		HANG HANG AND	The second secon	An and a second	And the second s		
A the second sec	-						
				And Andrew Andre			
		A second se					
		Antonio antoni				<u>Hud</u>	- Commenter Streamenter Streamenter
	Tables of the second se	END DATE FILMED 579, DDC					
				$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Image: Section of the sec

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

THEORETICAL STUDY OF FINITE AMPLITUDE STANDING WAVES IN RECTANGULAR CAVITIES WITH PERTURBED BOUNDARIES

by

Mehmet Aydın

December 1978

Thesis Advisor:

A. B. Coppens

Approved for public release; distribution unlimited.

03 26 05

AD A0 663

DDC FILE COPY

9

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
REPORT NUMBER	2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER		
. TITLE (and Sublitte)		TA. TYPE OF REPORT & REMON COVERE		
Theoretical Study of Fin	ite Amplitude	Master's Thesis (
Standing Waves in Rectan with Perturbed Boundarie	ngular Cavities	6. PERFORMING ORG. REPORT NUMBER		
AUTRON(O)		8. CONTRACT OR GRANT NUMBER(*)		
Menmet Aydin				
PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASH AREA & WORK UNIT NUMBERS		
Naval Postgraduate Schoo Monterey,California 939	o1 /			
1. CONTROLLING OFFICE NAME AND ADDRI		Decomber 1978		
Naval Postgraduate Schoo Monterey,California 939		He white a stars		
4. MONITORING AGENCY NAME & ADDRESS	Il different from Controlling Off	ce) 15. SECURITY CLASS. (et this report)		
12) 64 pr /		Unclassified		
110		15. DECLASSIFICATION/DOWNGRADING		
6. DISTRIBUTION STATEMENT (of the Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the ebetree	ease; distributions and the second se	on unlimited.		
6. DISTRIBUTION STATEMENT (of the Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the electron	ease; distributio	on unlimited.		
6. DISTRIBUTION STATEMENT (of this Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the electron 8. SUPPLEMENTARY NOTES	ease; distributio	on unlimited.		
6. DISTRIBUTION STATEMENT (of this Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the eberred 8. SUPPLEMENTARY NOTES	ease; distributio	on unlimited.		
6. DISTRIBUTION STATEMENT (of this Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the ebetre 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide 11 not	ease; distributions and antered in Bleck 20, 11 differe	on unlimited.		
OISTRIBUTION STATEMENT (of this Report Approved for public rele J. DISTRIBUTION STATEMENT (of the ebetree SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde 11 nee	ease; distributions and an Block 20, 11 differe	on unlimited.		
6. DISTRIBUTION STATEMENT (of this Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the electron 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde 11 nee	ease; distributions and an Block 20, 11 different secondry and identify by block ma	on unlimited.		
C. DISTRIBUTION STATEMENT (of this Report Approved for public rele 7. DISTRIBUTION STATEMENT (of the electron 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if not 9. ABSTRACT (Continue on reverse elde if not	ease; distributions and an Block 20, 11 different seconty and identify by block ma	on unlimited.		
OISTRIBUTION STATEMENT (of this Report Approved for public rele OISTRIBUTION STATEMENT (of the electron SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elds if not The effects of varic on finite-amplitude acour rigid-walled cavity were The standing waves that corrected when the bound	ease; distribution ase; distribution and an Block 20, 11 different and identify by block man bus geometrical i astical standing a investigated u exist in an identify and investigated u	boundary perturbations waves in a rectangular, sing non-linear theory. al cavity must be ular. Three specific		
Approved for public rele Approved for public rele JOISTRIBUTION STATEMENT (of the electron SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elds if nee The effects of vario on finite-amplitude acour rigid-walled cavity were The standing waves that corrected when the bound examples (stepped, lineadout to demonstrate the open state s	ease; distribution ase; distribution at entered in Block 20, 11 different become and identify by block me bus geometrical istical standing a investigated u exist in an idea laries are irrego ar and wedged per porrections (in the	boundary perturbations waves in a rectangular, sing non-linear theory. al cavity must be plar.Three specific rturbations) were worked first order) near		

UNCLASSIFIED

CUMTY CLASSIFICATION OF THIS PAGE/When Role Entered.

(20. ABSTRACT Continued)

degeneracies for small perturbations. Those specific examples were compared to the experiments. The present theoretical model qualitatively predicts the effect of the perturbations on the behavior of the nonlinearly generated second harmonic. However, there are unexplained quantitative discrepancies between experiment and theory for a couple of cases.

DD Form 1473 1 Jan 73 5/N 0102-014-6601

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

2

79 03 26 050

Approved for public release; distribution unlimited.

Theoretical Study of

Finite Amplitude Standing Waves in Rectangular Cavities with Perturbed Boundaries

by

Mehmet Aydın

Lieutenant, Turkish Navy

B.S., Naval Postgraduate School, 1978

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS from the NAVAL POSTGRADUATE SCHOOL December 1978

Thesis Advisor

Author

Approved by:

Sanders Second Reader

Chairman, Department of Physics and Chemistry

Dean of Science and Engineering

ABSTRACT

The effects of various geometrical boundary perturbations on finite-amplitude acoustical standing waves in a rectangular, rigid-walled cavity were investigated using non-linear theory. The standing waves that exist in an ideal cavity must be corrected when the boundaries are irregular. Three specific examples (stepped, linear and wedged perturbations) were worked out to demonstrate the corrections (in first order) near degeneracies for small perturbations. Those specific examples were compared to the experiments. The present theoretical model qualitatively predicts the effect of the perturbations on the behavior of the nonlinearly generated second harmonic. However, there are unexplained quantitative discrepancies between experiment and theory for a couple of cases.

TABLE OF CONTENTS

1. INTRODUCTION	9
2. BACKGROUND	10
3. DEFINITIONS AND NOTATIONS	17
A. FREQUENCY PARAMETER	17
B. STRENGTH PARAMETER	17
C. e _n	18
D. PICTORIAL REPRESENTATION OF F	18
4. THEORETICAL DEVELOPMENT	19
A. CAVITY DESCRIPTION	19
B. THE PERTURBED BOUNDARY	20
5. SPECIFIC EXAMPLES	24
A. CAVITY WITH STEPPED PERTURBATION	24
B. LINEARLY PERTURBED CAVITY	28
C. CAVITY WITH WEDGED PERTURBATION	30
6. RESULTS	31
7. CONCLUSION	45
APPENDIX A	46
BIBLIOGRAPHY	58
INITIAL DISTRIBUTION LIST	59

LIST OF SYMBOLS

Sale Marking Street Street

P	Instantaneous density of the fluid
Po	Equilibrium density of the fluid
φ	Velocity potential
₫=⊽ჶ	Particle velocity
s	Condensation
▼	Gradient operator
⊽.	Divergence operator
∇x	Curl operator
η	Shear viscosity coefficient
78	Bulk viscosity coefficient
Ъ	(4/3) 7 / 7B
Y=Cp/Cv	Ratio of specific heats
$C_0^2 = (dP/dp)$	At /= /0 for acoustical processes
c _o	Speed of sound in an unbounded volume of air
P	Instantaneous total pressure
PO	Equilibrium total pressure
p=P-P _Q	Acoustic pressure
$\Box_{=}^{2} \nabla_{-}^{2} \partial_{0}^{2} \partial_{1}^{2}$	D'Lambertian operator
	D'Lambertian operator with losses
∇^2	Laplacian operator
с ^р	The frequency dependent apparent phase speed for standing wayes in cavity
RHS	Right hand side of equation
LHS	Left hand side of equation
(n,m,1)	A (time-independent) normal mode of a rectangular, rigid-walled cavity of dimensions L, L and Lz such that $k_z = n \pi/L_z$, $k_z = m \pi/L_z$, $k_z = 1 \pi/L_z$

(n,m,l/w,0)	A standing wave designation when the $(n,m,1)$ mode is driven at angular frequency w; 0 is the phase angle with respect to t=0.
Q	Quality factor
^Q n	Quality factor at resonance of the n th standing wave when driven
$\beta = (x+1)/2$	For a gas
м _о	Peak Mach number of the driven standing wave
c _n	Effective phase speed associated with the n th normal mode
W	(Angular) frequency at which the cavity is driven
wn	(Angular) resonance frequency of the n th standing wave when driven
Δ	Magnitude of perturbation on the boundary
t	Time
E	Perturbation parameter
P ₀	Classical linear solution for pressure for ideal boundaries
p'	First-order perturbation correction due to boundary irregularities
1 (t)	Unit step function
8(t)	Unit impulse function
Re{ }	Real part of { }
an	Oth order Fourier coefficient

ACKNOWLEDGEMENT

The autor wishes to acknowledge the support and encouragement of Professor Alan B. Coppens,who not only provided the initial idea for the topic,but also provided invaluable assistance throughout the course of the theoretical development.

