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ABSTRACT

The effects of various geometrical boundary perturbations
on finite-amplitude acoustical standing waves in a rectangular,
rigid-walled cavity were investigated using non-linear theory.
The standing waves that exist in an ideal cavity must be
corrected when the boundaries are irregular.Three specific
examples (stepped, linear and wedged perturbations) were
worked out to demonstrate the corrections (in first order)
near degeneracies for small perturbations.Those specific
examples were compared to the experiments.The present
theoretical model qualitatively predicts the effect of the
perturbations on the behavior of the nonlinearly generated
second harmonic.However, there are unexplained quantitative
discrepancies between experiment and theory for a couple of

cases.

q — e r————— e e e -

o




|
}

ST o 55 o O B MBS S

TABLE OF CONTENTS

1. INTRODUCTION ..ccovecsconvsccnsnsosssosansnsanscs

2. BACKGROUND L L B B

3. DEFINITIONS AND NOTATIONS

@ e 0 0 000 0000000000000

A. FREQUENCY PARAMETER L I I T I I I D A

B. STRENGTH PARAMETER

C.e @ © © © 0 0 0 0 0 0 0 N0 000000 L 0L O E s 0000

n

®© © 00 0 0 00 000 00000000000 00

D. PICTORIAL REPRESENTATION OF Fn chsanmreamess

4. THEORETICAL DEVELOPMENT
A. CAVITY DESCRIPTION

B. THE PERTURBED BOUNDARY

5. SPECIFIC EXAMPLES .....

A. CAVITY WITH STEPPED PERTURBATION

B. LINEARLY PERTURBED CAVITY ....

C. CAVITY WITH WEDGED PERTURBATION .......

6. RESULTS ccceccccvccccccsvcsvssccscsnsccse T

7. CONCLUSION .ccccccecces
APPENDIX A cccccvccovencns
BIBLIOGRAPHY «.ccccecceces
INITIAL DISTRIBUTION LIST

® e o 0 0 0 0 LY
LIS ® o e 0 0 0
LIRS . e o 0 0

10
17
17
17
18
18
19
19
20
24
24
28
30
31
45
46
58
59




)’:cp/c v
2
Co=(dP/dp)

(n,m,1)

LIST OF SYMBOLS

Instantaneous density of the fluid
Equilibrium density of the fluid
Velocity potential

Particle velocity

Condensation

Gradient operator

Divergence operator

Curl operator

Shear viscosity coefficient

Bulk viscosity coefficient

4/3)M/ Ta

Ratio of specific heats

At p= o for acoustical processes

Speed of sound in an unbounded volume of air
.Instantaneous total pressure
Equilibrium total pressure
Acoustic pressure

D'Lambertian operator
D'Lambertian operator with losses
Laplacian operator

The frequency dependent apparent phase speed
for standing wayes in cavity

Right hand side of equation
Left hand side of equation
A (time-independent) normal mode of a rectangulay,

rigid-walled cavity of dimensions L,,L,  and L,
such that k,=nW/L., k =mW/L, k,=1w/L,"




(n,m,1/w,8) A standing wave designation when the (n,m,1l)

Q
Q

n

P=(¥+1)/2

1)
dt)

mode is driven at angular frequency w; 0 is
the phase angle with respect to t=0.

Quality factor

Quality factor at resonance of the n th
standing wave when driven

For a gas
Peak Mach number of the driven standing wave

Effective phase speed associated with the n th
normal mode

(Angular) frequency at which the cavity is driven

(Angular) resonance frequency of the n th
standing wave when driven

Magnitude of perturbation on the boundary
Time
Perturbation parameter

Classical linear solution for pressure for
ideal boundaries

First-order perturbation correction due to
boundary irregularities

Unit step function
Unit impulse function

Real part of { ;

0th order Fourier coefficient
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1. INTRODUCTION

The purpose of this research was to investigate some
of the effects of boundary wall perturbations on finite
amplitude standing waves in a rigid-walled rectangular
cavity.The investigation was prompted by an examination
of the experimental results of Coppens and Sanders(3],
the research of DeVall[5] and of Kilmer[4] ,which suggested

the existence of the excitation of modes other than

those belonging to the family of the driven mode.
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2 .BACKGROUND

A plane elastic wave travelling in a non-dissipative
fluid will change waveform as predicted by the relevant
hydrodynamic equations [6],[7].If the problem is extended
to absorptive media,only waves of relatively high amplitude
will change wavefovrms appreciably.

