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Abstract

Three models for positive—valued and discrete-valued stationary time

series are discussed. All have the property that for a range of specified

marginal distributions the time series have the same correlation structure

as the usual linear, autoregressive—moving average (ARM) model . The

models differ in the range of marginal distributions which can be accommo-

dated and in the simplicity and flexibility of each model. Specifically

the KARMA—type processes can be extended from the exponential distribution

to a rather narrow range of continuous distributions; the DAR14&—type p’ro—

cessea can be defined usefully for any discrete marginal distribution

and are simple and flexible. Finally the marginally controlled semi—

Markov generated process can be defined for any continuous or discrete

positive—valued distribution and is therefore very flexible. However

the model suffers from some complexity and parametric obscurity.

*Research supported b~ j  o~~lJ~j .~ ice Foundation Grant AF476_and Office
of Naval Research Grant NR—42—284 at the Naval Postgraduate School.
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1. Introduction

In much of the current work on the analysis of stationary t ime series

there is an implicit assumption that the marginal distribution of the time

series is normal . The assumption is implicit in that the marginal distri-

bution is not considered to be of interest per se in the analysis, and

• also in that the statistical procedures which are used are very definitely

based on normality assumptions. The stationary model on which much of

this time series analysis is based is the mixed autoregressive moving

average process,

• a0X1 + a1Xi~1 
+ ... + ~~~~~ — b0E1 + b1E~ + ... + bqEj_q (1.1)

1—0, ± 1, ± 2,

sometimes called the ARMA (p,q) or Box—Jenkins process. The process (1.1)

is specified quite generally as a linear combination of i.i.d. random

variables {E1} of unspecified distribution, the linear, additive

structure determining the correlation structure of the stationary sequence

{x1} under well—known restrictions on the parameters. If one wants {x~}

to be a time series with normaLly distributed marginal distribution, this

can be accomplished by taking the E1
1s to be normally distributed. The

model is then completely specified.

There are, however, many situations in which observations occur

serially and in which the marginal distribution is patently non—normal.

For example, data on the number of occurrences of all known diseases in

• each week is kept by the National Center for Health Statistics. The data

is not only discrete count data, but for many diseases it is mostly on

the order of 0, 1, 2, 3, and very seldom above this.

1
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It has been suggested that such non—normal data be handled by data

transformat ions and this is probably appropriate if the data is only

slightly non—normal . In other cases it seems reasonable to start afresh

and develop models from scratch. In this paper we summarize attempts to

do this for stationary time series which are known to be non—normal because

of either positivity or discreteness or both. The essence of the models is

that the marginal distribution is specified, as well as the correlation

structure. More generally the models are required to be simple and

flexible in the following senses:

a) The models should be specified in terms of easily observed and

measured quantifiers. When the models are stationary, these quan-

tifiers would typically be

• 1) the marginal distribution, and

• ii) oecond—order moments (correlations).

b) The models should be parametrically parsimonious and hopefully

parametrically meaningful.

c) The models should be easy to generate on computers, i.e., they should

• be structurally simple; in fact it might be preferable for the

models to have linear structure.

d) The models should be easy to fit to data, both informally and

formally.

The model (1.1) certainly has most of the above features, but it is

not known in general how to specify the distribution of E~ so as to

• produce a given, continuous marginal distribution for the X~’s. More—

over, it is clearly not possible to do this at all if the Xi’s are

discrete random variables .

2
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The work described in this paper on non—normal time series is joint

work with D. P. Gayer , P. A. Jacobs and A. J. Lawrance. Although the

• work has much broader connotation , it will be described in the context
•~1

in which it arose, that of the description of stochastic point processes,

• • 
- 

or series of events occurring in time. One way in which these point

processes can be described is as a sequence of intervals between events

which are of course positive—valued random variables. In the

common case of a Poisson point process the X1
1s have an exponential

distribution. However, as in the case of epidemics, point processes

are generally observed as counts of events in successive fixed intervals

and these are non—negative discrete valued random variables. For the

Poisson process these counts are independent and Poisson distributed and

this serves as the null model in the analysis of count data from point

processes.