The generous aid and encouragement of Professor James V. Sanders is gratefully acknowledged.

The generous aid of LT. Resai Gaglayan about the Versatec graphical process is gratefully acknowledged.

1. INTRODUCTION

The purpose of this research was to investigate some of the effects of boundary wall perturbations on finite amplitude standing waves in a rigid-walled rectangular cavity. The investigation was prompted by an examination of the experimental results of Coppens and Sanders[3], the research of DeVall[5] and of Kilmer[4], which suggested the existence of the excitation of modes other than those belonging to the family of the driven mode.

2.BACKGROUND

A plane elastic wave travelling in a non-dissipative fluid will change waveform as predicted by the relevant hydrodynamic equations [6],[7]. If the problem is extended to absorptive media, only waves of relatively high amplitude will change waveforms appreciably.

At the Naval Postgraduate School, Coppens and Sanders [3], Kilmer [4], and DeVall [5] have dealt with the study of finite amplitude waves in rigid-walled rectangular cavities.

One interesting result of these cavity experiments was the appearence of excitations of modes which were not <u>family members</u> of the driven mode.For example, assume a rigid cavity of dimensions L_x, L_y, L_z is driven acoustically at frequency w, the resultant pressure standing wave is of the form

 $cosk_{x}x cosk_{y}y cosk_{z}z cos(wt+\theta)$ (2.1) where $k_{x}=N\Pi/L_{x}$, $k_{y}=M\Pi/L_{y}$, $k_{z}=L\Pi/L_{z}$ (2.2) and N,M,L are integers.Eq.(2.1) can be represented by the notational shorthand

 $(N, M, L/w, \theta)$

If the cavity is driven to excite the (0,M,0) mode, then the family of standing waves consist of all of those of the form $(0,nM,0/nw,\theta_n)$ when $nw=nw_{0.M,0}$.

As it is stated in [3], "The standing waves which can be excited in any real cavity deviate from the predictions of the linear wave equation with ideal boundary conditions "for the following reasons:

(a).The presence of boundary-layer losses at the cavity surfaces yields a dispersive contribution to the wave equation.

(b).Geometrical irregularities alter the effective dimensions of the cavity.

Both of these mechanism can be treated as equivalent as long as the shift in frequency are so small that the actual resonances are close to the theoretical values resulting from the classical model." These are treated by assuming the dimensions are exact, and the apparent phase speed is determined on that basis.

The resonance frequency for each standing wave is defined as [3]

 $w_n = C_n \left[(n_x k_x)^2 + (n_y k_y)^2 + (n_z k_z)^2 \right]^{1/2}$ (2.3) where k's are given by Eq.(2.2) and n is a shorthand for the set (n_x, n_y, n_z) where n_x, n_y, n_z are integers, and C_n is the apparent phase speed appropriate for that frequency.

The non-linear wave equation applicable to this problem can be obtained as follows:

The continuity equation for wave propagation in Eulerian coordinates is

$$\nabla \cdot (\rho \vec{u}) + \frac{\partial \rho}{\partial t} = 0$$
 (2.4)

this equation can be written in terms of the condensation, $S \equiv (P - P_0)/P_0$ as

$$\nabla \cdot \left[(1+s)\vec{u} \right] + \frac{\partial s}{\partial t} = 0$$
 (2.5)

The equation of motion in Eulerian coordinates for a contained viscous fluid is

$$P\left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}\right] = -\nabla P + b \gamma \nabla (\nabla \cdot \vec{u}) - \gamma \nabla \times \nabla \times \vec{u} + ODAT$$
(2.6)

where

$$P = \frac{\mathcal{B}C_0^2}{\delta} \left(\frac{\rho}{\beta}\right)^{\delta} \stackrel{i}{=} \frac{\mathcal{B}C_0^2}{\delta} \left[1 + \delta S + \frac{\delta(\delta-1)}{2} S^2\right]$$
(2.7)

ODAT=Other dispersive and absorptive terms arising from boundary effects.

Eq.(2.6) can be rearrange in the form of

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} + \frac{1}{P} \nabla P = \frac{1}{P} \vec{L} \vec{u}$$
(2.8)
where the operator \vec{L} describes those physical processes
leading to absorption and dispersion.

One can write $\nabla x \vec{u}=0$ and therefore $\vec{u}=\nabla \vec{\Phi}$, where $\vec{\Phi}$ is the velocity potential, based on the irrotational velocity assumption. Hence, $\mathcal{L}\vec{u}=\mathcal{L}\nabla \vec{\Phi}$. Replacing $\vec{u}=\nabla \vec{\Phi}$ and using the condensation, Eq.(2.8) can be written as

$$\frac{\partial}{\partial t}\nabla\bar{\Phi} + \frac{i}{2}\nabla(\nabla\bar{\Phi})^{2} + \frac{C_{0}^{2}}{\delta-i}\nabla(1+s)^{\delta-i} = \nabla\mathcal{L}\bar{\Phi}$$
(2.9)

Now, with the help of Eq.(2.5) and(2.9), and after a good deal of manipulation the non-linear wave equation may be approximated in terms of velocity potential

$$c_{p}^{2} \Box_{L}^{2} \Phi = \frac{\partial}{\partial t} \left[\left(\nabla \Phi \right)^{2} + \frac{\delta - 1}{2} \frac{1}{C_{0}^{2}} \left(\frac{\partial \Phi}{\partial t} \right)^{2} \right]$$
(2.10)

where

$$c_{p}^{2} \Box_{L}^{2} \equiv C_{0}^{2} \Box^{2} + \frac{\partial}{\partial t} L$$

It should be noted that if the fluid is lossless and $c_p=C_0$ then (2.10) reduces to a previously known non-linear wave equation [9]

$C_{0}^{2} \Box^{2} \Phi \doteq \frac{\partial}{\partial t} \left[\left(\nabla \Phi \right)^{2} + \frac{Y_{-1}}{2} \frac{1}{C_{0}^{2}} \left(\frac{\partial \Phi}{\partial t} \right)^{2} \right]$

(2.10a)

In order to express the approximate non-linear wave equation in terms of acoustic pressure and particle velocity, one can rearrange the Eq.(2.9) in terms of p and \vec{u} and combine that equation with (2.10). The result is a quadratically non-linear wave equation [2]

$$c_{\rho}^{2} \Box_{L}^{2} \left(\frac{P}{\ell_{o}^{2} C_{o}^{2}}\right) \doteq -\frac{1}{2} \frac{\partial^{2}}{\partial t^{2}} \left[\forall \left(\frac{P}{\ell_{o}^{2} C_{o}^{2}}\right)^{2} + \left(\frac{\vec{u}}{C_{o}}\right)^{2} \right] \\ + \frac{1}{2} C_{o}^{2} \nabla^{2} \left[\left(\frac{P}{\ell_{o}^{2} C_{o}^{2}}\right)^{2} - \left(\frac{\vec{u}}{C_{o}^{2}}\right)^{2} \right]$$
(2.11)

If it chances to be that $\left(\frac{p}{l_0C_0^2}\right)^2$ and $\left(\frac{\vec{u}}{C_0}\right)^2$ nearly satisfy the wave equation, $C_0^2 \square^2() = 0$, then on the RHS of Eq. (2.11) $C_0^2 \nabla^2 \doteq \frac{\partial^2}{\partial t^2}$ and (2.11) becomes

 $c_{\rho}^{2} \Box_{L}^{2} \left(\frac{P}{\rho C_{L}^{2}}\right) \doteq -\frac{\partial^{2}}{\partial t^{2}} \left[\frac{y_{-1}}{2} \left(\frac{P}{\rho C_{L}^{2}}\right)^{2} + \left(\frac{\overline{u}}{C_{\rho}}\right)^{2}\right]$ (2.12) Further, if it happens that $\frac{\partial^{2}}{\partial t^{2}} \left(\frac{P}{\rho C_{L}^{2}}\right)^{2} \doteq \frac{\partial^{2}}{\partial t^{2}} \left(\frac{\overline{u}}{C_{\rho}}\right)^{2},$

as is true for solutions to the wave equation separated in cartesian coordinates, then [2]

$$C_{p}^{2} \Box_{L}^{2} \left(\frac{\varphi}{\rho C_{o}^{2}}\right) \doteq -\frac{\partial^{2}}{\partial t^{2}} \left[\frac{\vartheta+1}{2} \left(\frac{\varphi}{\rho C_{o}^{2}}\right)^{2}\right]$$
(2.13)

(Note that this is true only for cartesian coordinates.)