At the Naval Postgraduate School,Coppens and Sanders
(3] ,Kilmer [4],and Devall [5] have dealt with the study
of finite amplitude waves in rigid-walled rectangular cavities.

One interesting result of these cavity experiments was
the appearence of excitations of modes which were not

family members of the driven mode.For example,assume a rigid

cavity of dimensions Lx’L ,Lz is driven acoustically at

¥
frequency w,the resultant pressure standing wave is of the
form

cosk_x coskyy cosk,z cos(wt+8) {2s1)

where kx=N"/L ky=MTl'/Ly 5 kz=L'|T/Lz (2.2)

v
and N,M,L are integers.Eq.(2.1) can be represented by the
notational shorthand

(N,M,L/w,8)
If the cavity is driven to excite the (0,M,0) mode,then the
family of standing waves consist of all of those of the form
(0,nM,0/nw,8,)when nwénwo,M’o.
As it is stated in [3],"The standing waves which can be

excited in any real cavity deviate from the predictions of

the linear wave equation with ideal boundary conditions

10




"for the following reasons:
(a).The presence of boundary-layer losses at the cavity
surfaces yields a dispersive contribution to the wave equation.
(b) .Geometrical irregularities alter the effective
dimensions of the cavity.
Both of these mechanism can be treated as equivalent as
long as the shift in frequency are so small that the actual

resonances are close to the theoretical values resulting

from the classical model." These are treated by assuming
the dimensions are exact,and the apparent phase speed is
determined on that basis.

The resonance frequency for each standing wave is

defined as [ 3]

2 2 2 271/2
wn=Cln, k) + (o) k)T + (0, k) ] (2.3)

where k's are given by Eq.(2.2) and n is a shorthand for

the set (n ,n,) where n_,n are integers,and C_ is

x’ny y’nz
the apparent phase speed appropriate for that frequency.

The non-linear wave equation applicable to this
problem can be obtained as follows:

The continuity equation for wave propagation in Eulerian

coordinates 1is
- .
V.(pB)+ 5= =0 (2.4)
k this equation can be written in terms of the condensation,
: Siff-ﬁ;)/lpo as
-
VE(|+s)uJ+-gf-=° (2.5)

P | The equation of motion in Eulerian coordinates for a

contained viscous fluid is
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i, 2.y ]=-VP+byv(v.il)-7vxvxT +ODAT
PLE «(R.7)T]=-TP+byv(v.0)-Tvxvxi+ &

where

P,ﬁ}g(%)xéf;“_:[l+xs+'w st (2.7)

ODAT=0ther dispersive and absorptive terms arising from
boundary effects.
Eq.(2.6) can be rearrange in the form of
’aﬁ % LU

+ (. V)u+-;rVP (2.8)
where the operator15 describes those physical processes
leading to absorption and dispersion.

> - ;

One can write Vxl=0 and therefore u.-Vc} ,whereéls the
velocity potential,based on the irrotational velocity
assumption.Hence,ﬁﬁ:ﬂV@ .Replacing a=VQ and using the

condensation,Eq.(2.8) can be written as

2 -
%v@-r-;-.v(ﬂ)ﬂé‘- v+ = vLd (2.9)

Now,with the help of Eq.(2.5) and(2.9), ard after a good
deal of manipulation the non-linear wave equation may be

approximateéd in terms of velocity potential
L 2 woi V(00 \2
Gatgs A Lerds 35 45 (3R]
where
G.,_C:U-l'

It should be noted that if the fluid is lossless and

{2.10)

cp:C0 then (2.10) reduces to a previously known non-linear

wave equation [ 9]
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Go'd= 2 [vd)s Gt & (32)°]
(2.10a)
In order to express the approximate non-linear wave
equation in terms of acoustic pressure and particle velocity,

one can rearrange the Eq.(2.9) in terms of p and 2 and

combine that equation with (2.10).The result is a quadratically

non-linear wave equation [ 2]
CPUL( ‘)"—.:"'—é-atz [x( 1)+<—) ]

P07 R - ()]

(2.11)

: 2 Q2 o
If it chances to be that(i%}) and (E-) nearly satisfy
[ ]
2
the wave equation, C, Uz( )=0 ,then on the RHS of Eq.