Three distinct models are discussed in the context of the analysis

and description of point processes. All of them satisfy the requirements

discussed above to some degree. The EARMA—type process described first

has recently been extended to have a complete ARMA.—type correlation

structure, but the process cannot be extended to all continuous marginal

distributions. Marginally controlled semi—Markov generated processes, on

the other hand, give a complete analog to (1.1), but they do not have

linear structure. They can also be extended to give processes with

discrete marginal distributions. A simpler , random linear structure

has been derived , however , which gives discrete processes with ARM

structure . These are DAR}fA—type processes and come closer than the

other processes to fulfilling the requirements of simplicity and flex—

ibility.

Further details on the processes are to be found in the references .

3
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2. Interval Models: Sequences of continuous positive—valued random

variables

Univariate point processes in continuous time can be described equally

well through the structure of the intervals between events where the

X1
1s are continuous and positive—valued random variables, or the counting

process {N(t)}, where N(t) gives the number of events in (O,t3 and is

discrete and non—negative. We discuss the modelling of the intervals

{x1} first. Of course the applications of the models are much broader;

the Xi’s might for instance be the magnitudes of successive shocks in

a sequence of earthquakes or the successive response times of a computer

to messages sent via a terminal.

2.1. The f irst—order autoregressive exponential model (EAR(lfl

In a Poisson process the intervals ~x~} are independent and identically

distributed (i.i.d.) random variables with exponential distribution

Fx(x) — 1 — e~~~, A > 0; x > 0 . (2.1)

Several attempts have been made to generalize the Poisson process by

making the X~ dependent, but with exponential or conditionally

exponential marginal distributions (Cox, 1955). The simplest and only

really successful •~ttempt in the sense of broad applicability (Gayer

and Lewis, 1978) gives a process called the EAR(l) model, derived from

the following consideration.

A first—order autoregressive stochastic sequence is defined by the

stochastic difference equation (a special case of (1.1))

— pX~_1 + Eu i—O , ±1, ±2, ...; Ip i  < 1 , (2 .2)
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where the E1 are assumed to be an i.i.d. stationary random sequence.

If the E1 are normally distributed, so are the X~. What must the

distribution of the E1 be in order for the X1 sequence to be stationary

with an exponential(A) distribution? The answer is surprisingly easy

(Gayer and Lewis, 1978) .

Let 0 < p ( 1, and let {E1} be an i.1.d. exponential(A) sequence .

Now let Ej  be equal to zero with probability p and equal to Ei
with probability 1—p. Then we have

pX
1~~ probability ~

x1 = (2.3)

PX1_1 + E1 probability (1—p)

— pX11 + V1E1 , (2.4)

where {v1} is an 1.i.d. binary sequence and P{V1”O} 
= 1 — P{V1.’l) p.

Moreover if we let X0 
— E0, and define X~ as in (2.3), the resulting

sequence is stationary for 1—0,1 

The point process with the interval structure (4.3) is called the

EAR(1) point process. It is a tractable model, and most of Its important

properties are given In Gayer and Lewis (1978). In particular we have

that p(k) — ps’. This model is in a sense degenerate because it con—

tains runs of X~ in which values are exactly p times the previous

value; it could, however., be a reasonable model for point processes

observed in computer systems (e.g., inter—arrival times of requests to

a storage subsystem) in which the intervals have exponential marginal

distributions but are dependent. Note that as defined the model can only

S
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provide sequences {X1} with positive serial correlations. We can,

however, define the process to include negative correlations (Gayer and

Lewis, 1978); there is also a way to obviate the degeneracy (Lawrance,

1978).

Simple generalizations of this first—order, autoregressive, Markovian

exponential process are the following.

2.2. The moving average exponential model (EMA (g)).

We define another stationary sequence {X
~
}, using the {E1} sequence

above, according to

X0 = E 0 , (2.5)

• 
X~ = 8E~ + UiEii, i—l, ...; 0 < 8 < 1 , (2.6)

where {u~} is an i.i.d. binary sequence in which U~ = 1 with prob-

ability (1—8). This Is a first order exponential moving average

process (EMA (1)) (Lawrance and Lewis, 1977) which is one—dependent;

in particular

p(l) = 8(1—8) (2.7)

p(k) = 0 , k—2, 3 (2.8)

Properties of the EMA (l) process are given by Lawrance and Lewis (1977).

