACT ATTEND (YOSHIDA IEEE 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (YOSHIDA BARTON-BROWNE BUBBLE-MEMORIES 1978)

ﬁi4

FACT CITES (CONTIGUOUS-DISK-BUBBLE-MEMORIES BARKER)

FACT CITES (LATTICE-ARCHITECTURE-FOR-BUBBLE-WALL-STORAGE YOSHIDA)
FACT AUTHOR (YOSHIDA CONTIGUCUS-DISK-BUBBLE-MEMORIES)

FACT AUTHOR (BARKER LATTICE-ARCHITECTURE-FOR-BUBBLE-WALL-STORAGE)
CONCLUDE MEMBER-SAME-IC (BARKER YOSHIDA)

Iy
ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (YOSHIDA MAG-BUBBLE 1978)

*w] :
FACT ABOUT (MAG-BUBBLE BUBBLE-MEMORIES)
CONCLUDE KNOWS (BARTON-BROWNE MAG-BUBBLE 1978) o

117
PACT CONDUCTS-RESEARCH-AT (BARTON-BROWNE LANCASTER 1978)
CONCLUDE KNOWS (LANCASTER MAG-BUBBLE 1978)

PACT LOCATED-IN (LANCASTER UK) ™ | 3

Figure 23. Multiple chains of evidence: Search plan and .
chain-5. . E

31 January 1979 System Development Corporation

-35- TM- 6263/000/00

PLAN NUMBER: 6
SEARCH/COMPUTE PLAN:

SEARCH *AUTHOR BARKER PUBLICATION-1

SEARCH *AUTHOR SCIENTIST-2 PUBLICATION-1

SEARCH *ABOUT MAG~-BUBBLE SUBJECT-1

SEARCH *ATTEND SCIENTIST-2 MEETING-1 1978

SEARCH *ATTEND SCIENTIST-1 MEETING-1 1978

SEARCH *CONFERENCE-ON MEETING-1 SUBJECT-1 1978

SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978

SEARCH *LOCATED-IN LAB-L UK

ENTERING DATA BASE
DATA-BAS. oEARCH SUCCESSFUL

AR ARAR AN RRNAR

ANSWER SUMMARY --
VARIABLES:

(L)

ANSWERS:

(CAMBRIDGE)
RRRRARRR SRR RN

EVIDENCE CHAIN 1 FROM PLAN 6 PLAUSIBILITY: 76
2 CONCLUSIONS:

*%3
FACT CONFERENCE-ON (APS BUBBLE-MEMORIES 1978)

FACT ATTEND (SOUTHWOOD APS 1978)

FACT ATTEND (BOYCE APS 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (BOYCE SOUTHWOOD BUBBLE-MEMORIES 1978)

(27
FACT AUTHOR (BOYCE VISCOUS-FLOW-IN-BUBBLE-MEMORIES)
FACT AUTHOR (BARKER VISCOUS-FLOW~IN-BUBBLE~MEMORIES)
CONCLUDE MEMBER-SAME-IC (BARKER BOYCE)

*%Q
ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (BOYCE MAG-BUBBLE 1978)

*k]
PACT ABOUT (MAG~BUBBLE BUBBLE-MEMORIES)
CONCLUDE KNOWS (SOUTHWOOD MAG-BUBBLE 1978)

17
PACT CONDUCTS-RESEARCH-AT (SOUTHWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE MAG-BUBBLE 1978)

PACT LOCATED-IN (CAMBRIDGE UK)

Figure 24. Multiple chains of evidencc: Search plan
and chain-6.

el]

A il

A i i 3

—_———

31 January 1979 System Development Corporation
-36- ™ -6263/000/00

NEXT?Usage flow. Enter plan number or list of plan numbers:
(1 TO 6)

PLAN 1

STEP WT USES

*¢2 95 PREMISE 16

"] 99 *%2 PREMISE 17
g 99 *#] PREMISE 19

PLAN 2
STEP WT USES |
*#2 8A PREMISE 15 |
##] 99 **2 PREMISE 17 I
*%g 99 *+) PREMISE 19 o

PLAN 3 , :
STEP WT USES %
*+2 79 PREMISE 14]
*#] 99 **2 PREMISE 17 : j
*#9 99 ##] PREMISE 19 / '

PLAN 4

STEP WT USES

**3 99 PREMISE 18

**4 95 PREMISE 16

*#2 99 #%4 PREMISE 17 -
#%#] 99 ##2 *+3 PREMISE 20 3
*%g 99 ##] PREMISE 19 i

PLAN 5
STEP WT USES 3
**+3 99 PREMISE 18 /
**4 80 PREMISE 15
*##2 99 #%4 PREMISE 17 “ 3
*##] 99 ##2 *+3 PREMISE 20
+9 99 #] PREMISE 19

{
PLAN 6 f
STEP WT USES e
**3 99 PREMISE 18 |
**4 70 PREMISE 14 g
**2 99 #+4 PREMISE 17 2l
#+) 99 %e2 %+3 PREMISE 20 '
*¢9 99 #+] PREMISE 19 18
NEXT?Try harder L
TRYING HARDER:

Figure 25. Multiple chains of evidence: Final usage flow e l
for first 6 plans.

MRS B

31 January 1979

7 PATHS 24

System Development Corporation
5 TM-6263/000/00

=37

PROBLEMS 8 PLANS

NEXT?PLan display. Enter plan number or list of plan numbers:

(7 8)

PLAN NUMBER: 7

<<INFERENCE PLAN 7 PLAUSIBILITY: 70

2 SUBPLANS:

"3

SEARCH CONFERENCE-ON (MEETING-1 SUBJECT-1 1978)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 1978)

SEARCH ATTEND (SCIENTIST-2 MEETING-1 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (SCIENTIST-2 SCIENTIST-1 SUBJECT-1 1978)

27

SEARCH AUTHOR (SCIENTIST-2 PUBLICATION-1)
SEARCH AUTHOR (BARKER PUBLICATION-1)
CONCLUDE MEMBER-SAME-IC (BARKER SCIENTIST-2)

")

ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST-2 MAG-BUBBLE 1978)

**]

SEARCH ABOUT (MAG-BUBBLE SUBJECT-1)
CONCLUDE KNOWS (SCIENTIST-1 MAG-BUBBLE 1978)

27

SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-L 1978)
CONCLUDE KNOWS (LAB-L MAG-BUBBLE 1978)

SEARCH LOCATED-IN (LAB-L UK)

SEARCH/COMPUTE PLAN:

SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH

*AUTHOR BARKER PUBLICATION-1

*AUTHOR SCIENTIST-2 PUBLICATION-1

*ABOUT MAG-BUBBLE SUBJECT-1

*ATTEND SCIENTIST-2 MEETING-1 1978

*ATTEND SCIENTIST-1 MEETING-1 1978
*CONFERENCE-ON MEETING-1 SUBJECT-1 1978
*CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978
*LOCATED-IN LAB-L UK

Figure 26. Multiole chains of evidence: Plan-7.

Ry 3y B 1 SRR e e e <

i e o

e

31 January 1979 System Development Corporation
-38- T™-6263/000/00

EXECUTE?Yes
put(retrieve [AUTHOR.SCIENTIST,AUTHOR. TITLE]) into _ 0082;
put [retrieve [ATTEND.SCIENTIST,ATTEND.CONFERENCE ,ATTEND.DATE)) into _ 0083;
retrieve [AUTHOR.TITLE, 9882.08,ABOUT.MAJOR-AREA,ATTEND.CONFERENCE,_ 0083.0,
CONDUCTS-RESEARCH-AT.LOCATION]

where (AUTHOR.SCIENTIST="BARKER")

and(0082.1=AUTHOR.TITLE)

and (ABOUT.TOPIC="MAG-BUBBLE")

and (ATTEND.SCIENTIST= 0082.0)

and (ATTEND.DATE=1978) "

and (__0883.1=ATTEND.CONFERENCE)

and(~ 0083.2=1978)

and (CONFERENCE-ON . CONFERENCE=ATTEND . CONFERENCE)

and (CONFERENCE-ON.TOPIC=ABOUT.MAJOR-AREA)

and (CONFERENCE-ON. YEAR=1978)

and (CONDUCTS-RESEARCH-AT.SCIENTIST=_ 0683.0)

and (CONDUCTS-RESEARCH-AT.YEAR=1978)

and (LOCATED-IN.PLACE1=CONDUCTS-RESEARCH-AT . LOCATION)

and (LOCATED~IN.PLACE2="UK")

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

RRRARARARR R R RN
ANSWER SUMMARY --
VARIABLES:

(L)

ANSWERS :

(CAMBRIDGE)
RERRRRARRRRRAA L

EVIDENCE CHAIN 1 FROM PLAN 7 PLAUSIBILITY: 76
2 CONCLUSIONS:

EESESSEZx===aE=======

%3

FACT CONFERENCE-ON (APS BUBBLE-MEMORIES 1978)

FACT ATTEND (SOUTHWOOD APS 1978)

FACT ATTEND (BOYCE APS 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (BOYCE SOUTHWOOD BUBBLE-MEMORIES 1978)

ey
PACT AUTHOR (BOYCE VISCOUS-FLOW-IN-BUBBLE-MEMORIES)
FACT AUTHOR (BARKER VISCOUS-FLOW-IN-BUBBLE-MEMORIES)
CONCLUDE MEMBER-SAME-IC (BARKER BOYCE)
1Y)
ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (BOYCE MAG-BUBBLE 1978,
131
FACT ABOUT (MAG-BUBBLE BUBBLE-MEMORIES)
CONCLUDE KNOWS (SOUTHWOOD MAG-BUBBLE 1978)
(17

PACT CONDUCTS-RESEARCH-AT (SOUTHWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE MAG-BUBBLE 1978)

PACT LOCATED~IN (CAMBRIDGE UK)

Figure 27 Multiple chains of evidence: 1IL Request
and chain-7.

i i R T P —— ——

ikt

31 January 1979 System Development Corporation
-39- T™ -6263/000/00

PLAN NUMBER: 8

<<INFERENCE PLAN 8 PLAUSIBILITY: 6@
2 SUBPLANS:

*%3
SEARCH CONFERENCE-ON (MEETING-1 SUBJECT-1 1978)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 1978)

SEARCH ATTEND (SCIENTIST-3 MEETING-1 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (SCIENTIST-3 SCIENTIST-1 SUBJECT-1 1978)

*ng
SEARCH MASTER-TEACHER (SCIENTIST-2)

SEARCH STUDIED-UNDER (SCIENTIST-3 SCIENTIST-2)
SEARCH STUDIED-UNDER (BARKER SCIENTIST-2)
CONCLUDE MEMBER-SAME-IC (BARKER SCIENTIST-3)

**)

ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST-3 MAG-BUBBLE 1978)

*k]

SEARCH ABOUT (MAG-BUBBLE SUBJECT-1)
CONCLUDE KNOWS (SCIENTIST-1 MAG-BUBBLE 1978) 1

wag
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-L 1978)
CONCLUDE KNOWS (LAB-L MAG-BUBBLE 1978)

i SEARCH LOCATED-IN (LAB-L UK)

L

Figure 28. Multiple chains of evidence: Plan-8.

e B T T —————————

e — o — T ———————— . T

& e

#il

% 31 January 1979

SEARCH/COMPUTE PLAN:

SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH

EXECUTE?Yes

*STUDIED-UNDER BARKER SCIENTIST-2
*STUDIED-UNDER SCIENTIST-3 SCIENTIST-2
*MASTER-TEACHER SCIENTIST-2

*ABOUT MAG-BUBBLE SUBJECT-1

*ATTEND SCIENTIST-3 MEETING-1 1978

*ATTEND SCIENTIST-1 MEETING-1 1978
*CONFERENCE-ON MEETING-1 SUBJECT-1 1978
*CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978
*LOCATED-IN LAB-L UK

MASTER-TEACHER IS NOT AN EXTERNAL RELATION.

put[retrieve [STUDIED-UNDER.STUDENT,STUDIED-UNDER. TEACHER]] into __ 8084;
put [retrieve [ATTEND.SCIENTIST,ATTEND.CONFERENCE,ATTEND.DATE]] into 9085;
rettieve[STUDIBD-UNDER.TEACHER,__OOB‘.l,ABOUT.HAJOR-AREA,ATTEND.CONFBRBNCB,__.IOS.l.

CONDUCTS-RESEARCH-AT.LOCATION]
where (STUDIED-UNDER.STUDENT="BARKER")
and(__'Da‘-I'STUDIED-UNDER.TBACHBR)
and (MASTER-TEACHER. 1=STUDIED-UNDER.TEACHER)
and (ABOUT.TOPIC="MAG-BUBBLE")
and(ATTEND.SCIENTISTs__GOBl.0)
and (ATTEND.DATE=1978)
and(0085.1=ATTEND.CONFERENCE)
and (__0085.2=1978)
and (CONFERENCE-ON.CONFERENCE=ATTEND.CONFERENCE)
and (CONFERENCE~-ON.TOPIC=ABOUT . MAJOR-AREA)
and (CONFERENCE-ON.YEAR=1978)
and(CONDUCTS-RBSEARCH-AT.SCIBNTIST-__OIBS.l)
and (CONDUCTS-RESEARCH-AT.YEAR=1978)
and (LOCATED-~IN.PLACE1=CONDUCTS-RESEARCH-AT, LOCATION)
and (LOCATED~IN.PLACE2="UK")

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

Figure 29. Multiple chains of evidence: IL Request for
plan-8.

System Development Corporation
-40- TM -6263/000/00

e

31 January 1979 System Development Corporation
-41- ™ -6263/000/00

I 222222222222 2 F
ANSWER SUMMARY --]
VARIABLES:
(L)
CONDITIONAL ANSWERS: 4
(LANCASTER) 8

INFORMATION NEEDED:

*MASTER-TEACHER WILKINS

(CAMBRIDGE)

INFORMATION NEEDED:

*MASTER-TEACHER WILKINS
ERRRRRRNRR RN RK

EVIDENCE CHAIN 1 FROM PLAN 8 PLAUSIBILITY: 68

2 CONCLUSIONS:

] *%3
- FACT CONFERENCE-ON (IEEE BUBBLE-MEMORIES 1978)
3 FACT ATTEND (BARTON-BROWNE IEEE 1978)
FACT ATTEND (HOFFMAN IEEE 1978) :
CONCLUDE SCIENTIFIC-INFORMATION-FLOW (HOFFMAN BARTON-BROWNE BUBBLE-MEMORIES 1978)

*%y
{ FACT-REQ MASTER-TEACHER (WILKINS) :
| FACT STUDIED-UNDER (HOFFMAN WILKINS) :
. FACT STUDIED-UNDER (BARKER WILKINS) 3
CONCLUDE MEMBER-SAME-IC (BARKER HOFFMAN)

2y
ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (HOFFMAN MAG-BUBBLE 1978)

*a]
FACT ABOUT (MAG-BUBBLE BUBBLE-MEMORIES)
CONCLUDE KNOWS (BARTON~-BROWNE MAG-BUBBLE 1978) A

*hp 1
PACT CONDUCTS-RESEARCH-AT (BARTON~BROWNE LANCASTER 1978)

CONCLUDE KNOWS (LANCASTER MAG-BUBBLE 1978) |

PACT LOCATED-IN (LANCASTER UK)

>>

Figure 30. Multiple chains of evidence: Chain-8.

System Development Corporation
31 January 1979 ~42~ T™ -6263/000/00

illustrate the results of searching for evidence with partial planms.
(figures 31 to 33).

The use of DADM as a powerful tool for '"generalized navigation" among

e —

relational concepts is explored in figures 34 through 40.

Ty

A review of these examples will, we believe, provide the reader with an
appreciation of the utility of adding virtual relations to a data base and
describing them in a declarative form as premises that can be combined f

according to the rules of symbolic logic.

2.5 REASONING WITH COMPUTABLE FUNCTIONS
The descriptive and deductive capabilities of DADM are further expanded as

illustrated in figure 41 by the addition of computable functions as
arguments to relations. In general, DADM will replace a computable
function by its value as soon as it can be evaluated i.e., as soon as its
arguments are all constants. This means that some functions will be
evaluated before data base search and others (such as those in figure 41)

must be evaluated after suitable values are supplied by data base search.

o i i AR X i T T —

31 January 1979 System Development Corporation
=43~ TM-6263/000/00

MODE: Delete
DELETE: Premise. Enter premise or list of premise names or numbers:
' (STUDENT-MBR AUTHOR-MBR CITE-AUTHOR-MBR CITE-PUB-MBR)

PREMISE: STUDENT-MBR:

(((ALL (SCIENTIST . X64)) (ALL (SCIENTIST . X65)) (ALL (SCIENTIST . X66))
(AND ' (STUDIED-UNDER X64 X66) (STUDIED-UNDER X65 X66) (MASTER-TEACHER X66))
IMP (MEMBER-SAME-IC X64 X65))

STUDENT-MBR)

DELETED.

PREMISE: AUTHOR-MBR:

(((ALL (SCIENTIST . X67)) (ALL (SCIENTIST . X68)) (ALL (PUBLICATION . X69))
(AND (AUTHOR X67 X69) (AUTHOR X68 X69))

IMP (MEMBER-SAME-IC X67 X68))

AUTHOR-MBR)

DELETED.