2 2
€2.11} C,Vzé-aat-i and (2.11) becomes

G0l (R ) 2 - 2l B () ()] 2.12)

- 2
Further,if it h that ’3‘ t. 2% r
urther,if it happens tha £ (_f_c‘.z) - (C )

as is true for solutions to the wave equation separated in

cartesian coordinates, then [2]

2 o
C:U,_(-é%.,) -"“;{i [ & (P C.‘) ] (2.13)

(Note that this is true only for cartesian coordinates.)

As it is stated in [3]"The LHS of Eq.(2.13) is the
classical,linear wave equation pertinent to the system
under study.The RHS can be interpreted as a forcing function
consisting of a three-dimensional spatial distribution of

phase-cohorent sources.In a second-order perturbation theory,
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"this forcing function is obtained from the classical (first-

order) solution of the acoustic problem.The second-order

perturbation solution describes the nonlinearities resulting

from the self interaction of the classical solution.Higher-

order perturbation solutions consider the interaction of the

non-linear solution with itself,and the forcing function is
composed of products of both classical and nonlinearly
generated terms.

Thus,if a system is driven at frequency w,the nonlinear
term in..."equation (2.13) "... will force the existence of
all integer multiples nw of the driving frequency and the
full solution must contain all harmonics of the input
frequency.In a closed cavity,each of those nonlinearly
generated waves whose frequency lies close to the resonance
frequency of a standing wave of the cavity and whose
associated spatial function matches that of the standing
wave can be strongly excited.Just how strongly will depend
on the quality factor Q for the particular resonance and
the difference between the resonance frequency of the
standing wave and the harmonic nw.....

"Consider two limiting cases.

"(1) If the forcing function does not have its frequency
nw close to wn,this standing wave is being forced at a
frequency far removed from its resonance.Since this yields

the inequality 3
2.2
| GoOp | » I'ﬁff’f | (2.1%)

losses can be ignored in..."Eq.(2.13).
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2) 11 nweasw_,then the standing wave is being forced

R ATV

near resonance,and losses must be retained in..."Eq.(2.13).
"The valua of C, can be determined from the apparent dimensions
of the cavity and the measured resonance frequency W

"The losses are described by the measured Qn of the

resonance.This means that the linear-wave equation operator

for the system can be written as > Ji
g2 = Cipionw 2 '
CoO ""’??L = Ca0 —q, (2.15) { ]

"Comparison: of cases (1) and (2) reveals that the E
responce of the cavity when anbwn is order of 1/Q compared !i
to that when nWAuwn.Thus_for the high-Q resonances usually |
encountered in cavities with rigid walls,the components in
the forcing function which excite standing waves far from

resonance can be ignored compared to those components

exciting standing waves near resonance....

"The non-linear,coupled,transcendental equation appliciable

to this problem can be expressed as

1

cos
; RjRn-jisinJ (¢3+¢;-j)
z cOoS
_2_Fass Rjisin} "n+j"j)] (2.16)
§=1

for all n)l.The values of Qn and W, must be determined from

cos s
Rn{sin}(ﬂn'en)=NoM0PQn cos® [1/2 g;

the infinitesimal-amplitude behavior of the cavity.The Mach

number M0 and driving frequency w are known and Ng has the value

N,=1/2 for a one-dimensional standing wave

0
1/4 for a two-dimensional standing wave

1/8 for a three-dimensional standing wave."

15 :




R, is the Fourier coefficient of nth harmonic component,
normalized such that R,=1. ’n is the phase angle of the
nth harmonic component,where ﬂ1=0.,and the phase angle en
is given by[3]

tan9n=-Fn (2.17)

where Fn=Qn[(nw)2-wn2]/(nw)2§2Qn(E!%§n) forg3£i39<(1 (2.18)

n
Equation (2.16) can be solved by a method of successive
approximations on a digital computer.This has been done by

[3] and[s] and both decided that the theoretical model can

be used to identify the modes of a non-ideal,rigid-walled
cavity provided quantities e, to be defined later are
3 sufficiently small.The theoretical model in its present

form fails to account for the excitation of modes other

than those belonging to the family of the driven mode.
This excitation was observed to occur only in the case of
nearly degenerate modes.It is believed to be caused by

some linear coupling mechanism within the cavity.

< NPT AR NS

The purpose of this research is to see if the presence

e g

of wall irregularities can explain how non-family members

may be strongly excited,and to present an example to support

this theory.