It is easy to see that we can make Eu in (2.6) a random linear

combination of Eii and E12 to get an EMA (2) process, and can con—

tinue the process back q steps to obtain an EMA (q) process. The •

general EMA (q) model takes the form

6
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8qEj  w.v. 

~~~~~ ~

Bq
E
1 
+ Bq_iEi_1 w.v. bq

X
1 

— ...... . (2.9)
BqEi + Bq_lKi_i + • • •  + B~Ej_q.~.1 v.p. b2

8qEj + Bq_1Ej_1 + ~~••  + 81Ei...q+l + Ei_q v.r~. b1

• for 0 $~ ~~ ~~
•
~~~

‘ 
8q <1; 1—0, ±1, ±2, ... and

8q i q+l ,

— - 
~~~q) ~

1
~
8i~

8i—l q > i >2 , (2.10)

• (l~8q) ~~~~~ (1—8k) i — 1 .

Note that the can be obtained uniquely from the bi
’s; there are I ’

q+1 b1’s but only q t3’a, since the sum of the b1
1s is equal to one.

This model is clearly only q dependent; in particular the correla-

tions for the EMA (q) process are

• q—k+1
Z b b v+ l < k < q ,• (q) v—i V k

p(k) = corr(Xi, xi..~
) — • (2.11)

• 0 q+ l< k <~~~~.

Thus the serial correlations are just lagged products of the b1 sequence

and the formula (2.11) is completely analogous to the formula for the

serial correlations of the standard MA (q) process; see Box and Jenkins

(1970, p. 68). It can be seem from (2.11) that all the correlations are

nonnegative and it may be further shown that they are bounded above by

1/4 .

• 7

1 - • _ _ _ _ _ _ _ _ _ __ - • • • - • •- •- - - • 

— -  • • -—-—-—- — •=
~

• •••
~~~~

-
~~~~~~

•-=
~~~~~~~~~~~

•

— __ _~~___• •_
-~~~~~F __ ___ — -  -.-- -- -

~~ ——~~~~~~~~ ~~Ii~i~I



r~
I
~ 

—•_-_— —-

~~

_- —.--_--~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- •_ --~~
.-•• -- --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---

-

~ 2.3. The EABMA (l,1) model.

By making Ej_q in (2.9) autoregressive over the previous Es’s, we obtain

a mixed qth order moving—average, first order autoregressive process which

we denote by RARMA (i,q). Consider explicitly the case q”i. The first

order moving—average and first order autoregressive process EARMA (1,l)

is given by

:1 
X 1 — BE1 + U1A11 , (2.12)

with

A~~1 — 
~~i—2 

+ ViEi_i . (2.13)

for i—i, 2, 3, ... and A_1 = E_1 with U1 and V1 as defined above.

This sequence of random variables is not Markovian.

The second—order correlation structure of the process is given by

p(k) — ~
k_1 

c(B,p) , (2.14)

where

c(B p) 8(l—8)+ p(1—8)(l—28) . (2.15)

The point process whose intervals have the EABMA(l,1) structure is dis-

cussed in detail in Jacobs and Lewis (1977). In particular, for 8—1

It is a Poisson process. The process is very simple to generate on a

computer and Is very useful for modelling dependent sequences in queueing

• systems (Jacobs, 1978; Levis and Shedler, 1978).

t24. The pth—order autoregressive model EAR (p).

QuiP.e recently ways have been found to obtain exponential sequences {x1}

which have autoregressive structure of order p, and to combine these

with the moving average process to get a mixed autoregressive—moving

8
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average process EARMA (p,q); see Levis and Lawrance (1978). Another method

of defining pth—order autoregressive exponential sequences, which is

closely related to the DABMA (p,q) process discussed later, and which we

have only just begun to explore, is described here.

