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Abstract

Three models for positive-valued and discrete-valued stationary time
series are discussed. All have the property that for a range of specified
marginal distributions the time series have the same correlation structure
as the usual lineaf, autoregressive-moving average (ARMA) model. The
models differ in the range of marginal distributions which can be accommo-
dated and in the simplicity and flexibility of each model. Specifically
the EARMA-type processes can be extended from the exponential distribution
to a rather narrow range of continuous distributions; the DARMA-type pro-
cesses can be defined usefully for any discrete marginal distribution
and are simple and flexible. Finally the marginally controlled semi-
Markov generated process can be defined for any continuous or discrete
positive-valued distribution and is the¥efore very flexible. However

the model suffers from some complexity and parametric obscurity.
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1. Introduction

In much of the current work on the analysis of stationary time series
there is an implicit assumption that the marginal distribution of the time
series is normai. The assumption is implicit in that the marginal distri-
bution is not considered to be of interest per se in the analysis, and
also in that the statistical procedures which are used are very definitely
based on normality assumptions. The stationary model on which much of
this time series analysis is based is the mixed autoregressive moving

average process,

a X, + a eee +a X = boei + blei 4+ ... +b € (1.1)

o e T B P 1-p q€1~q

1=0, + 1, +2, ...,

sometimes called the ARMA(p,q) or Box-Jenkins process. The process (1.1)

is specified quite generally as a linear combination of i.i.d. random

variables {Ei} of unspecified distribution, the linear, additive
structure determining the correlation structure of the stationary sequence
{Xi} under well-known restrictions on the parameters. If one wants {Xi}
to be a time series with normally distributed marginal distribution, this
can be accomplished by taking the Ei'é to be normally distributed. The
model is then completely specified.

There are, however, many situations in which observations occur
serially and in which the marginal distribution is patently non-normal.
For example, data on the number of occurrences of all known diseases in
each week is kept by the National Center for Health Statistics. The data
is not only discrete count data, but for many diseases it is mostly on

the order of 0, 1, 2, 3, and very seldom above this.
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It has been suggested that such non-normal data be handled by data
transformations and this is probably appropriate if the data is only
slightly non-normal. In other cases it seems reasonable to start afresh
and develop models from scratch. In this paper we summarize attempts to
do this for stationary time series which are known to be non-normal because
of either positivity or discreteness or both. The essence of the models is
that the marginal distribution is specified, as well as the correlation
structure. More generally the models are required to be simple and
flexible in the following senses:

a) The models should be specified in terms of easily observed and
measured quantifiers. When the models are stationary, these quan-
tifiers would typically be

i) the marginal distribution, and
ii) second-order moments (correlations).

b) The models should be parametrically parsimonious and hopefully
parametrically meaningful. :

c) The models should be easy to generate on computers, i.e., they should
be structurally simple; in fact it might be preferable for the
models to have linear structure.

d) The models should be easy to fit to data, both informally and
formally.

The model (1.1) certainly has most of the above features, but it is

not known in general ho; to specify the distribution of 61 so as to
produce a given, continuous marginal distribution for the Xi's. .More-

over, it is clearly not possible to do this at all if the xi's are

discrete random variables.

o
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The work described in this paper on non-normal time S;ries is joint

work with D. P. Gaver, P. A. Jacobs and A. J. Lawrance. Although the

work has much broader comnotation, it will be described in the context

in which it arose, that of the description of stochastic point processes,

or series of events occurring in time. One way in which these point

processes can be described is as a sequence of intervals between events
{xi}, which are of course positive-valued random variables. In the

common case of a Poisson point process the Xi's have an exponential

distribution. However, as in the case of epidemics, point processes

are generally observed as counts of events in successive fixed intervals
and these are non-negative discrete valued random variables. For the

; Poisson process these counts are independent and Poisson distributed and f
this serves as the null model in the analysis of count data from point

processes.