PREMISE: CITE-AUTHOR-MBR:

(((ALL (SCIENTIST . X70)) (ALL (SCIENTIST . X71)) (ALL (PUBLICATION . X72))
(ALL (PUBLICATION . X73))

(AND (AUTHOR X780 X72) (AUTHOR X71 X73) (CITES X72 X71) (CITES X73 X78))

IMP (MEMBER-SAME-IC X70 X71))

CITE-AUTHOR-MBR)

DELETED.

PREMISE: CITE-PUB-MBR:

(((ALL (SCIENTIST . X74)) (ALL (SCIENTIST . X75)) (ALL (PUBLICATION . X76))
(ALL (PUBLICATION . X77))
(AND (AUTHOR X74 X76) (AUTHOR X75 X77) (CITES X76 X77) (CITES X77 X76))
IMP (MEMBER-SAME-IC X74 X75))

CITE-PUB-MBR)

DELETED.
RELATION: MASTER-TEACHER DELETED.
DELETE: end delete.

Figure 31. Multiple chains of evidence: Deletion of
4 premises.

T AT S -y T A SR

31 January 1979 System Development Corporation
b4~ TM -6263/000/00

MODE: ASsistant.
_ REDO Q

Ty —

DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE:
(MEMBER-SAME-IC.17.2)
PARTIAL PLANS?Yes

3 PATHS 11 PROBLEMS 2 PLANS
NEXT?Full plans

ADJUST: Control. Enter list of control modes: 'a
' 3
i 0
3 OK i
ADJUST: end adjustment. }
<<INFERENCE PLAN 1 PLAUSIBILITY: 99 ‘
1 2 SUBPLANS:
2
001
SUPP-REQ MEMBER-SAME-IC (BARKER SCIENTIST-1) 3
3 ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978) |
: CONCLUDE KNOWS (SCIENTIST-1 MAG-BUBBLE 1978) %
p
3 tia g
2 SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-L 1978)
CONCLUDE KNOWS (LAB-L MAG-BUBBLE 1978)

SEARCH LOCATED-IN (LAB-L UK)

SEARCH/COMPUTE PLAN:
SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-L 1978
SEARCH *LOCATED-IN LAB-L UK

ENTERING DATA BASE

(222222222222 2]

ANSWER SUMMARY --
VARIABLES:

(L)

ANSWERS :
(STRATHCLYDE)
(IMPERIAL~COLLEGE)
(LANCASTER)
(EDINBURGH)

(CAMBRIDGE)
RRRRRNRRRARARRS

’ DATA-BASE SEARCH SUCCESSFUL

B O R R

o —————

Figure 32. Multiple chains of evidence: REDO of Conjecture; |
Partial Plan-l. :

31 January 1979 System Development Corporation

<<

2

-45- T™ -6263/000/00

INFERENCE PLAN 2 PLAUSIBILITY: 99
SUBPLANS:

*

Tk

SEARCH CONFERENCE-ON (MEETING-1 SUBJECT-1 1978)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 1978)

SEARCH ATTEND (SCIENTIST-2 MEETING-1 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FPLOW (SCIENTIST-2 SCIENTIST-1 SUBJECT-1 1978)

e
SUPP-REQ MEMBER-SAME-IC (BARKER SCIENTIST-2)

ASSUME ORIGINATES (BARKER MAG-BUBBLE 1978)
CONCLUDE KNOWS (SCIENTIST-2 MAG-BUBBLE 1978)

3
EARCH ABOUT (MAG-BUBBLYZ SUBJECT-1)

CONCLUDE KNOWS (SCIENTIST-1 MAG-BUBBLE 1978)

] L

SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-L 1978)
CONCLUDE KNOWS (LAB-L MAG-BUBBLE 1978)

SEARCH LOCATED-IN (LAB-L UK)

SEARCH/COMPUTE PLAN:

SEARCH *ABOUT MAG-BUBBLE SUBJECT-1

SEARCH *ATTEND SCIENTIST-2 MEETING-1 1978
SEARCH *ATTEND SCIENTIST-1 MEETING-1 1978
SEARCH *CONFERENCE-ON MEETING-1 SUBJECT-1 1978

Figure 33. Multiple chains of evidence: Partial Plan-2.

5 e v " T ey PR
o i . R

31 January 1979 System Development Corporation
-46- ™ -6263/000/00

MODE:

Query: -

« ((ORIGINATES) IMP (KNOWS))

(ORIGINATES HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)
(KNOWS HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)

DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE:
(MEMBER-SAME-IC.17.2)

PARTIAL PLANS?Yes

5 PATHS 14 PROBLEMS 4 PLANS

NEXT?PLan disolay. Enter plan number or list of plan numbers:
(1 2 3 4)

PLAN NUMBER: 1

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

SUPP-REQ MEMBER-SAME-IC (SCIENTIST-2 SCIENTIST-1)
ASSUME ORIGINATES (SCIENTIST-2 RESULT-1 YEAR-1)
CONCLUDE KNOWS (SCIENTIST-1 RESULT-1 YEAR-1)

EXECUTE?No

Figure 34. Multiple chains of evidence: Generalized
Navigation; ORIGINATES --- KNOWS. Plan-1

o555 ot A s S A S5 s AR 5014 ek ks

31 January 1979 System Development Corporation
-- e T™ -6263/000/00

PLAN NUMBER: 2

<<KINFERENCE PLAN 2 PLAUSIBILITY: 99

")

SUPP-REQ MEMBER-SAME-IC (SCIENTIST-1 SCIENTIST-2)
ASSUME ORIGINATES (SCIENTIST-1 RESULT-1 YEAR-1)
CONCLUDE KNOWS (SCIENTIST-2 RESULT-1 YEAR-1)

LT :
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-2 LAB-1 YEAR-1)
CONCLUDE KNOWS (LAB-1 RESULT-1 YEAR-1)

SEARCH/COMPUTE PLAN:
SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-2 LAB-1 YEAR-l
EXECUTE?Yes

ENTERING DATA BASE
1 | DATA-BASE SEARCH SUCCESSFUL

{ SRR RRAERRRR RN RS

ANSWER SUMMARY --

YES
SRAN R R RO NN RNRS

EVIDENCE CHAIN 1 FROM PLAN 2 PLAUSIBILITY: 99
EEZFZIEICELRLAREERERNE

*e]
SUPP-REQ MEMBER-SAME-IC (SCIENTIST-1 SOUTHWOOD)

ASSUME ORIGINATES (SCIENTIST-1 RESULT-1 1978)
CONCLUDE KNOWS (SOUTHWOOD RESULT-1 1978)

g
PACT CONDUCTS-RESEARCH-AT (SOUTHWOOD CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE RESULT-1 1978)

>

Figure 35. Multiple chains of evidence: Plan-2.

31 January 1979 System Development Corporation
-48- T™ -6263/000/00

PLAN NUMBER: 3

<<INFERENCE PLAN 3 PLAUSIBILITY: 99

1))
SEARCH CONFERENCE-ON (MEETING-1 SUBJECT~1 YEAR-1)
SEARCH ATTEND (SCIENTIST-3 MEETING-1 YEAR-1)
SEARCH ATTEND (SCIENTIST-1 MEETING-1 YEAR-1)
CONCLUDE SCIENTIFIC-INFORMATION-FLOW (SCIENTIST-] SCIENTIST-3 SUBJECT-1 YEAR-1!

131
SUPP-REQ MEMBER-SAME-IC (SCIENTIST-2 SCIENTIST-1)
ASSUME ORIGINATES (SCIENTIST-2 RESULT-1 YEAR-1)
CONCLUDE KNOWS (SCIENTIST-1 RESULT-1 YEAR-1)

*ty
SEARCH ABOUT (RESULT-1 SUBJECT-1)
CONCLUDE KNOWS (SCIENTIST-3 RESULT-1 YEAR-1)

SEARCH/COMPUTE PLAN:

SEARCH *ABOUT RESULT-1 SUBJECT-1
3 SEARCH *ATTEND SCIENTIST-1 MEETING-1 YEAR-1
{ SEARCH *ATTEND SCIENTIST-3 MEETING-1 YEAR-1
SEARCH *CONFERENCE-ON MEETING-1 SUBJECT-1 YEAR-1
EXECUTE?Yes

ENTERING DATA BASE

% DATA-BASE SEARCH SUCCESSFUL

(2222222222222 2]

ANSWER SUMMARY --

YES
RRRRAR RN RN R RN

EVIDENCE CHAIN 1 FROM PLAN 3 PLAUSIBILITY: 99

1)
PACT CONFERENCE~ON (APS BUBBLE-MEMORIES 1978)
PACT ATTEND (SOUTHWOOD APS 1978)

s FACT ATTEND (BOYCE APS 1978)

1 CONCLUDE SCIENTIFIC-INFORMATION-FLOW (BOYCE SOUTHWOOD BUBBLE-MEMORIES 1978)

*x]
SUPP-REQ MEMBER~SAME-IC (SCIENTIST-2 BOYCE)
ASSUME ORIGINATES (SCIENTIST-2 MAG-BUBBLE 1978)
CONCLUDE KNOWS (BOYCE MAG-BUBBLE 1978)

aep
PACT ABOUT (MAG-BUBBLE BUBBLE-MEMORIES)
E CONCLUDE KNOWS (SOUTHWOOD MAG-BUBBLE 1978)

>>

Figure 36. Multiple chains of evidence: Plan-3

[r
s
E
.i
|

31 January 1979 System Development Corporation
49- ™ -6263/000/00

PLAN NUMBER: ¢

<<INFERENCE PLAN 4 PLAUSIBILITY: 99

*®3

SEARCH CONFERENCE-ON (MEETING-1 SUBJECT-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-2 MEETING-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-3 MEETING-1 YEAR-1)

CONCLUDE SCIENTIFIC-INPORMATION-FLOW (SCIENTIST-3 SCIENTIST-2 SUBJECT-1 YEAR-1)

1)
SUPP-REQ MEMBER-SAME-IC (SCIENTIST-1 SCIENTIST-3)
ASSUME ORIGINATES (SCIENTIST-1 RESULT-1 YEAR-1)
CONCLUDE KNOWS (SCIENTIST-3 RESULT-1 YEAR-1)

]

SEARCH ABOUT (RESULT~1 SUBJECT-1)
CONCLUDE KNOWS (SCIENTIST-2 RESULT-1 YEAR-1)

1T
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-2 LAB~1 YEAR-1)
CONCLUDE KNOWS (LAB-1 RESULT-1 YEAR-1)

SEARCH/COMPUTE PLAN:

SEARCH *ABOUT RESULT-1 SUBJECT-1

SEARCH *ATTEND SCIENTIST-3 MEETING-1 YEAR-1

SEARCH *ATTEND SCIENTIST-2 MEETING-1 YEAR-1

SEARCH *CONFERENCE-ON MEETING-1 SUBJECT-1 YEAR-1
SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST-2 LAB-1 YEAR-1

DATA-BASE SEARCH SUCCESSFUL

(2222222222222 2]

ANSWER SUMMARY --

YES
RARARENRRRRRARE

EVIDENCE CHAIN 1 FROM PLAN 4 PLAUSIBILITY: 99

3
FACT CONFERENCE-ON (IEEE BUBBLE-MEMORIES 1978)
FACT ATTEND (MACKENZIE IEEE 1978)

FACT ATTEND (YOSHIDA IEEE 1978)
CONCLUDE SCIENTIFIC-INFORMATION-FLOW (YOSHIDA MACKENZIE BUBBLE-MEMORIES 1978)

'1y)
SUPP-REQ MEMBER-SAME-IC (SCIENTIST~1 YOSHIDA)
ASSUME ORIGINATES (SCIENTIST-1 MAG-BUBBLE 1978)
CONCLUDE KNOWS (YOSHIDA MAG-BUBBLE 1978)

we]

FACT ABOUT (MAG-BUBELE BUBBLE-MEMORIES)

CONCLUDE KNOWS (MACKENZIE MAG-BUBBLE 1978)
>

27
PACT CONDUCTS-RESEARCH-AT (MACKENZIE CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE MAG-BUBBLE 1978)

Figure 37. Multiple chains of evidence: Plan-4

et - - - ‘e o e - o ———————_——

RO YTy

Lt il bt A e N i

T

31 January

System Development Corporation
T™-6263/000/00

« ((KNOWS) IMP (KNOWS))
(KNOWS HAS MISSING ARGUMENTS.
(KNOWS HAS MISSING ARGUMENTS.

S PATHS 11 PROBLEMS 4 PLANS
NEXT?PLan display.
4)

-3 HAVE BEEN SUPPLIED.)
3 HAVE BEEN SUPPLIED.)

Enter plan number or list of plan numbers:

PLAN NUMBER: 1

<<INFERENCE PLAN 1 PLAUSIBILITY:

ASSUME KNOWS (THING-2 THING-1 THING-3)
CONCLUDE KNOWS (THING-2 THING-1 THING-3)

T

EXECUTE?No
PLAN NUMBER:

<<INFERENCE PLAN 2 PLAUSIBILITY:

SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-1 YEAR-1)
ASSUME KNOWS (SCIENTIST-1 RESULT-1 YEAR-1)
CONCLUDE KNOWS (LAB-1 RESULT-1 YEAR-1)

SEARCH/COMPUTE PLAN:
*CONDUCTS-RESEARCH-AT SCIENTIST-1 LAB-1 YEAR-1

EXECUTE?Yes :

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

SEESRRRARNNRRAS
ANSWER SUMMARY --

LAAA R I S 2L)

EVIDENCE CHAIN 1 FROM PLAN 2 PLAUSIBILITY:

PACT CONDUCTS-RESEARCH-AT (SOUTHWOOD CAMBRIDGE 1978)
ASSUME KNOWS (SOUTBWOOD RESULT-1 1978)
CONCLUDE KNOWS (CAMBRIDGE RESULT-1 1978)

Figure 38.

Multiple chains of evidence:
tion; Plan-1, Plan-2,

Recursive naviga-

PRI P SRERPRE AT PP TSNP - SRS | RO TR

EF |

——— [—
et [

31 January 1979 System Development Corporation
-51- ™ -6263/000/00

<<INFERENCE PLAN 4 PLAUSIBILITY: 99

i EEazssEssssassssssss

4 .o *e 2

SEARCH CONFERBNCB-ON (MEETING-1 SUBJECT-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-2 MEETING-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 YEAR-1)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (SCIENTIST-1 SCIBITIST-Z SUBJECT-1 YEAR-1)

131
SEARCH ABOUT (RESULT-1 SUBJECT-1)

ASSUME KNOWS (SCIENTIST-1 RESULT-1 YEAR-1)
CONCLUDE KNOWS (SCIENTIST-2 RESULT-1 YEAR-1)

teg
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-~2 LAB-1 YEAR-1)
CONCLUDE KNOWS (LAB-1 RESULT-1 YEAR-1)

2 EETECTTTEIETESEEZ=T

SEARCH/COMPUTE PLAN:

SEARCH *ABOUT RESULT-1 SUBJECT-1

SEARCH *ATTEND SCIENTIST-1 MEETING-1 YEAR-1

SEARCH *ATTEND SCIENTIST-2 MEETING-1 YEAR-1

SEARCH *CONFERENCE-ON MEETING~1 SUBJECT-1 YEAR-1l

SEARCH *CONDUCTS-RESEARCH-AT SCIENTIST~2 LAB-1 YEAR-1
EXECUTE?Yes

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

L2222 222222222

ANSWER SUMMARY --

YES
RARANRR AR R RN R AR

EVIDENCE CHAIN 1 FROM PLAN 4 PLAUSIBILITY: 99

(23]
FACT CONFERENCE-ON (IEEE BUBBLE-MEMORIES 1978)

FACT ATTEND (MACKENZIE IEEE 1978)

3 FACT ATTEND (YOSHIDA IEEE 1978)

CONCLUDE SCIENTIFIC-INFORMATION-FLOW (YOSHIDA MACKENZIE BUBBLE-MEMORIES 1978)

*]

FACT ABOUT (MAG-BUBBLE BUBBLE-MEMORIES)
ASSUME KNOWS (YOSHIDA MAG-BUBBLE 1978)
CONCLUDE KNOWS (MACKENZIE MAG-BUBBLE 1978)

(37
FACT CONDUCTS-RESEARCH-AT (MACKENZIE CAMBRIDGE 1978)
CONCLUDE KNOWS (CAMBRIDGE MAG-BUBBLE 1978)

Figure 39. Multiple chains of evidence: plan-4 and chain-é4

Ty

31 Januafy 1979 System Development Corporation
=52 T™ -6263/000/00

MODE: Query:
. ((KNOWS) IMP())

(KNOWS HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)
4 PATHS 11 PROBLEMS 2 PLANS

NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

MAIN PORWARD CHAINS:

ee)

ASSUME KNOWS (SCIENTIST-2 RESULT-1 YEAR-1)
SEARCH ABOUT (RESULT-1 SUBJECT-1)
CONCLUDE KNOWS (SCIENTIST-1 RESULT-1 YEAR-1)

e
SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-1 YEAR-1)
CONCLUDE KNOWS (LAB-1 RESULT-1 YEAR-1)

SUPPORTIVE CHAINS:

.3
SEARCH CONFERENCE-ON (MEETING-1 SUBJECT-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-2 MEETING-1 YEAR-1)

CONCLUDE SCIENTIFIC-INPORMATION-PLOW (SCIENTIST-2 SCIENTIST-1 SUBJECT-1 YEAR-1)

. (() IMP(NOT(KNOWS)))

(KNOWS HAS MISSING ARGUMENTS. 3 HAVE BEEN SUPPLIED.)
DEADEND SUBPROBLEMS THAT REQUIRE NEW PREMISE/TUPLE/PROCEDURE:
(KNOWS.19.3)

PARTIAL PLANS?Yes

4 PATHS 11 PROBLEMS 2 PLANS
NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99

*e2
SUPP-REQ NOT KNOWS (LAB-1 RESULT-1 YEAR-1)

SEARCH CONDUCTS-RESEARCH-AT (SCIENTIST-1 LAB-1 YEAR-1)
CONCLUDE NOT KNOWS (SCIENTIST-1 RESULT-1 YEAR-1)

ee]
SEARCH CONPERENCE-ON (MEETING-1 SUBJECT-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-1 MEETING-1 YEAR-1)

SEARCH ATTEND (SCIENTIST-2 MEETING-1 YEAR-1)

CONCLUDE SCIENTIPIC-INPORMATION-FLOW (SCIENTIST-2 SCIENTIST-1 SUBJECT-1
.