As it is stated in [3]"The LHS of Eq.(2.13) is the classical, linear wave equation pertinent to the system under study. The RHS can be interpreted as a forcing function consisting of a three-dimensional spatial distribution of phase-cohorent sources. In a second-order perturbation theory, "this forcing function is obtained from the classical (firstorder) solution of the acoustic problem. The second-order perturbation solution describes the nonlinearities resulting from the self interaction of the classical solution. Higherorder perturbation solutions consider the interaction of the non-linear solution with itself, and the forcing function is composed of products of both classical and nonlinearly generated terms.

Thus, if a system is driven at frequency w, the nonlinear term in..."equation (2.13) "... will force the existence of all integer multiples nw of the driving frequency and the full solution must contain all harmonics of the input frequency. In a closed cavity, each of those nonlinearly generated waves whose frequency lies close to the resonance frequency of a standing wave of the cavity and whose associated spatial function matches that of the standing wave can be strongly excited. Just how strongly will depend on the quality factor Q for the particular resonance and the difference between the resonance frequency of the standing wave and the harmonic nw.....

"Consider two limiting cases.

"(1) If the forcing function does not have its frequency nw close to w_n , this standing wave is being forced at a frequency far removed from its resonance. Since this yields the inequality

 $|C_0^2 D_p^2| \gg |\frac{\partial}{\partial t} L_p|$ (2.14)

losses can be ignored in... "Eq.(2.13).

"(2) If $nw \sim w_n$, then the standing wave is being forced near resonance, and losses must be retained in..."Eq.(2.13). "The value of C_n can be determined from the apparent dimensions of the cavity and the measured resonance frequency w_n .

"The losses are described by the measured Q_n of the resonance. This means that the linear-wave equation operator for the system can be written as

$$C_0^2 \Box^2 + \frac{\partial}{\partial t} \underline{L} \doteq C_n^2 \Box^2 - \frac{nw}{Q_n} \frac{\partial}{\partial t}$$
(2.15)

"Comparison: of cases (1) and (2) reveals that the responce of the cavity when $nw \not w_n$ is order of 1/Q compared to that when $nw \sim w_n$. Thus for the high-Q resonances usually encountered in cavities with rigid walls, the components in the forcing function which excite standing waves far from resonance can be ignored compared to those components exciting standing waves near resonance....

"The non-linear, coupled, transcendental equation appliciable to this problem can be expressed as

$$R_{n} \begin{cases} \cos \\ \sin \end{cases} (\not q_{n} - \theta_{n}) = N_{0} M_{0} \beta Q_{n} \cos \theta_{n} \left[\frac{1}{2} \sum_{j=1}^{n-1} R_{j} R_{n-j} \begin{cases} \cos \\ \sin \end{cases} (\not q_{j} + \not q_{n-j}) - \sum_{j=1}^{\infty} R_{n+j} R_{j} \begin{cases} \cos \\ \sin \end{cases} (\not q_{n+j} - \not q_{j}) \right]$$
(2.16)

for all n>1. The values of Q_n and w_n must be determined from the infinitesimal-amplitude behavior of the cavity. The Mach number M_0 and driving frequency w are known and N_0 has the value

 $N_0 = 1/2$ for a one-dimensional standing wave

1/4 for a two-dimensional standing wave

1/8 for a three-dimensional standing wave."

 R_n is the Fourier coefficient of nth harmonic component, normalized such that $R_1=1$. pn is the phase angle of the nth harmonic component, where $p_1=0$, and the phase angle θ_n is given by [3]

 $\tan \theta_{n} = -F_{n}$ (2.17) where $F_{n} = Q_{n} [(nw)^{2} - w_{n}^{2}]/(nw)^{2} = 2Q_{n} (\frac{nw - w_{n}}{w_{n}})$ for $\frac{nw - w_{n}}{w_{n}} \ll 1$ (2.18)

Equation (2.16) can be solved by a method of successive approximations on a digital computer. This has been done by [3] and [5] and both decided that the theoretical model can be used to identify the modes of a non-ideal, rigid-walled cavity provided quantities e_n to be defined later are sufficiently small. The theoretical model in its present form fails to account for the excitation of modes other than those belonging to the family of the driven mode. This excitation was observed to occur only in the case of nearly degenerate modes. It is believed to be caused by some linear coupling mechanism within the cavity.

The purpose of this research is to see if the presence of wall irregularities can explain how non-family members may be strongly excited, and to present an example to support this theory.

3.DEFINITIONS AND NOTATIONS

A.FREQUENCY PARAMETER

The frequency parameter is a quantity which indicates the position of the driving frequency relative to the resonance frequency, f_1 , of driven mode in terms of the Q_1 of the driven mode. The frequency parameter is defined by

 $F_1 = 2Q_1(f - f_1)/f_1$ (3.1)

B.STRENGTH PARAMETER

The investigation of the pressure waveform in the cavity required the calculation of the strength parameter from the observable quantities. The strength parameter is defined as

STRPM=M Q1

where

 $M_0 = P_1 / (\rho_0 C_0^2)$ (3.3)

(3.2)

and P_1 is the peak amplitude of p_1 , the pressure distribution of the driven mode.

In terms of observable or calculable quantities it is reformulated as [5]

STRPM= $\sqrt{2} \ V \beta Q_1 / (S_m \rho C_0)^2$ (3.4) where V and S_m are the rms voltage reading and microphone sensitivity respectively of the receiver used to sense the standing wave. C. e_n is defined to indicate the position of w_n relative to the classical harmonic frequencies, nw_1 .

$$e_n = \frac{w_n - nw_1}{nw_1} \tag{3.5}$$

and one can relate e_n with F_n from (2.18) such as

$$F_n = 2Q_n e_n$$
 (3.6)

D. A pictorial representation of F_n which will be useful throughout the development is given in Fig.1.From now on three subscripts will be used for convenience. i.e.

$$F_{nml} = \left[1 - \left(\frac{w_{nml}}{nw}\right)^2\right] Q_{nml} = \cot \sigma_{nml}$$
(3.7)

$$Q_{nml} \sin \overline{r_{nml}} = \frac{Q_{nml}}{(1+F_{nml}^2)^{1/2}} \sin \overline{r_{nml}}$$
 (3.8)

4. THEORETICAL DEVELOPMENT

A. CAVITY DESCRIPTION

Assume a perfectly rigid-walled rectangular cavity which has one wall perturbed such that the cavity dimensions are $L_x[1+ \epsilon f(y,z)], L_y$ and L_z as shown in Fig.2 below. Also assume the perturbation on the boundary is very small compared to the cavity dimensions, $|\epsilon f(y,z)| \ll 1$.

FIGURE 2

The cavity is to be excited by a source near the origin in such a way that the (N,M,L) mode is driven at a frequency close to its resonance frequency.