Three distinct models are discussed in the context of the analysis

?

and description of point processes. All of them satisfy the requirements
discussed above to some degree. The EARMA-type process described first
has recently been extended to have a complete ARMA-type correlation
structure, but the process cannot be extended to all continuous marginal
i distributions. Marginally controlled s;mi-Markov generated processes, on
the other hand, give a complete analog to (1.1), but they do not have
linear structure. They can also be extended to give processes with

discrete marginal distributions. A simpler, random linear structure

has been derived, however, which gives discrete processes with ARMA
structure. These are DARMA-type processes and come closer than the

other processes to fulfilling the requirements of simplicity and flex-

ibility.

Further details on the processes are to be found in the references.
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2. Interval Models: Sequences of continuous positive-valued random

variables

Univariate point processes in continuous time can be described equally
well through the structure of the intervals between events {Xi}, where the
xi's are continuous and positive-valued random variables, or the counting
process {N(t)}, where N(t) gives the number of events in (0,t] and is
discrete and non-negative. We discuss the modelling of the intervals
{Xi} first. Of course the applications of the models are much broader;
the Xi's might for instance be the magnitudes of successive shocks in
a sequence of earthquakes or the successive response times of a computer

to messages sent via a terminal.

2.1. The first-order autoregressive exponential model (EAR(1))

In a Poisson process the intervals {Xi} are independent and identically

distributed (i.i1.d.) random variables with exponential distribution

Fe(x) = 1 - e""‘, A>0; x>0. (2.1)

Several attempts have been made to generalize the Poisson process by

making the X, dependent, but with exponential or conditionally

i
exponential marginal distributions (Cox, 1955). The simplest and only
really successful attempt in the sense of broad applicability (Gaver
and Lewis, 1978) gives a process called the EAR(1) model, derived from
the following consideration.

A first-order autoregressive stochastic sequence is defined by the

stochastic difference equation (a special case of (1.1))

X, =X, _; +€,, 10, 17 425 wals )% Loy (2.2)




where the 61 are assumed to be an i.i.d. stationary random sequence.

i T TS

If the ei are normally distributed, so are the X What must the

4
P distribution of the Ei be in order for the xi sequence to be stationary
with an exponential()) distribution? The answer is surprisingly easy :
(Gaver and Lewis, 1978). %
E- Let 0<p <1, and let {E;} be an 1.1.d. exponential()) sequence. 31
Now let 51 be equal to zero with probability p and equal to E1 |

with probability 1-p. Then we have

pxi_l probability p , 4
PRy 1 + Ei probability (1-p) ,
=X, , +V,E , (2.4)

where {Vi} is an 1i.1.d. binary sequence and P{V,=0} =1 - Piv,~1} = p,

Moreover if we let XO = EO’ and define X, as in (2.3), the resulting

!
sequence 1is stationary for 1=0,1, ... .
The point process with the interval structure (4.3) is called the
EAR(1) point process. It is a tractable model, and most of its important
properties are given in Gaver and Lewis (1978). 1In particular we have
that p(k) = pk. This model is in a sense degenerate because it con-~
tains runs of Xi in which values are exactly p times the previous
value; it could, however, be a reasonable model for point processes
observed in computer systems (e.g., inter-arrival times of requests to

: : a storage subsystem) in which the intervals have exponential marginal

distributions but are dependent. Note that as defined the model can only
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provide sequences {xi} with positive serial correlations. We can,
however, define the process to include negative correlations (Gaver and
Lewis, 1978); there is also a way to obviate the degeneracy (Lawrance,
1978).

Simple generalizations of this first-order, autoregressive, Markovian

exponential process are the following.