YEAR-1)

17
SEARCH ABOUT (RESULT-1 SUBJECT-1)
CONCLUDE NOT KNOWS (SCIENTIST-2 RESULT-1 YEAR-1)

Figure 40. Multiple chains of evidence: Generalized Navigation
with KNOWS

Iy

31 January 1979 System Development Cororation
-53- T™M-6263/000/00
MODE: Query:

(() IMP (AND (CLOSER-THAN SHIP (KITTYHAWK) PORT) (HOME-PORT (KITTYHAWK) PORT)))
1 PATHS 6 PROBLEMS 1 PLANS

NEXT?Full plans

<<INFERENCE PLAN 1 PLAUSIBILITY: 99
2 SUBPLANS:

kg
COMPUTE GREATER-THAN ((DISTANCE-BETWEEN KITTYHAWK THING-PORT) (DISTANCE-BETWEEN THING-SHIP
THING-PORT))

SEARCH PORTS (THING-PORT)

SEARCH SHIPS (THING-SHIP)

SEARCH SHIPS (KITTYHAWK)

CONCLUDE CLOSER-THAN (THING-SHIP KITTYHAWK THING-PORT)

SEARCH HOME-PORT (KITTYHAWK THING-PORT)

SEARCH/COMPUTE PLAN:

SEARCH *SHIPS KITTYHAWK

SEARCH *SHIPS THING-SHIP

SEARCH *PORTS THING-PORT

SEARCH *HOME-PORT KITTYHAWK THING-PORT
COMPUTE *GREATER-THAN

(DISTANCE-BETWEEN KITTYHAWK THING-PORT)
(DISTANCE-BETWEEN THING-SHIP THING-PORT)

ENTERING DATA BASE

DATA-BASE SEARCH SUCCESSFUL

RRARNRRRNRAR AR NS
ANSWER SUMMARY --
VARIABLES:

(SHIP PORT)
ANSWERS :

(GRIDLEY SAN-DIEGO)

(PORRESTAL SAN-DIEGO)
T

EVIDENCE CHAIN 1 FROM PLAN 1 PLAUSIBILITY: 99
2 CONCLUSIONS:

*eg

COMPUTED GREATER-THAN (378 201)

FACT PORTS (SAN-DIEGO)

PACT SHIPS (GRIDLEY)

PACT SHIPS (KITTYHAWK)

CONCLUDE CLOSER-THAN (GRIDLEY KITTYHAWK SAN-DIEGO)

FACT HOME-PORT (KITTYHAWK SAN-DIEGO)

-
* W

v

..

31 January 1979 System Development Corporation
=54~ T™ -6263/000/00

3. DESCRIPTION OF THE DADM SYSTEM

3.1 OVERVIEW

The DADM deductive processor (DP) has been designed to interface with existing
and emerging relational data management systems (RDMSs). Given this orien-
tation, we have made a sharp distinction between specific facts (n-tuples)
which reside in an RDMS data base and general declarative statements (premises)
that are directly accessible to the DP. Since the number of general statements
that may be requiged'for a practical application is likely to be large (perhaps
hundreds or thous;nds of premises), particular attention has been paid to the
development of techniques for the rapid selection of relatively small sets of
premises relevant to answering a user's specific request. Premise-selection
techniques are automatically invoked when deductive support is necessary to
respond to a user's request} otherwise, queries "fall through" the DP and
directly drive the RDMS.

This "deductive inference by exception" principle suggests that the DP be viewed
as an add-on or enhancement to existing data-base searching capabilities. Such
an enhancement can result in a major increase in the power of a data management
system by providing a means for extracting and deriving implicit information

from data bases of explicit facts.

3.2 APPROACH

Previous approaches to adding deductive capabilities of data management have

occurred primarily in the development of question-answering systems (Simmons [14],

15] reviews many of these). The primary deductive methods that have been used
are set-inclusion logic, e.g., CONVERSE [2] and SYNTHEX [11]; techniques based
on the "resolution" principle [10], e.g., QA3 [1] and MRPPS [9]; procedural-
oriented deduction, e.g., SHRDLU [18]; and goal-oriented backward chaining,
e.g., MYCIN [16].

b ke b Lt

T e T e -

31 January 1979 System Development Corporation
-55- ™ -6263/000/00

A major difference between these systems and our DP is in our use of planning.
Our system creates deduction plans to guide the generation of full deductions.

We believe such planning to be essential for cutting through the massive

number of dead ends and irrelevant inferences which have impaired the performance
of earlier systems. Planning becomes even more important for systems involving
large numbers of premises. Selection of a manageably small set of possibly
relevant premises can be based on such planning.

To this end we have designed and implemented a deductive processor that first
builds derivation skeletons which represent possible deduction plans. Once

such plans are generated, the system will attempt to instantiate and verify the
plans (examine substitutions for variables in premises). We have thus separated
the premise-selection process from the process of verifying the consistency

of variable substitutions.

The generation of inference plans makes use, when possible, of an efficient
technique for middle-term chaining [6]. This process finds implication chains

from assumptions to goals through the premises. Middle~term chaining combines
the processes of forward chaining from the assumptions in a query and backward
chaining from the goals in a query. As chaining proceeds in the two directions,
intersections are performed on the derived sets. When a non-empty intersection
occurs, the system has found an implication chain from an assumption to a goal.
The resulting chain is passed on to the inference plan generator, which extracts
the premises whose occurrences are involved in the chain. Subproblems may

result, requiring further deduction or data-base search.

A chaining (pathfinding) process does not operate on the premises themselves
but on a net structure called the predicate connection graph (PCG). This

graph is abstracted from the premises. When a premise is introduced into the
system, the deductive connections existing among the predicate (relation)
occurrences in the premise are encoded into the PCG. Further, the deductive
interations (i.e., unifications [10]) between predicate occurrences in the

new premise and predicate occurrences in existing premises are pre-computed

——

31 January 1979 System Development Corporation
-56- TM-6263/000/00

and encoded into the PCG. The variable substitutions required to effect the
unifications are stored elsewhere, for latter use by the verifier. Thus, the
PCG contains information on the dependencies within premises and the deductive
interactions among the premises. During the generation of middle-term chains

and plans, the system is aware of the existence of unifications among the
premises, but it does not need to generate the unifications nor does it need

to examine and combine the variable substitutions associated with the interacting
unifications. The former is done by a pre-processor, while the latter is done

by the verifier after plans have been generated.

Although some connection graphs used in theorem-proving systems also contain
information on the unifications among general assertions (resolution clauses
in these systems), they are not used as a planning tool as is the PCG. The
PCG most resembles Sickel's clause interconnectivity graph [13] in that both
graphs represent the initial deductive search space and are not changed in the
course of constructing deductions. Other graph procedures [7, 12] involve

adding nodes to graphs as deductions are formed.

3.3 DADM DEDUCTIVE PROCESSOR COMPONENTS

The major DADM Components are illustrated in figure 42. At present users
communicate directly with the Controller. At a later date the Controller will
communicate with an end user interface such as EUFID The Controller

accepts premises, procedural knowledge (as LISP functions), advice rules,
queries, and commands. It accesses and coordinates the use of an external

RDMS as well as the seven major processing components of DADM:

(1) Array maintenance: This module inserts, deletes, retrives, and
compacts (i.e., garbage collects) most forms of information
used by the system in LISP arrays. For example, information
abstracted from the premises is segmented into seven internal
arrays. This segmentation contributes to good system struc-

turing and processing efficiency. Each predicate (relation)

St T "

T T

System Development Corporation

31 January 1979

™ -6263/000/00

E57

SNA3204d

S3TMY
331AQY

sjuauodwo) 40SS3J04d 3ALIINPIQ WAVQ

gy 2andyy

SNOILNLILSENS HAWVUS HdVY9
319VIYVA 1d43IN0J NOILI3NNGI
bENERLE]) YINNYd Y3ONIdH1Vd

1 1 I
NOILONYLSNOD JONUYNILHIVI
UIMSNY AVIY

\ 2R |
4377041NOD [
AY1dSIa
INV1SISSY 39IN3AIA3
‘NVd

(2)

3)

E (4)

(5)

(6)

7

31 January 1979 System Development Corporation

-58- TM-6263/000/00

occurrence is assigned a unique integer index. Information
about a particular predicate occurrence is obtained from the
array containing the kind of information needed by indexing

into the array with the integer associated with the occurrence.

Pathfinder: This module uses the connection graph to quickly
find the deductive paths necessary to support forward, backward,

and middle-term chaining processes.

Planner: This module uses deductive paths, premises, and the
concept graph to construct plans and find information relevant

to user requests.

Verifier: This module examines the variable substitutions

required by the unifications in an inference plan for consistency.
Plans that do not verify (i.e., contain inconsistent variable

substitutions) are rejected.

Plan, Evidence Display: This module supports the wide variety of

display options that are available to monitor the operation of
the deductive system, to examine deductive paths, plans, answers,

evidence, etc.

Answer Construction: This module extracts answers from the data

values returned by data base search and compute operations.

Assistant: This module essentially incorporates the INTERLISP
Programmers Assistant into the INTERLISP version of DADM. The
assistant remembers its inputs and supports the modification and

repetition of user supplied operations.

3.4 PREMISES, QUERIES, AND DATA STRUCTURES

When a query is entered, the general flow of the system proceeds as follows:

(1)

The query is sent to the Planner which initializes plan

generation:

a. The query is broken down into a set of assumptions and a

set of goals.

b. The argument strings associated with the relations in the

query are extracted and stored for later use.

T

(2)

3)

4)

(5)

31 January 1979 System Development Corporation

=59~ ™ -6263/000/00

c. A problem graph representing possible inference plans is
initialized.

The Pathfinder is called to find chains of middle-term predicate
occurrences, via the predicate connection graph, linking assump-
tion predicates to goal predicates. These chains represent attempts
to find key predicate occurrences (middle terms) that deductively
connect assumptions to goals (via the premises containing the
occurrences). Semantic advice'in the form of premise and predicate
alert lists and the use of variable and constant "types" may also

play an important role in the chain generation process.

Using the predicate occurrences within a chain, the Planner
extracts the premises containing the given occurrences. The
resulting set of premises represents the beginning of an inference
plan.

With this set of premises, the Planner examines the predicate
occurrences (in the premises) that are not part of the middle-
term chain and determines which of these are "unresolved" and
need further deductive or data-base support. Each unresolved
literal results in the formation of a subproblem and a new node
in the problem graph.

An evaluation function examines the nodes in the Problem graph
and decides which of these nodes to operate on next. All nodes
are considered for selection, those that are subproblems as

wr.ll as those that are top-level problems (from the input query).
Thus, the system may decide to find another middle-term chain
for a query goal prior to working on the subproblems resulting
from a previously constructed chain. Middle-term chaining
continues until all remaining subgoals require data-base support,
or until no more chains can be found, or until the chain limit

is reached.

31 January 1979 System Development Corporation
-60- T™M -6263/000/00

(6) After all middle-term chaining is completed, the Verifier attempts
to verify the plans in the problem graph. The verifier examines the

variable-flow classes of chains comprising each plan to check for

inconsistency (no variable taking on two different constant values).

? (7) The Data Management System is called for each successfully {

verified inference plan. The RDMS searches over the data base
of specific facts for the remaining subproblems that need data-
base support. If data-base search is successful, values for the
variables occurring in the search requests are returned and

answers are formulated.

REPRESENTATION OF PREMISES AND QUERIES

The basic representation of premises and queries in our system is the

primitive conditional. It is a Skolemized, quantifier-free form. However,

instead of being a conjunctive normal form as in resolution systems, the
primitive conditional retains the implication sign. Primitive conditions
have the follwoing possible forms: . i

Y &€ oon 33 V(oo0)
(2) &(«oc)D &(«os)
(3) V(...)D V(...)
) v(...)D &(...).

Within the parentheses are literals (negated or positive predicates and

their arguments). The primitive-conditional format has the full expressi-

bility of the first-order predicate calculus, i.e., every first-order

predicate calculus expression can be represented by one or more primitive
conditionals. Note that in resolution, only expressions of type (1)
are allowed. They are further modified by transforming the implication
into a disjunction with the literals in the antecedent becoming negated,
e.g.,

&(A, B)D V(C,D)

| s i S

31 January 1979 System Development Corporation
-61- ™-6263/000/00

is represented as:
(A v v C_CvD).

One reason for choosing the primitive-conditional form is to maintain at
least some part of the original formulation of an expression as input by a
user. Many input expressions map naturally into an implicational form.

If they are put into a normal form which does not maintain this implication
explicitly, significant clues contained within an expression as to its value
for a particular proof or strategy are lost, both to the user and to the
system. Furthermore, we want to enable a user interacting with and advising
the system to be able to read and understand the evolving inference plans‘as
easily as possible. The use of the primitive-conditional form appears to
contribute substantially toward this end.

DATA STRUCTURES

Information abstracted from premises is stored in seven internal arrays.
Structural information about the general statements is segmented into four

arrays as follows:

(1) The premise array contains all of the general descriptive state-
ments accessible to the system. Each element in the array is a
list containing three elements:

a. A list of predicate occurrences in the premise. The
occurrences are represented by unique integers which are
used to index into the predicate-occurrences array, the
arguments array, the unification-arcs array, the variable-
substitutions array, and the links array. Information about
the structure of premises, argument strings, deductive

interactions, etc., are all found in these other arrays.

b. A measure of the plausibility of the premise (for dealing
with plausible inference as well as strict inference).
Currently, only a very rough measure of plausibility is used.

g o

o i

31 January 1979 System Development Corporation

(2)

@3)

(4)

-62- TM-6263/000/00

c. The complete premise in primitive-conditional form. This
is for purposes of printout not for analysis and evaluation
during the process of deciding whether to use the premise
in a possible proof. The information needed for this

decision is much more easily available in other arrays.

Each predicate occurrence in the set of premises is given a

unique position in the predicate-occurrences array. An entry

in this array is a bit vector containing information on the
predicate name of the occurrence, the premise which contains the
occurrence, the occurrence's nﬁmerical position within the premise,
whether the occurrence is in the antecedent or consequent of the
premise, the connective under whose scope the occurrence lies,

and the sign of the occurrence.

The argument string of each predicate occurrence is stored in
the arguments array in the position corresponding to the integer

index assigned to the occurrence.

Every predicate name occurring in the premises is stored in the
predicates array. (Predicate names should not be confused with
predicate occurrences which are particular instances of predicate
names within the premise set. For example, SCIENTIST is a predicate,
but in a premise referring to Einstein as a scientist, the parti-
cular occurrence of the predicate, SCIENTIST (Einstein), must be
identified and distinguished from the predicate in general.)

Each predicate has a property list containing the indices of all

occurrences of that predicate in the premise set.

Possible deductive interactions between expressions exist as "unifications"
as described by Robinson in his development of the resolution principle [10].
Unification is a matching procedure that finds necessary substitutions for

variables in order to effect deductive interactions. For example, if we know

that Joe is a man, i.e., MAN(Joe), and that all men are human, i.e.,

vx(MAN(x) O HUMAN(x)),

b

31 January 1979 System Development Corporation
-63- T™ -6263/000/00

then we can conclude that Joe is human, i.e., HUMAN(Joe). The unification
procedure determines that the substitution Joe for the variable x is needed
in order to make the desired conclusion. In most resolution-type inference
systems, procedures to detect and compute unifications are executed repeatedly.
In contrast, our deductive processor pre-computes all possible unifications
that exist among premises and stores them.* This is done when premises are
first introduced into the system. The inference planning process uses the
information about the existence of unifications but is not charged with the
formation of them. Once inference plans have been formed, the Vcrifier
examines the unifications within the plan to determine if there are any
variable substitution conflicts.

Two internal arrays store information about unifications:

(5) For each predicate 6ccurrence, a list of the indices of the
predicate occurrences that unify with it are stored in the

unification-arcs array in the entry corresponding to the
index of the occurrence.

(6) The variable-substitutions array stores the substitution
lists associated with the unifications in a one-to-one
correspondence with the entry of unifications in the
unification-arcs array. Substitution lists specify
varibles and constants that must be made identical for

unifications to take place.

The final array contains information on the predicate dependencies of occur-
rences within premises. This '"links'" array will be discussed in the predicate
connection graph description,

*In resolution jargon, this would be stated as computing all possible
unifications that exist among original clauses.

31 January 1979 System Development Corporation
-64- T™ -6263/000/00

3.5 DEDUCTIVE PATHFINDING

MIDDLE-TERM CHAINS

The concept of a middle-term chain is central to the operation of the DADM
inference system. Syntactially, a chain is a list of predicate occurrences.
A given input query contains a set of assumptions and a set of goals. The
first element in a middle-term chain is an occurrence, within the premise set,
that unifies with an assumption predicate. The last element in a chain is an
occurrence, wWithin the premise set, that unifies with a goal predicate. A
goal predicate is either a query goal or an internally generated subgoal.