B. THE PERTURBED BOUNDARY

For a rigid-walled rectangular cavity with ideal boundaries $(\mathbf{\xi}=\mathbf{0})$, the pressure \mathbf{p}_0 obtained from the linear wave equation with losses

$$\Box_{L}^{2} P_{0}^{=0}$$
(4.1)

is subject to the following conditions,

$$\nabla p_0 \cdot n = 0$$
 at x=0, L_x (4.2)
y=0, L_y
z=0, L_z

where \overline{n} is the local normal to the ideal boundary. The solution for p_0 in terms of Mach number is given by [4]

$$\frac{P_0}{P_0 C_0^2} = M_0 \cosh_x x \cosh_y y \cosh_z z \cos(wt+\theta)$$

$$= M_0 (N, M, L/w, \theta)$$
(4.3)

where k's are given in Eq.(2.2), and

$$w=c_{p} (k_{x}^{2}+k_{y}^{2}+k_{z}^{2})^{1/2}$$
(4.4)

If the cavity has perturbed walls, the solution will be in terms of a summation of the classical linear solution for ideal boundaries plus perturbation correction terms due to the irregular boundary:

$$p=p_{0}+\epsilon_{p}+\epsilon_{p}^{2}+\epsilon_{p}^{2}$$
, (4.5)

Since the magnitude of the boundary perturbation is kept small, second and higher terms in **E** can be considered insignificant, so that

 $p=p_0+\epsilon p'$ (to first order) (4.6) and p must satisfy the following conditions, $\square^2 p=0$ (4.7)

and

∇p.n=0

at x=0,
$$L_{x}$$
 [1+ ϵ f(y,z)] (4.8

)

z=0,L_z

where n, the local normal to the real surface, is obtained by taking the gradient of the equation for the boundary, given by [2]

$$\vec{n} = \nabla \left\{ x - L_{x} [1 + \epsilon f(y, z)] \right\}$$
(4.10)

Thus, to the first order in E,

$$\vec{n} = \hat{x} - \epsilon L_{x} \frac{\partial f(y,z)}{\partial y} \hat{y} - \epsilon L_{x} \frac{\partial f(y,z)}{\partial z} \hat{z}$$
(4.11)

and when Eq.(4.11) is used in (4.8) the result is

$$\left[\frac{\partial P}{\partial x} - \varepsilon L_{x} \frac{\partial f(y,z)}{\partial y} \frac{\partial P}{\partial y} - \varepsilon L_{x} \frac{\partial f(y,z)}{\partial z} \frac{\partial P}{\partial z}\right]_{x = L_{x}} \left[1 + \varepsilon f(y,z) \right]$$
(4.12)

A Taylor series expansion [4] for p evaluated at the real boundary $L_{1+\epsilon}f(y,z)$ produces

$$P|_{x=L_{x}[i+\epsilon f(y,z)]} = P|_{x=L_{x}} + \frac{\partial P}{\partial z}|_{x=L_{x}} \in L_{x}f(y,z)$$
$$+ \frac{i}{2} \frac{\partial^{2} P}{\partial x^{2}}|_{x=L_{x}} [\epsilon_{L_{x}}f(y,z)]^{2} + \cdots \qquad (4.13)$$

Substituting Eq.(4.6) into RHS of (4.13), taking the partial derivative with respect to x on both sides and keeping the first-order terms in $\boldsymbol{\epsilon}$, yields

$$\frac{\partial f}{\partial x}\Big|_{x=L_{x}[i+\epsilon f(y,z)]} = \frac{\partial f_{0}}{\partial x}\Big|_{x=L_{x}} + \frac{\partial f_{0}}{\partial z}\Big|_{x=L_{x}} + \frac{\partial f_{0}}{\partial z^{2}}\Big|_{x=L_{x}} + \frac{\partial f_{0$$

Taking the partial derivatives with respect to y and z and using exactly the same procedure gives

$$\frac{\partial p}{\partial y}\Big|_{x=L_{x}\left[1+\varepsilon f(y,z)\right]} = \frac{\partial f}{\partial y}\Big|_{x=L_{x}} + \varepsilon \frac{\partial p}{\partial y}\Big|_{x=L_{x}} + \frac{\partial^{2} f_{0}}{\partial y \partial x}\Big|_{x=L_{x}} \varepsilon L_{x} f(y,z)(4.15)$$

 $\frac{\partial f}{\partial z}\Big|_{x=L_{x}\left[i+\varepsilon f(y_{1}z)\right]} = \frac{\partial f_{o}}{\partial z}\Big|_{x=L_{x}} + \varepsilon \frac{\partial f'}{\partial z}\Big|_{x=L_{x}} + \frac{\partial^{2} f_{o}}{\partial z \partial x}\Big|_{z=L_{x}} \\ \varepsilon L_{x} f(y_{1}z) + \cdots$

(4.16)

Substituting (4.14),(4.15) and (4.16) into (4.12) and keeping the first-order terms in $\boldsymbol{\epsilon}$ results in

$$\frac{\partial \mathbf{P}^{i}}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{L}_{\mathbf{x}}} = \mathbf{L}_{\mathbf{x}}\Big[-\mathbf{f}(\mathbf{y},\mathbf{z})\frac{\partial^{2}\mathbf{f}_{\mathbf{z}}}{\partial \mathbf{x}^{2}} + \frac{\partial \mathbf{f}(\mathbf{y},\mathbf{z})}{\partial \mathbf{y}}\frac{\partial \mathbf{f}_{\mathbf{z}}}{\partial \mathbf{y}} + \frac{\partial \mathbf{f}(\mathbf{y},\mathbf{z})}{\partial \mathbf{z}}\frac{\partial \mathbf{f}_{\mathbf{z}}}{\partial \mathbf{z}}\Big]_{\mathbf{x}=\mathbf{L}_{\mathbf{x}}} (4.17)$$

The RHS of Eq.(4.17) can be represented as a Fourier series in cosines, so that p' can be expressed as a summation of normal modes.Hence,

$$\frac{\partial p'}{\partial x}\Big|_{x=L_{x}} = \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} a_{ml} \cos \frac{m\pi}{L_{y}} y \cos \frac{l\pi}{L_{z}} z \cos(wt+\theta)$$
or
$$(4.18)$$

$$\frac{\partial p'}{\partial x}\Big|_{x=L_{k}} = \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} d_{ml} (0, m, l/w, \theta)$$

where

$$\partial_{00} = \frac{1}{L_y L_z} \int_{0}^{L_y L_z} [G] dy dz \qquad (4.19a)$$

$$d_{mo} = \frac{2}{L_y L_z} \iint_{0}^{L_y L_z} [G] \cos \frac{m\pi}{L_y} y \, dy \, dz \qquad (4.19b)$$

$$\mathbf{a}_{ol} = \frac{2}{L_y L_z} \int_{0}^{L_y L_z} \left[\mathbf{G} \right] \cos \frac{L\pi}{L_z} \, \mathrm{dy} \, \mathrm{dz} \qquad (4.19c)$$

$$d_{ml} = \frac{4}{L_y L_z} \int_{0}^{L_y L_z} [G] \cos \frac{m\pi}{L_y} \cos \frac{L\pi}{L_z} dy dz , \frac{m\neq 0}{L\neq 0} (4.19d)$$

and G is defined as

$$G = \frac{\partial P}{\partial x} \Big|_{x=L_x}$$
(4.19e)

In order to find the contribution to p' from each of the terms, it is stated[2] that for a cavity forced by a dynamic boundary condition at a boundary

$$c_{p}^{2} \mathbf{D}_{L}^{2} p' = 0$$
 (4.20)

and the dynamic boundary condition from the (m,1)th term is

$$\frac{\partial P_{ml}}{\partial x}\Big|_{x=L_{x}} = A\cos\frac{m\pi}{L_{y}}\cos\frac{L\pi}{L_{z}}e^{i(wt+\theta)}$$
(4.21)

$$P_{ml} = -A \frac{1}{\left(\frac{w}{C_0}\right)^2 L_x} \sum_{n=0}^{\infty} \Delta_n (-1)^n S_{nml} \cos \frac{n\pi}{L_x} x \cos \frac{m\pi}{L_y} y \cos \frac{l\pi}{L_z} z e^{(4.22)}$$

where

$$\Delta_{n} = \begin{cases} 1 & \text{if } n=0 \\ 2 & \text{if } n=1,2,3,\dots \end{cases}$$
(4.23)
and S_{nml} is given by Eq.(3.8).