2.2. The moving average exponential model (EMA(q)).

We define another stationary sequence {Xi}, using the {Ei} sequence

above, according to

XO - Eo - (2.5)

X, = BE, + UE, ,, PR e (2.6)

where {Ui} is an i.i.d. binary sequence in which U; =1 with prob-
ability (1-B). This is a first order exponential moving average
process (EMA(1)) (Lawrance and Lewis, 1977) which is one-dependent;

in particular

p(1) = B(1-B) 2.7)

p(k) =0 , 22, 3, cen (2.8)

Properties of the EMA(l) process are given by Lawrance and Lewis (1977).

It is easy to see that we can make E in (2.6) a random linear

i-1

combination of Ei—l and Ei—2 to get an EMA(2) process, and can con-

tinue the process back q steps to obtain an EMA(q) process. The

general EMA(q) model takes the form

TR s g T T oo v o




qui X Bq-lE:l.-l

qui + 5q_lzi_1 + .os b Blzi-q-c-l w.p. b

Bqni + Bq—1E1-1 + Seu b Blzi_qﬂ +Ejq VP

for 0 -<-B.|.’ ﬁz, caiey Bq <1l; 1i=0, #1, +2, ... and
B

q
by = ¢ (-B) ... (1-B)B,

i (I'Bq) e (1‘61)

Note that the Bi's can be obtained uniquely from the bi'e; there are

q+l bi's but only q B's, since the sum of the b,'s is equal to one.

i
This model is clearly only q dependent; in particular the correla-

tions for the EMA(q) process are

q-k+1
g
(q)
p(k) = corr(xi. Xi_k) =

Thus the serial correlations are just lggged products of the b1 sequence
and the formula (2.11) ié completely analogous to the formula for the
gserial correlations of the standard MA(q) process; see Box and Jenkins
(1970, p. 68). It can be seem from (2.11) that all the correlations are
nonnegative and it may be further shown that they are bounded above by

1/4.
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2.3, The EARMA(1,1) model.

By making E in (2.9) autoregressive over the previous Ei's, we obtain

i~q
a mixed qth order moving-average, first order autoregressive process which
we denote by EARMA(l,q). Consider explicitly the case q=1. The first
order moving-average and first order autoregressive process EARMA(1,1)

is given by

X, = BB, + VA, , (2.12)
with
Ay =0, +VE (2.13)

for i=l,6 2. 3. ... and A—l = E-l with U1 and V1 as defined above.

This sequence of random variables is not Markovian.

The second-order correlation structure of the process is given by

p(k) = pk-l c(B,p) ’ (2.14)
where

c(B,p) = B(1-B) + p(1-B)(1-2B) . (2.15)

The point process whose intervals have the EARMA(1l,l) structure is dis-
cussed in detail in Jacobs and Lewis (1977). 1In particular, for B=1

it is a Poisson process. The process is very simple to generate on a
computer and is very useful for modelling dependent sequences in queueing

systems (Jacobs, 1978; Lewis and Shedler, 1978).

2,4, The pth-order autoregressive model EAR(p).

Quite recently ways have been found to obtain exponential sequences {Xi}

which have autoregressive structure of order p, and to combine these

with the moving average process to get a mixed autoregressive-moving

e e e . s A A RIS 530 4D 00 *‘




s bl Mt ot

average process EARMA(p,q); see Lewis and Lawrance (1978). Another method

of defining pth-order autoregressive exponential sequences, which is
closely related to the DARMA(p,q) process discussed later, and which we %
have only just begun to explore, is described here.

This pth-order exponential autoregressive model can be written as

X, =X + € A (2.16)
L8, 48 T L8,
where the Si's are 1.i.d. discrete random variables taking values
32 avey Dy and EE is defined to be 0 w.p. a,, and E, w.p.
i,Si h | i
uj if Si = j. If one assume stationarity and that Xi—l’ xi—2’ are
marginally exponential(A), then xi is a random mixture of Ei and
Xi g2 soe» xi_p and is exponential(l). The correlation equations from

this process are variants of the familiar Yule-Walker equations. The
model is more tractable than the pth-order aﬁtoregressive process given
in Lewis and Lawrance (1978) and is probably simpler to extend to other
distributions than the exponential.