The other elements in the chain are produced by the chain generator as it
alternately finds links and unification-arcs (u-arcs). Links connect
occurrences within premises while u-arcs connect premises with one another

through predicate occurrences that deductively interact.

Consider, for example, the query "A 9D?" and suppose the following premises

were known to the system (argument strings have been suppressed for simpli-

city):
(1) Alj Bl
2) B, DC2
3) C3DD3

The subscripts serve to distinguish the predicate occurrences by identifying
1 and 32

and between C2 and C3. Links (discussed shortly) exist between Al and Bz,

between 32 and CZ’ and between 03 and D3. From the query, the assumption

predicate is A, and the goal predicate is D. Within the premise set we find

the premises in which they occur. Unifications might exist between B

Al, an occurrence of the assumption predicate A, and D, an occurrence of the
goal predicate D. Assume unifications exist between A and A1 and between D

and D3. The chain generator would produce the chain:

D
Al Bl « ,BZ ~ ’Cz vc3 S’ 3

link u-arc link u-arc link

i i

31 January 1979 System Development Corporation
-65- T™ -6263/000/00

The predicates B and C are considered "middle-term" predicates, i.e.,
predicates that are needed to link the assumption A to the goal D. The
predicate occurrences Bl, Bz, C2 and C3 are middle-term predicate occurrences.
Al and D3, the chain end points a, are occurrences of the assumption and goal,
respectively.

Some earlier researches in the field of mechanized inference have built
deductive mechanisms that rely primarily on generating implication chains.

We have extended these earlier efforts by allowing more complex premises, by
specifying and using different types of logical dependency among concepts,

by combining these with unifications of predicates between premises, and by
using the chains not as final products but as a means of generating derivation

plans for a general-purpose inference system.

CONNECTION GRAPH

The predicate connection graph is contained within two arrays, the links

array and the unification-arcs (u-arcs) array. The u-arcs array contains

the unifications that exist within the premise set. All possible unifica-
tions among the premises are pre-computed and stored. The links array contains
information about predicate occurrences as they relate to each other within a
premise. The information involves the concepts of dependency and linkages
which are discussed in this section. These two arrays are used by the Path-

finder to generate middle-term chains.

PREDICATE OCCURRENCE DEPENDENCIES

The concept of dependency discussed here involves the relationship between
predicate occurrences within a particular premise. A predicate occurrence

in a particular premise can be, but is not necessarily, truth-functionally
dependent on other predicatz occurrences in the same premise. Dependency

does not extend across premises. It is the unification-arcs that are involved
in premise to premise interaction.

A premise is considered to be indivisible if it cannot be broken up into
two or more disjoint premises. Two predicate occurrences are dependent on
one another if they occur within an indivisible premise.

ey I A A . T R T el

.

31 January 1979 System Development Corporation
-66- T™ -6263/000/00
Consider the premise
(a) v(P, Q)DOR.

It can be divided into two distinct indivisible premises which are logically

equivalent to the original premise when conjoined, namely,
PDR and Q DR.

Thus, P and R are dependent on each other as are Q and R. However, P and Q

are independent even though they both occur within the same original premise.

" A similar situation arises in the premise

(b) RD&(P, Q).

Once again there is no dependency between P and Q. Such is not the case in

the premises
(¢) &P, Q) DR and’
(d) ROv(P, Q).

These premises cannot be subdivided and are thus indivisible. Dependencies
exist between P and Q in both cases as do the other two dependencies (between
P and R and between Q and R).

The procedure for identifying dependencies among predicate occurrences in
premises is straightforward given the primitive-conditional form for premises.
Predicate occurrences within a disjunction on the lefthand side of an impli-
cation are not dependent on each other. nor are predicate occurrences within
a conjunction on the righthand side. All other predicate occurrence pairs

within a premise entail a dependency.

LINK TYPES

Four types of links are used to represent dependencies between predicate
occurrences within a premise represented in the primitive-conditional

format.

"l

)

)

31 January 1979 System Development Corporation

-67- ™ -6263/000/00

Implication (I) Links

This type of link can be represented in its simplest form

as:
ADB
or, more generally, as
a. cl(oo A 0'0) Dcz(eee B ooc)o

where c, and c, can be either of the two connectives "§" or "v"
(as will be the case in all subsequent examples). The dots
represent either the empty expression or other atomic components
of the antecedent or of the consequent. It is to be understood
that the predicates shown do not fall within the scope of any
negation sign not explicitly shown. Type 1 links are asymmetric
and are referred to as a link from A to B in the above examples.

Type I links also exist from A to B in the following expressions:
b- &(-ooA,ﬁB ...)Dcl(U)

C. cl(ava)D Gl oo VA, B o))

do cl(o‘--‘B LI)Dcz(conqA 0--)0

Note that the main connective in the antecedent in b. must be &
for a link to exist between A and B; otherwise A and B would be
independent. Similarly, the connective in the consequent of c.

must be v.

Reverse Implication (RI) Links

Whenever a type I link exists from one predicate occurrence to
another, as from A to B in the above examples, a type RI link
exists in the opposite direction, from B to A. Such links are
needed because of the one-directional aspect of the type I link.
The addition of the RI link enables the'predicate connection
graph to be traversed both from and to any given predicate occur-
rence. Looking at the examples above for I links from A to B,

we note that in all cases an RI link exists from B to A. The

31 January 1979 System Development Corporation

3)

(4)

-68- TM-6263/000/00

simplest form of the RI link (from B and A) derives from

B DA,

Conjunction (C) Links

The basic primitive-conditional form in which a C link occurs
(between occurrences A and B) is

6C ... A B) D gl o0l)
Other representations in which C links occur include

c “.A...)D%(.n'ﬂn.n),

1¢

which is its simplest form is
AD =3,

and

¢ eee) D ¥(.c. ™M, TB ...).

Type C links are symmetric in that if A is linked to B by a
type C link, so is B to A.

Disjunction (D) Links

The basic primitive-conditional form in which a D link occurs

(between occurrences A and B) is

c e NewDd 1M nvda BigraeB aeies)

X
Other representations in which D links occur include
c(..--_‘A L))Dcz(LR Bos-)’
1
which in its simplest form is
T DB,
and
&(.-.-ﬁA’ﬁB LI):cl(L))o

Type D links are also symmetric.

g 31 January 1979 System Development Corporation i
) ' -69~ TM-~6263/000/00 |

The links array contains information on all of the links within the set

of premises. Indexing into this array is similar to the indexing into the
other arrays. The unique integer identifying a predicate occurrence in the
premise set is used to index into the links array in which is entered, for
each occurrence, the dependency links which emanate from it. Each entry is
a list of four sublists: the I-Linked, the C-linked, the D-linked, and the
RI-linked predicate occurrences.

Specifications of link types provides an efficient means of storing information

about predicate occurrence dependencies and greatly facilitates the chain
generation process. Figure 43 lists link restrictions that must occur within
chains in order to effect logical validity. Row 1 indicates that if an
assumption predicate is positive, the first link in a chain must be of type

I or C. For example, if A is an assumption, a link such as one found in the
premises A DB (type I), AD™B (type C), &(A, B) O D (type C between occur-

E rences A and B), etc., could be used in initializing a chain. The MTCG would
: thus examine the links array for links of type I or C out of occurrences of
the predicate A. If the assumption were negative (—A), the MTCG would
locate RI and D links.

If the goal predicate is positive (row 3 in Figure 43), the last link in a |
chain must be of type I or D. For example, if G. is a goal, the last link in }
a chain could be found in premises such as E DG (type I),” 'E DG (type D), i
etc. Note that in actual operation, the Pathfinder would be working backward {
from the goal and would be looking for an RI or D link out of G (which would
result in an I or D link into G).

31 January 1979

B

If assumption
predicate is

(1) +
(2) -
If goal
prediate is
3) +
(4) -
From link
of type
(5)) 8
(6) RI
(7) C
(8) D
Figure 43.

-70-

System Development Corporation
TM-6263/000/00

First link in chain
must be of type

IorC

RI or D

Last link in chain
must be of type

IorD

RI or C

The link following
it must be of type

IorC
RI or D
RI or D

IorC

Link Restrictions within Chains.

Lo

=l

e e———————

o

xS Tt s SRR a e i e

31 January 1979 System Development Corporation

=7 L= TM -6263/000/00

Rows 5 through 8 in Figure 43 list the restrictions of what link types may
directly follow other link types in a middle~term chain. For example, given
a type I link in a chain, as in ADB, the next link must be of type I, as in
B DC, or of type C, as in BD™C. Given a type RI link in a chain, as in
=D D™E, the next link must be of type RI, as in —™ED™F, or of type D, as

P T

in ™E OF. The restrictions on successive links apply for finding links

out of both assumptions and goals. As an example of the latter case,

consider the goal —G. The last link in a chain to this goal must be of type
RI or C (row 4). The Pathfinder thus looks for links of type I or C out of G.
Suppose it picks up the C link between E and G in ED™X. Now, the Pathfinder |
must find links of type RI or D out of E (resulting in linké of type I or D '

into E). Note that this is precisely the restriction specified in row 7. Thus,
the restrictions in rows 5 and 8 apply to links out of assumptions and to

links out of goals

SEMANTIC INFORMATION

Semantic Advice

A data-base administrator may enter semantic advice in the form of "Condition ::;>
Recommendation' rules. For example, one could advise that a ship return to

its home port if it is damaged by specifying:

(ASSUMPTION: DAMAGED(SHIP)) Z—_>RETURNS(SHIP PORT)

The system would try using premises containing the RETURNS relation when the
DAMAGED relation occurs as an assumption. Advice rules are stored in an
advice array, where they are automatically selected and applied whenever their
condition part holds for input queries. In addition to such advice rules,

the user may supply advice for a particular query by stating only the advised
recommendation for that query.

Advice most typically involves recommendations on the use of particular
premises or predicates in finding deductions. For advised premises, the
system will try using them whenever possible in the course of constructing

a proof. For advised predicates, the system will try chaining through occur-
rences of them in premises. In the case of negative advice, specified

premises and predicates are avoided in plan construction.

T AR e

31 January 1979 System Development Corporation
-12- ™ -6263/000/00

Advised premises and predicates are placed on the premise and predicate alert
lists. These lists are used in two ways. During the chain construction
process, the Pathfinder considers several possible predicate occurrences in
its search for links and u-arcs. Those occurrences that represent instances
of advisad predicates or that occur within advised premises are given prefer-
ential status in chain generation. In addition, completed chains for query
goals are examined and only those chains having premises or predicates that
occur on one of the alert lists are passed on to the Planner (Chains that

are formed for subgoals need not pass this test since the subgoals resulsted
from chains which did use advice.) Advice is thus used both for pruning
within chain generation and as a basis for evaluatively filtering chains.

Advice given by a user might be based on his knowledge of the domain,
concepts or predicates most frequently used in plans, premises that have
previously been successful in plans, and intuition (which should not be
underestimated). Also, the user may direct the system to use a particular
proof strategy by advising the use of a particular premise, e.g., the premise
v(X, Y) for a proof-by-cases strategy. If no usable inference plans are
developed from some given advice, the user may re-input (redo) the query with

different or no advice.

Variable and Constant Types

When entering a premise or query into the system, the user may specify a

class membership '"type" for any variable or constant in the expression. Class
membership is typically specified by one-place relations in predicate calculus
representations. For example, to specify that a variable x ranges over
scientists, one enters an expression such as SCIENTIST(x). Similarly for
constants, as in SCIENTIST(Einstein). We have allowed the specification of
these membership constraints within premises and queries without the need

for these one-place relations.

o s R i i e S5 s « T~

31 January 1979 System Development Corporation

-73- TM-6263/000/00

Compound types, consisting of set union, intersection, and difference

operations over simple types, may also be used to specify more complex

e e ——

semantic restrictions on predicate domains. The Concept Graph is used

to represent set relationships between types. Class inclusion paths with-
in this network are used, for example, to permit unification of instances
of type SCIENTIST with instances of type MAMMAL. As new premises are
entered into the system, this semantic network is automatically updated

to reflect new predicate-domain associations.

The use of such semantic information aids the deductive process in three ,
ways. First, premises and queries may have fewer relations by the elimin- f%
ation of some one-place relations. This results in fewer goals and sub-

1 problems to solve because of fewer unresolved literals. The size of the

problem graph would correspondingly be reduced.

Secondly, there is a reduction of the storage space required for these

one-place relations within the various arrays of information. It is
possible to eliminate predicates, such as SCIENTIST, and occurrences of
these predicates in the premise set. This results in the elimination of

links and unifications for such occurrences. |

Thirdly, the number of possible unifications among the remaining occurrences
in the premises is reduced. There is also a reduction in the number of

unifications beteen query predicates and premise occurrences. We have

modified the unification algorithm to check for variable and constant types

E as it matches argument strings. Added to unification is the constraint

that two arguments being matched must be of the same type or one argument

must be typeless. The reduction of unifications enhances the operation of the

system, since it has less unifications to consider within the chaining

T

process.

31 January 1979 System Development Corporation
~74- ™ -6263/000/00

3.6 GENERATION OF INFERENCE PLANS

PROBLEM GRAPH

Structure

Inference plans are stored in a problem graph. Nodes in the graph are
created initially from the input query when the assumption and goal sets
are extracted. Later, during the derivation planning process, the gener-
ation of middle-term chains often results in the creation of subproblems
from the unresolved literals in premises associated with the chains. New

nodes a.e created for these subproblems.

Two types of nodes are distinguished in the problem graph. "Goal nodes"
contain query goals or system generated subgoals that need toc be established.
The Planner sends the information residing in one of these goal nodes

to the Pathfinder which returns a middle-term chain. The Planner determines
the subproblems associated with the chain and creates goal nodes for them.
The nodes hang from the particular node that was used for creating the
chain. The Planner may later decide once again to use the same node in
calling the Pathfinder to find an alternative chain. The subproblems
resulting from this new chain also hang from the same goal node. Thus, a
goal node may have several branches hanging below it, one branch for each
chain and the set of subproblems resulting from it. The branches are
implicitly disjoined, i.e., each branch is one possible derivation of the

goal and only one of them need be considered for a particular proof.

Since each branch represents one middle-term chain and a set of subgoals,
the need for a second type of node, the "dummy node'", arises. Dummy nodes
serve to specify a set of conjunctive elements (conjoint subproblems) within
a disjunctive set of branches (alternative chains). (Dummy nodes are also
used to specify a set of disjunctive elements falling under a conjunctive
set of branches (alternative chains). (Dummy nodes are also used to specify
a set of disjunctive elements falling under a conjunctive set of branches.)

Consider the problem graph.

T S ——————

ool 3 Ll A Ains b sl A 2

31 January 1979 System Development Corporation
-75- ™ -6263/000/00

G3

(Nodes are labeled for reference purposes and do not show the information

contained within them.) Gl is a goal node containing a set of assumptions
and a goal from the input query. The branch to the dummy node D2 results
from a middle-term chain derived from the information in Gl. The three

subproblems, goal nodes G3, G4, and G5, hanging from D2, are created from
the unresolved liaterals in the premises containing the links of the
middle-term chain. These subproblems must all be solved if the branch to
D2 is used in a proof. The branch to G6 is formed from an alternative
middle-term chain. In this case, however, only one subproblem is formed

and it is contained in G6. A dummy node is not needed.

Each dummy node created by the system has a property list consisting of
two elements: the node's successors (G3, G4, and G5 for the node D2
above), either AND'd or OR'd, and the node's parent (Gl for D2 above).

Each goal node also has a property list which contains the following
elements:

(1) The successors out of the node, always implictly OR'd. One
successor is created for each chain that was generated from this
node. (When a node is "closed", indicating no subgoals result
from a chain, or when a node contains a goal that is to be
resolved via the fact file, an integer flag is placed in this
position.)

ez Ry, ST

E.
|
|
|

E {
|
|
F
|
i

31 January 1979 System Development Corporation
~-76- T™ -6263/000/00

(2) The assumptions associated with the node.

(3) The goal associated with the node.

(4) A ilist of the middle-term chains that have already been
generated for this node. This list is needed so duplicate
chains will not be generated each time the node is used for

chain generation.

(5) The verification classes associated with the chain that formed
this node.

(6) The node's parent.

Items 1 and 6 and the information on the property lists of the dummy nodes

determine the structure of the problem graph. Items 2, 3, and 4 are used

by the Pathfinder for chain generation. Item 5 is used during verification.

Initialization

A query in the primitive-conditional form is input by a user. The antecedent
(left-hand side of the implication) and the consequent (right-hand side of
the implication) are extracted from the query. The predicates in the
antecedent are considered assumptions. Those in the consequent are consid-
ered goals. If the main connective in the antecedent is AND, the predicates
under its scope are included in the set of assumptions for each of the

goals in the consequent (examples 2 and 3 in Figure 44). Any or all of the
assumptions may be used in deducing the goals. If the main connective is
OR, a conjunctive dummy node (e.g., D1) is created in the tree such that
each predicate in the antecedent is treated individually with respect to

the goals, i.e., a subproblem is created for each assumption predicate with
respect to each goal predicate. All of the subproblems would need to be
wstoblished. This can be seen in the sixth example query in Figure 44. The

gunry I» squivalent to:

31 January 1979 System Development Corporation
77~ TM~6263/000/00

((A>C) & (BoC)).
To establish it, we need to show that A implies C and that B implies C.