Applying this solution to Eq.(4.18) gives the complete solution for the first-order perturbation

$$p' = \sum_{\substack{m=0\\L=0}}^{\infty} p'_{mL}$$

$$= -\frac{1}{\left(\frac{w}{C_0}\right)^2 L_x} \sum_{\substack{m=0\\L=0\\L=0}}^{\infty} \partial_{mL} \Delta_n (-1)^n S_{nmL} (n, m, L/w, \theta + \sigma_{nmL})$$
(4.24)

and combining (4.24) with (4.6) yields the total acoustic pressure in the cavity.

$$P = (N, M, L/W, \theta) - \underbrace{\frac{e}{(\frac{W}{C_0})^2 L_x}}_{\substack{n \ge 0 \\ m \ge 0 \\ l = 0}} \underbrace{\sum_{n \ge 0}^{\infty} d_{ml} \Delta_n (-1)^n S_{nml} (n, m.L/W, \theta + \overline{G_{nml}})}_{\substack{n \ge 0 \\ l = 0}}$$
(4.25)

If this is near a resonance, $w \sim w_{nml}$, then this term will dominate the summation and all other non-degenerate terms can be omitted. Consequently, the Eq. (4.25) becomes

$$P = (N, M, L/W, \theta) - \frac{\epsilon}{\left(\frac{W}{C_{0}}\right)^{2}} d_{m_{1}} \Delta_{n} (-1)^{n} S_{nm_{1}} (n, m, L/W, \theta + \sigma_{nm_{1}})$$

$$\left(\frac{W}{C_{0}}\right)^{2} L_{x}$$

$$(4.26)$$

5. SPECIFIC EXAMPLES

A. CAVITY WITH STEPPED PERTURBATION

Assume that the rigid-walled rectangular cavity given in Fig.2 is perturbed as shown in Fig.3 below, and also assume that the cavity is driven in the (0,1,0) mode resulting $(0,1,0/w,\theta)$ standing wave and that the (0,2,0) and (1,0,0) modes are (nearly) degenerate.

FIGURE 3

From Fig.3 the equation for the boundary at L_x can be found,

$$x = L_{x} \left\{ I - \frac{\Delta}{L_{x}} \left[1(y - L') - 1(y - L) \right] \right\}$$
(5A.1)

By means of Eq.(4.8) \in and f(y,z) can be written as

$$f(y,z) = - [1(y-L') - 1(y-L)] = t L' \langle y \langle L \rangle (5A.3)$$

Since the (0,2,0) and (1,0,0) modes are degenerate the emphasis

of this development will be on these particular modes. The pressure distribution of (0,2,0) mode is

$$P_{020} = P_2 \cos \frac{2\pi}{Ly} y \cos (2Wt + \Theta_2)$$

or

$$P_{020} = P_2(0, 2, 0 / 2 W, \theta_2)$$

where P_2 is the amplitude of (0,2,0) mode.

(5A.4)

Utilizing the theory developed in the preceeding sections and using the equations (4.17) through (4.26), the first-order perturbation correction can be found

$$\frac{\partial p'}{\partial x}\Big|_{x=L_{x}} = L_{x} \left[\frac{\partial f(y,z)}{\partial y} \frac{\partial P_{020}}{\partial y} \right]_{x=L_{x}}$$
(5A.5)
$$= \frac{2\pi P_{2}L_{x}}{L_{y}} \left\{ \left[\sin \frac{2\pi}{L_{y}} y \cos(2wt + \theta_{z}) \right] \left[\delta(y-L') - \delta(y-L) \right] \right\}_{x=L_{x}}$$

Eq.(5A.5) can be written as a Fourier series

$$\frac{\partial p'}{\partial x}\Big|_{x=L_x} = \frac{2\pi P_2 L_x}{L_y} \sum_{m=0}^{\infty} \partial_m \cos \frac{m\pi}{L_y} y \cos(2wt + \theta_2) \quad (5A.6)$$

Inversion of the Eq.(5A.5) and (5A.6) yields the Fourier coefficients

$$B_{m} = \frac{2}{L_{y}} \left[sin(\frac{2\pi}{L_{y}}L') cos(\frac{m\pi}{L_{y}}L') - sin(\frac{2\pi}{L_{y}}L) cos(\frac{m\pi}{L_{y}}L) \right] (5A.7)$$

and

$$\partial_0 = \frac{1}{L_y} \left[\sin\left(\frac{2\pi}{L_y}L'\right) - \sin\left(\frac{2\pi}{L_y}L\right) \right]$$
 (5A.8)

Recalling Eq.(4,23) and (4.24), first order perturbation correction, p'.

is found as

$$p' = -\frac{2\pi P_2 L_x}{L_y} \frac{d_0}{\left(\frac{2w}{C_n}\right)^2 L_x} (2)(-1)^2 Q_{100} \sin \sigma_{100} \cos \frac{\pi x}{L_x} e^{i(2wt+\theta_2+\sigma_{100})} (5A.9)$$

and

$$\epsilon p' = \frac{4\pi P_2}{L_y} \epsilon \partial_0 \frac{1}{\left(\frac{2w}{C_0}\right)^2} Q_{100} \sin \sigma_{100} \cos \frac{\pi x}{L_x} e^{i(2wt + \theta_2 + \sigma_{100})}$$
(5A.10)

where

$$\left(\frac{2w}{C_{o}}\right)^{2} = \left(2k_{100}\right)^{2} = \left(\frac{4\pi}{L_{y}}\right)^{2}$$

Hence, the total pressure, associated with the angular frequency 2w, in the cavity is

$$P = P_{020} + \in P'$$

= $P_2(0, 2, 0/2w, \theta_2) + \frac{P_2 L_y}{4\pi} \in \mathcal{D}_0 Q_{100} \sin \sigma_{100} (1, 0, 0/2w, \theta_2 + \sigma_{100})$
(5A.11)

The total pressure at the microphone position, x=0 and y=L, is

$$P|_{mic. position} = P_2 \operatorname{Re} \left\{ \begin{array}{c} i(2wt+\theta_2) \\ +\left[\frac{Ly}{4\pi} \in d_0 \operatorname{Q}_{100} \sin \tau_{100}\right] \end{array} \right\} (5A.12)$$

Define B=[] and after a little manipulation and use of trigonometric identities, (5A.12) becomes

$$P_{\text{mic. position}} = P_2 \left\{ (1 + B\cos \sigma_{100}) \cos(2wt + \theta_2) - (B\sin \sigma_{100}) \sin(2wt + \theta_2) \right\}$$
(5A.13)

and the amplitude of the total pressure in the cavity is

$$P|_{mic. position} = P_2 \sqrt{(1+B\cos \sigma_{100})^2 + (B\sin \sigma_{100})^2}$$
 (5A.14)

Eq.(5A.14) is the corrected value of the amplitude of the second harmonic of the driving mode, obtained by Eq.(2.16), because of the boundary irregularity given in Fig.3.