A drawback of these EARMA-type processes is that the serial cor-
relations are all positive, although the scheme given in Gaver and Lewis
(1978) for a negatively correlated EARMAl process can probably be

extended to the complete EARMA(p,q) process. 5

2.5. The semi-Markov generated point process with fixed marginal dis-

tribution.

The question arises as to whether there are interval processes {xi} with
exponential marginal distributions and, for example, ARMA(1l,1l) second-
order correlation structure and which cover a broader range of correla-

tion than the EARMA(1,1) process (though perhaps at a cost of more

complicated structure).




We discuss briefly one such process. It is a special case of the
semi-Markov generated point process introduced by Cox (1962) and extended
by Haskell and Lewis (1978). We first describe the two-state semi-Markov
generated model. In this model there are two types of intervals with
distributions Fl(x) and Fz(x), sampled in accordance with a two-state

Markov chain for which the one-step transition matrix 1is

Q. 1-a
i > (2.18)
1-ct2 oy
and the stationary vector is
1- 1=
LErZE™ 2 -0 fza * 2= <jla ¥ (2.19)
1 2 1 1

When we form the point process we assume that no information is available
about the type of interval, i.e., that in the actual bivariate point pro-
cess of transitions we suppress knowledge of the type of tramnsition. 'Then
the distribution of an interval between transitions (events) X; 1in the

stationary point process is

Fx(x) = anl(x)-+ ﬂze(x) (2.30)
and the correlation between Xi and x1+k is
k 1
p(k) = M ’ kol 25 son s (2.21)

where M 1s a positive constant and B = o +a, - 1= oy a1 - az).

2
Thus the correlation structure is that of an ARMA(1,1) process. For a

derivation of this result see Cox and Lewis (1966, Ch. 7, 194-196).

el o
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Lewis and Shedler (1973) used this process to model the page exception
process in a multiprogrammed computer system. The problem is to deal
with the mixture distribution (2.20) for the marginal distribution of
intervals; this seams to limit the utility of the model. However, there
is a way around it which produces a marginally controlled semi-Markov
generated process.

To obtain an exponential marginal distribution, consider the

following device (Jacobs and Lewis, 1977). Fix x,, where 0 < x, < =,

0’ 0
and let
e Tdu
5
A l-e
Fl(x)
(2.22)
0 bd f_xo 3
Fy(x) = I o Mgy
“ix . e

then F(x), the marginal distribution of an interval, is exponential(})
if we set m = 1- exp(—Axo). There is one degree of freedom left in
the matrix P; in addition to ), we have free parameters ™ (or xo)
and a1 although the range of o is restricted. What then is the range

of B, and can it be negative?

Straightforward manipulation shows that

TI’-GI

1
B= FI—:_I— s (2.23)

i




which lies in absolute value between zero and one but can be negative;
therefore the serial correlations can be negative. Thus the model appears
to be broader than the EARMA(1,1) model. The question of comparing the
two models when B 1s positive has not yet been explored; it requires

higher order interval correlations, as discussed by Brillinger (1972).

2.6. Generalizations

The marginally controlled semi-Markov generated sequence {Xi} discussed

above can be extended in such a way that X, will have any distribution,

i
say F(x). Thus we let
F(x
: F x, Vs 5-“0 ’
F,(x) =
1 x > Xg 3
(2.24)
0 X f.xo .
F,(x) =
F(x) - F(xo)
T-FGxy) X-TEg 7

then the marginal distribution of an interval is equal to F(x), from
(2.30), if we set m o= E(xo). Note that the model is very non-linear
and the correlation structure is a complicated function of the functional
form of F(x). .