N e ———— e e —— o e e =




3.DEFINITIONS AND NOTATIONS

A.FREQUENCY PARAMETER

The frequency parameter is a quantity which indicates
the position of the driving frequency relative to the
resonance frequency,fl,of driven mode in terms of the Q1
of the driven mode.The frequency parameter is defined by

F1=2Q1(f-fl)/f1 (3.1)

B.STRENGTH PARAMETER
The investigation of the pressure waveform in the cavity
required the calculation of the strength parameter from the

observable quantities.The strength parameter is defined as

STRPM:MOPQ1 (3.2)
where
= 2
MO-Pl/(f’OCO ) (3.3

and P, is the peak amplitude of p,,the pressure distribution
of the driven mode.
In terms of observable or calculable quantities it is
reformulated as[5]
STRPM= {7 VBQ,/(S_pCy)° (3.4)
where V and Sm are the rms voltage reading and microphone
sensitivity respectively of the receiver used to sense the

standing wave.

STPPR.

AP




£ e, is defined to indicate the position of L relative

to the classical harmonic frequencies,nwl.

W_-=-NW i
e = D 1 !

—— (3.5)

n nwj

and one can relate e with F, from (2.18) such as
F =2Q e, (3.6)
D. A pictorial representation of Fo which will be useful
throughout the development is given in Fig.l.From now on

three subscripts will be used for convenience. i.e.

Fn becomes anl'
Ny el
Qaml
Gamt
= ( ant)
FIGURE 1
. “aml .2 _
anl'[l'( nw ) ]Qnml'COtaghl (373

. nml
Qum1 Sin0pm * F—I/Z (3.8)
nml
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4. THEORETICAL DEVELOPMENT

A. CAVITY DESCRIPTION

Assume a perfectly rigid-walled rectangular cavity which
has one wall perturbed such that the cavity dimensions are
Lx[1+€f(y,z)] ,Ly and Lz as shown in Fig.2 below.Also assume

the perturbation on the boundary is very small compared to

the cavity dimensions, [€f(y,z) (4 1.
z

Le

i‘source

/r- - — -

Lx Pertyrbed wall

FIGURE 2
The cavity is to be excited by a source near the origin
in such a way that the (N,M,L) mode is driven at a frequency

close to its resonance frequency.

19
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B. THE PERTURBED BQUNDARY
For a rigid-walled rectangular cavity with ideal boundaries
(€=0),the pressure P obtained from the linear wave equation
with losses
[]LZ Py=0 (4.1)
is subject to the following conditions,
Vpo =0 at x=0,L
y=0,L,
z=0,Lz
where R is the local normal to the ideal boundary.The solution

for p, in terms of Mach number is given by [4]

Po
;T__?=M0 cosk_x coskyy coskz cos(wt+8)
0C0

=M. (N,M,L/w,8)

0

where k's are given in Eq.(2.2), and

wee (kx2+k 2+1<22)1’2 (4.4)

P y
If the cavity has perturbed walls,the solution will be

in terms of a summation of the classical linear solution
for ideal boundaries plus perturbation correction terms
due to the irregular boundary:

p=p0+cp'+62p"+ (4.5)
Since the magnitude of the boundary perturbation is kept
small,second and higher terms in €can be considered
insignificant,so that

P=py+€p' (to first order)

and p must satisfy the following conditions,

2
tJ p*0

e e ——
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¥p.R=0 at x=0,Lx[l+€f(y,z)] (4.8)
y=0,L

Y
z=0,Lz

R o S———

where'ﬁ,the local normal to the real surface,is obtained by

taking the gradient of the equation for the boundary,given

by (2]

sy

A= Vix-Lx[?HGf(y,z)J} (4.10) _,
Thus,to the first order in €, ?
2 Auars_o; e s
X-GL T— XTZ ('4.11) {f
and when Eq.(4.11) is used in (4.8) the result is
[3 b W2) P _ ¢ Oftn2) Qf] 0 (+12)
‘a '33 ’az 6— x:Lx[\*'G'F(’lz)]

A Taylor series expansion(u] for p evaluated at the real

boundary Lx[1+5f(y,z)] produces
+ ’3?, ElxfF (3.2

-
PI:-L;[ueFum] P't-Lx xaly .
L 22 €Ly F(3i2)] #-oer (4.13)
+ g aakl, Cetnforn]

Substituting Eq.(4.6) into RHS of (4.13),taking the partial

derivative with respect to x on both sides and keeping the
first-order terms in€ ,yields

f. ‘af‘ ELFO2)¢---

k1 = l '
X IxalyDisefiyad] % luale x xst.; - xslx  (4.14)