Now, it is desired to express $\sin q_{00}$ in terms of the frequency parameter of the driving mode, (0,1,0). With the help of Fig.1.sin q_{00} can be written as

$$\sin \sigma_{100} = \frac{1}{\left\{1 + Q_{100}^2 \left[1 - \left(\frac{f_{100}}{2f}\right)^2\right]^2\right\}^{1/2}}$$
(5A.15)

If f approaches to zero then σ_{100} approaches to T, and if f approaches to infinity then σ_{100} is close to zero. In these same limits cos σ_{100} goes to -1 and +1 respectively, Hence

$$\cos \sigma_{100} = \pm \sqrt{1 - \sin^2 \sigma_{100}}$$
 (5A.16)

For $2f \sim f_{100}$,(5A.15) becomes

$$\sin \sigma_{100} \doteq \frac{1}{\left\{1 + \left(2Q_{100} \frac{2f - f_{100}}{f_{100}}\right)^2\right\}^{1/2}}$$
(5A.17)

Recalling Eq.(3.1) and (3.5), F_{100} and e_{100} can be written in the form of

$$F_{010} = 2Q_{010} \frac{f - f_{010}}{f_{010}}$$
(5A.18)

and

$$e_{100} = \frac{f_{100} - 2f_{010}}{2f_{010}}$$
 (5A.19)

Eq.(5A.19) can be solved for f_{100} and this substituted into (5A.17)

$$2Q_{100} \frac{2f - f_{100}}{f_{100}} = 2Q_{010} \frac{Q_{100}}{Q_{010}} \frac{f - f_{010}(1 + e_{100})}{f_{010}(1 + e_{100})}$$
(5A.20)

Use of 1/(1+e100)=1-e100 and little manipulation reveals

$$\sin \sigma_{100} \doteq \frac{1}{\sqrt{1 + \left\{\frac{Q_{100}}{Q_{010}} \left[F_{010} - 2Q_{010} e_{100}\right](1 - e_{100})\right\}^2}}$$
(5A.21)

As a result, equations (5A.14), (5A.16), (5A.21) are the final amplitude correction of the second harmonic of the driving mode obtained by Eq.(2.16). A computer program for this was developed by author and is given in appendix A.

B. LINEARLY PERTURBED CAVITY

Using the same assumptions in section A, assume that the rigid-walled rectangular cavity is perturbed linearly as shown in Fig.4 below.

The equation for this perturbation is

$$X = L_{x} \left[1 + \frac{\Delta}{L_{x}} \left(1 - \frac{2}{L_{y}} y \right) \right]$$
 (5B.1)

Hence,

$$\mathbf{E} = \frac{\mathbf{\Delta}}{\mathbf{L}_{\mathbf{x}}} \tag{5B.2}$$

)

and

$$f(y,z) = (1 - \frac{2}{L_y}y)$$
 (5B.3)

Applying the same procedure as in section A, the first-order perturbation correction and the total acoustic pressure associated with angular frequency 2w in that particular cavity can be found

$$\frac{\partial P'}{\partial x}\Big|_{x=L_{x}} = L_{x}\left\{\left[-\frac{2\pi P_{z}}{L_{y}}\sin\frac{2\pi}{L_{y}}y\cos(2wt+\theta_{z})\right]\left(-\frac{2}{L_{y}}\right)\right\}$$

$$= \frac{4\pi P_{z}L_{x}}{L_{y}^{2}}\sin\frac{2\pi}{L_{y}}y\cos(2wt+\theta_{z})$$
(5B.4)

Eq.(5B.4) can be written as a Fourier series and the Fourier coefficient, a_m , is found by an integration procedure evaluated in the interval 0 to L_y. The result is

$$d_{m} = -\frac{1}{\pi} \left\{ \frac{\cos(2-m)\pi}{(2-m)} + \frac{\cos(2+m)\pi}{(2+m)} - \frac{1}{(2-m)} - \frac{1}{(2+m)} \right\}, m \neq 2$$

$$d_{0} = 0.0$$

$$d_{2} = 0.0$$

$$(5B.5)$$

Recalling the Eq. (4, 24), the first-order perturbation correction for (0, 2, 0) mode is

$$P' = -\frac{4\pi P_2 L_x}{L_y^2} \frac{\partial_0}{\left(\frac{2W}{C_0}\right)^2 L_x} (2)(-1)^1 S_{100} (1.0, 0/2W, \theta_2 + \sigma_{100})$$
(5B.6)

and the total acoustic pressure associated with angular frequency 2w in the cavity becomes

$$P = (0.2, 0/2W, \theta_2) - \frac{4\pi P_2}{L_y^2} \frac{e_{\partial_0}}{(\frac{2W}{C_0})^2} (2)(-1)^1 S_{100} (1, 0, 0/2W, \theta_2 + \sigma_{100}) (5B.7)$$

since a₀=0.0

$$P = (0.2, 0/2W, \theta_2)$$

(5B.8)

According to the calculation developed above there is no need to make a first-order perturbation correction to the (0,2,0) mode in the cavity shown in Fig.4. As a result, the pressure distribution is equal to the second harmonic of the driven mode, since $a_0=0.0$ and this yields $p^{i}=0.0$ C. CAVITY WITH WEDGED PERTURBATION

Under the same assumptions made in sections A and B, assume that the cavity is perturbed as shown in Fig.5 below.

The equation for this perturbation is

$$X = L_{x} \left[I - \frac{\Delta}{L_{x}} \left(\frac{2y}{L_{y}} - I \right) \right]$$
(5C.1)

By means of Eq.(4.8) $\mathbf{\epsilon}$ and f(y,z) can be written as

$$\mathbf{E} = \frac{\mathbf{\Delta}}{\mathbf{L}_{\mathbf{x}}} \tag{5C.2}$$

and

$$S(y,z) = 0.0 , y \leq L_y/2 = -(\frac{2y}{L_y} - 1) , y \geq L_y/2$$
(5C.3)

Applying exactly the same procedure followed in section A, the total pressure amplitude in the cavity(in first-order perturbation) is

$$P \Big|_{\text{mic. position}} = P_2 \sqrt{(1 + B\cos\sigma_{100})^2 + (B\sin\sigma_{100})^2}$$
(5C.4)

where

 $B = \frac{1}{2\pi} \partial_0 \in Q_{100} \sin \sigma_{100}$

sin Goo and cos Goo are given by Eq. (5A.21) and (5A.16) respectively.

The theoretical predictions of these specific examples were examimed with series of experiments developed by [8]. The further discussions about these will be given in the next section.

6. RESULTS

In this section the theoretical predictions performed in sections 5A, 5B and 5C will be compared to the experimental results obtained by [8].

The information on the empirical losses and resonance frequencies is contained in the Q's and e's. These are the values used in the computer program to predict the harmonic distortion on the basis of Eq.(2.16) and is plotted as thin solid curves. The results of including the first-order perturbation correction are plotted as thick solid curves for each specific example. The theoretical curves in figures 6 through 16 were plotted along with the experimentallymeasured values for the cavity configurations shown on top of each figure. The theoretically-predicted values were generated for frequency-parameter intervals of 0.2, and the experimentally-measured values were plotted as squareblocks.Data were taken, and theoretical predictions made, for different strength parameters for the (0,n,0) mode associated with different cavity configurations. It is important to note that the n=2 distortion peaks when the system is driven at this frequency. That is, when the driving frequency w is equal to (1/2) w₂, there is maximum content of P_2 . The point where this occurs for each P_n/P_1 curve is indicated by arrow with the label of F020.At that point the value of frequency parameter is

 $F_{020}^{=2}$ Q_{010}^{e} O_{20}^{e} (The same thing could be done, of course, for any member

of the (0,n,0) family). The arrow labelled as F_{100} indicates the position where the nearly degenarate (1,0,0) mode is resonant, and the value of F_{100} is

 $F_{100}^{=2} Q_{010} e_{100}$

The theoretical predictions made in section 5B were compared to the experimental results as seen in Fig.7. When Fig.7 is compared to Fig.6, the unperturbed cavity, it is clearly seen that the theory and experiment are excellently in agreement.

For a wedged perturbation, the theory predicts the frequency of the second harmonic at which the effect of the perturbation occurs as seen in Fig.8. The predicted magnitude of the perturbation effect for this configuration is in good agreement with the experiment. The anomolous behavior of the third harmonic in Fig.8 is unexplained.

For stepped perturbation, when the cavity is perturbed, but the geometry leads to no predicted correction as seen in Fig.9 or leads to predicted correction less than about 0.02 as in Fig.12 or less than about 0.05 as in Fig.14, then it was observed that there was very little or no effect from the (1,0,0) mode.Agreement for these cases is good except for the region lying between frequency parameter 4 and 9 in Fig.9.What happened in that region is also unexplained, but it was observed one time only.When the amount of perturbation correction is increased the theory predicts effects larger than experimentally observed.However, the effect of the perturbation appears at the right frequency

parameter as is seen in Fig.'s 10,11,13,15 and 16.