This pth—order exponential autoregressive model can be written as

X~ — a~ X~ s + E1 ~ 
, (2.16)

i i ‘1

where the S~’a are i.i.d. discrete random variables taking values

1, 2, . . . ,  p, and E1 ~ 
is defined to be 0 v.p. a , and E1 V.P.,i j

if Si 
— j. If one assume stationarity and that X11, X1_2, are

marginally exponential(A), then is a random mixture of E1 and

X1_1, .. .,  X1_~, and is exponential(A). The correlation equations from

this process are variants of the familiar Yule—Walker equations. The

model is more tractable than the pth—order autoregressive process given

in Lewis and Lawrance (1978) and is probably simpler to extend to other

-
• 

distributions than the exponential.

A drawback of these EABMA—type processes is that the serial cor-

relations are all positive, although the scheme given in Gayer and Lewis

(1978) for a negatively correlated EARMA,1 process can probably be

extended to the complete EAPMA (p,q) process.

2.5. The semi—Markov generated point process with fixed marginal dis-

tribution.

The question arises as to whether there are interval processes {x1} with

exponential marginal distributions and, for example, ARMA(l ,l) second—

order correlation structure and which cover a broader range of correla—

tion than the EARMA (l,l) process (though perhaps at a cost of more

complicated structure).

9
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We discuss briefly one such process. It is a special case of the

semi—Markov generated point process introduced by Cox (1962) and extended

by Raskell and Lewis (1978). We firat describe the two—state semi—Markov

• generated model. In this model there are two types of intervals with *

- .

- distributions F1(x) and F2
(x) , sampled in accordance with a two—state

• Markov chain for which the one—step transition matrix is

/ a
1

• ) (2.18)

a
2 
/

and the stationary vector is

• / 1 - c t  1 - c t  \
2 —  

2 
‘ 2 

~~ J .  (2.19)a1 Ct
2 

a1 a1,

When we form the point process we assume that no information is available

about the type of interval, i.e., that in the actual bivariate point pro-

cess of transitions we suppress knowledge of the type of transition. ‘Then

the distribution of an interval between transitions (events) X1 in the

stationary point process is -

Fx(x) — 1T
1F

1
(x) + 1T2F2(x) (2.30)

and the correlation between X1 and is

p(k) — M k , 
• k—i , 2 , ... , (2.21)

• 
where M is a positive constant and B — a1 + a2 — 1 — a1 (1 — a2) .

Thus the correlation structure is that of an ARMA(l,l) process. For a

derivation of this result see Cox and Lewis (1966, Ch. 7, 194—196).

10
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Lewis and Shsdler’ (1973) used this process to model the page exception

• process in a multiprogrammed computer system. The problem is to deal.

with the mixture distribution (2.20) for the marginal distribution of

intervals; this seams to limit the utility of the model. However, there

• is a way around it which produces a marginally controlled semi—Markov

generated process.

To obtain an exponential marginal distribution, consider the

following device (Jacobs and Lewis, 1977). Fix x0, where 0 < x~ < co,

and let

e du

—Ax 0 < x < x 0 ,
i — e

1 x > x 0 ;

• (2.22)