The much simpler EARMA structure can be extended to some extent.
Random variables for which the equation (2.2) has a proper solution are
called self-decomposable random variables on random variables of type L.
This class includes random variables with Gamma, Cauchy, Pareto, double

exponential and perhaps many other distributions. For these random

12
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variables, a pth-order-autoregressive process can be defined as at (2.16).
The unique feature of the exponential process is that the Ei which makes
X, exponential()) in (2.2) is again an exponential(l) random variable,

albeit mixed with an atom at zero. This property, shared with the double
exponential and norwal random variables, is what makes it simple to define

a moving-average type process, as at (2.9).

35 Count Models: Sequences of discrete-valued random variables.

As remarked earlier, most data on point processes is recorded as
numbers of events in successive fixed-length intervals. Despite this
fact, most point process models assume that exact times of events are
known and it is not simple to derive from these models the statistics
of the counts in fixed intervals. Thus in this area in particular
flexible models for discrete-valued random variables are needed.

Another application might be to modelling-of air pollution data in
which concentrations of various chemicals in the air is indicated on a
scale of zero to ten. In general this situation requires multivariate
time series, but space prohibits discussion of multivariate versions of

the DARMA-type processes discussed in this section.

3.1. The first-order autoregressive discrete model (DAR(1)).

Again we denote the sequence of discrete-valued random variables by

{X,}. 1If the X, are counts in a Poisson process then the Xi's are 1i.i.d.

i i
Poisson-distributed randém variables. Once dependence is observed in
data it is useful to assume, as a first cut, that the dependence is
Markovian and use a Markov chain model in which tﬁe distribution of

X depends only on the value of xi and is specified by the transi-

i+l
tion matrix P with elements

13
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P(k,j) = P{X,, = jlxi =k}, (3.1)

with j and k taking values in the space E, a discrete subset of the
real line. Under suitable conditions there is a stationary distribution

T for {Xi} given by the equation
T=TP. (3.2)

The Markov chain model (3.2) is by virtue of its place in the stat-

istician's toolbox the discrete counterpart of the ARl process. However

the ARl process has one dependency parameter f, plus any parameters which

specify the distribution of the ei's. The Markov chain on the other hand
can have an infinite number of parameters and in many cases T cannot be
obtained explicitly from (3.2). This is awkward for statistical analysis.
A solution is given by constructing the DAR(1) model (discrete autoregressive
model of under one) which is an analog of the EAR(1l) model, as follows.

Let Yi be an 1.i.d. sequence of random variables taking values in
the space E, and let v, be an i1.i.d. binomial sequence for which

P{vi = 1} = p. Then

xi - ¥y xi_l + (1 - Vi)Yi 1=0, +1, #2, ...; 0<p<1. (3.3)
xi—l wW.p. P ,
= (3.4)
Y, ; w.p. (1-p) .

If X. has distribution ™, then so does X, since it is a mixture of two | 9

0 1
random variables, Xo and Yl’ with distribution 7. Consequently all
the Xi, i=1, 2, ... have marginal distribution . 2 ‘ﬁ

14




Note that {Xi} is a Markov chain with transition probabilities

(1~p) =w(3) k$3j,

P(k,j) = P{x,, = jlx1 =k} = (3.5)

p + (1-p) m(3) k=3

in fact it is a Markov chain in which the correlation structure is spe-
cified by one parameter p, and with specified marginal (stationary)
distribution %. Thus T may be a Poisson distribution and then the
DAR] model is a 2-parameter ()A,p) Markov chain. The analogy with the
AR(1) model is clear

As with the EAR(1) model the serial correlations are p(k) = pk > 0.

Extensions to negafively correlated sequences are given in Jacobs and

Lewis (1978).

3.2. The pth-order autoregressive discrete model (DAR(p)).

First order Markov dependence is a special kind of dependence which is
attractive because of analytical tractability considerations, but it is
not necessarily met with in practice. One immediate consequence of the

Markovian property is that runs of distinct values, say X, = j, have a

i
length which is geometrically distributed (Jacobs and Lewis, 1978a) and
this is easily checked in data. If the data fails to have this property,
what other types of dependency can be utilized?