Taking the partial derivatives with respect to y and z and

using exactly the same procedure gives

! 2
2P 2l Ledf] 4R on,
%’ x.L;["P“‘,lt,] y xsly xely x=ly
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. of
xs l.x[l'f‘f"ln] 72

2
2

x= Lx

Substituting (4.14),(4.15) and (4.16) into (4.12) and keeping
the first-order terms in € results in

'B" . 'bF(y.z) ?P.

ol [ £o)

‘af
‘az

x:Lx 29

+ 'BF(y.l) '()fo

a—

x

The RHS of Eq.(4.17) can be represented as a Fourier

2y

G.L,‘F(y.z) +

(4

'''''

.16)

L (4.17)

series in cosines,so that p' can be expressed as a summation

of normal modes. Hence,

x= '-x M=o |=0
or

Z S e (0. 1/w18)

’ax k= LH. msg |20
where Ly L,

o L’Lz J'f [G] dydz

25
Lylz

dmo = & J] T61eos T

LyLz

do. = 2 J.J L6l co.s.‘.'.". dydz

L’ 200

o = &[] To10m 305 otz g

Ly L2
Lyl2
and G is defined as
‘a '
G= __Ii
2x

__ r wt+0
Z Zam cos Ty cos 7 z cos( )

22

(u

(4.

(4.

(u

(u

.18)

19a)

19b)

.19¢c)

.194d)

.1%e)
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In order to find the contribution to p' from each of the

terms,it is stated[2]that for a cavity forced by a dynamic

boundary condition at a boundary

T
c, 0L p'= (4.20)
and the dynamic boundary condition from the (m,l)th term is
, o
L) t(wt +0)
——— = Acos M = Ty cosl Ll:r e (i 313
()3 aiba .y
then
in t(wt+0 +6pmi)
P ZA (-1).5 cos xcos-—yCos z.e
i N 8 (4.22)
where
e B! if n=0
An'{Z if n=1,2,3,.... (4.23)

and Snml is given by Eq.(3.8).

Applying this solution to Eq.(4.18) gives the complete

solutlon for the first-order perturbation

p= Zm

(4.24)
ZamA (=1) Sy (ML /W, 64 Gy )

z
(‘c':) Lx 5%
and combining (4. 2#) with (4.6) yields the total acoustic

pressure in the cavity.

(N,M,L/W,G) EM\A““') Snmt("'"L/W'e"' mL)
(?.") "m:o (4.25)

If this is near a resonance,wu,w then this term will

nml’
dominate the summation and all other non-degenerate terms

can be omitted.Consequently,the Eq.(4.25) becomes

n
P: (N'M'L/w'e)"('%')ILa"‘l a,(-1) sﬂmt(n'm'l/w' 6+ Gamt ) (4.26)
o) bx

|
{
i 1
B
|
|
|
|
4
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S. SPECIFIC EXAMPLES
A. CAVITY WITH STEPPED PERTURBATION

Assume that the rigid-walled rectangular cavity given in Fig.2
is perturbed as shown in Fig.3 below,and also assume that the cavity
is driven in the (0,1,0) mode resulting (0,1,0/w,8) standing wave

and that the (0,2,0) and (1,0,0) modes are (nearly) degenerate.

y
Gy

X
FIGURE 3
From Fig.3 the equation for the boundary at Ly can be found,
xsle{i-2[10-1) - 1(y-1)]] o
By means of Eq.(4.8) € and f(y,z) can be written as
€= 4/, (5A.2)

fiy,z)=-[C4(y-L") - 2(y-L)] at L'<y(L (5A.3)
Since the (0,2,0) and (1,0,0) modes are degenerate the emphasis

of this development will be on these particular modes.The pressure

distribution of (0,2.0) mode is
= 27 wt +
Poo = B cos L,y cos(2wWt+6;)

or (SA.4)
Poao=F (0,2,0/2W,6;)

where P, is the amplitude of (0,2,0) mode.