Within the consequent, if the main connective is AND, each predicate is
considered a goal to be deduced from the assumption set. A conjunctive
dummy node is created, all of whose goals must be established (example 3
in Figure 44). If the main connective is OR, a disjunctive dummy node is
created where each consequent predicate is a goal, but only one of the
specified goals need be established (examples 5 and 7 in Figure 44). The
assumption set for each goal also includes the negation of the other

consequent predicates. This results from the equivalence of:

A>v(B, C), &(A, ™B)oC, and &(A,mMC) > B.

Thus, if the first expression were input as a query, two disjoined goals
would be formed, one with an assumption set (A, ™B) and a goal set (C),
the other with an assumption set (A, C) and a goal set (B).

Other examples queries and their corresponding initial problem graphs

are also shown in figure 44. In particular, the query in example 4 contains
no assumptions. Example 8 gives an example of the most complicated type

of initial problem graph, i.e., one for a primitive-conditional query

having a disjunctive antecedent and a disjunctive consequent.

NODE EVALUATION AND SELECTION

Given a problem graph, the Planner must decide which of the goal nodes should
be used in calling the Pathfinder, i.e., which subproblem to work on next.

Two measures used for determining this selection are: the age of the node

and the number of subproblems.

Bt Lo Lo i

e S e R A A R S Rt SIS A S O 8 0. A A e SN SARAES 20 o st 'y b

31 January 1979 System Development Corporation 1§
-78- T -6263/000/00
|
uer Problem Graph

(1) AoB]
AS: (A) e
GS: (B) : 3

(2) &(A, B)OC : @ :
AS: (A,B)
GS: (c)

and

AS: (A,B) AS: (A,B) 1
GsS: (C) GS: (D))

4 (O»> &, D)

>? (No assumptions)

an
AS: () As: ()
GS: (C) GS: (D)

(5) Aov(C, D)
or

AS: (A,D) AS: (A,™C)
GS: (C) GS: (D)

]

» " g . ’
) S — [S—

Figure 44. Queries and their Initial Problem Graph (1 of 2)
(AS: indicates Assumption Set; GS: indi-
cates Goal Set)

R

|
1

E -
2
' |
i
‘ 31 January 1979 System Development Corporation
-79- ™ -6263/000/00
Query Problem Graph
(6) v(A, B)o C
an

AS: (A) AS: (B)
GS: (C) GS: (C)

e eeer——

(o)
(7) &(A, B) ov(C, ™D, E) ‘>
or

AS: (A,B, AS: (A,B, AS: (A,B,
D, JE) -C,mE) -c,D)
GS: (C) GS: (D) GS: (E)

(8) V(™A, B) ov(C,TD)

SER—

AS: (TA,D) AS: (™A,™C) AS: (B,D) AS: (B, C)
GS: (C) GS: (D) Gs: (C) GS: (TWD)

Figure 44. Queries and their Initial Problem Graph (2 of 2)
(AS: indicates Assumption Set, GS: indi- !
cates Goal Set)

v — L TT——————. . ——

e T ——— T 4

31 January 1979 System Development Corporation
~80- : TM-6263/000/00

In experimenting with various functions that coibine the measures of age

and number of subproblems, we found that the evaluation function:

(2 x age) - (number of subproblems)

serves well in node selection. Nodes are not allowed to become too old,
and nodes with a high number of associated subproblems are temporarily

set aside but are not forgotten.

Two types of goal nodes are not considered for node selection: closed or
terminal nodes, and nodes containing goals whose predicates have complete

data-base support. Closed nodes result from middle-term chains that

yield no unresolved literals and hence need no further deductive processing.

Similarly, no further deductive processing is needed for goals containing
predicates with data-base support. The truth or falsehood of these goals
can be determined directly from the data base of specific facts.

The Planner continues its deductive processing on the various goal nodes
until there is no more goal expansion, i.e., until all nodes are either
closed or have compute or data-base support, until no further middle-term
chains can be generated, or until the limit on the number of middle~term
chains is reached. This limit specifies the maximum number of chains to

be generated for a given query.

UNRESOLVED LITERALS AND SUBPROBLEM GENERATION

Given a middle-term chain, the Planner extracts the premises containing
the links of the chain. For each link, the premise containing it is

examined to determine which of the literals in the premise are unresolved,

i.e., those needing further deductive or data-base support. These unresolved

literals result in the creation of subproblems.

-

31 January 1979 System Development Corporation
-81- ™ -6263/000/00

The notion of predicate occurrence dependency, discussed earlier, can be
used to determine which of the literals in a premise are unresolved.
Dependency between any two occurrences in a premise is based on the side
of the implication sign on which the occurrences reside and on the main
connective governing the occurrences. (The positive or negative signs
of literals are needed to determine link types between occurrences but
are not needed for establishing dependency). Whether an occurrence in a
particular premise is unresolved is based on its relationship to the two

premise occurrences involved in a link in a middle-term chain.

A literal in a premise is unresolved if it is dependent on both of the
two linked occurrences in the premise. The literal must be dependent
on both; otherwise the premise can be subdivided such that the literal

.does not occur in the sub-expression involving both linked occurrences.

The sub-expression containing the link is the one needed in the derivation.
A literal not occurring in this sub-expression need not be considered in
the proof. For example, suppose a chain included the link between A and

C in the premise

&(A, B) o &(C, D).

The occurence B is dependent on both A and C and is therefore unresolved
The occurrence D is dependent on A but independent of C and is therefore

not unresolved. Dividing the premise into

&(A, B) o ¢ and &(A, B) o D,

we note that the first expression includes the link between A and C and
is therefore the one required for the derivation using this link in a

middle-term chain. This expression does not contain D.

Once the Planner has determined which literals in a premise are unresolved,
it must then examine the dependencies among the set of unresolved literals.

Consider the premise:

&@, B) o &(C, D),

R T IR T 0 N NN #5405 P T 4RSI R At N

e il Sl s osoliiels o S

e

31 January 1979 System Development Corporation
-82- T™ -6263/000/00

and suppose the link between A and B occurs in a middle-term chain.
Occurrence C is dependent on both A and B and is thus unresolved. The
same is true for D. The premise, however, is not indivisible since it

can be divided into the two expressions

&(A, B) oC and &(A, B) o D.

Both expressions contain the link between A and B reconfirming that both
C and D are unresolved. Because Liaese expressions are premises in them
selves (resulting from the original premise), only one of them need exist
in a derivation involving the link between A and B. Thus, the Planner
need resolve C or D but need not resolve both. This is due to the
independence of C and D. The subproblems would result in the creation

of a disjunctive branch in the problem graph. In the more general

case, those occurrences in the unresolved set that are independent of

one another will fall under a disjunctive branch; those that are dependent
will fall under a conjunctive branch where all the unresolved occurrences

must be resolved

The Planner creates a subproblem for each unresolved literal. If the literal
occurs in the antecedent of a premise it remains unchanged as it becomes

a subgoal. If the literal occurs in the consequent, however, the literal

is negated when it becomes a subgoal. This is done so that when the
unresolved literals are established, they will correctly unify with literals

in other premises in the proof.

Consider a link between A and B in the premise

(a) &(A, B, C) o &(D,™E).

Occurrences C, D, and E are unresolved with D and E independent. The
following branch would be added to the problem graph under the node
from which a middle~term chain involving the premise was formed (only

the goal is shown for each node).

PENPRPIGS

31 January 1979 System Development Corporation
-83- T -6263/000/00

(b)

and

or

) E

This branch is conjoined with other branches resulting from unresolved
literals in other premises associated with the chain. Suppose the link

between B and H in the premise:

v(F, ™G) > v(B, H, I)

occurs in the same middie-term chain as the link in premise (a) above
with a u-arc existing between the B occurrences. Occurrences F, G, and
I are unresolved with F and G independent. The following branch would

be created for the two premises:

e e 17 o T T

e v T e S P " a T s e 7 R, TR M o o B S0 LA s ok 0 5 i

31 January 1979 System Development Corporation
-84~ T™M-6263/000/00

ey v AT sy I

EXTRACTING INFERENCE PLANS

The problem graph contains all the inference plans generated by the system.
A particular inference plan is a subgraﬁh within the problem graph. A

plan may contain unresolved literals, i.e., subproblems not yet resolved.

R ST ———

The unresolved literals in such a plan will be treated by the system as
needing data-base support, compute support, or in some cases (partial

plans) deductive support.

The following set of rules specify the requirements for extracting an

inference plan from the problem graph. One begins by applying the rules
to the top-level node in the graph.

(1) If the node under consideration is a goal node and the ncde
is closed (no unresolved literal exists in the node), the

inference plan must contain the node.

(2) 1If the node under consideration is a goal node and the node has
an unresolved literal which needs data-base or compute support,

the inference plan must contain the node.

(3) If the node under consideration is a goal node and the node has
successors, the inference plan must contain the node and one
and only one of its immediate successor nodes*. The five

rules are then applied to the successor node chosen.

- - (4) 1If the node under consideration is a conjunctive dummy node
(indicating that a set of conjunctively related branches hang
below), all of the immediate successor nodes must be part of
the inference plan. The five rules are then applied to each of

the immediate successors.

a

*Recall that the set of branches hanging from a goal node is disjoined,
one branch for each middle-term chain generated for the node.

$- e

s

31 January 1979 System Development Corporation
i -85~ ™ -6263/000/00

(5) If the node under consideration is a disjunctive dummy node
(indicating that a set of disjunctively related branches hang
below), one and only one of the immediate successor nodes
must be part of the inference plan. The five rules are then

applied to the immediate successor node selected. |

3.7 VERIFICATION OF INFERENCE PLANS

A unification, or deductive interaction, between two predicate occurrences

; ! of the same relation name has a substitution list associated with it. This
k list specifies what substitutions for the variables in the occurrences are
needed to make the argument strings of the occurrences identical. A typical
inference plan involves several unifications. The primary function of the
verifier is to examine ;he substitution lists of the unifications and

check for substitution consistency.

The procedure used in the verifier examine variable flows within the 1

unifications and combine variables and constants that must be equal into
variable flow or verification classes. Whenever a variable-flow class has
two or more difference constants in it, the inference plan is "blocked"
and verification fails. Each variable in an inference plan can take on at i

most one constant value.

As an example, consider the unification of the two literals A(a,x,y) and

A(x,b,w), where "a" and "b" are constants and "w", y", are "z" are
E variables. The substitution list for this unification is (a/z, b/x, y/w),

E which reads "a" substituted for "z'", "b" substituted for "x", etc. Also

X

consider the unification of the literals B(w,z) and B(c,v), where "c"
is a constant and "v" is a variable. The substitution list is (c/w, v/z).

Now suppose both of these unifications occur within an inference plan,

such as in:

S

1%
s
t
i

31 January 1979 System Development Corporation
-86- T™ -6263/000/00

et oA(T,x,y)
1
A(z,b,w) oB(w,z)
2|
B(c,v,)2 ...

The variable "z" must be identical to the constant "a'" according to unifica-
tion 1, and identical to the variable "v" according to unification 2.

Combining these unifications within the proof, we obtain the variable-flow

.class (a, z, v). Other variable-flow classes for the above example are

(b, x), according to unification 1, and (c, w, y), according to both unifi-

cations.

The variable-flow classes serve to monitor variable substitutions within a
middle-term chain and within a set of chains comprising an inference plan.
When a variable is required to be substituted by two difference constants,

a blockage results. If this occurs in a chain, no further planning will
involve the chain. If a blockage occurs in an extracted inference plan,

the plan fails and data-base search requests are not formed for the remaining
subproblems.

One other type of blockage can occur during verification. In combining
classes within verification, the verifier must examine the variable and
constant "types" of the elements within the classes. If an element has a
specific type, other elements in the same class must have the same type or

be typeless. Otherwise a blockage occurs.

31 January 1979 System Development Corporation
-87- TM-6263/000/00

3.8 DATA BASE SEARCH

A given inference plan may have remaining subproblems that need data~base
support, i.e, support from the file of specific facts. These remaining
subproblems are set up in the form of search requests for the Data Manage-
ment System (RDMS). The RDMS, in turn, searches the data base to find facts
that are instances of these search requests. If all search requests are
satisfied, the inference plan becomes a complete proof and answers can be

generated. If data-base search fails, the inference plan is unsuccessful.

One important mechanism the RDMS has is the ability to generate conditional
answers. This will occur under certain circumstances if RDMS search is
partly successful and there is insufficient information available for the
remaining search requests. The RDMS can then notify the user that certain
specific information is needed to complete the inference plan. Thus the
system can be utilized, in some cases, to tell the user what facts are

needed to answer his query.

To search an external (i.e., non-LISP) data base each relation associated
with the data base must be marked as EXTERNAL and have data base field
names supplied through use of the adjust mode. Then if Control mode: IL
is turned on relational queries in an Intermoderate Language format will
be printed out at the user's terminal and also be sent to a disk file for

transfer to the external data base system.

3.9 RECURSIVE PREMISES ANDR SPECIAL PURPOSE GENERATORS
Premise of the general form:

o, Gty B R LR - RN, < SR
are recursive and can lead in some circumstances to excessive growth of
search space in deductive systems. In addition to advice and variable
typing DADM uses a third technique to reduce the problems caused by

recursive premises.

S (g

31 January 1979 System Development Corporation
=88~ T™ ~6263/000/00

Unification between multiple occurrences of a predicate within the same
premise may often be avoided by restating the premise's assertion by use of

logical properties.* For example, the predicate '"North-of" could be
characterized by the premises:

VxVy (North-of(x,y) &North-of(y,z) o> North-of(x,z))
VxVy (North-of(x,y) o North-of(y,x))
Vx (North-of(x,y))

The first premise specifies that North-of is transitive. This premise can
deductively interact with itself and the other premises to cause a rapid
expansion of the deductive search space. To help avoid this problem, DADM
permits binary predicates to be characterized by their logical properties
(for example North-of would be assigned the logical properties: transitive,
asymmetric, and irreflexivej. Generators can then be called to effect
special-purpose inferences associated with various groupings of logical
properties. Recursive premises describing logical properties of predicates

are therefore replaced, where possible, by special-purpose subroutines.

Logical properties of binary relations are identified by a user-system dialog

illustrated below, for the predicate "North-of'" (user input is preceded by
an asterisk):

* Define (North-of)

Suppose one thing is North-of a second thing that in turn

is North-of a third thing. 1Is the first thing North-of the
third?

* Yes

If one thing is North-of a second thing, will it always be
the case that the second is North-of the first?

* No

*Examples are:

reflexive (equal-to), irreflexive (greater-than),
symmetric (equal-to), asymmetric (North-of),
transitive (located-in), l-leader (mother-of),
1-follower (weighs), noregrowth (son-of), and
unlooped (mother-of).

i e i akid ki,

31 January 1979

* No

PADVICE
PPATH
PMAIN
PPATHO
PEFFORT
PPREM
PVERC
PSUBG
PVERP

PSR

SR : PDV

alence class generator.

answers, evidence, etc.

an equivalence class generator.

System Development Corporation
-89~ TM-6263/000/00

Might it ever be the case?

After the third yes/no response, the system is able to identify "North-of"

as a transitive, asymmetric, irreflexive, and unlooped relationm.

In one use of this technique a series of recursive premises were replaced by

statements was reduced to one containing only five premises plus the equiv-
Similar savings appear to be possible in many other
recursive premise situations.

3.10 DADM PRINT AND CONTROL MODES

DADM can run in several different control modes and can printout or display
a wide range of information about paths, plans, verification classes,
The following print and control modes can be

easily set by the use of the adjust mode:

DADM PRINT MODES

Print
Print
Print
Print
Print
Print
Print
Print
Print

advice alert lists

all middle-term chains

main chain paths only

occurrence indices for each chain printed
effort indicators for each chain printed
premises for each chain printed
verification classes for each chain printed
subgoals for each chain printed

resultant classes for verified plans

and final classes for each successful data-base

search

Print

search requests and compute relations for

each verified plan

Print

data values for each successful data-base

search

A proof that had required eleven premise

31 January 1979

PISR

PANSWER

PDVALL

PANSALL
PROOFA
PROOFM
PPLAN
PSENT
PDIS
PLANREPT

NODMS
VER1
DMS1

AQ

NOVER
IL

System Development Corporation
-90- T -6263/000/00

DADM PRINT MODES (cont'd)

Print instantiated search requests for each
successful data-base search

Print answer information for each successful
data-base search

Print summary of data values found during data-
base search

Print answer summary

Automatic proof display

Manual proof display

Print inference plans (includes PSR)

Print plans, proofs in external format

Print plans, proofs in internal format

Print plans using same premises as previous plans

DADM CONTROL MODES

No data management search

Verify oneplan at a time

One data-base search at a time
Automatic query when entering DERIVE (),
or DADM()

No verification of plans

Generate and print IL search requests

4, SPECIFIC TASKS ACCOMPLISHED

During the period of performance (1 April 1976 to 30 December 1978) we have
accomplished the following tasks:

(a)

Implemented the DADM prototype in SDC LISP 1.5 on the IBM 370/158
and AMDAHL470/V6. This prototype consists of the following modules:

controller, array maintenance, pathfinder, planner, verifier,

plan-evidence display, and answer construction.

g™

e 1

| gy

R e e e

31 January 1979 System Development Corporation
-91- TM-6263/000/00
(b) Converted the DADM prototype for operation in INTERLISP under

(c)

()

(e)

(f)

(g)

(h)

(1)

)

(k)

(1)

(m)

TENEX for use on DEC-10 computers. As part of this process
restructured LISP code, converted to INTERLISP FOR macros and
CLISP.