A first direction might be to go to higher order (say pth-order)
autoregression, which is an explicit pth-order Markov structure, and
the DAR(1) model can be extended in this direction. Thus in addition

to the assumptions at (3.3) let A; be an 1.i.d. sequence of random

variables taking values in {1, 2, ..., p}, with P{Ai = j} = oy Then

the DAR(p) process is defined as




L=V xi-Ai

+ (1 - vi)Y

T T R (3.6)

so that xi is (exclusively) either one of the previous p values xi_l,

Sy Xi_p, or the error term Yi‘ Properties of this model are developed
extensively in Jacobs and Lewis (1978c). When o = 1, and all other 05'3

are zero it is the DAR(1l) model.

Yule-Walker equations for the correlations in the stationary DAR(p)
process are given in Jacobs and Lewis (1973¢) as well as stationarity
conditions. In particular for p=2 we have the limiting result

{1-p (1) }T ()T (4) kéJ,
.J} = (3.7)
o)) + {1-pWIT()% k=3,

v(k,j) = 1im P{X

i~

14175 Xy
where p(1) = corr(xi, x1+1) in the stationary process. Thus, if we let
X  and X_

0 1

order autoregressive process with any marginal distribution can be

have the joint distribution V(k,j), a stationary, second-

generated. A scheme for obtaining sequences which are possibly negatiiely

correlated is given in Jacobs and Lewis (1978c).

3.3. The g-th order moving average discrete model (DMA(q)).

The other alternative to Markovian dependence (of any order) which is

usually considered in time series analysis is the finite-length dependence ‘
produced by the moving-average part of the ARMA(p,q) process (l1.1). This ‘

type of behavior is easily produced for discrete random variables by a

random index model of the type
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where S, are 1.i.d. random varisbles with P{Si <k}l =b Thus we may

k‘
write

1 1<k w.p. bk - bk—l p k=0, ..., q3 b_1 =0, (3.9)

The autoregressive process DAR(p) is also a random index model, but the
random indices are not independent. The correlation structure of this

DMA(q) process is easily found to be

(q@) q-k
p(k) = corr(X,X, ) = ] bb . l1<k<gq,
v=0
(3.10)
=0 k>q.

This is the exact analog of (2.11) for the EMA(q) process and the cor-
responding formula for the MA(q) process. Note that the DMA(q) process
is not Markovian. Runs properties of the process are given in Jacobs

and Lewis (1978a); the runs are not geometrically distributed.

3.4, Mixed autoregressive-moving average discrete models.

As in the case of the ARMA(p,q) model (1.1), it is useful to have both
autoregressive, Markovian dependence and moving average dependence com-
bined into one model. In Jacobs and Lewis (1978a) this was done by
replacing the Yi—q term in (3.8) by a discrete autoregression (3.3)
over Yi—q’ Yi—q-l’ +ss + Clearly this can be extended by replacing
Yi—q by a p~th order autoregression (3.6) over Yi—q’ Yi-q-l’ ees to
obtain a DARMA(p,q) model which is the analog of the EARMA(p,q) model
of Lawrance and Lewis (1978). This is not a complete analog of the

ARMA(p,q) model in that there is no cross-over of the autoregression and
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the moving average, but it is in fact possible to do this to obtain a
model called NDARMA(p,q) as follows:

Let

X, = Vi X 1 -

A i=0, +1, +2, ... , (3.11)

+
i-A

vV,) Y
1 - S S1

where the A, are i.i.d. random variables taking values in 3. 2. ci. o

with P{Ai-j} = aj; the Si are i.i.d. random variables taking values in

{0, ..., q} with P{S, <k} = F(k) and the V are 1.i.d. Bernoulli

]
18
random variables with P{Vi-l} = 0,

The model works because a mixture of dependent random variables, all

with marginal distribution 7, has distribution T7; thus if xi-l’ cesy

have marginal distribution 7, then so will Xi since it is a mixture

1-1° ...,lxi_p and Yi’ e aials Yi—q'