Utilizing the theory developed in the preceeding sections and
using the equations (4.17) through (4.26), the first-order perturbation

correction can be found

_5£L- =L,[a“"2) -33%39]”“ (54.5)

zvrPaLs{[smzv, cos(2wt+82)][8(3-1') - 8 (y- L)J}

!

i e A TSROt S
“ R g I T o sy

Eq.(5A.5) can be written as a Fourler' series

.?.l zrerLg Za cos 7T y cos (2wt +6;1) (sa.6) {
ISLx |

mz0 |3
Inversion of the Eq.(SA. 5) and (5A.6) ylelds the Fourier coefficients |

3m =__[sin(21[L)cos('"'L) sm(Z“’L)cos (_)] g s

and
. - oin( 2
do =-Ll;[sm(3‘fl-') "‘“(T_;"')] (54.8)
Recalling Eq.(4,23) and (4.24).first order perturbation correctionp!.
is found as .
(2wt +6;+ Oigo)
U L m L ag & s‘nc— c°svx e (SA.g)
? a —ﬁ—i(—z——)r:x(z)( 1)3100 100 Ko
|
ot £+ + Tigo)
, (2wt+8; +
§ e-p' - 4Th 63 21w Qlioo S %o cole._f_. e e TN T
| WS B
where

(81" = (2koo)' (4T )

Hence ,the total pressure.associated with the angular frequencv 2w,

in the cavity is

P = 'Pozo“’e?’

= B(0,2,0/2w,0:) + %ET:. €3, Qoo Sin g, (1,0,0/2W, 82+ Gy )
(54.11)

s 3 i . A :
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The total pressure at the microphone position,x=0 and y=L_ .is
i i(2wt+0z) et'(lw'k'feg'b’o'n) }

e. +[%{;53.Quoo $in G ] (5A.12)

?L\k. pcaho: Pz Re

Define B=[ J and after a little manipulaticn and use of trigonometric

identities.(5A.12) becomes

?'“P =P i (1+Bcos G, ) Cos(2wt+62) - (B sinGrg) sin(2wt+6,)}

H
(5A.13)
and the amplitude of the total pressure in the cavity is
2 z
leic.poaiﬁon = Pz\/(l-o-BCosq;o) +(B.Sln°7n) (5A.14)

Eq.(5A.14) is the corrected value of the amplitude of the second
harmonic of the driving mode,ocbtained by Eq.(2.16) .because of the

boundary irregularity given in Fig.3.

Now,it is desired to express sindfg, in terms of the frequencv
parameter of the driving mode,(0,1,0).With the help of Fig.l.sinGg,

can be written as
1

fioqRors- (fa ) T

If f approaches to zero then G, approaches toTM,and if f

sindg, = (5A.15)

approaches to infinity then G, is close to zero.In these same

limits cos G5, Zoes to -1 and +1 respectively. Hence

. 2
COS Gpyo = :‘:J:- Sin G5 (5A.16)
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For 2f~f100 ,(5A.15) becomes

L
j1+ (2000 2f-fue )‘}"’-

Recalling Eq.(3.1) and (3'5)’F100 and e, can be written in the form of

(5A.17)

s‘"\ G.-n =

Eno = 2Qoi0 £-fowo (5A.18)
olo
and
e - $ioo - 2foi0 (5A.19)
e 2;0[0

Eq.(5A.19) can be solved for flOO and this substituted into (5A.17)

(5A.20)

2Q 2§ - fi00 g Qoo £~ foi0 (1+ €100)
o s Qoo oo (1+€100)

Use of 1/( l+e100)’:1-e100 and little manipulation reveals

i . (5A.21)
\ﬁ"’ i%:“‘% LFowo=2Q010 100 ] (1- emo)‘]z

As a result,equations (5A.14),(5A.16),(5A.21) are the final amplitude

correction of the second harmonic of the driving mode obtained bv Eq.(2.18) .

A computer program for this was developed bv author and is given in

appendix A.
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B. LINEARLY PERTURBED CAVITY
Using the same assumptions in section A,assume that the rigid-walled

rectangular cavity is perturbed linearly as shown in Fig.4 below.

J
L, -HA o~
& :
\
\
X
x
FIGURE 4
The equation for this perturbation is
b (|-
X = Ly [ - (1 ,_J:I)] (58.1)
Hence,
€ =—é— (5B.2)
%
and
fly,2) = (l-{-;S) (5B.3)

Applying the same procedure as in section A,the first-order perturbation
correction and the total acoustic pressure associated with angular frequencvy

2w in that particular cavity can be found

____31' = L { - 21 Sin 2m cos (2wt +© -2 j
3 Sl " [ 1 T y Co ( 2)]( 1 )
(5B.4)

= wz& Ly Sin "”y cos(2wt+9©2)
L‘, Ly
Eq.(5B.4) can be written as a Fourier series and the Fourier coefficient,

am,is found bv an integration procedure evaluated in the interwval

0 to Ly .The result is

3 a2 J_{ €os(2-m)T  cos(z+e)T _ 1\ _ | ,m#2
m = ™ (2-m) (2+m) (2-m) (24m) ol
da 3.0.0

az < 0.0 (5B.5)