Added a user assistant module to INTERLISP version of DADM.

Implemented ability for DADM to control and access local RDMS
(in LISP) as well as remote DMS (via Intermediate Lanaguage

queries).

Implemented an extensive series of user prompt, guidance, help,
and break (interrupt) facilities.

Implemented array garbage collection routines to support additioms,
deletions, and changes to knowledge base (advice, premises,

relations, functions, domains, etc.)

Storage of premise deductive interactions and dependencies in

a connection graph.

Storage of conceptual associations among relations, domains,

functions, and premises in a concept graph.

Storage of deductive subproblems in a problem graph that makes
extensive use of structive sharing to eliminate duplicate nodes.

Construction of over three hundred premises representing biblio-
graphic, kinship, naval ship, and shipping/receiving data base
applications.

Extensive testing and checkout of DADM prototype with premises,

advice rules, and associated data bases and compute functions.

Implemented techniques to find the shortest-most plausible

inference plans first.

Implemented "Try-Harder" feature to grow deductive search space

upon user request.

e i e o+ e — S ——r———_ - - - R—

31 January 1979 System Development Corporation

(n)

(o)

(p)

(q)

(r)

(s)

(t)

(u)

(v)

(w)

-92- ™ -6263/000/00

Implemented techniques to effectively deal with incomplete
information in queries (e.g., missing arguments), in plans
(e.g., missing support for subproblems), and in answers (e.g.,

missing facts in data base).

Implemented techniques to deductively decompose query problems
into deduce, search, and compute subproblems and order sub-

problems for efficient solution.

Implemented a deductive apparatus that is expressionally and
derivationally complete. This assures that all answers to a

users query may be found.

Implemented a global planning strategy to quickly zero in on

relevant subsets of premises to support user queries.

Implemented a semantic advice (i.e., meta rule) file that automatically
invokes premise and relation selection strategies as necessary to

enhance system performance.

Implemented forward, backward, and middle term chaining techniques

that are automatically activated as apprépriate.

Implemented techniques to identify logical properties of binary
relations and assign special purpose deduction routines to avoid

the "recursive premise" problem.

Wrote "DADM Function Description'" (TM-6035, Philip Klahr,
March 1978) that briefly describes the LISP functions comprising
DADM.

Wrote "Alternative Architectures for Deductively Augmented Data
Management Systems' (TM-6005, Charles Kellogg, December 1977)

that describes a migratable module architecture to support various
realizations of user centered, deduction centered, and data

centered versions of DADM.

Published four papers (references 3, 4, 5, and 6) on our research

results.

oy s R

PR

TWa

e oI oy = m

| 31 January 1979 System Development Corporation
8 -93~ ™ -6263/000/00

5. FUTURE PLANS AND RECOMMENDATIONS

Over the past two a=d one-half years DADM has grown into a robust developmen-
{ tal prototype that demonstrates considerable utility as an on-line

decision aid, as a supporter of high level user views, and as a data analysis
and evaluation aid.

The next step seems clear; to interface DADM with one or several backend data

base systems and one or several user-oriented frontend language processors,
Once this is done DADM can be moved into test bed enviromments in which its
capabilities can be throughly evaluated and feedback can be obtained from

e i it e

actual users about necessary and desirable improvements.

L In addition, we believe a continuing research effort should support investi-

gations in the following areas:

(a) Use of richer, higher level forms of semantic advice.

{(b) Further investigation of recursive premises and ways of
avoiding them through use of higher order logical comstructs

and abstraction mechanisms such as abstract data types.

(¢) Investigation of techniques to discriminate between productive
and non-productive deductive paths and plans. This information
could then be stored for later use in avoiding non-productive

paths and following productive paths.

(d) Investigate the use of DADM to support semantic integrity checking
and the application of data security constraints.

i (e) Investigate use of DADM in distributed data base environ-
i ments as an intelligent planner, controller, and generator of

data base access strategies.

(f) Develop additional special features to support future knowledge/

data base administrators (such as semantic tuning to specific

g i applications).

31 January 1979 : System Development Corporation | |
~9h= TM-6263/000/00 SR |

(g) Investigate improved user displays and user interfaces,

(h) Investigate advanhpgq of converting DADM programs to another
high order language (PASCAL, C, etc.). :

s T ey R A o]
.

31 January 1979 System Development Corporation

; TR Y N T T Y e o R A S v

R ™ -6263/000/00

APPENDIX A - REFERENCES

Green, C.C., Theorem Proving by Resolution as a Basis for Question
Answering Systems". In Machine Intelligence 4, Meltzer, B. and
Michie, D. (Eds.), Edinburgh University Press, Edinburgh, 1969,
183-205.

Kellogg, C. H., Burger, J., Diller, T., and Fogt, T. The CONVERSE

natural language data management system: current status and plans.
Proceedings of the Symposium on Information Storage and Retrieval,

ACM, New York, 1971, 33-46.

Kellogg, C., Klahr, P., and Travis, L., A Deductive Capability for
Data Management. In Systems for Large Data Bases, Lockemann, P.C.
and Neuhold, E.J. (Eds.), North Holland, Amsterdam, 1976, 181-196.

Kellogg, C., Klahr, P., and Travis L., "Deductive Methods for Large
Data Bases." Proceedings of the Fifth International Joint Conference
on Artifical Intelligence, MIT, Cambridge, 1977, 203-209.

Kellogg, C., Klahr, P., and Travis L., "Deductive Planning and
Pathfinding for Relational Data Base." In Logic and Data Bases,
Gallaire H., and Minker, J. (Eds), Plenum, New York, 1978.

Klahr, P., "Planning Techniques for Rule Selection in Deductive
Question-Answering." In Pattern-Directed Inference Systems,
Waterman, D. and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978.

Kowalski, R., "A Proof Procedure Using Connection Graphs. Journal of
the ACM, 22, 1975, 572-595.

McSkimin, J. R., "The Use of Semantic Information in Deductive Question-
Answer systems. TR-465, University of Maryland, College Park, 1976.

e W) i el ok sl

i

31 January 1979 g System Development Corporation

10.

11.

12.

13.

14.

15.

16.

17.

18'

19.

A-2 T™ -6263/000/00

Minker, J., Fishman, D. H., and McSkimin, J.R., "The Q* Algorithm--
a Search Strategy for a Deductive Question-Answering System."
Artificial Intelligence, 4, 1973, 225-243.

Robinson, J. A., "A Machine-Oriented Logic Based on the Resolution
Principle." Journal of the ACM, 12, 1965, 23-41.

Schwarcz, R. M., Burger, J. F., and Simmons, R. F., "A Deductive
Question-Answerer for Natural Language Inference', Communications
of the ACM, 13, 1970, 167-183.

Shostak, R. F., "Refutation Graphs. Artificial Intelligence, 7,
1976, 52-64.

Sickel, s., "A Search Technique for Clause Interconnectivity Graphs."
IEEE Transaction on Computers, C-25, 1976, 823-835.

Simmons, R.F., "Answering English Questions by Computer: A Survey."
Communications of the ACM, 13, 1965, 53-69.

Simmons, R.F., "Natural Language Question-Answering Systems: 1969."
Communications of the ACM, 13, 1970, 15-30.

Shortliffe, E.H., Computer-Based Medical Consultations: MYCIN.
American Elsevier, New York, 1976.

Travis, L., Kellogg, C., and Klahr, P., "Inferential Question~Answering
Extending CONVERSE." SP-2697, System Development Corporationm,
Santa Monica, California, 1973.

Winograd, T., "Understanding Natural Language.' Academic Press,
New York, 1972.

Zadeh, L. A. Fuzzy Sets. Information and Control, 8, 1965, 338-353.

i ik, i : I———

System Development Corporation
31 January 1979 i TM-6262/000/00

O nmis
.

{.’
i f U

P
5

PART 11

System Development Corporation
31 January 1979 BB ™ -6263/000/00

TABLE OF CONTENTS

PR —

Section Page
1. REVIEW OF WORK ACCOMPLISHED . . ¢ « ¢ ¢ ¢ ¢ o o o o o & 1
r 1.1 TASK 1: Installation of EUFID with the METRO
- Application at the Customer Site « . . . 1
= 1.2 TASK 2: Construction of the Conceptual and Semantic i
E ‘ Tables for the Customer's Prototype I Application . . 1 i
2 1.3 TASK 3: A Study of Phonetic Spelling Correctors . . . 2 (
; 1.4 TASK 4: Study of Negation . o « o o s’c o 59 s o o . » 2 i
F‘ U 5 THE CURRENT EUFID SYSTEM . . + « + « « ¢ v o o o o o .+ 3 c
3 . 2.1 (037773 i) o o P S S e e - U T e R (e TN 3 b4
1 2.2 Structure and Use of the EUFID Tables « . . « 7
B 2.3 EUFID Question Answering System « . « + « + « « 13 3
3. PRI o e R DL e, e | '3

APPENDIX A - REFERENCES . . ¢« ¢ ¢ ¢ o ¢ o o « s s o o s s » ¢ o A&=1

g RS O
PR,

F————T

31 Jauwuary 1979

Figure

N U LW N

System Development Corporation

EUFID Operation and Control . .
Example of Case Structure

Figure 3

Figure 4
Figure 5
Figure 6

TM-6263/000/00

Page
P e o
i s i LUK
TR [
s i 3
TS |
s ey 18

-
e
-
e
-

-

e e —

P T T T T Y ? - >
= NSO L v N e - o e N S o s TN Mg T g 5 s T8 O e b Ehi 7 R

System Development Corporation
31 January 1979 o TM-6263/000/00

1. REVIEW OF WORK ACCOMPLISHED

During the contractual period from October 1977 through 31 January 1979,

several EUFID tasks were accomplished. The original proposal called for

‘the following FEU¥ID tasks:

(1) Task 1: Installation of EUFID with the METRO application at the

customer site;

(2) Construction of the conceptual and semantic tables for the cus-

tomer's Prototype 1 application;
(3) Task 3: Study of phonetic spelling correctors; and

(4) Task 4: Study of Negation.

1.1 TASK 1: INSTALLATION OF EUFID WITH THE METRO APPLICATION AT THE
CUSTOMER SITE

EUFID was installed at the customer's site in December 1978. The system
installed was the first demonstrable version of EUFID and a later version
is planned for installation in March 1979. During installation we dis-
covered that the EJFID system resulted in the customer's UNIX exhausting
its swap space. This was not a EUFID-INGRES problem but rather a prob-
lem caused by the under-allocation of disk resources under UNIX. The
swap problem occurs when there are so many processes running on UNIX

that there is insufficient disk room in a pre-allocated disk segment to
store core images of swapped-out processes. The customer is currently
exploring a solution to the problem which would 1n§olve increasing the

size of the swap space.

1.2 TASK 2: CONSTRUCTION OF THE CONCEPTUAL AND SEMANTIC TABLES FOR THE
CUSTOMER'S PROTOTYPE I APPLICATION

We aided the customer with the construction of the conceptual tables (i.e.,
data base tables). The set of representative queries and application

description necessary in order to build the semantic dictionary were not
defined by the customer and delivered to us until November 1978. There

e R I TR SRy

SeqRst -

System Development Corporation
31 January 1979 ~2= T™~6263/000/00

were neither funds nor time left to complete the building of the Proto-
type I sementic dictionary at that time. It will be possible to per-

form this work at a later date.

1.3 TASK 3: A STUDY OF PHONETIC SPELLING CORRECTORS

A study of phonetic spelling correctors was performed. The document
TM-5711/400/00, "A Phonetic Spelling Corrector for EUFID," was delivered
in October 1978. The study examined the character-based INTERLISP
spelling corrector, and the SOUNDEX and IBM ALPHA phonetic name encoding

procedures. For EUFID applicationé in which proper names occur fre-
quently, it is suggested that the IBM ALPHA algorithm be implemented
with modifications representing additional systematic orthographic-to-

pronunciation rules. ’ 3

1.4 TASK 4: STUDY OF NEGATION

A study of negation was performed. The document SP-3996, "Enabling

EUFID to Handle Negative Expressions," was delivered in October. As a
first step toward selecting negative expressions to be added to the
EUFID vocabulary, a list of expressions categorized as negative in the
linguistic literature was compiled. We then used as many as possible
of these expressions in formulating questions for METRO, one of the
applications being used as a testbed for EUFID. Additional negative
expressions were found by constructing paraphrases of those questionms.
EUFID staff members rated each of the questions and its paraphrase(s)
according to the likelihood that a question of that form would be asked
by a EUFID user. On the basis of these ratings, 21 of the highest-
scoring negative expressions were selected for detailed study. As a
result of this detailed study, it was proposed that negative expressions
be added to EUFID in the following order:

Stage 1: The pure negatives: '"non-", "not", "n't", "un-", "outside'.

Stage 2: Negative qualifiers: 'fewer", '"the fewest", '"the least", '"less",
"never", "no", "not...anything". (A few of these such as "the
least" and "less" are already being handled in the prototype
version of EUFID.)

e e R

System Development Corporation
31 January 1979 =3~ TM- 6263/000/00

Stage 3: Negative conjunctions: "but not", "neither...nor", "not
(...) both...and", "not(...) either...or", "not only...but

also".

Stage 4: Restrictives: "only".

Stage 5: Except/other expressions: '"apart from"”, "besides"”, "except”.

2. THE CURRENT EUFID SYSTEM

@ The prototype EUFID system is currently undergoing extensive system
rheckout at SDC in Santa Monica. A well tested version is expected to
be installed at two customer sites by March 1979. A paper on the

k EUFID system was presented at the Fourth International Conference on

: Very Large Data Bases [1].

2.1 OVERVIEW

EUFID is a man-machine interface system that will permit users of data
management systems to communicate with those systems in natural lan-
guage. At the same time, EUFID will act as a security screen to pre-
vent unauthorized users from having access to particular fields in a
data base. The specific objective is to build a system that will be
practical, efficient, and widely usable in existing, real-world appli-
cations. The approach is to model the restricted set of linguistic

structures and functions required for each application, rather than the
manifold linguistic properties of natural language per se. This allows
the system to be powerful enough to efficiently process English queries
against specific data bases without attempting to understand forms of
English that have little or no function in the contexts of those data

bases.

Why is a natural language interface necessary? Data bases are growing

in number, size, and complexity. Data management systems have been

built to accommcdate this growth, but there is no standardization among
DMSs as to language and the functions they perform. The number of

casual users who need to retrieve information from data bases is also

System Development Corporation
31 January 1979 4= TM-6263/000/00
growing. Currently, the approach of attempting to train groups of casual
users to learn how to use one or more DMS languages and to become familiar
with the data bases they need to access has not been successful. Moreover,
as the cost of computer terminals continues to drop, it becomes increas-
ingly more practical to make terminals available to casual users and
enable them to easily retrieve their own information--an advantage they
cannot now avail themselves of. A natural language interface will allow

the casual user this easy access to data base information.

EUFID has been designed to be interactive and "friendly" to the user. We

expect the typical EUFID user to have little experience with computers, data
management systems, or even the organization of the data base from which he
needs answers. It is necessary, however, that the user be competent in his
application area, that the application area be well defined and bounded, and

that all users competent in the application area share a common language of

communication.

EUFID is a table-driven system. To support a new application in EUFID, we
implement a new set of tables. The tables contain two different descriptionms,
or representations, of the application. One is that of the data base--its
structure and semantics. The other is that of the syntax and semantics of the

language a competent user uses to ask questions about the application.

EUFID has been designed to: (1) be a friendly interface to the casual user;
(2) achieve a separation of the application into a user's view and a data
base view; (3) handle the interfacing to both network and relational DMSs;
(4) be application independent; (5) be portable; and (6) be able to reside

‘ on a minicomputer. The advantage to having a natural langgage interface re-
side in a minicomputer front-end machine is a practical one in that such an

interface does not add to the usual overloaded conditions of the large frame

computers.

v i P P Sl i oo " S ot el

System Development Corporation
31 January 1979 -5- TM~6263/000/00

There are two main groupings of EUFID modules: The table-building modules and
the question-answering system. The table-building modules include the Applica-
tion Definition Module, which builds the three main tables, and the Concept
Graph Editor, which supports the editing of these tables for security reasons.

These modules are used by the Data Base Administrator (DBA) or the Application

Expert (AE) to build or edit the application-specific tables. All changes to

the tables must be made through these modules. For integrity and security

reasons, none of the EUFID users have direct access to these tables. The EUFID
question-answering system reads the system tables but cannot alter thed. Through-
out this description we refer to the table containing information about the data bas:
as the "data base table'"; the table containing the users' views of the applica-

tion as "the semantic dictionary"”, and the table that maps the semantic dictionary
into the data base as the '"mapping table."

The EUFID system supports three types of interactive activity: question answer-
ing, synonym editing, and provision of help. Question answering is the main
activity. When the EUFID user types a question on his terminal, the EUFID Con-
troller reads it and forwards it to the Analyzer. The Analyzer interprets the
question and produces a semantic representation of it. The mapper maps the
semantic representation into a data base representation and generates-an inter-
mediate language (IL) representation. The Translator translates the IL

into formal query-language statements for the specific data management system
(DMS) and submits the query statements to the DMS. The DMS processes the

query statements, accesses the data base, and sends the answer back to the
EUFID user. The Analyzer and the Application Definition Module are the

same for all DMSs and applications; a separate Translator is needed for each
separate DMS. The effort required to build a Translator is directly propor-
tional to the complexity of the DMS language used. A specialized set of tables
is required for each application, and, again, the effort involved in building

; the application tables is related to the complexity of the application.