0 x < x 0 ,

• F2
(x) — .r~ e~~”iiu 

-

• 
~~~~~~~~~~ 

x > x 0 ;

• e

then F(x), the marginal distribution of an interval, is exponential(A)

if we set it
1 

— 1 — exp(—?x0). There is one degree of freedom left in

the matrix P; in addition to A , we have free parameters it
1 

(or x0)

and a1 although the range of a1 is restricted. What then is the range

of 8, and can it be negative?

Straightforward manipulation shows that

‘Ill - 
a1

— i , (2.23)
1

11
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which lies in absolute value between zero and one but can be negative ;

therefore the serial correlations can be negative. Thus the model appears

to be broader than the EARMA (1,l) model. The question of comparing the

two models when B is positive has not yet been explored ; it requires

higher order interval correlations, as discussed by Brillinger (1972).

2.6. Generalizations

The marginally controlled semi—Markov generated sequence {X1} discussed

above can be extended in such a way that X~ will have any distribution,

say F(x). Thus we let

0 < x < x ~
F1(x) —

1 x > x 0 ;

(2.24)

0 x < x O ,

F (x) — F(x0) 
-

1 — F ( x 0) x > x 0 ;

then the marginal distribution of an interval is equal to F(x), from

(2.30), if we set 711 — F(x0). Note that the model is very non—linear

and the correlation structure is a complicated function of the functional

form of F(x).

The much simpler KARMA structure can be extended to some extent.

Random variables for which the equation (2.2) has a proper solution are

called self—decomposable random variables on random variables of type L.

This class includes random variables with Gamma, Cauchy, Pareto, double

exponential and perhaps many other distributions. For these random

12
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variables, a pth—order—autoregressive process can be defined as at (2.16).

The unique feature of the exponential process is that the Ej which makes

X1 exponentiai(A) in (2.2) is again an exponential(X) random variable,

albeit mixed with an atom at zero. This property, shared with the double

- 
.

- j exponential and normal random variables, is what makes it simple to define

a moving—average type process, as at (2.9).

3. Count Models: Sequences of discrete—valued random variables.

As remarked earlier, most data on point processes is recorded as

numbers of events in successive fixed—length intervals. Despite this

fact, most point process models assume that exact times of events are

known and it is not simple to derive from these models the statistics

of the counts in fixed intervals. Thus in this area in particular

flexible models for discrete—valued random variables are needed.

Another application might be to modelling of air pollution data in

which concentrations of various chemicals in the air is indicated on a

scale of zero to ten. In general this situation requires multivariate

time series, but space prohibits discussion of multivariate versions of

the DABMA—type processes discussed in this section.

3.1. The first—order autoregressive discrete model (DAR(l)).

• Again we denote the sequence of discrete—valued random variables by

-~ tX1). If the X~ are counts in a Poisson process then the X~,’s are i.i.d.

Poisson—distributed random variables. Once dependence is observed in

data it is useful to assume, as a first cut, that the dependence is

Markovian and use a Markov chain model in which the distribution of

X~ 1 depends only on the value of X~ and is specified by the transi-

tion matrix P with elements

13



P (k ,j ) — P (X 1~1 — — k) , (3.1)

• with j  and k taking values in the space E, a discrete subset of the

real line. Under suitable conditions there is a stationary distribution

! for {X
~
} given by the equation

(3.2)

The Markov chain model (3.2) is by virtue of its place in the stat—

• istician’s toolbox the discrete counterpart of the AR1 process. However

the AR1 process has one dependency parameter P, plus any parameters which

specify the distribution of the Er’s. The Markov chain on the other hand

can have an infinite number of parameters and in many cases ‘if cannot be

• obtained explicitly from (3.2). This is awkward for statistical analysis.

A solution is given by constructing the DAR (l) model (discrete autoregressive

model of under one) which is an analog of the EAR (l) model, as follows.

Let Y~ be an i.i.d. sequence of random variables taking values in - -

• the space K, and let V1 be an i.i.d. binomial sequence for which

p{v1 — i) — p. Then