28




Recalling the Eq,(4,24),the first-order pertuyrbation

correction for (D,2,Ql mode is

P = ATARL (2)(- D' Sioe (1:0,0/2W, 82 +055, ) (5B.6)

(‘c) x

and the total acoustic pressuyre associated with anguylar

frequency 2w in the cavity becomes

= (0.2,0/2w,8,) - 4Ths ‘"”’z 8o (2)(-1) Stoo (4:0.0/20,82%0500) (5.7)

‘y

since a,=0.0

P= (02,0/2w,82) (5B.8)
According to the calculation developed above there is

no need to make a first-order perturbation correction to the

(0,2,0) mode in the cayity shown in Fig.u4. As a result,the

pressure distribution is equal to the second harmonic of the

driven mode,since 2,=0.0 and this yields ?'=0.0
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C. CAVITY WITH WEDGED PERTURBATION
Under the same assumptions made in sections A and B,

assume that the cavity is perturbed as shown in Fig.5 below.
y
L o
o

Th |

T T ————

x

FIGURE 5

The equation for this perturbation is

X= L,‘[l-—&- 3‘-;--!)] (5C.1)

By means of Eq.(4.8) € and f(y,z) can be written as

G"ﬁ: (5C.2)
and
f%2)= 0.0 » Y€ Ly/2
(5C.3)
=~(‘2‘:3'-l) )y>L_,/2

Applying exactly the same procedure followed in section A,

the total pressure amplitude in the cavity(in first-order

perturbation) is

P‘ = Pz\/(l+Bcos°‘6o)z+(Bsin0'.‘..)? s

mic. position

where
B = -zl-ﬁ o € Qi00 Sin Gigq

sinGg, and cosgg, are given by Eq.(5A.21) and (5A.16) respectively. f

The theoretical predictions of these specific examples
were examimed with series of experiments developed by [ay .

The further discussions about these will be given in the next

section.




6. RESULTS

In this section the theoretical predictions performed
in sections 5A, 5B and 5C will be compared to the experimental
results obtained by [8].

The information on the empirical losses and resonance
frequencies is contained in the Q's and e's.These are the
values used in the computer program to predict the harmonic
distortion on the basis of Eq.(2.16) and is plotted as thin
solid curves.The results of including the first-order
perturbation correction are plotted as thick solid curves
for each specific example.The theoretical curves in figures
6 through 16 were plotted along with the experimentally-
measured values for the cavity configurations shown on top
of each figure.The theoretically-predicted values were
generated for frequency-parameter intervals of 0.2, and
the experimentally-measured values were plotted as square-
blocks.Data were taken, and theoretical predictions made,
for different strength parameters for the (0,n,0) mode
associated with different cavity configurations.It is
important to note that the n=2 distortion peaks when the
system is driven at this frequency.That is, when the driving
frequency w is equal to (1/2) w,,there is maximum content
of P,.The point where this occurs for each Pn/P curve is

2 1

an ;
indicated byparrow with the label of FOZO’At that point

the value of frequency parameter is

F920%2 2010 ©020

(The same thing could be done, of course, for any member
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of the (0,n,0) family). The arrow labelled as FlOO indicates

the position where the nearly degenarate (1,0,0) mode is

.
1 e Y

resonant, and the value of F100 is

F e

1002 Q10 ®100

The theoretical predictions made in section 5B were
compared to the experimental results as seen in Fig.7.
When Fig.7 is compared to Fig.6, the unperturbed cavity,
it is clearly seen that the theory and experiment are
excellently in agreement.

For a wedged perturbation, the theory predicts the %2
frequency of the second harmonic at which the effect of the
perturbation occurs as seen in Fig.8.The predicted magnitude
of the perturbation effect for this configuration is in good
agreement with the experiment.The anomolous behavior of the
third harmonic in Fig.8 is unexplained.