TSR wre

TM -6263/000/00

System Development Corporation

Tox3u0) pue uorleiado QIiNd

" 41| anoe

ITVL 3SvEvivd

a1Vl Isveviva
— e~

26

LVISNVEL
1an SUONI

-

T4 { maanor

WANONAS

XEVNOTIO1A ﬁuﬂx«ﬁu
FELT]

| WAV

)
RS

11
WNiZ TILIGWd TVNENOr

annaﬂ A_ T i

s1sandTe

e o WA AN s L i 6 Mt i 70 L

31 January 1979

e —————

e

System Development Corporation
31 January 1979 ~7- TM-6263/000/00

The second type of user activity, synonym editing, is supported by the Synonym
Editor Module. Each user of each application is allowed to create his own
synonym dictionary to enable him to redefine words in the semantic dictionary.
When the Analyzer is invoked it searches the synonym dictionary for words from
the input question before it tries to find them in the semantic dictionary.

A third type of user activity is supported by the Help Module. When the user
requests help, this module explains how EUFID operates and what it is capable
of doing and not doing; it also provides a detailed explanation of the types of
responses EUFID makes when it has been unsuccessful or has encountered some

sort of failure. The Help Module is essentially an on-line users’ manual.

Each EUFID user session generates a separate journal file. The journal
consists of all interactions between the user and the EUTID.

2.2 STRUCTURE AND USE OF THE EUFID TABLES

Building a EUFID Application requires a negotiation process between an applica-
tion expert and a EUFID consultant. This process is extremely

important, and we are developing techniques for handling it {2]. The

first step in the negotiation is for the application expert to prepare a
description of the application and to collect a representative set of ques-
tions that competent users ask of the application. The next step is for the
EUFID consultant to extract from the set of questions and the application
description, a pictorial representation of the application world; this is a
free-hand graph that shows the entities in the application and how they comnect
to each other by means of verbs, prepositions, etc. The EUFID consultant and
the application expert then review the pictorial representation to ensure that
it contains as complete semantic information as possible for eventual inser-
tion into the application tables. When an adequate pictorial representation
has been agreed upon, the data base is examined to ensure that all structures
in the pictorial representation can be mapped into data base fields. When
there are structures that do not map, then either new data fields need to be
added to the data base or the application needs to be redefined to exclude

2

o

System Development Corporation
31 January 1979 -8- TM- 6263/000/00

these semantic structures. This procedure also brings to light data base
fields that have not been represented in the pictorial representation. The
application expert may choose to build a representation for these fields in
the pictorial representation or to ignore them if they are really not part of
the application.

At the conclusion of the negotiations, the data base table, the semantic

dictionary, and the mapping table are built.

Access to EUFID is controlled through a user profile table, which contains
information about legal EUFID users, the applications and data bases they
may access, and their table environment for a given application. The con-
struction of this table is not part of the negotiation process, but is con-
trolled by the Data Base Administrator.

The data-base table is composed of two parts: the CAN (canonical) and

REL (relational) tables. They provide a common form for describ~

ing the logical structures of data bases implemented under different

DMSs. All DMSs are designed to represent collections of data pertaining

to entities and their attributes and the relationships between entities.

A large variety of terms are used in existing DMSs to refer to these elements.
The terms we are using are group, aggregate, field, link, and domain. 1In
general, a group corresponds to an entity, an aggregate to a name for a set
of fields, a field to an attribute, a link to a relationship, and a domain to

fields having common values.

Each CAN table entry contains identifying information about a group, aggregate,
or field in the data base, such as: its name; its identification as a group,
aggregate or field; for aggregates and fields the immediate group or aggregate
to which they belong; a unit code for fields whose values refer to unit

System Development Corporation
31 January 1979 -9- T™ -6263/000/00

measures such as feet, miles, etc., the domain to which the values of

a field belong (if appropriate); an upper/lower case flag; an alpha-
numeric flag; and an English name (or phrase) to be used as an output
identifier for each field.

The REL table contains an entry for each group and lists every other
group with which it has a primary or secondary link(s), and the linking
field(s) in each group. For network data bases the link is the chain
name for a chain that connects the master and detail records. If there
are multiple chains between the master and detail, only one will be
present in the REL table. The full set of chains are available to the
Translator, and the choice as to which chain is applicable in the par-
ticular instance is made'by the Translator. The REL table also contains
a list of the fields that uniquely identify a group entry and a list of
the fields that need to be included in the output answer whenever a

question is asked about the group.

One of the purposes of the REL table is to define secondary or non-
primary links between groups. An example of a secondary link is the

date domain. When users ask questions such as "What warehouses were
built after Ajax began shipping to Colonial?", the connection is made on
the basis of date (i.e., the names of warehouses whose completion date is
greater than the date when Ajax began shipping to Colonial). Secondary
link information is semantic information about data base fields that

is not easily elicited from the data base users. Most users, when asked
how one data base group relates to another, are quick to mention the
primary link relation but are not overtly aware of the secondary links
until they need to use them to answer a question. The identification of
fields belonging to the same domain, which is obtained during the negotia-

tion process, furnishes this important linking information to the system.

Semantic Dictionary

The semantic dictionary is the most complicated table structure in the
EUFID system. Words used to communicate about the application are defined

TURT TESRNY A

PP

il

4

i s TS 5 A s Yo A 1V g AR ¢ 41 b S T ————

System Development Corporation
31 January 1979 -10- TM-6263/000/00

as to how they connect to each other in a generalized case grammar

structure.

There are seven entry types in the semantic dictionary: (1) entities
(e.g., nouns); (2) events (e.g., verbs); (3) functions; (4) parts of a
phrase or idiom; (5) connectors (e.g., prepositions); (6) system words
(e.g., conjuncts, auxiliaries, determiners); (7) anaphores (words that
refer to previous words). All attributes are defined as entities.
Entities that have no case structure beneath them are called 'primitive'
entities. It might seem unusual to refer to the case structure of an
entity, but in the semantic dictionary entities and events both have a
similar case structure. Functions also have a case structure. The

cases of functions are filled by their arguments.

The two main types of entries are entities and events. The orthographic
spelling of the entry is followed by its type. (If an entry can be used
as more than one type, then it is multiply defined.) A set of one or
more senses is listed for each definition of the entry. Each sense has
a node name to identify it, a pointer to a set of cases that define the
sense, and the number of cases that need to be filled for this sense to
be accepted (by the Analyzer in "understanding' a question) as the mean-
ing of this sense of the entry. For each case, there is a set of one

or more node names that can fill the case; an indication of whether the
case is optional or obligatory; an indication of whether the case filler
word occurs before or after the entry; a pointer to a set of acceptable
connectors, any of which can connect the case filler word to the entry;
an indication of whether or not this case filler word merges with the
sense of the entry to determine its meaning; and a default indicator

and default case fillers.

Figure 2 shows two examples of senses of the event 'ship" (one active
and one passive) and an example of the entity '"shipment'", which is recog-
nized as a nominalized form of "ship'. Notice that the cases have been
arbitrarily labelled "CASE A", '"CASE B", and "CASE C", rather than being

i
;
£
i
&

T 4 ARG Y ik 3 R i e

System Development Corporation

31 January 1979 =11~ TM-6263/000/00

called the agentive case, the objective case, and the destination case.
The case is whatever it is defined to be by its case filler, comnnector,
etc., and by the sense for which it is a case. If we look at the active
sense in detail, we can see that CASE A has the case filler of "shipping
company", it is obligatory, and it must occur in a question logically
before "ship". CASE B has the case filler of '"part"”, it is optional,
and it occurs logically after the word "ship". CASE C has the case
filler "receiving company", it is obligatory, it must occur logically
after the word "ship", and it requires the connector "to".

ACTIVE
WHO SNIPS BOLTS TO AJAX?
CASE A
1. OBLIGATORY

2. BEFORE
3. -

SHIPPING COMPANY PART

RECEIVING COMPANY

CASE A

1. OBLIGATORY
2. AFTER
3. "sy*
SHIPPING COMPANY PART

CASE C

1. OBLIGATORY
2. BEFORE

3. -

RECEIVING COMPANY

CASE_A CASE B CASE C

1. "0BLIGATORY 1. TONAL 1. OBLIGATORY
2. AFTER 2. ER . AFTER

3. “FROM", 3. 106" IN'TO"

SHIPPING COMPANY PART RECEIVING COMPANY

Figure 2. Example of

PASSIVE
WHAT COMPANIES ARE SHIPPED TO BY
COLONIAL?

NONTNALIZATION
WHAT IS THE TRANSACTION NUMBER FOR THE
SHIPMENT OF BOLTS FRON COLONIAL TO AJAK?

(1.E., "SHIPMENT" HAS A
FEATURE SET TO “NOMINALIZED")

Case Structure

e

R e e B

TR

System Development Corporation
31 January 1979 -12- ™ -6263/000/00

1f we compare CASE A of the active sense of "ship" with CASE A of the passive
sense of "ship", we can see that they have the same case filler, "shipping
company”, and they are obligatory, but for the active CASE A, "shipping company"
occurs before "ship" and takes no connector, while for the passive CASE A of
"ship", "shipping company" occurs after "ship" and takes the connector "by".

The same kind of comparison can be made for CASE B and CASE C and for the cases
of the sense of "shipment". By lining the cases up the way they are presented
in Figure 2, we could even label both the active and passive senses of "ship"

and the sense of the nominalized form of "shipment" with the same node name.

The sense of "shipment" shown in Figure 2 allows the Analyzer to handle the

meaning of any of the folloﬁing sentence constructions:

"What is the transaction number for the shipment
of bolts from Colonial to Ajax?"
of bolts to Ajax from Colonial?"
from Colonial to Ajax of bolts?"
from Colonial of bolts to Ajax?"
to Ajax from Colonial of bolts?"
to Ajax of bolts from Colonial?"

Because the case fillers are node names of entities, they could each have a struc-
ture of cases hanging off of them. The question, '"What is the transaction
number for the shipment of number 3 bolts from Colonial in New York City, to

Ajax in San Francisco?" would be analyzed similarly to the example in Figure

2.

Mapping Table

The mapping table is used to map the node names, or structures in the completed
sentence tree, into data base field names. Each entry in the table has a node
name followed by two parts. The first part describes the pattern of cases and
their case fillers for that node name; the second part describes the production
for each of the case fillers in the pattern part. A production may result in
mapping a case filler to a data base field name, which is the desired final
effect. When the sentence tree is several levels deep, it may be necessary to

i

S e —————————————— e ————— _ _
. , g e i : S e ——
" NN WP,
Eii SRS,
%

System Development Corporation
31 January 1979 -13- T -6263/000/00

map node names at lower levels of the tree to themselves or to synthesized
variables. At higher levels, these node names will be cases on other node
names and will eventually be mapped into data base field names. The reason
for this complexity is that the data base field that the node name maps to
may be dependent on the case that the node name fills for a higher-level node
name. For instance, "company name' may map to a different data base field

name if the question is '"What companies are located in Los Angeles?' than it

would if the question were "What companies ship to Los Angeles?" 1In the first
question, '"company" may map to a data base field name in a group containing
information about companies in general, i.e., their addresses, phone numbers,
presidents, etc. In the second question, "company" has the role of "shipping
company' and may map to a data base field name of a group containing information

about a shipping-receiving relation between companies.

2.3 EUFID QUESTION ANSWERING SYSTEM

Whenever EUFID is ready to accept an input from the user, it types '"ready' on
the user terminal. There are three words recognized as special words by EUFID:
"help", "synonym", and '"comment'. "help" activates the help module, "synonym"
activates the Synonym Editor, and "comment" results in EUFID asking the user

to enter a comment into the system journal. If the user has not typed in any
of the three special words, the Controller assumes the user has asked a ques~

tion and it sends the question to the Analyzer.

T W R T ek

Analyzer

The Analyzer is composed of two parts: the scanner and the Analyzer.

Scanner

The scanner begins Ly breaking up the user's input question into tokens and
entering them into consecutive entries of the sentence list that are called
word boxes. The Analyzer keeps the sentence list from previous questions (if
there were any) to use in resolving anaphoric references that may occur in
interpreting the current question. The scanner then looks up the definition
for each token, first in the synonym dictionary and then in the semantic
dictionary. When a definition is found, it is entered in the appropriate word i ;
box. 1If a definition cannot be found, then a morphological analysis {3] of the
token is performed to split the token into a root and an ending. If this is

W

System Development Corporation
31 January 1979 -14- T™ -6263/000/00
successful, the root is looked up in the dictionaries; if a definition for it
is found, the definition is entered in the word box for the token along with
inflectional information about the ending. If the morphological analysis is
unsuccessful, the token is interpreted as a pattern, and the pattern is looked

up in the semantic dictionary.

Pattern identification is a special feature of EUFID used for value inferernce.
The semantic dictionary does not contain all the unique values present in the
data base; it is designed to contain only those values, for particular domains,
that form a fairly closed, small set (i.e., the values in the set will not change
often). Other types of values, such as social security numbers, dates, trans-
action numbers, etc., which may be changing constantly, are inferred from their
patterns. For example, if the question "What is the name and address of
123-45-6788?" were asked, the scanner would not find 123-45-6788 in either
dictionary, nor would the morphology routine be able to split it into a root and
ending. Instead, it would be interpreted as the pattern N(3)-N(2)FN(Q), which
would be looked up in the semantic dictionary and found to be a pattern for the
node name "social security number." The definition for "social security number"
would be entered into the word box for token '123-45-6788", so that a data base
containing specific social security numbers can be successfully queried. The
decisions as to which sets of values will be inferred and which will be entered
into the dictionary are made during the negotiation process between the applica-
tion expert and the EUFID Consultant. If a token pattern cannot be found in the
dictionary, then the last attempt is to assume that a word was incorrectly
spelled and apply the spelling corrector to it. It should be noted that the
spelling corrector cannot be used for those applications in which value inference
is applied to values having a completely alphabetic pattern (i.e., if value
inference is applied to values of completely alphabetic patterns, then mis-
spelled words will fit thg alphabetic pattern and will not make it to the spelling

corrector phase).

When the scanner has processed all tokens in the sentence list, it makes a roots

1ist of all the trees--each tree pointing to a unique word box.

Kol

System Development Corporation

31 January 1979 ~15= T™-6263/000/00

Analyzer

The purpose of the analysis is to find a way to connect all the trees in the

roots list into a single tree.

The analysis is performed by processors, each of which handle connections
between a specific group of entry types. The names of the different processors

are: entity, event, function, anaphore, and conjunct.

The analysis is done by making left to right passes through the roots list.
Regions are demarcated by right and left boundaries that are set by the various
processors. The most important rule governing the analysis is that a tree may
be connected only to a tree that is to its immediate left or right. Where a
connection is made, the dominant tree becomes the tree top or father, and the
other tree becomes the son. The connections are made on the basis of the case

structure contained in the semantic dictionary.

For entity processing, the case connections are handled as described above,
except in a situation where two adjacent entities can each fill a case on the
other. When this situation arises the ambiguity is resolved using an algorithm

taken from the conceptual processing work done at SDC [4].

The analysis is probably easier to understand if we demonstrate it by analyzing

the simple question: "What companies in Chicago are shipping to Ajax?"

The output from the scanner would be a roots list of connected trees, each

pointing to a word box as shown in Figure 3.

Final Final
Left Ambiguous Region Right
lBoundary Boundary "
| I
» Q Q Q 0 Q Q. Q 9 !
5 I K 3 " I 5 5 & »

- Cl - " ", " ". .‘I L " " " & name
Pee [me=] [o | [] me| e | e
i wu‘. word nn}y connector entity nyun word event co?-tcl" nthr
i llt\nl:l“l'll‘ . 'zl‘\.l-‘::.a" .“". ary . bmrs

where: () 1is a tree

[:] is a word box
Figure 3.

System Development Corporation
31 January 1979 -16- ™ -6263/000/00

A single region is defined by boundaries before the first tree and after the

last tree. The region is ambiguous because it has not yet been processed.

Beginning at the left boundary, the definitional type of the first token "what"
is inspected. It is a system word type that is a determiner and causes the
entity processor to be run. The entity processor begins by finding a right
boundary that will define the region within which it will process. In the

example, the boundary is found at "are)' which is a system word type that
because it is an auxiliary, is processed by the event processor.

The entity processor then makes tree connections within the region "What
companies in Chicago", based on the case structure defined in the word box

definitions (See Figure 4).

Final

1ae Final
; Entity Region Boundary Ambiguous Region Right
Boundary s | A Boundary
1€ D
I | !
| | '
& | L
r’uhn“] “companies” "ta" “eity" I "are" “shipping” "to” “company nase”’
TYPE: | TYPE: TYPE: TYPE: TYPE: TYPE: TYPE: TYPE:
system word entity wonnector entity system word event connector .I\ll!y
| determiner | ' VALUE: aux{liary . . VALUE:
\ . | Chicago g "Ajax"
J J hic L = 3
Figure 4.

The tree structure now shows '"companies" with "what" connected to it through
one case and "city" with the value of '"Chicago' connected through another
case. "In" has been used as the connector to make the case linkage between

"city" and "companies" and no longer is attached to the roots list.