• x~, = V~, X1_1 + (1 — vi)Y i i—O, ±1, ±2, ...; 0 < p < 1 . (3.3)

xi_l V.P. P ,

— (3.4)

v.p. (1—p) .

If X0 has distribution IT , then so does X1 since it is a mixture of two

random variables, X0 and Y1, with distribution 71. Consequently all

the X~, il , 2, ... have marginal distribution 71.

14
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Note that {X1} is a Markov chain with transition probabilities

( 1_p) ‘ir ( j ) k~~~j

p(k,j) — P{X1~1 — j1x 1, — k) — (3.5)
+ (l—p) ir(j) k — j

in fact it is a Markov chain in which the correlation structure is spe-

cified by one parameter p, and with specified marginal (stationary)

distribution it. Thus it may be a Poisson distribution and then the

DAR1 model is a 2—parameter (A ,p) Markov chain. The analogy with the

AR(l) model is clear

As with the EAR (l) model the serial correlations are p(k) — p’~ > o.

Extensions to negatively correlated sequences are given in Jacobs and

Levis (1978).

3.2. The pth—order autoregressive discrete model (DAR(p)).

First order Markov dependence La a special kind of dependence which is

attractive because of analytical tractability considerations, but it is

not necessarily met with in practice. One immediate consequence of the

Markovian property is that runs of distinct values, say X~ — j, have a

length which is geometrically distributed (Jacobs and Lewis, l978a) and

this is easily checked in data. If the data fails to have this property,

what other types of dependency can be utilized?

A first direction might be to go to higher order (say pth—order)

autoregression, which is an explicit pth—order Markov structure, and

the DAR(l) model can be extended in this direction. Thus in addition

to the assumptions at (3.3) let A~ be an i.i.d. sequence of random

variables taking values in {1, 2, ...,  p}, with P{A1 — f) — a1. Then

the DAR(p) process is defined as

15
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X1 — V~, 
Xi_A

i 
+ (1 — v~)Y~ , 1—0 , ±1, ±2, ... (3.6)

so that X~ is (exclusively) either one of the previous p values X~, 1,

. ..,  X1_~, or the error term Y~ . Properties of this model are developed

extensively in Jacobs and Lewis (].978c). When — 1, and all other a
1
’s

• are zero it is the DAR(l) model.

Yule—Walker equations for the correlations in the stationary DAR(p)

process are given in Jacobs and Lewis (1973c) as well as stationarity

conditions. In particular for p—2 we have the limiting result

tl—p(l)}’Tr(k)ir(j) k 
~ 
j

v(k,j) — lim P{Xj+1=k, x1~2—j )  — (3 .7)
i-’~ 2

p(l)’n(j) + {1—p (i)}’lT(j) It — j ,

where p(1) — corr(X1, Xi+i) in the stationary process. Thus, if we let

and X,,1 have the joint distribution V(k,j), a stationary, second—

order autoregressive process with any marginal distribution can be

generated. A scheme for obtaining sequences which are possibly negatively

correlated is given in Jacobs and Lewis (l978c).

3.3. The g—th order moving average discrete model (D14A(g)).

The other alternative to Markovian dependence (of any order) which is

usually considered in time series analysis is the finite—length dependence

produced by the moving—average part of the ARMA (p,q) process (1.1). This

type of behavior is easily produced for discrete random variables by a

random index model of the type

— YI—s , (3.8)
j

16
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where Si are i.i.d. random variables with P(S~, < It) — bk. Thus we may

write

— ‘
~i-.k 

w.p. bk 
— bk_i , k”O, . . .,  q; b_1 0 . (3.9)

The autoregressive process DAR(p) is also a random index model, but the

random indices are not independent. The correlation structure of this

DMA(q) process is easily found to be

(q) q—k
p(k) — corr(XIX1,k) 

— 
~ ~~~~~ 1 < It < q

v—0
(3.10)

— O  k > q .

This is the exact analog of (2.11) for the EMA(q) process and the cor-

responding formula for the MA (q) process. Note that the DMA (q) process

is not Markovian. Runs properties of the process are given in Jacobs

and Lewis (1978a); the runs are not geometrically distributed.

3.4. Mixed autoregressive—moving average discrete models.

As in the case of the ARMA (p,q) model (1.1), it is useful to have both

autoregressive, Markovian dependence and moving average dependence com-

bined into one model. In Jacobs and Lewis (l978a) this was done by

replacing the 
~i

...q term in (3.8) by a discrete autoregression (3.3)

over Yj_q* ~1—q-1’ 
• • •  . Clearly this can be extended by replacing

~i—q 
by a p—th order autoregression (3.6) over Yj..q~ ~i—q—1’ 