Choosing the shim position, length and magnitude is very important as well as is choice of the strength parameter. For the shims, Δ =0.04 and 0.25 inches for stepped and wedged perturbations respectively. The effect of strength parameter can be seen in Fig.'s 15 and 16. The experimental data associated with the third harmonic in Fig.15 were believed to come from harmonic distortion in the piston motion.

. 1 .

. .

FIGURE 7

FIGURE 8

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

7. CONCLUSION

Non-linear theory has been applied to standing waves in a rigid-walled rectangular cavity with a perturbed boundary in order to find one possible mechanism for the excitation of a standing wave other than those belonging the family of the driven mode. It was observed that such an excitation exists if the boundary perturbation and the dimensions of the cavity are favorably chosen.

It appears that the present theoretical model succesfully predicts the major features of harmonic content for finiteamplitude standing waves in the cavity when the geometry leads to no perturbation correction (Fig.7 and 9).When the magnitude of the perturbation is increased the predicted features were larger than experimentally observed.Second-order perturbation corrections may be needed to account for these discrepancies.

APPENDIX A

The original computer program for Eq.(2.16) was prepared by Coppens in 1973, and author made some extentions to that program so that it would (1) calculate the perturbation correction and (2) present the results graphically. The program calculates the relative amplitudes and phase angles of standing waves in cavities keeping the strength parameter constant and changing the frequency parameter to generate response curves showing the amplitudes of the nonlinearly excited standing waves as function of the frequency parameter E. It also calculates the perturbation correction according to Eq.(4.24) and then finds the total relative pressure amplitude using Eq.(4.26). The program also draws the graph of the relative pressure amplitudes of the ideal cavity, total relative pressure amplitude of the perturbed cavity and the experimental data on a 3 cycle semilog paper. The Versatec Graphics Plotting Manual [10] was used for the graphical processes on the IBM 360 of the Randolph Church Computer Center, Naval Postgraduate School.

SOME USEFUL INFORMATION ABOUT COMPUTER PROGRAM

* Quantities marked with (*) must be controlled or changed for each run.

*KON The number of iterations throughout the region of interest.For this program the iterations are performed with 0.2 intervals.

*NCUR The number of the experimental curves to be drawn + 1

*NDAT The number of experimental data in the region of interest

BUR(I,J) The array that stores the experimental data

*XL The length of the cavity in the x-direction

*YL The length of the cavity in the y-direction

*DELTA The magnitude of the perturbation

*STRPM Strength parameter

*FREQ Frequency parameter stored in ATA(I,1) and ZER(I,1).Input as the maximum value of FREQ in the region of interest

XDAT(JET) The x coordinate

YDAT(JET) Value of the curve f(x) for XDAT

ATA(I,N),N≠1The array that stores the logarithmic value of the pressure amplitudes of the harmonics of the driving mode

ZER(I,N),N#1The array that stores the linear value of the pressure amplitudes of the harmonics of the driving mode

*Q(I) Quality factors of driving mode and harmonics
 of it

*E(I) e's value of driving mode and harmonics of it

- *Q100 Quality factor of (1,0,0) mode
- *E100 e-value of (1,0,0) mode
- *XDAT(JET+1) Integer value of left-hand corner on the x-axis. It must have the same value as the 7th argument of subroutine CALL AXIS for x-axis.
- *YDAT(JET+1) Integer value of left-hand corner on the y-axis. It must have the same value as the 7th argument of subroutine CALL AXIS for y-axis.

XDAT(JET+2)

YDAT(JET+2) Increment value of x and y for scalling purposes

HUM

The linear value of the total acoustic pressure amplitude associated with angular frequency 2w.

*B

 $\stackrel{\bullet}{=} Q_{100} \sin \sigma_{100}(1/4) L_y a_0 \text{ for stepped perturbation}$ $\stackrel{\bullet}{=} Q_{100} \sin \sigma_{100}(a_0/2) \text{ for wedged perturbation}$ and a_0 is the 0th Fourier coefficient.

	S IN CAVITIES CHANGE A STARTING DECK A	I PHI (50), THETA(50), FAC (50), S(50), C (50), FAC (50), FISO, FISO, FAC (50), CCRR 56, STA 57, STA 5	ENGTH PARAMETER = , F5.3, Y PARAMETER = , F6.3, = , 15, = , 15, = , 15/)	ВХ N, 6X, АМРЦІТЬОЕ, 8X, РНІ, , (, ворні, /) 5.4,1F14.5)	f10.1f10.3) 9x,105Lp.,}]lx.'RSLP'.	EXPERIMENTAL DATAS WITH FCRMAT 1001	(1, J), J=1, NCUR)
	THIS PROGRAM CALCULATE STANDING WAVES IN CAV NO DATA READIN	DI MENSI ON RAMP(50) PHI(50) 3 ZER(62,13) 900 DPHI(50) FHI(50 DATA LMASKI/-30584/JCMASKI CATA ZER BUR, ATA/186040./ CATA XDAT, YDAT/124+0./ R=10./3.	I FORMAT(//33X, STRENGTH PA 2 /33X, FREQUENCY PARAM 3 /33X, NTOP 5 /33X, NMAX 5 /33X, NTOP	2 FCFMAT(17X,15)4F15.4) 3 FORMAT(//16X,11, EX, N+6 4 FORMAT(22X,15)1E15.4,1F14 5 FCRMAT(22X,15)1E15.4,1F14	FCRMAT(16X:2710-1710) FCRMAT(8E10.3) FCRMAT(7/20X:NT:9X105LP 2 L1X10PINF',10X,105LP 10 FORMAT(141)	DO 475 REACS THE EXPERIMINATION OF CURVES TO	NCUR=3 NDAT=24 NDAT=24 NDAT=24 NDAT NDAT NDAT 1001 1 (BUR(1, J), J=1
1							, 14

383 INITIALIZES RATIO(N) AND DPHIN) ATES INITIAL VALUES FOR RATIO(N) AND DPHIN) FHE VALUE OF N=NT AFTER WHICH RATIC =0.0 AND ramp(N-111+0.5+(1.0+CORR(N)) 6111(N.O(N),E(N),N=1,NMAX) =1,KON 80 N=2.0MAX AMP(A)-RMIN) 365.369.370 (NUM* XNBF / XDEN) 2 (ARGN, ARGD) 2 TEMP 3 TRPM / TEMP 176,371,371 JM** 2+XD2) SF**2+XD2) 42(XNUM,XDEN) SCRT(XN) + 5COS(XN-5.0) +2.0*PT IFF+CORP (N) (1)0* HER E THROUGH DO 383 CALCUI AND OBTAINS J=N, NMAX NMAX = (RAH 20 0= 1 FR ADOR JOU -+0 369 373 58 382 376 372 30

N PARAVETERS	M SKIPS TO 8		NOd	
-PI)474,471,471 PI PI 6.6)N.T1,T2,RATIG(N),DPFI(N) 6.5)LN FI AND THEN CALCULATES RATI FILAN CALCULATES RATI	NT NTOP. IF (NT LE 2), PROGRA, 81,189	(N) (N) TIO(N) * X X * (N) * X	TNN*XD-TN*TN) D-TN*TRN D-TN*TDN RDEN RDEN RPEN REDEN F*XD-TD)/TN F*XD-TD)/TN F*XD-TD)/TN F*XD-TD)/TN	31192,152,1914 1.0-RATIO(2)) 6,21NT,RINF,RSLP,DPINF,DSLP
11 12 12 12 12 12 12 12 12 12 12 12 12 1	IF (NT-2)81 TR=0.0 TRN	XXX=FLGA7(N X=1,0/XN TC=10+00HI TA=TR+RAT TA=T0+00HI TAN=TN+XAT TAN=T0+00HI TAN=T0N+0 TAN+0 TAN+	CCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCC XCCCCCC XCCCCCC XCCCCCC XCCCCCC XCCCCCC XCCCCCCCC	RIFIRING - 1 RIFING - 1 RSLF=2.0* CONTINUE RRIFE CONTINUE RRIFE DG 80 N=N1
477 477 980 980 980	185	00	1 40	191
00	U		00	د