Beginning at the left boundary of the ambiguous region, the entry type of the
first token, "are", is inspected; as noted above, it is a system word type
that is an auxiliary and causes the event processor to be run. The event
processor begins by finding a right boundary that will define the region

within which it will process. This boundary is after the event "shipping"
and before the connector '"to".

2 g e SO R T

—

R b A 3 i i S G IS s b o AL i G i B

L)

TN AN

System Development Corporation
31 January 1979 -17- , TM -6263/000/00

==

The event processor subsumes the auxiliary "are' into the event "shipping', and
"are" no longer is attached to the roots list. Part of the event processing
involves looking across boundaries into unambiguous regions in order to deter-
mine if the event can be attached to a neighboring tree. The event processor
looks to the left and finds that "cowpanies" can fill a case of "shipping"

L _ and makes that connection. The roots list now looks like this.

The event processor continues processing to the left but finds only the final
left boundary. It then tries processing to the right but is stopped at the
boundary of the ambiguous region as shown in Figure 5.

Again, beginning at the left boundary of the region, the entry
type of the first token, "to', is inspected. It is a connector type and causes
the entity processor to be run. The entity processor runs and defines its

entity region to be from "to" to the final right boundary. It is unable to

make connections within its region, since it cannot connect the connector "to" to
the entity "compﬁny name". There is a final right boundary after "company name",
and detection of this causes the driver to examine the roots list. The roots

list contains more than cone tree, and processing begins again at the final left

boundary.
Final Boundary Boundary Final
Left Entity Region ! Event Region 'Anbiguous Right
Bound; : | Region Boundary
! ! |
L}
| - R
T e T e el || T e

systea word entity connector entfty system word event connector entity
3 VALUE: auxiliary . 5
4 .
‘."f.h“ ' “Chicago" .

Figure 5.

S TEEETTTeTY

System Development Corporation
™™ -6263/000/00

31 January 1979 -18-

The entry type of the first token, the tree top "shipping' is inspected.

It is of type event and causes the event processor to run. The

event processor looks to the left and finds only a final boundary,

it looks to the right and finds an entity region. It tries to connect to the
entity region but there is no case connection between “shipping" and "company
name"”. The event processor stops. Beginning at the left boundary, the

entry type of the first token "to" is inspected. It is a connector and

causes the entity processor to run. The entity processor again cannot make a
connection. Since the entity processor ends at the final right boundary, the
driver is called. It inspects the roots list and detects that no connections
were made during the previous pass and that there are two regions, one of which
is an entity region. The entity processor is called, and it checks to see if
an entity within the region is a name identifier for another entity. If so, it
creates a new node that is the entity for which the entity name is a name
identifier.

Processing again begins from the left. The event processor is called and again

tries to make a connection to the right. This time it is successful, since

"company" fills a case of "shipping", through the connector "to". The connection

is made, the final right boundary is detected, and the driver examines the roots
list and finds there is only one tree. The analysis is complete, and the final

roots list is shown in Figure 6.

“what® conpenies Y “are"
vweE: : TYPE:
systes word enticy connector entity system word
deterniner % " VALUE: auxiliary
» " “Chicago" .

"-Mp'ph." % ["company name’
TYPE:

event coanector

"conpany”
TYPE:
entity

Figure 6.

Lo e i

e ———

& aiis

Sl i -

System Development Corporation
31 January 1979 -19- TM-6263/000/00

Mapper

The purpose of the Mapper is to take the sentence tree output (or roots
list) of the analysis expressed in the node names and to (1) restructure
the tree, (2) redefine it through the mapping functions into a data base
tree expressed in data base group and field names, and (3) build the
intermediate language (IL) representation of the question by applying
IL syntax rules to the data base tree.

The restructuring of the tree is mainly concerned with the logical
distribution of conjuncts, which is necessary in order to produce an IL
representation that is translatable into DMS query statements. For
example, restructuring the sentence tree for the question "What companies
ship perishables to Ajax and Colonial?" produces a new sentence tree that
would have been produced if the question asked bad been "What companies
that ship perishables to Ajax, ship perishables to Colonial?" This needs
to be done because "Ajax" and 'Colonial" are both values for the same case

filler, "company name." A company cannot ship, in the same shipping

transaction, to two different companies.

Mapping functions are then applied to the node names on the tree to map the
semantic dictionary structures into the data base fields, groups, and func-
tions. It is through the mapping functions that the company cases of "ship"

acquire the meaning "shipping company" or "receiving company". A graphical

representation of a mapping function for "ship" is:

SHIP ——) CCT.
A

CCT.SC=C.NAME CCT.RC=C.NAME

LN |

C. .

The mapping function for "company named X" is:

e e

System Development Corporation
31 January 1979 -20- ™ -6263/000/00

COMPANY

====’ C.
l

COMPANY NAME "X" .NAME=X

The data base group and field names refer to a relational data base where

C. is a company relation in which C.NAME is the company name field and C.CITY
is city field in which the company is located. CCT. is a company to company
transaction relation where CCT.SC is the shipping company name and CCT.RC is

the receiving company name.

Below is a sentence tree of node names from the roots list output of the

Analyzer for the question "What companies in Chicago are shipping to Ajax?

COMP.
CITY
"CHICAGO'
SHIP
COMPANY
COMPANY NAME
"AJAX"

After the mapping functions are applied, the same tree expressed in terms of
data base groups and fields looks like this:

C.NAME=CCT.SC

C.CITY=""CHICAGO"

CCT.

CCT.RC=C.NAME

C.
|
C.NAME="AJAX"

e P S e e em— ———. -

System Development Corporation
31 January 1979 -21- T™ -6263/000/00

After output identifiers are added, logical "and" and "or" inserted, and

unnecessary structures eliminated, the tree looks like this.

C.NAME

Vel

C.CITY="CHICAGO" C. =CCT.SC

CCT.RC="AJAX"

The IL syntax rules are épplied to the tree to producebthe statements:

RETRIEVE {C.NAME]
WHERE (C.CITY='"'CHICAGO")
AND (C.NAME=CCT.SC)
AND (CCT.RC="AJAX")

The translator translates the IL representation of the user's question
into a DMS query and submits that query to the DMS. Though all Trans-
lators employ the same basic structure and purpose, a different Trans-
lator is required for each DMS. The complexity of the Translator design
and implementation is directly related to the complexity of the query
language of the DMS.

We are currently producing Translators for two different DMSs: WWDMS (World
Wide Data Management System), which runs under GCOS-TSS on the Honeywell H-6000
computer, and INGRES, which runs under UNIX on the PDP-11/70 computer. The
query input language to INGRES is called QUEL.

A comparison of the complexity of the two Translators is shown by the
difference in the DMS formal query statements for the question, "What are the
names and addresses of the executive secretaries in R&D?" For the INGRES data
base we assume two relations: division and job. For the WWDMS data base we

assume a master record of division and a detail record of job.

PR e Db e cai " gt

System Development Corporation
31 January 1979 -22- T™ -6263/000/00

The INGRES query would be:

range of d is division
range of j is job
retrieve (j.employee, j.address)
where d.name = R&D
and d.job = j.name
and j.name = "secretary"
and j.class = "executive"

The WWDMS query would be:

INVOKE 'WWDMS/PERSONNEL/ADF' »
REPORT EUFID-1 ON FILE 'USER/PASSWD/EUFID' . E
FOR TTY
Ql. LINE "EMPLOYEE NAME=",EMPLOYEE
Q2. LINE "ADDRESS=", ADDRESS
Rl. RETRIEVE E-DIVISION |
WHERE DNAME = "R&D" :
WHEN R1.
R2. RETRIEVE E-JOB
WHERE JNAME - "SECRETARY"
AND CLASS = "EXECUTIVE"
WHEN R2.
PRINT Q1
PRINT Q2
END

The WWDMS query language is procedural and allows much of the expressive
capability of higher-level programming languages. The INGRES language is
basically non-procedural and does not allow for such things as report 1

formatting.

Although the WWDMS Translator supports only a subset of the WWDMS query

language, it is a much more complicated module than the INGRES Translator.
One of its most complex features is the selection of an access path to the
necessary data base fields.

In addition to the data definition for the I-D-S type data base, WWDMS
supports a separate application definition file (ADF) that contains the
names for the different access paths through the data base. Part of the
application definition process for a WWDMS application involves defining

a query ADF that enables the WWDMS Translator to select the optimal access

R | A R R S 7 L —— R i e R > e

System Development Corporation
31 January 1979 -23~ ™ -6263/000/00

path for a query based upon the query's pattern of selector and qualifier
record-types. The selector record-types are those that contain fields
having values that the user wishes to see. The qualifier record-types

are those for which the user has specified the field values.

The INGRES Translator begins its operation by passing the intermediate
language through a lexical analyzer that identifies tokens as being
specific types. The parser operates on the token list by rule. 1If a
sequence of tokens fits a rule pattern, then a series of actions takes
place. The purpose of these actions is to build a tree that structurally
represents the QUEL output. When the QUEL tree is completed, the QUEL |

E generator operates it to produce a QUEL query to send to INGRES. The
! rules and actions are built by using YACC (Yet Another Compiler Compiler).
.

[s1.

The WWDMS Translator uses the same lexical analyzer as the INGRES Trans-

- lator to identify the intermediate language tokens. Its parser is also
built by using YACC. It uses rules similar to those used by the INGRES
Translator but takes different actions. All data base group and field
references are passed onto an entry selection process that finds an opti-
mal path solution for the pattern of selector and qualifier records for
the particular query. The solution may involve nested retrieves or more
than one independent retrieve. The query name(s) and other output from
the parser are then brought together in the WWDMS procedure generator,
which generates the statements, orders them properly, and writes them into
a file to be compiled and run by WWDMS.

A question often asked is, "Why the elaborate process of building and pro-
viding the intermediate language only to have it immediately relabelled
and interpreted by the Translator parsers?" The reason is that, because

E the Analyzer serves all DMSs, it can build output that is not trans-
latable for a particular DMS. For example, the Analyzer could have

‘ "understood" the input question in terms of the user's semantics, but the

intermediate language produced is an imbedded query. The answers from

i

the inner query need to be saved and used as qualifiers for the outer query.

. andiae il i

o

~ System Development Corporation
31 January 1979 -24- TM-6263/000/00

If a particular Translator cannot build the query structure to save
the output of the imbedded query, it is not able to handle this type
of situation and tells the user "EUFID can understand your question,
but your data management system cannot handle it as one query. Please
restate it by breaking it into multiple queries." An example of this
type of situation is given by the question, '"What employees earn more
than John Doe?" Some DMSs require the question, "What is John Doe's
salary?" followed by the DMS answer, ''John Doe Salary $XXX", followed
by a second question, "What employee's earn more than $XXX?"

In the EUFID system, each Translator assumes the responsibility of
defining that subset of intermediate language it can translate into its
DMS query statements. If the responsibility were not placed with the
Translator, then the Analyzer could not be DMS independent.

3. FUTURE PLANS

EUFID is currently running under UNIX on the PDP-11/70 computer as an
interface to INGRES, a relational data management system. The applica-
tion is METRO; the relational data base contains shipping-freight trans-

action information.

EUFID is also currently running under UNIX on the PDP-11/70 computer as

an interface to the World Wide Data Management System (WWDMS) which
resides on a Honeywell H-6000 computer. The application is AIREP; the
network-type data base contains information about software failure reports.
EUFID accepts questions from the user and produces WWDMS queries that are
then sent to WWDMS on the H-6000 computer for processing.

All EUFID components are written in RATFOR (a preprocessor for FORTRAN
that allows some degree of structured programming) except for the
Controller and the INGRES and WWDMS Translators which are written in
C-language.

T R TR———— ey ey e

System Development Corporation
31 January 1979 -25- TM-6263/000/00

One of the most important tasks required in the immediate future is to
perform EUFID operational testing. This task will require implementation
of EUFID on additional operational data bases that may be accessed by
WWDMS, INGRES or different data management sysfems. Operational testing
will require the enlistment of the EUFID users in the evaluation of

EUFID performance and use. Tuning of the Help module, Semantic Refusal
and Guidance, use of the Synonym Editor and other features, will be done

as a result of user evaluation.

Another top priority task in the future is to rewrite the Analyzer and
Mapper in C-language. The C-compiler not only produces more optional
code than the FORTRAN compiler but maintains separate data and instruc-
tion space and produces réentrant modules. Currently the Analyzer and
Mapper reside in 6 separate modules because of space restrictions. The
space restrictions of the Analyzer impose constraints on the length and
type of questions that can be asked. For instance, the Analyzer is
capable of handling compound verbs and relative clauses such as in

questions like "What companies have been shipping light freight to ware-

houses in Lakeland?" or "What companies that ship light freight to

Supreme ship perishable freight to Discount?" However these questions can-
not currently be handled because the definitions for the words (i.e., the
semantic net) is too large for the module size of the Analyzer. The re-
writing in C-language would allow us to demonstrate the full capability

of the Analyzer and the richness of the semantic dictionary (i.e..

semantic net) and the mapping functions.

Another high priority task is in the table building area. In order to
efficiently and effectively interface EUFID to new applications, work has
to be done to (1) develop a more vigorous methodology for conducting the
negotiations and (2) design and implement more automated ways of getting
the acquired knowledge intc the application tables. Currently, the know-
ledge acquired through negotiation is organized by hand, filled out on
detailed forms, and keyed into a file from which the tables are built.
What is needed is an intelligent module that can interact with the

Ehai

31 January 1979 System Development Corporation
_ -26- T™M -6263/000/00

application expert to help organize the knowledge, ask questions about

the relations between entities, events and data base fields, and to the :
bookkeeping tasks involved in building semantic dictionary entries and
mapping table functions.

We are also studying ways to bring the EUFID and DADM (Deductively Augmented
Data Management, refer to final report) systems together. The EUFID

] Analyzer and IL would have to be expanded to handle modals and conditionals
and DADM would read IL and produce IL for data base query. A more complicated
version of the joining would be a EUFID-DADM front-end machine with multiple
E | Translators able to communicate eith several DMSs on a single system or I
distributed over a network of computers. There is no inherent reason why |
an application needs to be confined to data fields in a single data base;

the EUFID-DADM system could conceivably distribute a user's questions into

a number of different queries to separate DMSs accessing various data bases

and combine the multiple answers back for the user into an organized result.

! In the future, we also plan to expand the Analyzer to handle negation and
ellipses over multiple questions and improve the handling of anaphores.
We would also like to study the problems of: temporal and spatial concepts;
accepting answers back from the DMS and resturcturing them for the user
(perhaps even in special ways such as graphs); helping the user to browse

through his data base via the semantic dictionary; and handling multiple

sentence questions.

31

1.

January 1979

System Development Corporation
A-1 ™ -6263/000/00

APPENDIX A -~ REFERENCES

Kameny, I., Weiner, J., Crilley, M., Burger, J., Gates, R., Brill, D.
"EUFID: The End User Friendly Interface to Data Management Systems,"

Fourth International Conference on Very Large Data Bases, West Berlin,

September, 1978.

Weiner, J. L. "Deriving Data Base Specifications from User Queries",
presented at the Second Berkeley Workshop on Distributed Data

Management and Computer Networks, May 25-27, Berkeley, California.

Winograd, T., "An A.I. Approach to English Morphemic Analysis", MIT
AI Lab, Memo No. 241, .February 1971.

Burger, J., Leal, A., Shoshani, A. '"Semantic Based Parsing and a
Natural-Language Interface for Interactive Data Management,'" AJCL
Microfiche 32, 1975, 58-71.

Johnson, S. C. "YACC: Yet Another Compiler-Compiler,” Bell

Laboratories, Murray Hill, New Jersey 07974.

31 January 1979 System Development Corporation
TM-6263/000/00

DISTRIBUTION

Defense Documentation Center 12 copies
Caneron Station
Alexandria, VA 22314

Office of Naval Reseerch 2 copies
ﬂ Information Systems Progrem

1 Code 437 :

Arlington, VA 22217

E‘ O0ffice of Navel Research 6 copies
Code 1021IP

s

1 Office of Naval Research 1 copy
' Code 200
Arlingtor, VA 22217

‘ ffice cf Naval Research . 1 copy
y Code L35
Ariington, VA 22217

{ Office of Naval Research . 1 copy
Code 458
[Arlington, VA 22217

Office of Naval Research 1 copy
[Branch Ofrice, Eoston .
‘ 495 Summer Strect

Boston, MA 02210

Office of Naval Research 1 copy
Branch Office, Chicago .

536 South Clark Street

Chicago, IL 60605

L i e cinis il

&

DU LT T2 o e s A

31 January 1979

DISTRIBUTION (cont'd)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

New York Area Office
T15 Broadway - 5th Floor
New York, NY 10003

Naval Research Labcratory
Technical Information Division, Code 2627
Weshington, D.C. 20375

Dr. A. L. Sla.fkosky

Scientific Advisor

Commandant of .the Marine Cor:s (Code RD-1)
Washington, D.C. 20380

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, CA 92152

M»_ W®. H, Rleissner

waval Suip Ressarch % Develtpment Center
Computation and Mathematics Department
Bethesda, MD 20084 ;

Captain Grace M. Hopper
NAICCM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Otverations
Washington, D.C. 20350

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-91T)
Office of Chief of Naval Uperations
Washington, D.C. 20350

Advanced Research Projects Agency
Information Processing Techniques
1400 Wilson Boulevard

Arlington, VA 22209

System Development Corporation

TM-6263/000/00

1 copy

1 copy

"6 copies

1 copy

1 copy

1 copy

1 copy

1 cupy

1 copy

a
|
}