~~~~~ to

obtain a DABMA (p,q) model which is the analog of the EARIIA(p,q) model

of Lawrance and Lewis (1978). This is not a complete analog of the •

ARMA (p,q) model in that there is no cross—over of the autoregression and

17
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the moving average, but it is in fact possible to do this to obtain a

model called NDABMA (p,q) as follows:

Let

X~ — V~ Xj.,A + (1 — vi) “i—s1 
i—O, ±1, ±2, . . .  , (3.11)

where the Ai are i.i.d. random variables taking values in (1, 2, ... , p}

with P{A
i
—j } a~; the S~, are i.i.d. random variables taking values in

(0, ..., q} with P{S~, < k }  — F(k) and the V1’s are i.i.d. Bernoulli

random variables with P{V
i
111l} p.

The model works because a mixture of dependent random variables, all

with marginal distribution 71, has distribution if; thus if X~,_1, ...,

• X1_~, have marginal distribution it, then so will X~, since it is a mixture

of the dependent random variables X~,_1, ...~~ X1,,~ and Y1 ...
~~

Note that when ~ O we have the DMA (q) process; if in addition F(O) = 1

the sequence is i.i.d. since X1 
— 

~~~ 
When 1 > P ~ 0, F(0) — 1 we have

the DAR(p) process. Thus the parameters are such that interesting special

cases fall out easily. Moreover the p parameter measures the degree of

mixture of Markovian and moving average dependence, and the distributions

of the A1’s and S1’s give a picture of where the dependence is lagged

over previous X~ or values.

The model (3.11) has not yet been fully explored. At first sight it

seems preferable to the ,DARMA(p,q) model, possibly because of the compact-

ness of (3.11) and its close analogy to ABMA (p,q) models. The DARMA (p,q)

and NDABMA (p,q) models are, however, distinct and in fact preliminary

investigation of the (1.1) case shows that the DARMA (l,l) model (Jacobs

and Lewis, l978a) has a broader correlation structure than does the

18
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NDARMA(l,l). On the other hand the autoregression is not explicit in

the DARMA(l ,l) model. Both models, therefore, will probably be useful

in modelling discrete data such as occur in sampled point processes.

3.5. The marginally controlled semi—Markov generated process.

In the structure of the 2-state marginally controlled semi—Markov generated

process detailed at (2.24) no assumption was made about continuity of F(x).

Thus F(x) could be discrete, giving a sequence {X~
) with known discrete

marginal distribution F(x) and ARMA(l ,l) correlation structure. By

going to an n—state semi—Markov model , a process with ARMA (p,q) correla-

tion structure can be generated (Haskell and Lewis , 1978) with n a

function of p and q, and the procedure to obtain a given marginal

• distribution is just an extension of (2.24). Thus we have, in terms

of the quantification of the process by marginal distribution and

correlation structure, a direct competitor to the DARMA—type processes.

Comparison of the two types of discrete processes is interesting and

points up the simplicity of the DARMA—type processes . In particular the

correlation structure of the DARMA(p,q) process is explicit in form if

not in detail and the process is a simple, random linear combination of

random variables generated from an i.i.d. sequence Y~,. This is clearly

not true for the marginally controlled senii—Markov generated process;

the recognition that its correlation structure is ABMA—type is accidental

and not intuitive. Deeper comparison of these processes in terms, say,

of the range of correlation the model will encompass will be instructive.

- Here again the DARMA—type processes have an advantage; their correlation

structure is independent of the marginal distribution it. .
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4. Sunnnary and Conclusions

We have outlined in this paper three models for discrete—valued and

positive—valued time acn e; all of which to some degree satisfy the

criteria of flexibility or simplicity or both set forth in the intro—

duction. Perhaps the main point about the models is that they are

designed to accomodate situations in which the marginal distributions

in the stationary processes are given and are non—normal.

Properties of these models such as mixing and asymptotic results,

higher—order moments, distributions of runs for the discrete models and

sums of random variables and point spectra are considered in the

references.

There are many other properties of the processes which are still

to be explored. Statistical estimation, except in an ad hoc manner and

for rn the Markovian cases , is difficult  and has - yet to be examined .

Extensions to multivariate cases is of great interest for real applica-

tions and has been done to some degree in the context of queues with

correlated service and arrival times (Jacobs, 1978, and Lewis and Shedler,

1978). The DABI4A—type processes, in particular, can be easily extended

to coupled equations in the same way as linear processes are extended in

econometric models. They might therefore find use in modelling multi—

variate situations such as the number of cars passing different points

in a road evaluated in successive fixed time intervals.

Finally an important problem is to extend the models so as to include

• inhomogeneity , particularly of the seasonal type, and the effects of con—

comittant or auxilliary variables. Several schemes are under consideration

for these extensions of the models.

20
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