For stepped perturbation, when the cavity is perturbed,
but the geometry leads to no predicted correction as seen in

Fig.9 or leads to predicted correction less than about 0.02

| as in Fig.1l2 or less than about 0.05 as in Fig.l4, then it
was observed that there was very little or no effect from
the (1,0,0) mode.Agreement for these cases is good except
for the region lying between frequency parameter 4 and 9
in Fig.9.What happened in that region is also unexplained,
but it was observed one time only.When the amount of
perturbation correction is increased the theory predicts
effects larger than experimentally observed.However, the

effect of the perturbation appears at the right frequency

32




parameter as is seen in Fig.'s 10,11,13,15 and 16.

Choosing the shim position, length and magnitude is very
important as well as is choice of the strength parameter.
For the shims, A =0.04 and 0.25 inches for stepped and wedged
perturbations respectively.The effect of strength parameter
can be seen in Fig.'s 15 and 16.The experimental data associated
with the third harmonic in Fig.1l5 were believed to come from

harmonic distortion in the piston motion.
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7. CONCLUSION

Non-linear theory has been applied to standing waves in a
rigid-walled rectangular cavity with a perturbed boundary
in order to find one possible mechanism for the excitation
of a standing wave other than those belonging the family of the
driven mode.It was observed that such an excitation exists
if the boundary perturbation and the dimensions of the cavity
are favorably chosen.

It appears that the present theoretical model succesfully
predicts the major features of harmonic content for finite-
amplitude standing waves in the cavity when the geometry leads
to no perturbation correction (Fig.7 and 9).When the magnitude
of the perturbation is increased the predicted features were

larger than experimentally observed.Second-order perturbation

corrections may be needed to account for these discrepancies.

T T T e ——




APPENDIX A '

The original computer program for Eq.(2.16) was prepared
by Coppens in 1973, and author made some extentions to that
program so that it would (1) calculate the perturbation cor-
rection and (2) present the results graphically. The program
calculates the relative amplitudes and phase angles of stan-
ding waves in cavities keeping the strength parameter constant
and changing the frequency parameter to generate response
curves showing the amplitudes of the nonlinearly excited stan-
ding waves as function of the frequency parameter K . It also
calculates the perturbation correction according to Eq.(4.28)
and then finds the total relative pressure amplitude using
Eq.(4.26). The program also draws the graph of the relative
pressure amplitudes of the ideal cavity,total relative pressure
amplitude of the perturbed cavity and the experimental data
on a 3 cycle semilog paper.The Versatec Graphicé Plotting
Manual [10] was used for the graphical processes on the IBM
360 of the Randolph Church Computer Center,Naval Postgraduate
School.
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SOME USEFUL INFORMATION ABOUT COMPUTER PROGRAM

Quantities marked with (%) must be controlled or changed

for each run.

*KON The number of iterations throughout the region
of interest.For this program the iterations are
performed with 0.2 intervals.

*NCUR The number of the experimental curves to be
drawn + 1

*NDAT The number of experimental data in the region
of interest

BUR(I,J) The array that stores the experimental data
*XL The length of the cavity in the x-direction
*YL The length of the cavity in the y-direction
*DELTA The magnitude of the perturbation
*STRPM Strength parameter

*FREQ Frequency parameter stored in ATA(I,1l) and
ZER(I,1).Input as the maximum value of FREQ
in the region of interest

XDAT(JET) The x coordinate
YDAT(JET) Value of the curve f(x) for XDAT

ATA(I,N) ,N#1The array that stores the logarithmic value
of the pressure amplitudes of the harmonics
of the driving mode

ZER(I,N) ,N#1The array that stores the linear value of the

pressure amplitudes of the harmonics of the
driving mode

Quality factors of driving mode and harmonics
of it

e's value of driving mode and harmonics of it




" e —.

*Q100 Quality factor of (1,0,0) mode
*E100 e-value of (1,0,0) mode |

*XDAT(JET+1) Integer value of left-hand corner on the x-axis.
It must have the same value as the 7th argument
of subroutine CALL AXIS for x-axis.

*YDAT(JET+1) Integer value of left-hand corner on the y-=axis.
It must have the same value as the 7th argument
of subroutine CALL AXIS for y-axis.

R S e ———

AT TR

XDAT(JET+2) 1
Increment value of x and y for scalling purposes i
§ YDAT(JET+2) t
; HUM The linear value of the total acoustic pressure f
amplitude associated with angular frequency 2w. 4

*B 4%-Q100 sindibo(l/u) Ly a, for stepped perturbation

4% Q100 sinqibo(ao/Z) for wedged perturbation

and a, is the O0th Fourier coefficient.

i 20 A 5 B B i 11
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