Note that when pP=0 we have the DMA(q) process; if in addition F(0) = 1

xi-p

of the dependent random variables X

the sequence is i.i.d. since X, = Y,. When 1>p # 0, F(0) =1 we ba&e
the DAR(p) process. Thus the parameters are such that interesting special
cases fall out easily. Moreover the p parameter measures the degree of
mixture of Markovian and moving average dependence, and the distributions
of the Ai's and Si's give a picture  of where the dependence is lagged
g °f Yi values.

The model (3.11) has not yet been fully explored. At first sight it

over previous X

seems preferable to the DARMA(p,q) model, possibly because of the compact-
ness of (3.11) and its close analogy to ARMA(p,q) models. The DARMA(p,q)
and NDARMA(p,q) models are, however, distinct and in fact preliminary
investigation of the (1.1) case shows that the DARMA(1l,1) model (Jacobs

and Lewis, 1978a) has a broader correlation structure than does the




NDARMA(1,1). On the other hand the autoregression is not explicit in
the DARMA(1,1) model. Both models, therefore, will probably be useful

in modelling discrete data such as occur in sampled point processes.

3.5. The marginally controlled semi-Markov generated process.

In the structure of the 2-state marginally controlled semi-Markov generated
process detailed at (2.24) no assumption was made about continuity of F(x).

Thus F(x) could be discrete, giving a sequence {Xi} with known discrete

marginal distribution F(x) and ARMA(1,1) correlation structure. By
going to an n-state semi-Markov model, a process with ARMA(p,q) correla-
tion structure can be generated (Haskell and Lewis, 1978) with n a
function of p and q, and the procedure to obtain a given marginal
distribution is just an extension of (2.24). Thus we have, in terms

of the quantification of the process by marginal distribution and

correlation structure, a direct competitor to the DARMA-type processes.

Comparison of the two types of discrete processes is interesting and
points up the simplicity of the DARMA-type processes. In particular the
correlation structure of the DARMA(p,q) process is explicit in form if
not in detail and the process is a simple, rando; linear combination of

random variables generated from an i.i.&. sequence Y This is clearly

i
not true for the marginally controlled semi-Markov generated process;

the recognition that its correlation structure is ARMA-type is accidental
and not intuitive. Deeper comparison 6f these processes in terms, say,
of the range of correlation the model will encompass will be instructive.

Here again the DARMA-type processes have an advantage; their correlation

structure is independent of the marginal distribution .

A B e e
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4. Summary and Conclusions

We have outlined in this paper three models for discrete-valued and
positive-valued time series, all of which to some degree satisfy the
criteria of flexibility or simplicity or both set forth in the intro-
duction. Perhaps the main point about the models is that they are
designed to accomodate situations in which the marginal distributions

in the stationary processes are given and are non-normal.

Properties of these models such as mixing and asymptotic results,
higher-order moments, distributions of runs for the discrete models and
sums of random variables and point spectra are considered in the
references.

There are many other properties of the processes which are still
to be explored. Statistical estimation, except in an ad hoc manner and
for the Markovian cases, is difficult and has yet to be examined.
Extensions to multivariate cases is of great interest for real applica-
tions and has been done to some degree in the context of queues with
correlated service and arrival times (Jacobs, 1978, and Lewis and Shedler,

1978). The DARMA-type processes, in particular, can be easily extended

to coupled equations in the same way as linear processes are extended in

econometric models. They might therefore find use in modelling multi-

variate situations such as the number of cars passing different points
in a road evaluated in successive fixed time intervals.

Finally an important problem is to extend the models so as to include

inhomogeneity, particularly of the seasonal type, and the effects of con-
comittant or auxilliary variables. Several schemes are under consideration

for these extensions of the models.
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