FCUND. (N) FROM HEN FROM (N)=RMIN C(N) ARE N=2'LP FOR RAPP(N). N=2'LP WHEN IN LE N LE LP) ALL ATES NO R YOND S(N) THRU 300 CALCULATES NEW VALUES LATES NEW (N) FOR N=2 (N) THEN FOR (1) ,272 (C. 1+NX-MJX)/XMX ZZ F-DSL P+TEMP Hd N SU a a ZZ =0PI 14× 62 A " Dandi 0 11 CONTINUE MO ANAGOOO INLTINN INLTINN 275 5111 275 5111 276 5111 276 5111 SCM L +Oxa SU Jac -0 262 273 273 271 277 260 818 300 0000 0000

53

UU

		R &M F (N))					ALC DPHICN) HIGHEST Tran NMAX. DR
LMS1=0.0 LMS2=0.0 =N-1 F(M)105,105,102 0 104 J=1,4	=	LWS2=SUMS2+S(K)*C(J)+C(K)*S(J) UVC2=SUMC2+C(K)*C(J)+S(K)*S(J) =0.5*SUMS1-SUMS2 =0.5*SUMC1-SUMS2 =0.5*SUMC1-SUMC2 EST=F**246**2 AMP(N)=RAMP(N)+FIX(N)*(FAC(N)*SCRT(TEST)-R	F(RAMP(N3-RMIN)110,111,111 C 131 J=N,LP AMP(J)=0.0 (J)=0.0 (J)=0.0 C 10 58	EST=ATAN2(F,G) EST=PEST+THETA(N)-PHI(N) F(ABS(TEST)-PI)113,113,122 F(TEST-PI)124,123,123 EST=TEST-2.0*PI C TO 113	EST=TEST+2.0*PI HI (N) = PHI (N) +FI X (N) *TEST F (ABS (PHI (N))- PI)125,129,27 F (PHI (N) -PI)29,28,28 F (PHI (N) -PI)29,28,28 F (N) = PHI (N) -2.0*PI	FI (N) = PHI (N) +2 .0 *PI (N) = RAMP(N) *SIN(PHI (N)) (N) = RAMP(N) *COS(PHI (N)) ONTINUE	THERE THRU 183 CALCULATES NEW RATIO(N) A FOR ALL NONZERO RAMP(N). RAMP(NT) IS H NONZERO RAMP. BUT NT IS NEVER GREATER RATIO(N) AND CPHI(N) ARE SET TC ZERO FC (NT L N LE NMAX)
001210	105	80 1 80 1	110 111	111 122 123 123	1134 282 282	00000 00000	00000

Hard Manager

STATES AND AND ADDRESS

RTTE(6.41N.RAMP(N),PHI(N) RTTE(6.61(N,RAMP(N),PHI(N),RATID(N),DPHI(N),A=2,NMAX) *1)=FREQ *1)=FREQ TING TO DRAW A SEMI-LOG(3*70) GRAPH AS A BACKGRCUND PLOTS(0,0,0) 11 1=1,3 FE(6.4)(N, FAMP(N), PHI(N), N=M.NTOP) FE(6.9) FE(6.2)NT, RINF, RSLP, DPINF, CSLP F(6.10) UNUE WRITE(6.11)(N.RAMP(N),PHI(N),N=1,NT) INUE WRITE(6,1)STRPM,FREQ,NTOP,NMAX,NT WRITE(6,3) WRITE(6,3) 2,10 .LE.9.001) GO TO 1788 RAMP(PEH) R*ALOGIO(RAMP(MEH)*1009.0) 6(T0 2222 V(k)=R*(AL0610(2+.2)-AL0610(2)) TGE 4.0) 60 TC 3333 111.111 111.111 80 N=2 NMAX 1 71 1 1 1 1 1 73 1 1 73 1 7 1 72 0 1 1 7 6 0 1 7 1 73 0 1 1 7 1 74 0 1 1 7 1 74 0 1 1 (N) = 0 1 1 7 1 80 0 0 1 1 NUE 1 63 0 0 1 1 NUE J=N, NMAX J)=0.0 22 J=1,60 1000 CONT C 4000 CCNT 165 NT 20 182 170 1789 3333

PAR # ETER: -2017, 0. -2. 1.) +9.10.90.00.1. RTD(0..0..70.70.0.11180.VLWASK1) ING TO SCALE THE AXIS ING THE AXIS XIS(0..0..FREQUENCY PARAWETER. XIS(0..0..FREQUENCY PARAWETER. XIS(0..0..FREQUENCY PARAWETER. XIS(0..0..FREQUENCY PARAWETER. 7 1=2.10 G TO CRAW EXPERIMENTAL CURVES ()=BUR(J,1) 1)=R*AL0610(BUR(J,1)*1000.) R # (AL 0610 (Z+1.)-AL 0610 (Z)) AT, YDAT, JET, 1,0,0) 1786 J=1 KON ZER(J 1) .NE.O.) GO TO 1785 I=KAT+1 TO 1786 I=JET+1 783 J=1.NDAT UR(J11).EQ.0.) GO TO 1783 JET+1 9.KCN) G0 T0 1002]=ZER(J,]) +2)=1 E(XCAT =1,3 5º 1=1 .9 184 1 UNA UNU A A 1783

	5		S	v	r n	
Net	50		00	80	80	
Net	50		~	~	~ 0	
Net	50.4		-	-		
	00	U			J	

P(4)/P(

BIBLIOGRAPHY

- [1] A.B.Coppens, Private Communication
- [2] A.B.Coppens, Private Communication
- [3] A.B.Coppens, and J.V.Sanders, "Finite Amplitude Standing Waves within Real Cavities", J. Acoust. Soc. Am., 58(6), December, 1975.
- [4] M.J.Kilmer II, Finite Amplitude Effects in Rectangular Cavities with Perturbed Boundaries, Thesis, Naval Postgraduate School, Monterey, California, 1975.
- [5] R.R.DeVall, <u>Finite Amplitude Waves in Imperfect Cavities</u>. Thesis, Naval Postgraduate School, Monterey, California, 1973.
- [6] G.Kirchoff, Ann. Phys. Leipzig., V.134 P.177-193, 1868.
- [7] H.Lamb, Dynamical Theory of Sound 2nd ed., Chap.6, Edward Arnold and Co., London England, 1925.
- [8] E.Kuntsal, Finite Amplitude Standing Waves in Rectangular Cavities with Perturbed Boundaries, Thesis, Naval Postgraduate School, Monterey, California, December, 1978.
- [9] D.T.Blackstock, J. Acoust. Soc. Am. 36,217(L),1964.
- [10] Versatec Graphics Plotting Manual, Tech. Note No:0141-34 February, 1978.

INITIAL DISTRIBUTION LIST

INTIMA PIOTRIPOTION ATOT	Number	of	Copies
1.Defense Documentation Center		2	
Cameron station			
Alexandria, Virginia 22314			
2.Library, Code 0142		2	
Naval Postgraduate School			
Monterey, California 93940			
3.Department Library, Code 61		2	
Department of Physics and Chemistry			
Naval Postgraduate School			
Monterey, California 93940			
4.Professor Alan B. Coppens, Code 61 Cz		2	
Department of Physics and Chemistry			
Naval Postgraduate School			
Monterey, California 93940			
5.Professor James V. Sanders, Code 61 Sd		1	
Department of Physics and Chemistry			
Naval Postgraduate School			
Monterey, California, 93940			
6.LT. Mehmet Aydin		3	
Zincirlikuyu Caddesi No=99			
Kasimpasa, Istanbul/TURKEY			
7.LT. Ender Kuntsal		1	
Akatlar, Zeytinoglu Caddesi			
Safak Apt. 240/16			
Etiler, Istanbul/TURKEY			
8.Turk Deniz Kuvvetleri Komutanligi		2	
Ankara/TURKEY			
9.Dr.D.T.Blackstock		1	
Applied Research Laboratory			
University of Texas			
Austin, Texas 78712			

10.Dr.Logan Hargrove, Code 421
Physics Program, ONR,
Ballston Centre Tower #1,
Quincy Street, Washington DC., 20613